

廃棄物試料の分析

1号機原子炉建屋5階瓦礫・1号機タービン建屋地下1階スラッジ・多核種除去設備HICスラリー

平成28年9月29日

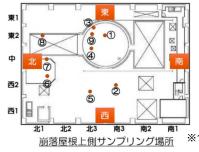
技術研究組合 国際廃炉研究開発機構/日本原子力研究開発機構

本資料には、経済産業省平成26年度補正予算「廃炉・汚染水対策事業費補助金 (固体廃棄物の処理・処分に関する研究開発)」の成果の一部が含まれている。

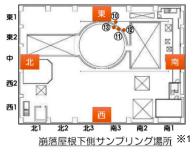
無斷複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ⑥International Research Institute for Nuclear Decommissioning

概要

- ■事故後に発生した固体廃棄物は、従来の原子力発電所で発生した廃棄物と性状が異なるため、廃棄物の処理・処分の安全性の見通しを得る上で性状把握が不可欠である。
- ■原子炉建屋の内部で採取された試料は、汚染状態を把握する上で優先度が高い。1号機原子炉建屋5階で採取された瓦礫(コンクリート)及び1号機タービン建屋地下1階で採取されたスラッジ(滞留水固形分)を分析した結果を報告する。
- ■多核種除去設備(ALPS)からの二次廃棄物は発生量と放射能の 観点で重要である。また、漏えいリスクを低減させるスラリー安定 化処理の検討に含水率や粒径が重要であるため、高性能容器 (HIC)に充填した後保管されていた炭酸塩沈殿スラリーの試料を 分析した結果を報告する。


廃棄物試料の分析状況

			元米195時4日 ジノリ 1月 1人7 5				
報告 年度		試料	試料数	発表等			
23- 27	汚染水処理 設備出入口水	 1~4号機タービン建屋滞留水等 滞留水(集中RW地下、高温焼却炉建屋地下) 淡水化装置濃縮水 処理水(セシウム吸着装置、第二セシウム吸着装置、多核種除去設備) 	51	http://www.tepco.co.jp/nu/fukushima-np/images/handouts_110522_04-j.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/120924/120924_01jj.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/130627/130627_02kk.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/131128/131128_01ss.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osensui taisakuteam/2015/pdf/0730_3_4c.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osensui taisakuteam/2016/pdf/0331_3_4f.pdf			
	瓦礫	 1、2、3号機原子炉建屋内瓦礫 1、2号機原子炉建屋内ボーリングコア 1、3、4号機周辺瓦礫 覆土式一時保管施設で採取した瓦礫 1号機タービン建屋砂 	60	http://www.meti.go.jp/earthquake/nuclear/pdf/130828/130828_01nn.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/150326/150326_01_3_7_04.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osensui taisakuteam/2015/pdf/0827_3_4c.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osensui taisakuteam/2016/pdf/0128_3_4d.pd			
	伐採木、立木、 落葉、土壌	・ 伐採木(枝、葉)・ 構内各所の立木(枝葉)及び落葉、土壌	128	http://www.meti.go.jp/earthquake/nuclear/pdf/140130/140130_01tt.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/140227/140227_02ww.pdf http://www.meti.go.jp/earthquake/nuclear/pdf/150326/150326_01_3_7_04.pdf			
	汚染水処理 二次廃棄物	• 多核種除去設備スラリー(既設、増設)	4	http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osensui taisakuteam/2015/pdf/0827_3_4c.pdf http://www.meti.go.jp/earthquake/nuclear/decommissioning/committee/osensui taisakuteam/2016/pdf/0128_3_4d.pdf			
28	汚染水処理	・ 増設多核種除去設備スラリー	3	本報告			
20	二次廃棄物	• 多核種除去設備吸着材	5	吸着材は採取準備中			
	瓦礫、スラッジ	• 1号機原子炉建屋内瓦礫	14	本報告			
			6	分析中			
		・ 1号機タービン建屋内スラッジ	4	本報告			
	汚染水処理 設備出入口水	滞留水(集中RW地下、高温焼却炉建屋地下)処理後水(セシウム吸着装置、第二セシウム吸着装置、多核種除去設備)	28	一部試料分析中、試料輸送準備中			
	滞留水	• 2、3号機PCV滞留水	12	分析中			
	焼却灰	• 焼却灰(雑固体廃棄物焼却設備)	5	分析中			
	土壌	・ 構内の土壌	6	分析中 2			



原子炉建屋内瓦礫 - 分析内容

- 平成27年10月に 1号機原子炉建屋5階にて崩落屋根上下部分の瓦礫汚染状況調査が行わ れ、回収されたコンクリート片を試料(1RB-CR-R1~R14)として以下の核種を分析した。
 - * 3 H, 14 C, 60 Co, 63 Ni, 79 Se, 90 Sr, 94 Nb, 99 Tc, 126 Sn, 129 I, 137 Cs, 152 Eu, 154 Eu, 238 Pu, $^{239+240}$ Pu, 241 Am, 244 Cm, $\mathbf{\pm}\alpha$
 - ❖ 各試料の量が少なかったため、全核種が分析出来るよう137Cs濃度及び試料採取位 置を考慮して、近接する試料を同一グループと見なして測定する核種を試料毎に割 り当てた。

1RB-CR-R1~9: ①~ 9にて採取 1RB-CR-R10: 採取機の付着物

1RB-CR-R11~14: 10~(3)にて採取

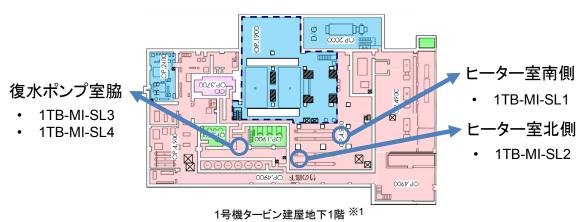
オペフロ全景(上空から撮影)

原子炉建屋内瓦礫 - 試料の性状

No.	形状等	試料名	場所	表面線量率 (μSv/h)	質量 (g)
1	コンクリート	1RB-CR-R1	1号機原子炉建屋5階崩落屋根上側	30	1.4
2	コンクリート	1RB-CR-R2	1号機原子炉建屋5階崩落屋根上側	18	1.5
3	コンクリート	1RB-CR-R3	1号機原子炉建屋5階崩落屋根上側	7.5	1.1
4	コンクリート	1RB-CR-R4	1号機原子炉建屋5階崩落屋根上側	38	1.2
5	コンクリート	1RB-CR-R5	1号機原子炉建屋5階崩落屋根上側	9.0	2.1
6	コンクリート	1RB-CR-R6	1号機原子炉建屋5階崩落屋根上側	44	1.6
7	コンクリート	1RB-CR-R7	1号機原子炉建屋5階崩落屋根上側	23	1.2
8	コンクリート	1RB-CR-R8	1号機原子炉建屋5階崩落屋根上側	45	1.2
9	コンクリート	1RB-CR-R9	1号機原子炉建屋5階崩落屋根上側	8.0	1.5
10	コンクリート	1RB-CR-R10	1号機原子炉建屋5階崩落屋根上側	3.5	0.6
11	コンクリート	1RB-CR-R11	1号機原子炉建屋5階崩落屋根下側	35	0.5
12	コンクリート	1RB-CR-R12	1号機原子炉建屋5階崩落屋根下側	65	0.4
13	コンクリート	1RB-CR-R13	1号機原子炉建屋5階崩落屋根下側	150	0.1
14	コンクリート	1RB-CR-R14	1号機原子炉建屋5階崩落屋根下側	45	0.1

^{*} 各試料の量が少なかったため、右表に示すグループ ごとに測定する核種を割り当てた。

5	ブループ	試料名
崩落屋根上側	西側	1RB-CR-R2, -R5
	原子炉ウェル周辺	1RB-CR-R1, -R3, -R4, -R9
	北西側	1RB-CR-R6, -R7
	北東側	1RB-CR-R8
	採取機の付着物	1RB-CR-R10
崩落屋根下側	原子炉ウェル周辺	1RB-CR-R11~R14



OInternational Research Institute for Nuclear Decommissioning

タービン建屋内スラッジ - 分析内容

- 平成27年9月に滞留水処理の検討のため1号機タービン建屋地下1階にて採取されたスラッジ(1TB-MI-SL1~SL4)を試料として、以下の核種を分析した。
 - ◆ 60Co, 63Ni, 90Sr, 94Nb, 126Sn, 137Cs, 152Eu, 154Eu, 238Pu, 239+240Pu, 241Am, 244Cm
 - ❖ 試料量が少なかったため、試料を分割せずに一括して酸抽出し、分析を 行った。

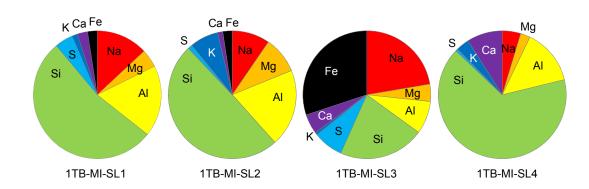
IRID

4

タービン建屋内スラッジ - 試料の性状

No.	形状等	試料名	場所	表面線量率 (μSv/h)	質量 (g)
1	スラッジ	1TB-MI-SL1	1号機タービン建屋地下1階	55	0.2
2	スラッジ	1TB-MI-SL2	1号機タービン建屋地下1階	100	0.1
3	スラッジ	1TB-MI-SL3	1号機タービン建屋地下1階	120	0.1
4	スラッジ	1TB-MI-SL4	1号機タービン建屋地下1階	5.5	7.4

1TB-MI-SL1


1TB-MI-SL3

1TB-MI-SL4

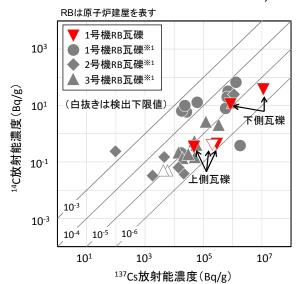
IRID

ダービン建屋内スラッジ - 元素分析結果

를 바이 선	元素重量比/%							
試料名	Na	Mg	Al	Si	S	K	Ca	Fe
1TB-MI-SL1	13	4.6	18	53	4.6	1.4	2.6	2.4
1TB-MI-SL2	9.6	9.3	20	50	1.1	7.2	1.3	2.4
1TB-MI-SL3	22	4.4	8.3	22	7.6	0.6	5	30
1TB-MI-SL4	4.7	2.5	14	66	0.6	3.3	9	-

➤ SL1、2、4はSiとAIが、SL3はFe、NaとAIが主成分である

※ SEM/EDXにより元素分析を行った。Naより原子番号の大きい元素を分析対象とした



6

原子炉建屋瓦礫・タービン建屋スラッジ – 核種分析結果①

- ¹⁴C, ⁶⁰Coと¹³⁷Cs濃度の関係 -

▶ 14C/137Cs比は上側瓦礫と下側瓦礫 で同程度

¹⁴ C/ ¹³⁷ Cs放射能濃度比				
1号機RB瓦礫 1号機燃料 ^{※3}				
2.3 × 10 ⁻⁵	1.0 × 10 ⁻⁶			

H26年度~本報告取得データの平均値

RBは原子炉建屋、TBはタービン建屋を表す 1号機RB瓦礫 10³ 1号機TBスラッジ 1号機RB瓦礫※1 上側瓦礫 2号機RB瓦礫※1 50Co放射能濃度(Bq/g) 3号機RB瓦礫※1 10^{1} 1号機TB砂※2 (白抜きは検出下限値) 10⁻¹ 10-3 10-3 10-5 10-4 10-€ 10⁵ 10⁷ 10¹ ¹³⁷Cs放射能濃度(Bq/g)

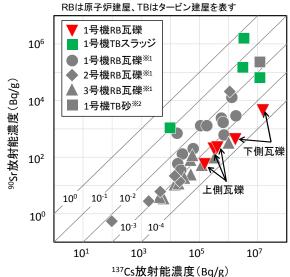
> ▶ 60Co/137Cs比は、1号機TBスラッジと 1号機RB瓦礫で同程度

⁶⁰ Co/ ¹³⁷ Cs放射能濃度比					
1号機TBスラッジ・砂 1号機RB瓦礫 1号機燃料※3					
9.8 × 10 ⁻⁵	1.0 × 10 ⁻⁵	1.3 × 10 ⁻⁵			

H26年度~本報告取得データの平均値

IRID

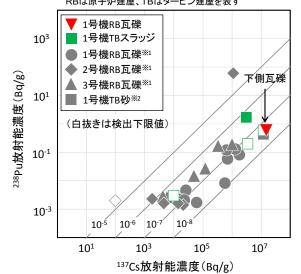
※1: H26年度及びH27年度取得データ


※2:H27年度取得データ

※3:1号機被照射燃料について計算したH23.3.11時点の放射能(日本原子力研究開発機構報告書「JAEA-Data/Code 2012-018」)

8

原子炉建屋瓦礫・タービン建屋スラッジ – 核種分析結果②


- ⁹⁰Sr, ²³⁸Puと¹³⁷Cs濃度の関係 -RBは原子炉建屋、TBはタービン建屋を表す

▶ ⁹⁰Sr/¹³⁷Cs比は、1号機TBスラッジ・ 砂>1号機RB瓦礫

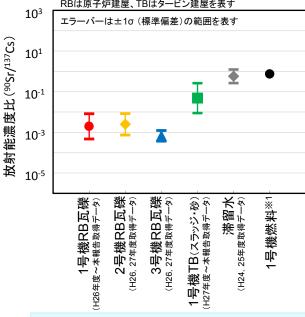
⁹⁰ Sr/ ¹³⁷ Cs放射能濃度比						
1号機TBスラッジ・砂 1号機RB瓦礫 1号機燃料※3						
4.8×10^{-2} 2.0×10^{-3} 7.4×10^{-1}						

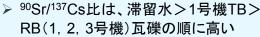
H26年度~本報告取得データの平均値

²³⁸Pu/¹³⁷Cs比はH27年度までの1号 機RB瓦礫と同程度

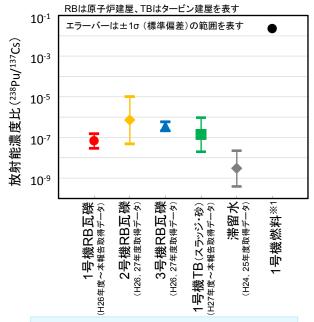
²³⁸ Pu/ ¹³⁷ Cs放射能濃度比					
1号機TBスラッジ・砂 1号機RB瓦礫 1号機燃料※3					
1.4 × 10^{-7} 6.8 × 10^{-8} 2.3 × 10^{-2}					

H26年度~本報告取得データの平均値


※1: H26年度及びH27年度取得データ


※2:H27年度取得データ

※3:1号機被照射燃料について計算したH23.3.11時点の放射能(日本原子力研究開発機構報告書「JAEA-Data/Code 2012-018」)



原子炉建屋瓦礫・タービン建屋スラッジ – 核種分析結果③ – 90Sr, ²³⁸Puと¹³⁷Csの採取箇所毎の放射濃度比 –

▶ タービン建屋の汚染は、滞留水が寄与した可能性がある

- ≥ ²³⁸Pu/¹³⁷Cs比は1, 2, 3号機RB瓦 礫と1号機TBとでは同程度
- ▶ 滞留水の²³⁸Pu/¹³⁷Cs比は、他と比べ1~2桁低い

IRID

※1:1号機被照射燃料について計算したH23.3.11時点の放射能(日本原子力研究開発機構報告書「JAEA-Data/Code 2012-018」)

10

多核種除去設備スラリー - 分析内容

- 静置状態であった高性能容器(HIC)No.172から、上澄み水下の炭酸塩沈殿スラリーの上層(HIC内プレート下面より下方約60cm)、中層(同約100cm)、下層(同約150cm)から試料を採取し、放射能・元素濃度、固液比、上澄液のpH、粒度分布を分析した。
 - ❖ 放射性核種は以下を対象として分析した。 54Mn, ⁶⁰Co, ⁹⁰Sr, ⁹⁴Nb, ¹²⁵Sb, ¹³⁷Cs, ¹⁵²Eu, ¹⁵⁴Eu, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴¹Am, ²⁴⁴Cm

	試料名		採取日	採取者	線量率 [※] (mSv/h)
1	増設ALPS炭酸塩沈殿スラリー(深さ 150cm)	AAL-S1-2	H27.4.16	東芝	190
2	増設ALPS炭酸塩沈殿スラリー(深さ 100cm)	AAL-S1-3	H27.4.16	東芝	210
3	増設ALPS炭酸塩沈殿スラリー(深さ 60cm)	AAL-S1-4	H27.4.16	東芝	150
参考	増設ALPS炭酸塩沈殿スラリー ^{※1} (充填後直ちに採取)	AAL-S1-1	H27.5.13	JAEA	22

※ 5 cm3 を10 cm3 バイアル瓶に収納したときの表面線量率。H27年5月27日に測定。

©International Research Institute for Nuclear Decommissioning

スラリーの固液比及び上澄液のpH

●固液比

- 炭酸塩沈殿スラリー試料を撹拌後、一定量分取し、蒸発乾固前後の重量から固液比を求めた。
- 深さとともに固体の割合が増える傾向がうかがわれる。
- 安定化処理の検討に用いている模擬スラリー(固体重量比10~20%)と同程度であることが確認できた。

No.	=-2 火 夕	重量」	北 (%)	【参考】容量比 (%)*		
NO.	試料名 	固体	液体	固体	液体	
1	AAL-S1-2(深さ150cm)	23.6	76.4	10.9	89.1	
2	AAL-S1-3(深さ100cm)	22.7	77.3	10.4	89.6	
3	AAL-S1-4(深さ60cm)	15.7	84.3	6.8	93.2	
参考	AAL-S1-1(充填後直ちに採取) ^{※1}	12.1	87.9	5.1	94.9	

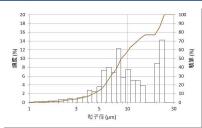
^{*} 元素分析の結果から、化合物を想定して比重を設定し、算出。

●上澄液のpH

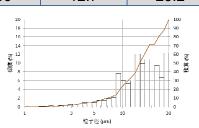
- 炭酸塩沈殿スラリー試料を一定量分取し、上澄液のpHを測定した。
- 約11であり、深さの影響は小さいとみられる。

No.	試料名	рН
1	AAL-S1-2(深さ150cm)	11.5
2	AAL-S1-3(深さ100cm)	11.4
3	AAL-S1-4(深さ60cm)	11.0

©International Research Institute for Nuclear Decommissioning


※1:廃炉・汚染水対策チーム会合/事務局会議(第26回), 平成28年1月28日.

12



スラリーの粒度分布

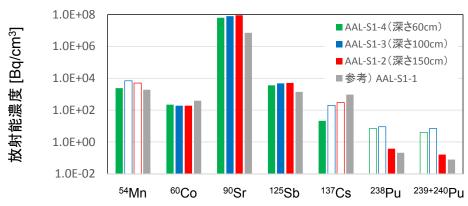
		粒子径測定結果(µm)					
No.	試料名	平均径		ン径	最大粒子径		
		(個数基準)	(個数基準)	(体積基準)	政人心丁任		
1	AAL-S1-2(深さ150cm)	2.93	2.03	8.65	22.8		
2	AAL-S1-3(深さ100cm)	3.10	1.98	10.0	17.5		
3	AAL-S1-4(深さ60cm)	3.01	1.90	15.1	29.6		
参考	増設AAL-S1-1(充填後直ちに採取) ^{※1}	5.27	4.30	13.2	26.9		
参考	既設EAL-S2-2(同上) ^{※1}	7.40	6.85	15.2	29.4		
参考	既設AL-S2-1(同上) ^{※2}	3.62	2.36	12.7	23.2		

14 (14 (15) 10 (16) 10 (17) 10 (1

AAL-S1-2の粒度分布(体積基準)

AAL-S1-3の粒度分布(体積基準)

AAL-S1-4の粒度分布(体積基準)

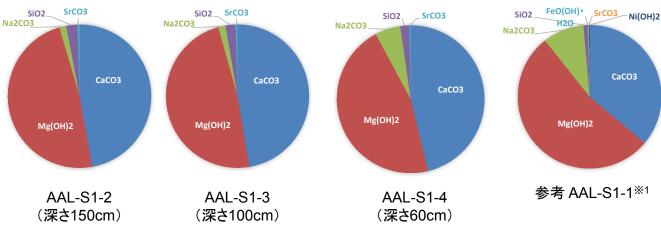

- ▶ 炭酸塩沈殿スラリーを純水中に希釈・分散させ、これを分取しフィルター上で乾燥後、マイラー膜で密封し、マイクロスコープで画像を撮影した。得られた画像を画像解析し、粒子径を求めた。
- ▶ 粒子径に深さの依存性は見られない。また、静置したことによる影響は伺われない。
- ▶ 安定化処理の検討に用いている模擬スラリー(メジアン径(体積基準)13~17µm)と同程度であることが確認できた。

©International Research Institute for Nuclear Decommissioning

スラリーの放射性核種分析結果

※ 白抜きのバーは検出下限値を示す。

- ▶ いずれの炭酸塩沈殿スラリー試料についても90Srが支配的であり、125Sb等の他の核種に比べて4桁以上も高い。
- № 94Nb, 152Eu, 154Eu, 241Am, 244Cmは全ての試料で不検出であった。
- ▶ 放射能濃度は、深さによる固液比の違いの影響が示唆される。※1
- ▶ 核種組成は、HIC(処理した水)ごとに若干異なる可能性が示唆される。※2


IRID

※1:参考 P. 27 の左図。 ※2:参考 P. 27 の左·右図。 ©International Research Institute for Nuclear Decommissioning

14

スラリーの元素分析結果 (推定した物質の重量比)

※代表的な化合物を想定して算出。

- ▶ いずれもCaCO₃とMg(OH)₂で約9割を占める。
 - ➤ Ca と Mg の比は HIC (処理した水)により変わると思われる。
- ▶ 60cmの試料は、100cm及び150cmの試料に比べてNa₂CO₃の割合が大きいが、液体含有量の割合が高い影響と考えられる。その他については、深さの依存性は認められない。

©International Research Institute for Nuclear Decommissioning

(JAEA)

まとめ

- 原子炉建屋内瓦礫(コンクリート)、タービン建屋内スラッジ、多核種除去設備炭酸塩 沈殿スラリーを分析し、それぞれ次の核種が検出された。
 - * コンクリート: ³H, ¹⁴C, ⁶⁰Co, ⁶³Ni, ⁷⁹Se, ⁹⁰Sr, ¹²⁹I, ¹³⁷Cs, ¹⁵⁴Eu, ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴¹Am, ²⁴⁴Cm, 全α
 - * スラッジ: 60Co, 63Ni, 90Sr, 137Cs, 238Pu, 239+240Pu, 241Am, 244Cm
 - * スラリー: ⁵⁴Mn. ⁶⁰Co. ⁹⁰Sr. ¹²⁵Sb. ¹³⁷Cs. ²³⁸Pu. ²³⁹⁺²⁴⁰Pu
- 1号機原子炉建屋の瓦礫(コンクリート)は、これまでに得られた瓦礫の分析データに 整合する結果を示し、汚染組成が類似している。
- 1号機タービン建屋のスラッジ(滞留水固形分)は、汚染水と接触した影響がうかがわれ、空気と水を経由した複合的な汚染の可能性が示唆された。
- 多核種除去設備から発生した炭酸塩沈殿スラリーについて、核種組成が容器内で 均一である一方、容器(処理した汚染水)ごとに違う可能性が示唆された。
- また、スラリーは、放射能濃度とともに固液比、粒度分布などのデータを得た。スラリー安定化処理(脱水)技術の研究開発において、適用性試験を行っており、試験に用いる模擬スラリーの性状が実際のスラリーと同程度であることを、固液比や粒度分布のデータにより確認できた。

IRID

©International Research Institute for Nuclear Decommissionin

16

今後の計画

- ■分析は、1号機原子炉建屋天井ボーリングコア、可燃物の焼却による灰、2及び3号機PCVや多核種除去設備の工程内で採取した水試料、サイト内土壌などの試料を対象として継続し、分析データの蓄積を進めていく。
- ■分析により得られた放射性核種濃度のデータは、解体廃棄物や汚染水処理二次廃棄物のインベントリ評価において、推定の精度向上に利用し、処理・処分技術の検討に提供する。
- ■得られた分析データは、廃炉に係わる広いニーズに対応する ため速やかに公開していく。ここで、研究実施事業者による公 開も検討する。また、分析結果を利用した研究開発の成果に ついては、新たな知見や成果がまとめられた段階で、本チー ム会合/事務局会議で報告する。

参考情報

無斷複製·転載禁止 技術研究組合 国際廃炉研究開発機構 ©International Research Institute for Nuclear Decommissioning

18

原子炉建屋内瓦礫の核種分析結果①

		放射能濃度(Bq/g)						
No.	試料名	⁶⁰ Co (約5.3年)	⁹⁴ Nb (約2.0×10 ⁴ 年)	¹³⁷ Cs (約30年)	¹⁵² Eu (約14年)	¹⁵⁴ Eu (約8.6年)		
1	1RB-CR-R1	_	_	$(2.8\pm0.1)\times10^5$	_	_		
2	1RB-CR-R2	$(2.3\pm0.2)\times10^{0}$	< 3 × 10 ⁻¹	(1.5±0.1) × 10 ⁵	< 3 × 10 ⁰	< 1 × 10 ⁰		
3	1RB-CR-R3	-	-	(6.2±0.1) × 10 ⁴	-	-		
4	1RB-CR-R4	$(9.1\pm0.3)\times10^{0}$	< 3 × 10 ⁻¹	$(3.8\pm0.1)\times10^5$	< 3 × 10 ⁰	$(1.9\pm0.3)\times10^{0}$		
5	1RB-CR-R5	_	-	(4.7±0.1) × 10 ⁴	-	-		
6	1RB-CR-R6	$(1.2\pm0.1)\times10^{1}$	< 3 × 10 ⁻¹	$(3.1\pm0.1)\times10^5$	< 3 × 10 ⁰	$(2.5\pm0.3)\times10^{0}$		
7	1RB-CR-R7	_	_	(2.0±0.1) × 10 ⁵	_	_		
8	1RB-CR-R8	(1.1±0.1) × 10 ¹	< 3 × 10 ⁻¹	(4.1±0.1) × 10 ⁵	< 3 × 10 ⁰	$(2.2\pm0.4)\times10^{0}$		
9	1RB-CR-R9	-	-	(5.8±0.1) × 10 ⁴	-	-		
10	1RB-CR-R10	_	_	(3.9±0.1) × 10 ⁴	_	_		
11	1RB-CR-R11	_	_	(8.2±0.1) × 10 ⁵	_	_		
12	1RB-CR-R12	(1.5±0.1) × 10 ¹	< 1 × 10 ⁰	(1.7±0.1) × 10 ⁶	< 9 × 10 ⁰	< 4 × 10 ⁰		
13	1RB-CR-R13	$(1.6\pm0.1)\times10^2$	< 4 × 10 ⁰	$(1.5\pm0.1)\times10^7$	< 4 × 10 ¹	$(2.1\pm0.4)\times10^{1}$		
14	1RB-CR-R14	_	_	(1.1±0.1) × 10 ⁷	_	_		

原子炉建屋内瓦礫の核種分析結果 ②

			放射能濃	度(Bq/g)	
No.	試料名	⁹⁰ Sr (約29年)	⁹⁹ Tc (約2.1×10 ⁵ 年)	¹²⁶ Sn (約1.0×10 ⁵ 年)	¹²⁹ (約1.6×10 ⁷ 年)
1	1RB-CR-R1	-	< 3 × 10 ⁻¹	-	< 2 × 10 ⁻¹
2	1RB-CR-R2	$(5.6\pm0.2)\times10^{1}$	-	-	_
4	1RB-CR-R4	$(2.0\pm0.1)\times10^2$	_	_	_
5	1RB-CR-R5	_	< 3 × 10 ⁻¹	_	< 2 × 10 ⁻¹
6	1RB-CR-R6	$(2.0\pm0.1)\times10^2$	_	_	_
7	1RB-CR-R7	_	< 4 × 10 ⁻¹	_	< 3 × 10 ⁻¹
8	1RB-CR-R8	$(2.2\pm0.1)\times10^2$	_	< 5 × 10 ⁻¹	_
11	1RB-CR-R11	_	< 9 × 10 ⁻¹	_	$(3.0\pm0.3)\times10^{-1}$
12	1RB-CR-R12	$(4.3\pm0.1)\times10^2$	_	_	_
13	1RB-CR-R13	$(4.5\pm0.1)\times10^3$	_	< 5 × 10 ⁰	_
14	1RB-CR-R14	_	< 7 × 10 ⁰	_	< 6 × 10 ⁰

放射能濃度は、H23.3.11に補正。 分析値の±より後ろの数値は、計数値誤差である。 一は分析未実施を示す。

20

原子炉建屋内瓦礫の核種分析結果③

			放射能濃度(Bq/g)				
No.	試料名	³ H (約12年)	¹⁴ C (約5.7×10 ³ 年)	⁶³ Ni (約1.0×10 ² 年)	⁷⁹ Se (約6.5×10 ⁴ 年)		
1	1RB-CR-R1	$(7.5\pm0.2)\times10^{0}$	(4.4±0.9) × 10 ⁻¹	-	< 2 × 10 ⁻¹		
5	1RB-CR-R5	(5.0±0.7) × 10 ⁻¹	(3.4±0.5) × 10 ⁻¹	_	< 2 × 10 ⁻¹		
6	1RB-CR-R6	-	_	$(2.3\pm0.1)\times10^{0}$	_		
7	1RB-CR-R7	$(2.8\pm0.2)\times10^{0}$	< 4 × 10 ⁻¹	-	< 3 × 10 ⁻¹		
11	1RB-CR-R11	$(4.0\pm0.1)\times10^{1}$	$(1.1\pm0.1)\times10^{1}$	_	< 9 × 10 ⁻¹		
13	1RB-CR-R13	-	_	$(2.7\pm0.1)\times10^{1}$	_		
14	1RB-CR-R14	$(4.6\pm0.3)\times10^{1}$	$(3.7\pm0.2)\times10^{1}$	_	$(6.5\pm1.4)\times10^{0}$		

		放射能濃度(Bq/g)						
No.	試料名	²³⁸ Pu (約88年)	²³⁹⁺²⁴⁰ Pu (約2.4×10 ⁴ 年 約6.6×10 ³ 年)	²⁴¹ Am (約4.3×10 ² 年)	²⁴⁴ Cm (約18年)	全α		
2	1RB-CR-R2	_	-	_	-	< 6 × 10 ⁻²		
4	1RB-CR-R4	-	-	-	-	< 7 × 10 ⁻²		
6	1RB-CR-R6	-	-	-	-	< 5 × 10 ⁻²		
8	1RB-CR-R8	-	-	-	-	(1.3±0.3) × 10 ⁻¹		
12	1RB-CR-R12	-	-	-	_	< 2 × 10 ⁻¹		
13	1RB-CR-R13	(6.0±1.1) × 10 ⁻¹	(1.6±0.6) × 10 ⁻¹	(1.6±0.4) × 10 ⁻¹	(1.6±0.4) × 10 ⁻¹	_		

(44) タービン建屋内スラッジの核種分析結果 ①

		放射能濃度(Bq/g)						
No.	試料名	⁶⁰ Co (約5.3年)	⁹⁴ Nb (約2.0×10 ⁴ 年)	¹³⁷ Cs (約30年)	¹⁵² Eu (約14年)	¹⁵⁴ Eu (約8.6年)		
1	1TB-MI-SL1	$(3.7\pm0.1)\times10^2$	< 3 × 10 ⁰	(3.1±0.1) × 10 ⁶	< 2 × 10 ¹	< 1 × 10 ¹		
2	1TB-MI-SL2	$(1.4\pm0.1)\times10^2$	< 2 × 10 ¹	$(1.2\pm0.1)\times10^7$	< 1 × 10 ²	< 5 × 10 ¹		
3	1TB-MI-SL3	$(2.0\pm0.1)\times10^3$	< 4 × 10 ⁰	(3.4±0.1) × 10 ⁶	< 4 × 10 ¹	< 2 × 10 ¹		
4	1TB-MI-SL4	(1.1±0.1) × 10 ⁰	< 7 × 10 ⁻²	$(9.8\pm0.1)\times10^3$	< 6 × 10 ⁻¹	< 3 × 10 ⁻¹		

		放射能濃度(Bq/g)					
No.	試料名	⁶³ Ni (約1.0×10 ² 年)	⁹⁰ Sr (約29年)	¹²⁶ Sn (約1.0×10 ⁵ 年)			
1	1TB-MI-SL1	$(4.7\pm0.1)\times10^{1}$	(1.5±0.1) × 10 ⁵	< 3 × 10 ⁰			
2	1TB-MI-SL2	$(7.6\pm0.3)\times10^{1}$	(6.5±0.1) × 10 ⁴	< 2 × 10 ¹			
3	1TB-MI-SL3	$(1.4\pm0.1)\times10^2$	(1.6±0.1) × 10 ⁶	< 5 × 10 ⁰			
4	1TB-MI-SL4	(1.1±0.2) × 10 ⁻¹	$(1.1\pm0.1)\times10^3$	< 8 × 10 ⁻²			

放射能濃度は、H23.3.11に補正。 分析値の±より後ろの数値は、計数値誤差である。

22

(44) タービン建屋内スラッジの核種分析結果 ②

		放射能濃度(Bq/g)					
No.	試料名	²³⁸ Pu (約88年)	²³⁹⁺²⁴⁰ Pu (約2.4×10 ⁴ 年 約6.6×10 ³ 年)	²⁴¹ Am (約4.3×10 ² 年)	²⁴⁴ Cm (約18年)		
1	1TB-MI-SL1	$(1.7\pm0.2)\times10^{0}$	(4.8±0.8) × 10 ⁻¹	$(1.2\pm0.2)\times10^{0}$	$(2.8\pm0.3)\times10^{0}$		
2	1TB-MI-SL2	< 6 × 10 ⁻¹	< 6 × 10 ⁻¹	< 6 × 10 ⁻¹	$(1.7\pm0.4)\times10^{0}$		
3	1TB-MI-SL3	< 2 × 10 ⁻¹	< 2 × 10 ⁻¹	< 2 × 10 ⁻¹	(2.6±0.7) × 10 ⁻¹		
4	1TB-MI-SL4	< 3 × 10 ⁻³	< 3 × 10 ⁻³	< 5 × 10 ⁻³	< 5 × 10 ⁻³		

多核種除去設備スラリーの核種分析結果 ①

		放射能濃度 [Bq/cm³]						
	試料名	⁵⁴ Mn	⁶⁰ Co	⁹⁴ Nb	¹²⁵ Sb	¹³⁷ Cs		
		(約312日)	(約5.3年)	(約2.0×10⁴年)	(約2.8年)	(約30年)		
1	AAL-S1-2	< 5 × 10 ³	$(1.9\pm0.4)\times10^2$	< 8 × 10 ¹	$(5.1\pm0.5)\times10^3$	< 3 × 10 ²		
2	AAL-S1-3	< 7 × 10 ³	$(1.9\pm0.3)\times10^2$	< 7 × 10 ¹	$(4.8\pm0.4)\times10^3$	< 2 × 10 ²		
3	AAL-S1-4	$(2.4\pm0.2)\times10^3$	$(2.2\pm0.1)\times10^{2}$	< 2 × 10 ⁻¹	$(3.6\pm0.3)\times10^3$	$(2.1\pm0.4)\times10^{1}$		
参考	AAL-S1-1**1	$(1.9\pm0.2)\times10^3$	$(3.9\pm0.1)\times10^2$	< 2 × 10 ¹	$(1.4\pm0.1)\times10^3$	$(9.4\pm0.1)\times10^2$		

		放射能濃度 [Bq/cm³]			
	試料名	¹⁵² Eu	¹⁵⁴ Eu		
		(約14年)	(約8.6年)		
1	AAL-S1-2	$< 3 \times 10^{2}$	< 3 × 10 ²		
2	AAL-S1-3	< 2 × 10 ²	< 2 × 10 ²		
3 AAL-S1-4		< 2 × 10 ⁰	< 2 × 10 ⁰		
参考	AAL-S1-1 ^{**1}	< 4 × 10 ¹	< 3 × 10 ¹		

放射能濃度は、減衰をH23.3.11に補正。 分析値の±の後の数値は、計数値誤差である。

- ▶ ⁶⁰Co, ¹²⁵Sb:全ての試料で検出。
- № 94Nb, 152Eu, 154Eu:全ての試料で不検出。

【参考】スラリー固体分あたりの放射能濃度

	容量比		放射能濃度 [Bq/cm³]		
	試料名	(%) *	⁶⁰ Co	¹²⁵ Sb	
1	AAL-S1-2	10.9	1.7×10^{3}	4.7×10^4	
2	AAL-S1-3	10.4	1.8×10^{3}	4.6 × 10 ⁴	
3	AAL-S1-4	6.8	3.2×10^{3}	5.3 × 10 ⁴	

^{*}元素分析の結果から、化合物を想定して比重を設定し、算出。

©International Research Institute for Nuclear Decommissioning

※1: 廃炉・汚染水対策チーム会合/事務局会議(第26回), 平成28年1月28日. 減衰補正の基準をH27.7.28からH23.3.11に変更.

24

多核種除去設備スラリーの核種分析結果 ②

		放射能濃度 [Bq/cm³]						
	試料名	²³⁸ Pu	²³⁹ Pu+ ²⁴⁰ Pu	²⁴¹ Am	²⁴⁴ Cm	⁹⁰ Sr		
		(約88年)		(約4.3×10 ² 年)	(約18年)	(約29年)		
1	AAL-S1-2	$(3.6\pm0.8)\times10^{-1}$	$(1.6\pm0.6)\times10^{-1}$	< 3 × 10 ⁻¹	< 2 × 10 ⁻¹	$(9.0\pm0.2)\times10^7$		
2	AAL-S1-3	< 9 × 10 ⁰	< 7 × 10 ⁰	< 4 × 10 ¹	< 8 × 10 ⁻¹	$(8.0\pm0.1)\times10^7$		
3	AAL-S1-4	< 7 × 10 ⁰	< 4 × 10 ⁰	< 2 × 10 ⁰	< 2 × 10 ⁻¹	$(5.7\pm0.1)\times10^7$		
参考	AAL-S1-1 ^{**1}	$(2.1\pm0.1)\times10^{-1}$	$(7.8\pm0.6)\times10^{-2}$	$(2.0\pm0.4)\times10^{-2}$	< 7 × 10 ⁻³	(7.2±0.2) × 10 ⁶		

- α線放出核種は既報のスラリーと同程度であった。
- № 90Srに関して、既報のスラリーに対して約 10倍であった。

放射能濃度は、減衰をH23.3.11に補正。 分析値の±の後の数値は、計数値誤差である。

【参考】スラリー固体分あたりの放射能濃度

試料名		容量比 (%)*	放射能濃度 [Bq/cm³] ⁹⁰ Sr		
1	AAL-S1-2	10.9	8.3 × 10 ⁸		
2	AAL-S1-3	10.4	7.7 × 10 ⁸		
3	AAL-S1-4	6.8	8.4 × 10 ⁸		

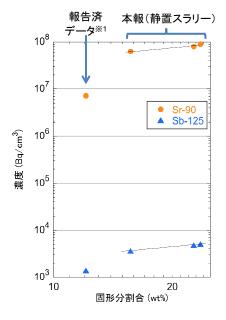
*元素分析の結果から、化合物を想定して比重を設定し、算出。

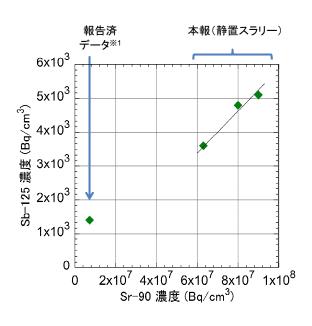
International Research Institute for Nuclear Decommissioning

(多核種除去設備スラリーの元素分析結果)

試料名		元素組成比〔wt%〕						
		Na	Mg	Si	Ca	Sr		
1	AAL-S1-2	1.6	19.3	1.1	18.1	0.28		
2	AAL-S1-3	1.7	19.5	1.0	18.3	0.25		
3	AAL-S1-4	2.3	18.2	0.9	17.5	0.18		
参考	AAL-S1-1 ^{**} 1	4.0	22.2	0.43	14.5	0.07		

試料名		物質構成比〔wt%〕(代表的な物質を想定)						
		Na ₂ CO ₃	Mg(OH) ₂	SiO ₂	CaCO₃	SrCO ₃	合計	
1	AAL-S1-2	3.7	46.3	2.4	45.3	0.47	98.2	
2	AAL-S1-3	4.0	46.8	2.2	45.9	0.42	99.3	
3	AAL-S1-4	5.3	43.6	1.8	43.8	0.30	94.8	
参考	AAL-S1-1 ^{**} 1	9.3	53.3	0.93	36.2	0.12	99.9	


IRID


※1:廃炉・汚染水対策チーム会合/事務局会議(第26回), 平成28年1月28日.

26

多核種除去設備スラリー中の核種濃度の 固形分割合依存性、核種間の相関

FP核種濃度の固形分割合に対する依存性

FP核種である Sr-90 と Sb-125 濃度の相関

