ベンゾフェノンの有害性評価

[Benzophenone, CAS No. 119-61-9]

名 称: ベンゾフェノン

別 名: ジフェニルメタノン、ジフェニルケトン、ベンゾイルベンゼン、BZP

 分
 子
 式: C₁₃H₁₀O

 分
 子
 量: 182.22

構 造 式:

外 観: 白色の結晶1)

融 点: 48.5 1)

沸 点: 305.4 (1.013 × 10³ Pa) ¹⁾

比 重: $d_4^{18} = 1.1108^{1}$

蒸 気 圧: 1.33×10² Pa (108.2)¹⁾

分 配 係 数: Log Pow = 3.18 (実測値)²⁾

分解性: 加水分解性 報告なし

生分解性 難分解 (BOD = 0%, 14 日間) ³⁾

溶 解 性: 水 137 mg/L(25)(実測値)²⁾

有機溶媒 アセトン、ベンゼンに可溶1)

製 造 量 等: 平成13年度 (非公表)

用 途: 医薬品、殺虫剤の合成原料。保香剤、紫外線吸収剤 4)

適 用 法 令: 該当法令なし

¹⁾ HSDB, 2001; ²⁾ PHYSPROP, 2000; ³⁾ 通商産業公報, 1980; ⁴⁾ US.NTP, 2000.

1. 有害性調査結果

1) ヒトの健康に関する情報

ベンゾフェノン (BZP) の 6%溶液を用いてボランティア 25 人に感作性試験 (マキシマイゼーション法)を行った結果、陽性反応はみられていない (Kligman, 1966, 1970)。

2) 内分泌系及び生殖系への影響

(1) レセプター結合に関する*in vitro*試験結果(付表-1)

BZPは、ヒトのエストロゲン受容体リガンド結合ドメインを用いた結合試験で、0.1 mMの濃度まで結合性はみられていない(CERI, 2001a)。 蛍光標識エストラジオールを用いた競合結合試験において、ヒトエストロゲン受容体 に対して結合性がみられた。結合性は弱く試験濃度範囲でエストラジオール (E2) のエストロゲン受容体への結合性を50%阻害する濃度 (IC50)は求められず、最高用量 (1.9×10⁻⁴ M) でE2の結合性を25%阻害する程度であった(Satoh et al., 2001)。また、酵母ツーハイブリッドアッセイを用いてBZPの転写活性化を調べたところ、転写活性化は認められていない (Nishihara et al., 2000)。

一方、BZPの誘導体について、*in vitro* 試験が行われている。ヒトのエストロゲン受容体リガンド結合ドメインを用いた結合試験で、10種のヒドロキシ誘導体と1種のジブロモ体が結合することが見出されている(結合性はE2の1/1,100 – 1/44,000) (CERI, 2001a)。BZPの還元化合物のベンズヒドロールは結合しない(Nakagawa & Tayama, 2001)。また、ヒトエストロゲン受容体を用いた酵母レポーター遺伝子アッセイでは、BZPそのものはエストロゲン応答配列 (ERE) 依存的な遺伝子の転写活性化を起こさないが、その誘導体 (4-ヒドロキシ体、3-ヒドロキシ体、2-ヒドロキシ体、4-アミノ体、4,4′-ジヒドロキシ体、4,4′-ジアミノ体、4-クロロ-4′-ヒドロキシ体、2,3,4-トリヒドロキシ体、2,4,4′-トリヒドロキシ体、2,2′,4,4′-テトラヒドロキシ体)はEREを介した転写活性化能を有する (Schultz et al., 2000)。

ヒトあるいはラットエストロゲン受容体発現遺伝子及びエストロゲン受容体応答配列を組み込んだHeLa細胞(ヒト子宮頸ガン組織由来の株細胞)を用いたレポーター遺伝子アッセイにおいて、BZPそのものは転写活性化を示さないが、3-ヒドロキシ体、4-ヒドロキシ体、4,4′-ジブロモ体、4,4′-ジヒドロキシ体、4-クロロ-4′-ヒドロキシ体、2,4,4′-トリヒドロキシ体、4-フルオロ-4′-ヒドロキシ体、2,4-ジヒドロキシ体、2,2′,4,4′-テトラヒドロキシ体はヒトエストロゲン受容体結合試験で結合性を示すとともに、ヒトのエストロゲン受容体発現遺伝子及びエストロゲン受容体応答配列を組み込んだHeLa細胞を用いたレポーター遺伝子アッセイにおいて転写活性化能を有することを示唆する事例がある。また、2,3,4-トリヒドロキシ体及び2,3,4,4′-テトラヒドロキシ体はヒトエストロゲン受容体結合能を有するが、レポーター遺伝子アッセイにおいて転写活性化を示さない (CERI, 2001a)。

なお、エストロゲン依存性のヒト乳ガン細胞株であるMCF-7細胞に対してもBZPは増殖活性を示さないが、4-ヒドロキシ体は高濃度域 $(10-100~\mu\text{M})$ で増殖活性を示す (Nakagawa et al., 2000)。

ヒトプロゲステロン受容体を用いた酵母レポーター遺伝子アッセイで、BZPはプロゲステロン応答配列 (PRE) 依存的な転写活性化を生じず、またプロゲステロンによる遺伝子転写活性化を拮抗阻害しない (Tran et al., 1996)。

BZPは、ヒトアンドロゲン受容体競合結合試験で結合性がみられた。結合性は弱く、試験濃度範囲でテストステロンの結合性を50%阻害する濃度は (IC50)は求められず、最高濃度 (1.9×10⁴ M) でテストステロンの結合性を48%阻害する程度という報告 (Satoh et al., 2001)と、ヒトアンドロゲン受容体に対する結合性を示さないという報告 (CERI, 2003) がある。ヒトアンドロゲン受容体のレポーター遺伝子アッセイでは、一過性発現系、並びに安定形質転換株でのアゴニスト検出系及びアンタゴニスト検出系のいずれにおいても遺伝子の転写活性化は示していない (CERI, 2003)。

(2)ほ乳動物の内分泌系及び生殖系に及ぼす影響(付表-2)

エストロゲン作用あるいは抗エストロゲン作用を検出するスクリーニング手法である子宮増殖アッセイ (OECD ガイドライン案に準拠)において、エストロゲン作用を検出するため、雌の卵巣摘出 SD ラットに BZP を 0、5、50、500 mg/kg/day の用量で 7 日間皮下投与した実験では、500 mg/kg/day 群で軽度の子宮重量の増加がみられ、さらに抗エストロゲン作用を検出するため、BZP を 0、5、50、500 mg/kg/day の用量で 7 日間皮下投与し、同時に 17α - エチニルエストラジオールを 0.3 μ g/kg/day 皮下投与した実験で 50 mg/kg/day 以上の群でわずかに子宮重量の減少がみられている (CERI, 2001b)。

雌の幼若 SD ラットに BZP を 0、2、20、200 mg/kg/day の用量で 3 日間皮下投与した実験では、子宮重量に変化はみられていない (CERI, 2001a)。一方、BZP と BZP の代謝産物である 2 物質について子宮増殖アッセイを行った実験では、雌の幼若 SD ラットにBZP を 0、400 mg/kg/day、ベンズヒドロールを 0、400 mg/kg/day、 4-ヒドロキシベンゾフェノンを 0、100、200、400 mg/kg/day の用量で 3 日間皮下投与したところ、BZP 及びベンズヒドロールでは子宮重量に変化はみられなかったが、4-ヒドロキシベンゾフェノンでは 100 mg/kg/day 以上で用量に依存して子宮重量の増加が認められている (Nakagawa & Tayama, 2001)。

雌の卵巣摘出 SD ラットに BZP を 0、100、400 mg/kg/day の用量で 3 日間強制経口投与した実験では、100 mg/kg/day 以上で腟の角化を伴う上皮細胞層の肥厚、400 mg/kg/day で子宮重量の増加、子宮の管腔内の上皮細胞の高円柱状化(丈の増加)、子宮の間質層の肥厚がみられている。 著者らは BZP がエストロゲン作用示すには、内因性ホルモン活性を持つ代謝物である 4-ヒドロキシベンゾフェノンに代謝される必要があると考察している (Nakagawa & Tayama, 2002)。

アンドロゲン作用あるいは抗アンドロゲン作用を検出するスクリーニング手法であるハーシュバーガーアッセイ (OECD ガイドライン案に準拠)において、アンドロゲン作用を検出するため、雄の去勢 SD ラットに BZP を 0、1、10、100 mg/kg/day の用量で 10 日間強制経口投与した実験で、雄性副生殖器の重量の変化はみられていない。さらに抗アンドロゲン作用を検出するため、BZP 0、1、10、100 mg/kg/day の用量で 10日間強制経口投与し、同時にプロピオン酸テストステロン 0.4 mg/kg/day を皮下投与した実験でも、雄性副生殖器の重量の変化はみられていない (CERI, 2001b)。

雌雄の SD ラットに BZP 0、100、450、2,000 ppm (F_0 雄; 0、6.445、29.01、130.0 mg/kg/day 相当、 F_0 雌; 0、8.379、38.15、166.5 mg/kg/day 相当、 F_1 雄; 0、7.785、34.60、159.4 mg/kg/day 相当、 F_1 雌; 0、8.776、40.52、179.2 mg/kg/day 相当)を混餌投与した 2 世代生殖毒性試験で、親動物への影響として F_0 及び F_1 の 100 ppm 以上の雌雄で肝臓の小葉中心性肝細胞肥大、肝臓重量増加傾向または肝臓重量増加、450 ppm 以上の雌雄で体重増加抑制、摂餌量低値、腎臓重量増加、腎臓の近位尿細管の拡張、雄で腎臓の近位尿細管上皮の再生増加、2,000 ppm の雌で腎臓の近位尿細管上皮の再生増加がみられた。親動物の内分泌系に対する影響及び生殖毒性学的影響はみられていない。仔動物への影響として、 F_1 及び F_2 の 2,000 ppm の雌雄で体重増加抑制がみられている。この試験において親動物に対する一般毒性学的な無影響量(NOEL)は 100 ppm(雄で 6.445~7.785 mg/kg/day、雌で8.379~8.776 mg/kg/day 相当)未満、無毒性量(NOAEL)は 100 ppm、内分泌系及び生殖毒性学的影響に関する無影響量は 2,000 ppm(雄で 130.0~159.4 mg/kg/day、雌で166.5~179.2 mg/kg/day 相当)、仔動物に対する無影響量及び無毒性量は 450 ppm(雄で29.01~34.60 mg/kg/day、雌で38.15~40.52 mg/kg/day 相当)と結論されている(経済産業省、2003)。

3) 一般毒性に関する情報

(1) 急性毒性 (表-1)(US.NTP, 2000)

マウス、ラット及びウサギにおける各投与経路での LD₅₀ 値を表-1 に記載する。

雄の Swiss 系マウス (19-25g) に BZP (5% アラビアゴムに懸濁) を経口及び腹腔内投与した実験で、鎮静の誘発、運動量の低下、不安定歩行、身震い、呼吸数低下がみられている (Caprino et al., 1976)。

	マウス	ラット	ウサギ
経口 LD ₅₀	2,895 mg/kg	1,900 mg/kg	
吸入 LC ₅₀			
経皮 LD ₅₀			3,535 mg/kg
腹腔内 LD50	727 mg/kg		

表-1 急性毒性試験結果

(2) 反復投与毒性(付表-3)

雌雄の SD ラットに BZP 0、100、500 mg/kg/day を 28 日間混餌投与した実験で、100 mg/kg/day 以上の群において、赤血球数、ヘマトクリットの減少、尿素窒素、ビリルビン、総タンパクとアルブミンの増加、肝臓と腎臓の重量増加、肝細胞肥大、500 mg/kg/day 群でヘモグロビンとアルカリホスファターゼ活性の減少、グルコース量の増加が認められている。一方、本物質を SD ラットに 0、20 mg/kg/day で 90 日間混餌投与した実験では変化は認められていない (Burdock et al., 1991)。

雌雄の F344 ラットに BZP 0、1,250、2,500、5,000、10,000、20,000 ppm (雄: 0、75、150、300、700、850 mg/kg 相当; 雌: 0、80、160、300、700、1,000 mg/kg 相当)で14週間混餌投与した実験で、20,000 ppm 群において体重減少、2,500 ppm 以上の群で体重増加の抑制、1,250 ppm 以上の群で肝臓重量の増加、肝細胞の肥大と空胞化が認められている。腎臓では、腎臓重量の増加、尿細管での蛋白円柱、用量増加に伴う尿細管拡張、腎乳頭壊死などがみられている (US.NTP, 2000)。

雌雄の B6C3F₁マウスに BZP 0、1,250、2,500、5,000、10,000、20,000 ppm(雄: 0、200、400、800、1,600、3,300 mg/kg 相当;雌: 0、270、540、1,000、1,900、4,200 mg/kg 相当)で14 週間混餌投与した実験で、20,000 ppm 群において体重減少と死亡、5,000 ppm 以上の群で体重の増加抑制、2,500 ppm 以上の群で腎臓重量の増加、1,250 ppm 以上の群で肝臓の重量の増加と肝細胞肥大がみられている (US.NTP, 2000)。

雄のモルモットに BZP 0、0.5 mg/kg/day の用量で 15 日間腹腔内投与した実験において、肝臓の病理学的検査を実施した結果、肉眼的に肝臓の腫大、組織学的に肝細胞の変性、壊死、結合組織の増殖、胆管上皮の増殖などが観察されている。(Dutta et al., 1993)。

4) 変異原性・遺伝毒性及び発がん性に関する情報

(1) 変異原性・遺伝毒性(表-2)

in vitro 試験では、復帰突然変異試験において、ネズミチフス菌あるいは大腸菌に対する BZP の変異原性は陰性であった (Martinez et al.,2000; US.NTP, 2000; Kubo et al., 2001)。ネズミチフス菌 TA1535/pSK1002 を用いた *umu* テストでは陽性との報告がある (Takemoto et al., 2002; Degirmenci et al., 2000)。

In vivo 試験では、マウスの小核試験で陰性であった (US.NTP, 2000)。

	試験方法	試験条件	結果*	文献
in vitro	復帰突然変異試験	大腸菌WP2uvrA/pKM101, IC203 S9(-) 200 µg/plate	-	Martinez et al., 2000
		ネズミチフス菌TA98、TA100、TA1535、 TA1537 S9(-/+) 1-1000 µg/plate	-	US.NTP, 2000

表-2 変異原性・遺伝毒性試験結果

	試験方法	試験条件	結果*	文献
		ネズミチフス菌TA98、TA100 S9(-/+) 0.01, 1 mM	-	Kubo et al., 2001
	umu テスト	ネズミチフス菌TA1535/pSK1002 ヒトシトクロームP450	+	Takemoto et al., 2002
		ネズミチフス菌TA1535/pSK1002 S9添加の有無不明	+	Degirmenci et al., 2000
in vivo	小核試験	B6C3F ₁ マウス 200-500 mg/kgを24時間 間隔で3回腹腔内投与。骨髄細胞	-	US.NTP, 2000

*-:陰性 、+:陽性

(2) 発がん性(表-3)

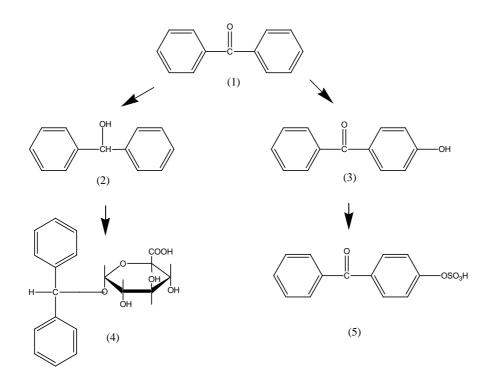
雌の Swiss マウス (7 週齢)に BZP 0、5、25、50% (溶媒アセトン、1 群 50 匹)の用量で 2 回/週、生涯にわたり皮膚に塗布した実験において、本物質による腫瘍の発生率の増加は観察されなかった (Stenback & Shubik, 1974)。

機関	分 類	分 類 基 準	出 典
US.EPA	-	発がん性について評価されていない。	IRIS, 2002
EU	-	発がん性について評価されていない。	ECB, 2000
US.NTP	-	発がん性について評価されていない。	US.NTP, 2000
IARC	-	発がん性について評価されていない。	IARC, 2001
ACGIH	-	発がん性について評価されていない。	ACGIH, 2001
日本産業衛生学会	-	発がん性について評価されていない。	日本産業衛生学会,2001

表-3 国際機関等での発がん性評価

5)免疫系への影響

現時点で、BZP の免疫系への影響に関する報告はない


6)生体内運命

BZP のベンガルザルにおける経皮投与実験で、開放適用の場合は 44%、閉塞適用の場合は 69% が吸収されたことが報告されている (US.NTP, 2000)。

ウサギに混餌投与した実験では、BZP は、カルボニル基が還元されて、ベンズヒドロールになり、次いでグルクロン酸抱合体となり、尿中に排泄されている。尿中排泄量は投与量の 41-61% である (US.NTP, 2000)。雄の SD ラットに BZP を経口投与した実験では,投与量の 1%が 4-ヒドロキシベンゾフェノンとして尿中に検出されている (US.NTP, 2000)。ラットの初代肝細胞懸濁液に BZP 0.25 mM を添加した実験では,ベンズヒドロール、4-ヒドロキシベンゾフェノン及びその硫酸抱合体が検出されている (Nakagawa et

al., 2000)

BZP のヒト胎盤アロマターゼとの結合性及びその結果生じる阻害作用について *in vitro* で調べられている。BZP は、アロマターゼ溶液に加えられると、酵素の基質であるアンドロスト-4-エン-3, 17-ジオンの存在下でも、その吸収スペクトルを変化させるとともに、アロマターゼ活性の拮抗阻害を起こした。これらの結果から、BZP はアロマターゼの活性中心に結合し、酵素活性を阻害することが示されている (Vaz et al., 1992)。

(1) ベンゾフェノン(BZP)

(4) グルクロン酸抱合体

(2) ベンズヒドロール

- (5) 硫酸抱合体
- (3) 4-ヒドロキシベンゾフェノン

図1 ベンゾフェノンの代謝経路

2. 現時点での有害性評価

ヒトの内分泌系、生殖器系への影響に関する報告はない。

本物質の内分泌系への影響を調べるための *in vitro* 実験の結果、本物質はエストロゲン 受容体結合試験においてヒトエストロゲン受容体に結合しないという報告と弱い結合 性を示すとの報告があるが、レポーター遺伝子アッセイではヒトエストロゲン受容体を 介する遺伝子の転写活性化は示されず、ヒト乳ガン細胞である MCF-7 細胞の増殖活性を示さないとの報告がある。また、ヒトアンドロゲン受容体に対しても結合しないという報告と弱い結合性を示すという報告があるが、レポーター遺伝子アッセイではヒトアンドロゲン受容体を介する遺伝子の転写活性化もみられていない。一方、代謝により生成する本物質の 4-ヒドロキシ体などの誘導体は、ヒトエストロゲン受容体への結合を示し、エストロゲン受容体を介した転写活性化とヒト乳ガン細胞 MCF-7 細胞の増殖を生ずる。このほか、BZP 自体、*in vitro* でテストステロンからのエストロゲン生成に関与するアロマターゼの活性を拮抗的に阻害する。

BZP の in vivo 試験の結果、子宮増殖アッセイにおいてエストロゲン作用及び抗エストロゲン作用を示すとの結果と、エストロゲン作用を示さないとの結果が得られている。また、ハーシュバーガーアッセイではアンドロゲン作用、抗アンドロゲン作用のいずれもみられていない。BZP の代謝産物である 4-ヒドロキシベンゾフェノンの未成熟ラットの子宮増殖アッセイではエストロゲン作用がみられている。

以上の結果から、BZP はエストロゲン作用及び抗エストロゲン作用をもつが、アンドロゲン作用及び抗アンドロゲン作用を有さないことが示唆される。このエストロゲン作用は、BZP 自体による作用ではなく、BZP の代謝産物によっているものと思われる。また、BZP がアロマターゼの活性を阻害することから、生体内でエストロゲン産生量の減少を生じる可能性が考えられるが、子宮増殖アッセイで認められた抗エストロゲン作用との関連は現時点では不明である。

生殖発生毒性試験においては、ラットの2世代生殖毒性試験では、親動物に対しては、100 ppm (雄で6.445~7.785 mg/kg/day、雌で8.379~8.776 mg/kg/day 相当)以上で肝臓に対する影響、450 ppm (雄で29.01~34.60 mg/kg/day、雌で38.15~40.52 mg/kg/day 相当)以上で体重増加抑制、摂餌量の低値、腎臓に対する影響がみられたが内分泌系への影響及び生殖への影響はみられていない。また、仔動物に対しては2,000 ppm (雄で130.0~159.4 mg/kg/day、雌で166.5~179.2 mg/kg/day 相当)で体重増加抑制がみられている。

なお、本物質の有害性に関連する情報として、反復投与毒性試験では、げっ歯類において主に肝臓、腎臓への影響がみられている。変異原性・遺伝毒性では、in vitro で陰性、陽性両方の報告があり、in vivo では陰性と報告されている。発がん性に関しては、ヒトでの報告はなく、実験動物では皮膚への塗布試験で腫瘍の発生率の増加は認められていない。

3. リスク評価等今後必要な対応

本物質については、*in vivo* スクリーニング試験でエストロゲン作用及び抗エストロゲン作用を示す結果が得られた。エストロゲン作用については本物質の代謝物によると考えられが、抗エストロゲン作用が代謝物によるものであるか否かは不明である。しかし、2世代繁殖毒性試験の結果からは内分泌系への影響、生殖能に対する影響はみられてい

ないことから、現時点で新たな調査に着手する必要性は低いと考えられる。

なお、環境省では平成14年度第1回内分泌攪乱化学物質問題検討会において、「げっ歯類を用いた1世代試験」および「試験管内 (in vitro)試験結果等を取りまとめて、哺乳類を用いた人健康への内分泌撹乱作用に関する試験結果としては既報告で影響が報告されている高用量 (20、500 mg/kg/day) においてのみ一般毒性が認められたが、低用量 (50 µ g/kg/day 以下;文献情報等により得られた人推定曝露量を考慮した比較的低用量)での明らかな内分泌かく乱作用は認められなかったとしている。ただし、現時点では内分泌かく乱作用との関連は明らかではないものの低用量で有意差のある変化が認められており、今後の知見集積の中で注視する必要があるとしている。

参考文献 (文献検索時期:2003年2月1)

- ACGIH (2001) American Conference of Governmental Industrial Hygienists. Documentation of the threshold limit values and biological exposure indices. Seventh Edition, Cincinnati, Ohio, 200.
- Burdock, G.A., Pence, D.H., and Ford, R.A., (1991) Safety evaluation of benzophenone., Food Chem. Toxicol., 29, 741-750.
- Caprino, L., Togna, G., and Mazzei, M. (1976) Toxicological studies of photosensitizer agents and photodegradable polyolefins. Eur. J. Toxicol. Environ. Hyg., 9, 99-103.
- Degirmenci, E., Ono, Y., Kawara, O. and Utsumi, H. (2000) Genotoxicity analysis and hazardousness prioritizaion of a group of chemicals. Water Sci. Technol., 42, 125-131.
- Dutta, K., Das, M., and Rahman, T., (1993) Toxicological impacts of benzophenone on the liver of guinea pig (Cavia procellus). Bull. Environ. Contam. Toxicol., 50, 282-285.
- ECB (2000) Council Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labeling of dangerous substances: ANNEX I (http://ecb.jrc.it/).
- IARC (2001) IARC Monograph on the Evaluation of Carcinogenic Risks to Humans. ホームページ上 (http://www.iarc.fr) の最新リスト
- IRIS (2002) Integrated Risk Information System, National Library of Medicine, (http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?IRIS).
- Kligman, A.M. (1966) The Identification of contact allergens by human assay. III. The maximization test. A procedure for screening and rating contact sensitizers. J. Invest. Dermatol., 47, 393. (in Food Cosmet. Toxicol., 11, 873-874, 1973)
- Kligman, A.M. (1970) Report to RIFM, 1 July. (in Food Cosmet. Toxicol., 11, 873-874, 1973)
- Kubo, T., Urano, K. and Utsumi, H. (2002) Mutagenicity characteristics of 255 environmental chemicals. J. Health Sci., 48, 545-554.
- Martinez, A., Urios, A., and Blanco, M. (2000) Mutagenicity of 80 chemicals in Escherichia coli tester strains IC203, deficient in OxyR, and its oxyR+ parent WP2 uvrA/pKM101: detection of 31 oxidative mutagens. Mutat. Res., 467, 41-53.
- Nakagawa, Y., Suzuki, T., and Tayama, S. (2000) Metabolism and toxicity of benzophenone in isolated rat hepatocytes and estrogenic activity of its metabolites in MCF-7 cells. Toxicology, 156, 27-36.
- Nakagawa, Y., and Tayama, K. (2001) Estrogenic potency of benzophenone and its metabolites in juvenile female rats. Arch. Toxicol. 75, 74-79.

¹⁾ データベースの検索を 2003年2月に実施した。新たなデータを入手した際には文献を更新した。

- Nakagawa, Y., and Tayama, K. (2002) Benzophenone-induced estrogenic potency in ovariectomized rats.. Arch Toxicol, 76, 727-731.
- Nishihara, T., Nishikawa, J., Kanayama, T., Dakeyama, F., Saito, K., Imagawa, M., Takatori, S., Kitagawa, Y., Hori, S., and Utsumi, H. (2000) Estrogenic activities of 517 chemicals by yeast two-hybrid assay. J. Health Sci., 46, 282-298.
- PHYSPROP (2000) Syracuse Research Corporation Physical Properties Database, (http://esc.syrres.com/interkow/PhysProp.htm).
- Satoh, K., Nagai, F. and Aoki, N. (2001) Several environmental pollutants have binding affinities for both androgen receptor and estrogen receptor . J. Health Sci., 47, 495-501.
- Schultz, T.W., Seward, J.R., and Sinks, G.D. (2000) Estrogenicity of benzophenones evaluated with a recombinant yeast assay: comparison of experimental and rules-based predicted activity. Environ. Toxicol. Chem., 19, 301-304.
- Stenback, F., and Shubik, P. (1974) Lack of toxicity and carcinogenicity of some commonly used cutaneous agents. Toxicol. Appl. Pharmacol., 30, 7-13.
- Takemoto, K., Yamazaki, H., Nakajima, M. and Yokoi, T. (2002) Genotoxic activation of benzophenone and its two metabolites by human cytochrome P450s in SOS/*umu* assay. Mutation Research, 519, 199-204.
- Tran, D.Q., Klotz, D.M., Ladlie, B.L., Ide, C.F., McLachlan, J.A., and Arnold, S.F. (1996) Inhibition of progesterone receptor activity in yeast by synthetic chemicals. Biochem. Biophys. Res. Commun., 229, 518-523.
- US.NTP (2000) NTP technical report on the toxicity studies of benzophenone (CAS No. 119-61-9) administered in feed to F344/N rats and B6C3F1 mice. NTP Toxicity Report Series 61.
- US.NTP (2000) U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, 9th Report on Carcinogens.
- Vaz, A.D., Coon, M.J., Peegel, H., and Menon, K.M.J. (1992) Substituted pyridines: nonsteroidal inhibitors of human placental aromatase cytochrome P-450. Drug Metab. Dispos., 20, 108-112.
- Yamasaki, K., Takeyoshi, M., Yakabe, Y., Sawaki, M., Imatanaka, M., and Takatsuki, M. (2002) Comparison of reporter gene assay and immature rat uterotrophic assay of twenty-three chemicals. Toxicology, 170, 21-30.
- CERI (化学物質評価研究機構) (2001a) 平成 12 年度経済産業省環境対応技術開発等委託調査研究、環境ホルモン効果に関する評価・試験法開発報告書. 57, 66.
- CERI (化学物質評価研究機構) (2001b) 平成 11 年度新エネルギー・産業技術総合開発機構 委託業務、化学物質の内分泌撹乱効果に関する評価及び試験法の開発報告書. 116-190.
- CERI (化学物質評価研究機構) (2003) 平成 14 年度経済産業省環境対応技術開発等委託調

査研究、環境ホルモン効果に関する評価・試験法開発報告書. 通商産業公報 (1980).

日本産業衛生学会 (2001) 許容濃度等の勧告,産業衛生学雑誌,43,95-119.

付表-1 レセプター結合に関する in vitro 試験結果

E FERに対する結合試験 BZP CERI、2001a 性を示さない EA CERI、2001a 性を示す ER CERI、2001a 性を示す ER CERI、2001a EA CERI & CERI	項目	試験方法及び条件	<i>in vuro</i> 山秋 河	結論	文献
語合試験 (組換え ER リガンド (E2: 1.7×10°M) (E2: 1.7×10°M) (BZPの誘導体 (LC50値) 4-ヒドロキシ体: 1.3×10°M (4-ヒドロキシ体: 1.3×10°M (4-ヒドロキシ体: 1.3×10°M (4-ヒドロキシ体: 1.0×10°M (4-ビドロキシ体: 1.0×10°M (4-ビドロキシ体: 1.0×10°M (4-ビドロキシ体: 1.2×10°M: RBA: 0.013%) (4-ジヒドロキシ体: 1.2×10°M: RBA: 0.014%) (2.4ジヒドロキシ(2.3,44·F) と1.0×10°M: RBA: 0.0014%) (2.3,44·F) と1.0×10°M: RBA: 0.0023%) (4-2,3,44·F) と1.0°M: RBA: 0.0023%) (4-1) と1.0×10°M: RBA: 0.0033%) (4-1) は1.0×10°M: RBA: 0.0033%) (4-1) は1.0×10°M: RBA: 0.0031%) (4-1) は1.1×10°M: RBA: 0.0031%) (4-1					
ドメイン (E2: 1.7 × 10° M) BZP 勝導体 (C50値) 4-ヒドロキシ体: 1.3 × 10° M (E2: 1.4 × 10° M; RBA: 0.011%) 3-ヒドロキシ体: 1.0 × 10° M (E2: 1.3 × 10° M; RBA: 0.013%) 4-ピドロキシ体: 1.2 × 10° M; RBA: 0.013%) 4-ピリーキン体: 1.2 × 10° M; RBA: 0.017% 5- 4 × 2.2 × 1.4 × 10° M; RBA: 0.017% 5- 4 × 2.2 × 1.4 × 10° M; RBA: 0.017% 5- 4 × 2.2 × 1.4 × 1.2 × 10° M; RBA: 0.013% 5- 4 × 2.2 × 1.4 ×					C2111, 2 0011
4-ヒドロキシ体: 1.3×10 ⁵ M	WH III HAVION			HE/KE/SVI	
(E2: 14×10° M: RBA: 0.011%) シ体/3-とドロ 3-とドロキシ体: 1.0×10° M RBA: 0.013%) とドロキシ体: 1.0×10° M とドロキシ体: 2.4-ジードロキシ体: 2.4-ジードロキシ体: 2.4-ジードロキシ体: 2.4-ジードロキシ体: 2.4-ジードロキシ体: 2.4-ジードロキシ体: 2.4-ジードロキシ体: 2.4-ジードロキシ体: 2.4-ゾードロキシ体: 2.4-ゾードロキシ体: 1.7×10° M (E2: 1.2×10° M: RBA: 0.017%) ソードロキシ体: 2.4-ゾードロキシ体: 2.4-ゾードロキシ体: 2.4-ゾードロキシ体: 2.4-ゾードロキシ体: 2.3-(4-ゾードロキシ体: 1.7×10° M (E2: 1.1×10° M: RBA: 0.014%) 2.4-ゾードロキシ体: 2.3-(4-ゾードロキシ体: 1.0° M: RBA: 0.025%) 2.2-(4-ゾードロキシ体: 1.0° M: RBA: 0.0025%) 2.2-(4-ゾードロキシ体: 1.0° M: RBA: 0.0051%) 4-ゾーバカロー4・ビードロキシ体: 1.9° M: RBA: 0.0081%) 4-ゾーバカロー4・ビードロキシ体: 1.8×10° M (E2: 1.1×10° M: RBA: 0.0031%) 4-ゾーブルカロー4・ビーバロキシ体: 1.8×10° M (E2: 1.1×10° M: RBA: 0.0031% 4-ゾーブロモシ体: 1.8×10° M (E2: 1.6×10° M: RBA: 0.0031% 4-ゾーブロモル: 1.7×10° M: (E2: 1.6×10° M: RBA: 0.0031% 4-ゾーブロモル: 1.7×10° M (E2: 1.4×10° M: RBA: 0.0008%) 4-ゾーブロモル: 1.7×10° M (E2: 1.4×10° M: RBA: 0.0008%) 4-Vーブーブロー 4-Vーブーブロー 4-Vーブーブロー 4-Vーブーブーブーズーブーブーズーブーブーズーブーブーズーブーブーズーブーブーズーブーブーズーブーブーズーブーズーブーズーブーブーズーズーブーズーズーブーズーズーブーズーズーブーズ			BZP誘導体 (IC50値)	BZPの誘導体	
(E2: 14×10° M: RBA: 0.011%) シ体/3-ヒドロ 1×0 k/4.4-ジレドロキシ体: 1.0×10° M ヒドロキシ体 24.4-ジレドロキシ体 24.4ジヒドロキシ体: 24.4ジヒドロキシ体: 24.4ジヒドロキシ体 24.4-ドリヒドロキシ体: 1.7×10° M (E2: 12×10° M: RBA: 0.017%) フヒドロキシ体 24.4-ドリヒドロキシ体: 1.7×10° M (E2: 12×10° M: RBA: 0.018%) 24.4-ドリヒドロキシ体 24.4-ドロキシ体 22.44-ドロキシ体 22.44-ドロキシ体 22.44-ドロキシ体 22.44-ドロキシ体 23.44-ドロキシ体 24.4-ドロキシ体 22.44-ドロキシ体 23.44-ドロキシ体 24.4-ドロキシ体 24.4-ドロキシ体 24.4-ドロキシ体 24.4-ドロキシ体 24.4-ドロキシ体 25.16×10° M: RBA: 0.0081% 4-ビドロキシ体 23.4-ドリヒドロキシ体 23.4-ドリヒドロキシ体 23.4-ドリヒドロキシ体 23.4-ドリヒドロキシ体 23.4-ドリヒドロキシ体 23.4-ドリヒドロキシ体 24.4-ジブロモ 1.1×10° M: RBA: 0.0031% 44-ジブロモ			4-ヒドロキシ体:1.3×10 ⁻⁵ M	(4-ヒドロキ	
3-ヒドロキシ体: 1.0×10 ⁵ M					
(E2: 1.3×10° M; RBA: 0.013%)					
4.4-ジヒドロキシ体: 7.3×10°M				· ·	
(E2: 1.2×10°M; RBA: 0.017%) 2.4-ジレドロキシ体: 8.9×10°M (E2: 1.2×10°M; RBA: 0.014%) 4/2,3,44'-テトラとパロキシ体: 1.7×10°M (E2: 1.2×10°M; RBA: 0.014%) 5/2,3,44'-テトラとパロキシ体: 1.7×10°M (E2: 1.2×10°M; RBA: 0.025%) 6/2,2,44'-テトラヒドロキシ体: 1.1×10°M; RBA: 0.025%) 2.2,4,4'-テトラヒドロキシ体: 1.4×10°M; RBA: 0.025%) 1.2×2,4,4'-テトラヒドロキシ体: 1.4×10°M; RBA: 0.0038%) 1.4-プレオロ・4・ピトロキシ体: 1.5×10°M; RBA: 0.0081% 1.4-ピトロキシ体: 1.5×10°M; RBA: 0.0081% 1.4-ピトロキシ体: 1.5×10°M; RBA: 0.0081% 1.4-ピトロキシ体: 1.1×10°M; RBA: 0.0081% 1.1×10°M; RBA: 0.0081% 1.1×10°M; RBA: 0.0081% 1.1×10°M; RBA: 0.0031% 1.1×10°M; RBA: 0.0038% 1.1×10°M; RBA: 0.0088% 1.1×10°M; RBA: 0.0088% 1.7×10°M (E2: 1.4×10°M; RBA: 0.0088% 1.7×10°M; RBA: 0.0088% 1.7×10°M; RBA: 0.0082% 1.7×10°M; RBA: 0.0088% 1.7×10°M; RBA: 0.0088% 1.1×10°M; RBA:					
2.4・ジヒドロキシ体: 8.9×10°M					
(E2: 1.2×10° M; RBA: 0.014%)					
2,4,4'-トリヒドロキシ体:1.7×10'6 M ラヒドロキシ体 (E2: 1.2×10'3 M; RBA: 0.074%) 2,3,4,4'-テトラヒドロキシ体:4.3×10'6 シ体/4-クロロ (A) (E2: 1.1×10'8 M; RBA: 0.0025%) 2,2',4,4'-テトラヒドロキシ体:1.4×10'6 M; EBA: 0.0081% 4/フロロ-4'-ヒドロキシ体:1.4×10'7 M; RBA: 0.0081% 4/フルオロ-4'-ヒドロキシ体/4-プルオロ (E2: 1.6×10'9 M; RBA: 0.0081%) 4/フルオロ-4'-ヒドロキシ体:48×10'5 M (E2: 1.1×10'8 M); RBA: 0.0081% 4/2,3,4+リヒドロキシ体/4-ジプロモ体:1.1×10'8 M; RBA: 0.0031% 4/3 (E2: 1.6×10'8 M; RBA: 0.0031% 4/3 (E2: 1.1×10'8 M); RBA: 0.0031% 4/3 (E2: 1.1×10'8 M); RBA: 0.0088% 4/3 (E2: 1.6×10'8 M; RBA: 0.0088%) 4/3 (E2: 1.6×10'8 M; RBA: 0.0088%) 4/4・ジプロモ体:1.7×10'5 M (E2: 1.4×10'8 M; RBA: 0.0088%) 4/4 (E2: 1.4×10'8 M; RBA: 0.008					
(E2: 1.2 × 10° M; RBA: 0.074%)					
2,3,4,4・テトラヒドロキシ体: 4.3×10 ⁶ トラヒドロキ					
M (E2: 1.1×10° M; RBA: 0.025%) シ体/4-クロロ 2.2′.4.4′-テトラヒドロキシ体: 1.4× (4°-ヒドロキシ					
2,2',4,4'-テトラヒドロキシ体: 1.4 x					
10 ⁶ M (E2: 1.3×10 ⁹ M; RBA: 0.093%) 体/4-フルオロ 4-クロロ-4'-ヒドロキシ体: 1.9×10 ⁵ M 4'-ヒドロキシ体 4-フルオロ 4'-ヒドロキシ体 (E2: 1.6×10 ⁹ M; RBA: 0.0081%) 体/2.34-トリヒ トロキシ体 (E2: 1.1×10 ⁹ M); RBA: 0.0081% ドロキシ体 体 はER結合性を示す 1.1×10 ⁹ M); RBA: 0.0031% (E2: 1.1×10 ⁹ M); RBA: 0.0031% (E3: 1.4×10 ⁹ M; RBA: 0.0088%) 4.4'-ジブロモ (基合性はE2 0.0088%) 4.4'-ジブロモ体: 1.7×10 ⁵ M (E2: 1.6×10 ⁹ M; RBA: 0.0082%) (E2: 1.4×10 ⁹ M; RBA: 0.0082%) DE2D DE3D DE3D DE3D DE3D CER According Ac					
4-クロロ-4'-ヒドロキシ体: 1.9×10 ⁻⁵ M (E2: 1.6×10 ⁻⁹ M; RBA: 0.0081%)					
(E2: 1.6×10°M; RBA: 0.0081%) (本/2,3,4-トリヒトコルオロ-4・ヒドロキシ体: 4.8×10°M (E2: 1.1×10°M); 2.7×10°M (E2: 1.1×10°M); 2.7×10°M (E2: 1.1×10°M); RBA: 0.0031% (本/2,3,4-トリヒドロキシ体/4,4'ジブロモ体) はER結合性を示す (基合性はE2 0.0088%) (基本・リンドのの88%) (基本・リンドを用いた競合結合試験受容体: ヒトER (D.0082%) (DES: 1.6×10°M; RBA: 0.00082%) (ER 結合性を示すない) (DES: 1.6×10°M) (DES: 0.008%) (DES: 0.008%) (DES: 0.008%) (DES: 1.6×10°M) (DES: 0.008%) (DES: 0.008%					
4-フルオロ-4-ヒドロキシ体: 4.8×10 ⁵ ドロキシ体/ M (E2: 1.1×10 ⁹ M); RBA: 0.0031% (力・は医統合性を示す					
M (E2: 1.1×10° M); 2.7×10° M (E2: 4,4-ジブロモ 体)はER結合性を示す 1.8×10° M (E2: 1.6×10° M; RBA: 0.0031% 性を示す 1.8×10° M (E2: 1.6×10° M; RBA: 0.0088%) (結合性はE2 の01/1,100-1/44,000の範 田)			`		
1.1 × 10° M); RBA: 0.0031%					
2,3,4-トリヒドロキシ体:					
1.8 × 10 ⁻⁵ M (E2: 1.6 × 10 ⁻⁹ M; RBA: (結合性はE2					
0.0088%					
4,4'-ジプロモ体:				•	
1.7 × 10 ⁻⁵ M (E2: 1.4 × 10 ⁻⁹ M; RBA: 囲)					
D.0082%) D.0082% D.0082					
ドを用いた競合結合試験				M)	
受容体: ヒトER 4-ヒト゚ロキン体 IC50: 5×10⁻⁵M 4-ヒト゚ロキン体は結合性を示す 方法: 蛍光標識E2リガンドを用いた競合結合試験受容体: ヒトER *最高濃度1.9×10⁻⁴ Mで蛍光標識E2の結合性を示すが結合性を25%阻害(DES: 1.6×10⁻³ M) RBA: <0.008% (ER 結合性はDESの (ER 結合性はDESの (2001 イブリッドイン/ラットERリガンド結合ドメイン遺伝子、Gal4活性化ドメイン/コアクチベータTIF2遺伝子 (E2: 3×10⁻¹0 M)		方法:蛍光標識E2リガン	BZP IC50: $> 5 \times 10^{-4}$ M	BZPはER結合	Nakagawa &
4-ヒドロキシ体 IC50: 5×10 ⁻⁵ M 4-ヒドロキシ体は 結合性を示す				性を示さない	
ドを用いた競合結合試験 受容体:ヒトER *最高濃度1.9×10 ⁻⁴ Mで蛍光標識E2の 結合性を25%阻害 す (ER 結合性は DESの <1/12,000) 2001 酵母ツー八 イブリッド アッセイ 細胞: Gal4 DNA結合ドメ イン/ラットERリガンド 結合ドメイン遺伝子、 Gal4活性化ドメイン/コアクチベータTIF2遺伝子 REC10: >3×10 ⁻³ M (E2:3×10 ⁻¹⁰ M) ERを介する転 写活性化を示 さない Nishihara et al., 2000			4-ヒドロキシ体 IC50: 5×10 ⁻⁵ M		
ドを用いた競合結合試験 受容体:ヒトER *最高濃度1.9×10 ⁻⁴ Mで蛍光標識E2の 結合性を25%阻害 す (ER 結合性は DESの <1/12,000) 2001 酵母ツー八 イブリッド アッセイ 細胞: Gal4 DNA結合ドメ イン/ラットERリガンド 結合ドメイン遺伝子、 Gal4活性化ドメイン/コアクチベータTIF2遺伝子 REC10: >3×10 ⁻³ M (E2:3×10 ⁻¹⁰ M) ERを介する転 写活性化を示 さない Nishihara et al., 2000		方法・労光標識取ります。	IC50 : >1.9 × 10 ⁻⁴ M*	FR結合性を示	Satoh et al
受容体: ヒトER結合性を25%阻害 (DES: 1.6×10*8 M) RBA: <0.008%					
(DES: 1.6×10 ⁻⁸ M)					
RBA:<0.008% <1/12,000) <1/12,000)		ス古件・CTEN			
酵 母 ツ ー 八 細胞:Gal4 DNA結合ドメ REC10:>3×10 ⁻³ M ERを介する転 Nishihara et イブリッド イン / ラットERリガンド (E2:3×10 ⁻¹⁰ M) 写活性化を示 al., 2000 さない アッセイ 結合ドメイン遺伝子、 Gal4活性化ドメイン / コアクチベータTIF2遺伝子					
イブリッド イン / ラットERリガンド (E2:3×10 ⁻¹⁰ M) 写活性化を示 al., 2000 お合ドメイン遺伝子、 Gal4活性化ドメイン / コ アクチベータTIF2遺伝子			10.000 /0	17,12,000)	
イブリッド イン / ラットERリガンド (E2:3×10 ⁻¹⁰ M) 写活性化を示 al., 2000 お合ドメイン遺伝子、 Gal4活性化ドメイン / コ アクチベータTIF2遺伝子	酵母ツーハ	細胞:Gal4 DNA結合ドメ	REC10: $> 3 \times 10^{-3} \text{ M}$	ERを介する転	Nishihara et
アッセイ 結合ドメイン遺伝子、					
Gal4活性化ドメイン / コ アクチベータTIF2遺伝子			,		
アクチベータTIF2遺伝子					
		及び -ガラクトシターゼ			
レポーター遺伝子を導入					
した酵母					

項目	試験方法及び条件	結果	結論	文献
酵母を用い		BZP(1μM) のアゴニスト活性は陰	BZPはERを介	
	ER応答配列を組み込んだ		する転写活性	
	酵母を用いる方法		化を示さない	
ッセイ		BZP誘導体の一部はエストロゲン活		
		性を示す。		
		各誘導体のEC50値:		
		4-ヒドロキシ体(1.12×10 ⁻⁶ M),		
		3-ヒドロキシ体(2.57×10 ⁻⁶ M),		
		4-アミノ体(6.34×10 ⁻⁵ M),		
		4,4´-ジヒドロキシ体(2.53×10 ⁻⁶ M),		
		4,4´-ジアミノ体(5.89×10 ⁻⁵ M),		
		4-クロロ-4'-ヒドロキシ体(2.88×10 ⁻⁷		
		M),		
		2,3,4-トリヒドロキシ体(5.08×10 ⁻⁶ M),		
		2,4,4´-トリヒドロキシ体(5.64×10 ⁻⁷		
		M),		
		2,2´4,4´-テトラヒドロキシ体(7.92×		
		10 ⁻⁶ M)		
		BZP (1μM) はアゴニスト活性及びア		Tran et al.,
		ンタゴニスト活性は共に陰性	ン受容体を介	1996
	ステロン受容体応答配列		する転写活性	
	を組み込んだ酵母を用い		化を示さない	
/D 16 > 1+ ++	る方法			GED1 2001
		BZP 10 ⁻¹¹ - 10 ⁻⁵ Mの範囲でアゴニスト		CERI, 2001a
	ER応答配列を導入した	活性は陰性	する転写活性	
たレポータ	HeLa細胞 暴露濃度:10 ⁻¹¹ -10 ⁻⁵ M	BZP誘導体の一部は転写活性化を示	化を示さない	
一 退 伝 ナ アーッセイ	泰路/	す各誘導体のPC50 4)値は以下のとお		
9 21		l) enset work of column in a		
		4-ヒドロキシ体:2.6×10 ⁻⁶ M		
		3-ヒドロキシ体: 2.6×10 ⁻⁶ M		
		4.4'-ジヒドロキシ体:1.6×10 ⁻⁶ M		
		2.4-ジヒドロキシ体:2.4×10 ⁻⁶ M		
		2,4,4'-トリヒドロキシ体:3.7×10 ⁻⁷ M		
		2,2',4,4'-テトラヒドロキシ体: 3.3×		
		10 ⁻⁷ M		
		4-クロロ-4'-ヒドロキシ体:1.8×10 ⁻⁶		
		M		
		4-フルオロ-4'-ヒドロキシ体: 2.0 × 10 ⁻⁶		
		M		
		4,4'-ジブロモ体:2.7×10 ⁻⁶ M		
		BZP 10 ⁻¹¹ -10 ⁻⁵ Mの範囲でアゴニスト		
	子及びER応答配列を導入		写活性化を示	al., 2001
	したHeLa細胞	$(E2 : PC50: <10^{-9} M)$	さない	
	暴露濃度:10 ⁻¹¹ -10 ⁻⁵ M			
		BZP $10 \text{ nM} - 100 \mu\text{M} (10^{-8} \text{ - } 10^{-4} \text{ M})\mathcal{O}$		
		範囲で増殖活性を示さない。	殖活性を示さ	al., 2000
験	方法	BZP誘導体の4-ヒドロキシ体は増殖	ない	
		活性を有する (10-100 μM)。(増殖活性		
		は、100 µMで 1 nME2の80%)		

項目	試験方法及び条件	結果	結論	文献
ARに対する	方法:テストステロンリ	IC50: $>1.9 \times 10^{-4} \mathrm{M}^*$	AR結合性を示	Satoh et al.,
結合試験	ガンドを用いた競合結合	*最高濃度1.9 × 10 ⁻⁴ Mでテストステロ	す	2001
	試験	ンの結合性を48%阻害	(結合性は	
	受容体:ヒトAR	(Mibolerone: $1.7 \times 10^{-8} \mathrm{M}$)	mibolerone の	
		RBA: <0.009%	<1/11,000)	
	方法:ヒト ARに対する	RBA: -	AR結合性を示	CERI, 2003
	結合試験(組換えヒトAR		さない	
	リガンドドメイン)			
組換え培養	一過性発現系	10 ⁻¹¹ - 10 ⁻⁵ Mの範囲で陰性	ARを介する転	CERI, 2003
細胞を用い	(アゴニスト活性)		写活性化を示	
たレポータ	細胞:ヒトAR発現遺伝子		さない	
一遺伝子ア	及びAR応答配列を導入			
ッセイ	したCV-1細胞			
	暴露濃度:10 ⁻¹¹ - 10 ⁻⁵ M			

ER: エストロゲン受容体; E2: 17 -エストラジオール; REC10: 10⁻⁷ M E2 による活性値の 10% に相当する濃度; PC50: E2 による最大活性値の 50%に相当する濃度; IC50: E2 による 50%阻害に

相当する濃度; RBA: 相対結合強度(%); AR: アンドロゲン受容体

付表-2 ほ乳動物の内分泌系及び生殖系に関する試験結果

動物種	投与方法	投与期間	投与量	結 果	文献
ラット	皮下投与	8 週齢から	BZP 0, 5, 50, 500	500 mg/kg/day で子宮重量の軽度増加	CERI, 2001b
(SD、雌)	(子宮増殖	7 日間投与	mg/kg/day	(エストロゲン作用)	
6 匹/群	アッセイ)	後、8日目			
	(卵巣摘出	に子宮を摘		50 mg/kg/day 以上で子宮重量の軽度	
	ラット、6週	出し、重量	mg/kg/day	減少	
	齢で卵巣摘	を測定	+ 17α-エチニルエストラ	(抗エストロゲン作用)	
	出)				
			ジオール		
			0.3 μg/kg/day		
	4747 5	20 D#A //	(皮下投与)	フウエロル似ム	CEDI 2001
ラット	皮下投与	20 日齢か	BZP 0, 2, 20, 200	子宮里童に影響なし 	CERI, 2001a
(SD、雌)		ら3日間投	mg/kg/day		
6 匹/群	アッセイ)	与後、4日			
		目に子宮を			
		摘出し、重			
		量を測定			
ラット	皮下投与		BZP 0, 400 mg/kg/day	子宮重量に影響なし	Nakagawa &
(SD、雌)		ら3日間投			Tayama, 2001
	アッセイ)	与後、6 時	4-ヒドロキシ体 BZP 0,	用量に依存して子宮重量の増加	
			100, 200, 400 mg/kg/day	(エストロゲン作用)	
		摘出し、重		7	
		量を測定	ベンズヒドロール	子宮重量に影響なし	
			0、400 mg/kg/day		
ラット	強制経口投	8 週齢から	BZP 0 100 400	100 mg/kg/day 以上で腟の角化を伴う	Nakagawa &
(SD、雌)		3 日間投与		上皮細胞層の肥厚	Tayama, 2002
5 匹/群		後、24 時間		400 mg/kg/day で子宮の間質細胞層の	
	アッセイ)	後に子宮を		肥厚、粘膜上皮細胞の高円柱状化(丈	
		摘出し、重		の増加)、子宮重量の増加	
	ラット、4週	量を測定			
	齢で卵巣摘				
	出)				
ラット	強制経口投	7 週齢から	BZP 0, 1, 10, 100	雄性副生殖器重量に影響なし	CERI, 2001b
(SD、雄)	与	10 日間投	mg/kg/day		
6 匹/群	(ハーシュ	与後、11日			
	バーガー	目に副生殖		雄性副生殖器重量に影響なし	
	アッセイ)	器重量を測	mg/kg/day		
	(去勢ラッ	定	+ プロピオン酸テストス		
	ト、6 週齢で				
	去勢)		テロン 0.4 mg/kg/day		
			(皮下投与)		
			(以下取刊)		

動物種	投与方法	投与期間	投与量	結果	文献
ラット	経口	2 世代生殖	0、100、450、2,000 ppm	親動物への影響:	経済産業省
(SD、雌雄)	(混餌)	試験	(F ₀ 雄; 0、6.445、29.01、		2003
				100 ppm 以上で肝臓の小葉中心性肝	
				細胞肥大、雌で肝臓重量の増加傾向ま	
			166.5 mg/kg/day 相当、		
				450 ppm 以上で体重増加抑制、摂餌量	
				低値、腎臓重量増加、腎臓の近位尿細	
				管の拡張、雄で肝臓重量増加、腎臓の	
				近位尿細管上皮の再生の発現数増加	
		前から交配		2,000 ppm の雌で腎臓の近位尿細管上	
		期間を経て		皮の再生の増加	
		剖検日ま			
		で、雌では 交配 10 週		 F 親動物	
		以上前から		100 ppm 以上で肝臓の小葉中心性肝	
		交配期間、		細胞肥大	
		離乳を経て		450 ppm 以上で体重増加抑制、摂餌量	
		剖検日まで		低值、肝臓重量増加、腎臓重量増加、	
				腎臓の近位尿細管の拡張、雄で腎臓の	
				近位尿細管上皮の再生の発現数増加	
				2,000 ppm の雌で腎臓の近位尿細管上	
				皮の再生の増加	
				 仔動物への影響:	
				1 1 1 1 1 1 1 1 1 1	
				2,000 ppin C # = 1/1/1/4/1/5	
				F ₂ 仔動物	
				2,000 ppm で体重増加抑制	
				如手がある人 白見/郷でる いろんじ は 100	
				親動物の全身影響での NOAEL は 100	
				ppm (雄で 6.445 ~ 7.785 mg/kg/day、雌で 8.379 ~ 8.776 mg/kg/day 相当)	
				C 0.3/9~ 0.7/0 mg/kg/day 作日)	
				 親動物の生殖能に関する NOAEL は	
				2,000 ppm (雄で 130.0 ~ 159.4	
				mg/kg/day 、雌で 166.5 ~ 179.2	
				mg/kg/day 相当)	
				 (Z動物事性の NOAEL 1.450 / t#	
				仔動物毒性の NOAEL は 450 ppm (雄 で 29.01~34.60 mg/kg/day、雌で 38.15	
				~ 40.52 mg/kg/day 相当)	
				+0.52 mg/kg/uay 10 = 1	l

付表-3 反復投与毒性試験結果

動物種	投与方法	投与期間	投与量	結果	文献
ラット (SD、 雌雄)	経口、混餌	6 週齢で 投与開始 28日間	0、100、500 mg/kg/day	100,500 mg/kg/day 群で赤血球数、ヘマトクリットの減少、尿素窒素、ビリルビン、総タンパクとアルブミンの増加、肝臓と腎臓の重量増加、肝細胞肥大500 mg/kg/day 群でヘモグロビンとアルカリホスファターゼの減少、グルコースの増加	Burdock et al., 1991
ラット (SD、 雌雄)	経口、混 餌	6 週齢で 投与開始 90日間	0、20 mg/kg/day	異常なし	Burdock et al., 1991
ラット (F344、 雌雄)	経口、混餌	8-9 週齢 で投与開 始 14週間	0、1,250、2,500、5,000、10,000、20,000 ppm(雄: 0、75、150、300、700、850 mg/kg/day 相当;雌: 0、80、160、300、700、1000 mg/kg/day 相当)	1,250 ppm 以上の群で肝臓 と腎臓の障害 2,500 ppm 以上の群で体重 増加抑制 20,000 ppm 群において体重 減少	US.NTP, 2000
マウス (B6C3F ₁ 、 雌雄)	経口、混餌	8-9 週齢 で投与開 始 14 週間	0、1,250、2,500、5,000、10,000、20,000 ppm(雄: 0、200、400、800、1600、3300 mg/kg/day 相当;雌: 0、270、540、1000、1900、4200 mg/kg/day 相当)	1,250 ppm 以上の群で肝臓障害 2,500 ppm 以上の群で腎臓障害 5,000 ppm 以上の群で体重増加抑制 20,000 ppm 群において、体重減少と死亡	US.NTP, 2000
モルモット(雄、 550-600 g)	腹腔内	15 日間	0、5 mg/kg/day	肝細胞の変性、壊死、結合 組織の増殖、胆管上皮の増 殖	Dutta et al., 1993