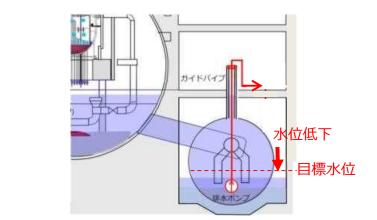
3号機 PCV取水設備設置工事に関わる 滞留ガス パージ作業の完了について

2022年1月27日

東京電力ホールディングス株式会社

1. 概要

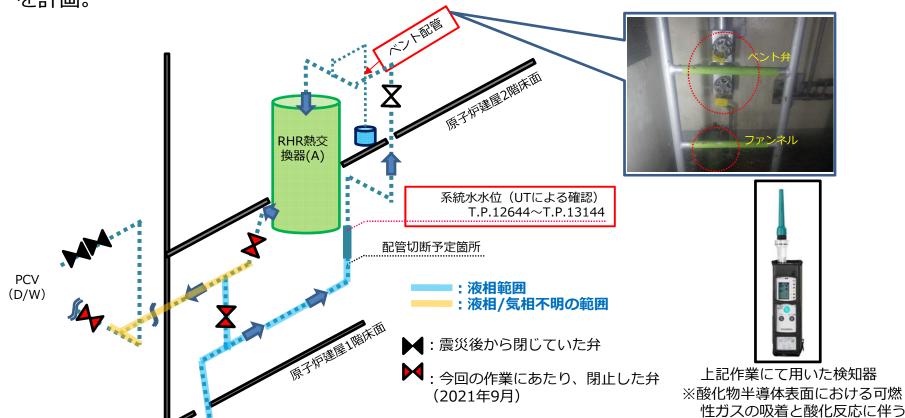

- 現状、耐震性向上策としてPCV(S/C)水位低下を行うため、以下の通り段階的に水位を低下することを計画。
- ガイドパイプ設置等(ステップ 2)に先立ち、現状水位(R/B1階床上約1m)をR/B1階床面以下に低下(ステップ 1)する。
- ステップ 1 では、S/C下部に接続する既設配管を用いて自吸式ポンプによる取水を計画。

ステップ1(目標水位:R/B1階床面以下)

自吸式ポンプ 滞留水 移送装置 既設配管 原子炉建屋地下

既設配管を用いたS/C内包水の取水イメージ

ステップ2(目標水位:S/C下部)

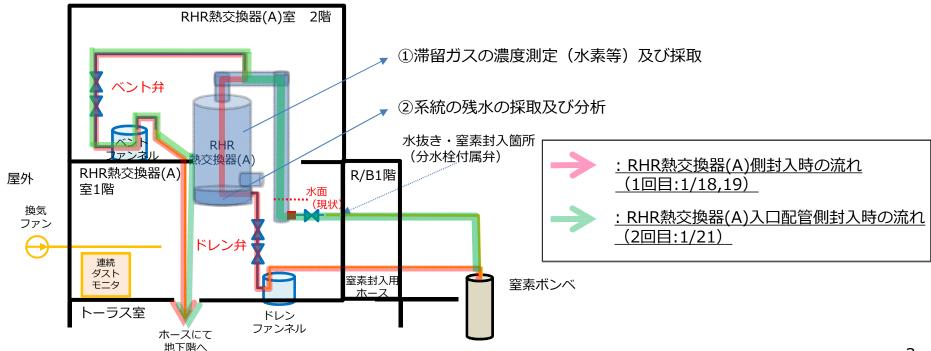


ガイドパイプによるPCV(S/C)からの取水イメージ

2. 経緯

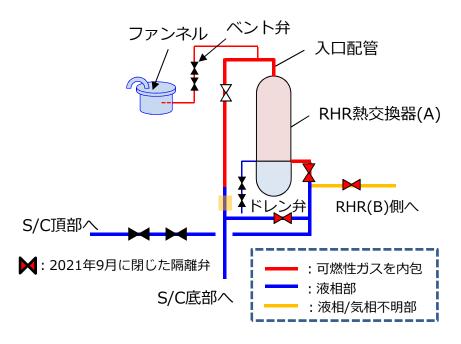
- **TEPCO**
- 既設配管に取水点を構築するための準備作業として、残留熱除去系(以下、「RHR」という。) 熱交換器(A)廻りのベント弁の開操作を実施したところ、接続ファンネル出口にて可燃性ガスを 検出※。また、ガスを採取・分析した結果、事故由来の長半減期核種であるKr-85を検出。
- PCVとの連通が想定される弁は事前に閉止していることから、現在、PCVからのガスの供給はないと想定。

■ RHR熱交換器(A)ドレン弁から窒素を封入し、RHR配管ベント弁から配管内ガスを排出することを計画。



電気伝導度の変化で検出。

3. 滞留ガスのパージ作業について



- パージ作業前に、①滞留ガスの濃度測定(水素等)、採取及び②系統の残水の採取、分析を 実施(結果を次頁以降に記載)。
- RHR熱交換器(A)側および入口配管側の滞留ガスのパージ作業(窒素封入)を環境等への影響を考慮し、3日に亘り実施。排出される滞留ガスの濃度が低下したことを確認。 (水素:約20%→0%、硫化水素:約20ppm→0ppm)。
- 作業中のガス等の測定、分析を行い、環境等への影響がないことを確認。
 - ▶ 排気先の地下階および1階(RHR熱交換器(A)室)のガスを測定、分析し、酸素濃度に異常が無いこと、およびKr-85濃度が検出限界値未満(5.0Bg/cm³未満)であることを確認。
 - ▶ 連続ダストモニタにより、ダスト濃度に変化がないことを確認。

3-①. 滞留ガスの濃度測定(水素等)及び採取の結果

TEPCO

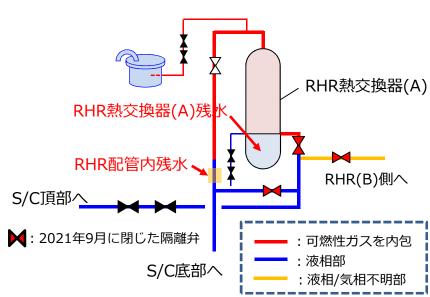
RHR配管の系統概略イメージ

■測定結果

- 水素濃度 約20% (ファンネルにて測定)
- ▶硫化水素濃度 約20ppm (ファンネルにて測定)
- ▶酸素濃度0% (ファンネルにて測定)
- ■採取・保管 金属製試料採取容器(約500cm³)

高濃度ガス検知器 (水素)

マルチガスモニター(硫化水素、酸素)



金属製試料 採取容器

3-②. 系統の残水の採取及び分析結果

■ 系統の残水(RHR熱交換器(A)残水、RHR配管内残水)を採水・分析。

RHR配管の系統概略イメージ

RHR熱交換器(A)残水

	分析項目	分析結果	分析項目	分析結果
	Cs-134	1.87E+04 Bq/L	рН	6.1
)	Cs-137	5.23E+05 Bq/L	塩素	1.90E+04 mg/L
	Co-60	1.37E+03 Bq/L	カルシウム	3.70E+02 mg/L
	H-3	3.41E+06 Bq/L	マグネシウム	1.10E+03 mg/L
	全β放射能	5.20E+05 Bq/L	ナトリウム	9.70E+03 mg/L
	全α放射能	<3.36E+00 Bq/L	SS(浮遊物質)	4.8E+01 mg/L

RHR配管内残水

分析項目	分析結果	分析項目	分析結果
Cs-134	9.59E+04 Bq/L	рН	9.4
Cs-137	2.90E+06 Bq/L	塩素	5.00E+03 mg/L
Co-60	<5.99E+02 Bq/L	カルシウム	8.40E+01 mg/L
H-3	9.80E+04 Bq/L	マグネシウム	3.10E+02 mg/L
全β放射能	2.98E+06 Bq/L	ナトリウム	2.80E+03 mg/L
全α放射能	<2.66E+00 Bq/L	SS(浮遊物質)	4.3E+00 mg/L

4. 設置工事全体の予定について

- 今後、既設配管における取水点構築を行った後、配管/取水ポンプ等の設置及び 電気・計測ケーブルの敷設を実施の上、系統試験を行う予定。
- 当初、取水点構築を12月中に終え、2021年度内の取水設備設置、2022年度明けからの運用開始を計画。
- 系統の滞留ガスパージ作業が完了したことから、配管の切断等の取水点の構築を再開。他設備の設置等を並行して進めているが、今後の干渉を含めた全体工程への影響を確認・調整の上、対応予定。

