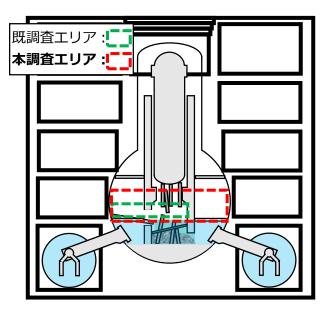
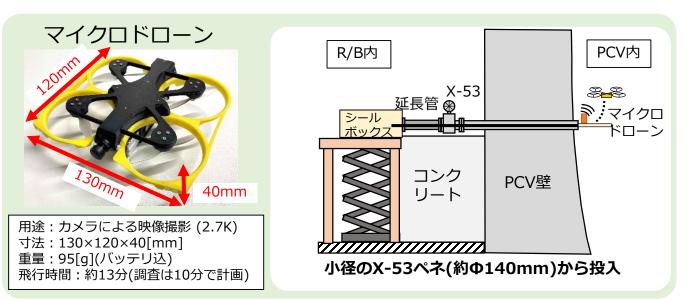
3号機 PCV内部気中部調査(マイクロドローン調査)について

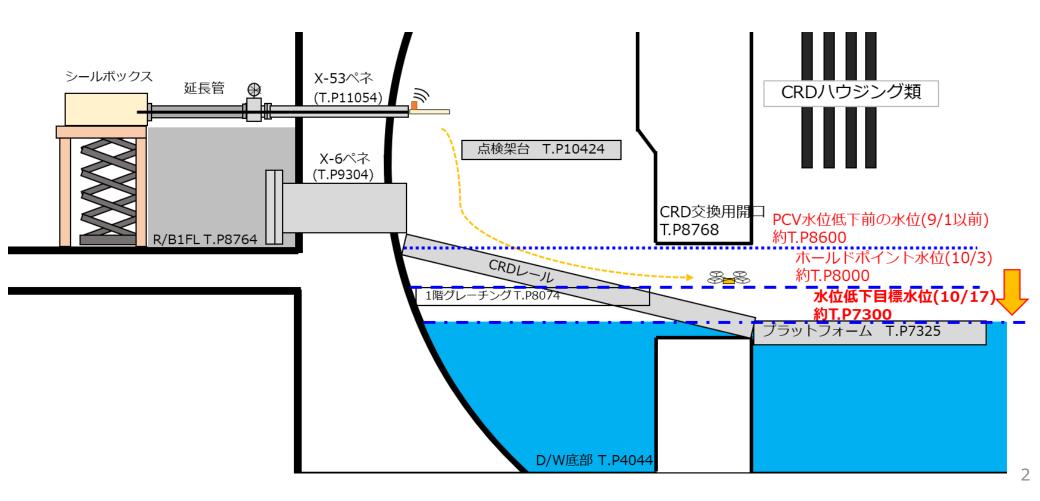
2025年10月30日




東京電力ホールディングス株式会社

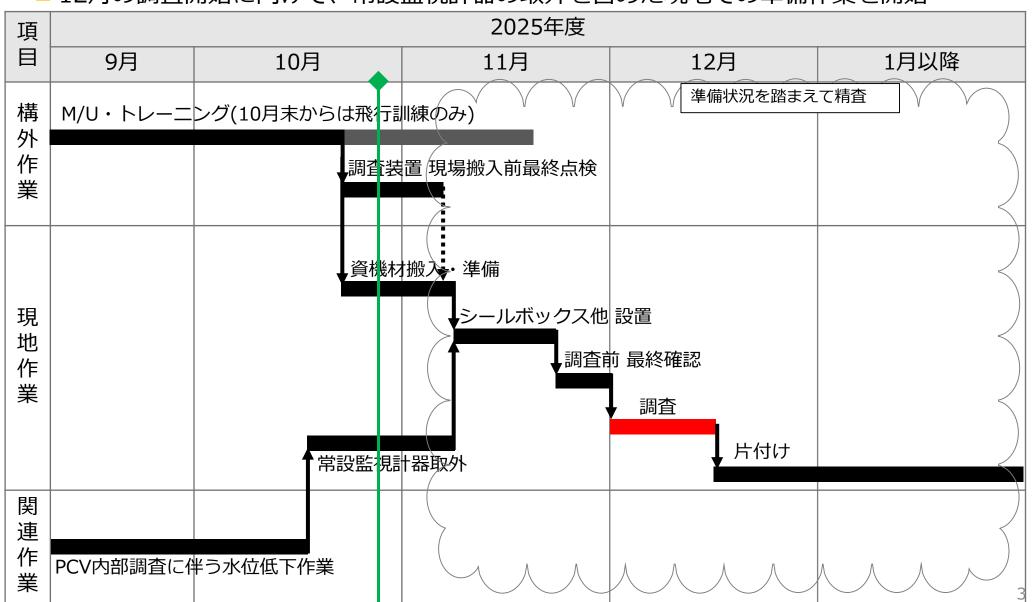
1. 概要

- 3号機については、2025年7月に燃料デブリ取り出しに係る設計検討について公表し、本格的なデブリ取り出しに向けて、更なるPCV内部の情報収集が求められる
- しかし、3号機は事故後以降、PCV水位が高い状態が続いたことから、使用可能なペネトレーション (以下ペネ)が限られており、現状整備されているのは、小径のX-53ペネ (約Φ140mm)のみ
- そのため、他号機で実績のある調査装置の適用は困難であり、新しく大径のアクセスルート構築が必要であるが、整備に時間を要してしまうため、現状でも実施可能な超小型の"マイクロドローン"を活用したPCV内部調査を計画
- 本調査では、2017年に水中ROVで調査したペデスタル内を更に詳細に調査し、未調査であるD/W 1FLについても調査する計画

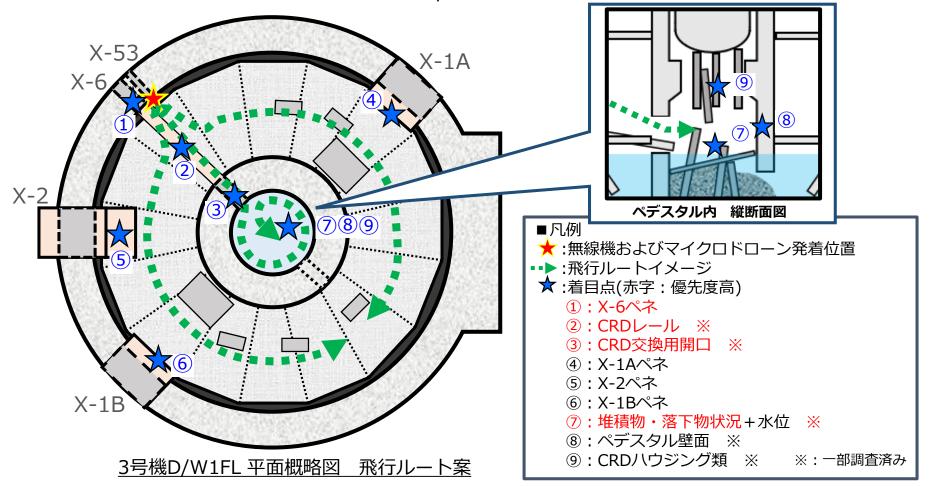

3号機PCV内部調查範囲 縦断面概略図

3号機マイクロドローン調査 調査イメージ

2. PCV内部調査に伴う水位低下状況


- 9月1日より実施していた、炉注水量低減によるPCV水位低下作業について、 10月3日にホールドポーイント(約T.P8000)、10月17日に目標水位(約T.P7300)に到達したことを確認
- 目標水位到達後、10月23日までの1週間において、RPV底部/ PCV温度計等の関連パラメータに異常がないことを確認したことから、10月24日から常設監視計器の取り外し作業に着手。
- 今後、現状の水位を維持し、PCV内部調査を実施する計画

3. 調査工程


■ 12月の調査開始に向けて、常設監視計器の取外を含めた現地での準備作業を開始

(参考) 調査内容について

- 本調査はマイクロドローンが飛行できる範囲のD/W 1FL、ペデスタル内の映像取得を計画
- 特に今後の堆積物調査や燃料デブリ取り出し横アクセスで重要となる、X-6ペネ周辺やペデスタル 内の情報収集を主目的として調査
- 1号機のドローン調査同様、映像からの点群化および放射線ノイズを利用した線量率推定を実施予定
- マイクロドローンは操作が難しいため、現場状況次第で調査内容を変更する可能性があるものの、可能な限り多くの情報取得ができるようM/U・トレーニングを進めている

(参考) 調査装置について

- PCV内部は狭隘かつ暗所であり、小径のX-53ペネからインストールすることから、"超小型"であ りながら、"機動性"、"撮影能力"の高い、下記に示すマイクロドローンを採用
- 過去調査と同様に、X-53ペネにシールボックスを取り付け、PCVの隔離状態を保ったまま、マ イクロドローンをPCV内に投入
- シールボックス内には合計6機のドローンが格納されており、同時に2機のドローンをPCV内にイ ンストール可能(6機のドローンの運用方法については、M/U・訓練の中で策定する)

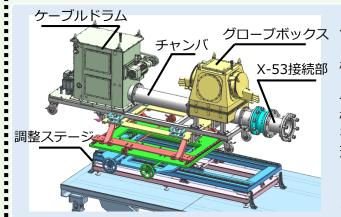
マイクロドローン

用途:カメラによる映像撮影 寸法:130×120×40[mm] 重量:95[g](バッテリ込)

通信方式:無線

飛行時間:約13分(調査は10分で計画)

カメラ性能:画質 2.7K フレームレート 60fps


画角 対角140°、水平135°、垂直107°

照明: LED左右2灯(計380lm)

耐放射線性:約200Gy

備考: IP52相当,縦向き・横向きカメラの2種

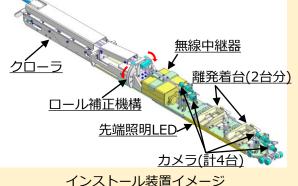
シールボックス

シールボックス本体イメージ

グローブボックス チャンバ内のインストール装置 にドローンを搭載し、PCV内に 機体をインストールする

> グローブボックス内には、待機の 機体と充電装置があり、気密状態 を保ったまま、離発着台の機体の 交換が可能

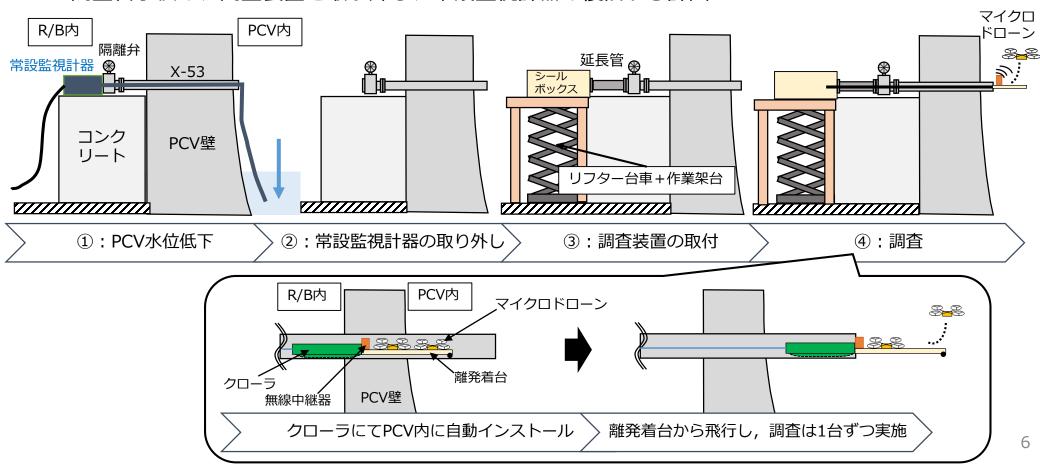
寸法:約2.6m×0.6m×1.1m


重量:約325kg

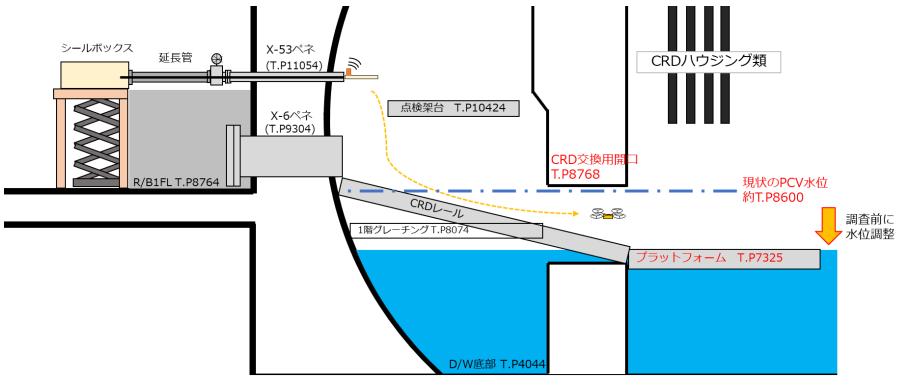
クローラによる自動インストー ルで作業時の被ばくを低減

同時に2機のドローンをインスト ール可能

寸法:約1.3m×Φ130mm


重量:約20kg

(参考) 作業全体の流れ


- 現状、X-53ペネには、事故後に新設した常設監視計器(水位・温度計)が挿入されている
- また、マイクロドローンをペデスタル内まで飛行させるためにはPCV内の水位をCRD交換用開口下端まで低下させる必要がある
- そのため、調査の準備ステップとして"PCV水位低下"および"常設監視計器の取り外し"を行い、 その後"調査装置の取付"、"調査"を実施する
- 調査終了後は、調査装置を取り外し、常設監視計器は復旧する計画。

(参考) PCV内部調査に伴う水位低下作業について

- 3号機のPCV水位は、T.P 8264~9264(常設監視計器の水位計L1~L2間)で維持管理されており、現状、約T.P 8600の高さにある
- 現状の水位だと、ペデスタル内へのアクセスルートであるCRD交換用開口が水没してしまっているため、開口が露出する約T.P 7300(プラットフォームの高さ)を目標とし水位低下を計画
- 過去の実績から、水位低下に伴いRPV/ PCV温度計の指示値が変化する可能性が高いことから、 約T.P 8000の水位にホールドポイントを設け、変化が確認された場合は必要に応じて予め定めた フローに基づき、温度計の信頼性評価を行う計画
- 水位低下は9月から段階的に実施し、10月頃に完了する見込み

