Information, March, 2023

To All Missions (Embassies, Consular posts and International Organizations in Japan)

Report on the discharge record and the seawater monitoring results at Fukushima Daiichi Nuclear Power Station during February

The Ministry of Foreign Affairs wishes to provide all international Missions in Japan with a report on the discharge record and seawater monitoring results with regard to groundwater pumped from the sub-drain and groundwater drain systems, as well as, bypassing groundwater pumped during the month of February at Fukushima Daiichi Nuclear Power Station (NPS).

1. Sub-drain and Groundwater Drain Systems

In February purified groundwater pumped from the sub-drain and groundwater drain systems was discharged on the dates shown in Appendix 1. Prior to every discharge, an analysis on the quality of the purified groundwater to be discharged was conducted by Tokyo Electric Power Company (TEPCO) and the results were announced.

All the test results during the month of February have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by third-party organization (Tohoku Ryokka Kankyohozen Co.).

In addition, TEPCO and Japan Atomic Energy Agency (JAEA), at the request of the Government of Japan, regularly conduct more detailed analyses on the purified groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of sampled groundwater was substantially below the operational target (see Appendix 2).

Moreover, TEPCO publishes the results of analyses conducted on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 3). The results show that the radiation levels of seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed.

2. Groundwater Bypassing

In February, the pumped bypassing groundwater was discharged on the dates shown in Appendix 4. Prior to every discharge, an analysis on the quality of the groundwater to be discharged was conducted by TEPCO and the results were announced.

All the test results during the month of February have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by Japan Chemical Analysis Center.

In addition, TEPCO and JAEA, at the request of the Government of Japan, regularly conduct more detailed analyses on the groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of the sampled groundwater were substantially below the operational target (see Appendix 5).

Moreover, TEPCO publishes analysis results on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 6). The result shows that the radiation levels in seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed. The analysis had been conducted once a month until March 2017. Since April 2017, it is conducted four times a year because there has been no significant fluctuation in the concentration of radioactive materials in the sea water, and no influence on the surrounding environment has been confirmed.

The sampling process for analyses conducted this month is the same as the one conducted in the information disseminated last month. Results of the analyses are shown in the attached appendices:

(For further information, please contact TEPCO at (Tel: 03-6373-1111) or refer to the TEPCO's website:

http://www.tepco.co.jp/en/nu/fukushima-np/handouts/index-e.html)

Contact: International Nuclear Energy Cooperation Division, Ministry of Foreign Affairs, Tel 03-5501-8227 Results of analyses on the quality of the purified groundwater pumped from the subdrain and groundwater drain systems at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

	1	(Unit: Bq/L)
Detected	Analytical body	
nuclides	TEPCO	Third-party organization
Cs-134	ND (0.65)	ND (0.62)
Cs-137	ND (0.80)	ND (0.64)
Gross β	ND (0.64)	ND (0.36)
H-3	820	840
Cs-134	ND (0.50)	ND (0.57)
Cs-137	ND (0.77)	ND (0.69)
Gross β	ND (2.0)	ND (0.38)
H-3	830	890
Cs-134	ND (0.59)	ND (0.57)
Cs-137	ND (0.54)	ND (0.55)
Gross β	ND (2.1)	ND (0.37)
H-3	890	910
Cs-134	ND (0.70)	ND (0.60)
Cs-137	ND (0.60)	ND (0.55)
Gross β	ND (2.1)	0.46
H-3	810	880
Cs-134	ND (0.56)	ND (0.54)
Cs-137	ND (0.60)	ND (0.77)
Gross β	ND (0.68)	ND (0.36)
H-3	870	930
Cs-134	ND (0.68)	ND (0.65)
Cs-137	ND (0.77)	ND (0.49)
Gross β	ND (1.8)	ND (0.37)
H-3	980	990
Cs-134	ND (0.52)	ND (0.59)
Cs-137	ND (0.65)	ND (0.64)
Gross β	ND (1.9)	ND (0.45)
H-3	960	1000
Cs-134	ND (0.56)	ND (0.53)
Cs-137	ND (0.73)	ND (0.50)
	Cs-134 Cs-137 Gross β H-3 Cs-137 Gross β H-3 Cs-137 Gross β H-3 Cs-137 Gross β H-3 Cs-134 Cs-137 Gross β H-3 Cs-134 C	Detected TEPCO Cs-134 ND (0.65) Cs-137 ND (0.80) Gross β ND (0.64) H-3 820 Cs-134 ND (0.50) Cs-137 ND (0.77) Gross β ND (0.77) Gross β ND (0.59) Cs-134 ND (0.59) Cs-137 ND (0.54) H-3 830 Cs-137 ND (0.54) Gross β ND (2.1) H-3 890 Cs-134 ND (0.70) Cs-137 ND (0.60) Gross β ND (2.1) H-3 810 Cs-134 ND (0.60) Gross β ND (0.60) Gross β ND (0.68) H-3 870 Cs-134 ND (0.68) H-3 870 Cs-134 ND (0.68) H-3 870 Cs-134 ND (0.68) H-3 980 Cs-134 ND (0.52)

(Unit: Ba/L)

February 17 th	Gross β	ND (1.7)	ND (0.4)
	H-3	1000	1100
	Cs-134	ND (0.65)	ND (0.55)
February 10 th , 2023	Cs-137	ND (0.69)	ND (0.45)
*Discharged on	Gross β	ND (0.64)	0.48
February 15 th	H-3	900	990
	Cs-134	ND (0.45)	ND (0.46)
February 8 th , 2023	Cs-137	ND (0.47)	ND (0.68)
*Discharged on	Gross β	ND (1.7)	ND (0.36)
February 13 th	H-3	960	970
	Cs-134	ND (0.50)	ND (0.76)
February 6 th , 2023	Cs-137	ND (0.69)	ND (0.72)
*Discharged on	Gross β	ND (1.8)	ND (0.37)
February 11 th	H-3	920	970
	Cs-134	ND (0.78)	ND (0.66)
February 4 th , 2023	Cs-137	ND (0.73)	ND (0.64)
*Discharged on February 9 th	Gross β	ND (2.0)	ND (0.46)
rebluary 9	H-3	840	910
	Cs-134	ND (0.80)	ND (0.58)
February 2 nd , 2023	Cs-137	ND (0.65)	ND (0.61)
*Discharged on February 7 th	Gross β	ND (0.68)	ND (0.36)
	H-3	840	910
Lanuary 24st 0000	Cs-134	ND (0.67)	ND (0.65)
January 31 st , 2023	Cs-137	ND (0.69)	ND (0.55)
*Discharged on February 5 th	Gross β	ND (1.6)	ND (0.38)
, .	H-3	850	870
January 29 th , 2023	Cs-134	ND (0.76)	ND (0.54)
-	Cs-137	ND (0.65)	ND (0.61)
*Discharged on February 3 rd	Gross β	ND (2.0)	ND (0.38)
	H-3	930	930
January 28 th , 2023	Cs-134	ND (0.61)	ND (0.62)
-	Cs-137	ND (0.54)	ND (0.74)
*Discharged on February 2 nd	Gross β	ND (2.0)	ND (0.39)
	H-3	1000	1100

- * * ND: represents a value below the detection limit; values in () represent the detection limit.
- * In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.
- * Third-party organization : Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

				(Unit: Bq/L)	
	Detected		Analytical body		
Date of sampling	nuclides	JAEA	TEPCO	Japan Chemical Analysis Center	
	Cs-134	ND (0.0033)	ND (0.0050)	ND (0.0055)	
	Cs-137	0.0024	0.0058	ND (0.0048)	
January 1 st ,2023	Gross α	ND (0.41)	ND (2.5)	ND (2.3)	
January 1 ,2023	Gross β	ND (0.46)	ND (0.62)	ND (0.54)	
	H-3	840	820	850	
	Sr-90	0.0066	ND (0.0024)	0.0089	

 * ND: represents a value below the detection limit; values in () represent the detection limit.

(Reference)

(Unit: Bq/L)

Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	—	—	—
Gross β	3 (1) *	—	—
H-3	1,500	60,000	10,000
Sr-90	_	30	10

- % The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.
- The reference table shows the values of operational targets before discharge. Since the values after discharge contain natural radioactive materials in seawater, there will be differences between the values and the operational targets values.

Results of analysis on the seawater sampled near the discharge point (North side of Units 5 and 6 discharge channel)

(Unit: Bq/L)

Date of sampling	Detected nuclides	Sampling point (South discharge channel)
December 8 th , 2022	Cs-134	ND (0.66)
*Compled before	Cs-137	ND (0.79)
*Sampled before discharge of purified	Gross β	11
groundwater.	H-3	ND (0.30)

Results of analyses on the water quality of the groundwater pumped up for bypassing at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

			(Unit: Bq/L
Data of compling		Analytical body	
Date of sampling *Date of discharge	Detected nuclides	TEPCO	Third-party organization
	Cs-134	ND (0.45)	ND (0.54)
February 17 th , 2023	Cs-137	ND (0.54)	ND (0.67)
*Discharged on February 22 nd	Gross β	ND (0.66)	ND (0.32)
February 22 ^{ma}	H-3	51	52
	Cs-134	ND (0.63)	ND (0.67)
February 10 th , 2023	Cs-137	ND (0.73)	ND (0.52)
*Discharged on	Gross β	ND (0.69)	ND (0.33)
February 15 th	H-3	50	50
	Cs-134	ND (0.56)	ND (0.66)
February 3 rd , 2023	Cs-137	ND (0.60)	ND (0.66)
*Discharged on	Gross β	ND (0.63)	ND (0.36)
February 8 th	H-3	41	49

* * ND: represents a value below the detection limit; values in () represent the detection limit

* In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.

* Third-party organization: Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

P				(Unit: Bq/L)
		Analytical body		
Date of sampling	Detected nuclides	JAEA	TEPCO	Japan Chemical Analysis Center
	Cs-134	ND (0.0023)	ND (0.0045)	ND (0.0065)
	Cs-137	ND (0.0021)	0.0046	ND(0.0052)
January 7 th ,	Gross α	ND (0.49)	ND (2.5)	ND (2.3)
2023	Gross β	ND (0.48)	ND (0.59)	ND (0.55)
	H-3	52	52	53
	Sr-90	ND (0.0012)	ND (0.0015)	ND (0.0058)

 * ND: represents a value below the detection limit; values in () represent the detection limit.

(Reference)			(Unit: Bq/L)
Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	_	_	_
Gross β	5 (1) *	_	_
H-3	1,500	60,000	10,000
Sr-90	_	30	10

% The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.

The reference table shows the values of operational targets before discharge. Since the values after discharge contain natural radioactive materials in seawater, there will be differences between the values and the operational targets values. Results of analyses on the seawater sampled near the discharge point (Around South Discharge Channel)

|--|

Date of sampling ※conducted four times a year	Detected nuclides	Sampling point (South discharge channel)
	Cs-134	ND (0.60)
December 8 th , 2022	Cs-137	ND (0.54)
	Gross β	12
	H-3	ND (0.30)