Main decommissioning work and steps

Fuel removal from the spent fuel pool was completed on December, 2014 at Unit 4 and started from April 15, 2019 at Unit 3. Dust density in the surrounding environment is being monitored and work is being implemented with safety first. Work continues sequentially toward the start of fuel removal from Units 1 and 2 and debris retrieval from Units 1-3.

Fuel Debris Retrieval

1. Effort to promote contaminated water management based on the three basic policies

 (1) "Remove" the source of water contamination
 (2) "Redirect" fresh water from contaminated areas
 (3) "Retain" contaminated water from leakage

 (Three basic policies)

Fuel Debris Retrieval

- Ascertaining the status inside the PCV/examining the fuel debris retrieval method, etc. (Note 2)
- Scenario development & technology consideration
- Design and manufacturing of devices / equipment
- Dismantling
- Scenario development & technology consideration
- Design and manufacturing of devices / equipment
- Dismantling
- Scenario development & technology consideration
- Design and manufacturing of devices / equipment
- Dismantling
- Scenario development & technology consideration
- Design and manufacturing of devices / equipment
- Dismantling
- Scenario development & technology consideration
- Design and manufacturing of devices / equipment
- Dismantling
- Scenario development & technology consideration
- Design and manufacturing of devices / equipment
- Dismantling

Effort to promote contaminated water management based on the three basic policies

1. Effort to promote contaminated water management based on the three basic policies

 (1) Effort to promote contaminated water management based on the three basic policies

 (Three basic policies)

 1. "Remove" the source of water contamination
 2. "Redirect" fresh water from contaminated areas
 3. "Retain" contaminated water from leakage

 (2) Effort to complete contaminated water treatment

 4. Treatment of contaminated water in buildings (excluding Unit 1-3 Reactor Buildings, Process Main Building and High Temperature Incinerator Building)
 5. Measures to remove α-nuclide and reduce the density in contaminated water
 6. Measures to alleviate the radiation dose of Zeolite sandbags and examination of safe management methods

 (3) Effort to stably operate contaminated water management

 7. Planning and implementing necessary measures to prepare for large-scale disasters such as tsunami and heavy rain
 8. Periodically inspecting and updating facilities to maintain the effect of contaminated water management going forward
 9. Examining additional measures as required with the gradually expanding scale of fuel debris retrieval in mind

(1) Effort to promote contaminated water management based on the three basic policies

- Strontium-treated water from other equipment is being re-treated in the multi-nuclide removal equipment (ALPS) and stored in welded-joint tanks.
- Multi-layered contaminated water management measures, including land-side impermeable walls and subdrains, have stabilized the groundwater at a low level. The increased amount of contaminated water generated during rainfall is being suppressed by repairing damaged portions of building roofs, facing onsite, etc. Through these measures, the generation of contaminated water was reduced from approx. 540 m³/day (in May 2014) to approx. 170 m³/day (in FY2018).
- Measures continue to be implemented to further suppress the generation of contaminated water to approx. 150 m³/day within FY2020 and 100 m³/day or less within 2024.

(2) Effort to complete contaminated water treatment

- Contaminated water levels in buildings declined as planned and connected parts between Units 1 and 2 and 3 and 4 were separated. For α-nuclide detected as the decline in water levels progressed, characteristics are being determined and treatment methods examined.
- Treatment of contaminated water in buildings will be completed within 2020, excluding Unit 1-3 Reactor Buildings, Process Main Building and High Temperature Incinerator Building. For Reactor Buildings, the amount of contaminated water there will be reduced from that at the end of 2020 during the period FY2022 - FY2024.
- For Zeolite sandbags on the basement floor of the Process Main Building and High Temperature Incinerator Building, measures to reduce the radiation dose are being examined toward stabilization.

(3) Effort to stably operate contaminated water management

- To prepare for tsunami, measures are being implemented, such as closing the openings of buildings, installing sea walls and transferring and grounding the mega float. For heavy rain, sandbags are being installed to suppress direct inflow to buildings while work to enhance drainage channels and other measures are being implemented as planned.

Contaminated water management proceeds with the following three efforts:

(1) Effort to promote contaminated water management based on the three basic policies
(2) Effort to complete contaminated water treatment
(3) Effort to stably operate contaminated water management
Completion of the first three holes in the inner door to construct the Unit 1 access route

Towards investigating the inside of the Unit 1 primary containment vessel (PCV), an access route is being constructed. Creation of the first hole (approx. 0.21 m in diameter; Figure 1) of the scheduled three holes in the inner door was completed on February 12. When creating the second hole (approx. 0.25 m in diameter; Figure 2), measures including spraying water from the first hole will be implemented to suppress dust scattering. After training on these measures, drilling of the second hole will start possibly from early March.

Results of the test to suspend cooling of Unit 3 fuel debris showing temperature increase during the suspension within the assumed range

To optimize the emergency response procedures at the time when water injection to the reactor is suspended, a test involving temporarily suspending water injection to the reactor was conducted at Unit 3 (suspension period: February 3–5 (approx. 48 hours)*1). The test continued until February 17, including the period of sequentially recovering the injection volume after the suspension. The increase in temperature during the suspension period was almost within the assumed range with increases of approx. 0.6 and 0.7°C at the RPV bottom and PCV respectively. In addition, no abnormality was detected in the dust density of the PCV gas control facility and other parameters.

The difference between the obtained results and the assumption will be evaluated to help examination toward optimizing emergency response procedures.

Sampling from Zeolite sandbags on the basement floor of the Process Main Building

Samples from high radiation-dose Zeolite sandbags on the basement floor of the Process Main Building were examined. The sample particles were about several millimeters in diameter and with a surface dose of approx. 1.3 mSv/h. The nuclides of these particles will be analyzed. At the same time, activated carbon identified on the same basement floor will also be evaluated and the insights obtained will be reflected when considering measures to alleviate the dose and stabilize the Zeolite sandbags.

Dismantling for the 11th block of the Unit 1/2 exhaust stack

The Unit 1/2 exhaust stack was divided into 23 blocks for dismantling. By February 1, dismantling to the 11th block was completed. The following legal inspection for the crane was completed on February 12 and work was resumed from February 14. Work continues with safety first toward completing the dismantling in early May.
Data (10-minute values) of Monitoring Posts (MPs) measuring the airborne radiation rate around site boundaries showed 0.388 – 1.273 μSv/h (January 29 – February 25, 2020). We improved the measurement conditions of monitoring posts 2 to 8 to measure the air-dose rate precisely. Construction work, such as tree-clearing, surface soil removal and shield wall setting, were implemented from February 10 to April 18, 2012. Therefore, monitoring results at these points are lower than elsewhere in the power plant site. The radiation shielding panels around monitoring post No. 6, which is one of the instruments used to measure the radiation dose at the power station site boundary, were taken off from July 10-11, 2013, since further deforestation, etc. had caused the surrounding radiation dose to decline significantly.
I. Confirmation of the reactor conditions

1. Temperatures inside the reactors

Through continuous reactor cooling by water injection, the temperatures of the Reactor Pressure Vessel (RPV) bottom and the Primary Containment Vessel (PCV) gas phase were maintained within the range of approx. 15 to 25°C for the past month, though they varied depending on the unit and location of the thermometer.

II. Progress status by each plan

2. Release of radioactive materials from the Reactor Buildings

As of January 2020, the density of the radioactive materials newly released from Reactor Building Units 1-4 into the air and measured at the site boundary was evaluated at approx. 3.9×10^{12} Bq/cm² and 3.5×10^{11} Bq/cm² for Cs-134 and Cs-137 respectively, while the radiation exposure dose due to the release of radioactive materials there was less than 0.000029 mSv/year.

Status of contaminated water generated

- Multi-layered measures, including pumping up by subdrains and land-side impermeable walls, which were implemented to control the continued generation of contaminated water, suppressed the groundwater inflow into buildings.
- After "redirecting" measures (groundwater bypass, subdrains, land-side impermeable walls and others) were steadily implemented, the generation amount reduced from approx. 470 m³/day (the FY2014 average) when the measures were first launched to approx. 170 m³/day (the FY2018 average).
- Measures will continue to further reduce the volume of contaminated water generated.

Figure 1: Changes in contaminated water generated and inflow of groundwater, rainwater, into buildings

Operation of the groundwater bypass

- From April 9, 2014, the operation of 12 groundwater bypass pumping wells commenced sequentially to pump up groundwater. The release then started from May 21, 2014, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until February 25, 2020, 533,018 m³ of groundwater had been released. The pumped-up groundwater was temporarily stored in tanks and released after TEPCO and a third-party organization had confirmed that its quality met operational targets.
- Pumps are inspected and cleaned as required based on their operational status.

Operation of the Water Treatment Facility special for Subdrain & Groundwater drains

- To reduce the level of groundwater flowing into the buildings, work began to pump up groundwater from wells (subdrains) around the buildings on September 3, 2015. The pumped-up groundwater was then purified at dedicated facilities and released from September 14, 2015, in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. Up until February 25, 2020, a total of 856,354 m³ had been drained after TEPCO and a third-party organization had confirmed that its quality met operational targets.
- Due to the rising level of the groundwater drain pond after the sea-side impermeable walls had been closed, pumping started on November 5, 2015. Up until February 25, 2020, a total of approx. 229,276 m³ had been pumped up and a volume of under 10 m³/day is being transferred from the groundwater drain to the Turbine Buildings (average for the period January 23 – February 19, 2020).
- As one of the multi-layered contaminated-water management measures, in addition to waterproof pavement (facade...
aiming to improve the work environment and prevent rainwater infiltration: as of the end of January 2020, approx. 94% of the planned area (1,450,000 m² onsite) had been completed to suppress rainwater infiltrating the ground, facilities to enhance the subdrain treatment system were installed and went into operation from April 2018, increasing the treatment capacity from 900 to 1,500 m³/day and improving reliability. Operational efficiency was also improved to treat up to 2,000 m³/day for almost one week during the peak period.

- To maintain the level of groundwater pumped up from the subdrains, work to install additional subdrain pits and recover those already in place is underway. The additional pits are scheduled to begin operation sequentially from a pit for which work was completed (12 of 14 pits went into operation). For recovered pits, work for all three pits scheduled was completed, all of which went into operation from December 26, 2018. Work to recover another pit started from November 2019 (No. 49 pit).
- To eliminate the need to suspend water pumping while cleaning the subdrain transfer pipe, the pipe will be duplicated. Installation of the pipe and ancillary facilities was completed.
- Since the subdrains went into operation, the inflow to buildings tended to decline to under 150 m³/day when the subdrain water level declined below T.P. 3.0 m but increased during rainfall.

![Figure 2: Correlation between inflow such as groundwater and rainwater into buildings and the water level of Units 1-4 subdrains](image)

- Construction status of the land-side impermeable walls and status of groundwater levels around the buildings
 - An operation to maintain the land-side impermeable walls and prevent the frozen soil from thickening further continued from May 2017 on the north and south sides and started from November 2017 on the east side, where sufficiently thick frozen soil was identified. The scope of the maintenance operation was expanded in March 2018.
 - In March 2018, construction of the land-side impermeable walls was completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference in internal and external water levels increased to approx. 4-5 m. The 21st Committee on Countermeasures for Contaminated-Water Treatment, held on March 7, 2018, evaluated that alongside the function of subdrains and other measures, a water-level management system to stably control groundwater and redirect groundwater from the buildings had been established and allowed the amount of contaminated water generated to be reduced significantly.
 - A supplementary method was implemented for the unfrozen depth and it was confirmed that the temperature of this portion had declined below 0°C by September 2018. From February 2019, a maintenance operation started throughout all sections.
 - The groundwater level in the area inside the land-side impermeable walls has been declining every year. On the mountain side, the difference between the inside and outside increased to approx. 5-6 m. The water level in the bank area has remained low (T.P: 1.6-1.7 m) compared to the ground surface (T.P: 2.5 m).

- Operation of multi-nuclide removal equipment
 - Regarding the multi-nuclide removal equipment (existing and high-performance), hot tests using radioactive water were underway (for existing equipment, System A: from March 30, 2013, System B: from June 13, 2013, System C: from September 27, 2013; and for high-performance equipment, from October 18, 2014). The additional multi-nuclide removal equipment went into full-scale operation from October 16, 2017.
 - As of February 20, 2020, the volumes treated by existing, additional and high-performance multi-nuclide removal equipment were approx. 427,000, 625,000 and 103,000 m³, respectively (including approx. 9,500 m³ stored in the J1(D) tank, which contained water with highly concentrated radioactive materials at the System B outlet of the existing multi-nuclide removal equipment).
 - To reduce the risks of strontium-treated water, treatment using existing, additional and high-performance multi-nuclide removal equipment has been underway (existing: from December 4, 2015; additional: from May 27, 2015; high-performance: from April 15, 2015). Up until February 20, 2020, approx. 680,000 m³ had been treated.

- Toward reducing the risk of contaminated water stored in tanks
 - Treatment measures comprising the removal of strontium by cesium-adsorption apparatus (KURION) (from January 6, 2015), the secondary cesium-adsorption apparatus (SARRY II) (from December 26, 2014) and the third cesium-adsorption apparatus (SARRY III) (from July 12, 2019) have been underway. Up until February 20, 2020, approx. 570,000 m³ had been treated.

- Measures in the Tank Area
 - Rainwater, under the release standard and having accumulated within the fenced-in area of the contaminated-water tank area, was sprinkled on site after eliminating radioactive materials using rainwater-treatment equipment since May 21, 2014 (as of February 24, 2020, a total of 150,087 m³).
Calculation methods for water volume and the capacity of tanks, which had varied due to the increased inflow of groundwater, rainwater, etc.

Status of the measures for declining water level in the Unit 1/2 exhaust stack drain sump pit

- On November 26, 2019, a trend-data check of water levels in the Unit 1/2 exhaust stack drain sump pit confirmed that the water level had been declining when the transfer pump did not operate.
- As measures to mitigate any influence based on potential outflow from the pit, the lower-limit setting for the suction of the transfer pump was reviewed. In addition, to reduce the lower suction limit, the suction pipe was replaced on February 14, 2020.
- As a measure to prevent rainwater, the exhaust stack will be dismantled and installation of a lid on the exhaust stack examined. At the same time, drastic measures to avoid using the pit will be examined.

2. Fuel removal from the spent fuel pools

Work to help remove spent fuel from the pool is progressing steadily while ensuring seismic capacity and safety. The removal of spent fuel from the Unit 4 pool commenced on November 18, 2013 and was completed by December 22, 2014

Main work to help spent fuel removal at Unit 1

- From January 22, 2018, toward fuel removal from the spent fuel pool (SFP), work began to remove rubble on the north side of the operating floor. Once removed, the rubble is stored in solid waste storage facilities or elsewhere depending on the dose level.
- To create an access route for preparatory work to protect the SFP, work to remove four sections of X-braces (one each on the west and south sides and two on the east side, respectively) started from September 19, 2018 and all planned four sections had been removed by December 20.
- From March 18, 2019, the removal of small rubble in the east-side area around the SFP started using piers and suction equipment, while from July 9, small rubble removal on the south side of the SFP started.
- The well plug, which was considered misaligned from its normal position due to the influence of the hydrogen explosion at the time of the accident, was investigated for the period July 17 – August 26, 2019, by taking photos with a camera, measuring the air dose rate and collecting 3D images.
- A prior investigation on September 27, 2019 confirmed the lack of any obstacle which may affect the plan to install the cover over the SFP, the absence of any heavy object such as a concrete block, as detected in Unit 3 and the fact that panel- and bar-shaped rubble pieces were scattered on the rack.
- After examining two methods: (i) installing a cover after rubble removal and (ii) initially installing a large cover over the Reactor Building and then removing rubble inside the cover, method (ii) was selected to ensure safer and more secure removal.

Main work to help spent fuel removal at Unit 2

- On November 6, 2018, before investigating with a work plan to dismantle the Reactor Building rooftop and other tasks in mind, work to move and contain the remaining objects on the operating floor (1st round) was completed.
- On February 1, 2019, an investigation to measure the radiation dose on the floor, walls and ceiling inside the operating floor and confirm the contamination status was completed. After analyzing the investigative results, the “contamination density distribution” throughout the entire operating floor was obtained, based on which the air dose rate inside the operating floor could be evaluated. A shielding design and measures to prevent radioactive material scattering will be examined.
- From April 8, 2019, work to move and contain the remaining objects on the operating floor (2nd round) started, such as materials and equipment which may hinder installation of the fuel-handling facility and other work. The 2nd round mainly included moving the remaining small objects and placing them in the container. The work also included cleaning the floor to suppress dust scattering and was completed on August 21.
- From September 10, 2019, work to move and contain the remaining objects on the operating floor (3rd round) started, such as materials and equipment which may hinder the installation of the fuel-handling facility and other work. The 3rd round mainly included moving the remaining large objects and placing them in the container.
- Training to practice work skills will start from March 2020 and containers in which the remaining objects were placed
during the previous work will be transported to the solid waste storage facility from May.

- For fuel removal methods, based on the investigative results inside the operating floor from November 2018 to February 2019, a method to access from a small opening installed on the south side of the building was selected with aspects such as dust management and lower work exposure in mind (the method previously examined had involved fully dismantling the upper part of the building).

Main process to help fuel removal at Unit 3

- From April 15, 2019, the removal of 514 spent fuel assemblies and 52 non-irradiated fuel assemblies (566 assemblies in total) stored in the spent fuel pool started. Seven non-irradiated fuel assemblies were then loaded into the transportation cask and transported to the common pool on April 23. The first fuel removal was completed on April 25.
- From July 4, 2019, fuel removal was resumed and up until July 21, 28 of all 566 fuel assemblies had been removed.
- The periodical inspection of the fuel-handling facility, which started on July 24, 2019, was completed on September 2, 2019. Some defective rotations of the tensile truss and mast were detected during the following adjustment work toward resumption of the fuel removal. In response, parts were replaced and the operation checked to confirm no problem.
- During an operation check using dummy fuel, however, interference of cans inside the transportation cask and dummy fuel was identified on December 14, 2019. Though the following investigation confirmed slight leaning of the FHM mast, countermeasures, including a review of the procedures, were implemented.
- Fuel removal work was resumed from December 23, 2019 and has proceeded as planned.
- By February 14, 2020, all fuel handles were checked (deformed handles were identified with a total of 14 fuel assemblies).

Progress status of dismantling work for the Unit 1/2 exhaust stack

- The Unit 1/2 exhaust stack was divided into 23 blocks for dismantling. By February 1, 2020, dismantling to the 11th block was completed.
- The following legal inspection for the crane was completed on February 12, 2020 and work was resumed from February 14.
- Work continues with safety first toward completing the dismantling in early May 2020.

Reconstruction of an access route toward investigating the inside of the Unit 1 PCV

- Toward investigating the inside of the Unit 1 primary containment vessel (PCV), an access route is being constructed. Creation of the first hole (approx. 0.21 m in diameter) of the scheduled three holes in the inner door was completed on February 12, 2020.
- When creating the second hole (approx. 0.25 m in diameter), measures including spraying water from the first hole will be implemented to suppress dust scattering.
- After training on these measures, drilling of the second hole will start possibly from early March.

Plans to store, process and dispose of solid waste and decommission of reactor facilities

Promoting efforts to reduce and store waste generated appropriately and R&D to facilitate adequate and safe storage, processing and disposal of radioactive waste

- Management status of the rubble and trimmed trees
 - As of the end of January 2020, the total storage volume of the concrete and metal rubble was approx. 286,700 m³ (+2,600 m³ compared to at the end of December with an area-occupation rate of 70%). The total storage volume of trimmed trees was approx. 134,200 m³ (+100 m³, with an area-occupation rate of 76%). The total storage volume of used protective clothing was approx. 47,200 m³ (+900 m³ with an area-occupation rate of 69%). The increase in rubble was mainly attributable to tank-related construction and work related to rubble removal around Unit 1-4 buildings, while the decrease in used protective clothing was attributable to the incinerator operation.

Management status of secondary waste from water treatment

- As of February 6, 2020, the total storage volume of waste sludge was 597 m³ (area-occupation rate: 85%), while that of concentrated waste fluid was 9,322 m³ (area-occupation rate: 91%). The total number of stored spent vessels, High-Integrity Containers (HICs) for multi-nuclide removal equipment and other vessels, was 4,548 (area-occupation rate: 73%).

5. Reactor cooling

The cold shutdown condition will be maintained by cooling the reactor by water injection and measures to complement the status monitoring will continue

- Results of the test to suspend cooling of Unit 3 fuel debris (flash report)
 - To optimize the emergency response procedures at the time when water injection to the reactor is suspended, a test involving temporarily suspending water injection to the reactor was conducted at Unit 3. The suspension period was February 3–5, 2020 (approx. 48 hours) and the test continued until February 17, including the period of sequentially recovering the injection volume after the suspension.
 - The increase in temperature during the suspension period was almost within the assumed range, with increases of approx. 0.6 and 0.7°C at the RPV bottom and PCV respectively. No abnormality was detected in the dust density of the PCV gas control facility and other parameters.
 - The difference between the obtained results and the assumption will be evaluated to help examination toward optimizing emergency response procedures.

- Work to replace the Unit 1-3 nitrogen injection facility
 - To increase the reliability of the Unit 1-3 nitrogen injection facility, work involving transferring the facility to high ground, installing an additional diesel power generator and duplicating the Unit 1-3 nitrogen injection line was completed (February 2019 - January 2020).
 - Measures to further increase facility reliability will continue, including duplicating nitrogen injection points.

Switch of the reactor water injection system toward in-service of the Unit 2 condensate storage tank

- To duplicate the water source of the reactor water injection system, the Unit 2 condensate storage tank (CST) will be in service. From March 2020, the Unit 1-3 CST reactor water injection system will be switched to the Unit 2 CST circulation operation to check the operation condition.
 - During the check, the Unit 1-3 reactor water injection will continue by switching from the CST reactor water injection system to the high-ground reactor water injection system. The possible increase in Unit 1-3 reactor water injection by the high-ground reactor water injection system (from the normal level of 3.0 m³/h to 4.5 m³/h) will not affect the treatment of contaminated water.

6. Reduction in radiation dose and mitigation of contamination

Effective dose-reduction at site boundaries and purification of port water to mitigate the impact of radiation on the external environment

- Status of groundwater and seawater on the east side of Turbine Building Units 1-4
 - At No. 1-9, the density of gross β radioactive materials has been repeatedly increasing and declining from around 20 Bq/L since April 2019 and currently stands at around 50 Bq/L.
 - At No. 1-12, the density of gross β radioactive materials has been increasing from around 500 Bq/L since December 2019 and currently stands at around 1,600 Bq/L. Since August 15, 2013, pumping of groundwater continued (at the well point between the Unit 1 and 2 intakes: August 15, 2013 – October 13, 2015 and from October 24; at the repaired well: October 14-23, 2015).
 - At No. 2-3, the H-3 density had been declining from around 6,000 Bq/L since August 2019, then increasing and currently stands at around 7,500 Bq/L. The density of gross β radioactive materials at the same point had been declining from around 14,000 Bq/L to around 5,000 Bq/L since August 2019, then increasing and currently stands at
In the area outside the port, regarding the densities of radioactive materials in seawater, those of Cs-137 and Sr-90 have remained below the legal discharge limit, while increasing in Cs-137 and Sr-90 below the legal discharge limit during rainfall. They have also been declining following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls. The density of Cs-137 has remained slightly higher in front of the south side impermeable walls and slightly lower on the north side of the east breakwater since March 20, 2019, when the silt fence was transferred to the center of the open channel due to mega float-related construction.

In the area within the port, densities of radioactive materials in seawater have remained below the legal discharge limit, while increasing in Cs-137 and Sr-90 below the legal discharge limit during rainfall. They have also been declining following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls. The density of Cs-137 and Sr-90 declined and remained low after steel pipe sheet piles for the sea-side impermeable walls were installed and connected.

The densities of radioactive materials in drainage channels have remained constant, despite increasing during rainfall.

In the Units 1-4 intake open channel area, densities of radioactive materials in seawater have remained below the legal discharge limit, while increasing in Cs-137 and Sr-90 below the legal discharge limit during rainfall. They have also been declining following the completed installation and the connection of steel pipe sheet piles for the sea-side impermeable walls. The density of Cs-137 and Sr-90 declined and remained low after steel pipe sheet piles for the sea-side impermeable walls were installed and connected.

In the area outside the port, regarding the densities of radioactive materials in seawater, those of Cs-137 and Sr-90 declined and remained low after steel pipe sheet piles for the sea-side impermeable walls were installed and connected.

7. Outlook of the number of staff required and efforts to improve the labor environment and conditions

Securing appropriate staff long-term while thoroughly implementing workers’ exposure dose control. Improving the work environment and labor conditions continuously based on an understanding of workers’ on-site needs

- **Staff management**
 - The monthly average total of personnel registered for at least one day per month to work on site during the past quarter from October to December 2019 was approx. 9,100 (TEPCO and partner company workers), which exceeded the monthly average number of actual workers (approx. 6,800). Accordingly, sufficient personnel are registered to work on site.
 - It was confirmed with the prime contractors that the estimated manpower necessary for the work in March 2020 (approx. 4,300 per day; TEPCO and partner company workers) would be secured at present. The average numbers of workers per day per month (actual values) were maintained, with approx. 3,400 to 5,600 since FY2017 (see Figure 7).
 - The number of workers from both within and outside Fukushima Prefecture remained constant. The local employment ratio (TEPCO and partner company workers) as of January 2020 also remained constant at around 60%.
 - The monthly average exposure dose of workers remained at approx. 0.39, 0.36 and 0.32 mSv/month during FY2016, FY2017 and FY2018 respectively. (Reference: Annual average exposure dose 20 mSv/year = 1.7 mSv/month)
 - For most workers, the exposure dose was sufficiently within the limit and allowed them to continue engaging in radiation work.

![Figure 6: Seawater density around the port](image)

![Figure 7: Changes in the average number of workers per weekday for each month since FY2017 (actual values)](image)
Measures to prevent infection and expansion of influenza and norovirus
- Since November, measures for influenza and norovirus have been implemented, including free influenza vaccinations (subsidized by TEPCO HD) for partner company workers in the Fukushima Daiichi Nuclear Power Station (from November 13 to December 13, 2019) and at medical clinics around the site (from December 2, 2019 to January 30, 2020). As of January 30, 2020, a total of 6,107 workers had been vaccinated. In addition, a comprehensive range of other measures is also being implemented, including daily actions to prevent infection and expansion (measuring body temperature, health checks and monitoring infection status) and response after detecting possible infections (swift exit of possible patients and control of entry, mandatory wearing of masks in working spaces, etc.).

Status of influenza and norovirus cases
- Until the 8th week of 2020 (February 17-23, 2020), 167 influenza infections and ten norovirus infections were recorded. The totals for the same period for the previous season showed 270 cases of influenza and 12 norovirus infections.

Measures to prevent new corona virus infections
- As measures to prevent "new corona virus (COVID-19) infections," behavioral guidelines of handwashing, disinfecting and coughing etiquette were notified. In addition, information such as infection case examples of this virus and contacts to be informed when possible infection cases are detected was provided to prime companies.

8. Others

Response to be taken related to facial contamination in the Fukushima Daiichi Nuclear Power Station
- On February 6, 2020, the body of a worker was contaminated when he put things away on the 2nd floor of the large carry-in entrance of the Unit 2 Reactor Building.
- On February 18, 2020, the body of a worker was contaminated when he pulled up, took out and reinjected PE pipe specimens in contaminated groundwater as a radiation resistance test for PE pipes on the 3rd floor of the Process Main Building.
- As a related response to these two cases, full-face masks will be wiped when exiting the R-zone and contamination measurements enhanced. In addition, the method of switching radiation protective equipment on and off will be clarified and overall education regarding radiation protection will be provided.

FY2020 R&D plan for decommissioning
- Based on the progress of FY2019 R&D projects, a plan for R&D projects implemented in the next fiscal year will be formulated.

Publication of the report from the Subcommittee on Handling of the ALPS Treated Water
- On February 10, 2020, the report from the "Subcommittee on Handling of the ALPS Treated Water," which has been made comprehensive consideration about handling of the ALPS treated water not only from scientific aspects but also from social aspects, taking into account the impact on reputation, was published.
- Taking into account the report, the Government of Japan will examine the disposal method as well as countermeasures to deal with the problem of reputational damage, while carefully listening to the opinions of a wide range of parties concerned including local residents.
Status of seawater monitoring within the port (comparison between the highest values in 2013 and the latest values)

“The highest value” → “the latest value (sampled during February 19-25)”; unit (Bq/L); ND represents a value below the detection limit

Source: TEPCO website Analysis results on nuclides of radioactive materials around Fukushima Daiichi Nuclear Power Station http://www.tepco.co.jp/nu/fukushima

Summary of TEPCO data as of February 26, 2020

<table>
<thead>
<tr>
<th>Unit</th>
<th>Legal discharge limit</th>
<th>WHO Guidelines for Drinking Water Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>Unit 2</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Unit 3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unit 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritium</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sea side impermeable wall

<table>
<thead>
<tr>
<th>Unit</th>
<th>Gross</th>
<th>Tritium</th>
<th>Cesium</th>
<th>Gross β</th>
<th>Tritium</th>
<th>Cesium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 1</td>
<td>74</td>
<td>67</td>
<td>67</td>
<td>22</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Unit 2</td>
<td>10</td>
<td>59</td>
<td>59</td>
<td>10</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Unit 3</td>
<td>69</td>
<td>52</td>
<td>52</td>
<td>69</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Unit 4</td>
<td>46</td>
<td>24</td>
<td>24</td>
<td>46</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Tritium

- **Tritium:**
 - **Gross:**
 - Unit 1: 74 (2013/8/19) → 18 Below 1/4
 - Unit 2: 59 (2013/8/19) → 19 Below 1/3
 - Unit 3: 52 (2013/8/19) → 24 Below 1/3
 - Unit 4: 24 (2013/8/19) → 2.6 Below 1/9

Cesium

- **Cesium:**
 - **Gross β:**
 - Unit 1: 18
 - Unit 2: 19
 - Unit 3: 19
 - Unit 4: 24

Gross β

- **Gross β:**
 - Unit 1: 18
 - Unit 2: 19
 - Unit 3: 19
 - Unit 4: 24

Tritium

- **Tritium:**
 - Unit 1: 74 (2013/8/19) → ND(1.7) Below 1/30
 - Unit 2: 59 (2013/8/19) → ND(1.7) Below 1/30
 - Unit 3: 52 (2013/8/19) → ND(1.7) Below 1/30
 - Unit 4: 24 (2013/8/19) → 2.6 Below 1/9

Cesium

- **Cesium:**
 - **Gross β:**
 - Unit 1: 18
 - Unit 2: 19
 - Unit 3: 19
 - Unit 4: 24

Tritium

- **Tritium:**
 - Unit 1: 74 (2013/8/19) → ND(1.7) Below 1/30
 - Unit 2: 59 (2013/8/19) → ND(1.7) Below 1/30
 - Unit 3: 52 (2013/8/19) → ND(1.7) Below 1/30
 - Unit 4: 24 (2013/8/19) → 2.6 Below 1/9

Appendix 1

- **Cesium-134:** 3.3 (2013/10/17) → ND(0.32) Below 1/10
- **Cesium-137:** 7.3 (2013/10/11) → ND(0.52) Below 1/10
- **Gross β:** 40 (2013/7/3) → ND(14) Below 1/20
- **Tritium:** 340 (2013/6/26) → ND(1.5) Below 1/200

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.
Status of seawater monitoring around outside of the port (comparison between the highest values in 2013 and the latest values)

Unit (Bq/L); ND represents a value below the detection limit; values in () represent the detection limit; ND (2013) represents ND throughout 2013

<table>
<thead>
<tr>
<th>Location</th>
<th>Cesium-134</th>
<th>Cesium-137</th>
<th>Gross β</th>
<th>Tritium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast side of port entrance (offshore 1km)</td>
<td>ND (2013)</td>
<td>ND (0.52)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>ND (2013)</td>
<td>ND (0.74)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>ND (2013)</td>
<td>ND (12)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>ND (2013)</td>
<td>ND (14)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>4.7 (2013/8/18)</td>
<td>ND (0.86)</td>
<td>Below 1/5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Cesium-134</th>
<th>Cesium-137</th>
<th>Gross β</th>
<th>Tritium</th>
</tr>
</thead>
<tbody>
<tr>
<td>North side of north breakwater (offshore 0.5km)</td>
<td>1.8 (2013/6/21)</td>
<td>ND (0.60)</td>
<td>Below 1/3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>4.5 (2013/3/17)</td>
<td>ND (0.64)</td>
<td>Below 1/7</td>
<td>8.6 (2013/6/26)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Cesium-134</th>
<th>Cesium-137</th>
<th>Gross β</th>
<th>Tritium</th>
</tr>
</thead>
<tbody>
<tr>
<td>North side of Unit 5 and 6 release outlet</td>
<td>3.3 (2013/12/24)</td>
<td>ND (0.50)</td>
<td>Below 1/6</td>
<td>68 (2013/8/19)</td>
</tr>
<tr>
<td></td>
<td>7.3 (2013/10/11)</td>
<td>ND (0.52)</td>
<td>Below 1/10</td>
<td>69 (2013/8/19)</td>
</tr>
<tr>
<td></td>
<td>12 (2013/12/23)</td>
<td>ND (12)</td>
<td>12</td>
<td>8.6 (2013/6/26)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Cesium-134</th>
<th>Cesium-137</th>
<th>Gross β</th>
<th>Tritium</th>
</tr>
</thead>
<tbody>
<tr>
<td>East side of port entrance (offshore 1km)</td>
<td>ND (2013)</td>
<td>ND (0.96)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>1.6 (2013/10/18)</td>
<td>ND (0.50)</td>
<td>Below 1/3</td>
<td>6 (2013/10/18)</td>
</tr>
<tr>
<td></td>
<td>ND (2013)</td>
<td>ND (12)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>6.4 (2013/10/18)</td>
<td>ND (0.86)</td>
<td>Below 1/7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Cesium-134</th>
<th>Cesium-137</th>
<th>Gross β</th>
<th>Tritium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southeast side of port entrance (offshore 1km)</td>
<td>ND (2013)</td>
<td>ND (0.52)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>ND (2013)</td>
<td>ND (0.72)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>ND (2013)</td>
<td>ND (12)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>4.7 (2013/8/18)</td>
<td>ND (0.86)</td>
<td>Below 1/5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Cesium-134</th>
<th>Cesium-137</th>
<th>Gross β</th>
<th>Tritium</th>
</tr>
</thead>
<tbody>
<tr>
<td>South side of south breakwater (offshore 0.5km)</td>
<td>ND (2013)</td>
<td>ND (0.55)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>ND (2013)</td>
<td>ND (0.60)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>ND (2013)</td>
<td>ND (12)</td>
<td>/</td>
<td>ND (0.86)</td>
</tr>
<tr>
<td></td>
<td>8.6 (2013/6/26)</td>
<td>ND (0.87)</td>
<td>Below 1/9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Cesium-134</th>
<th>Cesium-137</th>
<th>Gross β</th>
<th>Tritium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near south release outlet</td>
<td>ND (2013)</td>
<td>ND (0.81)</td>
<td>/</td>
<td>ND (0.87)</td>
</tr>
<tr>
<td></td>
<td>3.0 (2013/7/15)</td>
<td>ND (0.76)</td>
<td>Below 1/3</td>
<td>1.9 (2013/11/25)</td>
</tr>
<tr>
<td></td>
<td>15 (2013/12/23)</td>
<td>ND (10)</td>
<td>/</td>
<td>ND (0.87)</td>
</tr>
<tr>
<td></td>
<td>1.9 (2013/11/25)</td>
<td>ND (0.87)</td>
<td>Below 1/2</td>
<td></td>
</tr>
</tbody>
</table>

Note: The gross β measurement values include natural potassium 40 (approx. 12 Bq/L). They also include the contribution of yttrium 90, which radioactively balance strontium 90.

Summary of TEPCO data as of February 26, 2020
Progress toward decommissioning: Fuel removal from the spent fuel pool (SFP)

Unit 1

Toward fuel removal from the Unit 1 spent fuel pool, investigations have been implemented to ascertain the conditions of the fallen roof on the south side and the contamination of the well plug. Based on the results of these investigations, “the method to initially install a large cover over the Reactor Building and then remove rubble inside the cover” was selected to ensure a safer and more secure removal. Details of the selected method will be designed and the process of fuel removal will be refined.

<Reference> Progress to date
Rubble removal on the north side of the operating floor started from January 2018 and has been implemented sequentially. In July and August 2019, the well plug, which was misaligned from its normal position, was investigated and in August and September, the conditions of the overhead crane were checked. Based on the results of these investigations, as the removal requires more careful work taking dust scattering into consideration, two methods were examined: installing a cover after rubble removal and initially installing a large cover over the Reactor Building and then removing rubble inside the cover.

![Image of fuel removal process](image1)

Overview of fuel removal

Unit 2

Toward fuel removal from the Unit 2 spent fuel pool, based on findings from internal operating floor investigations from November 2018 to February 2019, instead of fully dismantling the upper part of the building, the decision was made to install a small opening on the south side and use a boom crane. The changed method will be established and the fuel removal process refined.

<Reference> Progress to date
Previously, potential to recover the existing overhead crane and the fuel handling machine was examined. However, the high radiation dose inside the operating floor meant the decision was taken to dismantle the upper part of the building in November 2015. Findings from internal investigations of the operating floor from November 2018 to February 2019 underlined the potential to conduct limited work there and the means of accessing from the south side had been examined.

![Image of fuel removal process](image2)

Overview of fuel removal

Unit 3

Prior to the installation of a cover for fuel removal, removal of large rubble from the spent fuel pool was completed in November 2015. To ensure safe and steady fuel removal, training of remote control was conducted at the factory using the actual fuel-handling machine which will be installed on site (February - December 2015). Measures to reduce dose on the Reactor Building top floor (decontamination, shields) were completed in December 2016. Installation of a cover for fuel removal and a fuel-handling machine is underway from January 2017. Installation of the fuel removal cover was completed on February 23, 2018. Toward fuel removal, the rubble retrieval training inside the pool, which was scheduled in conjunction with fuel removal training, started from March 15, 2019, and started fuel removal from April 15, 2019.

![Image of fuel removal process](image3)

Overview of fuel removal

Unit 4

In the Mid- and Long-Term Roadmap, the target of Phase 1 involved commencing fuel removal from inside the spent fuel pool (SFP) of the 1st Unit within two years of completion of Step 2 (by December 2013). On November 18, 2013, fuel removal from Unit 4, or the 1st Unit, commenced and Phase 2 of the roadmap started.

On November 5, 2014, within a year of commencing work to fuel removal, all 1,331 spent fuel assemblies in the pool had been transferred. The transfer of the remaining non-irradiated fuel assemblies to the Unit 6 SFP was completed on December 22, 2014. (2 of the non-irradiated fuel assemblies were removed in advance in July 2012 for fuel checks)

This marks the completion of fuel removal from the Unit 4 Reactor Building. Based on this experience, fuel assemblies will be removed from Unit 1-3 pools.

* A part of the photo is corrected because it includes sensitive information related to physical protection.

![Image of fuel removal process](image4)

Overview of fuel removal

Immediate target

Commence fuel removal from the Unit 1-3 Spent Fuel Pools

Progress to date

- The common pool has been restored to a condition allowing it to re-accommodate fuel to be handled (November 2012)
- Loading of spent fuel stored in the common pool to dry casks commenced (June 2013)
- Fuel removal from the Unit 4 spent fuel pool began to be received (November 2013 - November 2014)
- Fuel removal from the Unit 3 spent fuel pool began to be received (April 2019)

Common pool

- An open space will be maintained in the common pool (Transfer to the temporary cask custody area)

Storage area

- Spent fuel is accepted from the common pool

Overview of fuel removal status

- Fuel removal status

Temporary cask (2) custody area

- Concrete modules
- Spent fuel is accepted from the common pool

Glossary

- (1) Operating floor: During regular inspection, the roof over the reactor is opened while on the operating floor, fuel inside the core is replaced and the core internals are inspected.
- (2) Cask: Transportation container for samples and equipment, including radioactive materials.

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Progress toward decommissioning: Works to identify the plant status and toward fuel debris retrieval

Immediate target: Identify the plant status and commence R&D and decontamination toward fuel debris retrieval

Investigation into TIP Room of the Unit 1 Reactor Building

- To improve the environment for future investigations inside the PCV, etc., an investigation was conducted from September 24 to October 2, 2015 at the TIP Room(*1). (Due to high dose around the entrance in to the TIP Room, the investigation of dose rate and contamination distribution was conducted through a hole drilled from the walkway of the Turbine Building, where the dose was low)
- The investigative results identified high dose at X-31 to 33 penetrations(*2) (instrumentation penetration) and low dose at other parts.
- As it was confirmed that work inside the TIP room would be available, the next step will include identification of obstacles which will interfere the work inside the TIP Room and formulation of a plan for dose reduction.

Unit 1

Air dose rate inside the Reactor Building:
Max. 5,150mSv/h (1F southeast area) (measured on July 4, 2012)

Investigation in the leak point detected in the upper part of the Unit 1 Suppression Chamber (S/C(*3))

Investigation in the leak point detected in the upper part of Unit 1 S/C from May 27, 2014 from one expansion joint cover among the lines installed there. As no leakage was identified from other parts, specific methods will be examined to halt the flow of water and repair the PCV.

Status of investigation inside the PCV

Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris.

[Investigative outline]

- In April 2015, a device, which entered the inside of the PCV through a narrow access opening (bore: φ 100 mm), collected information such as images and airborne dose inside the PCV 1st floor.
- In March 2017, the investigation using a self-propelled investigation device, conducted to inspect the spreading of debris to the basement floor outside the pedestal, took images of the PCV bottom status for the first time. The status inside the PCV will continue to be examined based on the collected image and dose data.

Capturing the location of fuel debris inside the reactor by measurement using muons

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb - May 2015</td>
<td>Confirmed that there was no large fuel in the reactor core.</td>
</tr>
</tbody>
</table>

<Image of investigation inside the PCV>

<Image near the bottom>

<Image of the S/C upper part investigation>

<Image of investigation in the leak point detected in the upper part of the Unit 1 Suppression Chamber (S/C(*3))>

<Image of the S/C upper part investigation>

Indices related to the plant are values as of 11:00, February 26, 2020

- 1st (Dec 2012) - Acquiring images - Measuring air temperature and dose rate - Measuring water level and temperature - Sampling contaminated water - Installing permanent monitoring instrumentation
- 2nd (Apr 2015) - Acquiring images - Measuring air temperature and dose rate - Measuring water level and temperature - Sampling contaminated water - Installing permanent monitoring instrumentation
- 3rd (Mar 2017) - Acquiring images - Measuring air temperature and dose rate - Measuring water level and temperature - Sampling contaminated water - Installing permanent monitoring instrumentation

Leakage points from PCV
- PCV vent pipe vacuum break line bellows (identified in May 2014)
- Sand cushion drain line (identified in November 2013)

Glossary

- TIP (Traversing In-core Probe)
- Penetration: Through-hole of the PCV
- S/C (Suppression Chamber): Suppression pool, used as the water source for the emergent core cooling system.
- SFP (Spent Fuel Pool): Reactor feed water system
- PCV (Primary Containment Vessel)

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Installation of an RPV thermometer and permanent PCV supervisory instrumentation

(1) Replacement of the RPV thermometer
- As the thermometer installed at the Unit 2 RPV bottom after the earthquake had broken in February 2014, it was excluded from the monitoring thermometers.
- In April 2014, removal of the broken thermometer failed and was suspended. Rust-stripping chemicals were injected and the broken thermometer was removed in January 2015. A new thermometer was reinstalled in March. The thermometer has been used as a part of permanent supervisory instrumentation since April.

(2) Reinstallation of the PCV thermometer and water-level gauge
- Some of the permanent supervisory instrumentation for PCV could not be installed in the planned locations due to interference with existing grating (August 2013). The instrumentation was removed in May 2014 and new instruments were reinstalled in June 2014. The trend of added instrumentation will be monitored for approx. one month to evaluate its validity.
- The measurement during the installation confirmed that the water level inside the PCV was approx. 300mm from the bottom.

Investigative results on torus chamber walls
- July 2014, the torus chamber walls were investigated (on the north and the east-side walls) using equipment specially developed for that purpose (a swimming robot and a floor traveling robot).
- At the east-side wall penetrations (five points), “the status” and “existence of flow” were checked.
- A demonstration using the above two types of underwater wall investigative equipment showed how the equipment could check the status of penetration.
- Regarding Penetrations 1-5, the results of checking the sprayed tracer (*) by camera showed no flow around the penetrations. (investigation by the swimming robot)
- Regarding Penetration 3, a sonar check showed no flow around the penetrations. (investigation by the floor traveling robot)

Status of investigation inside the PCV

Prior to fuel debris retrieval, an investigation inside the PCV will be conducted to inspect the status there including the location of fuel debris. [Investigative outline]
- Investigative devices such as a robot will be injected from Unit 2 X6 penetration(1) and access the inside of the pedestal using the CRD rail.

[Progress status]
- On January 26 and 30, 2017, a camera was inserted from the PCV penetration to inspect the status of the CRD replacement rail on which the robot will travel. On February 9, deposit on the access route of the self-propelled investigative device was removed and on February 16, the inside of the PCV was investigated using the device.
- The results of these series of investigations confirmed fallen and deformed gratings and a quantity of deposit inside the pedestal.
- On January 19, 2018, the status below the platform inside the pedestal was investigated using an investigative device with a hanging mechanism. From the analytical results of images obtained in the investigation, deposits probably including fuel debris were found at the bottom of the pedestal. In addition, multiple parts higher than the surrounding deposits were also detected. We presumed that there were multiple routes of fuel debris falling. Obtained data were processed in panoramic image visualization to acquire clearer images.
- On February 13, 2019, an investigation touching the deposits at the bottom of the pedestal and on the platform was conducted and confirmed that the bubble-shaped deposits, etc. could be moved and that hard rock-like deposits that could not be gripped may exist.
- In addition, images, etc. would help determine the contour and size of the deposits could be collected by moving the investigative unit closer to the deposits than the previous investigation.

Capturing the location of fuel debris inside the reactor by measurement using muons

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar. – Jul. 2016</td>
<td>Confirmed the existence of high-density materials, which was considered as fuel debris, at the bottom of RPV, and in the lower part and the outer periphery of the reactor core. It was assumed that a large part of fuel debris existed at the bottom of RPV.</td>
</tr>
</tbody>
</table>

Indices related to plant area values as of 11:00, February 26, 2020

<table>
<thead>
<tr>
<th>Investigations inside PCV</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of investigation</td>
<td>Number of investigations</td>
</tr>
<tr>
<td>- Acquiring images</td>
<td>1st (Jan 2012)</td>
</tr>
<tr>
<td>- Measuring air temperature</td>
<td>2nd (Mar 2012)</td>
</tr>
<tr>
<td>- Measuring water temperature</td>
<td>3rd (Feb 2013 – Jun 2014)</td>
</tr>
<tr>
<td>- Measuring dose rate</td>
<td>4th (Jan. – Feb 2017)</td>
</tr>
<tr>
<td>- Measuring air temperature</td>
<td>5th (Jan 2018)</td>
</tr>
<tr>
<td>- Measuring air temperature</td>
<td>6th (Feb 2019)</td>
</tr>
</tbody>
</table>

Leakage points from PCV
- No leakage from torus chamber rooftop
- No leakage from all inside/outside surfaces of SC
Progress toward decommissioning: Works to identify the plant status and toward fuel debris retrieval

- **Immediate target**: Identify the plant status and commence R&D and decontamination toward fuel debris retrieval

Water flow was detected from the Main Steam Isolation Valve

On January 18, 2014, a flow of water from around the door of the Steam Isolation Valve room in the Reactor Building Unit 3 1st floor northeast area to the nearby floor drain funnel (drain outlet) was detected. As the drain outlet connects with the underground part of the Reactor Building, there is no possibility of outflow from the building. From April 23, 2014, image data has been acquired by camera and the radiation dose measured via pipes for measurement instrumentation, which connect the air-conditioning room on the Reactor Building 2nd floor with the Main Steam Isolation Valve Room on the 1st floor. On May 15, 2014, water flow from the expansion joint of one Main Steam Line was detected. This is the first leak from PCV detected in the Unit 3. Based on the images collected in this investigation, the leak volume will be estimated and the need for additional investigations will be examined. The investigative results will also be utilized to examine water stoppage and PCV repair methods.

* Main Steam Isolation Valve: A valve to shut off the steam generated from the Reactor in an emergency

Investigative results into the Unit 3 PCV equipment hatch using a small investigation device

- As part of the investigation into the PCV to facilitate fuel debris retrieval, the status around the Unit 3 PCV equipment hatch was investigated using a small self-traveling investigation device on November 26, 2015.
- Given blots such as rust identified below the water level inside the PCV, there may be a leakage from the seal to the extent of bleeding.
- Methods to investigate and repair the parts, including other PCV penetrations with a similar structure, will be considered.

Investigation inside the PCV

Prior to fuel debris retrieval, the inside of the Primary Containment Vessel (PCV) was investigated to identify the status there including the location of the fuel debris.

[Investigative outline]

- The status of X-53 penetration(*4), which may be under the water and which is scheduled for use to investigate the inside of the PCV, was investigated using remote-controlled ultrasonic test equipment. The results showed that the penetration was not under the water (October 22-24, 2014).
- For the purpose of confirming the status inside the PCV, an investigation device was inserted into the PCV from X-53 penetration on October 20 and 22, 2015 to obtain images, data of dose and temperature and sample contaminated water. No damage was identified on the structure and walls inside the PCV and the water level was almost identical with the estimated value. In addition, the dose inside the PCV was confirmed to be lower than in other Units.
- In July 2017, the inside of the PCV was investigated using the underwater ROV (remotely operated underwater vehicle) to inspect the inside of the pedestal.
- Analysis of image data obtained in the investigation identified damage to multiple structures and the supposed core internals. Consideration about fuel removal based on the obtained information will continue.
- Videos obtained in the investigation were reproduced in 3D. Based on the reproduced images, the relative positions of the structures, such as the rotating platform slipping off the rail with a portion buried in deposits, were visually understood.

Capturing the location of fuel debris inside the reactor by measurement using muons

<table>
<thead>
<tr>
<th>Period</th>
<th>Evaluation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>May – Sep 2017</td>
<td>The evaluation confirmed that no large lump existed in the core area where fuel had been placed and that part of the fuel debris potentially existed at the bottom of the RPV.</td>
</tr>
</tbody>
</table>

<Glossary>

- *(1)* SFP (Spent Fuel Pool)
- *(2)* RPV (Reactor Pressure Vessel)
- *(3)* PCV (Primary Containment Vessel)
- *(4)* Penetration: Through-hole of the PCV

© Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Progress toward decommissioning: Work related to circulation cooling and contaminated water treatment line

Immediate target
- Stably continue reactor cooling and contaminated water treatment, and improve reliability

Work to improve the reliability of the circulation water injection cooling system and pipes to transfer contaminated water.
- Operation of the reactor water injection system using Unit 3 Condensate Storage Tank (CST) as a water source commenced (from July 5, 2013). Compared to the previous systems, the reliability of the main cooling system was enhanced, e.g. by increasing the amount of water-source storage and enhancing durability.
- To reduce the risk of contaminated-water leakage, the circulation loop was shortened by installing a reverse osmosis (RO) device in the Unit 4 Turbine Building within the circulation loop, comprising the transfer of contaminated water, water treatment and injection into the reactor. Operation of the installed RO device started from October 7 and 24-hour operation started from October 20. Installation of the new RO device inside the building shortened the circulation loop from approx. 3 to 0.8 km.
- To accelerate efforts to reduce the radiation density in contaminated water, the reactor water injection system using Unit 3 Condensate Storage tank (treated water).
- The risks of contaminated water inside the buildings will continue to be reduced in addition to reduction of its storage.
- The entire length of contaminated water transfer pipes is approx. 2.6km, including the transfer line of surplus water to the upper heights (approx. 1.3km).
- Contaminated water purification line.

Progress status of dismantling of flange tanks
- To facilitate replacement of flanged tanks, dismantling of flanged tanks started in H1 east/H2 areas in May 2015. Dismantling of all flanged tanks was completed in H1 east area (12 tanks) in October 2015, in H2 area (28 tanks) in March 2016, in H4 area (66 tanks) in May 2017, in H3 B area (31 tanks) in September 2017, in H5 and H5 north areas (31 tanks) in June 2016, in T5 area (31 tanks) in February 2019, in G5 area (38 tanks) in July 2018, in H6 and H6 north areas (24 tanks) in September 2018 and Q4 south area (17 tanks) in March 2019.

Completion of purification of contaminated water (RO concentrated salt water)
- Contaminated Water (RO concentrated salt water) is being treated using seven types of equipment including the multi-nuclide removal equipment (ALPS). Treatment of the RO concentrated salt water was completed on May 27, 2015, with the exception of the remaining water at the tank bottom. The remaining water will be treated sequentially toward dismantling the tanks.
- The strontium-treated water from other facilities than the multi-nuclide removal equipment will be re-purified in the multi-nuclide removal equipment to further reduce risks.

Preventing groundwater from flowing into the Reactor Buildings
- Reducing groundwater inflow by pumping sub-drain water
 - To reduce groundwater flowing into the buildings, pumping-up of groundwater from wells (subdrains) around the buildings started on September 3, 2015. Pumped-up groundwater was purified at dedicated facilities and released after TEPCO and a third-party organization confirmed that its quality met operational targets.
 - Via a groundwater bypass, reduce the groundwater level around the Building and groundwater inflow into the Building
 - Measures to pump-up groundwater flowing from the mountain side upstream of the Building to reduce the groundwater inflow (groundwater bypass) have been implemented.
 - The pumped up groundwater is temporarily stored in tanks and released after TEPCO and a third-party organization have confirmed that its quality meets operational targets.
 - Through periodical monitoring, pumping of wells and tanks is operated appropriately.
 - At the observation holes installed at a height equivalent to the buildings, the trend showing a decline in groundwater levels is checked.
 - The analytical results on groundwater inflow into the buildings based on existing data showed a declining trend.
- Facilities improvement
 - Stably continue reactor cooling and contaminated water treatment, and improve reliability
 - To prevent the inflow of groundwater into the buildings, installation of impermeable walls on the land side is planned. Freezing started on the sea side and at a part of the mountain side from March 2016 and at 98% of the mountain side in March 2018.
 - Freezing of the remaining unfrozen sections advanced with a phased approach and freezing of all sections started in August 2017.
 - In March 2018, construction of the land-side impermeable walls was completed, except for a portion of the depth, based on a monitoring result showing that the underground temperature had declined below 0°C in almost all areas, while on the mountain side, the difference between the inside and outside increased to approx. 4-5 m. The 21st Committee on Countermeasures for Contaminated Water Treatment, held on March 7, 2018, evaluated that together with the function of sub-drains, etc., a water-level management system to stably control groundwater and isolate the buildings from it had been established and had allowed a significant reduction in the amount of contaminated water generated.
 - For the unfrozen depth, a supplementary method was implemented and it was confirmed that temperature of the part declined below 0°C by September 2018. From February 2019, maintenance operation started at all sections.

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.
Progress toward decommissioning: Work to improve the environment within the site

Immediate targets

- Reduce the effect of additional release from the entire power station and radiation from radioactive waste (secondary water treatment waste, rubble, etc.) generated after the accident, to limit the effective radiation dose to below 1 mSv/year at the site boundaries.
- Prevent contamination expansion in sea, decontamination within the site.

Optimization of radioactive protective equipment

Based on the progress of measures to reduce environmental dosage on site, the site is categorized into two zones: highly contaminated area around Unit 1-4 buildings, etc. and other areas to optimize protective equipment according to each category aiming at improving safety and productivity by reducing load during work.

From March 2016, limited operation started. From March and September 2017, the G Zone was expanded.

Installation of dose-rate monitors

To help workers in the Fukushima Daiichi Nuclear Power Station precisely understand the conditions of their workplaces, a total of 86 dose-rate monitors were installed by January 4, 2016. These monitors allow workers to confirm real time on-site dose rates at their workplaces. Workers are also able to check concentrated data through large-scale displays installed in the Main Anti-Earthquake Building and the access control facility.

Installation of sea-side impermeable walls

To prevent the outflow of contaminated water into the sea, sea-side impermeable walls have been installed. Following the completed installation of steel pipe sheet piles on September 22, 2015, connection of these piles was conducted and connection of sea-side impermeable walls was completed on October 26, 2015. Through these works, closure of sea-side impermeable walls was finished and the contaminated water countermeasures have been greatly advanced.

Status of the large rest house

A large rest house for workers was established and its operation commenced on May 31, 2015. Spaces in the large rest house are also installed for office work and collective worker safety checks as well as taking rest.

On March 1, 2016 a convenience store opened in the large rest house. On April 11, operation of the shower room started. Efforts will continue to improve convenience of workers.