

原子炉建屋コアボーリング試料の 放射能分析

平成25年8月29日 日本原子力研究開発機構

目的と概要

- ■「建屋内の遠隔除染技術の開発」※において使用した原子炉建屋コア ボーリング試料を対象に、事故廃棄物の性状調査の観点から放射能分 析を実施。
- ■本コア試料は、床等の表面に存在する放射性粉塵を、ストリッパブルペイントにより除去した後、採取されており、事故時の状態は保持されていないが、これまで原子炉建屋内試料に対する詳細な放射能分析(Sr-90、Pu、Am、Cm等)は実施されていないことから、分析の重要性は高いと考えられる。
- ■本コア試料は、表面汚染が主体であることがこれまでの調査※ により明らかとなっているため、放射能分析においては、表面の塗膜部分(エポキシ樹脂)のみを分析。分析結果は、汚染表面部分における放射能面密度(Bq/cm²)として評価。
- ■また、溶融炉心とコンクリートの反応(MCCI: Molten Core Concrete Interaction)の解析において参考となる化学成分分析についても実施。
- % http://www.tepco.co.jp/nu/fukushima-np/roadmap/images/d130307_01-j.pdf

分析試料の情報

No	=+* 火1 々	拉取担武※1	試料量	汚染部面積
INO.	武科石	休収场阶个	(g)	(cm²) ^{%2}
1	1号機①	1階 北西コーナー 床 (PCV機器ハッチ近傍)	168.7	9.42
2	1号機⑥	1階 西側通路 壁	213.4	12.48
3	2号機①	1階 北西コーナー 床 (パーソナルエアロック室入口)	151.9	11.08

※1 遊離性・固着性汚染を除去した後、床壁のコンクリートコアを採取

※2 汚染部位である樹脂の表面積

3号機試料は、除染技術の開発に全量を使用したため、分析を実施せず

2

試料採取場所(1号機)

1号機原子炉建屋1階

試料採取場所(2号機)

分析結果(1/3)

γ線核種分析結果

No.		放射能濃度 (2013.3.21時点) [Bq/cm ²]					
	試料名	Co-60	Nb-94	Cs-137	Eu-152	Eu-154	
		(約5.3年)	(約2.0×10 ⁴ 年)	(約30年)	(約14年)	(約8.6年)	
1	1号機①	< 9 × 10 ⁻¹	< 6 × 10 ⁻¹	$(2.4\pm0.1)\times10^2$	< 2 × 10 ⁰	< 2 × 10 ⁰	
2	1号機⑥	< 8 × 10 ⁻¹	< 5 × 10 ⁻¹	$(1.4\pm0.1) \times 10^{1}$	< 2 × 10 ⁰	< 2 × 10 ⁰	
3	2号機①	< 8 × 10 ⁻¹	< 5 × 10 ⁻¹	$(3.8\pm0.1)\times10^{3}$	< 2 × 10 ⁰	< 2 × 10 ⁰	

β線核種分析結果(1/2)

		放射能濃度(2013.3.21時点) [Bq/cm ²]				
No. 試料名	試料名	H-3	C-14	CI-36	Se-79	
		(約12年)	(約5.7x10 ³ 年)	(約3.0×10 ⁵ 年)	(約6.5×10 ⁴ 年)	
1	1号機①	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹	
2	1号機⑥	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹	
3	2号機①	$(8.6 \pm 1.1) \times 10^{-1}$	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹	

β線核種分析結果(2/2)

		放射能濃度(2013.3.21時点)〔Bq/cm ² 〕				
No.	試料名	Sr-90	Tc-99	I-129		
		(約29年)	(約2.1×10⁵年)	(約1.6×10 ⁷ 年)		
1	1号機①	$(5.3\pm0.6) \times 10^{-1}$	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹		
2	1号機⑥	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹		
3	2号機①	$(4.0\pm0.1)\times10^{1}$	< 4 × 10 ⁻¹	< 4 × 10 ⁻¹		

■ α線核種分析結果

No.	放射能濃度(2013.3.21時点)[Bq/cm ²]				
	試料名	Pu-238	Pu-239+240	Am-241	Cm-244
		(約88年)	(約2.4x10 ⁴ 年 約6.6x10 ³ 年)	(約4.3×10 ² 年)	(約18年)
1	1号機①	< 5 × 10 ⁻³	< 8 × 10 ⁻³	< 2 × 10 ⁻²	< 1 × 10 ⁻²
2	1号機⑥	< 5 × 10 ⁻³	< 7 × 10 ⁻³	< 2 × 10 ⁻²	< 9 × 10 ⁻³
3	2号機①	< 5 × 10 ⁻³	< 8 × 10 ⁻³	< 2 × 10 ⁻²	< 9 × 10 ⁻³

分析結果(3/3)

■ コアボーリング試料中の各元素含有率

(単位:mass%)

6

No.	二十 水	含有率			
	訊 科石	AI	Ca	Fe	Si
1	1号機①	7.0 ± 0.1	7.8±0.1	3.6 ± 0.1	25±1
3	2号機①	6.5 ± 0.1	9.1±0.1	3.3 ± 0.1	27±1

●1号機および2号機のコンクリート主要成分に大きな差は見られなかった。

●主要成分の分析値を各酸化物重量に換算した合計値は約85%であった。

残りの約15%は、K、Mg、Ti、Mn等微量成分の酸化物および水分であると推測される。