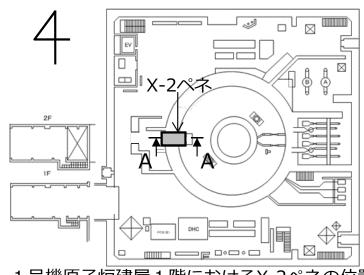
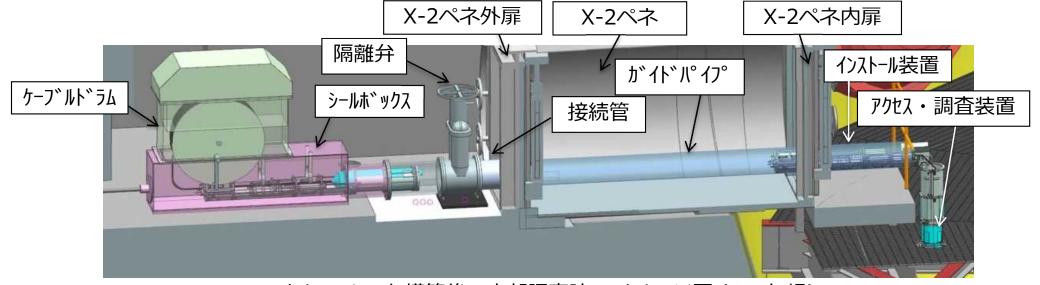
1号機PCV内部調査にかかる アクセスルート構築作業の状況

2020年4月30日

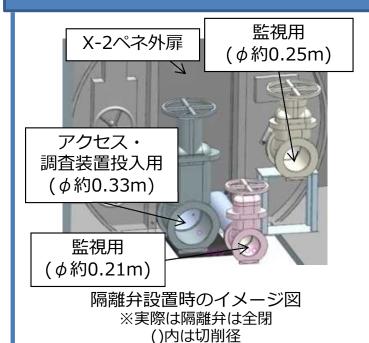


東京電力ホールディングス株式会社

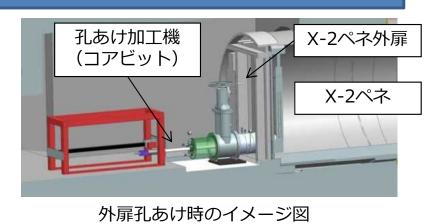

1. X-2ペネからのPCV内部調査のためのアクセスルート構築

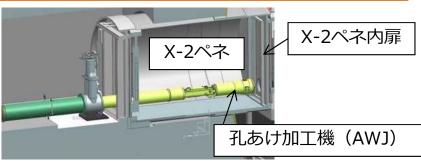
- 1号機原子炉格納容器(以下, PCV)内部調査は, X-2ペネトレーション(以下, ペネ)からアクセスする計画
- X-2ペネ(所員用エアロック)は外扉と内扉を有し、アクセスルートを構築するためには、外扉と内扉の切削が必要
- アクセスルート構築の主な作業ステップは以下の通り
 - ① 隔離弁設置(3箇所)
 - ② 外扉切削(3箇所)
 - ③ 内扉切削(3箇所)
 - ④ PCV内干涉物切断
 - ⑤ ガイドパイプ設置(3箇所)

1号機原子炉建屋1階におけるX-2ペネの位置



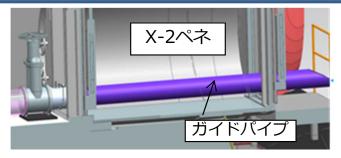
アクセスルート構築後の内部調査時のイメージ図 (A-A矢視)


2. アクセスルート構築作業の主な作業ステップ


1. 隔離弁設置(3箇所)2019.5.10完了

2. 外扉切削 (3箇所) 2019.5.23完了

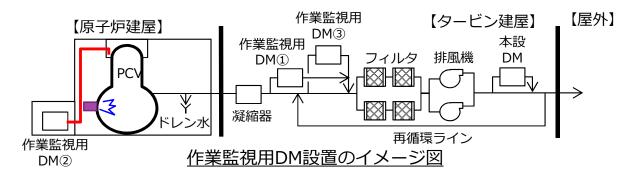
3. 内扉切削(AWJ)(3箇所) 2020.4.22完了


内扉孔あけ時のイメージ図

4. PCV内干渉物切断

PCV内干渉物切断時のイメージ図

5. ガイドパイプ設置(3箇所)



ガイドパイプ設置時のイメージ図

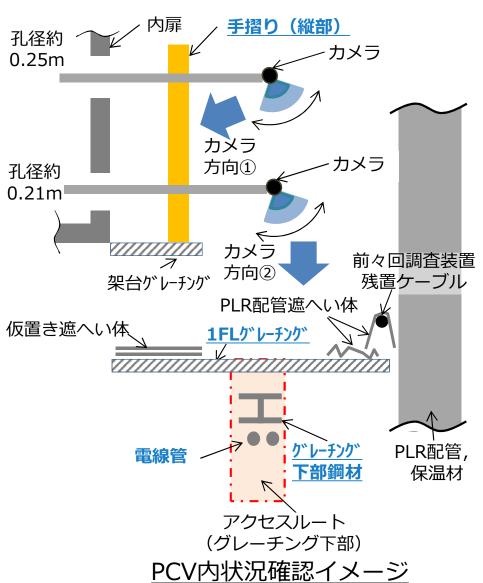
3. X-2ペネからのアクセスルート構築作業状況

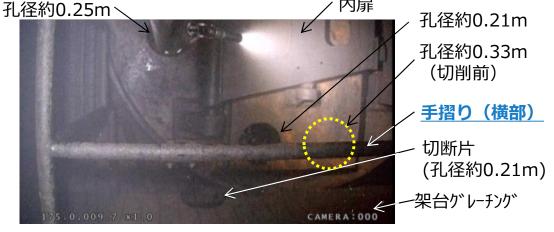
- アクセスルート構築作業を2019年4月8日より着手しており,外扉の切削完了後,6月4日に X-2ペネ内扉に,AWJ^{※1}にて孔(孔径約0.21m)を開ける作業中,PCV内のダスト濃度上昇 を早期検知するためのダストモニタ(下記図の作業監視用DM①)の値が作業管理値 (1.7×10⁻²Bq/cm³)^{※2}に達したことを確認
 - ※作業監視用DM①の下流側にダストを除去するフィルタがあり、フィルタの下流のダストモニタ(下記図の本設DM)には有意な変動はなく、環境への影響はないことを確認
- その後,ダストモニタを増設し、ダスト濃度の監視を充実・継続しつつ、切削量を制限した上で、作業を実施(2019年7月~2020年4月22日)
- 3箇所目の孔の切断前に,内扉に開けた2箇所の孔(孔径約0.25m, 0.21m)を活用してカメラを投入し,PCV内干渉物の位置の確認や,その他の干渉物の有無等の情報を取得。
- 4月22日に内扉の3箇所目となる孔(孔径約0.33m)の切削が完了。

- ※1:高圧水を極細にした水流に研磨剤を 混合し切削性を向上させた孔あけ加 工機(アブレシブウォータージェット)
- ※2:フィルタのダスト除去能力を考慮し, 本設DM警報設定値の1/10 以下に設定
- 作業監視用DM①:ガス管理設備のダスト濃度上昇の早期検知用
- 作業監視用DM②: PCV上蓋近傍のダスト濃度監視用(増設)
- 作業監視用DM③: ダスト濃度監視の連続性確保を目的とした, 再循環 希釈後のダスト濃度監視用(増設)
- 本設DM:フィルタでのダスト除去後のダスト濃度上昇の早期検知用

4. PCV内グレーチング周辺部の状況確認結果(1/2)

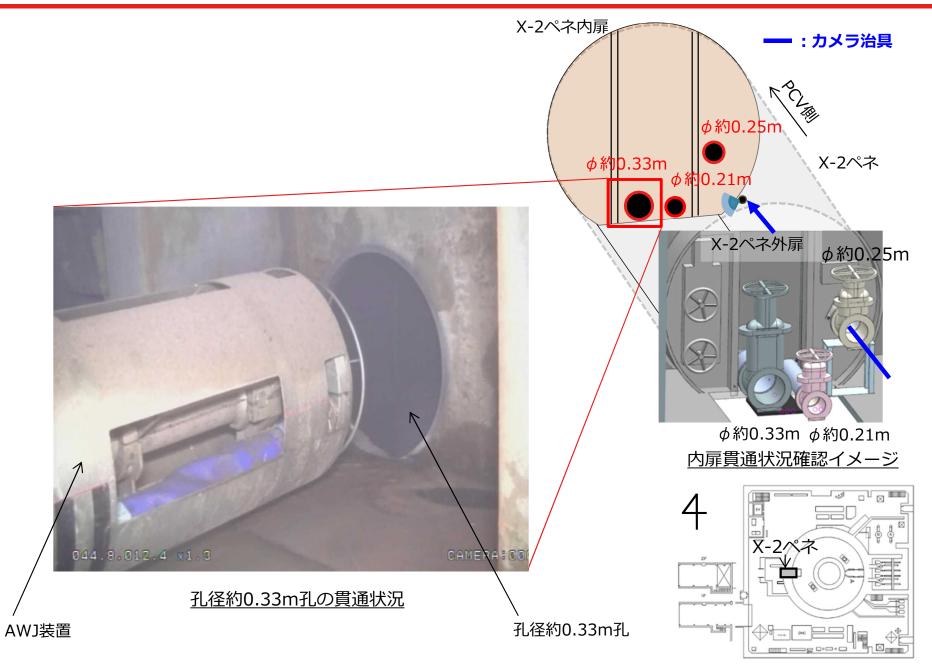
- 内扉切削完了後のPCV内干渉物切断の作業計画を検証することを目的に、内扉に開けた2 箇所の孔からカメラを投入し、PCV内干渉物の位置の確認や、その他の干渉物の有無等の情報を取得するため、状況確認を実施(3月30日、4月1日~2日)。
- 確認の結果, 既存の図面・写真等にて事前に確認していた通り,
 - 1 手摺り・グレーチング・グレーチング下部構造材・電線管の切断が必要であることを確認
 - ② 今後のPCV内干渉物切断作業に支障となるような障害物がなく, 切断可能であること を確認
- 💶 主な確認結果と,今後の対応は以下の通り。


切断対象	確認結果	今後の対応
手摺り	AWJ装置およびアクセス・調査装置に干渉 する可能性あり。	当初計画通り, 切断を実施する。 対象は, 手摺(縦部および横部)。
グレーチング	切断予定箇所に作業の干渉となる落下物等は確認されず。 近傍にAWJ作業の影響により移動したと思われるPLR配管遮へい体*(基布と推定)を確認。	当初計画通り,切断を実施する。 ただし,今後のAWJ作業で,切断予定箇所 に当該落下物が移動した場合は,切削作業 前に治具等を用いて移動させる。
グレーチング 下部構造材	アクセスルート上に,グレーチング下部構造材を確認。	当初計画通り, 切断を実施する。
電線管	アクセスルート上(グレーチング下部構造材の下)に、電線管を確認。	当初計画通り, 切断を実施する。


4

4. PCV内グレーチング周辺部の状況確認結果(2/2)

- ■今後切断予定の手摺り・グレーチング・グレーチング下部構造材・電線管周辺をカメラで調査。
- ■主な調査結果(映像)は以下の通り。



カメラ方向①

5. 孔径約0.33m孔の貫通状況

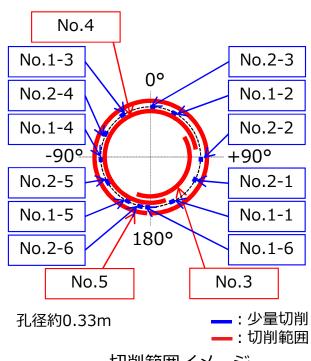
資料提供:国際廃炉研究開発機構(IRID)

6. 今後の予定

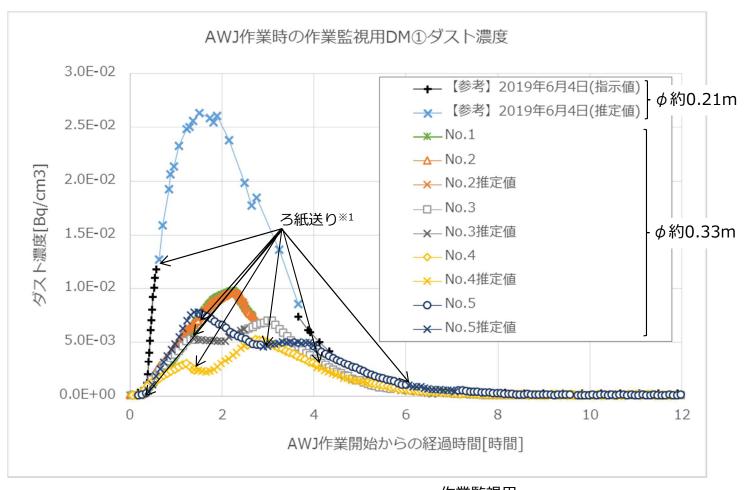
- 計画していた内扉3箇所目の孔の切削が完了(4月22日)。
- 続くアクセスルート構築作業として、手摺(縦部)切断を早ければ5月中旬頃より進める予定。
- 引き続き、ダスト濃度を監視しながら安全最優先で、PCV内干渉物(手摺り・グレーチング・グレーチング下部構造材・電線管)の切断作業を進めていく。

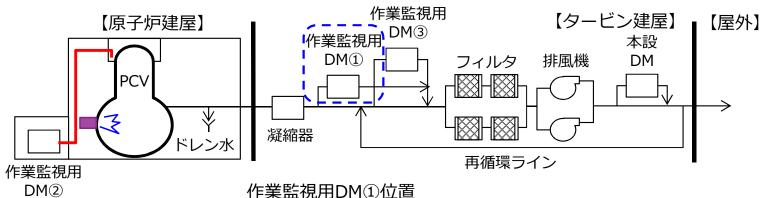
作業項目		2019年度		2020年度			
		2月	3月	4月	5月	6月以降	
準備作業		ダスト	、飛散抑制対策の訓網 ■■■				
アクセスルート構築	内扉切削 (3箇所)	孔径約0.21m ■ 片付け・準	孔径約0.25m 備 片付け	孔径約0.33m ・準備	対け・準備		
	PCV内 干渉物切断		グレーチング ■	周辺部の状況確認		縦部) 切断 取り替え グレーチング周辺部の 干渉物切断	
	ガイドパイプ 設置 (3箇所)					ガイドパイプ挿入 、・片付け	
1号PCV内部調査 (準備含む)						準備作業 準備作業 (調査開始は2020年度下期)	

(注) 各作業の実施時期については計画であり、現場作業の進捗状況によって時期は変更の可能性あり。

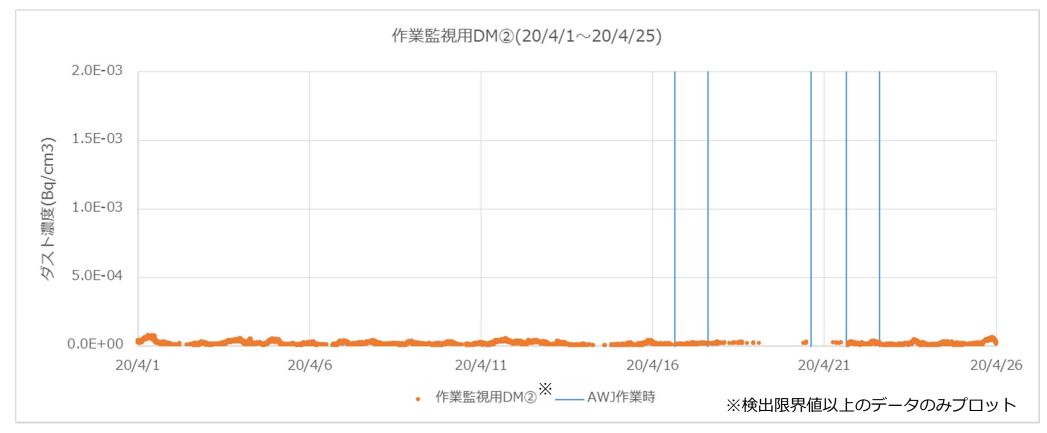

(参考) 切削作業(孔径約0.33m) の結果 (1/3)

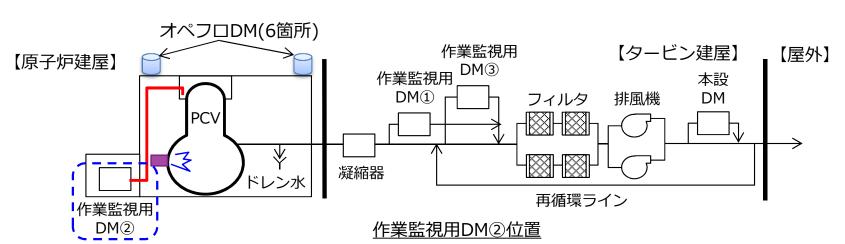
No.		施工範囲		スプレイ	作業監視用DM①	· · · · · · · · ·
		ノズル移動範囲	切削角度	散水	の最大ダスト濃度 [Bq/cm³]	備考
1(4/16)	-1	160°∼155°	5°			
	-2	35°∼30°	5°	無		
	-3	-25°∼-30°	5°	////	9.8×10 ⁻³	
	-4	-90°∼-95°	5°			
	-5	-155°∼-160°	5°	#		
	-6	-175°∼-180°	5°	有		
2(4/17)	-1	120°∼115°	5°			
	-2	95°∼90°	5°		9.6×10 ⁻³	
	-3	5°∼0°	5°	無		
	-4	-55°∼-60°	5°		(推定値)※1	
	-5	-115°∼-120°	5°			
	-6	-165°∼-170°	5°			
3(4/20)		-160°→180°→60°	140°	有	7.0×10 ⁻³	% 2
4(4/21)		80°→0°→160°	280°	無	5.2×10 ⁻³	% 2
5(4/22)		-180→0°→-180°	360°	有	7.8×10 ⁻³ (推定値) ※ 1	※ 2


^{※2:}ダスト濃度を抑制するため、同日に分割して施工

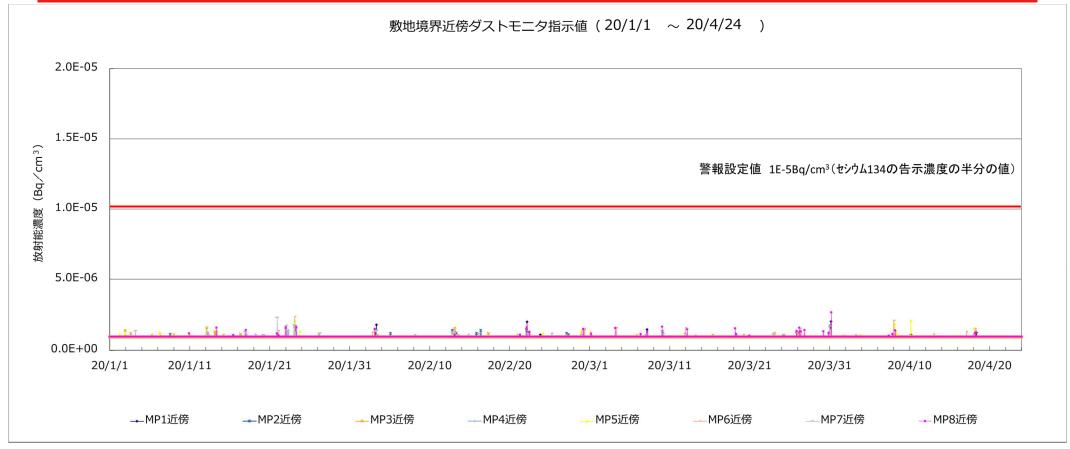

切削範囲イメージ (紙面奥側がPCV内側)

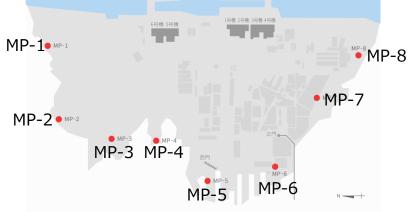
(参考) 切削作業(孔径約0.33m) の結果 (2/3)


※1:ろ紙送りの理由:ろ紙 を通過する流量が低下した場 合や,またろ紙上の放射能濃 度が高くなることで検出器が 応答しきれない状況を未然に 防ぎ,測定値の信頼性を担保 するため,ろ紙送りが自動動 作。ろ紙送り後はダスト濃度 を正確に測定できないため, データから除外。

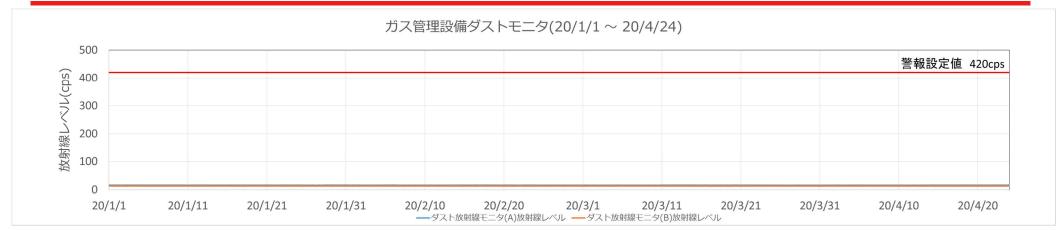


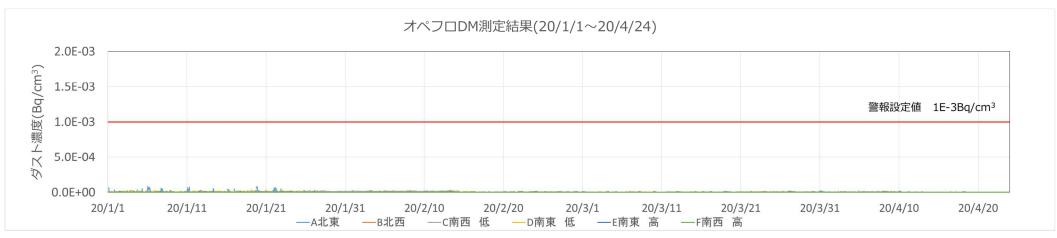
(参考) 切削作業(孔径約0.33m) の結果 (3/3)

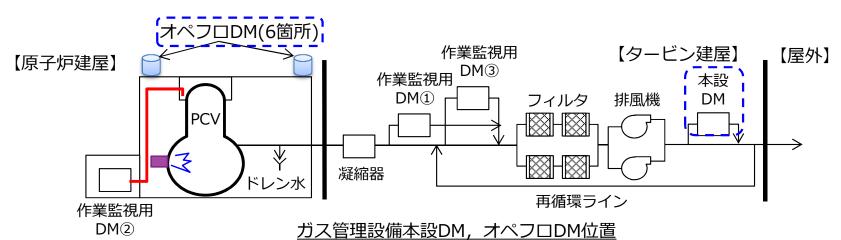

■ AWJ作業によるPCVヘッド近傍のダスト濃度は有意な変動は確認されていない。



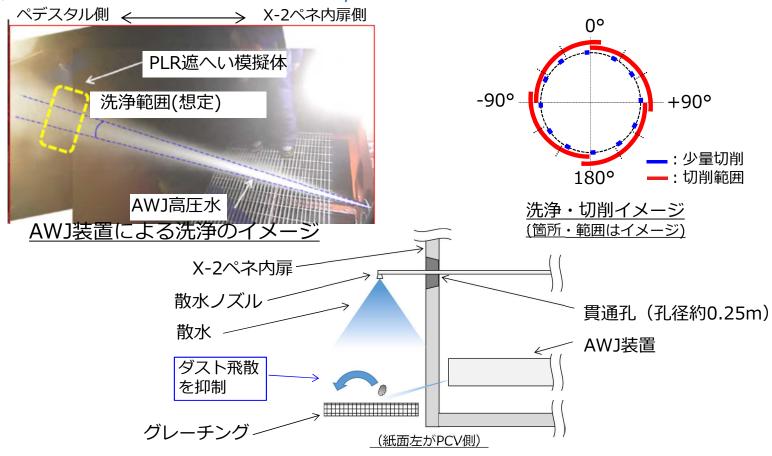
(参考) 周辺環境等のモニタリング結果(1/2)

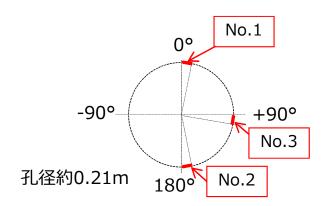


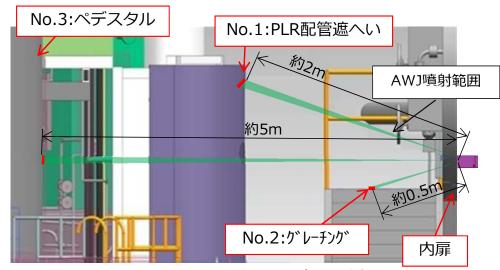


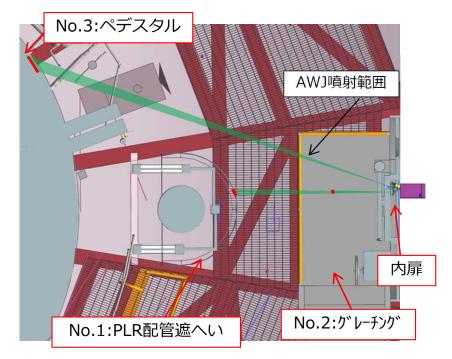


(参考) 周辺環境等のモニタリング結果(2/2)




(参考) 切削作業時の作業管理方法


- 内扉2箇所目の孔の切削作業以降においては、以下の作業管理を実施する計画。
 - PCV内構造物の洗浄
 - 少量(5°)の切削を複数回実施し、PCV内構造物を洗浄してダスト発生を抑制
 - > ピーク濃度の抑制
 - 切削作業を分割し、ダスト濃度の傾向を確認しながら切削作業を進めることにより、ピーク濃度を抑制しつつ、一日あたりの切削量を増加
 - AWJ作業時のスプレイ散水
 - AWJ作業時に貫通孔からスプレイ散水を行い、ダスト飛散を抑制。



切削・洗浄範囲イメージ (紙面奥側がPCV内側)

X-2ペネ前 縦断面図(PCV内)

X-2ペネ前 横断面図 (PCV内)