

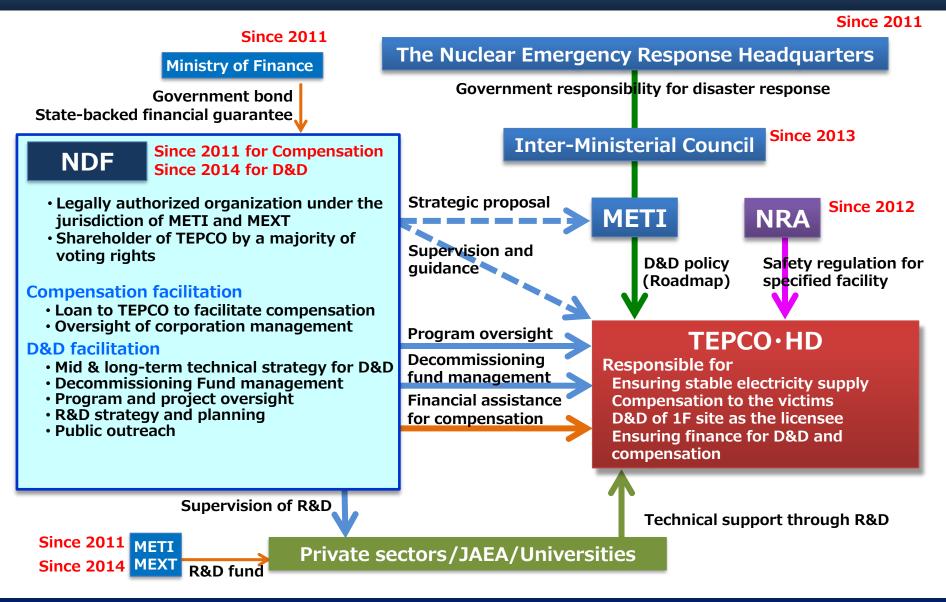
Updated information about the methods of retrieval of fuel debris of the Fukushima Daiichi NPP

Shin Morita

Managing Director

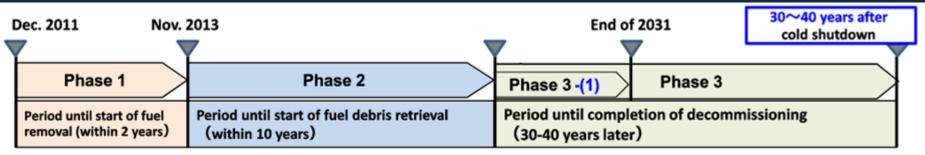
International Affairs Group, NDF

Japan's side event at the 67th General Conference of the IAEA


26 September 2023

Contents

- 1. Background and purpose of fuel debris retrieval
- 2. Difficulties in Fuel Debris Retrieval
- 3. Methods for Retrieving Fuel Debris (three methods)
- 4. Summary of the fuel debris retrieval


Organizational Structure for 1F Decommissioning

無断複製・転載禁止 原子力損害賠償・廃炉等支援機構 © © Nuclear Damage Compensation and Decommissioning Facilitation Corporation

Mid-and-Long-Term Roadmap

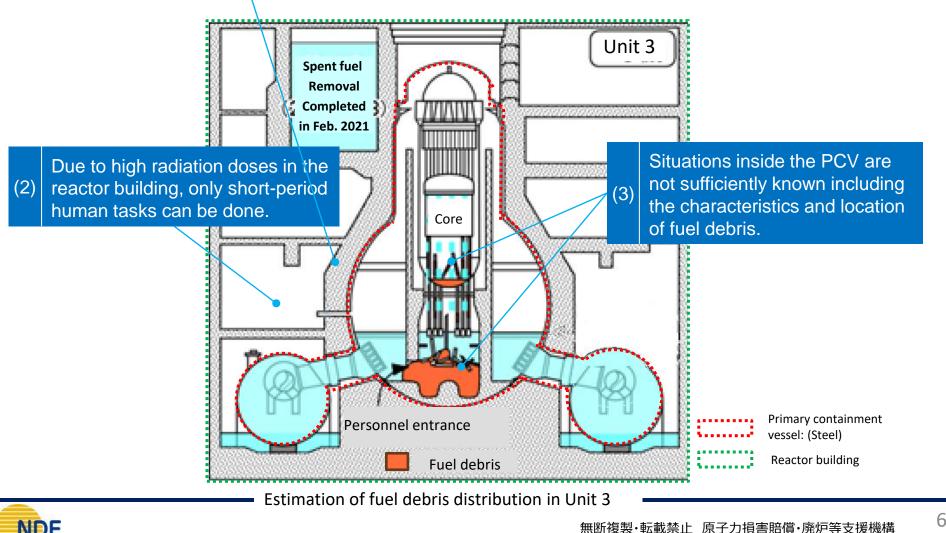
Due to safety and reliability considering the impact of COVID-19 pandemic, trial fuel debris retrieval is expected to start in late FY2023.

Major milestones

Revised Roadmap

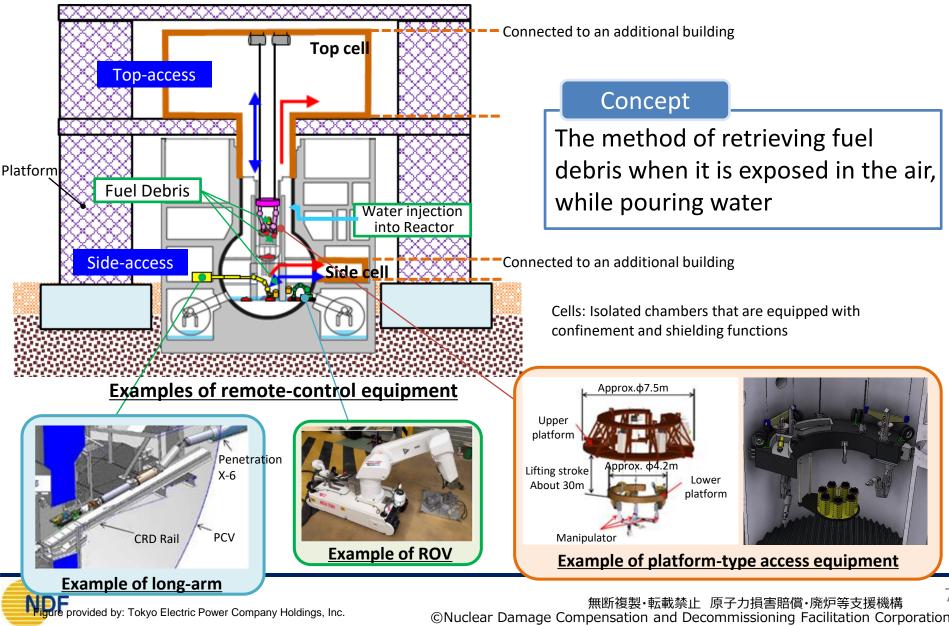
Contaminated water management	Reduce to about 150 m ³ /day Further reduction Reduce to about 100m ³ /day or less of generation	Within 2020 Within 2025	achieved <u>NEW</u>
Stagnant water removal / treatment •	Complete stagnant water removal / treatment in buildings* Excluding the reactor buildings of Units 1-3, Process Main Buildings, and High Temperature Incineration building.	Within 2020(*)	achieved
	Reduce the amount of stagnant water in reactor buildings to about a half of that in the end of 2020	<u>FY2022 - 2024</u>	NEW
Fuel removal	Complete of fuel removal from Unit 1-6	Within 2031	NEW
	Complete of installation of the large cover at Unit 1	Around FY2023	NEW
	Start fuel removal from Unit 1 Methods have changed	<u>FY2027 – 2028</u>	REVISED
	Start fuel removal from Unit 2 to ensure safety and prevent dust scattering	<u>FY2024 - 2026</u>	REVISED
Fuel debris retrieval	Start fuel debris retrieval from the first Unit (Start from Unit 2, expanding the scale gradually)	Within 2021	*Expected to be delayed by approx. 2 years
Waste management	Technical prospects concerning the processing/disposal policies and their safety	Around FY2021	achieved
	Eliminating temporary storage areas outside for rubble and other waste	Within FY2028	NEW
		©METI	(2022) modified by NI

1. Background and purpose of fuel debris retrieval


- The selection of methods for further expansion of fuel debris retrieval in scale is an important decision that will determine the success or failure of long-term decommissioning.
- In making such a decision, not only TEPCO but also the government and the NDF must be involved in the examination and evaluation.
- For this reason, the NDF established in March 2023 the Sub-Committee for the Evaluation of Fuel Debris Retrieval Methods under the Decommissioning Strategy Committee.
- The Sub-Committee's tasks;
 - Clarifying issues on each retrieval method
 - Evaluating technical feasibilities of measures for the problems
 - Comparative evaluation of each retrieval method
 - ✓ Suggestions for next steps

5

2. Difficulties in Fuel Debris Retrieval


 The very high radiation prevents humans
 from approaching the PCV. It is also a major hazard for systems and instruments.

NDE Figure provided by: Nuclear Damage Compensation and Decommissioning Facilitation Corporation

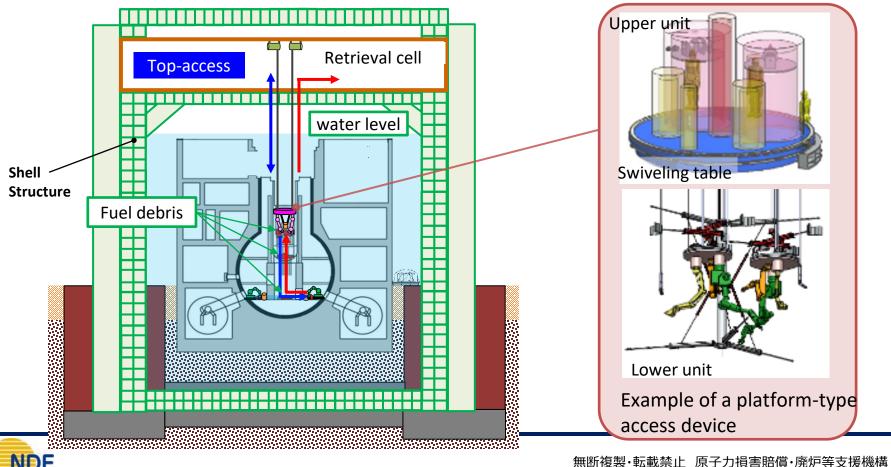
©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

3. Methods for Retrieving Fuel Debris 3.1 Partial submersion method

©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

3. Methods for Retrieving Fuel Debris 3.1 Partial submersion method

AdvantagesIssuesDebris is retrieved as is with little
change in the on-site environment, so
that flexible response is possible, such
as changing the method.Measures to prevent failures of
remote-control equipmentCriticality control is relatively easy
because there is little change in the
state of the fuel debris, such as waterConstructing the spread of
contamination



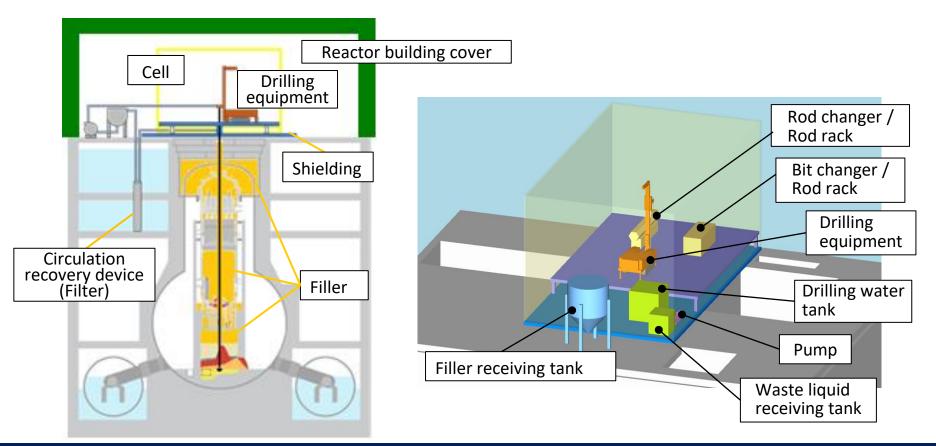
accumulation.

3. Methods for Retrieving Fuel Debris 3.2 Submersion method

Concept

The method in which the entire reactor building is enclosed by a large structure called a shell structure, and submerge and cover the reactor building with water to retrieve fuel debris

3. Methods for Retrieving Fuel Debris 3.2 Submersion method


Advantages	Issues
Submerging and covering the entire reactor building with water enables workers to work on the site.	Taking a long period to construct the large shell structure, which makes the retrieval begin later
Since the reactor building is completely covered with a large structure, leakage of radioactivity can be suppressed.	 Difficult civil engineering works such as digging tunnels in the ground of the reactor building Controlling the quality of water

3. Methods for Retrieving Fuel Debris 3.3 Filling and solidification method

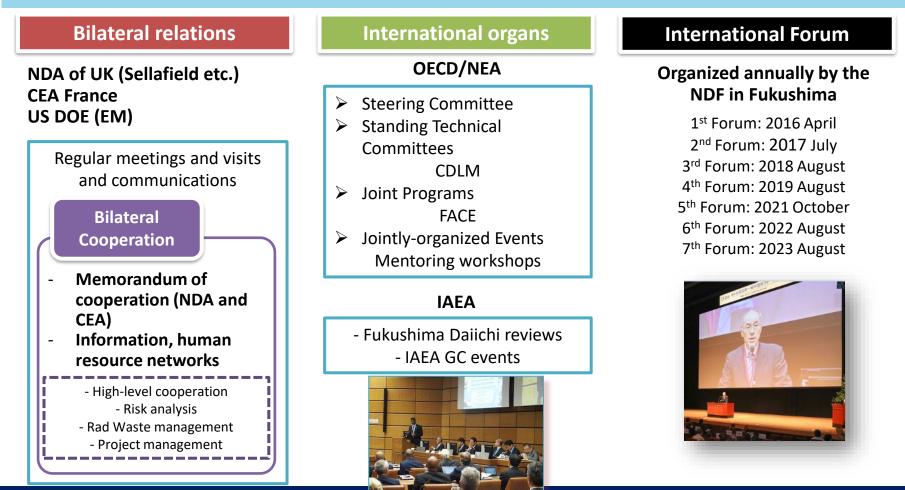
Concept

Method of stabilizing fuel debris using filler and recovering fuel debris, structure and the filler all together by drilling and other methods

無断複製・転載禁止 原子力損害賠償・廃炉等支援機構 11 ©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

3. Methods for Retrieving Fuel Debris 3.3 Filling and solidification method

Advantages	Issues
 The fuel debris is stabilized by the filling and solidification. Filler provides a certain level of shielding function. Possibility of simplifying the support structures. 	 Various considerations are necessary including the types of filler material and the space to be filled. Considerations about the methodologies of recovery such as drilling, cutting etc. Suppression of the volume of the waste


4. Summary

- The NDF keeps examining the three methods and considering a new method as well.
- And a combination of the three methods is also taken into the consideration.
- Safety is the top priority and at the same time the NDF conducts the examinations with the aim of retrieving fuel debris as quickly as possible.

International Relations of the NDF

- The NDF is committed to promoting decommissioning in a manner that is open to the international community by gaining the trust and disseminating accurate information.
- The NDF gathers the wisdoms, maintains and enhances the international society's continuous understanding and interest through candid discussions.

無断複製·転載禁止 原子力損害賠償·廃炉等支援機構 ©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

Reference

For more information, the following internet sites are useful for various needs. They are regularly updated.

Ministry of Economy, Trade and Industry (METI)

- ALPS treated water web-site; <u>https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/atw.html</u>
- Roadmap towards the Decommissioning web-site; <u>https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/index.html</u>

Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF)

- Technical Strategic Plan; <u>https://www.dd.ndf.go.jp/english/strategic-plan/</u>
- NDF International Forum's web-site; https://ndf-forum.com/en/day2/

Tokyo Electric Power Company Holdings Inc. (TEPCO)

- Portal web-site of the Fukushima Daiichi decommissioning project; <u>https://www.tepco.co.jp/en/hd/decommission/index-e.html</u>
- Fukushima Daiichi nuclear power plant virtual tour web-site; Inside Fukushima Daiichi; <u>https://www.tepco.co.jp/en/insidefukushimadaiichi/index-e.html</u>
- Latest situation at Fukushima Daiichi nuclear power plant; video presentation (version in November 2022); <u>https://www4.tepco.co.jp/en/news/library/archive-</u> <u>e.html?video_uuid=c1l1ef7y&catid=69631</u>

