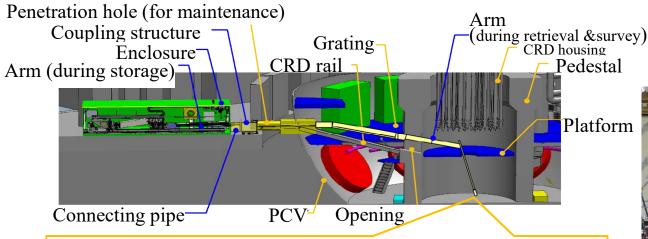


Assumed distribution of fuel debris

Robotic exploration

Analysis of accident transient

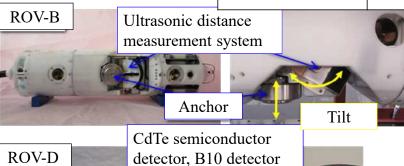

Muon Survey

Trial retrieval to start at Unit 2 in the near future

Equipment for trial retrieval and internal investigation at Unit2

■ The mock-up tests and trainings are being conducted using the actual equipment at "Naraha Center for Remote Control Technology Development" set up by JAEA.

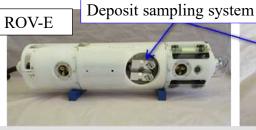
Investigation Item	Measuring devices to be mounted
Detailed vision	Pan-tilt camera
3D rendering	Airborne laser scanning equipment
Gamma ray dose rate	Gamma camera
Neutron flux	Neutron detector

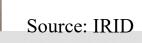


Source: IRID

Unit 1 internal investigation (from February 2022)

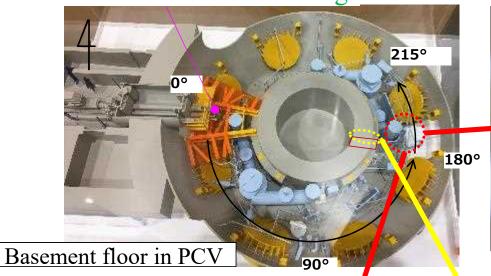
Main investigation areas	
PCV RPV	
Pedesta	a


S	ROV category	Device	Purpose
Ĭ	ROV-A	Gamma ray detector	Setting the Guide ring
ROV-A2 Gamma ray and B10 detector		Gamma ray and B10 detector	Getting detailed images to confirm the status
ta	ROV-B	Ultrasonic distance measurement system	3D mapping of deposits
	ROV-C	High-power ultrasonic sensors	Measuring the thickness of deposits
	ROV-D	CdTe semiconductor detector, B10 detector	Measuring the neutron flux on the surface etc.
	ROV-E	Suction type sampling device	Deposit sampling



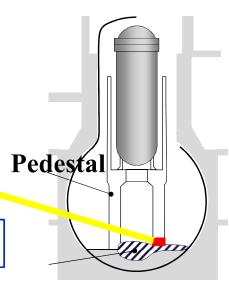
ROV-C High-power ultrasonic sensors

Note: ROVs to be submerged in the order of A, A2, C, D, E, B and A2.



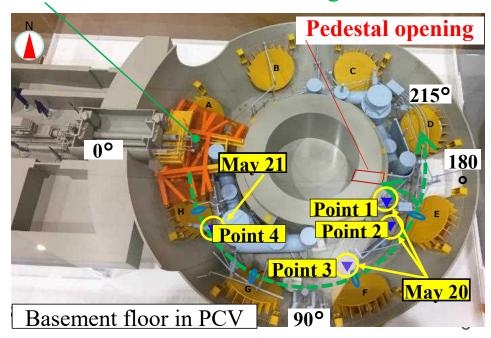
Photos taken during the internal investigation at Unit1

Area where the ROV was submerged



Jet Deflector

Layers of deposit

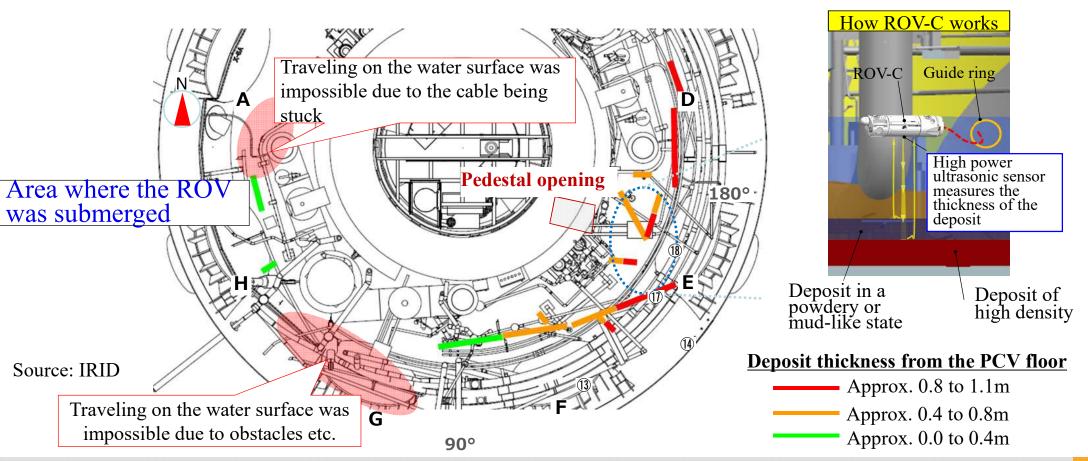

Source: IRID

Neutron flux measurements inside Unit 1

■ Thermal neutron fluxes were detected at all measurement points. These can be attributed to the fuel debris.

Area where the ROV was submerged

Neutron flux measurement results


Measurement points on deposits	Neutron flux [/cm2/s]
Point 1	48.0
Point 2	29.1
Point 3	50.2
Point 4	5.8

Source: IRID

Measurement of deposit thickness inside Unit 1

■It was confirmed that the deposit thickness was relatively high near the pedestal opening and became lower as the ROV moved away from the opening.

Simple overview of water management at Fukushima Daiichi

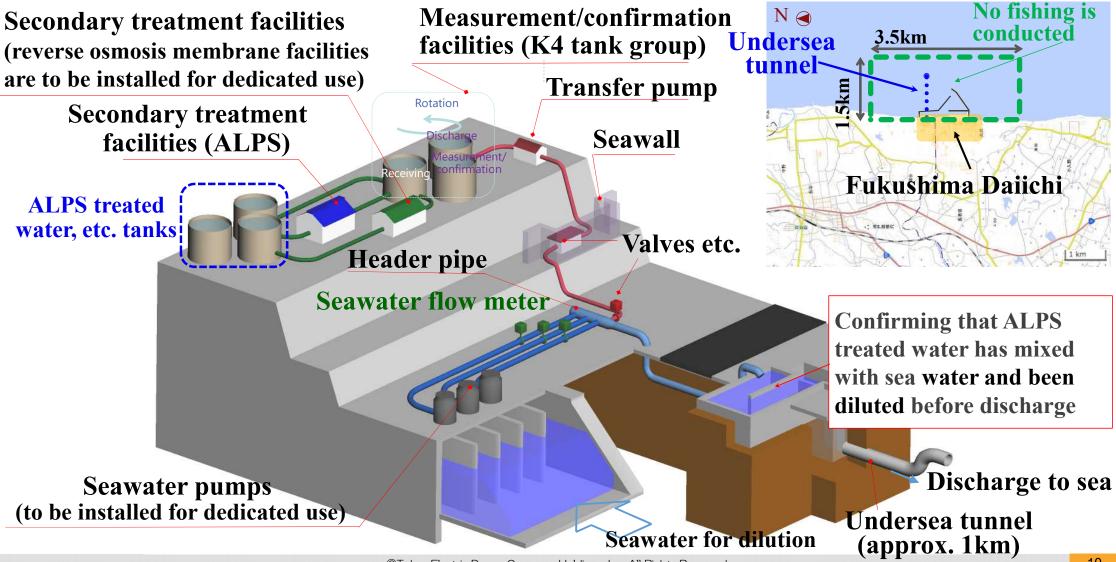
Contaminated water management

Redirect fresh water from contaminated areas

Contaminated water generation decreased to about 130m³/day in FY2021 from about 500 m³/day in 2014

Removing the stagnant water

Completed in 2020 except for reactor bldgs. etc.


Rainwater Fuel Debnis Contaminated Water Contaminated water ALPS treated water

Water Storage Status

Volume of water stored in tanks	About 1.31 million m ³ (as of early Sep. 2022)
Secured tank volume	About 1.37 million m ³ (more than 1,000 tanks)
Generation rate of water stored in tanks	About 130 m ³ /day (as of FY2021)

Design and operations for ALPS treated water discharge (blueprint)

Assessment of Radiological Impact on Public and Environment Regarding the Discharge of ALPS Treated Water into the Sea (Design stage)

0.05

0.0001

Amount of radiation (mSv)

Stomach X-ray approx. 3 mSv

Natural radiation exposure (average in Japan / per person)

2.1 mSv/year

(Breakdown)

From space Approx. 0.3 From the ground Approx. 0.33 Inhaled radon etc. Approx. 0.48 Ingested from food Approx. 0.99

Dose limit for the general public: 1 mSv/year

Animals and plants

Assessment

0.00002~0.00006

mGy*/day

DCRL defined by the ICRP
-1~10 mGyb/day* for
flatfish and brown seaweed

-10~100 mGy/day for crab

Flying between Tokyo and New York (round trip) * Sievert (Sv) is a unit expressing the impact of radiation on the human body.

Dose constraint for discharge of ALPS treated water into the sea: 0.05 mSv/year

X ray exam at a dentist approx. 0.01 mSv

- * Gray (Gy) is a unit expressing the energy of radiation on matter
- * DCRL is short for "Derived Consideration Reference Levels", a kind of guide used when assessing radiological impact

Source: National Institute of Radiological Sciences (Japan)

2.1

Dialog with local stakeholders

Efforts toward creation of decommissioning industry cluster

Basic Strategy Current Activities

STEP 1

Involve local firms in decommissioning

- Place orders with local firms as much as possible if they can handle the work themselves

- Create an environment for local firms to participate, or increase orders

Briefing on procurement

Business meetings

outlook

Consultation service center

Networking parties

STEP 2

Help local firms improve capabilities

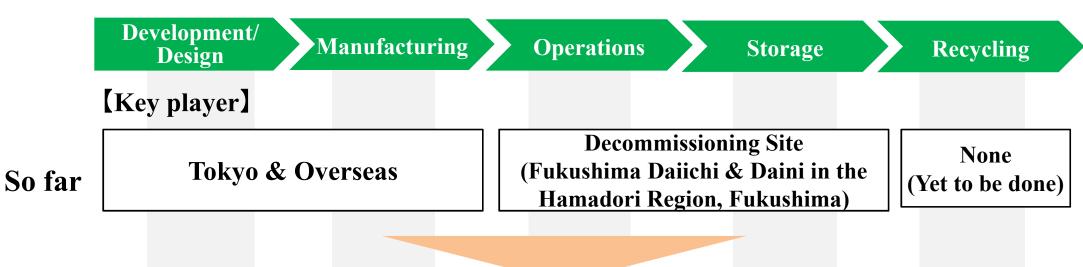
- Help improve managerial & technological capabilities so that local firms can expand into more advanced areas

- Visits to individual firms
- Tours of Fukushima Daiichi
 Site for local firms

From now on

So far

STEP 3 Create new industry in the Hamadori Region


- Create new facilities or entities • that can develop & manufacture core products which have thus far been sourced from Tokyo and abroad

Decommissioning-related products factory (Manufacturing casks for spent fuel & fuel debris storage containers)

Future direction

■ TEPCO would like to play a key role in inviting companies with cutting-edge technologies from outside Fukushima and contributing to employment, HR development and creation of industrial & economic base in the region.

[Basic flow of the decommissioning project]

Future

In principle, all tasks to be conducted in the Hamadori Region, Fukushima

Initiative for creating a decommissioning-related products factory

TEPCO HD

Fukushima Daiichi & Fukushima Daini **Nuclear Power Stations**

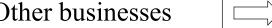
Order placement

Order

placement

A new factory for decommissioning-related products

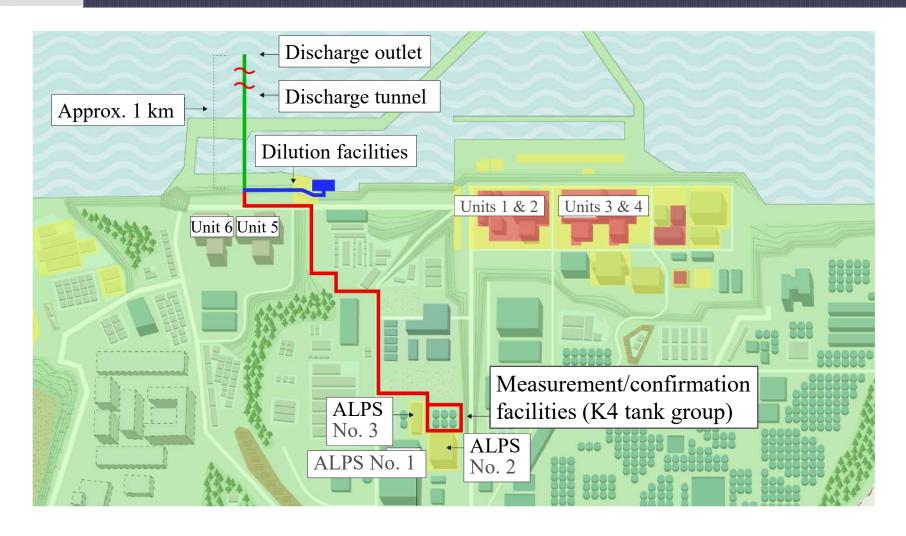
- > JV between TEPCO & Hitachi Zosen
- ➤ Contribute to HR development & creation of economic base etc.


Example of product: Casks for transport & storage

- Collaboration
- •Alignment
- •Order placement

Local firms

Other businesses

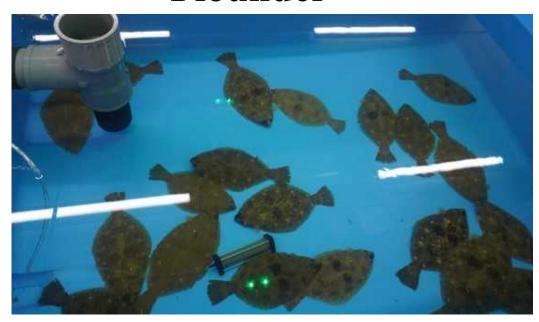

Company	(Provisional title) Hamadori decommissioning-related products factory
Location	Naraha Town, Fukushima Prefecture (planned)
Representative	To be announced
Establishment	October 2022 (planned)
Capital Contribution Ratio	TEPCO HD: 2/3 Hitachi Zosen: 1/3
Number of employees	Dozens
Business outline	Manufacturing & sales of casks and fuel debris storage containers
	**For the time being, casks for Fukushima Daini Decommissioning Site to be produced ©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved

Transport route for ALPS Treated water

Caisson at the discharge outlet for ALPS Treated water

Unloading of a shield machine

Tunneling using a shield machine



©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved

Test breeding of marine life in mock-up aquariums

Flounder

Abalone

