Information, December, 2022

To All Missions (Embassies, Consular posts and International Organizations in Japan)

Report on the discharge record and the seawater monitoring results at Fukushima Daiichi Nuclear Power Station during November

The Ministry of Foreign Affairs wishes to provide all international Missions in Japan with a report on the discharge record and seawater monitoring results with regard to groundwater pumped from the sub-drain and groundwater drain systems, as well as, bypassing groundwater pumped during the month of November at Fukushima Daiichi Nuclear Power Station (NPS).

1. Sub-drain and Groundwater Drain Systems

In November purified groundwater pumped from the sub-drain and groundwater drain systems was discharged on the dates shown in Appendix 1. Prior to every discharge, an analysis on the quality of the purified groundwater to be discharged was conducted by Tokyo Electric Power Company (TEPCO) and the results were announced.

All the test results during the month of November have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by third-party organization (Tohoku Ryokka Kankyohozen Co.).

In addition, TEPCO and Japan Atomic Energy Agency (JAEA), at the request of the Government of Japan, regularly conduct more detailed analyses on the purified groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of sampled groundwater was substantially below the operational target (see Appendix 2).

Moreover, TEPCO publishes the results of analyses conducted on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 3). The results show that the radiation levels of seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed.

2. Groundwater Bypassing

In November, the pumped bypassing groundwater was discharged on the dates shown in Appendix 4. Prior to every discharge, an analysis on the quality of the groundwater to be discharged was conducted by TEPCO and the results were announced.

All the test results during the month of November have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by Japan Chemical Analysis Center.

In addition, TEPCO and JAEA, at the request of the Government of Japan, regularly conduct more detailed analyses on the groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of the sampled groundwater were substantially below the operational target (see Appendix 5).

Moreover, TEPCO publishes analysis results on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 6). The result shows that the radiation levels in seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed. The analysis had been conducted once a month until March 2017. Since April 2017, it is conducted four times a year because there has been no significant fluctuation in the concentration of radioactive materials in the sea water, and no influence on the surrounding environment has been confirmed.

The sampling process for analyses conducted this month is the same as the one conducted in the information disseminated last month. Results of the analyses are shown in the attached appendices:

(For further information, please contact TEPCO at (Tel: 03-6373-1111) or refer to the TEPCO's website:

http://www.tepco.co.jp/en/nu/fukushima-np/handouts/index-e.html)

Contact: International Nuclear Energy Cooperation Division, Ministry of Foreign Affairs, Tel 03-5501-8227 Results of analyses on the quality of the purified groundwater pumped from the subdrain and groundwater drain systems at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

		ı	(Unit: Bq/L)
Date of compling	Detected	Analyti	cal body
Date of sampling *Date of discharge	Detected nuclides	TEPCO	Third-party organization
	Cs-134	ND (0.74)	ND (0.57)
November 26 th , 2022	Cs-137	ND (0.47)	ND (0.54)
*Discharged on November 31 st	Gross β	ND (1.8)	ND (0.35)
	H-3	830	890
	Cs-134	ND (0.64)	ND (0.66)
November 25 th , 2022	Cs-137	ND (0.54)	ND (0.50)
*Discharged on November 30 th	Gross β	ND (0.71)	ND (0.34)
Treveille of	H-3	840	890
2.49	Cs-134	ND (0.75)	ND (0.69)
November 24 th , 2022	Cs-137	ND (0.65)	ND (0.67)
*Discharged on November 29 th	Gross β	ND (2.0)	ND (0.33)
Novombor 20	H-3	890	960
	Cs-134	ND (0.63)	ND (0.59)
November 23 rd , 2022	Cs-137	ND (0.95)	ND (0.57)
*Discharged on November 28 th	Gross β	ND (1.9)	ND (0.30)
	H-3	870	930
N	Cs-134	ND (0.75)	ND (0.60)
November 22 nd , 2022	Cs-137	ND (0.69)	ND (0.63)
*Discharged on November 27 th	Gross β	ND (1.8)	ND (0.35)
	H-3	930	980
N Odst oppo	Cs-134	ND (0.72)	ND (0.62)
November 21st, 2022	Cs-137	ND (0.65)	ND (0.61)
*Discharged on November 26 th	Gross β	ND (1.9)	ND(0.35)
	H-3	960	1000
Name to a COtto COCO	Cs-134	ND (0.58)	ND (0.65)
November 20 th , 2022	Cs-137	ND (0.65)	ND (0.67)
*Discharged on November 25 th	Gross β	ND (1.9)	0.39
	H-3	880	930
November 19 th , 2022	Cs-134	ND (0.64)	ND (0.59)
*Discharged on	Cs-137	ND (0.69)	ND (0.64)

November 24 th	Gross β	ND (2.0)	ND(0.34)
	H-3	900	970
	Cs-134	ND (0.59)	ND (0.49)
November 18 th , 2022	Cs-137	ND (0.60)	ND (0.52)
*Discharged on	Gross β	ND (2.0)	ND (0.34)
November 23 rd	H-3	890	960
	Cs-134	ND (0.52)	ND (0.50)
November 17 th , 2022	Cs-137	ND (0.54)	ND (0.61)
*Discharged on	Gross β	ND (0.65)	ND (0.36)
November 22 nd	H-3	840	910
	Cs-134	ND (0.57)	ND (0.62)
November 16 th , 2022	Cs-137	ND (0.65)	ND (0.69)
*Discharged on	Gross β	ND (1.9)	ND (0.39)
November 21 st	H-3	890	950
	Cs-134	ND (0.59)	ND (0.69)
November 15 th , 2022	Cs-137	ND (0.73)	ND (0.50)
*Discharged on	Gross β	ND (1.8)	ND(0.34)
November 20 th	H-3	930	1000
	Cs-134	ND (0.72)	ND (0.62)
November 14 th , 2022	Cs-137	ND (0.47)	ND (0.67)
*Discharged on November 19 th	Gross β	ND (2.1)	ND (0.35)
	H-3	910	990
	Cs-134	ND (0.58)	ND (0.71)
November 13 th , 2022	Cs-137	ND (0.69)	ND (0.61)
*Discharged on	Gross β	ND (1.9)	ND (0.30)
November 18 th	H-3	890	940
	Cs-134	ND (0.61)	ND (0.54)
November 12 th , 2022	Cs-137	ND (0.73)	ND (0.61)
*Discharged on	Gross β	ND (1.8)	ND (0.33)
November 17 th	H-3	870	920
	Cs-134	ND (0.56)	ND (0.41)
November 10 th , 2022	Cs-137	ND (0.65)	ND (0.54)
*Discharged on	Gross β	ND (1.6)	0.48
November 15 th	H-3	840	890
	Cs-134	ND (0.75)	ND (0.53)
November 9 th , 2022	Cs-137	ND (0.65)	ND (0.77)
*Discharged on	Gross β	ND (0.59)	ND(0.37)
November 14 th	H-3	820	880
November 8 th , 2022	Cs-134	ND (0.75)	ND (0.58)
	Cs-137	ND (0.60)	ND (0.67)
*Discharged on November 13 th	Gross β	ND (1.9)	ND (0.36)

	H-3	810	900
	Cs-134	ND (0.52)	ND (0.47)
November 7 th , 2022	Cs-137	ND (0.69)	ND (0.73)
*Discharged on	Gross β	ND (2.1)	ND (0.38)
November 12 th	H-3	810	850
	Cs-134	ND (0.55)	ND (0.52)
November 6 th , 2022	Cs-137	ND (0.69)	ND (0.70)
*Discharged on	Gross β	ND (1.8)	ND (0.36)
November 11 th	H-3	740	770
	Cs-134	ND (0.56)	ND (0.61)
November 5 th , 2022	Cs-137	ND (0.73)	ND (0.58)
*Discharged on	Gross β	ND (1.9)	ND (0.35)
November 10 th	H-3	770	840
	Cs-134	ND (0.57)	ND (0.64)
November 4 th , 2022	Cs-137	ND (0.54)	ND (0.61)
*Discharged on	Gross β	ND (2.0)	ND(0.36)
November 9 th	H-3	800	840
	Cs-134	ND (0.70)	ND (0.73)
November 3 rd , 2022	Cs-137	ND (0.77)	ND (0.76)
*Discharged on	Gross β	ND (1.7)	ND (0.38)
November 8 th	H-3	760	810
	Cs-134		
November 2 nd , 2022		ND (0.61)	ND (0.67)
	Cs-137	ND (0.67)	ND (0.79)
*Discharged on November 7 th	Gross β	ND (1.5)	ND (0.38)
	H-3	750	820
November 1 st , 2022	Cs-134	ND (0.53)	ND (0.58)
-	Cs-137	ND (0.67)	ND (0.58)
*Discharged on November 6 th	Gross β	ND (0.69)	ND (0.36)
	H-3	760	830
Ostobor 24st 2022	Cs-134	ND (0.61)	ND (0.59)
October 31 st , 2022	Cs-137	ND (0.76)	ND (0.61)
*Discharged on November 5 th	Gross β	ND (1.6)	ND (0.59)
November	H-3	720	780
O 1 1 00th coop	Cs-134	ND (0.54)	ND (0.64)
October 30 th , 2022	Cs-137	ND (0.65)	ND (0.66)
*Discharged on November 4 th	Gross β	ND (1.8)	ND (0.34)
1404CHIDOL 4	H-3	690	770
0.4.1	Cs-134	ND (0.79)	ND (0.58)
October 29 th , 2022	Cs-137	ND (0.69)	ND (0.70)
*Discharged on November 3 rd	Gross β	ND (1.7)	ND (0.33)
Novellinei 3	H-3	710	760

O 1 1 00th	Cs-134	ND (0.69)	ND (0.71)
October 28 th , 2022	Cs-137	ND (0.65)	ND (0.58)
*Discharged on November 2 nd	Gross β	ND (0.63)	ND (0.32)
November 2**	H-3	720	760

- * * ND: represents a value below the detection limit; values in () represent the detection limit.
- * In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.
- * Third-party organization : Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

(Unit: Bq/L)

	Detected	Analytical body		
Date of sampling	nuclides	JAEA	TEPCO	Japan Chemical Analysis Center
	Cs-134	ND (0.0029)	ND (0.0047)	ND (0.0062)
	Cs-137	0.0030	ND (0.0039)	ND (0.0050)
October 1 st ,2022	Gross α	ND (0.43)	ND (2.5)	ND (1.8)
October 1 ,2022	Gross β	ND (0.47)	ND (0.59)	ND (0.57)
	H-3	590	580	590
	Sr-90	ND (0.0050)	ND(0.0032)	ND (0.0061)

^{*} ND: represents a value below the detection limit; values in () represent the detection limit.

(Reference) (Unit: Bq/L)

Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	_	_	_
Gross β	3 (1) *	_	_
H-3	1,500	60,000	10,000
Sr-90	_	30	10

 $[\]divideontimes$ The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.

The reference table shows the values of operational targets before discharge. Since the values after discharge contain natural radioactive materials in seawater, there will be differences between the values and the operational targets values.

Results of analysis on the seawater sampled near the discharge point (North side of Units 5 and 6 discharge channel)

Date of sampling	Detected nuclides	Sampling point (South discharge channel)
September5 th , 2022	Cs-134	ND (0.72)
	Cs-137	ND (0.51)
*Sampled before discharge of purified	Gross β	9.1
groundwater.	H-3	ND (0.31)

Results of analyses on the water quality of the groundwater pumped up for bypassing at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

			(Unit: Bq/
Data of complice		Analytic	cal body
Date of sampling *Date of discharge	Detected nuclides	TEPCO	Third-party organization
41-	Cs-134	ND (0.58)	ND (0.53)
November 25 th , 2022	Cs-137	ND (0.69)	ND (0.64)
*Discharged on December 1 st	Gross β	ND (0.62)	ND (0.27)
December 1	H-3	51	57
	Cs-134	ND (0.68)	ND (0.67)
November 18 th , 2022	Cs-137	ND (0.60)	ND (0.52)
*Discharged on November 23 th	Gross β	ND (0.64)	ND (0.32)
November 25***	H-3	63	63
	Cs-134	ND (0.56)	ND (0.57)
November 10th, 2022	Cs-137	ND (0.69)	ND (0.55)
*Discharged on November 17 th	Gross β	ND (0.56)	ND (0.30)
November 17	H-3	62	66
1	Cs-134	ND (0.71)	ND (0.58)
November 2 nd , 2022	Cs-137	ND (0.72)	ND (0.63)
*Discharged on November 7 th	Gross β	ND (0.60)	ND (0.32)
November /**	H-3	52	56

^{* *} ND: represents a value below the detection limit; values in () represent the detection limit

^{*} In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.

^{*} Third-party organization: Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

(Unit: Bq/L)

			Analytical body	
Date of sampling	Detected nuclides	JAEA	TEPCO	Japan Chemical Analysis Center
	Cs-134	ND (0.0024)	ND (0.0049)	ND (0.0063)
	Cs-137	ND (0.0020)	ND (0.0041)	ND (0.0048)
October 5 th , 2022	Gross α	ND (0.50)	ND (3.8)	ND (1.8)
October 5 , 2022	Gross β	ND (0.46)	ND (0.71)	ND (0.53)
	H-3	54	52	53
	Sr-90	ND (0.0011)	ND (0.0012)	ND (0.0058)

^{*} ND: represents a value below the detection limit; values in () represent the detection limit.

(Reference) (Unit: Bq/L)

Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	_	_	
Gross β	5 (1) *	_	_
H-3	1,500	60,000	10,000
Sr-90	_	30	10

 $[\]divideontimes$ The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.

The reference table shows the values of operational targets before discharge. Since the values after discharge contain natural radioactive materials in seawater, there will be differences between the values and the operational targets values.

Results of analyses on the seawater sampled near the discharge point (Around South Discharge Channel)

Date of sampling %conducted four times a year	Detected nuclides	Sampling point (South discharge channel)
	Cs-134	ND (0.68)
September 5 th , 2022	Cs-137	ND (0.54)
	Gross β	9.6
	H-3	ND (0.32)