JUUN

CO2を地下へ圧入・貯留する技術について 一苫小牧におけるCCS実証プロジェクトー

汚染水処理対策委員会 トリチウムタスクフォース(第9回)

平成26年7月9日 日本CCS調査株式会社

ご紹介内容

- 1. CO2貯留の仕組みと貯留可能性のある場所
- 2. 苫小牧CCS実証試験の概要
- 3. 適する地層の調査方法・期間
- 4. 圧入装置(圧縮機、ポンプ、坑井)
- 5. 法的規制および環境影響評価

1. CO2貯留の仕組みと貯留可能性のある場所

CCSの 仕組み

火力発電所や大規模工場などで排出されるCO₂(Carbon dioxide)を大気中に放 散する前に捕らえて(Capture)、地中に貯留する(Storage)技術

JCCS

日本CCS調査(株)による注記:黒丸で囲った地域の内、東京湾地域以外は上記貯留可能量には含まれないが、貯留層があることが確認されている。

2. 苫小牧CCS実証試験の概要

CCS大規模実証試験の全体概要

・実証試験は、経済産業省が日本CCS調査(株)に委託して実施中。商業運転中の出光興産(株)北海道製油所の 水素製造装置オフガスからCO2を分離・回収し、年間10万トン以上のCO2を苫小牧沖の2つの貯留層に圧入。 ・平成24~27年度は、これら地上設備の設計・建設と圧入井掘削、および地上設備の試運転を行う。

実証試験の目的と課題

【2020年頃の実用化を目指す】

- 分離・回収から貯留までのCCS全体を、一貫システムとして実証する
- 適用した既存の各技術が、それぞれ適切かつ有効に機能することを確認する
- CCSが、安全かつ安心できるシステムであることを実証する
- 貯留サイト選定指針の妥当性を、漏出が起きないことによって確認する
- 地震に関連する不安を、収集したデータに基づいて払拭する
 - 自然地震が起きても、貯留したCO2に影響が及ぶことはない
 - ・ CO₂の圧入によって地震が起こることはない
- 地質モデルの構築、改良に対する指針が、妥当であることを確認する
- プロジェクトの操業および安全に関する技術基準を作成する
- プロジェクト情報およびデータを開示し、市民にCCSを理解してもらう
- 実用化へ向けて、改善すべき課題、解決すべき課題を明らかにする

3. 適する地層の調査方法・期間

地表と地下での流体の密度変化(CO₂と水の比較)

地層の圧力と温度は深度の増加に伴って増加し、CO2は圧力と温度の増加に伴って密度が急激に増加する。立方体はCO2が占める相対体積であり、深度の増加に伴って小さくなる。

一方、水の密度はこの圧力と温度の範囲ではほとんど変化しない。水の地下での密度はCO2の約1.4倍である(同じ質量で比べると、水の体積はCO2の約70%)。

図の出典:二酸化炭素回収・貯留に関するIPCC 特別報告書(日本語版)p218 (2005)に加筆

CO2の貯留に適した地層

COっを地中に貯留するためには、貯留層とその上部を覆う遮蔽層が 対になった構造が条件。遮蔽層は貯留層に入れたCO2が漏れ出さない ようフタの役割を果す。

•泥岩

•すき間が少ない(すき間は地層水で満た されている)

11

JUCS

•CO₂が浸透しにくい性質

 CO_2 を通さない

- •砂岩、火山岩など
- •すき間が多い(すき間は地層水で満たさ れている)
- •CO2が浸透しやすい性質

COっを貯められる

CCS大規模実証プロジェクトのスケジュール

12

苫小牧地点 調査段階(平成20-23年度)の成果概要

苫小牧における貯留層評価に係る調査

·第一次3次元弹性波探查
·第二次3次元弾性波探查
・滝ノ上層調査井(傾斜井)
•萌別層調査井(垂直井)
・地層モデル構築(滝ノ上層)
・地層モデル構築(萌別層)
・CO ₂ 挙動予測シミュレーション (滝ノ上層)
・CO ₂ 挙動予測シミュレーション (萌別層)

「CCS実証試験実施に向けた専門検討会」資料より

苫小牧地点実地調査(3D弾性波探査の測定風景)

調査井掘削(苫小牧CCS-1、滝ノ上層対象)

≪目的≫

苫小牧地区における地質構造の詳細な把握によるCCSの可能性調査

≪期間≫

敷地工事 平成22年7月~9月 調査井掘削 平成22年10月~平成23年3月

≪調査井位置≫

北海道苫小牧市汐見町地先 西港区土砂処分場内 (国土交通省北海道開発局室蘭開発建設部所管)

≪掘削方法≫

掘削リグを使用して、陸上から沖合に向かって坑井を コントロールして曲げながら(傾斜掘り)、目的地層深度 (約3,700m、垂直深度:3,050m)まで掘削した。

リグ(掘削機械) 高さ:48.50m

3. 地層の調査

CCS実証試験の貯留層

Copyright 2014 Japan CCS Co., Ltd.

17

3. 地層の調査

CO_2 圧入挙動(萌別層)

(i)圧力挙動(シミュレーション結果)

・ベースケース:25万トン/年×3年間の圧入を確認。

「CCS実証試験実施に向けた専門検討会」資料より

3. 地層の調査

貯留CO₂の長期挙動予測(萌別層) 3年後(圧入終了時)

(i)長期挙動予測 圧入終了時(3年後)

・気相CO2は圧入井近傍で東西約400m、南北約600mに飽和率の高い範囲が拡がる。

・溶解CO2濃度は圧入井近傍で東西約400m、南北約600mに拡がる。

4. 圧入装置(坑井、圧縮機、ポンプ)

4. 圧入装置

地上設備の位置関係

Copyright 2014 Japan CCS Co., Ltd.

4. 圧入装置

CO₂ 圧縮・圧入システム

5. 法的規制および環境影響評価

圧入およびモニタリングシステムの位置関係

圧入基地管理棟

海洋環境調査

▶ CCS実証試験の実施に際しては、「海洋汚染等及び海上災害の防止に関する法律(海 洋汚染防止法)」に則り、海洋環境調査を実施しなければならない。

1. 調査範囲(左図)

• 苫小牧港港湾区域内12観測点

2. 調査方法

- サイドスキャンソナー/サブボトムプロファイ ——
- ・流向・流速計による測定(海水の流れの方向 と速さを調査)
- ・ 採水器での採集(塩分濃度等、およびプラン クトンの状況を調査)
- ・採泥器での採集(海底堆積物の状況を調査)
- ・ 網や簡易ドレッジによる採捕(底生生物の種 類、数などを調査)
- ダイバーやROVによる底生生物の撮影
- 3. 三段階にわたる調査
- 準備•建設段階
- 実証試験実施段階
 - CO₂ 圧入運転中 CO₂ 圧入運転後
- 実証試験終了後

JCCS

ロンドン条約96年議定書と海洋汚染防止法の改正

2006年にロンドン条約96年議定書が改定され、CO2 の海底下地中貯留が国際 法上で可能となった。 わが国では、2007年に海洋汚染防止法が改正・施行され、ロンドン条約が批准さ れた。

【改正法の骨子】

 廃棄物の海底下廃棄の原則禁止 廃棄物を海底の下に廃棄することは、2の許可を受けた場合を除き禁止。
 CO2の海底下廃棄に係る許可制度の創設

 (1)CO2を海底の下に廃棄しようとする者(陸域から廃棄しようとする者を含む。)は、環境大臣の許可を受けなければならない。
 (2)(1)の許可を受けようとする者は、環境影響を評価しなければならない。
 (3)許可を受けてCO2を海底の下に廃棄する者は、海洋環境の保全に障害を及ぼさないよう廃棄し、また、海洋環境を監視しなければならない。

海洋汚染防止法では「貯蔵」も廃棄に含まれるが、当社ではCO2の「貯留」を用いる。

ロンドン条約96年議定書の概要

(平成19年2月中央環境審議会答申資料)

平成25年度に行った情報提供活動例

パネル展(合計18回)

子供向け科学実験教室(合計10回)

CCS 講演会(H26.3月、苫小牧市)

現場見学会(合計19回)

大学向け講演会(合計12回)

プレス発表(合計10回)

30

建設現場ライブ映像公開 (ホームページ)

CCS解説アニメーション

2013地球温暖化防止展(H25.5月)

エコプロダクツ2013 (H25.12月)

CCSバナー

ご清聴ありがとうございました

http://www.japanccs.com/

CCS/CO2 -EOR:世界の大規模プロジェクト

出典: Global CCS Institute, "The Global Status of CCS 2013" および "The Global Status of CCS February 2014"に基づいて作成、一部追記

Copyright 2014 Japan CCS Co., Ltd.

32

大規模CCS事業:稼働中プロジェクト

	プロジェクト名	国	CO2量/年	運転開始	排出源	回収 タイプ	輸送距離	輸送 タイプ	貯留 タイプ
1	Val Verde Natural Gas Plants ¹⁾	米国	130 万トン	1972	天然ガス精製	燃焼前 (ガス処理)	132 km	陸→陸 パイプライン	EOR
2	Enid Fertilizer CO ₂ -EOR Project	米国	68 万トン	1982	肥料生産	燃焼前	225 km	陸→陸 パイプライン	EOR
3	Shute Creek Gas Processing Facility ¹⁾	米国	700 万トン	1986	天然ガス精製	燃焼前 (ガス処理)	190 km	陸→陸 パイプライン	EOR
4	Sleipner CO ₂ Injection	ノルウェー	100 万トン	1996	天然ガス精製	燃焼前 (ガス処理)	0 km	直接圧入	海底下 帯水層
5	Great Plains Synfuel Plant and Weyburn-Midale Project	カナダ	300 万トン	2000	合成天然ガス	燃焼前	315 km	陸→陸 パイプライン	EOR
6	In Salah CO ₂ Storage ²⁾	アルジェリア	100 万トン	2004	天然ガス精製	燃焼前 (ガス処理)	14 km	陸→陸 パイプライン	陸上 帯水層
7	Snøhvit CO ₂ Injection	ノルウェー	70 万トン	2008	天然ガス精製	燃焼前 (ガス処理)	152 km	陸→海底 パイプライン	海底下 帯水層
8	Century Plant ¹⁾	米国	840 万トン	2010	天然ガス精製	燃焼前 (ガス処理)	256 km	陸→陸 パイプライン	EOR
9	Air Products Steam Methane Reformer EOR Project	米国	100 万トン	2013	水素製造	燃焼前 (合成ガス)	101 – 150 km	陸→陸 パイプライン	EOR
10	Petrobras Lula Oil Field CCS Project	フ゛ラシ゛ル	70 万トン	2013	天然ガス精製	燃焼前 (ガス処理)	0 km	直接圧入	EOR
11	Coffeyville Gasifi cation Plant	米国	100 万トン	2013	肥料製造	工業分離	112 km	陸→陸 パイプライン	EOR
12	Lost Cabin Gas Plant	米国	100 万トン	2013	天然ガス精製	燃焼前 (ガス処理)	不明	陸 陸→陸 パイプライン	EOR

1) 米国の4件のEORプロジェクトは、適切な貯留CO2のモニタリングがなされていないため、IEAやCSLFではCCSプロジェクトとしては認められていない。

2) In Salahプロジェクトは2011年6月から操業を停止している。

出典: Global CCS Institute, "The Global Status of CCS 2013" および "The Global Status of CCS February 2014"に基づいて作成

Copyright 2014 Japan CCS Co., Ltd.