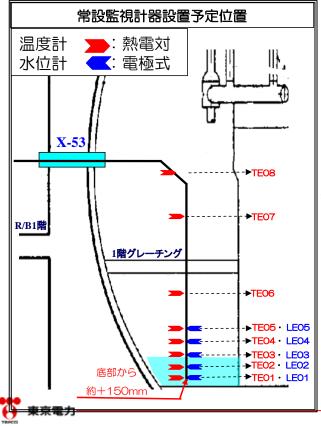
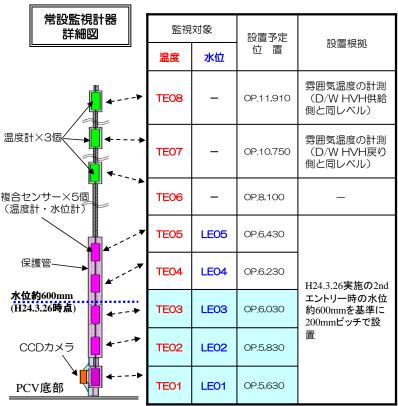
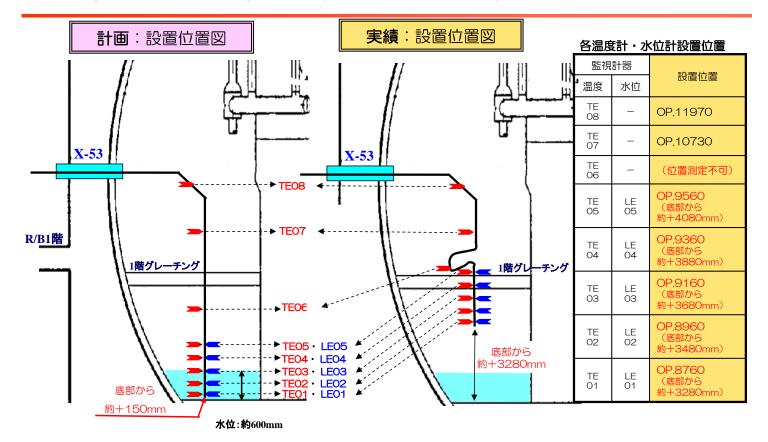
2号機 PCV内常設監視計器の設置 及び滞留水採取について (結果)


平成25年8月29日


東京電力株式会社


1. PCV内 常設監視計器設置の概要

X-53から監視計を挿入し、D/W内1階グレーチングを通して監視計を設置する。

PCV内 常設監視計器の設置状況

🙀 東京電力

無断複製·転載禁止 東京電力株式会社

2

PCV内 常設監視計器の設置結果

<結果>

- ・温度計(TEO7・O8)は、計画通り設置できた。
- ・温度計(TEO1~O6)は、計画位置に設置できなかった。
- ・測定した温度は近傍の既設温度計とほぼ同等の値であった。
 - →一部計画通りではないもの、温度計については十分使用可能と判断できる。
- ・水位計(LEO1~O5)は、計画の位置に設置できず、全て水面の上に設置となった。

<今後の対応>

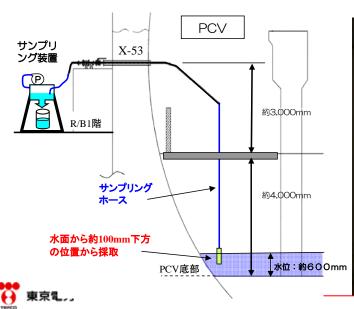
TE02

TEO1

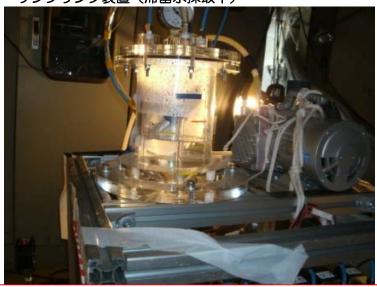
・監視計器が当初計画位置に設置できなかったことから、干渉原因の特定及び作業員の習熟訓練などを 行った後、当初計画位置に再設置することを検討していく。

温度計	[8/21 19時期	見在のデータ]	[℃]
新	T 設	既 設	
計器番号	温度	計器番号	温度
TE08	44.6	TE-16-114J HVH16D供給	43.9
TE07	44.5	TE-16-114D HVH16D戻り	43.5
TE06	44.6		
TE05	44.6		
TEO4	44.6	_	_
TE03	44,7		

44.7 44.8


水位計

計器番号	動作状態
LE05	×
LEO4	×
LE03	×
LE02	×
LEO1	×


×:気中位置 〇:水没位置

4-1. PCV内滞留水採取結果

- ・PCV内滞留水の水面約100mm下から計画通り約800ccの滞留水を採取した。
- ・採取した滞留水は濁りもなく透明であり、サンプリング容器表面線量は、
- $\gamma + \beta$ 線量 1.0mSv/h以下 γ 線量 0.5mSv/h
- ・滞留水の水位は、前回 (H24.3.26:2回目調査) 同様の約600mmであることを確認した。※水位は、カメラ着水した水面までのケーブル送り量から算出。

サンプリング装置(滞留水採取中)

無断複製・転載禁止 東京電力株式会社

1

4-2. PCV内滞留水採取結果

PCV内部 滞留水分析結果 (H25/8/7採取)

分析項目		分析結果	分析目的	評 価
На		7. 4	格納容器バウンダリの腐食抑制の ための腐食環境評価ならびに防食 対策検討。 ※中長期的な取組みである循環注	厳しい腐食環境ではなく、 腐食性は低い。
導電率【μS/cm】		25		
塩素濃度【ppm】		2. 9	水ループの縮小化に向けた設備設 計検討に使用する。 	
γ放射能濃度 【Ba/cm³】	Cs134	2. 14E+03		線 5
	Cs137	4. 38E+03	現在の水の循環に伴うPCVからの 放射性物質の放出、PCV内での線 源位置および核種移行挙動(沈着 物から水相への移行が大きいか)	
	l-131	検出限界未満 (く3.497E+O2)		
トリチウム濃度【Bq/cm³】		6. 77E+02	などの検討に資する。 ※中長期的な取組みである循環注	現在、評価中
Sr89/90濃度 【Bq/cm³】		9月末頃	】水ループの縮小化に向けた設備設 計検討に使用する。 」	
α放射能濃度 [Bq/cm³]		検出限界未満 (〈2.033E+00)		