

(Provisional Translation)

Guidance on Introduction of
Software Bill of Materials (SBOM)

for Software Management

ver. 2.0

Cybersecurity Division
Commerce and Information Policy Bureau
Ministry of Economy, Trade and Industry

August 29, 2024

Table of Contents

1. Background and objectives.. 3

1.1. Background .. 3
1.2. Objectives .. 6
1.3. Main target readers ... 7
1.4. Main target software .. 8
1.5. How to use ... 8
1.6. Summary of this Guidance .. 10

2. Overview of SBOM .. 13

2.1. What is SBOM? ... 13
2.2. Benefits of SBOM ... 16
2.3. “Minimum Elements” of SBOM ... 23
2.4. SBOM formats (Examples) .. 25
2.5. Myths and facts ... 34

3. Basic guidance and overall view on SBOM introduction 38

3.1. Basic guidance for SBOM introduction ... 38
3.2. SBOM introduction process ... 38

4. Environment and system development phase 40

4.1. Clarification the scope of the SBOM application 40
4.2. SBOM tools selection .. 45
4.3. SBOM tools installation ... 52
4.4. Learning about SBOM tools ... 54

5. SBOM production and sharing phase .. 55

5.1. Component analysis ... 55
5.2. SBOM production ... 60
5.3. SBOM sharing ... 62

6. SBOM use and management phase .. 64

6.1. Vulnerability management, license management, etc. 64
6.2. SBOM information management .. 67

7. Specification of Vulnerability Management Process 69

7.1. Purpose ... 69

ii

7.2. Challenges and issues in vulnerability management 69
7.3. Overview of the entire process .. 70
7.4. Procedures and methods for each phase ... 72

8. Appendix: SBOM Compliance Model ... 103

8.1. Purpose and background .. 103
8.2. SBOM visualization framework and Compliance Model 105
8.3. SBOM Compliance Model and utilization methods 114
8.4. Reference example of SBOM Compliance Model (Automotive Sector) ... 119
8.5. Reference example of SBOM Compliance Model (Software Product Sector)
 .. 130
8.6. Reference example of SBOM Compliance Model (Medical Device Sector)
 .. 139
8.7. Cross-sector comparison of the SBOM Compliance Models (Draft) 152

9. Appendix: SBOM Contract Model .. 154

9.1. Background and purpose (problem awareness) 154
9.2. Overview ... 155
9.3. Concept of the Contract Model ... 156
9.4. SBOM Contract Model... 157
9.5. Relationship and positioning of the SBOM Compliance Model and the
SBOM Contract Model ... 160
9.6. Relationship with existing model contracts 161
9.7. Utilization patterns .. 162
9.8. Challenges and future directions for consideration 163

10. Appendix .. 164

10.1. Checklist of actions for the introduction of SBOM 164
10.2. Glossary ... 168
10.3. Reference information .. 172

3

1. Background and objectives

1.1. Background

As industrial activities become more service-oriented, the importance of software
in industry is increasing. In recent years, software has been increasingly
implemented to control industrial machinery, automobiles, etc. In IoT devices and
services and 5G technology, a variety of added values are expected to be created
by building hardware systems with general-purpose devices and then adding
various functions through software.

To ensure the safety and security of software used by consumers, as well as
software used by companies, it is necessary to properly manage the vulnerabilities
of that software. Even if the software is configured not to contain vulnerabilities in
the planning and design stages, vulnerabilities may be discovered after the product
is shipped. In such cases, the party utilizing the software is required to update the
software and take other measures. In addition, when maintenance and support
end for software used in the company's products and services, the company is
required to consider the management of vulnerabilities discovered thereafter,
including the possibility of changing to alternative software. However, as the
software supply chain becomes more complex and the use of open-source software
(OSS) becomes more common, it is difficult to know what kind of software is
included as a component, even if the software is used in the company's own
products. Many organizations manage the software used in their IT systems as
assets, but only the upper-level components directly used by developers are
subject to asset management, while many of the lower-level components that are
indirectly used within the directly used components are not subject to asset
management. Therefore, when vulnerabilities are discovered in components such
as OSS that are used as lower-level components, it is not possible to determine
the effects of indirect vulnerabilities by simply comparing vulnerability information
with the asset management ledger.

Software Bill of Materials (SBOM) has been attracting attention as a method to
solve the problems of both software developers and users regarding software
vulnerability management. An SBOM is a formal, machine-readable inventory of
software components and dependencies, information about those components,
and their hierarchical relationships. The SBOM may contain the name and version
information of the components included in the software, the developer of the
components, and other information, and contain information about proprietary

4

software as well as OSS. The mutual sharing of SBOM across organizations from
upstream to downstream in the software supply chain is expected to increase the
transparency of the software supply chain, and to be one solution to the issue of
component vulnerability management. SBOM began attracting attention through
Proof-of-Concepts (PoC) launched in July 2018 by the U.S. Department of
Commerce's National Telecommunications and Information Administration (NTIA)
and has been increasingly popular worldwide, with an executive order signed by
U.S. President Biden1 in May 2021. A survey conducted by the Linux Foundation
of 412 global organizations in the third quarter of 20212 found that 48% of
organizations surveyed have deployed an SBOM. The Linux Foundation estimates
that the adoption rate will be 78% in 2022 and 88% in 2023, based on the SBOM
readiness and planning status of the surveyed organizations.

In Japan, the Ministry of Economy, Trade and Industry (METI) established the Task
Force for Evaluating Software Management Methods, etc. toward Ensuring
Cyber/Physical Security (Software Task Force) in September 2019, and has since
made extensive discussions on software management methods including SBOM.
Through the discussions of the Software Task Force, the following issues were
raised as essential considerations for the implementation of SBOM: cost-
effectiveness of SBOM introduction, issues related to sharing SBOM in the supply
chain, issues related to contracts when managing SBOM, and issues related to the
implementation of SBOM in small and medium-sized enterprises. Considering these
issues, METI conducted PoC from 2021 for SBOM introduction and beyond and
evaluated the costs and benefits of SBOM introduction in several industrial sectors.
The FY2021 PoC targeted software for automated driving system development,
while the FY2022 PoC focused on dental CTs in the medical device field, heater
controllers in the automotive field, and network threat detection software in the
software field. Through these PoC, the following benefits and effects of SBOM were
confirmed, especially the benefits for software vulnerability management and
license management, which may result in the benefit of increased development
productivity.

 Comparing the workloads for manual component management and the

1 Executive Order on Improving the Nationʼs Cybersecurity
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-
on-improving-the-nations-cybersecurity/
2 Linux Foundation, The State of Software Bill of Materials (SBOM) and Cybersecurity Readiness
https://www.linuxfoundation.org/tools/the-state-of-software-bill-of-materials-sbom-and-
cybersecurity-readiness/

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.linuxfoundation.org/tools/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness/
https://www.linuxfoundation.org/tools/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness/

5

workloads for management using an SBOM, the workloads for the latter are
smaller. When implementing an SBOM, the initial workloads are large, but
the burden can be reduced by using SBOM tools3.

 By creating and managing an SBOM, it is possible to shorten the lead time
needed to identify the impact of vulnerabilities in software components when
they are discovered, eventually leading to a reduction in the risk of residual
vulnerabilities and in workloads required to respond to vulnerabilities. By
utilizing commercial SBOM tools, dependencies between different pieces of
OSS and recursive use of OSS (reused components) can also be efficiently
detected and managed.

 By creating and managing an SBOM, license information for components
included in software can be checked to prevent negligence in compliance.,
thus reducing the risk of license violations and the workloads required for
license management. In particular, the SBOM tool enables more efficient
license management because it allows users to utilize functions for
compliance., such as displaying the contents of each license and warning of
licenses that require attention.

On the other hand, the following issues were identified regarding SBOM
introduction:

 If the overall configuration of the target software system is not understood,
the scope of application of the SBOM tool cannot be properly set and effective
risk management cannot be implemented.

 Workloads are required to learn and develop the environment to implement
SBOM tools.

 OSS SBOM tools require many workloads to implement due to a lack of
information about environmental maintenance and learning. In addition,
there are many things to be aware of when using such tools, such as
insufficient detection of recursively used components, limitations on SBOM
formats that can be handled, and license false negatives.

 Simply applying an SBOM tool may result in undetected components in the
target software.

 The output results of the SBOM tool need to be scrutinized, as there may be

3 In this Guidance, tools that can create, share, utilize, and manage an SBOM are collectively
referred to as “SBOM tools,” which are sometimes called SBOM management tools, OSS
management tools, software configuration analysis (SCA) tools, etc.

6

cases of component false positives, false negatives, and erroneous
vulnerability information.

 The workloads required to scrutinize the output of SBOM tools are significant
because the internal configuration and technologies used for third-party
components are not known.

 Currently, there are few SBOM tools that can read SBOM generated by
different SBOM tools and use them for vulnerability management, making it
difficult to mutually share an SBOM among different SBOM tools.

 It is difficult to determine which vulnerabilities need to be addressed for a
given component and which ones shall be addressed first.

 There is a lack of information on specific methods for managing
vulnerabilities using SBOM, including issues such as vulnerability
identification and response prioritization.

 There is a lack of information on contractual matters to clarify SBOM-related
requirements and responsibilities between the purchaser and supplier in
software development outsourcing and procurement of off-the-shelf
products.

In summary, while it was confirmed that SBOM can be used for efficient software
management, it was also clear that there are various issues that need to be
addressed when implementing an SBOM.

1.2. Objectives

To solve various issues related to the creation, sharing, operation, and
management of SBOM for software management, this Guidance provides basic
information about SBOM, including an overview of SBOM and the benefits of SBOM
introduction, and presents a series of processes for SBOM introduction, including
the establishment of an environment and system for SBOM creation, SBOM
creation and sharing, and SBOM operation and management, at software suppliers.
It also shows the main implementation items in each phase and the key points that
companies shall be aware of when implementing an SBOM to support efficient and
effective SBOM introduction. In addition, it is shown how to visualize the scope of
SBOM coverage and the requirements for contracts. Although this Guidance is
intended primarily for software suppliers, it can also be used and referenced by
companies that procure and use software. As SBOM is a method of software

7

management, the aim should not be to create an SBOM itself, but to use SBOM to
achieve appropriate software management. In response to the recent trend of
increased use of OSS in software development, OSS management is also important
in establishing software security measures. The Ministry of Economy, Trade and
Industry (METI) has published “Collection of Use Case Examples Regarding
Management Methods for Utilizing Open-Source Software and Ensuring Its
Security” 4 as part of documentation concerning OSS management. It is
recommended to refer to this document as well as this Guidance.

1.3. Main target readers

This Guidance mainly targets departments involved in software security at
software suppliers, such as development/design departments and departments in
charge of product security (PSIRT, etc.), as well as in management. For
departments involved in software security, this Guidance describes the process of
SBOM introduction, the main items for SBOM introduction, and points to note when
implementing an SBOM for software management. If it is believed that
management is not fully aware of SBOM as a method of software management, it
is expected to use “1.6 Summary of this Guidance“ to communicate appropriately
with management. For management, this Guidance presents the effects and
benefits of SBOM and the misconceptions and facts about SBOM that can be
referred to when making decisions regarding SBOM introduction. When making
decisions regarding the SBOM introduction, it is expected that the contents of “1.6
Summary of this Guidance“ will be well understood.

“Section 8 (Appendix) SBOM Compliance Model” is intended for development and
operations departments and security departments (PSIRT) as suppliers of software
and SBOM, and for users, procurement departments of development companies,
development departments, quality assurance departments, and security
departments as purchasers of software.

The main intended readers of “Section 9 (Appendix) SBOM Contract Model” are
legal staff and developers involved in transaction contracts that stipulate the
requirements, responsibilities, cost burdens, etc. related to SBOM for those placing

4 Ministry of Economy, Trade and Industry: Collection of Use Case Examples Regarding
Management Methods for Utilizing Open Source Software and Ensuring Its Security
https://www.meti.go.jp/policy/netsecurity/wg1/ossjirei_20220801.pdf

https://www.meti.go.jp/policy/netsecurity/wg1/ossjirei_20220801.pdf

8

and receiving orders for software.

This Guidance is mainly intended for those who are new to SBOM, such as
organizations that are not yet aware of the details of their efforts to implement
SBOM. Related to the above, the content of this Guidance concerning license
management can be used by the legal and intellectual property departments of an
organization. Furthermore, its general content can be used in part by companies
that procure and use software, not just software suppliers. SBOM are used for a
variety of purposes, including vulnerability management, license management,
export management, and patent management, but this document focuses on
vulnerability management and license management.

1.4. Main target software

This Guidance describes the process for implementing an SBOM, mainly for
packaged software and embedded software, as well as the main implementation
items in each process and points to be aware of when introducing an SBOM. While
it is important to manage components that include hardware vulnerabilities, this
guidance focuses on software.

1.5. How to use

Organizations implementing an SBOM are expected to recognize the basic
information about SBOM and confirm the process for SBOM introduction based on
this Guidance. It is also expected that organizations will proceed with the
implementation of an SBOM while confirming the main implementation items in
each step and the points that shall be recognized when implementing the SBOM.

Section 2 provides an overview of the basic SBOM-related issues. Section 3
provides an overview of the basic guidelines for introducing SBOM and the overall
introduction process. Section 4 provides an overview of the implementation issues
related to the initial introduction of SBOM. Sections 5 and 6 provide an overview
of the implementation issues related to the SBOM creation and sharing phase and
the operation and management phase for each project after the initial introduction.
Since there are issues with the current vulnerability DB environment when using
SBOM to identify and prioritize vulnerabilities, it is expected that organizations will
select and customize a method that suits their organization, referring to the

9

solutions and know-how presented in Section 7. Section 8 (Appendix) can be used
as a framework for visualizing the scope of SBOM and indicating the management
level. Section 9 (Appendix) can be used as a reference for clearly stipulating the
requirements and responsibilities of the parties involved in a contract. Section 10.1
(Appendix) provides a checklist of the items to be implemented at each step of the
SBOM introduction process, and it is recommended that this be referred to when
acting toward SBOM introduction.

10

1.6. Summary of this Guidance

《Key points of this Guidance》

 Software security threats that can affect business operations have increased
dramatically in recent years.

 The Software Bill of Materials (SBOM), a method of software management, is
attracting attention in response to the threats, and the number of companies
adopting it is increasing worldwide.

 SBOM can reduce the risk and cost of managing software vulnerabilities and
licenses.

 It is expected that this Guidance will be used to accelerate efforts to implement
SBOM for software management.

《Background and outline of this Guidance》
[Threats to the software supply chain]
 As software supply chains become more complex and the use of open-source

software (OSS) becomes more common, security threats to software have
increased dramatically in recent years. Apache Log4j vulnerabilities discovered
in December 2021 have had a worldwide impact. According to data, from 2019
to 2022, the average annual growth rate of software supply chain attacks
reached 742%.

 Software security threats have a significant impact on business operations. For
example, average companies affected by SolarWinds cyberattacks lost
approximately 11% of their annual revenue, and in some cases, remaining
vulnerabilities in products have led to product recalls and sales suspensions.

 In response to increasing threats to software, it is important to implement
software management efficiently and effectively, such as properly managing
vulnerabilities contained in software and promptly responding to vulnerabilities
when they are revealed.

[Benefits of using SBOM in software management]
 The Software Bill of Materials (SBOM) has been attracting attention as a method

for efficiently managing software developed through the supply chain. The
SBOM is a machine-processable list that includes information about software
components and their dependencies. The number of companies implementing
an SBOM is increasing worldwide. Regulations and institutionalization are also
beginning to be considered, with SBOM being recommended in some fields,

11

such as the medical device sector.
 While software management requires an enormous amount of information, the

implementation of a machine-readable SBOM can reduce the cost and workload
required for software management, which in turn leads to higher development
productivity. In fact, in a Proof-of-Concept (PoC) conducted in the medical
device sector by the METI, vulnerability management using SBOM reduced
management workloads by about 70% compared to manual management.

 In addition, as a benefit to vulnerability management, the creation and ongoing
management of SBOM is expected to increase software transparency and
reduce the risk of residual vulnerabilities, as well as increase the efficiency of
vulnerability response through the supply chain.

 For this reason, it is hoped that introducing SBOM through the supply chain and
effectively sharing the burden of components management and vulnerability
response between the companies involved in development and operation will
eliminate the burden on vendors and improve efficiency overall.

 Furthermore, as an advantage in license management, SBOM will help reduce
the risk of license violations by managing OSS license information.

[Points to using this Guidance]
 To support efficient and effective SBOM introduction by companies, this

Guidance provides basic information about SBOM and presents the main
implementation items for SBOM introduction and points to be aware of when
implementing an SBOM.

 For efficient and effective software management, it is expected that
management will use this Guidance to make decisions regarding the
implementation of the SBOM and that departments involved in software security
will take concrete steps for SBOM introduction.

12

Column: Key indices for software security threats
Security threats to software have grown in recent years as software supply chains
become more complex and the use of OSS becomes more common. Below are some
key figures that illustrate the current state of software security threats in recent
years.

84%: Percentage of code bases containing vulnerabilities
According to a survey of 1,700 codebases published by Synopsys in 2023, the
percentage of codebases containing OSS was 96%. Of those, 84% of the codebases
contained at least one vulnerability5.

62％︓Percentage of companies that suffered software supply chain attacks
in 2021
According to a survey published by Anchore in 2022 that covered 428 companies in
North America, the EU, and the UK, 62% of companies were affected by software
supply chain attacks in the past year6.

↑742%︓Average annual increase in software supply chain attacks from
2019 to 2022
According to a study published by Sonatype in 2023, the average annual increase
in software supply chain attacks over the three-year period from 2019 to 2022 was
742%, exceeding 88,000 attacks in 2022. With 216 attacks from February 2015 to
June 2019, the number of software supply chain attacks has increased exponentially
in recent years7.

↓11％︓Impact of the SolarWinds cyberattack on company revenues
According to IronNet's 2021 survey of 473 companies in the U.S., U.K., and
Singapore, 85% of the companies were affected by SolarWinds cyberattacks, which
cost them on average about 11% of their annual revenue8.

5 Synopsys, 2023 Open Source Security and Risk Analysis Report
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-
risk-analysis.html
6 Anchore, 2022 Security Trends: Software Supply Chain Survey
https://anchore.com/blog/2022-security-trends-software-supply-chain-survey/
7 Sonatype, 8th Annual State of the Software Supply Chain Report
https://www.sonatype.com/state-of-the-software-supply-chain/implementation
8 IronNet, 2021 Cybersecurity Impact Report
https://www.ironnet.com/hubfs/IronNet-2021-Cybersecurity-Impact-Report-June2021.pdf

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://anchore.com/blog/2022-security-trends-software-supply-chain-survey/
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://www.ironnet.com/hubfs/IronNet-2021-Cybersecurity-Impact-Report-June2021.pdf

13

2. Overview of SBOM

2.1. What is SBOM?

The SBOM is a formal, machine-readable inventory of software components and
dependencies, information about those components, and their hierarchical
relationships. The SBOM may contain the name and version information of the
components included in the software, the developer of the components, and other
information, and contain information about proprietary software as well as OSS.
The mutual sharing of SBOM across organizations from upstream to downstream
in the software supply chain is expected to increase the transparency of the
software supply chain, and to be one solution to the issue of component
vulnerability management.

To flesh out the SBOM, consider the following simplified scenario:

 Company A developed a software named Application using two components—
Company B's Browser and Community P's Protocol.

 Company B's Browser uses a component of Compression Engine developed by
Mr. C.

 Company B created its own SBOM for the browser and shared it with Company
A. However, because Company A was unable to obtain the SBOM information
about Mr. C's and Community P's components, Company A created an SBOM of
Mr. C's and Community P's components.

The relationships among the players and components in this scenario can be
represented as shown in Figure 2-1. As shown in this figure, many SBOM entities
play the role of software suppliers as well as consumers of the SBOM shared with
others. That is, in addition to utilizing information in an SBOM obtained from
another entity, the first entity may also play a role in creating an SBOM related to
the newly developed components and sharing the SBOM with other entities. Ideally,
the supplier of a software component shall also be the author of the corresponding
SBOM, but this is not always the case in the current situation where SBOM are not
yet completely widespread. In this scenario, since Company B created the SBOM
in-house, the supplier of a browser component and the SBOM author for the
component are the same. In the case of a protocol, however, since Community P
did not create the SBOM, but Company A did, then the supplier is Community P,

14

while the SBOM author is Company A.

Figure 2-1 Relationship between players in the scenario

In the above scenario, the conceptual image of the SBOM to be created by
Company A is given in Table 2-1. This image lists its supplier, version, component
name, SBOM author, etc. for each component. By creating an SBOM, it is possible
to identify and manage when and by whom each component was developed, what
implementation it has with other components, and who created the SBOM for that
component. When a vulnerability in a particular component is revealed, this allows
the system to immediately recognize which components are affected by the
vulnerability, allowing for a quick response to the vulnerability. The mutual sharing
of an SBOM across organizations will make information about each component
visible and contribute to improving the transparency of the software supply chain.

Community P

SBOM Consumer

Supplier

SBOM Author

Supplier
SBOM Consumer

SBOM

Company A

Mr. C Company B

Included in Included in

Included in

SBOM

・・・

Final SBOM consumer
（End user）

Compression
Engine Browser

Protocol

Application

・・・

15

Table 2-1 Image of an SBOM in the scenario (matrix form)

The SBOM in Table 2-1, which is based on the simplified scenario above is only an
image, and with this level of description, there may be no need to dare to manage
it as an SBOM. However, the actual software is developed under a complex structure
rather than a simple supply chain structure depicted in Figure 2-1. An actual SBOM
will include not only proprietary software but also components developed by others,
each of which will have complex implementation. Therefore, to improve software
risk management and transparency in the software supply chain, it is important to
use an SBOM to manage information about components in software, including their
dependencies.

Column: Analogy between SBOM and food labeling
The SBOM is like the food label on food packaging. By reading food labels that
visualize ingredients contained in food products, it is possible to prevent health
hazards due to allergic accidents and to respond to food contraindications. Take
macaroni salad as an example. As a result of manufacturing and processing,
through the food supply chain, a food label is created as shown in Figure 2-2, which
indicates ingredients. Like food labeling, an SBOM is a list of information regarding
components contained in software, and the visualization of this information
facilitates vulnerability response and risk management. Just as food labeling
contributes to transparency in the food supply chain, SBOM contribute to
transparency in the software supply chain. Note that, however, SBOM are more
complex lists than food labeling as they include not only component names but also
their versions and implementation. It shall also be noted that many SBOM are
dynamically modified even after they are created, so it is important for SBOM users
to manage them.

TimestampAuthor of
SBOM
data

Dependency
Relationship

Other
unique
identifier

Version of
the
component

Component
name

Supplier
name

ID

05-09-2022
13:00:00

Company
A

Primary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company
B

Included in
Application

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company
A

Included in
Browser

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company
A

Included in
Application

5342.2ProtocolCommunity
P

4

16

Figure 2-2 Conceptual image of the food supply chain and food labeling

2.2. Benefits of SBOM

As shown in Table 2-2, there are three typical benefits of SBOM introduction:
vulnerability management, license management, and increased development
productivity. In addition to the direct benefits of vulnerability management, license
management, and improved development productivity, each of these benefits has
indirect benefits in product value and corporate value.

Table 2-2 Benefits of SBOM
Benefit Item Description

Vulnerability
management

Direct
benefits

Reduce residual
vulnerability risks

Collecting vulnerability
information and matching it
with SBOM information to
detect vulnerabilities can
reduce the risk of residual
vulnerabilities in software.

Reduce
vulnerability
response time

SBOM tools can be used to
detect new vulnerabilities in
real-time and determine their
impact, thereby shortening

Foods
Company M

Farmer C
Macaroni S.p.A.

（Italy） XX Foods Co.

Farmer T

Farmer K

Food
labelling

・・・

Macaroni saladName

Macaroni (contains wheat, made in Italy),
mayonnaise (contains egg), cucumber, carrot, onion,
ham (contains pork), salt

Raw
material
name

Seasoning (amino acid), phosphate (Na), antioxidant
(V.C), casein sodium (from milk and soybeans),
coloring agent (sodium nitrite)

Additives

200gContent
amount

mm, dd, yyyyConsumpt
ion period

Refrigeration required (Store at 10°C or below)Preservati
on metho

XX Foods Co.
1-1-1, XX-1-1, XX-ku, XX-shi, XX

Manufactu
rer

17

Benefit Item Description
the initial response time.

Reduce cost of
vulnerability
management

Automated management
using SBOM tools reduces
management costs compared
to manual management.

Indirect
benefit

Increase
product/corporate
value

Reduced vulnerabilities in
products and faster
vulnerability responses
increase the value of the
product and the company.

Improve cyber
hygiene

More products with fewer
vulnerabilities improve the
overall security of cyberspace.
(Reducing the risk of attacks
through steppingstone
exploits.)

License
management

Direct
benefit

Reduce risks of
license violations

Risks of license violations due
to failure to identify OSS can
be reduced.

Reduce costs of
license
management

Compared to manual
management, automated
management using SBOM
tools reduces administrative
costs.

Indirect
benefit

Increase
product/corporate
values

Reduced risks of product
license violations increase the
value of the product and the
company.

Development
productivity

Direct
benefits

Prevented
development
delays

Early identification of
component problems prevents
development delays.

Reduce
development
costs

Early identification of
component problems reduces
response costs.

Cut development
time

When selecting components
to be used, workloads related

18

Benefit Item Description
to the selection are reduced
by referring to past SBOM for
similar products.

Improving
efficiency of
compliance

Efficiency improvements in
areas such as certification,
laws and regulations
compliance, and export
control management.

Improving
motivation in the
workplace

Improvements motivation in
the workplace, as a result of
increased efficiency and
productivity.

Of the benefits of SBOM introduction, the most notable are the benefits of
vulnerability management, i.e., the series of vulnerability response processes that
detect, prioritize, fix, and mitigate software vulnerabilities. Most software in recent
years has been developed under a complex supply chain structure that includes
not only proprietary software developed in-house but also many components
developed by other companies and the OSS community. These components often
have complex hierarchical structures and implementation. For example, if a Java
application uses Apache Log4j as a component, Log4j is positioned as a
subordinate component and may be difficult to identify through normal component
management. However, even a subordinate component may have security
implications if the component contains vulnerabilities.

To reduce the residual risk of vulnerabilities, it is important to effectively implement
continuous monitoring of vulnerabilities based on information about the
components in use. In this regard, by implementing an SBOM and checking each
component against the vulnerability database, it is possible to efficiently check for
known vulnerabilities and, as a result, reduce the risk of residual vulnerabilities in
the software. Also, when a new vulnerability is revealed for a certain component,
if organizations do not manage their software using an SBOM, organizations may
not know whether their software contains that component or not, and they may
be affected by the vulnerability without knowing it. As shown in Figure 2-3, if an
SBOM is in place when a vulnerability is revealed in a component, the impact of
the vulnerability can be immediately recognized, and the time required to address
the vulnerability can be reduced. In addition, by sharing information about

19

software with partner companies, organizations affected by vulnerabilities, and
software users, the time required to address vulnerabilities can be shortened. It
will also contribute to the understanding of the actual situation when components
are rewritten or added illegally by third parties in the supply chain. Furthermore,
by utilizing SBOM for inter-organizational sharing, the workloads required for
sharing software information can be reduced.

Figure 2-3 Benefits of reducing vulnerability response time
by implementing an SBOM

Introducing an SBOM can reduce the cost of vulnerability management. Figure
2-4 shows the results of the cost evaluation of vulnerability management using
SBOM in a medical device PoC conducted in FY2022. Here, it is assumed that the
target software has about 80 components and the unit cost of workloads is
\10,000 per hour. In the PoC, management by SBOM was performed using an
SBOM tool. Manual component management requires manually identifying a list
of components. It is necessary to manually search the vulnerability information
database (e.g., NIST NVD) to check whether each component contains

W
it

ho
ut

 S
BO

M

！

！！
！
！

！

！

！

！

Operator

Parts

Component

Final product

W
it

h
SB

O
M

Relief
measure

Operator

Parts
Component

Final product
Cuts time to completion of

response

Correction
and

response

Vulnerability found
The modification of a part reveals that the
component that used the part also needs to be
modified. Response delayed.

The existence of the
vulnerability is
immediately

recognized by SBOM
and a response is

initiated

Relief
measure

Correction and response

Time lapse

20

vulnerabilities. When a vulnerability is revealed, it is necessary to check whether
each component is affected or not by comparing the component information with
the vulnerability information. On the other hand, SBOM management requires
workloads to maintain the SBOM tool environment and to learn the SBOM tool.
However, since the analysis and identification of components can be done
automatically, the analysis and identification of components themselves require
almost no workload. When a new vulnerability is revealed, it is automatically
reflected in the SBOM tool, and it is possible to identify in real time whether
components are affected. In such a case, although confirmation of the
analysis/identification results is required, the cost of vulnerability management
can be significantly reduced. In the PoC, it was confirmed that the workloads
required for the SBOM were reduced to about 30% of those required for manual
vulnerability management. It shall be noted, however, that the cost of
commercial SBOM tools is incurred, but the more components are targeted, the
more the cost will be divided proportionally.

Figure 2-4 Results of reducing vulnerability management costs through
the SBOM management (From the results of FY2022 PoC in the medical

device sector)9

9 The cost of SBOM tools is not included. Also, for “vulnerability management,” vulnerability
correction work and reporting work for which workloads do not vary significantly depending on
whether or not SBOM is used, are excluded, taking into account workloads for vulnerability
identification and risk assessment.

¥0 ¥100,000 ¥200,000 ¥300,000 ¥400,000 ¥500,000 ¥600,000 ¥700,000

Management by
SBOM

Manual
component

management

Environment construction and system development
Identifying components
Vulnerability management

21

Indirect benefits of SBOM introduction for vulnerability management include
increased product and corporate values resulting from reduced vulnerability risk,
and in the big picture, there is also the benefit of increased security in cyberspace
due to more products with fewer vulnerabilities.

The second benefit of SBOM introduction relates to license management.
Specifically, benefits are found in the sequence of processes of identifying licenses
for the components included in the software and handling them according to the
requirements of each license. Most software in recent years includes OSS. Violation
of OSS licenses can have major consequences, including suspension or recall of
software sales, payment of fines, and damage to the company's brand image.
Overseas, there have been several cases of lawsuits for violation of OSS licenses,
including a case in which 14 companies, including consumer electronics
manufacturers, were prosecuted for violation of the GNU General Public License
(GPL) in 2009, a case in which a media player manufacturer was prosecuted for
violation of the GPL in 2013, and a case in which a television manufacturer was
prosecuted for violation of the GPL in 2021. When using OSS, it is necessary to
take appropriate action according to the type of license, for example, in the case
of GPL, GPL also applies to derivatives, and if new software is created and
distributed by combining GPL with other software, the software must comply with
the conditions imposed by GPL. In the case of the Mozilla Public License (MPL), the
MPL is applied to derivative works as well as the GPL, but the MPL is not applied
to new software created by combining them. Therefore, when using OSS, it is
necessary to check all OSS licenses at one's own risk and comply with each license,
but it is not easy to manage OSS license information without false negatives. By
implementing an SBOM to manage components, including license information, the
risk of license violations can be reduced, as well as the cost of license management
as in vulnerability management. Furthermore, SBOM can protect the organization
from financial risks arising from license violations, thus contributing to increased
product and corporate values.

The third benefit of SBOM introduction is that it improves the software
development life cycle (SDLC) and increases development productivity. When an
SBOM is created in the early stages of software development, issues related to
components, such as known vulnerabilities in the components or licensing issues,
can be addressed in advance. Early identification of these problems can prevent
development delays and reduce response costs. In addition, by managing
information about components approved for use within the company, as an SBOM,
it is no longer necessary to investigate and approve components each time they

22

are developed, and as a result, a reduction in development workloads can be
expected. Regarding the benefits of increased development productivity, the Linux
Foundation surveyed 412 global organizations in the third quarter of 202110 and
found that 51% of the responding organizations cited the benefits of SBOM as
“making it easier for developers to understand the implementing between a wider
range of complex projects. This is a higher percentage than the benefits of
vulnerability management (49%) and license management (44%).

In this section, three typical benefits of SBOM introduction: benefits in vulnerability
management, benefits in license management, and benefits in increased
development productivity are mentioned, but other possible benefits exist. For
example, management through SBOM can facilitate software EOL management.
There are various benefits to be gained from introducing SBOM, but it is necessary
to consider which benefits are particularly important based on the issues that your
organization wants to solve by introducing SBOM and the purpose of introducing
SBOM.

Column: Effect of SBOM on Log4j vulnerability (Log4Shell)

In December 2021, an arbitrary code execution vulnerability (commonly known as
Log4Shell) was discovered in Apache Log4j, a log output library. The OSS Log4j is
available free of charge and includes various functions, so it has been used for
various purposes as a standard module for log output in Java systems. However,
exploitation of discovered vulnerabilities and unauthorized access to applications
running Log4j may lead to information leaks, malware infection, and other damage.
In the “2021 Top Routinely Exploited Vulnerabilities” published by CISA and other
organizations in the U.S.11 , Log4Shell ranked first, regardless of vulnerabilities
discovered in December 2021, and the scope of this vulnerability's impact is
immeasurable.

In addition to the fact that Log4Shell vulnerabilities are deployed in many software
and are easy to attack, another reason for the widespread exploitation of Log4Shell
vulnerabilities is that they are built in as components, so suppliers and software
users are unaware of the impact of the vulnerabilities and no countermeasures are
being implemented. Specifically, as shown in Figure 2-5, if Log4j components exist
deeper than the range of components that software users can see (and are aware

10 See Footnote 2.
11 CISA, Alert (AA22-117A) 2021 Top Routinely Exploited Vulnerabilities
https://www.cisa.gov/uscert/ncas/alerts/aa22-117a

https://www.cisa.gov/uscert/ncas/alerts/aa22-117a

23

of), then Log4j vulnerabilities can be exploited to affect software users, while
software users are not aware of them.

By implementing an SBOM that includes multi-tier components, when a Log4j
vulnerability is discovered, it is possible to immediately check whether the software
in use is affected, thereby accelerating a response to the vulnerability. This reduces
the risk of vulnerabilities being exploited and contributes to reducing the cost of
responding to vulnerabilities and identifying the impacted area.

Figure 2-5 Image of software component hierarchy

2.3. “Minimum Elements” of SBOM

In response to a May 2021 U.S. Executive Order, NTIA released a document in July
2021 on the definition of “Minimum Elements” of the SBOM12. The NTIA's definition
of “Minimum Elements” not only specifies “Data Fields,” which are categories of
information to be included in the SBOM, but also “Automation Support” and
“Practices and Processes” categories that organizations implementing an SBOM
shall consider. The specific “Minimum Elements” categories and definitions are
shown in Table 2-3.

12 NTIA, The Minimum Elements For a Software Bill of Materials (SBOM)
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

Final product Software userLevel 1Level 2Level 3

・・・

The range of components that
software users can check
(recognize) is narrow.

If Log4j is used in a deep hierarchy,
software users cannot identify it.

When a Log4j vulnerability is discovered, its
impact can be immediately identified and a
response can be initiated, by deploying an SBOM
that includes a deep hierarchy of components.

SBOM

https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

24

Table 2-3 Definition of “Minimum Elements” of SBOM by the U.S. NTIA
Minimum
Elements

Overview Definition

Data Fields

Document baseline
information about each
component that should

be tracked

This baseline component information
includes:
 Supplier name
 Component name
 Version of the component
 Other unique identifiers
 Dependency relationship
 Author of SBOM data
 Timestamp

Automation
Support

Support automation,
including via automatic

generation and
machine-readability

SBOM data should be created and
shared using machine-readable and
interoperable formats. Currently,
SPDX, CycloneDX, and SWID tags,
which have been developed through
international discussions, should be
used.

Practices and
Processes

Define the operations
of SBOM requests,

generation, and use

Organizations utilizing SBOM shall
establish operational procedures for
the following items:
 Frequency
 Depth13
 Known unknown14
 Distribution and delivery
 Access control
 Accommodation of mistakes15

13As shown in Figure 2-9, software components are often hierarchical, and the SBOM depth
refers to the depth to which components in this hierarchical structure should be included in the
SBOM.
14 If the dependencies of a complete component are unknown in the created SBOM, it means
that the fact that it is unknown is made explicit. For example, clarification that the existence of
the dependency is unknown, and clarification of the extent to which the component has not
been identified.
15 The NTIA states that “while internal management of supply chain data may be a best
practice, it is still evolving.” and also mentions that “In light of the absence of perfection,

25

In utilizing the SBOM, it is essential to collect information about components and
establish a consistent data structure. For this reason, the inclusion of information
for uniquely identifying a component subject to SBOM is positioned as a “minimum
element” in the category of data fields. The definitions of specific data fields are
shown in Table 2-4. In addition to information about the name, version, and other
identifiers of the component subject to the SBOM, the data fields should include
items related to the names of the supplier and the SBOM author of the component
in question, the dependency of the component, and the timestamp.

Table 2-4 Data Fields to Be Included in the SBOM as “Minimum Elements”
Entry Description

Supplier Name
The name of the entity that develops, defines, and
identifies a component.

Component Name
Designation assigned to a unit of software defined by
the original supplier.

Version of the
Component

Identifier used by the supplier to specify a change in
software from a previously identified version.

Other Unique
Identifiers

Other identifiers that are used to identify a
component or serve as a look-up key for relevant
databases.

Dependency
Relationship

Characterizing the relationship that an upstream
component X is included in software Y

Author of SBOM Data
The name of the entity that creates the SBOM data
for this component.

Timestamp
Record of the date and time of the SBOM data
assembly.

2.4. SBOM formats (Examples)

As specified in the “Minimum Elements” of the SBOM, SBOM data should be created
and shared using a machine-readable and interoperable format. The use of a
common format will not only streamline management within an organization but
also increase interoperability when sharing SBOM across organizations, thus

consumers of SBOM should be explicitly tolerant of the occasional incidental error. This will
facilitate constant improvement of tools.”

26

contributing to transparency in the software supply chain. The following three
formats are examples of SBOM format that can be used:

(1) SPDX16

(2) CycloneDX

(3) SWID tag（Software Identification tag）

SPDX supports a wide range of software component types, including snippets, files,
packages, containers, and OS distributions. In addition, it provides a list of
identifiers for uniquely identifying a component's license information. There is also
a Japanese-originated format called SPDX Lite, which includes only the minimum
number of items required to meet the SBOM elements required by process
management standards and other standards. SPDX Lite is excellent for simple SBOM
creation and management and is also characterized by its abundance of
specifications and other documents created in Japanese. CycloneDX is a format
designed with security management in mind, which enables a description of not
only information about the software in question but also information about the
known vulnerabilities in the software and the exploitability of those vulnerabilities.
Finally, for SWID tags, there is a feature that allows SBOM to be managed along the
software life cycle.

In this section, reconsidering the simplified scenarios presented in Figure 2-1, an
example is given for SBOM created by Company A in different SBOM formats.

(1) SPDX
SPDX is an SBOM format developed by a project under the Linux Foundation, which
was standardized as ISO/IEC 5962:2021 in September 2021. SBOM in the SPDX
format describe information about components created according to the SPDX
Specification, licenses, copyrights, and so on. SPDX supports Tag-Value (txt), RDF,
XLS, JSON, YAML, and XML formats. Refer to 10.3.3(1) of the Appendix for the
structure of the SPDX format, usage examples/purposes, and features.

In the simple scenario described above, when Company A creates an SBOM using
the SPDX format of the Tag-Value format, the SBOM shown in Figure 2-6 is created.
Here, the color relationship indicates the correspondence relationship between the
conceptual image of SBOM shown in Table 2-1 and the items in the SPDX format.

16 Until SPDX v2.3, the abbreviation SPDX was used to refer to Software Package Data
Exchange, but in SPDX v3.0 published in April 2024, it was defined to mean System Package
Data Exchange.

27

As shown in Table 2-5, the SPDX format items can be supported for each of the
“Minimum Elements” in the SBOM.

Figure 2-6 Example of SBOM in SPDX Format (Tag-Value format)
in the scenario

Table 2-5 SPDX Items Corresponding to SBOM “Minimum Elements”
Data Fields of SBOM “Minimum

Element”
Corresponding SPDX item

Supplier Name PackageSupplier
Component Name PackageName

Version of the Component PackageVersion

Other Unique Identifiers
Combination of DocumentNamespace and

SPDXID, ExternalRef

Dependency Relationship
Relationship

（DESCRIBES; Representation by
CONTAINS）

TimestampAuthor of
SBOM data

Dependency
Relationship

Other unique
identifier

Version of the
component

Component nameSupplier nameID

05-09-2022
13:00:00

Company APrimary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company BIncluded in
Application

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company AIncluded in
Browser

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company AIncluded in
Application

5342.2ProtocolCommunity P4

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
DocumentNamespace: http://www.spdx.org/spdxdocs/8f141b09-1138-4fc5-aefb-fc10d9ac1eed
DocumentName: SBOM Example
SPDXID: SPDXRef-DOCUMENT
Creator: Organization: Company A
Created: 2022-05-09T13:00:00Z
Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Application-v1.1

PackageName: Application
SPDXID: SPDXRef-Application-v1.1
PackageVersion: 1.1
PackageSupplier: Organization: Company A
PackageDownloadLocation: NOASSERTION
FilesAnalyzed: false
PackageChecksum: SHA1: 75068c26abbed3ad3980685bae21d7202d288317
PackageLicenseConcluded: NOASSERTION
PackageLicenseDeclared: NOASSERTION
PackageCopyrightText: NOASSERTION
ExternalRef: SECURITY cpe23Type cpe:2.3:a:company_a:application:1.1:*:*:*:*:*:*:*
Relationship: SPDXRef-Application-v1.1 CONTAINS SPDXRef-Browser-v2.1
Relationship: SPDXRef-Application-v1.1 CONTAINS SPDXRef-Protocol-v2.2

（Omitted below）

SBOM in SPDX format (Tag-value format)

28

Data Fields of SBOM “Minimum
Element”

Corresponding SPDX item

SBOM author (Author of SBOM
Data）

Author

Timestamp Author

SPDX is a format developed to effectively handle information about OSS license
compliance. and is characterized by its ability to express detailed information
structured down to the file level. The target components are not limited to snippets
and files but can be extended to packages, containers, and OS distributions. The
format was developed with the intention of automated processing, and as
mentioned above, it has been internationally standardized as ISO/IEC 5962:2021,
which is also a major feature.

There is also a Japanese-originated format called SPDX Lite, which includes only the
minimum number of items required to meet the SBOM elements required by process
management standards and other standards. SPDX Lite is designed for
organizations that manually create license information and transfer only necessary
information when SPDX compliance license information is too large to operate.
Developed by the License Information Subgroup of the OpenChain Japan Work
Group, SPDX Lite is also part of the ISO/IEC 5962:2021 standard as a subset of
SPDX. The SBOM in the SPDX Lite format describes information such as components,
license, and copyright, and supports Tag-Value (txt), RDF, XLS, JSON, YAML, and
XML formats. Refer to 10.3.3(1) of the Appendix for the structure of the SPDX Lite
format, examples and purpose of use, and features.

In the simplified scenario described above, if Company A creates an SBOM using
the SPDX Lite format in XLS format, the SBOM will be created as shown in Figure
2-7. In the case of the SPDX Lite format in XLS format, SBOM information can be
described by including two sheets, “Creation Information” and “Package
Information,” in a single XLS file. Here, the colors indicate the correspondence
between the conceptual image of the SBOM shown in Table 2-1 and the items in
the SPDX Lite format. As shown in Table 2-6, SPDX Lite format items can be
supported for items other than the “Dependency Relationship” of the “Minimum
Elements” of SBOM.

29

Figure 2-7 Example of SBOM in SPDX Lite Format (XLS Format) in the
scenario

SBOM in SPDX Lite format (xls format)

TimestampAuthor of
SBOM data

Dependency
Relationship

Other unique
identifier

Version of the
component

Component nameSupplier nameID

05-09-2022
13:00:00

Company APrimary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company BIncluded in
Application

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company AIncluded in
Browser

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company AIncluded in
Application

5342.2ProtocolCommunity P4

Creation Information Sheet

SPDX-2.2SPDX Version

CC0-1.0Data License

SPDXRef-DOCUMENTSPDX Identifier

SBOM ExampleDocument Name

http://www.spdx.org/spdxdo
cs/8f141b09-1138-4fc5-
aefb-fc10d9ac1eed

SPDX Document
Namespace

Company ACreator

05-09-2022 13:00:00Created

Package Information Sheet

Extern
al

Refere
nce
field

Packag
e

Commen
t

Copyri
ght
Text

Commen
ts on
Licens

e

Declar
ed

Licens
e

Conclu
ded

Licens
e

Packag
eHomeP
age

Files
Analyz
ed

Packag
eDownl
oadLoc
ation

Packag
e

Suppli
er

Packag
eFileN
ame

Pack
ageV
ersi
on

Pack
age
SPDX
Iden
tifi
er

Pack
ageN
ame

Comp
any
A

1.1234Appl
icat
ion

Comp
any
B

2.1334Brow
ser

Mr.
C

3.1434Comp
ress
ion
Engi
ne

Comm
unit
y P

2.2534Prot
ocol

omitted
Omit
ted

30

Table 2-6 SPDX Lite Items Corresponding to “Minimum Elements” of
SBOM.

Data Fields of SBOM
“Minimum Element”

Corresponding SPDX Lite item

Supplier Name PackageSupplier
Component Name PackageName

Version of the Component PackageVersion

Other Unique Identifiers
Combination of SPDX Identifier and SPDX

Document Namespace,
PackageSPDX Identifier

Dependency Relationship ―
Author of SBOM Data Author

Timestamp Created

SPDX Lite is a format that extracts only the minimum necessary items from SPDX,
enabling SBOM management with an emphasis on operability. SPDX has many
items that need to be described and are intended to be managed through
automatic processing, while SPDX Lite has a limited number of items, so manual
management is practically possible. However, it should be noted that SPDX Lite
includes only the minimum necessary items, so for example, items related to
“implementing” specified in the NTIA's “Minimum Elements” cannot be expressed.
Since the number of items is limited, it may not meet the requirements of upstream
organizations when sharing SBOM within the supply chain. Therefore, it is desirable
to confirm with suppliers when deciding whether to use SPDX Lite. Furthermore,
it should be noted that manual management of SPDX Lite formatted SBOM may
require more management workloads than automatic management.

(2) CycloneDX
CycloneDX is an SBOM format developed by an OWASP community project with
the goal of developing a security focused SBOM format standard. The CycloneDX
SBOM format includes information about components, licenses, and copyrights.
CycloneDX supports JSON, XML, and Protocol Buffers (protobuf) formats. Refer to
10.3.3(3) of the Appendix for the structure, usage examples, and features of the
CycloneDX format.

In the simplified scenario described above, if Company A creates an SBOM using
the CycloneDX format in XML format, the SBOM will be created as shown in Figure

31

2-8. Here, the color relationships indicate the correspondence between the
conceptual image of SBOM shown in Table 2-1 and the items in the CycloneDX
format. As shown in Table 2-7, the items in the CycloneDX format can be made to
correspond to each of the “Minimum Elements” for SBOM.

Figure 2-8 Example of SBOM in CycloneDX Format (xml format) in the
scenario

Table 2-7 CycloneDX Items Corresponding to SBOM “Minimum Elements”
Data Fields of SBOM “Minimum

Element”
Corresponding CycloneDX item

Supplier Name component/supplier/name
Component Name component/name

<?xml version="1.0" encoding="utf-8"?>
<bom xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b71" version="1"
xmlns="http://cyclonedx.org/schema/bom/1.3">
<metadata>
<timestamp>2022-05-09T13:00:00Z</timestamp>
<authors>
<author>
<name>Company A</name>

</author>
</authors>
<component type="application">
<name>Application</name>
<version>1.1</version>
<hashes>
<hash alg="SHA-1">75068c26abbed3ad3980685bae21d7202d288317</hash>

</hashes>
<cpe>cpe:2.3:a:company_a:application:1.1:*:*:*:*:*:*:*</cpe>
<externalReferences />
<components />

</component>
<manufacture>
<name>Company A</name>

</manufacture>
<supplier>
<name>Company A</name>

</supplier>
</metadata>

（Omitted）

<dependencies>
<dependency ref=“pkg:maven/org.company_b/browser@2.1">
<dependency ref="pkg:maven/org.c/CompressionEng@3.1" />
</dependency>
<dependency ref="pkg:maven/org.community_p/protocol@2.2" />

</dependencies>

（Omitted below）

SBOM in CycloneDX format (XML format)

TimestampAuthor of
SBOM data

Dependency
Relationship

Other unique
identifier

Version of the
component

Component nameSupplier nameID

05-09-2022
13:00:00

Company APrimary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company BIncluded in
Application

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company AIncluded in
Browser

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company AIncluded in
Application

5342.2ProtocolCommunity P4

32

Data Fields of SBOM “Minimum
Element”

Corresponding CycloneDX item

Version of the Component component/version
Other Unique Identifiers serialNumber, component/cpe
Dependency Relationship implementing/dependency ref

Author of SBOM Data metadata/authors/author/name
Timestamp metadata/timestamp

One of the features of CycloneDX is that it is an SBOM format with security
management in mind. CycloneDX Version 1.4, released in January 2022, adds
“Vulnerabilities” to the object model, allowing the description of known
vulnerabilities in third-party software and OSS included in the SBOM and the
potential for exploitation of those vulnerabilities. CycloneDX, like SPDX, is also a
format intended for automatic processing by tools.

(3) SWID tag（Software Identification tag）
SWID tags were developed for the purpose of tracking software installed on devices
managed by an organization. SWID Tags were defined by ISO in 2012 and updated
in 2015 as ISO/IEC 19770-2:2015. With a SWID tag, as part of the software
installation process along the software lifecycle, when software is installed on a
device, information about the installed software, called a tag, is assigned to the
device, and when the software is uninstalled, the tag is removed. An SBOM in the
SWID tag format describes information such as software installed on the device
and patches applied to the software created according to the SWID tag. SWID tag
supports XML format. SWID tag defines tags that indicate information about
software installed in a device to understand the life cycle of the target device. Each
tag can present information such as the author of the tag, the software installed
on the device, and the dependencies by linking to other software, and can be used
as an SBOM of the target device. Refer to 7.3.3 (4) of the Appendix for more
information about the structure of the format, examples of use and purpose of use,
and characteristics of the SWID tag.

In the simplified scenario described above, if Company A creates an SBOM using a
SWID tag in XML format, the SBOM will be created as shown in Figure 2-9. In this
figure, the color relationship shows the correspondence between the conceptual
image of the SBOM shown in Table 2-1 and the items in the SWID tag format. As
shown in Table 2-8, an item in the SWID tag format can be made to correspond

33

to each item of the SBOM “Minimum Elements”.

Figure 2-9 Example of SBOM in SWID Tag Format (xml Format) in the
scenario

Table 2-8 SWID Tag Entry Corresponding to SBOM “Minimum Elements”
Data Fields of SBOM “Minimum

Element”
Corresponding SWID tag item

Supplier Name <Entity> @role(tagAuthor) @name
Component Name <SoftwareIdentity> @name

Version of the Component <SoftwareIdentity> @version
Other Unique Identifiers <SoftwareIdentity>@tagId
Dependency Relationship <Link> @rel @href

Author of SBOM Data
<Entity> @role(softwareAuthor)

@name
Timestamp <Meta> @timestamp

The SWID tag is a format related to software identification. It is also a format that
can include information related to security, such as information about component
licenses, information about patches and updates, and information about

<SoftwareIdentity
xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
xmlns:sha512="http://www.w3.org/2001/04/xmlenc#sha512"
name="application"
tagId="Company A/application@1.1"
version="1.1">
<Entity name="Company A" role="tagCreatorsoftwareCreator" />
<Meta title="Company A Application v1.1" timestamp="2022-05-09T13:00:00Z" />
<Link href="swid:Company B/browser@2.1" rel="component" />
<Link href="swid:Community P/ptotocol@2.2" rel="component" />
<Payload >
<File name="Company-A-application-1.1.exe"

sha512:hash="BC55DEF84538898754536AE47CC907387B8F61D9ACD7D3FB8B8A624199682C8FBE6D163108
8AE6A322CDDC4252D3564655CB234D3818962B0B75C35504D55689"/>
</Payload>

</SoftwareIdentity>

（Omitted below）

SBOM in SWID Tag format (XML format)

TimestampAuthor of
SBOM data

Dependency
Relationship

Other unique
identifier

Version of the
component

Component nameSupplier nameID

05-09-2022
13:00:00

Company APrimary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company BIncluded in
Application

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company AIncluded in
Browser

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company AIncluded in
Application

5342.2ProtocolCommunity P4

34

vulnerabilities and threats.

So far, examples of SBOM in SPDX, SPDX Lite, CycloneDX, and SWID tags have
been shown. Many formats are intended for automatic processing and
management using SBOM tools. SBOM tools can be used to automatically create
SBOM by scanning software source codes and binary files and automatically
detecting components contained in the software. In addition, some SBOM tools
can streamline administrative tasks by providing continuous access to vulnerability
and license information. Therefore, it is practical for organizations implementing
an SBOM to create and manage the SBOM using SBOM tools. Typical SBOM tools,
not only commercial SBOM tools but also OSS SBOM tools, are shown in 7.3.2 of
the Appendix.

Organizations that implement SBOM should evaluate and select multiple SBOM
tools based on their own objectives for implementing an SBOM and the scope of
application of SBOM, after clarifying the viewpoints for selecting SBOM tools. Refer
to the points to be implemented and recognized in the selection of SBOM tools.

When SBOM tools are used to manage SBOM, SBOM documents in Tag-Value or
XML formats, as shown in Figure 2-6 through Figure 2-9, can be created and
managed without much consideration. Many commercial SBOM tools have several
dashboard functions, which enable easily displaying the list of components included
in an SBOM, as well as listing and graphing information about vulnerabilities and
license compliance. of each component.

2.5. Myths and facts

Despite the advantages of SBOM introduction, the penetration rate of SBOM in
Japan is not high. There are various possible reasons for this, including the cost of
SBOM introduction, technical issues, and human resource issues, but there are also
other issues such as the lack of proper recognition of the effectiveness and
positioning of SBOM. In response to these challenges, the US NTIA released a
document titled “SBOM Myths vs. Facts” in 202117 to clarify misconceptions and
facts about SBOM. Below is a summary of the misconceptions and facts presented
in the NTIA document.

Myth: SBOM are a roadmap to the attacker

17 NTIA, SBOM Myths vs. Facts
https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.pdf

https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.pdf

35

[Fact] Attackers can leverage the information contained in SBOM. However,
the defensive benefits of transparency far outweigh this common concern as
SBOM serve as a “roadmap for the defender”. For attackers, SBOM and
software transparency information are of limited effectiveness, and attackers
generally do not need SBOM. For example, the WannaCry ransomware attack
does not require SBOM as a prerequisite for the attack.

Myth: An SBOM alone provides no useful or actionable information
[Fact] The baseline component information supports a number of use cases
for those who produce, choose, and operate software. For example, during an
active attack, an SBOM allows an enterprise to answer, “Am I affected?” and
“Where am I affected?” in minutes or hours, instead of days or weeks.
Additionally, the baseline component information enables vital transparency
and auditability, allowing for further expansion and enrichment in additional
use cases.

Myth: An SBOM needs to be made public
[Fact] An SBOM does not need to be made public. The act of making an SBOM
is separate from sharing it with those who can use this data constructively.
The author may advertise and share the SBOM at their discretion. In other
cases, sector-specific regulations or legal requirements may require more or
less access to the SBOM.

Myth: An SBOM will expose my intellectual property/trade secrets
[Fact] SBOM are a summary of included software components and do not
expose intellectual property (IP). Patents and algorithms are not included. n
SBOM is just a “list of ingredients”, not a “recipe” like a patent or an algorithm.
In addition, SBOM does not include the software source code itself18 . It is
important to note that the intellectual property of third-party developed
components, such as patents and algorithms, belong to the component
developer or copyright holder.

Myth: No processes exist to support scalable production and use of
SBOM

[Fact] Software composition analysis tools have been used internally in some
sectors for more than a decade. Regarding software transparency, NTIA
activities, executive orders, standardization of the SBOM format, and other

18 Although SBOM does not include trade secrets such as software source code, it is necessary
to be aware that it may include other proprietary information such as information from software
providers and vendors, so appropriate management is required.

36

activities are progressing. In some industries, software transparency has
been under discussion, and PoC for more than 5 years support the adoption
of SBOM formats.

In addition, through PoC and other activities conducted in Japan in FY2022, further
specific myths and facts have been made clear.

Myth: Only the components directly used by the target software should be
subject to SBOM management
[Fact] Vulnerability management may be insufficient if the components
recursively used by direct components are excluded. Discussions by experts
are ongoing regarding the “depth” of SBOM (i.e., up to what level of
components should be included in SBOM).

Myth: No special consideration is needed to select SBOM tools
[Fact] Regarding tools to support SBOM production, several commercial tools
and OSS tools provided as OSS are already available. By using OSS tools, the
tools themselves can be obtained at no cost, but compared to commercial tools,
the manuals and support for introduction and utilization are often limited,
which may result in significant costs incurred in learning how to use the tools.
In addition, compared to commercial tools, the scope of support and
performance are usually limited, and there is a possibility that the purpose of
SBOM implementation cannot be achieved. It is necessary to select tools based
on the objectives of the company's SBOM implementation.

Myth: SBOM tools can be utilized to fully identify the components
contained in the target software
[Fact] Although SBOM tools can be used to efficiently create SBOM, there may
be cases where false positives or false negatives in the production of SBOM,
making it impossible to create accurate SBOM. Therefore, it is important to
consider other ways to reaffirm the accuracy of the SBOM (for example,
reviewing the SBOM created by the tool). In addition, libraries that are
dynamically added at runtime, such as runtime libraries, cannot be identified
because SBOM tools do not analyze the substance of the library. In such cases,
it is necessary to prepare separate configuration information and execution
environment for the library by using other tools such as a package manager,
and having the SBOM tool recognize them so that recursive components can
be identified.

Myth: There is a need to respond to all vulnerabilities output by SBOM

37

tools
[Fact] It is necessary to prioritize vulnerabilities when responding to risks
based on the output. Prioritization should occur based on the impact of the
vulnerability, the results of the risk assessment, and the cost of responding to
the vulnerability. In doing so, it should be noted that not all vulnerabilities are
available for use, and some vulnerabilities that exist are not affected. In the
case of manual SBOM management, it is necessary to manually identify the
existence of vulnerabilities by using the vulnerability database, evaluate each
vulnerability individually, and consider the response policy for each vulnerability,
which may require significant management costs.

Myth: Granularity of the SBOM components should be standardized
throughout the supply chain and only the necessary component
information should be retained
[Fact] Currently, the granularity of “affected software” in vulnerability
information databases such as Japan JVN and U.S. NVD is not systematized,
and limiting the granularity of components may lead to false negatives in
identifying vulnerabilities. Therefore, it is an effective practice to retain
component information not only for OSS but also for in-house products.

Myth: SBOM only covers packaged and embedded software
[Fact] Not only software but also IT systems can be covered by an SBOM. In
addition, SBOM for online applications such as SBOM for container images,
SBOM for SaaS software, and SBOM for cloud services are also being discussed
mainly in the U.S, but challenges specific to the cloud environment SBOM are
also mentioned.

Myth: Only three formats of SBOM are allowed: SPDX, CycloneDX, and
SWID tags; SBOM based on proprietary formats are not allowed
[Fact] According to the definition of the U.S. NTIA, an SBOM is “a machine-
readable inventory of software components and dependencies, information
about those components, and their hierarchical relationships.” Even
proprietary formats can be considered SBOM if they meet this definition.
However, as stated in Section 2.2, since the “automation support” is positioned
as the “Minimum Elements” of SBOM, and since automated processing
improves efficiency, it is desirable to consider adopting an automatically
processable format whenever possible.

38

3. Basic guidance and overall view on SBOM introduction

3.1. Basic guidance for SBOM introduction

Prior to introducing SBOM, it is necessary to determine the scope of software for
which to create SBOM, as well as to clarify the issues that one's own organization
wishes to solve by implementing SBOM and the purpose of the introduction. For
example, for a large-scale product with a huge number of components, if the
purpose is to create and share SBOM that include component dependencies, then
it is expected that SBOM will be created and managed using commercial SBOM
tools. Also, for small-scale products that do not have many components, if the
purpose is to manually manage the version of the components only for the
minimum items, an SBOM may be created using the SPDX Lite format. Depending
on the purpose of the SBOM introduction, the scope of application of the SBOM,
such as the items, format, creation range, and sharing range of an SBOM to be
created will vary to a larger extent. An organization considering implementing an
SBOM should first identify its own software management issues that it intends to
solve by implementing SBOM and clarify the purpose of the introduction, before
creating, operating, and managing the SBOM.

3.2. SBOM introduction process

The process related to SBOM introduction can be divided into three main phases.
Specifically, there are three phases: the environment construction and system
development phase related to SBOM introduction, the SBOM creation and sharing
phase, and the SBOM operation and management phase. Figure 3-1 shows the
main items to be implemented and an overview of the implementation in each
phase.

In the environment construction and system development phase, the scope of
SBOM introduction will be clarified, and an environment and system for SBOM
creation and sharing will be established. In the SBOM creation and sharing phase,
the SBOM is created and, if necessary, shared with external parties. SBOM is a
method of software management. How to manage software by using an SBOM is
particularly important. Therefore, as part of the SBOM operation and management
phase, vulnerability management and license management need to be conducted
based on SBOM information, and the SBOM itself should be managed appropriately.

39

The following sections show the main implementation items for each phase and
the points to note when introducing an SBOM.

Figure 3-1 SBOM introduction process

Phase Step Outline of introduction

Environment
and system

development
phase

Clarification the scope
of the SBOM
application

SBOM
production and
sharing phase

SBOM use and
management

phase

SBOM tools selection

SBOM tools installation

Learning about SBOM
tools

Component analysis

SBOM production

Vulnerability
management and
license management,
etc.

SBOM information
management

SBOM sharing

Clarify the scope of SBOM by organizing information on
software subject to SBOM (language, contract type,
regulatory requirements, internal constraints, etc.).

Organize the viewpoints for selection of SBOM tools and
evaluate and select SBOM tools based on the viewpoints.

Install and configure the SBOM tool by reviewing the tool's
instruction manual, README file, etc.

Learn how to use the SBOM tool by reviewing the tool's
instruction manual, README file, etc.

Analyze the target software components and check the
analysis results to determine if there are any false-
positives and false-negatives.

Determine the requirements for the SBOM to be produced,
such as SBOM items, format, output file format, etc., and
create an SBOM that satisfies such requirements.

After considering how to share the SBOM to consumers
and suppliers of the subject software, share the SBOM as
necessary.

Based on SBOM information on vulnerabilities and licensing,
take appropriate vulnerability and license management
actions.

Appropriately manage the information contained in the
SBOM and the SBOM information itself.

40

4. Environment and system development phase

To introduce an SBOM, it is first necessary to establish an environment and a
system related to the SBOM. This section presents the items that SBOM-
introducing organizations should implement and the points that they should be
aware of in the environment construction and system development phase.

4.1. Clarification the scope of the SBOM application

[Actions for the introduction of SBOM]

□ Clarify information about the target software, such as information about
development language, component type, development tools, etc.

□ Create an accurate configuration diagram of the target software and visualize
the target of the SBOM application.

□ Clarify the contractual form and business practices with users and suppliers of
the subject software.

□ Confirm regulations and requirements for SBOM regarding the target
software.

□ Clarify the constraints within the organization (e.g., system constraints, cost
constraints) regarding the introduction of SBOM.

□ Clarify the scope of the SBOM application 5W1H (Five Ws and How) based on
the organized information.

[Points to be aware of for SBOM introduction]

 By utilizing the knowledge of developers inside and outside the organization,
it is possible to efficiently collect information about the target software.

 The scope of risk management can be clarified by creating an accurate
configuration diagram of the target software and by visualizing the target of
the SBOM application.

An organization introducing an SBOM needs to clarify the scope of application of
SBOM based on their own issues to be solved by SBOM introduction and the

41

purpose of SBOM introduction. The scope of the SBOM application can be classified
into the Five Ws and How (5W1H) perspectives shown in Table 4-1. There are
multiple application items (options) in each perspective.

Table 4-1 Scope of SBOM application (Five Ws and How)
Perspective Main application item (option)

Organization producing an
SBOM（Who）

 Produced internally
 Produced by suppliers with business contract
 Produced by suppliers without business

contract (e.g., OSS community)

Timing of producing an
SBOM (When）

 During product planning or development
planning

 During program development
 During software built
 At software delivery
 At component upgrading

Entity to use the SBOM
(Who)

 Software user
 End-product vendor
 Development vendor
 End-product user

Scope of components
covered by the SBOM

(What, Where)

 Only components directly used by the
development entity

 Components that are recursively used from
components without a development
consignment contract such as off-the-shelf
products

Means of producing the
SBOM (How)

 Producing an SBOM manually based on
configuration management information

 Producing an SBOM automatically using SBOM
tools

 Producing part of an SBOM manually based on
configuration management information and
the other part of the SBOM automatically by
using SBOM tools

42

Perspective Main application item (option)

Scope of utilizing the
SBOM (Why)

 Vulnerability management
 License management
 Improvement in development productivity
 Asset management and traceability
 Sharing information about components to

users and/or suppliers

SBOM formats and items
(What)

 Standard formats（SPDX, SPDX Lite,
CycloneDX, SWID tag, SPDX Lite）

 Data Field of the “Minimum Elements”
 Proprietary formats used as

regulations/requirements or industry practice

The extent of the SBOM coverage is determined by the combination of these
applicable items. It should be noted that the cost of implementing an SBOM will
vary depending on which applicable items are selected. In addition, there is a
possibility of selecting multiple applicable items for a single perspective. To
determine the applicable items, it is necessary to organize information about the
target software of SBOM and internal restrictions on SBOM introduction.

For the target software, it is desirable to first organize information about the
following19.

 Software language
Example: Python, Java, Go, JavaScript, Rust, Swift, Objective-C, C, C++,
VisualBasic

 Form of component
Example: Libraries, applications, middleware, database services

 Development environment tool
Example: Visual Studio, Eclipse, Android Studio, Xcode

 Build tool
Example: Jenkins, Circle CI, GitHub Actions, Gradle, Maven

 Configuration management tool
Example: GitHub, Gitlab, Team Foundation Server, Ansible

 Data formats handled by the organization

19 Note that the examples for each item are not exhaustive and are not limited to the content of
the examples.

43

Example: Source codes, packages, containers, binary data

 Operating environment
Example: OS, CPU architecture

In organizing such information, it is effective to utilize the knowledge of developers
inside and outside the organization. When SBOM tools are used to create SBOM, it
is necessary to understand at least the development language and the form of
components, since each tool supports different languages and different component
forms. To clarify the scope of components to be covered by SBOM, it is desirable to
visualize the composition of the target software. Specifically, it is desirable to create
a diagram that visualizes the scope of the target software developed by the
organization, the scope developed by suppliers with business contracts, and the
scope developed by suppliers without business contracts (e.g., OSS). As an example,
the following configuration diagram was created for the dental CT targeted in the
PoC in FY2022. Based on this diagram, the scope of risk management has been
clarified.

Figure 4-1 Example of the system configuration diagram of dental CT

In addition, to clarify the scope of components to be covered by the SBOM, it is
desirable to organize types of contract forms and transaction practices with users
and suppliers of the subject software. Specifically, it is desirable to organize
information about the following items for each user and supplier of the subject

Image management software

Image
management

software
main unit

DICOM※2tran
smission
software

Web
transmission

software
Image import

software

Dental template
software

Image viewer

CT image
viewer

2D image
viewer

CT imaging console

CT imaging
software

Framework

Computer platform (Hardware）

Device
control F/W

Imaging device

FPD※3

OTS Layer

Computer platform
(Hardware)

Server PCClient PC

Image
management

software

Image
management
software main

unit

Image viewer

CT image
viewer

2D mage
viewer

Framework

OTS※ Layer

OS Layer

Computer platform

In-hospital/departmental
networks

USBLAN1

LAN2

LAN3

Dental CT system

■Developed in-house, ■Developed by Company A ■Developed by Company B, ■Made by third party

※1：Off-the-shelf Software
※2：Digital Imaging and Communications in
Medicine
※3：Flat Panel Detector

OS Layer

OTS Layer

Image management software

Image
management

software

44

software.

 Type of contract: Development outsourcing, product sales, etc.

 Provision of component information: Not provided, provided without
charge, available upon request, etc.

 Declaration of third-party components: Declaration for all OSS,
declaration for some OSS based on license, etc.

 Vulnerability notice: Notification only for vulnerabilities that have been
determined to be fixed, etc.

 Vulnerability fix: Only fix for vulnerabilities that have been determined to
be fixed, etc.

 Delivery form: Binary package, embedded in equipment, license
information (e.g., SaaS), executable module, etc.

 Liability for damages

 Attribution of intellectual property rights: Belongs to the company,
belongs to the supplier, belongs to the supplier, etc.

 Modification: Software provided by a third party being used as is, modified
by the company, etc.

Among the SBOM applicable items, it is desirable to confirm and organize the
regulations and requirements for SBOM for the target software, to determine the
format and items of SBOM and the scope of SBOM utilization. Currently, the
number of software vendors that are required to provide SBOM is limited, but in
the U.S., for example, software vendors that are subject to government
procurement are encouraged to provide SBOM20. In the EU, the Cyber Resilience
Act, drafted in September 2022, includes SBOM requirements for digital products
to be placed on the EU market21 . In the medical device segment, the Medical
Device Cybersecurity Guide, issued by the International Medical Device Regulators
Forum (IMDRF), will be incorporated into the medical device regulations under the
pharmaceutical affairs law22 and will be fully operational by the end of 2023. There

20 Office of Management and Budget, Enhancing the Security of the Software Supply Chain
through Secure Software Development Practices https://www.whitehouse.gov/wp-
content/uploads/2022/09/M-22-18.pdf
21 European Commission, Cyber Resilience Act https://digital-
strategy.ec.europa.eu/en/library/cyber-resilience-act
22 Act on Securing Quality, Efficacy and Safety of Products Including Pharmaceuticals and
Medical Devices

https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act

45

is a possibility that SBOM will be required in regulations in the future. Regulations
and requirements may specify formats and items of the SBOM and the scope of
SBOM utilization. Considering these circumstances, it is desirable to collect
information about regulations and requirements related to the target software as
needed and to clarify specific requirements when needed.

In considering items to be applied to SBOM, it is, of course, necessary to consider
the constraints within the organization for SBOM introduction. The most likely
constraints are those related to the organizational structure and costs. If these
constraints are severe, there is a possibility that only limited SBOM application
items can be selected. It is then desirable to confirm and organize the constraints
within the organization in advance to organize the scope of the SBOM application.

Based on the organized information, it is desirable to consider and clarify the
applicable items for each of the above-mentioned Five Ws and How (5W1H)
aspects of the scope of the SBOM application. It should be noted that the scope of
the SBOM application varies depending on the scope and level of risk to be
addressed. For example, if an SBOM is to be created for medical devices that will
be required by regulations and requirements in the future, it is assumed that not
only the organization itself but also suppliers with whom it has business contracts
will create an SBOM at the time of software build and that the SBOM will be used
by medical institutions as users. The scope of components to be covered by SBOM
is not limited to components used directly but also includes components used
recursively, and it is expected that SBOM tools will be used to automatically create
an SBOM for vulnerability management and license management. As for the format
and items of SBOM, it is desirable to create an SBOM based on a format that can
be processed automatically, such as SPDX, and that includes the items required by
the regulations.

4.2. SBOM tools selection

[Actions for the introduction of SBOM]

□ Organize the viewpoints for the selection of SBOM tools considering the
development language of the target software and the constraints within the
organization.
(Examples of selection viewpoints: functions, performance, analyzable
information, analyzable data format, cost, supported formats, component

46

analysis method, support systems, coordination with other tools, form of
provision, user interface, operation method, supported software languages,
Japanese support, etc.)

□ Evaluate and select multiple SBOM tools based on the organized viewpoints.

[Points to be aware of for SBOM introduction]

 Since the use of multiple SBOM tools can be inefficient, it is advisable to
consider whether the minimum number of SBOM tools should be used for a
given purpose.

 Commercial SBOM tools are generally expensive. On the other hand, OSS
SBOM tools may require many workloads for implementation and operation
due to the lack of information about environmental maintenance and
learning.

 Compared to commercial SBOM tools, OSS SBOM tools often have limited
functions and performance: recursive use components cannot be detected,
there are limitations on readable SBOM formats, license false negatives occur,
or the installation environment is limited.

 For on-premises SBOM tools, the installation environment may be restricted.
In addition, with SaaS-type SBOM tools, it is necessary to confirm that the
tool is not structured to transmit sensitive source code information to external
parties.

 It is necessary to select SBOM tools that can be easily integrated into the
existing development process and to operate them in a way that does not
place a burden on developers so that the implementation of SBOM does not
cause a significant reduction in development efficiency.

 In selecting an SBOM tool, it is effective to experience the actual use of the
tool by using a free trial. If organizations find it difficult to set up and select
a viewpoint, they may consult with a distributor who handles multiple SBOM
tools and compare and evaluate the features, advantages, and disadvantages
of each tool before selecting one.

An organization planning to implement an SBOM should build an environment and
establish a system for creating SBOM corresponding to the clarified scope of the
SBOM application. SBOM tools provide the most important facility for creating and

47

managing SBOM. When creating and managing an SBOM, SBOM tools are not
necessarily essential. Formats such as SPDX Lite that can create and manage
SBOM manually are also available. It is demonstrated, however, that in addition to
reducing the workloads required for component management, the use of SBOM
tools can efficiently enable the detection of dependencies among OSS and reuse of
OSS, thereby reducing a lead time between announcement and identification of
vulnerability. Therefore, it is realistic to use SBOM tools to create and manage
SBOM, and this Guidance also assumes the use of SBOM tools.

Some SBOM tools are shown in 10.3.2 of the Appendix. SBOM tools are broadly
divided into commercial tools and OSS tools. Commercial SBOM tools are generally
expensive, but they have a rich user interface that enables intuitive SBOM creation
and management. They have the advantage that the user can consult with vendors
and distributors. Furthermore, there are SBOM tools that can be linked with various
development tools and communication tools. Meanwhile, OSS SBOM tools often
lack information for environmental maintenance and learning. Therefore, OSS tools
may require many workloads to implement and operate and to investigate and
respond to the cause when an error occurs. Also, compared to commercial SBOM
tools, the functions and performance of OSS SBOM tools are often limited. For
example, reused components cannot be detected; there is a limit to SBOM formats
that can be read; sometimes licenses are not detected; and the environment is
limited for SBOM introduction. Nevertheless, it should be noted that OSS SBOM
tools are actively developed mainly by the OSS community, and their functionality
and performance will be improved. In addition, some companies provide support
services for OSS SBOM tools, and users of OSS SBOM tools are expected to receive
support as needed.

While various commercial and OSS SBOM tools are available, it is desirable to
organize the viewpoints of selection considering the development language of the
target software and restrictions within the organization and to evaluate and select
SBOM tools based on this viewpoint. Examples of possible selection viewpoints
include those shown in Table 4-2.

48

Table 4-2 Viewpoints for selecting SBOM tools
Viewpoints Description

Functions

SBOM tools have the following functions: component analysis,
automatic matching of vulnerability and license information, risk
quantification, visualization of dependencies and vulnerability
information, automatic tracking of vulnerability and license
information, alert function when a new vulnerability is detected,
automatic reporting of advisory information, and import function
of SBOM data. Since each SBOM tool supports different functions,
it is advisable to sort out which functions are necessary based on
the purpose of the SBOM introduction and the scope of the SBOM
application.

Performance

In the detection of OSS and the matching of vulnerability and
license information, the degree of false positives and false
negatives is an important indicator. In addition, it is also
important to determine how quickly new vulnerabilities are
reflected in the tool when they are found. It is desirable to clarify
what level of performance23 is required, based on the purpose of
the SBOM introduction and the scope of the SBOM application.

Analyzable
information

Information about components that can be analyzed varies,
depending on the SBOM tool. Many commercial tools can
automatically analyze the vulnerability and license information of
components, and there are also tools specialized in analyzing
vulnerability information and license information. It is desirable
to sort out which information is necessary based on the purpose
of the SBOM introduction and the scope of the SBOM application.

Analyzable
data format

SBOM tools have conditions on the data formats that can be read
during component analysis. It is desirable to determine data
formats to be used for analysis, such as file format (compatibility
by extension), type of supported package manager, and OS/CPU
architectures on which the software can run.

23 Methods for understanding tool performance include the following: using a free trial, loading
the actual software to be analyzed and the SBOM, etc. to be used into the tool, and confirm that
the tool can output accurate information; and checking with the developer or distributor of the
tool vendor's database for specifications such as the number of OSS and vulnerabilities included
in the database, the source of vulnerability information (JVN, NVD, etc.), and the update
frequency of the database.

49

Viewpoints Description

Cost

In the case of commercial SBOM tools, a tool license fee is
required. The fee structure differs depending on the tool, but
many tools are offered on an annual subscription basis. Some
tools offer multiple OSS analysis methods as an option, and
others offer a plan that enables various consultations on OSS
management, not only for responding to inquiries. the method
for calculating license fees varies by tool, based on factors such
as the number of developers, the scale of the organization, and
the amount of analysis code. There may be economies of scale
when the entire organization adopts the tool even if it is
expensive. It is desirable to determine how much cost can be
spent on SBOM tools, considering the cost constraints within the
company.

Supported
formats

Depending on the SBOM tool, it is possible to import/create SBOM
only in a specific SBOM format (SPDX, SPDX Lite, CycloneDX,
SWID tags, etc.). As for SBOM creation, most SBOM tools support
multiple SBOM formats, while as for SBOM import, there are
fewer products that support multiple SBOM formats. It is
desirable to determine which SBOM formats need to be
supported, based on the scope of SBOM application.

Components
analysis
method

Components in software can be analyzed in three major ways:
code matching, dependency detection, and string detection. Code
matching is a method to detect OSS by matching a code with OSS
databases. In addition to exact matching, there is a partial
matching method called snippet matching. There is also a method
of matching by binary patterns. Dependency detection is a
method to detect direct and indirect OSS obtained with a package
manager; the possibility of false detections is low. String
detection is a method to detect applicable licenses by analyzing
software license strings. Some SBOM tools combine multiple
analysis methods for OSS analysis and some tools support only
some analysis methods. Therefore, it is desirable to organize and
clarify which OSS analysis method should be adopted, based on
the code information that can be prepared when creating SBOM.

50

Viewpoints Description

Support
systems

As for commercial tools, there are SBOM tools that allow users to
inquire the vendor about the implementation and operation of the
tool. As an option, some tools offer a plan that allows users to
consult with the vendor on various aspects of OSS management,
not limited to inquiries about the tools. Some companies provide
support services for OSS tools as well, the users can receive
assistance as needed. It is desirable to determine the level of
support needed, taking into consideration the scope of the SBOM
application and the knowledge level of the personnel in charge of
SBOM introduction.

Coordination
with other

tools

There are SBOM tools that can be integrated with the
development environment, build tools, software version control
tools, communication tools, etc. For improving the efficiency of
the entire software development life cycle, such as automation of
SBOM creation, it is desirable to be able to integrate with tools
already in use in the organization. It is also desirable to clarify
what kind of tools need to be linked with.

Form of
provision

There are two types of SBOM tools: packaged version and cloud
version. With packaged SBOM tools, there is a possibility of
incurring server maintenance costs in addition to tool fees, and
the environment in which the tool can be deployed may be
limited. With the cloud version, the initial installation cost and
workloads required for SBOM sharing can be reduced compared
to the packaged version. However, it is necessary to confirm in
advance that there is no risk of transmitting externally highly
confidential source code information of the company. It is
desirable to determine which type of provision is more suitable
for the organization, considering the system constraints within it.

User
interface

Some SBOM tools provide only a command line interface (CLI),
while others also provide a graphical user interface (GUI). GUI-
compatible tools enable the intuitive creation of SBOM and
visualization of the output results. It is desirable to determine
what kind of user interface tools are required, taking into
consideration the knowledge level of the personnel in charge of
SBOM introduction.

51

Viewpoints Description

Operation
method

When developers execute a component analysis with SBOM tools
by themselves, they can reduce their workload by selecting SBOM
tools that are linked to their development environment and
automatically perform analysis in the background. On the other
hand, if a specialized team such as an analysis team executes an
SBOM tool, it will be easier to examine the analysis results by
selecting an SBOM tool that provides sufficient supplementary
information such as policy functions and licenses.

Supported
software
language

SBOM tools support different software development languages;
many tools support representative languages such as C, C++,
Java, Python, Ruby, Swift, Go, etc. For some languages, however,
the number of tools that support them may be limited. Based on
information collected concerning the target software, it is
desirable to determine which SBOM tools should be implemented
for which development languages.

Japanese
support

Currently, most SBOM tools are developed overseas. Therefore,
in some cases, instruction manuals and README files are
provided only in English, and in other cases, the tools themselves
do not support Japanese. If it is difficult to use tools provided only
in English, it may be better to consider prioritizing tools with
Japanese support, after considering the purpose of the
organization's SBOM introduction and other points of view24 .
Some sales agents of commercial tools or companies that provide
support for OSS tools may provide documents related to SBOM
tools translated into Japanese.

Based on the purpose and scope of the SBOM introduction, it is desirable to
evaluate and select SBOM tools after determining in advance what level of content
is required for each point of view. For example, if the budget available for SBOM
introduction is limited, it is expected to select an OSS SBOM tool that is compatible
with the company's development language and capable of outputting an SBOM in
the desired format. If enough budget is allocated to implement commercial tools,
it is expected that multiple tools will be evaluated and selected based on

24 For example, if there is a possibility of joint operation of SBOM tools with the company's
overseas offices, overseas business partners, foreign suppliers, etc., it is desirable to select tools
based on their functions, performance, and operation methods rather than prioritizing Japanese
support.

52

comprehensive consideration of functionality, performance, cost, and other factors.
It should be noted that the use of multiple SBOM tools may be inefficient, except
in cases where each business unit or development project has a different viewpoint
on the optimal tool to be sought.

In the evaluation and selection of tools, it is expected that agents who handle
SBOM tools will be consulted. By experiencing the actual feeling of use and
evaluating the difficulty and required period of operation learning, using a free
trial25 before implementing the SBOM tool, it is possible to perform a trial analysis
of the source code of a project that is assumed to be a typical product or application
in the company and to check whether the expected results are obtained. In addition,
if it is difficult to set or select viewpoints, the organization should consult with
distributors who handle multiple SBOM tools and select one by comparing and
evaluating the features, advantages, and disadvantages of each tool, while
obtaining information about many tools.

4.3. SBOM tools installation

[Actions for the introduction of SBOM]

□ Check the requirements of the environment where the SBOM tool can be
installed and set up the environment.

□ Check the instruction manual and README file of the tool and then implement
and configure an SBOM tool.

[Points to be aware of for SBOM introduction]

 In the case of commercial SBOM tools for which a support system is in place,
the implementation and configuration of a tool can be done efficiently by
contacting the sales agent or tool vendor and receiving their assistance.

 OSS SBOM tools may require the burden of trial-and-error configuration
because information about tool construction and configuration may be
lacking. Effective implementation and configuration of an OSS SBOM tool can
be achieved by obtaining assistance from companies that provide support

25 It is effective to organize the functions and use cases to be evaluated before conducting a
trial, and to formulate a specific trial plan.

53

services related to OSS tools, if necessary.

 When using an SBOM tool for vulnerability management, it is necessary to
monitor the operation of the SBOM tool and to back up the data regularly to
prevent the SBOM tool from stopping due to failures or other reasons and to
prevent vulnerability detection from being delayed.

The environment in which the SBOM tool can be installed differs depending on the
SBOM tool. For example, the PC on which an SBOM tool runs may be required to
have an internet connection, certain machine specifications, a specific OS, a
specific browser installed, or a Java or Python execution environment. Also, some
SBOM tools limit the installable OS solely to Linux, while a separate virtual machine
environment may be required when installing on a Windows terminal. Therefore,
when implementing and configuring an SBOM tool, it is necessary to first confirm
the requirements for the implementation of the tool and build an environment for
the implementation.

After the environment for SBOM tool installation is in place, the organization
implements and configures the SBOM tool for SBOM production. Basically, the
implementation and configuration should be done by checking the user's manual
and README file. However, for commercial SBOM tools that have a well-developed
support system, the implementation and configuration can be done efficiently with
the help of a sales agent or tool vendor. Some sales agents offer services for
environment construction and initial settings on behalf of their customers, so it is
a good idea to consider using such services if necessary. Certain SBOM tools lack
information about tool construction and configuration. In addition, since many OSS
SBOM tools are developed overseas, the documents for reference are often
available only in English. For this reason, it is assumed that the SBOM tool may be
configured by trial and error, for example, by inputting sample codes and checking
whether a desired SBOM is outputted or not. If necessary, companies that provide
support services for OSS tools may be used in effectively implementing and
configuring an OSS SBOM tool.

When using an SBOM tool for vulnerability management, it is necessary to monitor
the operation of the SBOM tool and perform regular backups of data to prevent the
SBOM tool from stopping due to failures or other reasons and to prevent a delay
in vulnerability detection.

54

4.4. Learning about SBOM tools

[Actions for the introduction of SBOM]

□ Learn how to use SBOM tools by checking the instruction manual and README
file of the tool.

□ Record know-how on how to use the tool and the outline of each function and
share them within the organization.

[Points to be aware of for SBOM introduction]

 With commercial SBOM tools that have a support system, users can learn
how to use the tools efficiently by making inquiries to their sales agents or
tool vendors.

 By using tools through trial and error by creating sample SBOM, users can
learn how to use their tools efficiently.

After an SBOM tool has been implemented and configured, it is desirable to learn
how to use the tool. Basically, the user should learn how to use the tool by checking
the instruction manual and the README file. With a commercial SBOM tool for
which a support system is available, the user can efficiently learn how to use the
tool by making inquiries to the sales agents or tool vendors. Compared to OSS
tools, commercial tools are more sophisticated, and it may take time to learn all
the functions. The user may check with the sales agent or tool vendor regarding
the functions necessary to produce the SBOM that the organization desires to
create and then learn how to use the tool by focusing on those functions. It is also
effective to learn how to use the tool through trial and error by creating sample
SBOM. This is especially effective in the case of tools for which information about
how to use is lacking. Since the specific usage of the tool differs from organization
to organization, it is desirable to record the know-how on the usage of the tool and
the outline of each function identified through the learning process and to share
them within the organization.

55

5. SBOM production and sharing phase

Based on the established environment and system, organizations are required to
create SBOM and provide them as needed. This section discusses what SBOM-
introducing organizations should do during the SBOM creation and sharing phase,
as well as the points that SBOM-introducing organizations should be aware of.

5.1. Component analysis

[Actions for the introduction of SBOM]

□ Scan the target software and analyze the component information using an
SBOM tool.

□ Examine the analysis log of the SBOM tool and check whether the analysis has
been correctly executed without any false positives or false negatives caused
by errors or lack of information.

□ Check the component analysis results to see if there are any false positives
and false negatives.

[Points to be aware of for SBOM introduction]

 A Component analysis function of SBOM tools can be used to analyze
components and create SBOM more efficiently than the manual method. The
effect of using an SBOM tool is greater when the number of components is
larger.

 In some cases, it is effective to use the configuration information of a package
manager. In some cases, the package manager may also be used to identify
granular components that cannot be identified by the component analysis
function of SBOM tool.

 False positives and false negatives of components may occur. For example,
components such as symbolic links and runtime libraries, deep hierarchical
components, and components used only in specific fields may not be
detected. Even if components are identified, their version information may be
wrong.

 The output results differ, depending on the component analysis method in the

56

SBOM tool. In the case of analysis based on dependencies, the possibility of
false detection is extremely low, but in the case of other analysis methods,
there is a possibility of false positives and false negatives. In the case of
analysis based on binary files, there is an advantage that only binary files can
be used for analysis even when source codes are not available. There is a
possibility, however, that the accuracy of analysis will decrease when only
binary files are used.

 Analysis results may differ, depending on the environment (execution
environment, development environment, etc.) in which components are
analyzed.

 Since OSS that does not exist in the SBOM tool database cannot be detected,
additional measures may be needed, such as manually adding information
about the component from the SBOM tool console.

 Component relationships in an SBOM created with an SBOM tool may differ
from the actual software configuration and need to be analyzed with
appropriate settings.

 It takes a particularly large number of workloads to check for false positives
and false negatives related to sub-tier components and third-party
components. Since it is difficult to guarantee false negatives, the check must
be based on the trade-off between the degree of accuracy and the workloads
required to deal with the problem.

 By considering the analysis method of the SBOM tool, false positives and false
negatives can be efficiently checked.

The PoC confirmed that the component analysis function of a SBOM tool can
analyze components and create SBOM more efficiently than the manual method.
For example, in the PoC for dental CTs in the medical device industry, it was
confirmed that manual SBOM creation required more than 30 workloads, while
SBOM creation using an SBOM tool required only 0.15 workloads, leading to a
reduction of 99% or more. Therefore, it is realistic to analyze components and
create and manage SBOM using SBOM tools, and this section is also written
assuming that SBOM tools will be used26. In some cases, a package manager may

26 Another method of creating SBOM is to automatically generate them when building the
software. For example, the following examples of SBOM generation using build environments

57

be able to identify fine-grained components that cannot be identified by SBOM
tools, and SBOM may be created effectively by utilizing the configuration
information of the package manager. In addition, SBOM can be created efficiently
by receiving SBOM from software suppliers when possible.

To produce an SBOM, the organization first scans the target software with an SBOM
tool and analyzes the component information. The scanning method differs
depending on the SBOM tool. In some cases, analysis is performed by specifying
the target software from the GUI, while in other cases the analysis is performed
via the CLI. For the method of analysis, organizations should check the instruction
manual or README file of the implemented SBOM tool. By analyzing the SBOM
tool, organizations can identify the names of components, supplier names, versions,
and dependencies among components that are included in the target software.
However, it should be noted that there may be cases of false positives and false
negatives of components. In fact, the following points were found in the PoC:

 Components whose entities, such as symbolic links and runtime libraries,
were not included in the SBOM tool scan, were not detected.

 Compared to the detection results for the top-level components, the false
negative rate was high for the lower-level components. However, in some
cases, only lower-level components were detected without top-level
components being detected, indicating that the detection rate does not
necessarily vary depending on the hierarchy of components.

 Components related to controls used only in specific areas were not detected.

 Several components were detected with incorrect version information.

 The output results differed depending on the component analysis method of
the SBOM tool. The results of the binary scan using only binary files showed
that only about 10% of the components were detected, compared to the
number of components detected in the normal scan.

 The analysis results differed depending on the environment in which the
components were analyzed. When a scan was performed in the development
environment, uninstalled packages that were not actually used in the product

and tools are available:
 Yocto︓https://docs.yoctoproject.org/dev/dev-manual/sbom.html
 Android Open Source Project（AOSP）︓

https://source.android.com/docs/setup/create/create-sbom?hl=ja
 Zephyr︓https://docs.zephyrproject.org/latest/develop/west/zephyr-cmds.html

https://docs.yoctoproject.org/dev/dev-manual/sbom.html
https://source.android.com/docs/setup/create/create-sbom?hl=ja
https://docs.zephyrproject.org/latest/develop/west/zephyr-cmds.html

58

were also detected.

 No OSS that did not exist in the SBOM tool database was detected,
necessitating adjustment of the analysis results, such as manually adding
component information from the SBOM tool console.

 Depending on the repository and settings of the SBOM tool, the configuration
information of the components in the SBOM was different. There were cases
in which the relationship of components in the SBOM created with the SBOM
tool was different from the actual software configuration.

 In some cases, the components detected by the SBOM tool did not match
the components extracted by the package manager.

Therefore, it is important to check the output results for false positives and false
negatives, instead of using the output results of the component analysis function
of a SBOM tool as they are. The viewpoints and methods of checking the results
for false positives and false negatives are shown in Figure 5-1. In some cases, it is
practically difficult to check all the components comprehensively, because the
confirmation of false positives and false negatives is basically a manual process. In
the PoC, some components require 0.50 hours/component to check for false
positives and false negatives, which means that many workloads are required to
check for false positives and false negatives in the case of software with many
components. Checking for false positives and false negatives related to sub-tier
components and third-party components requires many workloads. Since it is
difficult to guarantee the absence of false negatives, checks should be based on
the trade-off between the degree of accuracy and the support workloads.

59

Figure 5-1 Perspectives and methods of checking component analysis
results

When checking for false negatives, it is important to consider the analysis method
of the SBOM tool. There are three major methods of component analysis in SBOM
tools: code matching, dependency detection, and string detection. Dependency
relationship detection is a method to detect direct and indirect OSS obtained by a
package manager; the possibility of false detections is low. On the other hand, in

Points to check How to check

Is the tool operating properly? (i) Check the execution log of the tool for errors.

Are the
component
analysis
results
correct?

Are
components
being mis-
detected?

(ii) Check whether the component being output is
included in the target software. If the match type is not
an exact match, check whether the component may
have been modified.
(iii) (If the decision cannot be made in (ii)) Based on
the component name outputted, compare the source
code obtained from external sources such as GitHub
with the source code of the target software.

Are the
components
included (no
omissions
detected)?

(iv) Check whether the components included in the
target software are included in the output results.

Are modified
components
detected?

(v) Based on the results of snippet analysis, compare
the source code of the target software with the original
source code.

Are there any
undetected
components?

(vi) Extract the copyright of the target software are and
check if the detected components are included in the
output results

Copyright
extraction results

Log

SBOM tool

Log
Output
result

Snippet analysis
results

Source code for
external sources

Target
software

(i)

(ii)

(iii)

(iv)

(vi)

(v)

Analysis

Output

Extract
copyrights

Output

60

the case of analysis by code matching or string detection, there is a possibility of
false positives and false negatives. In addition, in the case of scans based on binary
files, it was found that many false negatives have occurred. Since the degree of
occurrence of false positives and false negatives varies depending on the
component analysis method, it is desirable to check for false positives and false
negatives based on the analysis method of the SBOM tool in use. For example, in
the case of analysis based on binary files, there is an advantage that only binary
files can be analyzed even when source code is not available. On the other hand,
it is expected that false positives and false negatives are checked for, while
considering, among other things, the possibility that many false positives and false
negatives may occur when only binary files are used. There is also a possibility
that the analysis is not being performed properly due to insufficient parameter
settings of the SBOM tool, failure of package manager execution, or other reasons,
resulting in false positives and false negatives. Even if the tool seems to be
terminated normally on the surface, it may be terminated by skipping a part of the
internal analysis process due to an error. Therefore, it is necessary to check the
execution log of the tool to see if such an error has occurred.

If, because of the confirmation of false positives and false negatives, it is found
that unknown information is contained, it is desirable to understand such
information as “known unknowns”. Known unknowns are facts that are unknowns
but considered as knowns, which are also referred to in the “Minimum Elements”
of the SBOM, as shown in Table 2-3. When sharing a created SBOM with users and
suppliers of the target software, the transparency of the information can be
enhanced by sharing the “known unknowns” as well.

5.2. SBOM production

[Actions for the introduction of SBOM]

□ Determine the requirements for the SBOM to be produced, such as items,
format, and output file format.

□ Produce an SBOM that satisfies the requirements, by using the SBOM tool.

[Points to be aware of for SBOM introduction]

 Considering the purpose of creating and sharing an SBOM, full accurate

61

information should be included in the SBOM.

 When a component is used that is provided by a third party, such as an OSS
community, it may be able to receive an SBOM of the component. However,
if the component is used after being modified within the organization, it will
not be able to use the provided SBOM as it is.

 By setting the names in the SBOM from the viewpoint of SBOM users, it is
possible to eliminate rework after the SBOM is shared.

Produce an SBOM based on the analyzed component information. When creating
an SBOM, it is necessary to determine in advance the requirements regarding the
SBOM, such as the items to be included in the SBOM, the format, and the output
file format. For these requirements, regulations/requirements may specify the
format and items of the SBOM. In the SBOM format, no information
(NOASSERTION) is allowed, but considering the purpose of creating and sharing
the SBOM, it is desirable that the correct information is fully entered in the SBOM.
If a component provided by a third party such as a third party or OSS community
is used, organizations may be able to receive the SBOM for the component. By
receiving SBOM from a third party, it is possible to create SBOM efficiently, and
organizations may also use them to examine the SBOM created by the company.
It should be noted that there are contractual and licensing issues regarding
whether to request communities or individuals to provide SBOM. To identify any
rewriting or unauthorized tampering of components in the supply chain, it is
effective to check the consistency of the SBOM provided by a third party and those
created by your own organization. In addition, users and suppliers of software that
may share an SBOM may specify the SBOM. It is necessary then to determine the
requirements for the SBOM in consideration of their situation. Since the specific
SBOM creation method differs depending on the tool, please refer to the user's
manual or README file of the SBOM tool implemented.

SBOM should not only be created but also be managed continuously, and the date
and time of creation of an SBOM should be clearly recorded. To enhance the
transparency of the software supply chain, it is desirable to share a created SBOM
as necessary with the users and suppliers of the target software. In sharing the
SBOM, it is required to confirm that the necessary information is included.

The created SBOM may include not only component information but also
information configured on the SBOM tool, such as project name. It is desirable to
consider whether this information is easy for SBOM users to utilize. When

62

components are managed with the SBOM tool from the development stage, project
names and version information used there are reflected in SBOM. There is then a
possibility that information that was previously used only within the company will
be shared with SBOM users. By setting names in the SBOM that can be understood
by SBOM users, it is possible to eliminate rework after sharing the SBOM.

5.3. SBOM sharing

[Actions for the introduction of SBOM]

□ Share an SBOM with the users and/or suppliers of the target software as
necessary after determining the method of sharing the SBOM.

□ Consider using electronic signature technology or other technologies to
prevent falsification of the sharing of SBOM data.

[Points to be aware of for SBOM introduction]

 Different SBOM sharing methods may be adopted, depending on the SBOM
tool used by the supplier.

 Various SBOM sharing methods will be available to different users. When
sharing an SBOM with users, it is necessary to examine the advantages and
disadvantages of each SBOM sharing method.

From the viewpoint of increasing the transparency of the software supply chain, it
is desirable as necessary to share a created SBOM with users and suppliers of
software. When sharing an SBOM is required by regulations or requirements, it is
necessary to share the SBOM with appropriate parties in an appropriate manner in
accordance with the contents specified in the regulations or requirements. When
considering an SBOM sharing method, it should be noted that the contents of many
SBOM change dynamically after their creation due to the version-up of components.
As described in Section 2.5, it is not mandatory to disclose SBOM. SBOM creators
and suppliers are encouraged to decide how to share SBOM at their own discretion.

When sharing an SBOM with suppliers, the sharing method varies, depending on
the SBOM tool used by the supplier. In general, if an organization and the recipient
use the same SBOM tool, it is relatively easy to share the SBOM with the recipient.

63

Especially in the case of commercial SBOM tools, the SBOM can be shared between
the organization and its users or suppliers by using the same SBOM tool in the
cloud. On the other hand, if the organization, users, and suppliers use different
SBOM tools, there may be restrictions on the SBOM formats, depending on the
tools. It is desirable to discuss SBOM sharing methods and contents of a shared
SBOM with suppliers, in advance. Currently, there are only a limited number of
tools that can import SBOM generated with other tools and use them for
vulnerability management. Therefore, care should be taken when discussing with
users and suppliers.

Various methods may be available for SBOM sharing with users. For example, an
SBOM sharing method may be integrated into the product so that the SBOM can
be checked from within the product; the SBOM sharing method may be published
in a repository accessible to users; or a common SBOM tool may be used for
sharing SBOM data. When sharing SBOM with users, it is desirable to select an
SBPM sharing method, considering the characteristics and frequency of updates of
SBOM target software, SBOM usage status among users, and so on. In addition,
to ensure the reliability of SBOM data itself when sharing an SBOM, it is necessary
to consider the use of digital signature technology, distributed ledger technology,
or other technologies to prevent tampering.

64

6. SBOM use and management phase

To enjoy the benefits of SBOM, it is required to operate and manage SBOM that
have created. This section shows the items that the SBOM-implementing
organization should implement, as well as the points that SBOM-implementing
organizations should note, in the SBOM operation and management phase.

6.1. Vulnerability management, license management, etc.

[Actions for the introduction of SBOM]

□ Based on the output of the SBOM tool, assess the severity, evaluate the
impact, fix the vulnerabilities, check the residual risk, and provide information
to the relevant organizations.

□ Based on the output of the SBOM tool, check whether there is any violation of
the OSS license.

[Points to be aware of for SBOM introduction]

 The vulnerability information and license information outputted by the SBOM
tool may be incorrect, so it is necessary to check the output results.

 If the EOL of a component cannot be identified by the SBOM tool, it is
necessary to investigate it separately.

In this phase, vulnerability management, license management, etc. are performed
based on the created SBOM. As mentioned above, Since SBOM is a method of
software management, the aim should not be to create an SBOM itself, but to use
SBOM to achieve appropriate software management. Therefore, vulnerability
management and license management need to be implemented on SBOM data
provided by third parties. In vulnerability management, it is necessary to check,
based on the outputs of the vulnerability management function of the SBOM tool,
whether the components included in the software are vulnerable or not. If a
vulnerability is found, countermeasures must be taken against it. As a specific
vulnerability response, it is desirable to locate the vulnerability, analyze the scope
of impact, estimate and evaluate the risk, confirm the acceptability of the risk, and

65

prioritize the vulnerability response. Then, after identifying the related security
issues, it is desirable to evaluate the severity of the vulnerability and decide on
urgency. When a vulnerability is identified in the proprietary software of the
company, the related software users should be notified appropriately. When a
vulnerability is identified in third-party components such as OSS and general-
purpose software, the vulnerability should be notified to the suppliers of those
components. It should be noted that in the analysis of the impacted area of
vulnerability, it is necessary to identify and analyze not only the source code but
also development documents such as requirement definitions, specifications, and
test specifications that need to be updated. As an example of countermeasures for
this point, the PoC conducted in FY2021 confirmed that it was possible to reduce
the workloads required for identifying the affected scope of vulnerabilities, by
linking the SBOM tool with an existing configuration management tool.

When managing an SBOM manually, it is necessary to manually identify each
vulnerability, assess each vulnerability individually, and consider how to respond to
each vulnerability. Since vulnerability information is updated daily, manual
operation and management of an SBOM is impractical. Therefore, as shown in
Figure 6-1, SBOM tools are expected to be used for vulnerability management as
well. It should be noted that there is a large difference between commercial and
OSS SBOM tools in the range of vulnerability matching. Some OSS tools do not
have a vulnerability matching function, while some commercial tools have
enhanced vulnerability information databases such as NVD and JVN, as well as
their own vulnerability information database, to expand the scope of vulnerability
matching. Some commercial SBOM tools automatically match analyzed
components with vulnerability information and information about the severity, risk,
and remedies of the vulnerabilities, thus making it possible to quickly find
vulnerabilities, assess their severity, and determine remedies. However, even if
vulnerability information is identified, if specific remedies are not provided, it is
necessary to consider remedies separately based on the details of each
vulnerability.

66

Figure 6-1 Comparison of vulnerability management procedures followed
manually or with an SBOM tool

One of the points to note when managing vulnerabilities based on an SBOM tool is
that the vulnerability information outputted by an SBOM tool may contain errors.
In some cases, the OSS SBOM tools used in the PoC outputted incorrect information
about the severity of vulnerabilities, and it was necessary to manually investigate
the vulnerability information. There is a possibility of false positives and false
negatives in the analysis of components; there is also a possibility of errors in the
output results of vulnerability information. It is then necessary to check the output
results. Some SBOM tools perform vulnerability matching based on not only
vulnerability information in public vulnerability information databases such as NVD
but also vulnerability information based on tool vendors' own surveys, which may
enable vulnerability management based on a wide range of vulnerability
information.

In response to these perspectives and issues, Section 7 summarizes specific
procedures and methods for vulnerability management using SBOM, divided into
process phases.

Based on the outputs of the SBOM tool, it is necessary to check the license
compliance. status of the components included in the software. If it is determined
that it is impossible or difficult to comply with the license conditions regarding the
assumed usage of the component in question, it is necessary to take measures
such as changing the component itself or the usage method. As in the case of
vulnerability management, it is more practical to use SBOM tools instead of manual

Legend

Automated

Identify components having
vulnerabilities

Confirm whether the vulnerability
is affected

Actual impact survey

Production and
managing

an SBOM based
on SBOM tool

Manually
vulnerability
management

Manually identify the list of
components used by the

target product and examine
them closely based on

the component name and
version. Then, confirm

that the affected component
is not used.

Verify the conditions under
which vulnerabilities are
established and other

conditions to see if
they have any impact.

Verify the conditions under
which vulnerabilities are
established and other

conditions to see if
they have any impact.

Use NVD or other vulnerability
databases to obtain detailed

information on CVEs and
identify affected components.

Analyze the components included in the target software by using
the SBOM tool. The tool will show matching results with vulnerabilities

related to the analyzed components. Based on the results, confirm
the vulnerability of the component, including its impact.

67

management.

SBOM tools can efficiently identify vulnerabilities and license information of
components included in the target software. It is generally difficult to identify the
EOL of components using tools, and it is necessary to identify them manually. Since
there are some components that have no information about EOL, it is desirable to
avoid using such components as much as possible.

6.2. SBOM information management

[Actions for the introduction of SBOM]

□ Keep the created SBOM for a certain period, including the change history, so
that it can be referred to in case of inquiries from outside the company.

□ Manage the information contained in the SBOM and the SBOM itself
appropriately.

[Points to be aware of for SBOM introduction]

 Information about new vulnerabilities can be immediately obtained by using
an SBOM tool that automatically updates and notifies vulnerability
information. If automatic management using a tool is not possible, it is
necessary to cover the situation in terms of operation by appointing a
separate person in charge, but this requires more workload.

 SBOM can be most effectively managed by the department corresponding to
PSIRT in the organization, or by the quality control department if there is no
department corresponding to PSIRT.

The created SBOM shall be retained for a certain period, including a change history
so that they can be referred to in case of inquiries from outside the company. The
SBOM should be retained for a minimum period while the product is generally
distributed in the market. Even after the end of sales, it is necessary to maintain
SBOM for reference in advance because they may be referred to as necessary
during the warranty period, support provision period, replacement components
provision period, and so on. In addition, if there is an individual specification in the
license conditions of the component used, such as three years after the end of
product provision, the period should also be taken into consideration. It is also

68

assumed that the SBOM modification history will be stored in the asset
management system so that the SBOM information can be associated with the
shipped products.

Given that the contents of software covered by an SBOM change dynamically and
that vulnerability information is updated daily, the information contained in the
SBOM needs to be updated and managed periodically. By using an SBOM tool that
automatically updates and notifies vulnerability information, information about
new vulnerabilities can be immediately obtained. If automatic management using
a tool is not possible, operations must be covered, for example, by separately
appointing personnel to be in charge. In such a case, it should be noted that it
requires more workload than management with SBOM tools.

Regarding the SBOM management system, it is desirable from the viewpoint of
vulnerability management that the PSIRT or a similar department in the
organization take the lead in SBOM management. In addition, by utilizing created
SBOM, PSIRTs can reduce the workloads required for narrowing down the OSS
used in users' environments, thus enabling more efficient vulnerability
countermeasures and monitoring. Even if there is no department equivalent to
PSIRT, vulnerability management should be conducted under a certain policy, for
example, SBOM being managed by the quality control department. If there is a
team in charge of quality control across the company, it would be possible to
operate under a certain policy by defining and managing SBOM as a deliverable
and addressing vulnerabilities by utilizing SBOM as part of quality control. If there
is no quality control department, it is expected that a specific product development
team will first implement an SBOM tool and then accumulate know-how concerning
the creation, operation, and management of the SBOM. After that, it is desirable
to improve the level of SBOM introduction in the company by horizontally deploying
the obtained know-how to other development teams to promote SBOM
introduction into each team.

69

7. Specification of Vulnerability Management Process

7.1. Purpose

One of the security benefits of utilizing SBOM is the reduction of the potential for
exploitation through vulnerability management, which involves identifying and
addressing vulnerabilities. Therefore, among the overall processes of creating,
sharing, operating, and managing SBOM, the phases related to vulnerability
management are particularly important. This chapter focuses on the vulnerability
management process using SBOM, summarizing specific procedures and
considerations to provide reference information that enhances the effectiveness of
SBOM.

7.2. Challenges and issues in vulnerability management

In promoting the efficiency and widespread adoption of vulnerability management
utilizing SBOM, various stakeholders—such as equipment manufacturers,
component suppliers, and user organizations—are involved. There are several
challenges related to technology, standards, and procedures within the
vulnerability management process. The figure below illustrates the main challenges
across the vulnerability management process as the horizontal axis, providing an
overview of the situation.

Figure 7-1 Challenges in vulnerability management utilizing SBOM

(Overview)

(1)
vulnerability
information

No uniqueness of component IDs
Failure of vulnerability matching

Widespread dissemination
of tool environment readily
available

Establishment of an environment to
obtain severity, exploitability,
advisories, etc.
(Dissemination of VEX, etc.)

Request for software Fundamental
Response

Temporary
Response

Information
SharingVulnerability Response PrioritizationVulnerability Identification

Vulnerability
information

VEX etc.

SBOM
Component

ID Vulnerability DB

Vulnerability DB

Improved coverage of
multiple vulnerability
DBs

Priority handling

No response required

Threat Information, etc.

User organization

End vendor

Supplier

Efficiency in determining whether
vulnerability response is necessary
or not and prioritizing responses

Updating, distribution and management
of SBOM and VEX after software
modification

Dissemination and implementation of
interim response

Each player
(users, end vendors, suppliers)

Each player
(users, end vendors, suppliers)

Vulnerability Management Process

(software modification, build, test, distribution, etc.)

SBO
M

 sharing through the supply chain

issueLegend:

Improvement of the environment for obtaining
vulnerability information and additional
information on OSS and its comprehensiveness

Share
Share

D
istribution/

Cooperation

...

GitHub OSV ZDI

...

Multiple component IDs coexist
CPE? PURL? ...

Player

Manual addition of
components not identified by
the tool

(BtoB assumption)

Information sharing and revision
requests through the supply chain

70

The vulnerability management process utilizing SBOM can be implemented in
phases as shown on the horizontal axis of the figure: vulnerability identification,
vulnerability response prioritization, information sharing, and vulnerability
response (including temporary and fundamental response). Since there are
challenges associated with vulnerability management using SBOM, this section will
outline the issues present in these phases and present methods and procedures to
address them in the following section.

First, in the vulnerability identification phase, the lack of uniqueness due to various
standards and vendor-specific formats of component IDs included in the SBOM
poses a challenge for vulnerability matching. Additionally, multiple vulnerability
databases exist, and expanding the scope of these databases is necessary to
enhance the comprehensiveness of vulnerability information. In the vulnerability
response prioritization phase, determining whether a response is necessary and
setting priorities are critical for improving efficiency. The acquisition of required
information from external sources and the dissemination of VEX (Vulnerability
Exploitability Exchange) information also present challenges. In the information
sharing phase, identifying the scope, methods, and environment for information
sharing becomes a challenge. During the vulnerability response phase,
considerations for temporary measures that do not involve fixing vulnerabilities, as
well as updating and sharing SBOM and VEX information based on the results of
vulnerability fixes, are key issues.

The following chapters will outline methods and procedures to address these
challenges, demonstrating ways to achieve effective vulnerability management
utilizing SBOM.

7.3. Overview of the entire process

Considering the challenges outlined in the previous section, the overall view of
methods and procedures essential for implementing vulnerability management
using SBOM can be summarized as follows:

71

Figure 7-2 Key Steps and Procedures in the vulnerability management

process utilizing SBOM (Overview)27

The vulnerability management process utilizing SBOM consists of the following four
steps, as illustrated in the figure. This section provides reference examples of
important methods and procedures for each step.

(1) Vulnerability Identification Phase

Use SBOM to identify vulnerabilities present in the software based on the latest
vulnerability information.

(2) Vulnerability Response Prioritization Phase
Assess the identified vulnerabilities to determine the necessity and priority of
responses based on the potential for exploitation and cost-effectiveness.

(3) Information Sharing Phase
Share information regarding vulnerabilities and response methods among
stakeholders.

(4) Vulnerability Response Phase
Implement rapid temporary measures for prioritized vulnerabilities that do not
involve fixing them, as well as permanent solutions that include vulnerability
fixes. Update and share SBOM and VEX information based on the results.

27 The organization of the vulnerability management process is based on references such as the
following documents:
NTIA, “Framing Software Component Transparency: Establishing a Common Software Bill of
Materials (SBOM)”, CISA, “Stakeholder-Specific Vulnerability Categorization (SSVC)”,
CISA, “SBOM Sharing Roles and Considerations”

Spindle tool

Completion tool

Self-design script
Manual interpolation

• Target software information
• Management requirement level
• Legal standards and business practices

Vulnerability Matching Method

List of vulnerability matching results

(1.1) Selection of a matching method
category

(1.2) Identification of available SBOM
data

(1.3) Selection of target vulnerability
database

(1.4) Selection or design of
a matching method

Performing vulnerability matching

(2.1) Selection and acquisition of prioritization information

(2.2) Category determination based on prioritization
decision tree

(2.3) Priority score evaluation

Vulnerability Response Prioritization Result List

Vulnerability Response Prioritization Sharing

(3.1) Identification of shared
information and recipients

(3.2) Identification and
implementation of the sharing method

Vulnerability Response Completed

Update and share SBOM, VEX, etc.

M
odifying

procedures
based

on the com
pany

(1) Vulnerability identification

(2) Vulnerability response prioritization

(3) Information sharing

(4) Vulnerability response

input-outputLegend

Activities and Methods

(1.1) through (1.4)
are performed on a
regular basis.
Feedback loops are
implemented as
needed.

Narrowing down by vulnerability filtering

(4.1) Temporary vulnerability response
(without vulnerability remediation)

(4.2) Fundamental vulnerability response
(with vulnerability remediation)

72

7.4. Procedures and methods for each phase

In this chapter, specific procedures, and methods for each phase of vulnerability
management utilizing SBOM will be presented, as outlined in the previous chapter.
This aims to provide examples that organizations can reference to implement
vulnerability management according to their policies and environments.

 Vulnerability Identification Phase

Vulnerability identification primarily involves determining the methods for
identifying vulnerabilities within the organization using one of the following four
approaches. Actual vulnerability identification is then performed using the selected
method. Since the necessary items and order may differ based on the organization,
it is expected that each organization will selectively implement these methods.

Selection of matching method category
(1) Selection of a matching method category

Vulnerability matching methods can be categorized into: Use of (i) existing
SBOM tools, (ii) API utilization scripts, and (iii) Web UI. Organizations should
choose a method based on their technical capabilities, budget, and available
resources.

(2) Identification of available SBOM data
Determine how to obtain the SBOM that will be utilized.

(3) Selection of target vulnerability database
Choose the vulnerability databases that will be used for vulnerability
identification and prioritization of responses.

(4) Selection or design of a matching method
Based on the results from steps (1) to (3), decide on the organizationʼs specific
method for vulnerability identification.

73

(1) Selection of a matching method category
As shown in the figure below, vulnerability matching methods can be categorized
based on the configuration of the client-side and the vulnerability database side
into three types: (i) existing SBOM tools, (ii) API utilization scripts, and (iii) Web
UI.

Figure 7-3 Overview and options for vulnerability matching categories

The vulnerability matching categories can be organized as follows, including use
cases, main users, and their merit and demerit. Organizations and users are
expected to choose methods based on their specific circumstances, using this
information as a reference.

Vulnerability
information DB

Vulnerability Information

SBOM user

Existing SBOM tools

API utilizing script

component
ID

ID Type

0x00CPE

・・・・・・・・・・・PURL

××××××SWIDtag

Vulnerability Information

component
ID

ID Type

0x00CPE

・・・・・・・・・・・PURL

××××××SWIDtag

Vulnerability Information

component
ID

ID Type

0x00CPE

・・・・・・・・・・・PURL

××××××SWIDtag

Vendor-specific
vulnerability DB

SBOM tool
vendor

Utilizing the Vulnerability DB API
for partial matching

(Filtering by <product name, version>, etc.)
(False negative detected→ Accuracy and

man-hour evaluation)

Interconvert component IDs
for vulnerability matching

(No false positive)

Client Side Vulnerability DB Side

JVN to consider support for multiple component IDs

Capturing Vulnerability Information

Web UI

74

Table 7-1 Organization of use cases, main users, advantages, and
disadvantages of vulnerability matching categories

Matching
category

Use
case/necessity

Main user Benefits/ Drawback

Using
API28

By using an API for
vulnerability
searches on
vulnerability
databases that
cannot be searched
with existing tools,
the
comprehensiveness
of vulnerability
detection can be
enhanced.

Software
vendors
(manufacturers
and suppliers)
that require a
high level of
demand for their
software (with
low vulnerability
risk) are
expected to be
the main users.
Additionally,
high-demand
user companies,
such as critical
infrastructure
operators, may
also require
autonomous and
comprehensive
vulnerability
searches using
APIs

(Merit) By utilizing the
API, processes can be
flexibly customized such
as part ID conversion
and expanding the
scope of the
vulnerability database,
enabling continuous
automated monitoring.
This allows for the
development of search
methods that prevent
missed detections and
false positives, as well
as linking alerts post-
search.

(Demerit) The use of
the API requires
technical skills in coding
and resources in terms
of workload and other
factors.

28 This refers to APIs provided by vulnerability databases. For example, a public example is the
API offered by MyJVN.

75

Matching
category

Use
case/necessity

Main user Benefits/ Drawback

Using
existing
tool

With limited
personnel and
technical
resources, it will be
focused on
addressing the
minimum
necessary
vulnerabilities from
vulnerability
databases that can
be searched using
existing tools.

For paid tools,
large enterprises
with a sufficient
budget are the
target users. For
free tools, the
target users
include small
and medium-
sized
organizations
and vendors,
which often
have limited
personnel and
technical
resources for
API coding

(Merit) Vulnerabilities
can be identified with
limited personnel,
without the need for API
coding.

(Demerit) The scope is
limited to vulnerabilities
present in the databases
provided by existing
tools, resulting in a
limited
comprehensiveness of
identified vulnerabilities.

76

Matching
category

Use
case/necessity

Main user Benefits/ Drawback

Using
Web UI

Before coding with
the API, methods
are considered for
vulnerability search
and assesses the
vulnerability status
preliminary to keep
the workload
minimal.

API users who
require a high
level of security,
as well as users
of existing tools,
will utilize it for
preliminary
vulnerability
searches before
regular
operations

(Merit) Before regular
operations through API
coding or existing tools,
the user can conduct
trial evaluations of
vulnerability searches
and assess the current
state of vulnerabilities.

(Demerit) The use of
the Web UI requires
manual operations,
making it less efficient
compared to utilizing
APIs or existing tools
that can be automated
for regular operations.

(2) Identification of available SBOM data

Available SBOM data can be identified based on the following considerations:

Figure 7-4 Identification of available SBOM data

① Obtain an SBOM from an external source for target software

② Generate SBOM by using tools

If the software (components) to be used cannot be obtained from the vendor (supplier), the
SBOM must be generated automatically using an SBOM tool, or the SBOM must be created
using the configuration information of the package manager, etc.

 Confirming the SBOM provision status for third-party software
For OSS and existing third-party software, it is required to check in advance because the
SBOM to be provided is predetermined and it is difficult to request the required SBOM format
by contract.

 Providing for an SBOM in an outsourcing development agreement
For outsourced software development, it is necessary to agree on the SBOM format and the
component ID standard in the contract or other documents, depending on the developer's
technical capabilities and structure.

77

If a supplier ensures adequate vulnerability management for third-party software,
the priority for obtaining SBOM for vulnerability management by the procuring
organization may be lower. However, since there is no guarantee that the supplier
will continue to operate as a business, obtaining SBOM is important for conducting
vulnerability management independently. Additionally, acquiring SBOM is
necessary for other uses, such as license management and configuration
management, beyond just vulnerability management.

The following formats are candidates for representing SBOM as typical examples:

SBOM
format

Development
entity

Characteristics

SPDX Linux
Foundation

Standardized primarily for intellectual property
and license management. Capable of managing
packages, containers, snippets, and other
targets.

CycloneDX OWASP Developed primarily for security management.
Can encompass VEX.

SWID ISO/IEC, NIST A standard for software management that
includes a software ID system.

The following standards for component IDs are considered representative
candidates:

Component
ID

Development
entity

Characteristics

PURL OSS
community
(gitter)

A distributed allocation method where IDs are
determined based on the repository, primarily
centered around package managers like OSS.

CPE NIST It is specified as an element of the security
information sharing standard SCAP, with CPE
being assigned mainly when vulnerabilities are
reported.

SWID ISO/IEC, NIST A superset of CPE. While the NVD has declared
a transition from CPE to SWID, adoption has
not progressed significantly currently.

It is recommended to verify at what stage the SBOM being utilized reflects the
target software. SBOM can differ in comprehensiveness and other aspects based
on the timing of their creation, such as during source code development,

78

compilation, or runtime.29 When obtaining SBOM data, it is advisable to define
which creation timing of the SBOM data is necessary based on the nature of the
target system or software for vulnerability response. Additionally, it is
recommended to confirm when the actual SBOM data was created and to adjust
the necessary tasks accordingly to ensure accurate vulnerability response.
Furthermore, it is important to verify that the SBOM being utilized is applicable to
the version of the target software. Using SBOM for different versions may result in
incorrect reflection of the software components included in the vulnerability
matching target version, potentially leading to false positives, or missed detections
in the vulnerability matching process.

(3) Selection of target vulnerability database

The selection of vulnerability databases is expected to involve a comparison from
the perspectives of risk reduction and cost efficiency, considering each
organization's priority policies. When choosing a vulnerability database,
considerations should include the expansion of vulnerability information coverage,
the acceleration of vulnerability response, and cost-effectiveness. The priority of
these factors may vary between organizations, so it is anticipated that each
organization and product will select the appropriate scope of vulnerability
databases. For example, small and medium-sized enterprises with tight budget
constraints may prioritize cost and ease of use when selecting a DB, while
companies with a high demand for risk reduction may prioritize databases that
offer expanded coverage and quicker response capabilities.

29 CISA, ”Types of Software Bill of Materials (SBOM) Documents”

79

Figure 7-5 Comparative image of considerations for selecting target

vulnerability databases

(4) Selection or design of a matching method

Based on the categories of matching methods, the format of the input SBOM, and
the results of the selected vulnerability databases and their constraints,
organizations should determine which methods are available for use. The table
below provides reference judgments based on specifications and example
validations at the time of the empirical study.

Figure 7-6 Reference list for selecting vulnerability matching methods

(Image)

Standard
exampleTop rated vulnerability DBComparative priorities

Over 70% of cases
covered

Public DB2Public DB1Private DB1Number of
vulnerabilitiesExpanding

coverage of
vulnerability
information

Risk reduction
Targets other than CVEPrivate DB4Private DB3Private DB2Non-CVE

Vulnerabilities
Largest set made in
Japan

--Public DB2Emphasis on
Japanese products

Prioritization and
clarification

Private DB5Private DB2Private DB4Emphasis on OSS

Dedicated field
available

Private DB8Private DB1Public DB1Incident status
Expediting and
streamlining
vulnerability
responses
(Prioritization)

Dedicated field
availablePrivate DB1Private DB7Private DB6Exploit status

Top 3 requiredPrivate DB1Public DB2Public DB1CVSS status

Dedicated fields, top 3Private DB1Public DB2Public DB1Advisory status

Standard designationPrivate DB1Public DB2Public DB1Component ID
standard

Automation
Cost reduction

API availablePrivate DB2,
Private DB4Public DB2Public DB1API and tool

provision
Standard ID∧API
available-Public DB2Public DB1Easy to create

scripts
2 free of chargeOther 7 casesPublic DB2Public DB1Providing information for free

Public DB2Providing Japanese language information

Risk
reduction

Cost
reduction

Individual com
panies consider priority policies

Select targets as a union set in the frameLegend:

Vulnerability DB

M
ethod

Category

・InputSBO
M

D
ata

Method
Category

SBOM
format

Componet ID
Standard

Public
DB1

Public
DB2

Public
DB3

Private
DB1

Private
DB2

Private
DB3

Private
DB4

Private
DB5

Private
DB6

Private
DB7

Private
DB8

CPE × 〇 ◎ 〇 〇 〇 〇 × × × 〇
PURL △ △ ◎ 〇 〇 〇 〇 × × × 〇
Vender Specific ID △ △ 〇 〇 〇 〇 〇 × × × 〇
CPE × 〇 〇 〇 〇 〇 〇 × × × 〇
PURL △ △ 〇 〇 〇 〇 〇 × × × 〇
Vender Specific ID △ △ 〇 〇 〇 〇 〇 × × × 〇
SWID × × × × × × × × × × ×
CPE × 〇 〇 〇 〇 〇 〇 × × × 〇
PURL △ 〇 〇 〇 〇 〇 〇 × × × 〇
Vender Specific ID △ 〇 〇 〇 〇 〇 〇 × × × 〇
CPE 〇 〇 〇 〇 〇 〇 〇 〇 〇 × 〇
PURL 〇 〇 〇 〇 〇 〇 〇 〇 〇 × 〇
Vender Specific ID 〇 〇 〇 〇 〇 〇 〇 〇 〇 × 〇
CPE 〇 〇 〇 〇 〇 〇 〇 〇 〇 × 〇
PURL 〇 〇 〇 〇 〇 〇 〇 〇 〇 × 〇
Vender Specific ID 〇 〇 〇 〇 〇 〇 〇 〇 〇 × 〇
SWID × × × × × × × × × × ×
CPE 〇 〇 〇 〇 〇 〇 〇 〇 〇 × 〇
PURL 〇 〇 〇 〇 〇 〇 〇 〇 〇 × 〇
Vender Specific ID 〇 〇 〇 〇 〇 〇 〇 〇 〇 × 〇
CPE × × × × × × × × × × ×
PURL × × × × 〇 Tool3 〇 Tool3 × × × × ×
Others × × △ Tool２ ◎ Tool２ × × × × × × ×
CPE × × × × × × × × × × ×
PURL × × × × 〇 Tool3 〇 Tool3 × × × × ×
Others × × △Tool２ ◎ Tool２ × × × × × × ×
CPE × 〇 Tool１ × × × × × × × × ×
PURL × × × × × × × × × × ×
Others × × × × × × × × × × ×

Existing
tools

SPDX
(json)
Cyclone
DX
(json)

SWID

API

SPDX

Cyclone
DX

SWID

Web UI

SPDX

Cyclone
DX

SWID

80

In vulnerability matching, various vulnerability databases are involved. However,
due to the coexistence of multiple component ID standards, challenges related to
ID uniqueness for matching are expected to persist. Therefore, using APIs or Web
UIs of vulnerability databases to identify vulnerability information through partial
matching based on component names, vendor names, and other criteria is
considered a practical approach.

Vulnerability matching may face challenges such as the lack of comprehensiveness
in component information within the SBOM and the absence of uniqueness in
component IDs, which can lead to missed detections and false positives. Although
it may be difficult to verify the completeness of vulnerability matching results after
implementation, manual checks and other verification methods are expected to be
employed to validate the results of the vulnerability matching process.

Activities for vulnerability identification (1) through (4) should be conducted
regularly to respond to newly discovered vulnerabilities. When repeatedly
performing vulnerability identification, managing information such as previously
addressed vulnerabilities, their prioritization, and the association with newly
discovered vulnerability information becomes a challenge. In the future,
enhancements in VEX information and SBOM tool functionalities are expected to
facilitate the efficient management of such vulnerability information.

 Vulnerability Response Prioritization Phase

The vulnerability response prioritization phase consists of the following four steps:

(1) Vulnerability filtering

(2) Selection and acquisition of prioritization information

(3) Category determination based on prioritization decision tree

(4) Priority score evaluation

Key points for the specific implementation methods are outlined below for each
step.

(1) Vulnerability filtering

Since the effort required to gather information externally and conduct
comprehensive vulnerability response prioritization is significant, it is expected that

81

simple categorizations will be performed in advance for vulnerabilities that are
easily identifiable. For instance, if a supplier has clearly stated that vulnerabilities
in their software (components) have already been addressed, the prioritization
step can be skipped, allowing for pre-categorization. In the future, if vendors begin
to provide VEX information that includes details on whether a response to a
vulnerability is necessary, this information could also facilitate filtering in this step,
allowing for the omission of the prioritization step.

In the following steps, the method for prioritizing vulnerabilities—excluding those
that do not require a response—by obtaining external information will be outlined.

(2) Selection and acquisition of prioritization information

In this step, the selection and acquisition of information necessary for prioritization
will be conducted. The information needed for prioritization can be assessed using
cost-effectiveness as a measure for vulnerability management through SBOM. The
basic structure of cost-effectiveness can be understood as follows:

(Scale for vulnerability mapping) ∝ (Effect) / (Cost) = (Effect of reducing vulnerability risk) / (Cost)

∝ (Possibility of threat) * (Vulnerability Residual Possibility) * (Impact) / (Cost)

The effectiveness of using SBOM can be viewed in terms of security, specifically as
the risk reduction effect achieved through vulnerability management30 . In the
context of security, vulnerability risk is proportional to both the likelihood of an
incident occurring and the severity of its impact (the magnitude of potential
damage)31、32. The likelihood of an incident is influenced by both the probability of
threats and the potential for vulnerabilities to remain unaddressed. Therefore, the
cost-effectiveness can be understood in terms of this proportional relationship.

To compare and evaluate the magnitudes of these components, the following table
presents relevant information:

30 The effectiveness of SBOM encompasses not only security-related vulnerability risks but also
risks associated with license compliance violations.
31 NISC presentation: "Cybersecurity Technology Issues from a Societal Perspective," Masaki
Ishiguro, Mitsubishi Research Institute, 2019.
32 Information Processing Society of Japan Special Issue: "Cybersecurity in the Digital Economy
Era," "Cybersecurity Economics," Masaki Ishiguro, Mitsubishi Research Institute, 2018.

82

Table 7-2 Information required for vulnerability response prioritization
Evaluation category Evaluation item Explanation and importance considerations

Risk

Occurrence

probability

Threat

occurrence

probability

(External

factors)

Incident (Yes/No/Unknown)
There have been actual exploitations and incidents, indicating a

high urgency.

Public release of Exploit Code

(Yes/No/Unknown)

Exploit code has been made public, increasing the likelihood of

exploitation.

Residual

vulnerability

probability

(Internal

factors)

VEX vulnerability status (Impact:

Yes/No/Unknown)

This assessment has been conducted directly by developers utilizing

the vulnerable components, ensuring high accuracy.

Independent assessment of exploitability

(Exploitable: Yes/No/Unknown)

If VEX cannot be obtained, an independent assessment of

exploitability will be conducted. Unlike VEX, which is created by the

component developers, this assessment may have lower accuracy.

Applicability of advisory mitigation measures

(Applicable: Yes/No/Unknown

The response measures for vulnerabilities are generally applicable;

however, unless the component ID and vulnerability ID are

completely matched, the accuracy of exploitability is not high.

Availability of vulnerability fix patch (Zero-

Day)

For vendors, the absence of a vulnerability fix patch increases their

responsibility towards users and procurers, thus elevating the

priority.

Impact level

CVSS score (particularly Impact Assessment)

The assessment of impact and severity is based on general cases

and is not tailored to user environments, which may result in lower

accuracy.

User impact assessment (Importance of

information assets - CIA)

The evaluation focused on the user's information assets (CIA) is

based on actual conditions and is expected to be highly accurate.

83

Evaluation category Evaluation item Explanation and importance considerations

External services typically have a higher impact than internal

systems (e.g., total values of CIA elements rated as 2, 1, 0).

Impact on numerous products and services,

High volume of Inquiries

There is a possibility of impact in the later stages (3-level

assessment: 3, 2, 1).

Cost

Service interruption or degradation
Consider the impact of service interruptions or degradations, both

internal and external, to determine appropriate timing (3, 2, 1).

Software remediation
If the supplier's fixes are delayed, assess the timing for applying

internal fixes.

Impact testing of fixes / Implementation of

fixes

Evaluate the feasibility of conducting impact testing for the applied

fixes.

Cost of exploitability assessment
Assess the cost of performing exploitability evaluations internally,

as a substitute for the supplier, to inform decision-making.

84

By collecting this information, prioritization can be conducted based on the
considerations outlined in the subsequent steps. These information sources mainly
include vulnerability databases and SBOM tools, as indicated in Section 7.4.1(3).
Companies can select and choose among these sources according to their policy
requirements and available budget.

(3) Category determination based on prioritization decision tree

Based on the selection and acquisition of the necessary information for
prioritization, a category determination for vulnerability response prioritization
(priority sorting) will be conducted using the information obtained. To achieve this,
it is important to utilize an internationally standardized framework to ensure
accountability and global consistency. Therefore, the SSVC (Stakeholder-Specific
Vulnerability Categorization) 33 framework proposed by the U.S. CISA will be
employed. In SSVC, a decision tree is structured based on conditional branches
concerning exploitability, automatability, technical impact, and mission & well-
being. As a result, the categorization for prioritization is determined into four
groups as below:

Figure 7-7 Structure of the decision tree for vulnerability response
prioritization based on SSVC and categorization (Four categories)

The criteria for the decision-making branches can vary based on each company's

33 CISA, SSVC (Stakeholder-Specific Vulnerability Categorization)
https://www.cisa.gov/sites/default/files/publications/cisa-ssvc-guide%20508c.pdf

Exploitation Automatable Tech Impact Mission & well-being Priority
High High High High immediate

Medium immediate
Low out-of-cycle

Low High immediate
Medium out-of-cycle
Low out-of-cycle

Low High High immediate
Medium out-of-cycle
Low defer

Low High out-of-cycle
Medium defer
Low defer

Medium High High High out-of-cycle
Medium scheduled
Low defer

Low High out-of-cycle
Medium defer
Low defer

Low High High out-of-cycle
Medium scheduled
Low defer

Low High scheduled
Medium defer
Low defer

Low High High High out-of-cycle
Medium defer
Low defer

Low High scheduled
Medium defer
Low defer

Low High High scheduled
Medium defer
Low defer

Low High defer
Medium defer
Low defer

Construction of a decision tree based on
vulnerability addition information

Vulnerability Response
Priority Category(4 categories)

Vulnerability

Priority Basic action

immediate

Act immediately; foruc all resources on applying
the fix as quickly as possible, including, if
necessary, pausing regular organization
operations.

out-of-cycle

Act more quickly than usual to apply the mitigation
or remediation out-of-cycle, during the next
available opportunity, working overtime if
necessary.

scheduled Act during regularly scheduled maintenance time.
defer Do not act at present.

https://www.cisa.gov/sites/default/files/publications/cisa-ssvc-guide%20508c.pdf

85

security policy, allowing for some discretion. However, through evaluations
conducted as part of the METI SBOM PoC project, the rationale has been organized.
Each company is expected to refer to the principles outlined in this guide and
determine specific criteria in line with their own policies.

The criteria for decision-making branches are expected to vary based on the roles
and technical capabilities of companies. It is efficient and practical for the
organizations that developed the software—such as equipment manufacturers and
component suppliers—to handle vulnerability remediation for their own developed
components. Therefore, the decision tree differentiates between development
organizations and user organizations. Additionally, due to varying levels of technical
expertise in utilizing SBOM and managing vulnerabilities, practical capabilities differ
based on this expertise. As a result, the decision tree for prioritizing vulnerabilities
is categorized into four groups based on roles (development organizations vs. user
organizations) and levels of technical capability (high vs. low), providing reference
examples for each perspective.

Figure 7-8 Overview of the criteria for vulnerability response prioritization

judgment tree by four categories

The following table presents the judgment methods for each condition branch
across the four categories. Table 7-3 illustrates specific methods for making
prioritization category judgments based on the information used for vulnerability
response prioritization shown in Table 7-2. Companies are expected to determine
their judgment criteria based on their individual policies with reference to these
examples.

High-tech Low-tech

Presence of
incidents (actual
attacks)

If any of the following conditions are met:
・[Presence or absence of incidents (actual attacks)] If you are aware of actual
attacks on your company's products that exploit the relevant vulnerability, but have not
yet prepared a patch to fix it (including attacks on honeypots, discoveries within the
company, and reports of vulnerabilities and incidents from outside the company)
・[Presence or absence of incidents (actual attacks)] There have been reports of
actual attacks exploiting the relevant vulnerabilities in the OSS or components provided
by suppliers included in the product (there have been incidents)
・[Zero-day vulnerability] If a vulnerability in a product is disclosed by a security
researcher, etc., even though a patch or workaround has not been prepared for the
product (in the case of a zero-day vulnerability)
・[Presence or absence of PoC code disclosure (no actual attack)][OSS penetration
rate] Even though there have been no reports of attacks, the relevant component is
widely used and PoC code exists (in the case of a high possibility of abuse by attackers)

If any of the following conditions are met:
・[Presence or absence of incidents (actual attacks)] If your company is aware
of actual attacks on your products that exploit the relevant vulnerability, but has
not yet prepared a patch to fix it (including internal discoveries and reports of
vulnerabilities and incidents from outside the company)
・[Presence or absence of incidents (actual attacks)] There have been reports
of actual attacks on the OSS or components provided by suppliers included in the
product (there has been an incident)
・[Zero-day vulnerability] When a vulnerability in a product is disclosed by a
security researcher or other party, even though a patch or workaround has not been
prepared by the company (in the case of a zero-day vulnerability)
・[OSS penetration] The relevant component is widely used

Software Developer
Condition branching

Exploitation

High-tech Low-tech High-tech Low-tech
High
Medium
Low
High
Low
High
Low
High
Medium
Low

Tech Impact

Mission & well-
being

Software Developer Software User
Condition branching

Exploitation

Automatable

Criteria of condition branching(configuration)

Criteria of condition branching(Details)

Classification of major stakeholders

Classification of
condition branching

86

Table 7-3 Method for prioritizing decisions by organizational category
 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

Exploitation High

If any of the following

conditions are met:

・[Presence or absence of

incidents (actual attacks)] If

you are aware of actual

attacks on your company's

products that exploit the

relevant vulnerability, but have

not yet prepared a patch to fix

it (including attacks on

honeypots, discoveries within

the company, and reports of

vulnerabilities and incidents

from outside the company)

・[Presence or absence of

incidents (actual attacks)]

There have been reports of

actual attacks exploiting the

relevant vulnerabilities in the

OSS or components provided

If any of the following

conditions are met:

・[Presence or absence of

incidents (actual attacks)] If

your company is aware of

actual attacks on your

products that exploit the

relevant vulnerability, but has

not yet prepared a patch to fix

it (including internal

discoveries and reports of

vulnerabilities and incidents

from outside the company)

・[Presence or absence of

incidents (actual attacks)]

There have been reports of

actual attacks on the OSS or

components provided by

suppliers included in the

If any of the following

conditions are met:

・[Presence or absence of

incidents (actual attacks)] If

there are reports of actual

attacks exploiting

vulnerabilities in the product or

OSS contained in the product

(judged from the SBOM)

・[Presence or absence of

incidents (actual attacks)] If

the product vendor reports

that there is a high possibility

of abuse

・[Whether or not PoC code

has been published (no

actual attacks)] [OSS

penetration rate] Although

there have been no reports of

attacks, the relevant product

If any of the following

conditions are met:

・[Presence or absence of

incidents (actual attacks)]

There have been public

announcements of actual cases

of abuse by JPCERT/CC, news,

or vendors

・[Explanation of

vulnerabilities] Vendors are

recommending early

application of fixes

・[Presence or absence of

incidents (actual attacks)]

There have been reports from

inside and outside the

company about the possibility

of attacks on the company's

systems

87

 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

by suppliers included in the

product (there have been

incidents)

・[Zero-day vulnerability] If a

vulnerability in a product is

disclosed by a security

researcher, etc., even though

a patch or workaround has not

been prepared for the product

(in the case of a zero-day

vulnerability)

・[Presence or absence of

PoC code disclosure (no

actual attack)][OSS

penetration rate] Even

though there have been no

reports of attacks, the relevant

component is widely used and

PoC code exists (in the case of

a high possibility of abuse by

attackers)

product (there has been an

incident)

・[Zero-day vulnerability]

When a vulnerability in a

product is disclosed by a

security researcher or other

party, even though a patch or

workaround has not been

prepared by the company (in

the case of a zero-day

vulnerability)

・[OSS penetration] The

relevant component is widely

used

or component is widely used

and PoC code exists (in cases

where there is a high

possibility of it being exploited

by attackers)

・[Whether or not there have

been incidents (actual

attacks)] Reports have been

received from inside and

outside the company regarding

the possibility of attacks on the

company's systems

88

 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

Medium

・[Whether or not PoC code

is disclosed (without actual

attacks)] If there is PoC code

(exploit code) for

vulnerabilities in the OSS or

components provided by

suppliers included in the

product (however, this does

not include cases where actual

attacks have not been

confirmed, or where PoC exists

but it is a vulnerability

discovered within the company

and it has been confirmed that

it has not been disclosed

externally).

・[Whether or not PoC code

is disclosed (without actual

attacks)] If there is PoC code

(exploit code) for

vulnerabilities in the OSS or

components provided by

suppliers included in the

product (however, this does

not include cases where actual

attacks have not been

confirmed, or where PoC exists

but it is a vulnerability

discovered within the company

and it has been confirmed that

it has not been disclosed

externally).

・[Whether or not PoC code

is disclosed (without actual

attack)] Although there have

been no reports of actual

attacks exploiting the

vulnerability, if PoC code exists

Other than those listed above.

Low

If any of the following

conditions are met:

・[Whether or not there was

an incident (actual

attack)][Whether or not the

If any of the following

conditions are met:
・[Whether or not an incident
(actual attack) has
occurred][Whether or not
PoC code has been disclosed

・[Whether or not an incident

(actual attack) has

occurred][Whether or not

PoC code has been disclosed

(no actual attack)] If no

89

 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

PoC code was disclosed (no

actual attack)] If there are no

attack examples or PoC code

for the relevant vulnerability

・[Whether or not there was

an incident (actual

attack)][Whether or not the

PoC code was disclosed (no

actual attack)] If the

vulnerability was discovered

within the company and there

is no confirmed case of it being

used for an attack externally

(no actual attack)]: In the
case of the relevant
vulnerability, neither attack
examples nor PoC code exist
・[Whether or not an incident
(actual attack) has
occurred][Whether or not
PoC code has been disclosed
(no actual attack)]: In the
case of a vulnerability
discovered within the
company, there is no
confirmed case of it being used
for an attack externally

attack cases or PoC code have

been discovered for the

relevant vulnerability

Automatable High

If any of the following

conditions are met.

・[Location of the affected

system] The affected

vulnerability exists in a system

that is located in a position

that can be accessed from the

Internet

If any of the following

conditions are met:

・[Location of the affected

system] The affected

vulnerability exists in a system

that is accessible from the

Internet

・[Location of the system in

question] The vulnerability in

question exists in a system

that is accessible from the

Internet

Example: A publicly accessible

web server, or a device (VPN,

FW, etc.) that is located at the

・[Location of the system in

question] The vulnerability in

question exists in a system

that is accessible from the

Internet

Example: A publicly accessible

web server, or a device (VPN,

FW, etc.) that is located at the

90

 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

Example: A publicly accessible

web server, or a device (VPN,

FW, etc.) that exists in a

system that is the point of

contact between an external

network and an internal

network

・[Vulnerability description]

RCE/Command Injection

vulnerability

Example: A publicly accessible

web server, or a device (VPN,

FW, etc.) that exists in a

system that is the point of

contact between an external

network and an internal

network

・[Vulnerability description]

RCE/Command Injection

vulnerability

point of contact between an

external network and an

internal network

point of contact between an

external network and an

internal network

Low Other than those listed above. Other than those listed above. Other than those listed above. Other than those listed above.

Tech Impact High

If any of the following

conditions are met:

・[Impact on system security

functions] By using the

relevant vulnerability, it is

possible for an attacker to

disable or bypass the security

functions of the system (such

as user authentication, access

restrictions based on role

Other than the following
(including cases where the
company is unable to judge the
level of impact)

If any of the following

conditions are met:

・[Impact on system security

functions] If the vulnerability

can be used to disable or

bypass the security functions

of the system (such as user

authentication, access

restrictions based on role

settings, and tamper-proofing

(This item is not evaluated, and
is treated as all High)

91

 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

settings, and tamper-proofing

functions) that the target

product has.

・[Vulnerability description]

By using the relevant

vulnerability, it is possible for

an attacker to obtain

information contained in the

target product.

・[CVSS score] (only if the

above judgment is difficult)

CVSS score is Critical or High

functions) of the product in

question.

・[Vulnerability description]

If the vulnerability can be used

to obtain information on the

product in question.

If it is difficult to make the

above judgment, the following

conditions must be met.

・[CVSS score] The CVSS

score of the product

development company (final

vendor) is Critical or High (if

there is no information from

the final vendor, the CVSS

score of the OSS that includes

the relevant vulnerability is

Critical or High)

Low

Other than those listed above. ・[CVSS score] The CVSS

score of the OSS that is

affected is Middle or Low

Other than those listed above.

92

 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

Mission & well-
being

High

If any of the following

conditions are met:

・[Nature of the target

system] The target product is

a system that serves as a

point of contact between an

external network and an

internal network (VPN

equipment, FW, etc.)

・[Nature of the target

system] The target product is

a medical device classified as

Class II/III/IV

・[Characteristics of the

target system] The

components of the company

that are affected by the

vulnerability are used by the

company or by the final

product development team of

another company and are

If any of the following

conditions are met:

・[Nature of the target

system] The target product is

a system that serves as a point

of contact between an external

network and an internal

network (VPN equipment, FW,

etc.)

・[Nature of the target

system] The target product is

a medical device classified as

Class II/III/IV

・[Characteristics of the

target system] The

components of the company

that are affected by the

vulnerability are used by the

company or by the final

product development team of

another company and are

If any of the following

conditions are met:

・[Nature of the target

system] The target product is

a system that serves as a

point of contact between an

external network and an

internal network (VPN

equipment, FW, etc.)

・[Nature of the target

system] The target product is

a medical device classified as

Class II/III/IV

・[Nature of the target

system] The vulnerability in

question exists in a system

that is the point of contact

between the external and

internal networks (VPN

equipment, FW, etc.)

If any of the following

conditions are met:

・[Nature of the target

system] The vulnerability

exists in a product that

handles information that would

have a critical impact on the

company or its employees if

leaked (e.g. information of

extremely high sensitivity)

・[Nature of the target

system] The stoppage of the

system with the vulnerability

would have a significant

impact on the company's

business (e.g. stoppage of

work for 80% or more of the

employees)

・[Characteristics of the

target system] The

vulnerability in question exists

93

 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

incorporated into the final

product (libraries, frameworks,

etc.)

・[Number of inquiries] (only

if information can be obtained

from the company's PSIRT or

support department, etc.)

Affects many of the company's

products and services, or has

already received many

inquiries

・Does not meet the “Medium

Impact” criteria

incorporated into the final

product (libraries, frameworks,

etc.)

・[Number of inquiries] (only

if information can be obtained

from the company's PSIRT or

support department, etc.)

Affects many of the company's

products and services, or has

already received many

inquiries

・Does not meet the “Medium

Impact” criteria

・[Nature of the target

system] A failure or

malfunction of the system in

question could have a fatal

impact on human mental and

physical health and the

environment

in a system that is the point of

contact between the external

and internal networks (VPN

equipment, FW, etc.)

・[Characteristics of the

target system] A failure or

malfunction of the system in

question could have a fatal

impact on human mental or

physical health or the

environment

Medium

・[Nature of the target

system] It is confirmed that

the target product (excluding

cases where the company is a

supplier providing components

to the final product

development vendor) does not

store, retain, or transfer data

・[Nature of the target

system] It is confirmed that

the target product (excluding

cases where the company is a

supplier providing components

to the final product

development vendor) does not

store, retain, or transfer data

If any of the following

conditions are met:

・[Nature of the target

system] The vulnerability in

question exists in a product

that handles the company's

confidential information

If any of the following

conditions are met:

・[Nature of the target

system] The vulnerability in

question exists in a product

that handles the company's

confidential information

94

 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

obtained from users, such as

personal information, or data

entered by users (including

information from sensors).

obtained from users, such as

personal information, or data

entered by users (including

information from sensors).

・[Nature of the target

system] The stoppage of the

system with the vulnerability

in question would have an

unacceptable impact on the

company's business (e.g.

stopping the work of a specific

department, or more than half

of the employees)

・[Characteristics of the

target system] There is a

possibility (or the possibility

cannot be denied) that a

failure or defect in the relevant

system could have an

unignorable impact on human

mental or physical health or

the environment.

・[Nature of the target

system] The stoppage of the

system with the vulnerability

in question would have an

unacceptable impact on the

company's business (e.g.

stopping work in a particular

department, stopping work for

more than half of the

employees, etc.)

・[Nature of the target

system] There is a possibility

(or the possibility cannot be

denied) that a failure or defect

in the relevant system could

have an unignorable impact on

human mental or physical

health or the environment.

Low

(Choose from the above two) (Choose from the above two) ・[Nature of the target

system] Even if the system

with the relevant vulnerability

・[Nature of the target

system] Even if the system

with the relevant vulnerability

95

 Software Developer Software User

Condition branching High-tech Low-tech High-tech Low-tech

stops, there will only be a

minor impact (or no impact)

on the company's business.

is stopped, there will only be a

minor impact (or no impact).

For each judgment node, it is also possible to refer to existing frameworks used by the company or industry frameworks.

Additionally, since prioritization may vary depending on the evaluator, it is recommended to verify the prioritization information based
on the derivation process of individual prioritization data, the validity of assumptions and evaluation criteria, and the presence and
content of the evidence that serves as the basis for the evaluation.

96

(4) Priority score evaluation

Alongside the categorization of vulnerability response prioritization in (3), a
detailed prioritization can be conducted as needed through quantitative scoring
within each category. This also involves organizing additional information that
serves as evidence for the prioritization rationale. Score evaluation assigns
numerical values (e.g., present, absent, unknown) to each evaluation criterion,
and assesses them based on a weighted sum (weighted total).

Using reference weights as a base, adjustments can be made according to each
organization's prioritization policy. By customizing these weights based on the
circumstances and policies of each organization, it becomes possible to calculate
scores for each vulnerability using the weighted total.

Figure 7-9 Evaluation criteria and reference weights for prioritization score

assessment

Evaluation item Value
Weight
(Import
ance)

Referenc
e

Weight

Incident (Yes/No/Unknown) Yes 3

Public release of Exploit Code
(Yes/No/Unknown)

No 2

VEX vulnerability status
 (Impact: Yes/No/Unknown)

No 3

Independent assessment of exploitability
(Exploitable: Yes/No/Unknown)

Yes 2

Applicability of advisory mitigation measures
(Applicable: Yes/No/Unknown)

Yes 1

Availability of vulnerability fix patch (Zero-
Day)

Yes 3

CVSS score (particularly Impact Assessment) 8.5 2

User impact assessment (Importance of inform 3 3

Impact on numerous products and services, Hig 2 3

Service interruption or degradation 2 3

Software remediation 1 1

Impact testing of fixes / Implementation of fixe 2 2

Cost of exploitability assessment 1 2

Cost

 Evaluation category

Impact level

Occurrence
probability

Threat
occurrence
probability
(External

Residual
vulnerability
probability
(Internal
factors)

Risk

97

It is anticipated that VEX information, which is expected to be utilized in
prioritization and scoring, will be provided by vendors and others. However, since
the availability of such information is currently limited, it is expected that the Known
Exploited Vulnerabilities Catalog (KEVC)34 provided by the U.S. CISA will be used
when obtaining VEX is difficult. Although the Common Vulnerability Scoring System
(CVSS) is relatively widely used, it does not consider the actual exploitation
circumstances of vulnerabilities. Therefore, it may be useful to consider using the
Exploit Prediction Scoring System (EPSS)35, which was developed by the Forum of
Incident Response and Security Teams (FIRST) as a complementary vulnerability
assessment metric.

 Information Sharing Phase

By extending the CISA SBOM Sharing Lifecycle 36 , the methods for sharing
information that includes not only SBOM but also vulnerability information and
supplementary data will be organized.

Information sharing is expected to be considered based on the following two steps:

(3.1) Identification of shared information and recipients

(3.2) Identification and implementation of the sharing method

Below are examples of actions to be taken in these steps:

34 Known Exploited Vulnerabilities Catalog https://www.cisa.gov/known-exploited-
vulnerabilities-catalog
35 The EPSS Model, https://www.first.org/epss/model
36 CISA, Software Bill of Materials (SBOM) Sharing Lifecycle Report
https://www.cisa.gov/resources-tools/resources/software-bill-materials-sbom-sharing-lifecycle-
report

https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.first.org/epss/model
https://www.cisa.gov/resources-tools/resources/software-bill-materials-sbom-sharing-lifecycle-report
https://www.cisa.gov/resources-tools/resources/software-bill-materials-sbom-sharing-lifecycle-report

98

Table 7-4 Steps in the Information Sharing Phase

Process, Phase, Step Software Developer Software User

(3.1)
Identification of
shared
information and
recipients

(3.1.1)
Identification of
shared
information

Identify the information to be shared (provided or acquired), such as vulnerability information obtained in

Phase (1) of vulnerability management, additional information (exploitability, severity, advisory, VEX, etc.)

obtained in Phase (2), and SBOM that have been fixed.

In order to confirm the reproduction of

vulnerabilities and implement fixes, it is also

possible that developers will provide this information

as additional information to prioritize and determine

whether or not to address vulnerabilities.

It is also possible that users will request vendors

to provide additional information on vulnerability

response and prioritization by performing risk

assessments based on usage conditions.

(3.1.2)
Identification of
recipients

Identify the parties with whom the development

and management departments (PSIRT, quality

assurance) within the company and external

parties (users, vendors) share information, and

organize the information accordingly. Notifications

are divided into push and pull types depending on

the party providing and receiving the information.

Identify the vendors and customers

(organizations using the service) with whom to

share information, and prepare the information

accordingly.

Identify the contact points for the parties with

whom to share information.

(3.1.3) Trigger
of sharing
(Discovery)

It is expected that the developer will identify the

vulnerability, prioritize it, and fix it in advance, so it

is expected that the vendor will provide push

notifications. However, prioritization will need to be

If SBOM has already been obtained, it is possible

for the user organization to identify and prioritize

vulnerabilities, and it is also possible for users to

request that the vendor provide them (pull-type

99

Process, Phase, Step Software Developer Software User

determined according to the user's usage

environment. It is expected that sharing will take

place at the time the vulnerability is discovered

and fixed.

notification). In some cases, the additional

vulnerability information that can be obtained by

users who are not developers may be limited.

(3.2)
Identification and
implementation of
the sharing
method

(3.2.1)
Identification of
the sharing
method
(Access)

For SBOM and vulnerability information, the method of sharing is agreed upon between the parties

sharing the information.

For SBOM, there are two ways of sharing: manual, standalone tool file transfer and sharing, and SaaS

sharing.

As there is no standardization for vulnerability information and additional information other than CVSS,

and SaaS support is limited, file transfer is expected.

(3.2.2)
Identification of
the access
privileges
(Access, control)

SBOM, vulnerability information confidentiality, and rights will be agreed upon, and disclosure

categories (private/partially public/public) and access restrictions will be implemented as necessary.

Agree on and implement management of disclosure categories, access restrictions, etc., depending on

whether the tool is standalone or SaaS.

Regarding sharing SBOM through the supply chain, SaaS is an effective method for efficiently sharing in

real time with limited access, but it is necessary to evaluate the cost-effectiveness of SaaS costs.

(3.2.3)
Information
sharing
(Transport)

SBOM, vulnerability information, and additional information will be shared based on agreements on

sharing methods, access permissions, etc.

100

Process, Phase, Step Software Developer Software User

As shown in the CISA document [1], SBOM are divided into three levels of automation: manual transfer

(e.g. email), partially automated, and fully automated based on standard rules. SaaS-type tools are

used for automation.

If SBOM have been shared in the past within the SW supply chain, vulnerabilities that have been identified

as not requiring action as a result of vulnerability matching verification will also be notified, and action will

be stopped across the entire supply chain.

101

 Vulnerability Response Phase (Temporary and Fundamental Responses)

Vulnerability responses can be divided into fundamental responses involving fixes
and temporary responses requiring immediate workarounds. Generally, it is
expected that software developers will implement the fixes for vulnerabilities.
Modifications to SBOM/VEX are necessary during fundamental responses. Various
businesses often take on both software development and usage37, and the balance
of these roles may vary. Depending on whether an organization is in a development
or usage position, a combination of the following processes will be required38.

(4.1) Temporary Vulnerability Response

(4.2) Fundamental Vulnerability Response

Below are reference examples of actions to be taken during the Vulnerability
Response Phase.

37 Even service providers may have cases where the system department conducts development.
Component suppliers may also use components further.
38 If the procuring developer does not make fixes to the OSS software or SBOM, it is necessary
to recognize in advance that the procurer is expected to respond equally to the developer.

102

Figure 7-10 Steps for vulnerability response and examples of implementation by stakeholder

Through the steps composed of the above phases, vulnerability management utilizing SBOM can be effectively carried out.

Software UserSoftware DeveloperProcess, Phase, Step

• Consideration of provisional measures within the
user organization (suspension of use, reduced
operation, workarounds, etc.).

• Confirmation of provisional measures with the
vendor.

• Consideration of provisional measures before
vulnerability fixes (suspension of use,
reduced functionality, workarounds, etc.).
Workarounds include a variety of measures,
such as adding or changing protective
mechanisms, changing settings, and
restricting users.

(4.1.1)
Consideration of
provisional
measures

(4.1) Temporary
Vulnerability
Response • Compare the temporary measures within the

user organization with the temporary measures
proposed by the vendor, and make a decision.

• Consider the degree of impact of internal
and external services when judging the
temporary measures.

(no SBOM modifications)

• Informing the supply chain (including user
organizations) of the interim measures.

(no SBOM modifications)

(4.1.2) Application
of provisional
measures

• Request vendors to fix vulnerabilities.
• Apply vendor-supplied patches.
• For critical infrastructure services, set target

values such as deadlines for applying fixes.

• If the vulnerability is in a part developed in-
house, fix the vulnerability.

• If the vulnerability is in a part developed by
a supplier, request the supplier to fix it, and
then apply the vulnerability fix to the part
developed in-house.

(4.2.1)
Implementation of
fundamental
measures

(4.2) Fundamental
Vulnerability
Response

• VEX is modified in response to vulnerability fixes
provided by the final vendor, and false positives
are avoided in subsequent vulnerability
management.

(Normally, user organizations do not modify
SBOMs because they do not modify software
vulnerabilities.)

• Update the SBOM in line with the
vulnerability fix.

• Create and update the VEX in line with the
vulnerability fix.

(4.2.2) Update of
SBOM and VEX

• Obtain updated SBOM and VEX from the vendor
to fix vulnerabilities.

• Manage the history of SBOM as necessary.
• Share SBOM and VEX with suppliers.
• Manage SBOM provenance as necessary.

(4.2.3) Sharing of
SBOM and VEX

Service Operator
System Integrator

Equipment Manufacturer
Component Supplier

*1 In some cases, the system department of the service operator will carry out development. In some cases, component suppliers will also use the parts further.
*2 If the developer of the procurement source does not modify the OSS software or SBOM, the procurement source needs to be aware in advance that they will be
required to take the same measures as the developer.

103

8. Appendix: SBOM Compliance Model

8.1. Purpose and background

 Purpose

This chapter presents a method for visualizing the differences in the scope of SBOM
generation and utilization. By using this method, software products with a high
level of software management, such as vulnerability management, can be
evaluated and selected in software transactions. This will enhance the incentives
for suppliers to comply with SBOM requirements and promote the widespread
adoption of SBOM, as well as standardize the levels of SBOM compliance.

While the Guidance (Chapters 1–6) outlines how to implement SBOM, this chapter
aims to provide a framework for securing incentives regarding SBOM through the
visualization of SBOM compliance levels. It addresses what actions should be taken
(What) and why they should be taken (Why).

 Awareness of issues

The utilization of SBOM is not a simple binary choice of whether to implement it or
not; rather, it is determined by a variety of options based on the scope of identifying
software components and the corresponding vulnerability management. There
exist numerous levels of response. Identifying reusable components presents
significant technical and cost challenges, and the extent to which components can
be identified has a substantial impact on the level of vulnerability management.
Additionally, costs and benefits vary greatly depending on the SBOM compliance
level, making it crucial to assess the appropriate level of response according to the
risks inherent in the specific field.

If there is no mechanism for visualizing the differences in SBOM compliance levels
that allow for comparison between products, there will be little incentive to achieve
an appropriate level of SBOM compliance. For instance, even if a high level of SBOM
compliance is achieved at a significant cost, it won't lead to product selection based
on this compliance unless software procurers recognize the value and
comparability of that high level. Without such recognition, there is no incentive to
invest in SBOM compliance. However, if the differences in SBOM compliance levels
are visualized within a common framework that allows for comparison, it becomes
possible to select products with high SBOM compliance in fields where robust
vulnerability management is required, thereby promoting the optimization of SBOM

104

compliance levels according to the risks and requirements of those fields.

Until now, there has been no common framework available for comparing SBOM
compliance levels, which has led to a lack of incentive to achieve an appropriate
level of SBOM compliance. Consequently, it is necessary to provide a visualization
framework that is comparable and universally applicable to enhance incentives for
SBOM compliance. This framework should clearly delineate the scope of SBOM
generation and utilization, as well as the corresponding compliance levels, thereby
fostering greater motivation for organizations to adopt effective SBOM practices.

 Target readers

The SBOM Compliance Model outlined in this chapter is aimed at both software
and SBOM suppliers and procurers throughout the supply chain. It serves as a
communication tool to visualize and agree on the security quality of software (such
as configuration management and vulnerability management levels) during
contracts between both parties. For software and SBOM suppliers, the target
audience includes development and operations departments, as well as security
teams (PSIRTs). For software procurers, the audience encompasses personnel
from user companies, procurement departments, development teams, quality
assurance departments, and security departments of development firms.
Additionally, this model is important for executives and CISOs who are held
accountable to society and business partners through its utilization. This chapter
is designed for those who have understood the fundamentals of SBOM as
presented in Chapters 1 through 6 and aims to provide guidance for utilizing this
knowledge in software transactions and beyond.

 Structure of this chapter

This chapter is organized as follows: In Section 8.1, the purpose and problem
recognition are discussed, providing a concise summary of the key points. Section
8.2 summarizes the SBOM Compliance Model and the underlying SBOM
visualization framework. Section 8.3 focuses on the positioning of the SBOM
Compliance Model and its utilization methods. Finally, Sections 8.4 to 8.6 outline
the legal frameworks and assumptions for each sector, present the sector specific
SBOM Compliance Models organized based on the results of SBOM PoC, and discuss
the usage methods and considerations for each sector.

105

8.2. SBOM visualization framework and Compliance Model

 What is the SBOM Compliance Model?

The "SBOM Compliance Model" visualizes the scope of implementation expected
for identifying components and managing vulnerabilities using SBOM. It indicates
how far one should go in compliance, outlining both recommended and required
items. Given the diverse elements of SBOM, the costs and effectiveness can vary
significantly depending on the scope of compliance. Therefore, it is effective to aim
for an appropriate scope of compliance based on the differing risks associated with
various industrial sectors and system utilization environments. The SBOM
Compliance Model serves to propose this appropriate scope of compliance.

For example, the scope of identifying software components using SBOM can vary
significantly based on whether it includes components from contracted
development sources or third-party vendors. Additionally, it can differ depending
on whether the focus is solely on components directly used by those entities or if
it also encompasses reused components. If the scope of component identification
differs, the range of vulnerability detection will also vary accordingly, leading to
significant implications.

 Basic concepts and expected benefits

SBOM serves as an effective foundation for streamlining the management of
software developed through the supply chain. By utilizing SBOM, it becomes
possible to enhance the management of software based on component
composition and vulnerability management, while also reducing risks associated
with vulnerabilities. In the use of SBOM, it is crucial to visualize the differences in
the extent of component identification and vulnerability management, rather than
simply deciding whether to implement SBOM. The risks impacted by vulnerabilities
can vary significantly based on the field and application, as well as the extent of
SBOM's coverage, affecting the likelihood of residual vulnerabilities.

By visualizing the scope of SBOM compliance through a common, comparable
framework and utilizing it in transactions, several benefits can be achieved. First,
software suppliers and procurers can exchange not only the software itself but also
the corresponding SBOM, including the scope of SBOM compliance and its level of
adherence.

106

Figure 8-1 Relationships and benefits of users

in the SBOM Compliance Model

Effects of visualizing the scope of SBOM compliance are as follows:

(i) Optimization of SBOM compliance level based on risk for both procurers
and suppliers

Adjustments will be made to achieve an appropriate level of SBOM compliance
based on the risks associated with different fields and applications. This involves
balancing the costs reflected in product pricing with the scope of SBOM compliance
(level of vulnerability management). For instance, products with low risks during
use may require only minimal SBOM compliance, thereby reducing costs.

(ii) Enhanced incentives for suppliers regarding SBOM compliance.
By visualizing the scope of SBOM compliance, it becomes possible to demonstrate
the high level of vulnerability management. This can enhance the procurer's
evaluation and increase the perceived value of the product. Consequently, SBOM
compliance becomes a means to enhance product value, leading to improved
incentives for suppliers. However, it is important that the procurer's requirements
for SBOM compliance do not impose excessive burdens on suppliers, ideally
involving cost-sharing mechanisms.

(iii) Increased awareness and accountability among procurers
As verifying the Scope of SBOM compliance becomes standard practice during
procurement, procurers will gain a greater awareness of SBOM compliance. By
visualizing the Scope of SBOM compliance and understanding the level of
vulnerability management, procurers will have more opportunities to fulfill their
accountability to society and business partners. This enhanced awareness
promotes informed decision-making and emphasizes the importance of security in

SBOM response modelSBOM visualization framework

Supplier Procurer

Software

SBOM

SBOM compliance
range & level

Procurement $

Supply

(Comparable Common Framework) (Recommended level for the field)

・・・・ Visualizing quality differences
(e.g., vulnerability management level)

・・・・・・・・・Data required for vulnerability management

Complying with recommendations
Use

(2) Improving incentives for
SBOM compliance

Evaluating and selecting product
based on SBOM compliance level

(1)Optimizing SBOM
compliance level

(3) Raising awareness and stimulating
accountability in procurers

(Is it safe to use components with low SBOM compliance levels?)

Target objects, etc.

Player

Effects and impacts

Legend

107

procurement processes.

The disparity between those who bear the costs of SBOM creation throughout the
supply chain and those who benefit from vulnerability management using SBOM
can hinder its widespread adoption if fair compensation is not established. The
required level of SBOM varies by industry; for example, in critical infrastructure
sectors where procurers demand high-level SBOM, suppliers must incur significant
costs to produce them. If these suppliers do not receive adequate payment from
procurers, their continued business viability may be jeopardized. Thus, promoting
the adoption of SBOM involves challenges that cannot be resolved solely through
advancements in technology or tools.

The visualization of the scope of SBOM compliance enhances incentives for both
suppliers and procurers in transactions throughout the supply chain. Without a
common framework for comparing SBOM compliance levels, such visualizations
will not be utilized as comparison information during procurement, resulting in
insufficient incentives for adopting higher-cost SBOM compliance levels.

 SBOM visualization framework

(1) Structure of the visualization framework

The SBOM visualization framework serves as a structure to visualize the extent of
its response options regarding the generation and utilization of SBOM. The
effectiveness and cost of risk management for vulnerabilities through SBOM are
determined by the range of components used in software and the scope of
vulnerability management based on component information. Therefore, visualizing
the response range of SBOM is crucial. This aims to provide a reference indicator
for assessing how effectively software vulnerability risks are being addressed.

The framework for visualizing the response range of SBOM consists of two
components: the various application categories related to SBOM generation and
utilization, along with the corresponding response options and their status. The
relationship between these elements is illustrated in the figure below.

108

Figure 8-2 Visualization Framework for the scope of SBOM compliance
(Conceptual image)

Below are detailed the specific SBOM compliance.

(2) Options for SBOM compliance items

The options for SBOM compliance items are organized based on the key choices
that impact costs and effectiveness in each individual phase of SBOM generation
and utilization. The overall response range and achievement level for configuration
management and vulnerability management using SBOM can be identified as
combinations of these options. The extraction and organization of the SBOM
compliance item options were carried out using the following steps:

1) Extraction from key literature on SBOM
 NTIA: SBOM at a Glance39

 NTIA: SBOM Options and Decision Points40

 NTIA: Software Bill of Materials41

39 https://ntia.gov/sites/default/files/publications/sbom_at_a_glance_apr2021_0.pdf
40
https://ntia.gov/sites/default/files/publications/sbom_options_and_decision_points_20210427-
1_0.pdf
41 https://ntia.gov/page/software-bill-materials

Application category Main applicable items (options)

(a1) In-house

(a2) Supplier (development contractor) transaction

contract

(a3) No supplier (third party) transaction contract

(b1) Directly used component*1

(b2) Indirectly used component*2

(c1) Manually identified (using configuration

management information), generated by tool

(c2) No tool to identify, generate, or scrutinize false

detection

(c3) Tools used to identify, generate, and scrutinize

false detection
(c4) The party commissioning the development
independently inspects the SBOM created by the
development contractor

Dependency analysis

File matching
Snippet analysis
Binary analysis
Recursive dependency analysis within executable files
The above are not supported
Components determined during development
Components determined at runtime

Surrounding tool environment

(d1) Standard formats (SPDX, SPDXLite, etc.)
(d2) Includes the minimum elements of data fields as
specified in the executive order.
(d3) Elements that do not satisfy the above
(e1) Identification of vulnerabilities
(e2) Assessment of vulnerability severity
(e3) Evaluation and mitigation of exploitability of
vulnerabilities

(e4) License identification

(f1) Product users

(f2) Final product vendor

(f3) Developers of each component

U
t
i
l
i
z
a
t
i
o
n

(e) Scope of
Utilization (Why)

(f) Conjugated
entity (Who)

G
e
n
e
r
a
t
e

&

S
h
a
r
e

(a) SBOM Creating
Entity
(Who)

(b) Part Scope
(What, Where)

(c) Means of
generation
(scrutiny) (How)

(c ') Generation
method (parts
detection method)

(c '') Generation
method (target
software type)

(d) Data
Format/Item
(What)

(a) Creating entity Scope of compone (c) Generation method (d) Generated items (e) Scope of utilization
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of

(a2) Supplier
(development
contractor)

(d3) Elements that do not satisfy the
above

(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(b1) Directly
used components

(c1) Manually identified

(d1) Standard formats (SPDX, SPDXLite,

(d2) Includes Executive Order minimum
elements

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d3) Elements that do not satisfy the
above

(c1) Manually identified
(using configuration
management
information), generated
by tool

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e3)(e4) Evaluation of exploitability(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e3)(e4) Evaluation of exploitability a

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

 (a1) In-house

(b1) Directly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(b2) Indirectly
used components

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d3) Only part of the above

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of

• The scope of SBOM generation and utilization
(coverage) can be understood as a combination
of SBOM applicable item options.

• It is important to develop a consensus on
reasonable options for the risks in the field.

• Throughout the demonstration, reference
information will be provided on the range of
options for the comparable areas.

Applicable / Required
Partially applicable (case dependent)
Difficult to apply
Not applicable / not required

https://ntia.gov/sites/default/files/publications/sbom_at_a_glance_apr2021_0.pdf
https://ntia.gov/sites/default/files/publications/sbom_options_and_decision_points_20210427-1_0.pdf
https://ntia.gov/sites/default/files/publications/sbom_options_and_decision_points_20210427-1_0.pdf
https://ntia.gov/page/software-bill-materials

109

 CISA: Types of Software Bill of Material (SBOM) Documents42

 CISA: Software Bill of Materials Site43

 NIST: Software Security in Supply Chains: Software Bill of Materials
(SBOM)44

 SPDX: SPDX® Specification Version 2.345

2) Information extraction from domestic and international empirical results related
to SBOM.
 NTIA: How-To Guidance for SBOM Generation in Healthcare 46

 METI: 2021 PoC Results

3) Organization of SBOM compliance Item Options (draft)
Based on the information from (1) and (2), the main response items related to
SBOM creation and utilization were extracted, and the draft options for SBOM
compliance items were organized.

4) Empirical evidence for SBOM by field
In the 2022 SBOM PoC conducted by the METI, feedback on the draft options for
SBOM compliance items was gathered from companies in the medical device,
automotive, and software product sectors, as well as participating industry
associations. This feedback was used to revise the draft options for SBOM
compliance items.

5) Feedback from the METI Software Task Force (2022, 7th to 9th Task Forces)
Opinions regarding SBOM from the Software Task Force were reviewed, along with
feedback on any deficiencies or excesses in the draft options for SBOM compliance
items.

6) Development of SBOM compliance item options (draft)
Based on the results from (1) to (5), the final draft of SBOM compliance item
options was organized, reflecting the research and review outcomes up to FY 2022.

The draft of the SBOM compliance item options resulting from the above
discussions is presented below. The options for response items in SBOM generation

42 https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
43 https://www.cisa.gov/sbom
44 https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-
security-supply-chains-software-1
45 https://spdx.github.io/spdx-spec/v2.3/
46 https://ntia.gov/sites/default/files/publications/howto_guide_for_sbom_generation_v1_0.pdf

https://www.cisa.gov/sites/default/files/2023-04/sbom-types-document-508c.pdf
https://www.cisa.gov/sbom
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://spdx.github.io/spdx-spec/v2.3/
https://ntia.gov/sites/default/files/publications/howto_guide_for_sbom_generation_v1_0.pdf

110

and utilization are structured in a 5W1H format to ensure comprehensiveness. In
the following draft, the main application items (options) for SBOM classification are
organized, and the costs associated with each item are categorized into three
levels: High, Medium, and Low, along with explanations for each classification.

111

Table 8-1 Selection options of SBOM compliance item (Draft)

*Note 1: Directly used components: Components that are directly used by developers with whom there is a contractual relationship in the supply chain.
*Note 2: Indirectly used components: Components that are reused from components provided by suppliers (third parties) with whom there is no contractual relationship in the
supply chain.
*Note 3: Costs are classified into three levels based on "Reasons for determining cost categories." The red text in the " Reasons for determining cost categories" column indicates
areas that were revised during the PoC.

Application category Main applicable items (options) Cost Reasons for determining cost categories (main cost elements, assumptions, etc.)

(a1) In-house Low Identify components directly used in in-house development from configuration files, etc., and generate SBOM. Including code modification components.

(a2) Supplier (development contractor) transaction

contract
Medium Generate SBOMs for parts to be used in the software of contracted development companies with whom we have business contracts.

(a3) No supplier (third party) transaction contract High SBOMs are created by OSS and off-the-shelf component vendors that are unable to make SBOMs a requirement through transaction agreements. (b2)(c2)

(b1) Directly used component*1 Low The developer identifies the components to be used directly by the developer from configuration files, etc., and generates the SBOM with tools, etc.

(b2) Indirectly used component*2 High For third-party parts, generate SBOMs for recursively used parts.

(c1) Manually identified (using configuration

management information), generated by tool
Low Create component information to be used directly using configuration files, etc.

(c2) No tool to identify, generate, or scrutinize false

detection
Medium

Tools will be used to generate the SBOM and scrutiny will be omitted. The use of tools is assumed to be mainly for generating SBOMs for recursive parts,
so commercial tools are assumed to be used.

(c3) Tools used to identify, generate, and scrutinize

false detection
High

Generate SBOMs using commercial tools, perform source code review, and scrutinize for false positives and omissions. (including recursive use
components)

(c4) The party commissioning the development
independently inspects the SBOM created by the
development contractor

High
When a development contractor accepts an SBOM created by a development contractor, the reliability of the SBOM is inspected by creating the SBOM
independently with a tool or other means.

Dependency analysis Medium Static analysis of configuration information such as package manager.

File matching Medium Detect file-by-file matches of source code using hash values. This includes detection of OSS libraries.
Snippet analysis High Detect by partial string matching or similarity in the source code.
Binary analysis High Similarity detection based on bit patterns in binary files.
Recursive dependency analysis within executable files High For libraries already linked within the executable, recursively perform dependency analysis when building the library.
The above are not supported High Convert pre-recognized parts to SBOM.
Components determined during development Low Static libraries, applications
Components determined at runtime Medium Runtime libraries, services (local, external cloud), OS, middleware, execution environment (container, VM, AP server)

Surrounding tool environment High Tools used in development operations (installers, updaters, distribution packages, development environments, tool chains, SBOM tools)

(d1) Standard formats (SPDX, SPDXLite, etc.) Medium Create in a standard format such as SPDX.
(d2) Includes the minimum elements of data fields as
specified in the executive order.

Medium Create an SBOM containing the minimum elements of the data fields in the Executive Order.

(d3) Elements that do not satisfy the above Low Create your own minimum elements.
(e1) Identification of vulnerabilities Low Search and identify vulnerabilities in DBs such as NVD, JVN, etc.
(e2) Assessment of vulnerability severity Medium Evaluate severity based on CVSS values and set priorities for vulnerability response.
(e3) Evaluation and mitigation of exploitability of
vulnerabilities

Medium
Evaluate thepossibility of exploitation and the necessity of vulnerability countermeasuresusing VEX information, etc. Issue advisories on countermeasures,
etc., as necessary.

(e4) License identification Medium Identify the license and obtain the terms and conditions.

(f1) Product users Low
If a vulnerability is identified, the use of the system is suspended and the company waits for the vendor to fix it. The damage is significant if business
interruption costs are taken into account.

(f2) Final product vendor Medium Notify users of vulnerabilities, request developers to correct them, and provide corrected builds and users. Report to authorities, ISAC, etc. as necessary.

(f3) Developers of each component High
The developer shall monitor and correct the vulnerabilities and provide the procurer with a corrected version. Report to the authorities, ISAC, etc. as
necessary.

G
e
n
e
r
a
t
e

&

S
h
a
r
e

(a) SBOM Creating
Entity
(Who)

(b) Part Scope
(What, Where)

(c) Means of
generation
(scrutiny) (How)

(c ') Generation
method (parts
detection method)

(c '') Generation
method (target
software type)

(d) Data
Format/Item
(What)

U
t
i
l
i
z
a
t
i
o
n

(e) Scope of
Utilization (Why)

(f) Conjugated
entity (Who)

112

(3) Visualization of scope of SBOM compliance

The overall achievement level of vulnerability management and related areas is
indicated according to the response range for SBOM generation and utilization. The
scope of SBOM compliance can be visualized as combinations of the SBOM
compliance item options. Although the number of all possible combinations can be
substantial, major options can be extracted and visualized as combinations. An
example is shown in the table below. The legend for the color coding used in the
visualization is provided in Table 8-3. The options for each SBOM application
category are not mutually exclusive; multiple selections are possible for the
corresponding range. The scope of SBOM compliance is visualized and defined by
the entirety of these tables. The metric that indicates the achievement level of the
scope of SBOM compliance is termed the "SBOM compliance Level."

113

Table 8-2 Visualization and definition of the scope of SBOM compliance
(Example)

(a) Creating entity (b) Scope of components (c) Generation method (d) Generated items (e) Scope of utilization
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and

(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and

(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and

(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and

(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and
(e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and

 (a1) In-house

(b1) Directly used
components

(c1) Manually identified (using
configuration management
information), generated by
tool

(c3) Tools used to identify,
generate, and scrutinize false
detection

(b2) Indirectly used
components

(c2) No tool to identify,
generate, or scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite, etc.) (e1)(e2) Identification of vulnerabilities and

(d2) Includes Executive Order minimum elements

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d3) Only part of the above

(d3) Elements that do not satisfy the above
(e3)(e4) Evaluation of exploitability and(d2) Includes Executive Order minimum elements (e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and severit

(d3) Elements that do not satisfy the above
(e3)(e4) Evaluation of exploitability and(d2) Includes Executive Order minimum elements (e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and(d1) Standard formats (SPDX, SPDXLite, etc.) (e1)(e2) Identification of vulnerabilities and

(e3)(e4) Evaluation of exploitability and(c2) No tool to identify,
generate, or scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite, etc.) (e1)(e2) Identification of vulnerabilities and

(d2) Includes Executive Order minimum elements

(d3) Elements that do not satisfy the above

(c1) Manually identified (using
configuration management
information), generated by
tool

(d1) Standard formats (SPDX, SPDXLite, etc.)

(c3) Tools used to identify,
generate, and scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite, etc.) (e1)(e2) Identification of vulnerabilities and

(d3) Elements that do not satisfy the above
(e3)(e4) Evaluation of exploitability and(d2) Includes Executive Order minimum elements (e1)(e2) Identification of vulnerabilities and

(d3) Elements that do not satisfy the above
(e3)(e4) Evaluation of exploitability and(d2) Includes Executive Order minimum elements (e1)(e2) Identification of vulnerabilities and
(e3)(e4) Evaluation of exploitability and

(d2) Includes Executive Order minimum elements
(c2) No tool to identify,
generate, or scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d2) Includes Executive Order minimum elements

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d3) Elements that do not satisfy the above

(c1) Manually identified (using
configuration management
information), generated by
tool

(d3) Elements that do not satisfy the above

(b2) Indirectly uses
components

(d2) Includes Executive Order minimum elements

(d3) Elements that do not satisfy the above

(c3) Tools used to identify,
generate, and scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite, etc.)

(b1) Directly used
components

(c1) Manually identified (using
configuration management
information), generated by
tool (d3) Elements that do not satisfy the above

(c2) No tool to identify,
generate, or scrutinize false
detection

(d2) Includes Executive Order minimum elements

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d2) Includes Executive Order minimum elements

(d3) Elements that do not satisfy the above

(c3) Tools used to identify,
generate, and scrutinize false
detection

(d2) Includes Executive Order minimum elements

(a3) No supplier (third
party) transaction
contract

(b1) Developer itself

(c1) Manually identified (using
configuration management
information), generated by
tool

(c1) Manually identified (using
configuration management
information), generated by
tool

(d3) Elements that do not satisfy the above

(a2) Supplier
(development
contractor)
transaction contract

(d2) Includes Executive Order minimum elements
(c2) No tool to identify,
generate, or scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d2) Includes Executive Order minimum elements

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d3) Elements that do not satisfy the above

(d3) Elements that do not satisfy the above

(b2) Non-developer
(procurers and users)

(d2) Includes Executive Order minimum elements

(d3) Elements that do not satisfy the above

(c3) Tools used to identify,
generate, and scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d2) Includes Executive Order minimum elements

(d3) Elements that do not satisfy the above

(c2) No tool to identify,
generate, or scrutinize false
detection

(d2) Includes Executive Order minimum elements

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d3) Elements that do not satisfy the above

(d1) Standard formats (SPDX, SPDXLite, etc.)

(d2) Includes Executive Order minimum elements

(d3) Elements that do not satisfy the above

(c3) Tools used to identify,
generate, and scrutinize false
detection

114

The options for SBOM compliance items are visualized and color-coded according to
the following four categories based on their response status:

Table 8-3 Response categories for SBOM compliance item options

in the scope of SBOM compliance
Compliance
category

Color Explanation of the status of response

Compliance Green Option is implemented or can be implemented
Partially
compliance

Yellow Option is partially implemented or can only be
partially implemented

Difficult to comply Orange Option is not implemented or is difficult to
implement

Unnecessary or
excluded

Gray No implementation required as it is addressed
by the implementation of other items

8.3. SBOM Compliance Model and utilization methods

 Positioning of the SBOM Compliance Model

The SBOM Compliance Model utilizes the SBOM visualization framework to illustrate
a recommended or required response range based on the risks associated with
different industrial sectors and applications. Risks and underlying legal frameworks
vary by sector, and the effectiveness and costs of vulnerability management can
significantly differ depending on the scope of SBOM compliance. Therefore, it is
expected that SBOM Compliance Models will vary across sectors.

The figure below illustrates the relationship between the SBOM visualization
framework and the SBOM Compliance Model.

115

Figure 8-3 Relationship between SBOM Compliance Model

 and related elements

The SBOM visualization framework is a generic structure for visualizing the
response range, including the scope of SBOM creation and utilization. The SBOM
Compliance Model for each sector presents reference examples of the expected
scope of SBOM compliance, considering the prerequisites, such as legal
frameworks, and the feasibility based on the costs and benefits of SBOM
compliance, as demonstrated through the METI's SBOM initiatives. The SBOM
Compliance Models presented in this chapter do not guarantee compliance. with
regulatory requirements but aim to provide reference examples based on empirical
results. It is anticipated that revisions of sector specific SBOM Compliance Models
will occur through discussions and evaluations by regulatory authorities and
industry stakeholders.

Using this framework, the METIʼs SBOM PoC evaluates costs and benefits based on
prerequisites such as legal frameworks, transaction types, and development
methods for each sector. The result is the "Sector-Specific SBOM Compliance Model
(Reference Example)," which presents what is considered an appropriate SBOM
application range for each sector. For non-regulatory areas, companies can refer
to such SBOM Compliance Models to determine their own scope of SBOM
compliance through the supply chain. All SBOM Compliance Models are required to
comply with relevant legal frameworks and regulations. If a definitive industry
version is developed, companies can reference these SBOM Compliance Models
and, if necessary, add SBOM compliance items to enhance the value of their
software and SBOM.

The SBOM visualization framework serves solely as a means to visualize the scope
of SBOM compliance, and it is expected that the final scope of SBOM compliance

SBOM Visualization Framework

Draft SBOM-c

METI’s SBOM PoC Project

SBOM Coverage Item Options

(Automotive Field)

SBOM Compliance Model by sector
(Example: Automotive Field)

Visualizing
combinations

SBOM-compliant model by industry (
SBOM Compliance Model by sector

(Automotive Field)

Industry-driven review
and revision

Supporting standards, etc.

Reference/
Complance

SBOM coverage of each company

Deriving

(a1) In-house

(a2) Supplier (development contractor) transaction

contract

(a3) No supplier (third party) transaction contract

(b1) Directly used component*1

(b2) Indirectly used component*2

(c1) Manually identified (using configuration

management information), generated by tool

(c2) No tool to identify, generate, or scrutinize false

detection

(c3) Tools used to identify, generate, and scrutinize

false detection
(c4) The party commissioning the development
independently inspects the SBOM created by the
development contractor

Dependency analysis

File matching

Snippet analysis

G
e
n
e
r
a
t
e

&

S
h
a

(a) SBOM
Creating Entity
(Who)

(b) Part Scope
(What, Where)

(c) Means of
generation
(scrutiny) (How)

(c') Generation
method (parts

116

will be refined through discussions and evaluations specific to each industry.

 Utilization methods

Based on Section 8.2.1, this section outlines the utilization methods for the SBOM
visualization framework and the SBOM Compliance Model. The following figure
illustrates the application methods and the impact of visualization in the
procurement of software through the supply chain.

117

Figure 8-4 Enhancing the incentives for SBOM compliance through the visualization of the SBOM coverage (Conceptual image)

Visualizing SBOM coverage

Part specific range

Efficient vulnerability management
(Low vulnerability risk)

Product & component A

Product & component B

Range of unknown parts

Difficult to manage vulnerabilities
(High vulnerability risk)

The scope of identified com
ponents is directly related to the scope of vulnerability

m
anagem

ent.

Supplier A

Supplier B
Procurer

Software Procurement through the Supply Chain Market

Indicators needed to compare and evaluate vulnerability
management levels

SBOM Compliance Models (draft)
(Recommended level for

each field)
Software with a high
vulnerability management
level is highly evaluated and
selected

The extent of com
ponent m

anagem
ent varies w

idely am
ong com

panies, affecting
the vulnerability m

anagem
ent level

(Visualizing vulnerability
management levels)

A mechanism for autonomously adjusting the SBOM
compliance level is formed depending on the risk in the

field, by visualizing the scope of SBOM compliance
(*Visualization is not necessary if onlyvulnerabilities are only

to be detected)

......

Sorting
requirement

definition

Model reference

Software components
interdependency diagram

Clarifying level differences
in countermeasures

(a) Creating entity Scope of compone (c) Generation method (d) Generated items (e) Scope of utilization
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d2) Includes Executive Order minimum
elements

(a3) No supplier
(third party)
transaction contract

(b1) Developer
itself

(c1) Manually identified
(using configuration
management
information), generated
by tool

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d3) Elements that do not satisfy the
above

(a2) Supplier
(development
contractor)
transaction contract

(d2) Includes Executive Order minimum
elements

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d3) Elements that do not satisfy the
above

(d3) Elements that do not satisfy the
above

(b2) Non-
developer
(procurers and
users)

(d3) Elements that do not satisfy the
above

(b2) Indirectly
uses components

(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(b1) Directly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(d2) Includes Executive Order minimum
elements

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d3) Elements that do not satisfy the
above

(c1) Manually identified
(using configuration
management
information), generated
by tool

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e3)(e4) Evaluation of exploitability(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e3)(e4) Evaluation of exploitability a

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

 (a1) In-house

(b1) Directly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(b2) Indirectly
used components

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d3) Only part of the above

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of

(a) Creating entity Scope of compone (c) Generation method (d) Generated items (e) Scope of utilization
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(b2) Non-
developer
(procurers and
users)

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

third party

(b1) Developer
itself

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(b2) Indirectly
uses components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

Development
outsourcing
company
(Tier 2)

(b1) Directly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(b2) Indirectly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e3)(e4) Evaluation of exploitability a
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d2) Includes Executive Order minimum
elements

 ECU vendor
(Tier 1)

(b1) Directly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Only part of the above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(a) Creating entity Scope of compone (c) Generation method (d) Generated items (e) Scope of utilization
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(b2) Non-
developer
(procurers and
users)

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

third party

(b1) Developer
itself

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(b2) Indirectly
uses components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

Development
outsourcing
company
(Tier 2)

(b1) Directly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(b2) Indirectly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e3)(e4) Evaluation of exploitability a
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d2) Includes Executive Order minimum
elements

 ECU vendor
(Tier 1)

(b1) Directly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements
(d3) Only part of the above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

118

The figure illustrates the overall framework for promoting SBOM adoption through
enhanced incentives, highlighting the relationship between suppliers and
purchasers of products and components in software procurement.

The level of vulnerability management (vulnerability risk) for software provided by
suppliers is determined by the extent of identifying the software's components and
the scope of vulnerability management based on component information. The
triangle shown on the supplier side of the figure represents an example of this
concept, illustrating the differences in the extent of identifying components. The
visualization of these differences in vulnerability management levels is depicted in
the center of the figure, where the SBOM visualization framework is used to
illustrate the scope of SBOM compliance. The green coverage rate in the visualized
table of the scope of SBOM compliance can serve as a reference indicator for
comparing and evaluating vulnerability risks.

The usage of the SBOM visualization framework differs based on whether software
is procured through off-the-shelf sales or commissioned development. In the case
of off-the-shelf sales, software is provided along with its SBOM, scope of SBOM
compliance, and SBOM compliance. level (the proportion of options addressed),
allowing purchasers to make informed selections. Purchasers can compare the
prices, functionalities, and SBOM compliance levels of similar software from
multiple suppliers, leading to a preference for higher SBOM compliance levels that
enhance the incentives for software providers to comply with SBOM requirements.
Conversely, in commissioned development, it is conceivable that the purchaser will
negotiate and agree on the coverage rate of the scope of SBOM compliance as a
requirement with the development partner.

When a recommended or required range is established as the SBOM Compliance
Model for a specific field, it is necessary to align the scope of SBOM compliance
with that model. Additionally, even in sectors where an SBOM Compliance Model is
defined, there are incentives to enhance value by providing software with
additional SBOM compliance., leading to further improvements in incentives for
software providers.

119

8.4. Reference example of SBOM Compliance Model (Automotive Sector)

In this chapter on sector specific SBOM Compliance Models, we will summarize the
overview of legal frameworks and standards related to SBOM, the organized SBOM
Compliance Model (Draft) based on empirical evidence, and key considerations for
utilization.

 Overview of legal frameworks and standards

In the automotive sector, the regulations developed by the United Nations
Economic Commission for Europeʼs "World Forum for Harmonization of Vehicle
Regulations (WP29)" in its subcommittee on "Automated Driving (GRVA)" are
applicable as of July 2022. These include UN-R155 and UN-R156. While these
regulations do not specify requirements related to SBOM, ISO/SAE 21434,
referenced by the UN-R155 regulation required for type certification in regions
such as Japan and Europe, includes examples of requirements such as software
configuration management.

In the United States, the NHTSA released a draft guidance in early 2021 and
conducted public comments. This guidance includes requirements for OEMs to
create and maintain SBOM for software components used in ECUs and vehicles,
indicating a future trend toward the recommendation of SBOM.

The relationship between automotive cybersecurity regulations, including those
pertaining to SBOM, can be summarized as follows:

120

Figure 8-5 SBOM-related legal framework in the automotive sector

 Proposed SBOM Compliance Model (Draft) based on the PoC

In the automotive sector, ISO/SAE 21434, referenced by the UN regulation UN-
R155, includes software configuration information as an example of requirements
for maintaining cybersecurity. Additionally, NHTSA's draft guidance released in
early 2021 includes requirements for the creation and maintenance of SBOM.
Therefore, it is expected that configuration management through SBOM will
become increasingly necessary in the future.

In the 2022 SBOM PoC by the METI, the SBOM Compliance Model (reference
example) was organized based on the following points. This model was specifically
tailored for Tier 1 suppliers and ECU software suppliers (contracted development)
involved in the PoC, considering the configuration management needs and
technical feasibility required in the automotive sector.

The key points regarding the organization of the SBOM Compliance Model (Draft)
are as follows:

 Based on the software configuration management requirements in the
automotive cybersecurity standard ISO/SAE 21434, SBOM generation will be
conducted, including for development contractors.

 For third-party suppliers, it is not mandatory to request SBOM due to challenges
arising from contractual relationships.

 Since tool generated SBOM may contain false positives, thorough validation of
identified components is necessary to fully realize the benefits of SBOM.
Therefore, the SBOM generation method will include both manual identification

International (WP29) Japan US

Laws and
ordinances

UN
Convention

Guidance,
related
notices,

standards,
etc.

UN-R155

UN-R156

ISO/SAE
21434

Road Transport Vehicle Act

Safety Standards for Road
Transport Vehicles

Public Notice that Prescribes
Details of Safety Regulations

for motor vehicles

Reference

Enforcement
in laws and
regulations

of each
country

Cybersecurity Best
Practices for the

Safety of Modern Vehicles
(Draft)

Standards that define
cybersecurity measures
throughout the entire
automotive lifecycle

Requirements to mitigate
vehicle security risks

throughout the life cycle

Requirements for automotive
software management

MLIT

MLIT

MLIT

NHTSA

Reference

Federal Motor Vehicle
Safety Standards

National Traffic and Motor
Vehicle Safety Act

NHTSA

NHTSA

Provides for specific
risk responses and

security design
methods

• An assessment will be conducted to certify that the
OEM has established a Cyber Security Management
System (CSMS), and a type approval certificate will
be issued based on the conformity certificate.

• For vehicles that support wireless software updates,
these apply to new models from July 1, 2022, and
to continued production vehicles from July 1, 2024.

• For vehicles that do not support wireless software
updates, these apply to new models from January 1,
2024, and to continued production vehicles from
May 1, 2026.

• Requirements regarding SBOM are not included.

• These require the OEM to maintain and
manage a database of software
components used in the vehicle,
including ECUs (with SBOM as a
specific method mentioned), as well as
to maintain and manage logs of
version history throughout the
automotive lifecycle.

Documents in red are those that mention the SBOM.

ISO/SAE

WP29 GRVA

WP29 GRVA

• It is required to obtain configuration
information until the end of support for
the vehicle for the purpose of
maintaining cybersecurity. One of the
examples is an SBOM

121

and items categorized as "identified/generated by tools with false positive
validation."

 It was determined that indirect components can also be partially identified
through manual methods, such as using package managers, leading to a partial
application for these components.

 Tier 2 suppliers (ECU software suppliers) possess the relevant source code and
hold information necessary for SBOM creation, like Tier 1 suppliers, allowing for
SBOM generation under the same criteria.

 Both ECU vendors and ECU software suppliers (contracted development) face
challenges in completely validating false positives for indirect components, so
the partial application was adopted considering technical feasibility.

 For (e3)(e4) the evaluation of exploitability and severity, information provision
has not progressed sufficiently, leading to a decision for partial application.

Based on the considerations, the organized SBOM Compliance Model (Draft),
considering technical and cost feasibility, is as follows:

122

Table 8-4 The SBOM Compliance Model (reference example) for the automotive sector, examined through the PoC
Creating

entity
Scope of

components
Generation method Generated items Scope of utilization

ECU vendor
(Tier 1)

(b1) Directly
used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive
Order minimum elements

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

123

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

and scrutinize false
detection (d1) Standard formats

(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(b2) Indirectly
used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(e1)(e2) Identification of vulnerabilities and licenses

124

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(d3) Elements that do not
satisfy the above

(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(a2) Supplier
(development
contractor)
transaction
contract
(Tier 2) (b1) Directly

used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

125

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

scrutinize false
detection (d1) Standard formats

(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(b2) Indirectly
used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(e1)(e2) Identification of vulnerabilities and licenses

126

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(d3) Elements that do not
satisfy the above

(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(e1)(e2) Identification of vulnerabilities and licenses

127

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(a3) No
supplier (third
party)
transaction
contract

(b1) Developer
itself

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(e1)(e2) Identification of vulnerabilities and licenses

128

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(b2) Non-
developer
(procurers and
users)

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(e1)(e2) Identification of vulnerabilities and licenses

129

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(d3) Elements that do not
satisfy the above

(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

130

 Utilization methods and considerations

As demonstrated in the previous sections, in the automotive field, software
configuration management is cited as an example of requirements from the
international standard ISO/SAE 21434, referenced by the international agreement
regulation UNR-155, which is required for type certification safety standards. SBOM
is expected to be utilized as an efficient means to meet these requirements. The
SBOM Compliance Model can serve as a guide to the specific recommended scope
of compliance. items. The SBOM Compliance Model (Draft) organized during the
PoC provides an example of a recommended scope, considering the needs and
technical feasibility of companies in the automotive sector.

By referencing such examples, it is anticipated that stakeholders in the automotive
industry (regulatory authorities, inspection agencies, automakers, suppliers, etc.)
will further examine the SBOM Compliance Model and form a consensus within the
industry. This collaborative effort is expected to provide specific recommendations
for configuration management using SBOM, thereby promoting effective
configuration and vulnerability management within the automotive sector.

8.5. Reference example of SBOM Compliance Model (Software Product

Sector)

In this section on the SBOM Compliance Model for the software product sector, it
will be summarized the overview of relevant laws and standards regarding SBOM,
the proposed SBOM Compliance Model based on practical demonstrations, and key
considerations for its utilization.

 Overview of preconditions

Based on a U.S. presidential executive order, it is expected that the disclosure of
SBOM will become mandatory in federal government software procurement by the
end of 2022. Following the Executive Order issued in May 2021, several documents
containing guidelines related to SBOM have been published in the U.S.

The executive order instructed the DHS to make recommendations regarding
government procurement based on these guidelines by May 12, 2022. Following

131

this, a draft amendment to the FAR 47 was announced in October 2023. The draft
includes requirements for contractors supplying ICT products and services (e.g.,
telecommunications services, electronic media, IoT devices, operational
technology) to create and maintain SBOM and grant government agencies access
to them. Public comments on the FAR amendment will be accepted until February
2024, with a formal version expected to be released thereafter.

Figure 8-6 SBOM-related legal framework in the software product sector

The U.S. government procurement requirements will also impact Japanese
companies supplying to the U.S. government. Additionally, from the perspective of
international alignment, there is a possibility that the Japanese government and
other countries may include SBOM-related requirements in their procurement
standards. Therefore, addressing SBOM compliance. is considered important.

 Proposed SBOM Compliance Model (Draft) based on the PoC

In the software product sector, using security software companies as examples,
the METI 2022 SBOM PoC organized an SBOM Compliance Model (reference
example) based on the following points. This model considers suppliers involved in
the PoC, including software vendors and software service providers (contract

47 Federal Acquisition Regulation: Cyber Threat and Incident Reporting and Information Sharing
https://www.federalregister.gov/documents/2023/10/03/2023-21328/federal-acquisition-
regulation-cyber-threat-and-incident-reporting-and-information-sharing

※Documents in red are those that
mention the SBOM.

Japan US

Law,
etc.

Guidances,
related
notices,

standards,
etc.

The Basic Act on Cybersecurity

Common Model of Cybersecurity
Measures for Government Agencies

and Related Agencies

Common Standards for Information
Security Measures for Government

Agencies

NISC

NISC

Manual for Establishing
Security Requirements in

Government Procurement of
Information System

Guidelines for Developing
Specifications to Address

Supply Chain Risks in
Information Security for

Outsourcing

NISC

NISC

Agreement on
Procurement
Policies and

Procedures for
Goods and

Services Related
to IT

Procurement by
the National
Government

NISC/Digital Agency

Amending the FAR based on
the recommendations

(based on Executive Order)

The Minimum Elements For a Software
Bill of Materials

NTIA

NIST SP 800-218
Secure Software
Development

Framework (SSDF)
Version 1.1

Executive Order 14028,
Improving the Nation's Cybersecurity

Federal Acquisition
Regulations (FAR)

Recommendations to
the FAR Council on

Security Measures for
Government

Procurement Software＊1

NIST

OMB

DHS

Software Security in Supply Chains

NIST

• Defining the
minimum
elements of the
SBOM

• Specifying SBOM as a specific way to address issues
related to the origin of software components

Reporting the
status of SSDF
implementation
consideration

Software Supply Chain Security
Guidance Under Executive Order (EO)

14028 Section 4e

Enhancing The Security Of Federally
Procured Software

NIST

• Recommending
measures based on
NIST SP 800-161

• Specifying SBOM as
a new concept for
countermeasures

Directing the
development of a
guidance containing
standards,
procedures, and
criteria for providing
SBOMs to purchasers

• Clearly stating the
recommendations
for software
procurement from
developers
implementing the
SSDF.

• Organizing SBOM
requirements and
correspondencing
with SSDF

*1: The executive order directs
recommendations by May 12, 2022, but
detailed information has not been made
public, so it is likely that these
recommendations exist as internal
government documents.

Specifying
recommendations

for SSDF
implementation

Directing creation

Considering
recommendations
based on relevant

documents

https://www.federalregister.gov/documents/2023/10/03/2023-21328/federal-acquisition-regulation-cyber-threat-and-incident-reporting-and-information-sharing
https://www.federalregister.gov/documents/2023/10/03/2023-21328/federal-acquisition-regulation-cyber-threat-and-incident-reporting-and-information-sharing

132

development), while considering the configuration management and technical
feasibility required in the software product sector.

The key points regarding the organization of the SBOM Compliance Model
(proposal) are as follows:

 In the SBOM generation method "(c2) No tool to identify, generate, or scrutinize
false detection," it is anticipated that tools will enhance work efficiency,
particularly in identifying vulnerabilities. Given that the PoC companies have
already incorporated SBOM creation and utilization as part of their development
processes according to their security policies, this approach is deemed
applicable.

 Regarding "(e3) (e4) Evaluation of exploitability and severity," useful
information that can be included in the SBOM is currently almost unavailable.
Therefore, it can only be partially applied, as manual verification and the
combination of SBOM with external information are necessary for feasibility.

 Regarding "(c3) Tools used to identify, generate, and scrutinize false detection,"
for directly used components, the development team consciously utilizes these
components, allowing for verification against an accurate list of direct
components, thus enabling partial application. On the other hand, for indirectly
used components, there is no efficient method to verify the "correct"
information for comparison, and the examination requires significant time and
effort. Considering feasibility, this approach is deemed difficult to apply.

 Regarding the examination of components detected by tools, it is considered
that there are possibilities for both false positives and undetected items.

 The scope of the application has been identified based on the assumption of
using a software composition analysis tool (paid) for component identification
and SBOM generation.

Based on the considerations mentioned above, the organized SBOM Compliance
Model (proposal) has been developed, taking into account technical and cost
feasibility, as outlined below.

133

Table 8-5 SBOM Compliance Model in the software product sector examined through practical validation
 (Reference example)

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(a1) Final
vendor

(b1) Directly
used
components

(c1) Manually identified
(using configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(e1)(e2) Identification of vulnerabilities and licenses

134

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(d1) Standard formats
(SPDX, SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(b2) Indirectly
used
components

(c1) Manually identified
(using configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate, and

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

135

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

scrutinize false
detection (e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses

(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(a2) Supplier
(development
contractor)
transaction
contract

(b1) Directly
used
components

(c1) Manually identified
(using configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

136

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(b2) Indirectly
used
components

(c1) Manually identified
(using configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(a3) No
supplier (third
party)
transaction
contract

(b1) Developer
itself

(c1) Manually identified
(using configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses

137

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(d3) Elements that do not
satisfy the above

(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(b2) Non-
developer
(procurers and
users)

(c1) Manually identified
(using configuration
management
information),
generated by tool

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses

138

Creating
entity

Scope of
components

Generation method Generated items Scope of utilization

(d3) Elements that do not
satisfy the above

(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d1) Standard formats
(SPDX, SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Elements that do not
satisfy the above

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

139

 Utilization methods and considerations

The software product field encompasses a variety of software types, including
software procured for critical infrastructure and applications for individual
entertainment. Currently, there are examples of SBOM being required as part of
procurement standards under the SSDF for U.S. federal agencies; however, there
are no specific regulations confirming the scope of SBOM compliance.

Given this context, in many areas of the software product field where no
mandatory standards exist, promoting the practice of displaying and confirming
the Scope of SBOM compliance between software buyers and sellers is expected
to encourage autonomous adaptation to the necessary SBOM scope based on
associated risks. If this practice becomes widespread, buyers will be able to
understand the level of configuration and vulnerability management of the
software they procure, thereby mitigating vulnerability risks. For suppliers,
demonstrating a high level of SBOM compliance. can indicate robust vulnerability
management, enhancing the product's value. Through these effects, it is
anticipated that even without enforced standards, generalizing the display and
confirmation of SBOM compliance. will lead to necessary adjustments according to
the risks in the field.

8.6. Reference example of SBOM Compliance Model (Medical Device

Sector)

This section provides an overview of a proposed SBOM Compliance Model
specifically tailored for the medical device field, highlighting best practices and
considerations unique to this sector.

 Overview of legal framework and standards

In the medical device sector, consistent regulations are implemented for the
manufacturing, sales, examination, certification, and post-market safety measures
of medical devices, based on the Pharmaceutical and Medical Device Act
(hereinafter referred to as "PMDA"). According to Article 41, Section 3 of the PMDA,
the Minister of Health, Labour and Welfare can establish necessary standards to
ensure the appropriateness of the characteristics, quality, and performance of
medical devices, regenerative medical products, and in vitro diagnostic drugs, after

140

consulting the Pharmaceutical and Food Safety Council48.

The Standard for Medical Devices Specified by the Minister of Health, Labour and
Welfare pursuant to the provisions of Article 41, Paragraph 3 of the Act on Securing
Quality, Efficacy and Safety of Products including Pharmaceuticals and Medical
Devices (Ministry of Health, Labour and Welfare Notification No. 122 of 2005)49,
hereinafter referred to as the "Basic Requirements Standard,"50 stipulates the
fundamental requirements concerning the quality, efficacy, and safety that all
medical devices and in vitro diagnostic drugs must possess.

In Article 12, Paragraph 2 of the Basic Requirements Standard, which addresses
considerations for medical devices that use software, requirements for
configuration management are outlined, and JIS T 2304 is specified as a standard
for demonstrating conformity51. Furthermore, on March 9, 2023, the Ministry of
Health, Labour and Welfare issued Notification No. 6752, which amended part of
the standards for medical devices set by the Minister of Health, Labour and Welfare
based on the provisions of Article 41, Paragraph 3 of the Act on Securing Quality,
Efficacy, and Safety of Pharmaceuticals and Medical Devices. This amendment
explicitly introduced cybersecurity requirements into Article 12, Paragraph 3 of the
Basic Requirements Standard under the Pharmaceutical and Medical Device Act.
The International Medical Device Regulators Forum (IMDRF) issued guidance in
April 2020 aimed at achieving international harmonization of cybersecurity
measures. As part of this international alignment, Japan is incorporating the IMDRF
guidance into its Pharmaceutical and Medical Device Act regulations. Recently, two
supplementary guidance documents were released: "IMDRF/CYBER
WG/N73FINAL:2023 Principles and Practices for Software Bill of Materials for
Medical Device Cybersecurity" (hereafter referred to as the IMDRF SBOM

48 Pharmaceutical and Medical Device Act︓https://elaws.e-gov.go.jp/document?lawid=335AC
0000000145
49 Standards for medical devices established by the Minister of Health, Labour and Welfare
pursuant to the provisions of Article 41, Section 3 of the Act on Securing Quality、Efficacy
and Safety of Products Including Pharmaceuticals and Medical Devices︓https://www.mhlw.g
o.jp/web/t_doc?dataId=81aa6953&dataType=0&pageNo=1
50 PMDA "Basic Requirements Standards" https://www.pmda.go.jp/files/000240068.pdf
51 Notification No. 0517-1, May 17, 2017, from the Director of the Medical Device Evaluatio
n and Management Division, Pharmaceutical and Food Safety Bureau, Ministry of Health,
Labour and Welfare https://www.std.pmda.go.jp/stdDB/Data/RefStd/Std_etc/H290517_0517-
01_01.pdf
52 Official Gazette Main Edition, No. 933, March 9, 2023 https://kanpou.npb.go.jp/20230309
/20230309h00933/20230309h009330003f.html

https://elaws.e-gov.go.jp/document?lawid=335AC0000000145
https://elaws.e-gov.go.jp/document?lawid=335AC0000000145
https://www.mhlw.go.jp/web/t_doc?dataId=81aa6953&dataType=0&pageNo=1
https://www.mhlw.go.jp/web/t_doc?dataId=81aa6953&dataType=0&pageNo=1
https://www.pmda.go.jp/files/000240068.pdf
https://www.std.pmda.go.jp/stdDB/Data/RefStd/Std_etc/H290517_0517-01_01.pdf
https://www.std.pmda.go.jp/stdDB/Data/RefStd/Std_etc/H290517_0517-01_01.pdf
https://kanpou.npb.go.jp/20230309/20230309h00933/20230309h009330003f.html
https://kanpou.npb.go.jp/20230309/20230309h00933/20230309h009330003f.html

141

Guidance) and "IMDRF/CYBER WG/N70FINAL:2023 Principles and Practices for the
Cybersecurity of Legacy Medical Devices" (hereafter referred to as the IMDRF
Legacy Medical Device Guidance). Based on the content of these two
supplementary guidance documents, the Medical Device Cybersecurity Working
Group of the Japan Medical Device Industry Association (hereafter referred to as
the "JMIA") has discussed handling Software Bill of Materials (SBOM),
management of legacy medical devices, vulnerability remediation, and incident
response. As a result, an updated version of the "Guide to Cybersecurity
Implementation for Medical Devices (2nd Edition)" has been compiled for medical
device manufacturers and distributors. Additionally, a guide for ensuring
cybersecurity for medical devices in healthcare institutions has been developed,
which outlines necessary measures and operational structures. To investigate
trends in Japan, the report "Trends and Future Challenges in Medical Device
Cybersecurity Regulations in Our Country"53 was referenced to analyze the latest
developments.

Organize the regulations related to pre-market security, including approval reviews,
and add the findings regarding the consideration of domestic implementation of
IMDRF guidance, trends in legislative amendments, etc., as illustrated in the
following figure.

53 Source: "Trends and Future Challenges in Medical Device Cybersecurity Regulations in Our
 Country," Journal of Medical Device Science, Vol. 90, No. 6 (2020). Refer to "Figure 1: Pre
-Market Requirements for Medical Device Cybersecurity under the Pharmaceuticals and Medi
cal Devices Act" and make some additions.」https://www.jstage.jst.go.jp/article/jjmi/90/6/90
_534/_article/-char/ja/

https://www.jstage.jst.go.jp/article/jjmi/90/6/90_534/_article/-char/ja/
https://www.jstage.jst.go.jp/article/jjmi/90/6/90_534/_article/-char/ja/

142

Figure 8-7 Overview of regulations related to pre-market security for

medical devices
Source: Figure 1 in "Trends in Medical Device Cybersecurity Regulations in Japan and Future Challenges,"

Medical Device Journal, Vol. 90, No. 6 (2020) with some additions.

Additionally, I have organized the regulations related to post-market security for
medical devices and added the findings regarding the consideration for the domestic
implementation of IMDRF guidance. The following figure illustrates the post-market
safety measures.

Law

Ministerial
ordinance

Notification

Notice

Pharmaceutical and Medical Device Act Article 41, Paragraph 3
of the Basic Requirements Standards
(The plan is to incorporate the IMDRF guidelines domestically by
2023. Requirements related to cybersecurity will be clarified, and
some necessary amendments are planned. Proposed amendments
are expected to be published within the 2022 fiscal year.)

Ministry of Health, Labour and Welfare Notification No. 122
Standards for Proper Proper Properties, Quality and Performance of
Medical Devices
Ministry of Health, Labor and Welfare Notification No. 67*.
Partial Amendment of the Standards for Medical Devices Established
by the Minister of Health, Labour and Welfare under Article 41,
Paragraph 3 of the Act on Ensuring Quality, Efficacy, and Safety of
Pharmaceuticals and Medical Devices

 “Ensuring Cybersecurity for Medical Devices” (Notice No. 0428-1 from Counselor, Pharmaceuticals and Food Safety Bureau and Notice No. 0428-1 from
Pharmaceuticals and Food Safety Agency, April 28, 2015)

 "Publication of Guidance on Principles and Practices of Medical Device Cybersecurity by the International Medical Device Regulators Forum (IMDRF) (Request for
Notification)“ (Notice No. 0513-1 from Review and Management Division and Notice No. 0513-1 from Pharmaceuticals and Medical Devices Safety Division, May
13, 2020)

 “Guidelines for Ensuring and Implementing Cybersecurity for Medical Devices“ (Notice No. 1224-1 from Review and Management Division and Notice No. 1224-1
from Pharmaceuticals and Food Safety Agency, December 24, 2021)

 “Revision of the Guidelines for the Implementation of Cybersecurity for Medical Devices“ (Notice No. 0331-11 from Review and Management Division and Notice
No. 0331-4 from Pharmaceuticals and Medical Devices Safety Division, March 31, 2023)

 “Guidelines for Ensuring Cybersecurity for Medical Devices in Medical Institutions” (Notice No. 0331-1 from Policy Division, Notice No. 0331-16 from Review and
Management Division, and Notice No. 0331-8 from Pharmaceuticals and Medical Devices Safety Division, March 31, 2023)

 "Confirmation of Compliance with Basic Requirements Standards, Article 12, Paragraph 3 for Medical Institutions" (Notice No. 0523-1 from Review and
Management Division, May 23, 2023)

Pharmaceutical and Medical Device Act, Article 23-205
- An approval application is required for the manufacture and sale of medical devices.
- Approval is not be granted if the medical device falls under any of the following
conditions:
(i) It does not possess the performance or characteristics related to the application.
(ii) It has significantly harmful effects in relation to its performance and has no
practical value.
(iii) It is deemed inappropriate as a medical device.

Enforcement Regulations of the Pharmaceutical and Medical Device Act, Article 114-
19
In the application for approval of a medical device, the following documents must be
attached to the application form:
a. Background of development
b. Verification of design and development
c. Compliance with necessary standards to ensure the properties, quality, and
performance of the medical device
d. Risk management
e. Documentation regarding the manufacturing method

(Related) Handling in the approval review

Regulatory authorities will
consider the approach to
approval and review and
the handling of SBOMs, etc.

(Source: March 10, 2023 Internet Official Gazette (No. 933))
Partial revision of the standards for medical devices specified by the Minister of Health, Labour and Welfare pursuant to the provisions of Article 41, paragraph (3) of the Act on Quality,
Efficacy and Safety Assurance, etc. of Pharmaceuticals, Medical Devices, etc. (MHLW 67)
https://kanpou.npb.go.jp/20230309/20230309h00933/20230309h009330003f.html

143

Figure 8-8 Overview of regulations related to post-market security for

medical devices 54
Source: Figure 1 in "Trends in Medical Device Cybersecurity Regulations in Japan and Future Challenges,"

Medical Device Journal, Vol. 90, No. 6 (2020) with some additions.

In the field of medical devices, medical device manufacturers (hereafter referred
to as "manufacturers") are already mandated to implement configuration
management under Article 12, Paragraph 2 of the Basic Requirements Standard in
the Pharmaceuticals and Medical Devices Act. Conformity can be confirmed
through JIS T 2304. A new Paragraph 3 has been added to Article 12, clarifying
the cybersecurity requirements. The standard related to Paragraph 3, JIS T 81001-
5-1, has been established; it is a process standard for health software, including
software incorporated into medical devices, and specifies activities that
manufacturers must carry out as part of the development lifecycle. This standard
can be used to confirm conformity with the requirements of Article 12, Paragraph
3.

SBOM is not required by JIS T 81001-5-1 or IEC 81001-5-1 (a standard for the
medical device sector based on IEC 62443-4-1 from the control domain), but it is

54 Regarding the considerations for post-market cybersecurity, the document titled
'Fundamental Approach to Reporting Malfunctions Related to Cybersecurity of Medical Devices'
(issued on January 15, 2024, by the Pharmaceuticals and Medical Devices Agency, Notification
No. 0115-2) has also been published.

 "Regarding Reports of Adverse Reactions for Pharmaceuticals, etc.“ (Notice No. 1002-20 from Pharmaceutical and Food Safety
Bureau, October 2, 2014)

 "Regarding Reports of Adverse Events for Medical Devices“ (Notice No. 0131-1 from Pharmaceuticals and Medical Devices Safety
Division, January 31, 2020)

 “Guidelines for Ensuring and Implementing Cybersecurity for Medical Devices“ (Notice No. 1224-1 from Review and Management
Division and Notice No. 1224-1 from Pharmaceuticals and Medical Devices Safety Division, December 24, 2021)

 “Revision of the Guidelines for the Implementation of Cybersecurity for Medical Devices” (Notice No. 0331-11 from Review and
Management Division and Notice No. 0331-4 from Pharmaceuticals and Medical Devices Safety Division, March 31, 2023)

 "Guidelines for Ensuring Cybersecurity for Medical Devices in Medical Institutions"(Notice No. 0331-1 from Policy Division, Medical
Affairs Bureau, Notice No. 0331-16 from Review and Management Division and Notice No. 0331-8 from Pharmaceuticals and Medical
Devices Safety Division, March 31, 2023)

 “Confirmation of Compliance with Basic Requirements Standards, Article 12, Paragraph 3 for Medical Institutions” (Notice No. 0523-
1 from Review and Management Division, May 23, 2023)

Pharmaceutical and Medical Device Act, Article 68-2,
Paragraph 1 (Provision of Post-Marketing Information)
It is required to collect post-marketing information regarding
the medical devices that have been manufactured and sold.

Law

Ministerial
ordinance

Notice

Pharmaceutical and Medical Device Act, Article 68-10,
Paragraph 1 (Reporting of Post-Marketing Adverse Events)
It is required to report to the Minister of Health, Labour and
Welfare any occurrence of disease, disability, or death
suspected to be related to defects in the manufactured and
sold medical devices, as well as any suspected infections
arising from the use of those devices.

Pharmaceutical and Medical Device Act, Article 68-9 (Prevention
of Harm)
When it is known that the use of manufactured and sold
medical devices poses a risk of health hazards or the potential
for such hazards to escalate, necessary measures must be
taken to prevent this, including disposal, recall, suspension of
sales, provision of information, and any other necessary actions.

Article 228-20 of the Enforcement Regulations
When any of the following adverse events related to the use
of medical devices is known, it must be reported to the
Minister of Health, Labour and Welfare:
- Serious adverse events (such as death, disability, etc.)
- Field actions conducted overseas
- Research reports
- Unknown non-serious adverse events

Consideration has begun regarding the reporting of adverse events
through the Health and Labour Sciences Research. The Japan
Federation of Medical Devices Associations' PMS Committee is also
discussing the revision of the “Guidance for Adverse Event Reporting
(8th Edition)." Plans are also in place to explore mechanisms for
information sharing in Japan regarding Coordinated Vulnerability
Disclosure (CVD).

144

required as customer-facing documentation in IEC TR 60601-4-5 (a standard for
the medical device sector based on IEC 62443-4-2 from the control domain). With
SBOM, customers can monitor the security-related risk environment and exchange
information regarding security-related risks with manufacturers. An example of
such information exchange includes security patches related to the software listed
in the SBOM.

 Proposed SBOM Compliance Model (Draft) based on the PoC

In the field of medical devices, the standard JIS T 81001-5-1 has been established
to confirm conformity with the cybersecurity requirements of the Pharmaceuticals
and Medical Devices Act. Additionally, as previously mentioned, guidance
documents for medical device manufacturers and healthcare institutions have been
developed based on IMDRF guidance and the IMDRF supplementary SBOM
guidance. The guidance for medical device manufacturers requires risk
management throughout the entire product lifecycle. The IMDRF guidance includes
handling Software Bill of Materials (SBOM), management of legacy medical devices,
vulnerability remediation, and incident response.

In the 2022 SBOM PoC conducted by the METI, the SBOM Compliance Model
(reference example) was organized based on the following points. Here, we focus
on Tier 1 development contractors, which are medical device manufacturers
involved in the PoC, and consider the configuration management and technical
feasibility required in the medical device sector to outline the SBOM Compliance
Model (Draft).

The key points in organizing the SBOM Compliance Model (Draft) are as follows. It
is important to note that the PoC results are case-dependent.

The SBOM Compliance Model (Draft) can serve as a reference when confirming
whether accountability for at least the selected elements is fulfilled, particularly
when using SBOM as one of the means to achieve configuration management
throughout the lifecycle required by JIS T 2304, as well as the safety, efficacy, and
security of health software and health IT systems under JIS T 81001-5-1.

 For the entity responsible for generating and sharing SBOM, " (a1) In-house"
and "(a2) Supplier (development contractor) transaction contract," the scope
of creation is deemed applicable by having the medical device manufacturers
clearly identify the certification scope of the medical devices and the scope of

145

SBOM creation. It is necessary to require the contracted development partners
to present the SBOM in the contract.

 In the case of SBOM generation and sharing by "(a3) No supplier (third party)
transaction contract," some third parties may provide SBOM that can be verified
by medical device manufacturers, allowing for partial applicability. However,
there may be cases where the SBOM does not meet the eight elements outlined
in the IMDRF supplementary SBOM guidance. Additionally, there may be
instances where SBOM are not presented, making thorough examination of
those SBOM difficult.

 Regarding the scope of SBOM creation and sharing for "(b1) Directly used
components (components directly used by the development entity)," it is
applicable because the developer can identify the components used directly
from the configuration files, etc., by specifying the certification scope of the
medical devices. Consequently, it is possible for the vendor of the contracted
development partner to generate the SBOM using tools, making this approach
applicable.

 Regarding the identification of SBOM creation and sharing scope for "(b2)
Indirectly used components," it is possible to minimize detection omissions by
using tools for source code analysis, binary analysis, and snippet analysis to
detect components, and then manually cross-referencing the detected
components. Therefore, it is desirable to use both tools and manual verification
in combination. While verification is feasible, further consideration is needed
regarding the level of scrutiny.

 Regarding the use of SBOM for "(e2) Vulnerability severity assessment," it is
applicable as it targets the evaluation of CVSS scores using tools. For "(e3)
Assessment and response to exploitability of vulnerabilities," it evaluates
exploitability and the necessity of addressing vulnerabilities using VEX
information and similar resources. It is necessary to issue advisories on
mitigation strategies as needed; however, due to the difficulty of conducting
thorough assessments, this was deemed not applicable in the PoC.

 In the PoC, the vulnerability management and response flow utilizing SBOM
were examined. The medical device manufacturer, referred to as "(f2) Final
product vendor," notifies users, such as healthcare institutions, of discovered
vulnerabilities. This includes direct requests for modifications to the developers,
as well as providing the modified build to users. A process for reporting to
government agencies, regulatory authorities, and ISACs, as needed, was
conceptually examined, making it applicable. However, due to a lack of

146

accumulated knowledge and difficulties in securing personnel and funding, it
was determined that actual implementation would be challenging.

147

Table 8-3 SBOM Compliance Model examined in the medical device sector through PoC (Reference example)
Creating

entity
Scope of

components
Generation method Generated items Generated items

(a1)
In-house

(b1)
Directly used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(b2) Indirectly used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

148

Creating
entity

Scope of
components

Generation method Generated items Generated items

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(a2)
Supplier
(developme
nt
contractor)
transaction
contract

(b1)
Directly used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses

149

Creating
entity

Scope of
components

Generation method Generated items Generated items

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(b2) Indirectly used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(b1) (e1)(e2) Identification of vulnerabilities and licenses

150

Creating
entity

Scope of
components

Generation method Generated items Generated items

(a3) No
supplier
(third
party)
transaction
contract

Directly used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(b2) Indirectly used
components

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses

151

Creating
entity

Scope of
components

Generation method Generated items Generated items

(c2) No tool to
identify, generate, or
scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(c3) Tools used to
identify, generate,
and scrutinize false
detection

(d1) Standard formats (SPDX,
SPDXLite, etc.)

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d2) Includes Executive Order
minimum elements

(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

(d3) Only part of the above
(e1)(e2) Identification of vulnerabilities and licenses
(e3)(e4) Evaluation of exploitability and severity

152

 Utilization methods and considerations

The SBOM Compliance Model (Draft) for the medical device sector presents a
reference example based on the needs and technical feasibility confirmations by the
PoC implementers in the medical device field, as well as advice from industry
organizations such as the Japan Medical Device Industry Association (JMIA)
considering domestic regulations. In the medical device PoC, guidance documents
based on IMDRF guidance and supplementary IMDRF guidance have been provided
as methodologies, and this content is followed accordingly.

8.7. Cross-sector comparison of the SBOM Compliance Models (Draft)

Regarding the selection options for SBOM-related items, a cross-sector comparison
of the revised SBOM Compliance Model, which was evaluated and examined through
the PoC, is organized and presented below.

In all sectors, obtaining SBOM from third parties, including open-source software
(OSS), is challenging; therefore, responses through contracted development
companies or tools are considered. In the medical device sector, SBOM generation
and sharing must include contracted development partners, with the manufacturer
bearing full responsibility. If the customer, such as a healthcare institution, requests
the presentation of an SBOM, it is necessary to provide it and facilitate risk
communication.

In the medical device sector, configuration management is legally mandated, so
accountability for both directly and indirectly utilized components can be fulfilled.
However, due to technical challenges in fully identifying indirect components
related to OSS, only partial responses are implemented for software product
sectors.

153

Figure 8-9 Cross-sector comparison of SBOM Compliance Models (Draft)

48

Generated itemsGenerated itemsGeneration methodScope of
componentsCreating entity

(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,
SPDXLite, etc.)

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b1)
Directly used
components

(a1)
In-house

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate, and
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b2) Indirectly
used
components

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate, and
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b1)
Directly used
components

(a2) Supplier
(development
contractor)
transaction
contract

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate, and
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b2) Indirectly
used
components

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate, and
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b1)
Directly used
components

(a3) No supplier
(third party)
transaction
contract

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate, and
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity

Scope of utilizationGenerated itemsGeneration methodScope of
components

Creating entity

(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,
SPDXLite, etc.)

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b1) Directly
used
components

ECU vendor
(Tier 1)

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d2) Includes Executive Order

minimum elements (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate,
and scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b2) Indirectly
used
components

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate,
and scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b1) Directly
used
components

(a2) Supplier
(development
contractor)
transaction
contract
(Tier 2)

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate,
and scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b2) Indirectly
used
components

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate,
and scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b1) Developer
itself

(a3) No supplier
(third party)
transaction
contract

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate, and
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity

Scope of utilizationGenerated itemsGeneration methodScope of
components

Creating entity

(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,
SPDXLite, etc.)

(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b1) Directly
used
components

Final vendor

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Only part of the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate,
and scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b2) Indirectly
used
components

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate,
and scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b1) Directly
used
components

(a2) Supplier
(development
contractor)
transaction
contract

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate,
and scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b2) Indirectly
used
components

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate,
and scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)
(c1) Manually
identified (using
configuration
management
information),
generated by tool

(b1) Developer
itself

(a3) No supplier
(third party)
transaction
contract r

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c2) No tool to
identify, generate, or
scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.)(c3) Tools used to
identify, generate,
and scrutinize false
detection

(e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d1) Standard formats (SPDX,

SPDXLite, etc.) (e3)(e4) Evaluation of exploitability and severity
(e1)(e2) Identification of vulnerabilities and licenses(d3) Elements that do not

satisfy the above (e3)(e4) Evaluation of exploitability and severity

Indirectly used components Indirectly used components

Indirectly used components

Supplier (development contractor)

Third party

Medical sector Automotive sector
Software product sector
(e.g., security software)

Unnecessary or
excludedDifficult to complyPartially compliance

(Case-dependent)Applicable / Compliant

* Black: Evaluated items in PoC, Blue: Not evaluated

154

9. Appendix: SBOM Contract Model

9.1. Background and purpose (problem awareness)

In the ordering and procurement of software components through the supply chain,
there exists a cost burden on the side that creates the SBOM and a benefit for the
side that obtains the SBOM to enhance vulnerability management. This creates
asymmetry (bias) in the costs borne and the benefits received depending on the
position of the parties involved. Therefore, to promote the widespread adoption of
SBOM, it is crucial not only to outline the methods and procedures for
implementation but also to ensure that, through contractual agreements, the
suppliers who bear the costs of creating the SBOM are compensated by the
procurers who benefit from it. Without this, it is anticipated that SBOM adoption will
not reach an appropriate level. Thus, it is important to clarify the requirements and
responsibilities regarding SBOM in the contracts and to stipulate payment for the
corresponding costs.

This chapter aims to address the asymmetry in cost burdens and benefits between
the parties involved in the ordering and procurement of SBOM, and to promote the
widespread adoption of SBOM. It organizes the requirements, responsibilities, and
cost-sharing matters related to SBOM that should be stipulated in contracts.

155

Figure 9-1 Obstacles to the promotion of SBOM adoption

9.2. Overview

 What is the SBOM Contract Model?

The SBOM Contract Model is a reference example that outlines the main matters
to be stipulated in contracts between software ordering and procurement parties
regarding SBOM-related requirements, responsibilities, and cost burdens. It
provides a conceptual framework for each company to create their contract clauses
based on these reference examples.

 Target readers

This chapter is primarily intended for legal professionals and developers involved in
contracts that stipulate requirements, responsibilities, and cost burdens related to
SBOM for software ordering and procurement parties.

 Structure of this chapter

The structure of this chapter is as follows: Section 9.3 outlines the significance and
utilization concepts of the SBOM Contract Model. Section 9.4 summarizes the
components of the model and the matters to be stipulated. Section 9.5 discusses
the relationship between the SBOM Compliance Model and the SBOM Contract Model.
Section 9.6 describes the relationship between existing model contracts related to

Software component
supplier

Software component
procurer

Increased cost burden on suppliers
• Creation and provision of SBOMs

not previously created
• Support for SBOM format
• SBOM collection from suppliers

Increased procurer's benefits
• Improved efficiency of component

vulnerability management
• Reduction of costs for

identification of parts used by
suppliers and creation of SBOMs

Supply of SBOM

SBOM consideration
payment

Agreement

Contract agreement defines SBOM's requirements and consideration
→ Eliminating asymmetry between cost burden and benefits

→ Promoting the SBOM

Obstacles to Promoting SBOM
(Asymmetry of costs and benefits associated with SBOM in the supply chain)

156

software development and the SBOM Contract Model presented in this chapter.
Section 9.7 illustrates the usage patterns and steps for the model. Finally, Section
9.8 discusses the status of the model and anticipated future revisions.

9.3. Concept of the Contract Model

The benefits of SBOM include the sharing of standardized component information
through the supply chain and increased efficiency through automated processes.
While the advantages for the commissioning party receiving the SBOM are
significant, the contracted party may face additional burdens, resulting in varying
benefits between the parties involved in the ordering and procurement.

To promote the adoption of SBOM through the supply chain, it is essential to
establish agreements on cost burdens corresponding to the benefits received by
each party. In the commissioning contracts, the scope of SBOM compliance., along
with the associated cost burdens and responsibilities, must be clearly defined.

The SBOM Contract Model outlines the requirements for SBOM, along with the
derived cost burdens and responsibilities. It serves as a reference for creating
contracts tailored to each company and contributes to the effective utilization of
SBOM.

Figure 9-2 Concept of promoting SBOM adoption using the SBOM Contract
Model

The model directly stipulates the relationship with companies that have contracted
development agreements, but it can also indirectly define requirements regarding

Development outsourcer
(Procurer)

Development contractor
(Supplier)

Supplier
(Third party)

Requirements for deliverables
(SBOM), operations, etc.

Arrangements derived from
requirements (liability,
indemnification, etc.)

SBOM Contract Model
(Main items to be included in the contract)

Outsourcing Agreement
(prepared for each company)

• Various clauses regarding
consignment

• ・・・・・・

• ・・・・・・・
• ・・・・・・・

Legislative system

Trade practices

Effects of Contracts
• Clarification of SBOM

requirements
• Clarification of responsibilities
• Optimization of cost burden

Provisions for SBOM
• Clauses concerning

requirements for deliverables,
operations, etc.

• Clauses derived from the
requirements

Outsourcing (contracting, quasi-consignment)

Agreement by contract

...

...

Hierarchical contractual relationships

Reference

Compliance and harmonization

Compliance and harmonization

...

Promotion of SBOM based on consignment contracts in the supply chain

Supplier
(Development consignment)

157

the coverage of SBOM for third-party components. For example, the scope of SBOM
creation can specify whether it includes contracted development partners or third
parties (such as commercial off-the-shelf products or OSS), as well as whether it
pertains to reusable components, thereby determining the coverage of third-party
components.

9.4. SBOM Contract Model

 Structure of the model

The SBOM Contract Model outlines the main matters that should be specified
regarding SBOM in development contracts and order specifications. While it is
necessary to ensure legal clarity in the actual provisions, this chapter emphasizes
immediacy and organizes the key elements at the item level.

The structure of the model is based on the SBOM Compliance Model and includes
requirements for the SBOM itself, as well as items related to responsibilities and
guarantees from model contracts for software development published by
organizations such as IPA and JEITA. Additionally, it focuses on key elements such
as cost burdens for SBOM, rights, and confidentiality. The following structure has
been organized accordingly.

Category Outline

SBOM
requirement

Format and
standards

Establish requirements regarding the format
and standards of SBOM.

Quality and
reliability

Establish requirements related to the quality
of SBOM in the SBOM Compliance Model.

Maintenance
and operation

Establish requirements regarding
vulnerability management and other related
aspects in the SBOM Compliance Model.

Responsibility and warranty Establish provisions regarding responsibility
and liability for damages related to SBOM.

Cost burden Establish provisions to ensure reasonable
cost burdens associated with the creation
and management of SBOM.

Rights and confidentiality Establish provisions regarding intellectual
property rights and related confidentiality
concerning SBOM.

158

These elements have been organized considering the prerequisites specific to each
field obtained through the METI's SBOM PoC project (refer to the appendix for legal
systems, trading practices, and development environments). In the next section,
the provisions of the SBOM Contract Model examined for each of these components
will be presented.

 Key provisions to be specified in the commissioning contract (Draft)

In response to the proposed structure of the SBOM Contract Model in the previous
section, the main provisions to be specified in the commissioning contract have been
organized based on the options from the SBOM Compliance Model and the
prerequisites from the PoC (refer to the appendix for legal systems, trading practices,
and development environments). These items have been revised based on feedback
from the METI's Software Task Force.

159

Table 9-1 SBOM Contract Model (Key provisions to be specified in the development commissioning contract)

*1. It is anticipated that this may also be included in the order specifications.
*2. It is expected that this will be standardized with general software development contracts.

Matters to be stipulated Level
(SBOM format)*1
Specify the SBOM standard format to be adopted. (Specify standards and versions of SPDX, CycloneDX, SWID, etc.)

Basic

(ID standard)*1
Specify the part ID standard to be adopted. (CPE, PURL, SWD, proprietary format, etc.)

Basic

(SBOM minimum elements)*1
Specify the minimum element among the element items of the SBOM format to be adopted, referring to the minimum element of the SBOM of NTIA.

Basic

(Supplier Contract Forms Covered)
As the scope of SBOM creation, the scope by contract form of contract development agreement and third party terms and conditions (commercial off-the-shelf products, OSS)
shall be specified.

Basic

(Recursive use parts)*1
Specify whether direct use parts or recursive indirect use parts are included in the scope of SBOM creation.

Advanced

(Scope of application of the composition analysis method)*1
For indirect use parts, the scope of application of the composition analysis method used to identify the parts is specified. (Dependency analysis, file matching, snippet analysis,
etc.)

Advanced

(Necessity of parts scrutiny)*1
Specifies whether or not manual scrutiny of false positives and omissions is required for the results of parts identification by the tool.

Advanced

(Target phase of the component)*1
Specify the scope of the part information, such as build time, run time, cloud services, etc.

Advanced

(Prior Agreement for Third Party Parts)
When using third-party components (commercial components, OSS), this section defines whether or not prior declaration and agreement are required.

Basic

(Sharing method)*1
This section defines real-time sharing by transfer by SBOM file or by SaaS, etc.

Basic

(VEX support)*1
Specify whether to provide VEX information based on exploitability for vulnerability information related to SBOM.

Advanced

(SBOM update)*1
Defines the deadline and frequency of updating the SBOM in response to software updates, SBOM defect fixes, etc.

Basic

(Vulnerability Monitoring and Notif ication)
During the operational phase of the software, monitor for vulnerabilities and stipulate a deadline for notification to the procurer when vulnerabilities are discovered.

Advanced

(Vulnerability Response and Prioritization)*1
Specify whether or not information is to be provided to procurers regarding the need for vulnerability response and prioritization (triage) when vulnerabilities are discovered.

Advanced

（EOL and EOS)
This section defines the EOL and EOS for third party parts and contracted development parts and the notification of changes to their deadlines.

Advanced

(Submission of Evidence)
Specifies whether or not to require submission of evidence and third-party certification to prove conformity with SBOM requirements.

Advanced

(Contract Nonconformity Liability)
When nonconformity to SBOM requirements is found, it defines the necessity of defects response such as SBOM correction.

Basic

(Compensation for damages)*2
Provide for the maximum amount of damages, etc., in the event of an accident caused by nonconformity with SBOM requirements. Includes damages for license violation.

Basic

(Indemnif ication)
For cases where evidence of conformance to SBOM requirements has been submitted, this section defines the limitations and disclaimers of liability for damages in the event
that damages occur due to reasons attributable to technical limitations (e.g., false detection of tools).

Advanced

(Quotation)*2
Prepare an estimate based on SBOM requirements, responsibilities and warranties, and stipulate the payment of consideration based on the agreed amount.

Basic

(Attribution of Inte llectual Property Rights)
This section defines the intellectual property rights of the created SBOM, the ownership of the right to use the SBOM, and whether or not the SBOM can be provided to a third
party.

Advanced

(Conf identiality)
This section defines the confidentiality and management of the SBOM and the prohibition of reverse engineering using the SBOM.

Advanced

Cost Burden

Rights and Confidentiality

Liability and Warranty

Category

SBOM
Requirements

Format
Standard

Quality and
Reliability

(Applicable to
SBOM-compliant

models)

Maintenance
and Operation

160

The provisions in the SBOM Contract Model can be seen as the articulation of
important requirements for vulnerability management and software quality
assurance. These provisions are primarily expected to apply to contracts after the
requirements definition phase.

9.5. Relationship and positioning of the SBOM Compliance Model and the

SBOM Contract Model

The SBOM Compliance Model and the SBOM Contract Model are closely related, and
it is anticipated that by utilizing one or both according to their respective purposes,
the social implementation of SBOM can be advanced. The relationship and
positioning of the SBOM Compliance Model and the SBOM Contract Model are
illustrated in the figure below.

Figure 9-2 Relationship and positioning of the SBOM Compliance Model and

the SBOM Contract Model (Overview)

The SBOM Compliance Model is a framework for visualizing the scope of SBOM
compliance. By making the scope and level of SBOM compliance. visible, it aims to
facilitate market product selection and enhance incentives for autonomous SBOM
compliance. The scope of SBOM compliance. is not fixed by mandatory standards
but is designed to allow market mechanisms to operate, enabling parties involved
in software transactions to autonomously improve their SBOM compliance levels to

SBOM Compliance Model
(Increased incentives through visualization)

SBOM Contract Model
(Guaranteed compliance level through contracts)

Enabling product selection in the
market and enhance incentives for
autonomous SBOM compliance, by
visualizing the scope and level of

SBOM compliance
(Allowing market mechanisms to

function, instead of imposing fixed
standards)

Ensuring in contracted
development in high-risk areas,

etc., a certain level of SBOM
compliance, by stipulating

requirements and responsibilities in
contractual terms

Guarantees
through contracts

Autonomous incentive
improvement

through market selection

(a) Creating entity Scope of compone (c) Generation method (d) Generated items (e) Scope of utilization
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability
(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d3) Elements that do not satisfy the
above

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d2) Includes Executive Order minimum
elements

(a3) No supplier
(third party)
transaction contract

(b1) Developer
itself

(c1) Manually identified
(using configuration
management
information), generated
by tool

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d3) Elements that do not satisfy the
above

(a2) Supplier
(development
contractor)
transaction contract

(d2) Includes Executive Order minimum
elements

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d3) Elements that do not satisfy the
above

(d3) Elements that do not satisfy the
above

(b2) Non-
developer
(procurers and
users)

(d3) Elements that do not satisfy the
above

(b2) Indirectly
uses components

(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(b1) Directly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d3) Elements that do not satisfy the
above

(c2) No tool to identify,
generate, or scrutinize
false detection

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d1) Standard formats (SPDX, SPDXLite,
etc.)
(d2) Includes Executive Order minimum
elements

(d3) Elements that do not satisfy the
above

(d2) Includes Executive Order minimum
elements

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d3) Elements that do not satisfy the
above

(c1) Manually identified
(using configuration
management
information), generated
by tool

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(e3)(e4) Evaluation of exploitability(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(d2) Includes Executive Order minimum
elements
(d3) Elements that do not satisfy the
above

(c1) Manually identified
(using configuration
management
information), generated
by tool

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e3)(e4) Evaluation of exploitability a

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of
(e3)(e4) Evaluation of exploitability

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

 (a1) In-house

(b1) Directly
used components

(c1) Manually identified
(using configuration
management
information), generated
by tool

(c3) Tools used to
identify, generate, and
scrutinize false
detection

(b2) Indirectly
used components

(c2) No tool to identify,
generate, or scrutinize
false detection

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(e1)(e2) Identification of

(d2) Includes Executive Order minimum
elements

(d1) Standard formats (SPDX, SPDXLite,
etc.)

(d3) Only part of the above

(d3) Elements that do not satisfy the
above

(e3)(e4) Evaluation of exploitability
(d2) Includes Executive Order minimum
elements

(e1)(e2) Identification of

Matters to be stipulated Level Reference Contract
Phase

(SBOM format)*1
Specify the SBOM standard format to be adopted. (Specify standards and versions of SPDX, CycloneDX, SWID, etc.)

Base
Necessity to be
considered in METI

Before
requirement

(ID standard)*1
Specify the part ID standard to be adopted. (CPE, PURL, SWD, proprietary format, etc.)

Base

Necessity to be
considered in METI
demonstration in FY2023.

Before
requirement
definition
contract

(SBOM minimum elements)*1
Specify the minimum element among the element items of the SBOM format to be adopted, referring to the minimum element of the
SBOM of NTIA.

Base

NTIA Guidance Before
requirement
definition
contract

(Supplier Contract Forms Covered)
As the scope of SBOM creation, the scope by contract form of contract development agreement and third party terms and conditions

Base
Elements of SBOM-
compliant models

Before
requirement

(Recursive use parts)*1
Specify whether direct use parts or recursive indirect use parts are included in the scope of SBOM creation.

Develo
pment

Elements of SBOM-
compliant models

Before design and
implementation
contract

(Scope of application of the composition analysis method)*1
For indirect use parts, the scope of application of the composition analysis method used to identify the parts is specified. (Dependency
analysis, file matching, snippet analysis, etc.)

Develo
pment

Elements of SBOM-
compliant models

Before design and
implementation
contract

(Necessity of parts scrutiny)*1
Specifies whether or not manual scrutiny of false positives and omissions is required for the results of parts identification by the tool.

Develo
pment

Elements of SBOM-
compliant models

Before design and
implementation
contract

(Target phase of the component)*1
Specify the scope of the part information, such as build time, run time, cloud services, etc.

Develo
pment

Elements of SBOM-
compliant models, CISA
guidance issued

Before design and
implementation
contract

(Prior Agreement for Third Party Parts)
When using third-party components (commercial components, OSS), this section defines whether or not prior declaration and agreement
are required.

Base

Case Studies in the
Automotive Sector

Before
requirement
definition
contract

(Sharing method)*1
This section defines real-time sharing by transfer by SBOM file or by SaaS, etc.

Base
To be considered in METI
demonstration in FY2022

Before
requirement

(VEX support)*1
Specify whether to provide VEX information based on exploitability for vulnerability information related to SBOM. Develo

pment

To be considered in METI
demonstration in FY2023

Before
requirement
definition
contract

(SBOM update)*1
Defines the deadline and frequency of updating the SBOM in response to software updates, SBOM defect fixes, etc.

Base

Issues in the medical
device field, TF

Before
maintenance and
operation
contract

(Vulnerability Monitoring and Notification)
During the operational phase of the software, monitor for vulnerabilities and stipulate a deadline for notification to the procurer when
vulnerabilities are discovered.

Develo
pment

Contracts in the software
field, etc.

Before
maintenance and
operation
contract

(Vulnerability Response and Prioritization)*1
Specify whether or not information is to be provided to procurers regarding the need for vulnerability response and prioritization (triage)
when vulnerabilities are discovered.

Develo
pment

Under consideration for
demonstration in FY2023

Before
maintenance and
operation
contract

（EOL and EOS)
This section defines the EOL and EOS for third party parts and contracted development parts and the notification of changes to their
deadlines.

Develo
pment

Discussed in the Medical
Equipment Association
Handbook.

Before
maintenance and
operation
contract

(Submission of Evidence)
Specifies whether or not to require submission of evidence and third-party certification to prove conformity with SBOM requirements.

Develo
pment

CISA Guidance, etc. Before
requirement

(Contract Nonconformity Liability)
When nonconformity to SBOM requirements is found, it defines the necessity of defects response such as SBOM correction.

Base

Compliance with the
revised Civil Code.

Before
requirement
definition
contract

(Compensation for damages)*2
Provide for the maximum amount of damages, etc., in the event of an accident caused by nonconformity with SBOM requirements.
Includes damages for license violation.

Base

Private Trade Practices,
etc.

Before
requirement
definition
contract

(Indemnification)
For cases where evidence of conformance to SBOM requirements has been submitted, this section defines the limitations and
disclaimers of liability for damages in the event that damages occur due to reasons attributable to technical limitations (e.g., false
detection of tools).

Develo
pment

Incentive Improvement
Measures, PL Law
Development Crisis
Defense

Before
requirement
definition
contract

(Quotation)*2
Prepare an estimate based on SBOM requirements, responsibilities and warranties, and stipulate the payment of consideration based on
the agreed amount.

Base
ISO/SAE21434 reference At the time of

each contract

(Attribution of Intellectual Property Rights)
This section defines the intellectual property rights of the created SBOM, the ownership of the right to use the SBOM, and whether or

Develo
pment

TF Discussion Before
requirement

(Confidentiality)
This section defines the confidentiality and management of the SBOM and the prohibition of reverse engineering using the SBOM. Develo

pment

Copyright Law Before
requirement
definition
contract

Cost Burden

Rights and Confidentiality

Liability and Warranty

Category

SBOM
Requirements

Format
Standard

Quality and
Reliability

(Applicable to
SBOM-

compliant
models)

Maintenance
and Operation

161

a reasonable standard.

On the other hand, the SBOM Contract Model ensures the level of SBOM compliance.
is guaranteed through contracts. In high-risk areas, such as outsourced
development, the goal is to define requirements and responsibilities through
contractual terms, thereby ensuring a certain level of SBOM compliance. By
reaching an agreement through contract clauses, this approach promotes the social
implementation of SBOM.

9.6. Relationship with existing model contracts

Model contracts for software play a crucial role in ensuring software quality,
resolving discrepancies in understanding between ordering and supplying parties,
and mitigating troubles that may arise during software development. Two
representative model contracts are as follows:
 Information-technology Promotion Agency, "Information System

Model Transactions and Contracts (2nd Edition)"

This document presents an ideal transaction and contract model aimed at
enhancing the reliability of information systems and promoting transaction visibility.

 Japan Electronics and Information Technology Industries Association
(JEITA), "Explanation of the JEITA Software Development Model
Contract"

This document aims to clarify contract conditions to align the understanding of
both users and vendors regarding cooperation, specifications, role distribution, and
issues that need to be defined at the appropriate time, thereby contributing to the
proper conduct of software development transactions and enhancing the reliability
of information systems.

These model contracts provide comprehensive templates and explanations at the
clause level for software development agreements. However, since these existing
model contracts do not include provisions related to SBOM, the SBOM Contract
Model can be utilized as a complement to them. That said, the SBOM Contract
Model prioritizes immediacy in its publication, so it presents reference examples at
the level of important matters rather than detailed templates at the clause level of
the contracts.

162

9.7. Utilization patterns

There are two main patterns anticipated for utilizing the SBOM Contract Model.

1. Based on in-house software development contracts

Utilize an in-house software development contract template or an existing
contract example as a base and incorporate the provisions of the SBOM
Contract Model to finalize the contract.

(1) Evaluation of SBOM Contract Model provisions
Select provisions from the model based on the company's risk factors and
required standards to determine which to adopt.

(2) Mapping with the SBOM Contract Model
Identify the relevant sections of the selected model provisions based on the
structure of your company's contract template.

(3) Drafting clause with the model in a company contract
Consider the positioning and impact of the model provisions within your
company's contract and draft the clause text accordingly.

(4) Discussion with the transaction partner
Engage in discussions with the partner regarding the draft contract
reflecting the SBOM Contract Model, aiming to reach an agreement and
finalize the contract including the SBOM provisions.

2. Based on existing software development model contracts
Utilize existing software development model contracts from IPA or JEITA as a
foundation, incorporating the provisions of the SBOM Contract Model to
complete the contract.

(1) Evaluation of SBOM Contract Model provisions
Select the provisions from the model based on your company's risks and
requirements.

(2) Mapping with the SBOM Contract Model
Identify the relevant sections of the selected provisions in the SBOM Contract
Model based on the structure of your software development model contract.

(3) Drafting clause with the model in a company contract
Consider the positioning and impact of the provisions from the model in your
software development model contract and draft clause proposals accordingly.

(4) Discussion with the transaction partner
Discuss and reach an agreement with the transaction partner on the draft

163

contract that reflects the SBOM Contract Model, thereby completing the
contract that includes the SBOM Contract Model.

Choose one of the utilization patterns outlined above and create a contract that
corresponds to the SBOM Contract Model, following the steps of the selected
utilization pattern.

9.8. Challenges and future directions for consideration

The SBOM Contract Model has been published with a priority on immediacy, and
several challenges exist, as outlined below. Addressing these challenges in the
future is expected to lead to revisions that make the model easier to implement.

 Contractualization of the SBOM Contract Model provisions

The SBOM Contract Model does not specify contract clauses; instead, it
organizes important provisions that should be included in contracts. By
providing legally clear draft clauses, this can facilitate a more user-friendly
model. Users of the SBOM Contract Model can integrate existing general
software development contract templates with the proposed clauses from the
SBOM Contract Model to develop comprehensive contract templates.

 Explanatory document for the SBOM Contract Model
Users of the SBOM Contract Model are expected to create contract templates
that integrate SBOM contractual clauses into software development model
contracts and provide explanations for the use of each clause. Particularly, there
is an expectation to summarize methods for selecting contract clauses based
on the specific field and required levels, as well as the underlying rationale.

 Distinction between contracts and specifications
The provisions of the SBOM Contract Model can be categorized into matters
that should be included in contracts and those that should be included in order
specifications. It is anticipated that there will be guidance on how to utilize the
SBOM Contract Model by breaking it down into such documents according to
the nature of the contract, whether it be a work contract or a quasi-mandate
contract.

164

10. Appendix

10.1. Checklist of actions for the introduction of SBOM

The following checklist summarizes the items to be implemented in the three
phases of SBOM introduction: the environmental and system development phase,
the SBOM production and sharing phase, and the SBOM use and management
phase.

Table 10-1 Checklist of actions for the introduction of SBOM
Phase Step Actions for the introduction of SBOM Check

Environment
and system
development
phase

Clarification
the scope of
the SBOM
application

Clarify information about the target
software, such as information about
development language, component type,
development tools, etc.

□

Create an accurate configuration diagram of
the target software and visualize the target
of the SBOM application.

□

Clarify the contractual form and business
practices with users and suppliers of the
subject software.

□

Confirm regulations and requirements for
SBOM regarding the target software.

□

Clarify the constraints within the
organization (e.g., system constraints, cost
constraints) regarding the introduction of
SBOM.

□

Clarify the scope of the SBOM application
5W1H (Five Ws and How) based on the
organized information. For details, also refer
to the SBOM Compliance Model in Section 8
(Appendix).

□

Regarding the software to be procured or
supplied, the requirements and
responsibilities regarding SBOM will be
clarified with the trading partner based on
the SBOM Contract Model.

□

165

Phase Step Actions for the introduction of SBOM Check
SBOM tools
selection

Organize the viewpoints for the selection of
SBOM tools considering the development
language of the target software and the
constraints within the organization.
(Examples of selection perspectives:
functions, performance, analyzable
information, analyzable data format, cost,
supported formats, component analysis
method, support systems, coordination with
other tools, form of provision, user interface,
operation method, supported software
languages, Japanese support, etc.)

□

Evaluate and select multiple SBOM tools
based on the organized viewpoints.

□

SBOM tools
installation

Check the requirements of the environment
where the SBOM tool can be installed and
set up the environment. Consider a
combination of tool functions and manual
responses that meet the scope of support
identified for the SBOM Compliance Model.

□

Check the instruction manual and README
file of the tool and then implement and
configure an SBOM tool.

□

Learning
about SBOM
tools

Learn how to use SBOM tools by checking
the instruction manual and README file of
the tool.

□

Record know-how on how to use the tool
and the outline of each function and share
them within the organization.

□

SBOM
production
and sharing
phase

Component
analysis

Scan the target software and analyze the
component information using an SBOM tool.

□

Examine the analysis log of the SBOM tool
and check whether the analysis has been
correctly executed without any false
positives or false negatives caused by errors
or lack of information.

□

166

Phase Step Actions for the introduction of SBOM Check
Check the component analysis results to see
if there are any false positives and false
negatives.

□

SBOM
production

Determine the requirements for the SBOM to
be produced, such as items, format, and
output file format.

□

Produce an SBOM that satisfies the
requirements, by using the SBOM tool.

□

In producing an SBOM, it is necessary to
clarify who will do what, and to what extent
throughout the supply chain, and to reach
an agreement between the parties involved.
Refer to Section 8 (Appendix).

□

SBOM
sharing

Share an SBOM with the users and/or
suppliers of the target software as necessary
after determining the method of sharing the
SBOM.

□

Consider using electronic signature
technology or other technologies to prevent
falsification of the sharing of SBOM data.

□

SBOM use
and
management
phase

Vulnerability
management,
license
management,
etc.

Based on the output of the SBOM tool,
assess the severity, evaluate the impact, fix
the vulnerabilities, check the residual risk,
and provide information to the relevant
organizations.

□

In the identification of vulnerability
information, consider using (1) ready-made
SBOM tools, (2) scripts that use the
vulnerability DB API, and (3) the
vulnerability DB WebUI, and select an
appropriate method. (Refer to 7.4.1.)

□

In the prioritization of vulnerability
information, prioritize vulnerabilities based
on cost-effectiveness, considering factors
such as simple filtering of whether a
vulnerability response is necessary, whether
or not there have been incidents involving
the vulnerability, whether or not exploit code

□

167

Phase Step Actions for the introduction of SBOM Check
has been released, the use of VEX
information, and CVSS scores. In
prioritization, classify priority categories as
necessary, with reference to the SSVC
approach. (Refer to 7.4.2.)
In the sharing of vulnerability information,
identify the information to be shared,
including additional information that is
necessary for prioritizing vulnerability
responses, the parties with whom the
information is to be shared in the supply
chain, and the means of sharing the
information, and information is shared as
necessary. (Refer to 7.4.3.)

□

In responding to vulnerability information,
implement both initial responses that do not
involve fixing the vulnerability and
fundamental responses that do involve fixing
the vulnerability. (Refer to 7.4.4.)

□

Based on the output of the SBOM tool, check
whether there is any violation of the OSS
license.

□

SBOM
information
management

Keep the created SBOM for a certain period,
including the change history, so that it can
be referred to in case of inquiries from
outside the company, etc.

□

Manage the information contained in the
SBOM and the SBOM itself appropriately.

□

168

10.2. Glossary

 Terms related to SBOM and software

 Attribute
A characteristic or information about a component. In the case of SBOM in
matrix format, it an attribute corresponds to a column.

 Codebase
The entire source code used to build a particular piece of software, application,
component, etc.

 Component
A unit of software-defined by a supplier. A component is defined when it is built,
packaged, or delivered by a supplier. Software products, equipment, libraries,
and/or single files are also positioned as one component. An aggregation of
components, such as OS, office suites, database systems, automobiles,
automobile engine control units (ECU), medical image processing equipment,
and installation packages, is also a component. Many components contain
subcomponents.

 Dependency Relationship
A characterization of the relationship where software Y contains an upstream
component X.

 Element
A part of the SBOM system.

 Entity
A company, association, organization, or individual associated with software or
components.

 EOL（End of Life）
An expiration date is when a product or service is no longer sold or supported
and should not be used continuously.

 Intermediate Supplier
A supplier that processes an upstream component into a new component for
the downstream process. Many suppliers are treated as intermediate suppliers.

 Minimum Elements
The minimum elements to be included in an SBOM as announced by the NTIA

169

on July 12, 2021, based on Executive Order 14028 of the U.S. Specific
definitions are provided based on three categories: data fields, automation
support, and practices and processes.

 OTS（Off-The-Shelf）
A component of software that is commonly used by a supplier and for which
the supplier cannot claim full software lifecycle management.

 OSS（Open Source Software）
A software whose source code has been made publicly available. Anyone is
permitted to use, modify, and redistribute it.

 Primary Component
A target component described by the SBOM.

 Proprietary Software
A software whose intellectual property is retained by a software distributor and
whose modification or reproduction is restricted.

 Relationship Assertion
An extent of one author's knowledge of another supplier's components. There
are four categories: Unknown, Root/None, Partial, and Known.

 Run-time Library
A library required for program execution.

 SBOM（Software Bill of Materials）

An SBOM is a formal, machine-readable inventory of software components and
dependencies, information about those components, and their hierarchical
relationships. These inventories should be comprehensive – or should explicitly
state where they could not be. SBOM may include open source or proprietary
software and can be widely available or access restricted.

 SBOM Author
An entity that creates an SBOM. When the author and supplier are different,
this indicates that one entity (the author) is making claims about components
created or included by a different entity (the supplier).

 SBOM Consumer
An entity that obtains SBOM. An entity can be both a supplier and consumer,
using components with SBOM data in its own software, which is then passed
downstream. An “end-user” consumer (that is not also a supplier) may also be
called an operator or a leaf entity.

170

 SBOM Entry
An attribute related to a component of SBOM. In the case of a matrix SBOM, it
corresponds to a row.

 SBOM System
A set of elements and processes that provide the ability to create, exchange,
use, and manage SBOM.

 SBOM Tool
A tool to produce, share, utilize, or manage SBOM. An SBOM tool is also
sometimes called an SBOM management tool, OSS management tool, or
software configuration analysis (SCA) tool. In addition to a tool provided in a
package, there are also tools provided as cloud software.

 SCA (Software Composition Analysis）
In a narrow sense, to identify the components used by the product. Generally,
it is designed to manage vulnerabilities and license risks for each identified
component.

 Snippet
A code fragment within a source code.

 Subcomponent
A component contained in a component.

 Supplier
An entity that develops, defines, and identifies a component, ideally an entity
that creates an SBOM associated with that component. Suppliers are also called
manufacturers, vendors, developers, system integrators, maintenance
operators, and service providers. Most suppliers are also SBOM users. A supplier
having no upstream components is also called a root entity.

 Symbolic Link
One of the functions in the OS file system, or another file indicating a specific
file or directory.

 Transitive Dependency
A characterization of the relationship that if an upstream component X is
included in software Y and component Z is included in component X then
component Z is included in software Y.

 VEX（Vulnerability Exploitability Exchange）
A form of security advisory that indicates whether a particular product is

171

affected by a known vulnerability.

 Other terms

 Authentication
Provision of assurance that a claimed characteristic of an entity is correct.
[ISO/IEC 27000:2018]

 Authorization
To grant privileges, including the provision of access functions based on access
privileges. [ISO 7498-2:1989]

 CVSS（Common Vulnerability Scoring System）
A rating method that allows quantitative comparison of the severity of
vulnerabilities managed by FIRST (Forum of Incident Response and Security
Teams) under the same criteria. The score is determined between 0.0 and 10.0.

 CWE（Common Weakness Enumeration）
A common standard for identifying types of security weaknesses
(vulnerabilities) in software. The specifications were developed mainly by
MITRE, a U.S. non-profit organization.

 Cyberattack
An attempt to destroy, expose, alter, disable, steal or gain unauthorized access
to or make unauthorized use of an asset. [ISO/IEC 27000:2018]

 Cybersecurity
To prevent the leak or falsification of electronic data as well as the malfunction
of IT or control systems against expected behavior.

 ISMS（Information Security Management System）
A framework to operate a system by determining the required security level,
establishing a plan and distributing resources through its own risk assessment
in order to manage an organization. The requirements are defined in the
international standard ISO/IEC 27001.

 Malware
Software or firmware intended to perform an unauthorized process that will
have adverse impact on the confidentiality, integrity, or availability of an
information system. A virus, worm, Trojan horse, or other code-based entity
that infects a host. Spyware and some forms of adware are also examples of

172

malicious code. [NIST SP 800-53 Rev.4]

 OWASP（Open Web Application Security Project）
An open source software community that aims to share information and raise
awareness about software security, including the Web.

 Protocol
Predetermined mass of rules and steps for parties, so that more than one party
can smoothly transmit signals, data, and information to one another.

 PSIRT（Product Security Incident Response Team）
An organization that responsible for improving the security of the company's
products and responding to incidents when they occur.

 Risk
The effect of uncertainty on objectives. [ISO/IEC 27000:2018]

 Supply Chain
A linked set of resources and processes between multiple tiers of developers
that begins with the sourcing of products and services and extends through the
design, development, manufacturing, processing, handling, and delivery of
products and services to the acquirer. [ISO 28001:2007, NIST SP 800-53 Rev.4]

 Threat
A potential cause of an undesirable incident that could damage the system or
the organization.

 Threat Analysis
Identifying threats to devices, software, systems, etc., and evaluating their
impact. Threat analysis is mainly done in the product requirements definition
and design phase.

 Threat Intelligence
Information that may be useful in protecting against threats, detecting attacker
activity, responding to threats, etc. [NIST SP 800-150]

 Vulnerability
A weakness of an asset or control (3.14) that can be exploited by one or more
threats. [ISO/IEC 27000:2018]

10.3. Reference information

173

 Reference documents for SBOM

This section provides a list of reference documents on SBOM published by domestic
and foreign government agencies.

 U.S. NTIA︓Roles and Benefits for SBOM Across the Supply Chain
（November 2019）
A document summarizing the benefits of using SBOM from the perspective of
software developers, purchasers, and users. Benefits are described by cost,
security, licensing, compliance., and software stability in the supply chain.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_ben
efits-nov2019.pdf

 U.S. NTIA︓Software Bill of Materials (SBOM)（August 2020）
A document summarizing the background of the study of SBOM and the role
and effectiveness of SBOM in the software ecosystem and providing an
overview of SBOM.
https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf

 U.S. NTIA︓SBOM FAQ（November 2020）
A collection of FAQs on SBOM overview, utilization effects, SBOM creation and
distribution.
https://www.ntia.gov/files/ntia/publications/sbom_faq_-_20201116.pdf

 U.S. NTIA︓Sharing and Exchanging SBOMs（February 2021）
A document describing options for how SBOM data can be shared along the
supply chain, with the goal of minimizing the burden on the suppliers who
created SBOM data and on the users of the SBOM
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_
sboms-10feb2021.pdf

 U.S. NTIA︓SBOM Tool Classification Taxonomy（March 2021）
A document showing the classification of SBOM tools. It classifies the purpose
of use of tools into three categories: producing, consuming, and transferring
SBOMs, and organizes the types of tools for each purpose.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-
2021mar30.pdf

 U.S. NTIA︓Software Identification Challenges and Guidance（March
2021）
A document describing the challenges of uniquely identifying software

https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf
https://www.ntia.gov/files/ntia/publications/sbom_faq_-_20201116.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf

174

components internationally. The purpose of the document is to provide
strategies and guidance for addressing the challenges.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-
2021mar30.pdf

 U.S. NTIA︓SBOM at a Glance（April 2021）
A document summarizing how to use SBOM and the role of SBOM in ensuring
transparency of the software supply chain while listing reference documents.
The document also includes information that should be included in SBOM. The
document is also translated into Japanese by JPCERT/CC.
https://www.ntia.gov/files/ntia/publications/sbom_at_a_glance_apr2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_at_a_glance_ja.pdf

 U.S. NTIA︓SBOM Options and Decision Points（April 2021）
A document intended to help clarify what is feasible with the current method
with respect to SBOM and the needs of suppliers and users of SBOM.
https://www.ntia.gov/files/ntia/publications/sbom_options_and_decision_poi
nts_20210427-1.pdf

 U.S. NTIA︓The Minimum Elements For a Software Bill of Materials
(SBOM)（July 2021）
A document that defines the minimum elements of the SBOM. The minimum
elements are divided into three categories, and the outline of each category
and specific items to be included in the SBOM are defined.
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_r
eport.pdf

 U.S. NTIA︓Vulnerability-Exploitability eXchange (VEX) – An Overview
（September 2021）
A document that provides an overview of VEX, which is an indicator to judge
whether a particular software component is affected by a vulnerability or not.
VEX represents the status of vulnerability in a particular product. The
document expresses the status in four levels.
https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

 U.S. NTIA︓How-To Guidance for SBOM Generation（October 2021）
A document summarizing two points of view as a Guidance for SBOM
generation: how to collect information for collection method for SBOM
generation and how to generate a specific SBOM. Although this Guidance was
developed through the SBOM PoC in the healthcare field by NTIA, it is
expected to be used not only in the healthcare field but also in the generation

https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/sbom_at_a_glance_apr2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_at_a_glance_ja.pdf
https://www.ntia.gov/files/ntia/publications/sbom_options_and_decision_points_20210427-1.pdf
https://www.ntia.gov/files/ntia/publications/sbom_options_and_decision_points_20210427-1.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

175

of SBOM in all industries.
https://www.ntia.gov/files/ntia/publications/howto_Guidance_for_sbom_gene
ration_v1.pdf

 U.S. NTIA︓Framing Software Component Transparency: Establishing a
Common Software Bill of Materials (SBOM) (Initial version: November
2019, Revised: October 2021)
A document that presents the concept of SBOM, related terminology, and
basic ideas about the representation of software components, as well as the
process of creating SBOM.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition
_20211021.pdf

 U.S. NTIA︓SBOM Myths vs. Facts（November 2021）
A document that organizes typical myths about SBOM and facts to solve them,
with the aim of correctly showing the benefits of SBOM.
https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.
pdf

 U.S. NTIA︓Software Suppliers Playbook: SBOM Production and
Provision（November 2021）
A playbook on SBOM generation for software suppliers. This playbook covers
three topics: “procedures for SBOM production”, “considerations for SBOM
production”, and “supplementary information about SBOM”.
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_produ
ction_and_provision_-_final.pdf

 U.S. NTIA︓Software Consumers Playbook: SBOM Acquisition,
Management, and Use（November 2021）
A playbook for software users on the use of SBOM. This playbook summarizes
the points to be considered when acquiring SBOM from suppliers, the process
and platform for utilizing SBOM, and the intellectual property and
confidentiality of SBOM.
https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acqu
isition_management_and_use_-_final.pdf

 U.S. NTIA︓Survey of Existing SBOM Formats and Standards - Version
2021（Initial version︓2019, Revised︓2021）
A document that summarizes the results of a survey on existing SBOM
formats and standards, in addition to future issues. As for the existing SBOM
formats, SPDX, CycloneDX, and SWID are outlined, with use cases and

https://www.ntia.gov/files/ntia/publications/howto_guide_for_sbom_generation_v1.pdf
https://www.ntia.gov/files/ntia/publications/howto_guide_for_sbom_generation_v1.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.pdf
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acquisition_management_and_use_-_final.pdf
https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acquisition_management_and_use_-_final.pdf

176

features.
https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-
2021.pdf

 U.S. NIST︓SP 800-218 Secure Software Development Framework (SSDF)
Version 1.1: Recommendations for Mitigating the Risk of Software
Vulnerabilities（February 2022）
A framework document that summarizes methodologies for software
developers to mitigate software vulnerabilities. The methodologies are classified
into four categories, and tasks for practicing each methodology are
systematically organized.
https://csrc.nist.gov/publications/detail/sp/800-218/final

 U.S. CISA︓Vulnerability Exploitability eXchange (VEX) – Use Cases
（April 2022）
A document showing the minimum elements to be included in a VEX
document. In addition, use cases are presented as concrete examples for
creating VEX documents.
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Docum
ent_508c.pdf

 U.S. CISA︓Vulnerability Exploitability eXchange (VEX) - Status
Justifications（June 2022）
A document that defines five specific arguments to justify the “NOT
AFFECTED” status among the “Vulnerability Status” in the minimum elements
of the VEX document.
https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification
_Jun22.pdf

 U.S. CISA, NSA, ODNI︓Securing Software Supply Chain Series -
Recommended Practices for Developers（September 2022）
A document that provides recommendations for software developers to
ensure a secure software supply chain. This document is the first part of a
three-part guidance series focusing on the roles of software developers,
software suppliers, and software users. The document recommends the
creation of SBOM for software containing third-party components,
vulnerability assessments.
https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_
THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

 U.S. CISA, NSA, ODNI︓Securing Software Supply Chain Series -

https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-2021.pdf
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification_Jun22.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification_Jun22.pdf
https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

177

Recommended Practices for Suppliers（October 2022）
A document that provides recommendations for software suppliers to ensure a
secure software supply chain. This document is the second part of a three-
part guidance series focusing on the roles of software developers, software
suppliers, and software users. The document recommends that suppliers act
as an intermediary between developers and users to protect software and to
respond to and notify users of vulnerabilities.
https://media.defense.gov/2022/Oct/31/2003105368/-1/-
1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF

 U.S. CISA, NSA, ODNI︓Securing Software Supply Chain Series -
Recommended Practices for Customers（November 2022）
A document that provides recommendations for software users to ensure a
secure software supply chain. This document is the third part of a three-part
guidance series focusing on each of the three roles of software developers,
software suppliers, and users. The document recommends requesting SBOM
from suppliers and evaluating software vulnerabilities based on SBOM.
https://media.defense.gov/2022/Nov/17/2003116445/-1/-
1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF

 U.S. CISA︓Software Bill of Materials (SBOM) Sharing Lifecycle Report
（April 2023）
A report on the SBOM sharing lifecycle. It identifies three basic phases before
SBOM is shared from the creator to the users, with an overview of each phase
and the degree of sophistication for each phase. The degree of sophistication
represents the relative amount of cost and resources required to implement
each phase, and is defined as low, medium, or high. In addition, in order to
help understand the current status of SBOM sharing, the report presents the
results of interviews with concerned organizations on how their organizations
are sharing SBOM.
https://www.cisa.gov/resources-tools/resources/software-bill-materials-
sbom-sharing-lifecycle-report

 U.S. CISA︓Minimum Requirements for Vulnerability Exploitability
eXchange (VEX)（April 2023）
A document that describes the minimum requirements for a VEX document.
The document presents the items that constitute a VEX document and the
elements included in each item and defines the essential items and essential
requirements for each of them. The document regards the mandatory

https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Nov/17/2003116445/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
https://media.defense.gov/2022/Nov/17/2003116445/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
https://www.cisa.gov/resources-tools/resources/software-bill-materials-sbom-sharing-lifecycle-report
https://www.cisa.gov/resources-tools/resources/software-bill-materials-sbom-sharing-lifecycle-report

178

requirements as the minimum requirements of VEX documents.
https://www.cisa.gov/resources-tools/resources/minimum-requirements-
vulnerability-exploitability-exchange-vex

 U.S. CISA︓Types of Software Bill of Materials (SBOM)（April 2023）
A document defining the types of SBOM. This document categorizes the types
of SBOM that may be generated in each phase of the software lifecycle and
presents general SBOM generation methods, advantages, and limitations of
each type.
https://www.cisa.gov/resources-tools/resources/types-software-bill-
materials-sbom

 Netherland NCSC︓SBOM startersgids（July 2023）
A Guidance to support the introduction of SBOM in organizations. This
document outlines the basic knowledge of SBOM and VEX, as well as the
processes for organizations to create, manage, and share SBOM, and tips for
working with suppliers. In addition, it explains the typical vulnerability identifiers
and shows how to use SBOM in vulnerability management within organizations.
https://www.ncsc.nl/documenten/publicaties/2023/juli/5/sbom-startersgids

 Germany BSI ︓ Technische Richtlinie TR-03183:Cyber-Resilienz-
Anforderungen an Hersteller und Produkte（First edition: August 2023;
Revised: January 2024）
Technical Guidelines that set out the requirements for SBOM. These Guidelines
are mainly aimed at software vendors, and set out the requirements for SBOM
formats and technical requirements.
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-
Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-
Thema-sortiert/tr03183/TR-03183_node.html

 U.S. CISA︓Software Identification Ecosystem Option Analysis（October
2023）
A white paper that outlines the main requirements for achieving an ecosystem
for software identification and the specific methods for achieving them. This
document outlines the requirements for identifier availability and granularity, as
well as the methods for achieving each requirement.
https://www.cisa.gov/sites/default/files/2023-10/Software-Identification-
Ecosystem-Option-Analysis-508c.pdf

 U.S. CISA 、 NSA 、 ODNI ︓ Securing the Software Supply Chain:
Recommended Practices for Software Bill of Materials Consumption

https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom
https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom
https://www.ncsc.nl/documenten/publicaties/2023/juli/5/sbom-startersgids
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/TR-03183_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/TR-03183_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/Technische-Richtlinien/TR-nach-Thema-sortiert/tr03183/TR-03183_node.html
https://www.cisa.gov/sites/default/files/2023-10/Software-Identification-Ecosystem-Option-Analysis-508c.pdf
https://www.cisa.gov/sites/default/files/2023-10/Software-Identification-Ecosystem-Option-Analysis-508c.pdf

179

（November 2023）
Guidance on the use of SBOM to ensure security in the software supply chain.
This guidance provides principles and best practices for the use of SBOM by
software users (e.g., suppliers, developers, organizations that acquire OSS and
third-party software).
https://media.defense.gov/2023/Nov/09/2003338086/-1/-
1/0/SECURING%20THE%20SOFTWARE%20SUPPLY%20CHAIN%20RECOMME
NDED%20PRACTICES%20FOR%20SOFTWARE%20BILL%20OF%20MATERIAL
S%20CONSUMPTION.PDF

 U.S. CISA︓When to Issue VEX Information（November 2023）
This document provides examples of the organization and function that issues
VEX information (Who), and the timing at which VEX information is issued
(When). The document also provides information on VEX considerations in the
software supply chain.
https://www.cisa.gov/sites/default/files/2023-11/When-to-Issue-a-VEX-
508c.pdf

 U.S. CISA、NSA、ODNI︓Securing the Software Supply Chain:
Recommended Practices for Managing Open-Source Software and
Software Bill of Materials（December 2023）
A document that sets out recommended practices for managing OSS and
SBOM to ensure a secure software supply chain. This document sets out
recommended practices for seven themes related to the management of OSS
and SBOM.
https://media.defense.gov/2023/Dec/11/2003355557/-1/-
1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%
20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE
%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF

 U.S. NSA︓Recommendations for Software Bill of Materials (SBOM)
Management（January 2024）
A document that emphasizes best practices and provides recommendations so
that users of the National Security System (NSS) can incorporate SBOM
management functions that meet their needs for managing cybersecurity
supply chain risks. It includes recommendations for software suppliers and
users, specific SBOM management Guidelines for the NSS, and
recommendations for the functions of SBOM management tools.
https://media.defense.gov/2023/Dec/14/2003359097/-1/-1/0/CSI-SCRM-

https://media.defense.gov/2023/Nov/09/2003338086/-1/-1/0/SECURING%20THE%20SOFTWARE%20SUPPLY%20CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20SOFTWARE%20BILL%20OF%20MATERIALS%20CONSUMPTION.PDF
https://media.defense.gov/2023/Nov/09/2003338086/-1/-1/0/SECURING%20THE%20SOFTWARE%20SUPPLY%20CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20SOFTWARE%20BILL%20OF%20MATERIALS%20CONSUMPTION.PDF
https://media.defense.gov/2023/Nov/09/2003338086/-1/-1/0/SECURING%20THE%20SOFTWARE%20SUPPLY%20CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20SOFTWARE%20BILL%20OF%20MATERIALS%20CONSUMPTION.PDF
https://media.defense.gov/2023/Nov/09/2003338086/-1/-1/0/SECURING%20THE%20SOFTWARE%20SUPPLY%20CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20SOFTWARE%20BILL%20OF%20MATERIALS%20CONSUMPTION.PDF
https://www.cisa.gov/sites/default/files/2023-11/When-to-Issue-a-VEX-508c.pdf
https://www.cisa.gov/sites/default/files/2023-11/When-to-Issue-a-VEX-508c.pdf
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/11/2003355557/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN%20RECOMMENDED%20PRACTICES%20FOR%20MANAGING%20OPEN%20SOURCE%20SOFTWARE%20AND%20SOFTWARE%20BILL%20OF%20MATERIALS.PDF
https://media.defense.gov/2023/Dec/14/2003359097/-1/-1/0/CSI-SCRM-SBOM-MANAGEMENT.PDF

180

SBOM-MANAGEMENT.PDF

 U.S. CISA︓SBOM Sharing Roles and Considerations（March 2024）
A document that describes the three roles in the SBOM shared lifecycle (SBOM
author, SBOM distributor, SBOM consumer) and the factors to be considered
when working on the three phases of the shared lifecycle (Discovery, Access,
Transport).
https://www.cisa.gov/resources-tools/resources/sbom-sharing-roles-and-
considerations

 U.S. CISA︓SBOM Sharing Primer（May 2024）
This document presents several examples of how to share SBOM in the
software supply chain. Each example is classified into three levels of
sophistication (Low, Medium, and High), and companies can use these
examples to determine the level of sophistication of their own SBOM sharing
processes.
https://www.cisa.gov/resources-tools/resources/sbom-sharing-primer

 SBOM Tools

This section shows some examples of SBOM tools that contribute to the creation,
operation, and management of SBOM. Not only commercial SBOM tools but also
OSS SBOM tools are available, and each tool has its own characteristics.
Organizations implementing an SBOM should select appropriate SBOM tools based
on the purpose of SBOM introduction and the scope of SBOM application. The tools
listed in this section are only examples available for reference at the time of
preparation of this Guidance. It is to be noted that the use of any tool is not
recommended. For appropriate tool selection, it is desirable to evaluate and select
various tools existing in the market, not limited to the tools described in this section,
based on the viewpoints described in Section 4.2.

https://media.defense.gov/2023/Dec/14/2003359097/-1/-1/0/CSI-SCRM-SBOM-MANAGEMENT.PDF
https://www.cisa.gov/resources-tools/resources/sbom-sharing-roles-and-considerations
https://www.cisa.gov/resources-tools/resources/sbom-sharing-roles-and-considerations
https://www.cisa.gov/resources-tools/resources/sbom-sharing-primer

181

(1) Commercial tools
*In alphabetical order

No. Name Developer Features

1 Black Duck
Synopsys,

Inc.

 Multiple scanning approaches, including code
matching, container analysis, and binary
analysis, are available for accurate and efficient
analysis.

 For vulnerability management, it enables rapid
vulnerability detection by leveraging
vulnerability information from NVD and
proprietary sources.

 It quantifies and manages risk in terms of
security, licensing, compliance., operations,
etc.

 It provides a Japanese-language GUI.

2
Checkmarx

SCA
Checkmarx

Ltd.

 Hosting many repositories on GitHub allows
automatic tracking of OSS in use.

 For vulnerability management, it detects
vulnerable OSS packages in the source code
and provides remedies.

 It visualizes OSS license risks and enables
effective license management.

3 Cybellum
Cybellum
Technologi

es Ltd.

 Regarding vulnerability management, it
automatically detects vulnerabilities in the
target software products and provides the
priority order for addressing the detected
vulnerabilities and mitigation measures.

 It continuously monitors software products and
can detect vulnerabilities in software update
programs and new versions of components.

 By importing and centrally managing multiple
SBOM, it is possible to integrate the SBOM
operation process within an organization.

182

No. Name Developer Features

4
Finite State

Platform
Finite

State, Inc.

 It provides an integrated management platform
for SBOM and vulnerabilities.

 It supports the architecture of various
embedded devices and is able to generate SBOM
by visualizing components from binaries and
firmware.

 It allows for centralized management of
vulnerabilities by importing the results of
diagnostics from over 150 other companies'
tools.

 It allows for triage of vulnerabilities with high
urgency, such as attack occurrence status, and
determination of response priority.

 It has multiple delivery services, such as SaaS,
private cloud, and on-premises.

5 FOSSA
FOSSA,

Inc.

 It detects vulnerabilities and continuously
monitors risk while providing necessary
solutions for effective vulnerability
management.

 It facilitates compliance. and license
management with high-quality policy features,
powerful scanning, and flexible reporting.

 It automates and streamlines SBOM
management in Agile and DevOps processes
through integration with development
environments.

 It has multiple report formats, including SPDX,
and the ability to import multiple SBOM
formats for vulnerability management.

183

No. Name Developer Features

6 FossID FossID AB

 It detects not only components, packages, and
libraries, but also snippets of OSS.

 It detects vulnerable software by analysis
based on snippet-level information, rather than
by component- and version-based analysis.

 It generates and manages SBOM in SPDX
format, including license, copyright,
vulnerability, etc. information.

 It visualizes the risk of license violations for a
wide range of OSS, including strong/weak
copyleft and non-commercial licenses with
respect to license management.

7
Insignary

Clarity
Insignary,

Inc.

 It analyzes binary files to identify
encompassing components (no source code or
reverse engineering required).

 It analyzes binary files using patterns, making
it independent of the build environment.

 It is applicable to cloud and on-premises
software.

 It can be easily deployed due to the cloud-type
solution.

8 MEND SCA
WhiteSourc
e Software,

Inc.

 It detects OSS libraries and frameworks used in
cloud services, desktop applications, embedded
software, etc. without false negatives.

 In vulnerability management, it issues an alert
immediately when a vulnerability occurs, using
its own vulnerability database, which is always
kept up to date. Also, it provides impact and
severity scores and detailed information about
how to resolve them.

 In license management, it integrates this tool
into the development environment of the
target software, such as IDEs and package
managers, to enable developers to
automatically identify OSS license information
each time they add a new OSS component.

184

No. Name Developer Features

9 MergeBase
MergeBase
Software

Inc.

 It integrated software supply chain security
solution for creating and managing SBOM.

 It scans codes and binaries to create SBOM that
include vulnerability information, license
information, age information, and transitive
dependency information.

 It reduces the effort required to fix code by
reducing vulnerability-related risks and
proposing improvement methods.

 It integrates with JVN to enable vulnerability
analysis and management.

 It partners with domestic partner companies to
provide Japanese-language documentation and
technical support in Japanese.

10
Revenera

SCA

Flexera
Software

LLC

 It enables the creation of accurate SBOM, by
not only analyzing source code, binaries, and
other software analysis, but also by collating
proprietary OSS knowledge databases and
third-party SBOM data.

 It enables effective vulnerability management
by utilizing multiple sources such as NVD and
our own vulnerability database (Secunia
Research).

11 Snyk Snyk, Ltd.

 It can be integrated into existing IDEs,
repositories, and workflows.

 It uses advanced security intelligence to
monitor vulnerabilities during targeted
software development.

 It provides practical remediation advice on
vulnerabilities and other issues related to
vulnerability management.

185

No. Name Developer Features

12
Sonatype
Lifecycle

Sonatype,
Inc.

 Available by integrating the tool into the
development environment of the target
software, such as an IDE or source code
control system.

 In vulnerability management, it issues alerts
quickly by continuously monitoring for
vulnerabilities in software and components and
the risk level of vulnerabilities.

13
Veracode

SCA
Veracode,

Inc.

 It enables the creation of an SBOM in
CycloneDX format as a list of OSS components.

 In vulnerability management, it provides
information about vulnerabilities detected and
how to address them, as well as prioritization
of vulnerabilities to be addressed.

 In license management, it detects OSS license
violation risks and manages license
compliance.

14 yamory
Assured,

Inc.

 It detects and manages software vulnerabilities
used in the target IT systems.

 In vulnerability management, it automatically
determines the priority of vulnerabilities with
the auto-triage function. In addition, updates
the vulnerability database daily, enabling early
detection of urgent vulnerabilities.

 In license management, it visualizes the risk of
OSS license violations.

(2) OSS tools

*In alphabetical order

No. Name Developer Features

1 Augur CHAOSS

 It collects data on software repositories and
normalizes them into a data model.

 It collects data on OSS projects from many
sources.

186

No. Name Developer Features

2
BOM

Doctor
Sonatype,

Inc.

 It generates SBOM by specifying a project URL
or package URL on GitHub.

 It visualizes generated SBOM on a tree
including dependencies of components (it is
also possible to visualize SBOM by uploading an
existing SBOM in CycloneDX format).

 It performs scoring of target software by
evaluating whether it uses non-fragile
components, violates licenses, etc.

3 Checkov
Bridgecrew,

Inc.

 It is a static code analysis tool for IaC and can
be used also as an SBOM tool for images and
OSS packages.

 The scan results can be displayed in CLI,
CycloneDX, JSON, JUnit XML, CSV, SARIF, and
Markdown formats.

4
Daggerbo

ard

NewYork-
Presbyterian

Hospital

 It provides a dashboard to view and manage
SBOM and related vulnerabilities immediately
and can import SPDX or CycloneDX files for
vulnerability detection.

5
Depende
ncy-Track

OWASP
Foundation

 It can identify and manage known
vulnerabilities in third-party and open-source
components, by leveraging multiple sources
such as NVD, GitHub Advisories, etc.

 It allows the identification of license
information for software components.

 API-first design allows easy integration with
other systems.

6
FOSSolog

y
Linux

Foundation

 It cannot identify the name and version of the
OSS, but it can detect and managing the
licenses and copyrights of the components
included in the target software.

 It allows import and analysis using a Web UI.

187

No. Name Developer Features

7 in-toto
Linux

Foundation

 It provides a framework for protecting the
integrity of the software supply chain by
ensuring that software has not been tampered
with during distribution within the supply
chain.

8 mjcheck4

Information-
technology
Promotion
Agency,
Japan
(IPA)

 By utilizing our own vulnerability database, it
provides information on vulnerabilities and
vulnerability countermeasures contained in
software products.

 It supports SBOM import/export.

9

OSS
Review
Toolkit
(ORT)

Linux
Foundation

 It allows SBOM creation without the need to
modify existing project source code, such as
applying build system plug-ins.

 It allows evaluation of software licenses in use,
based on customizable policy rules and license
classifications.

10
OSV-

Scanner
Google

 It can import SBOM written in CycloneDX or
SPDX format.

 By utilizing own vulnerability database, it can
provide vulnerability information for each
component of the SBOM.

11
SBOM
Tool

Microsoft
Corporation

 It integrates with various package
management systems such as NPM, NuGet,
PyPI, etc. to automatically detect and create
SBOM in SPDX format.

 It runs on Windows, Linux, and macOS
platforms.

12
ScanCode

.io
nexB, Inc.

 It scripts and automates the process of
Software Configuration Analysis (SCA).

 It identifies OSS components and their license
information in an application's code base.

188

No. Name Developer Features

13
Scancode

Toolkit
nexB, Inc.

 A standalone command line tool, easy to
install, run, and integrate into the CI/CD
processing pipeline.

 It allows the saving of scan results in JSON,
HTML, CSV, SPDX, and proprietary formats.

 In license management, it allows users to
identify and manage license information for
OSS components by using their own extensible
discovery rules.

14 SW360
Eclipse

Foundation

 It identifies and manages security vulnerability
information for software components.

 It identifies and manages license information
for software components.

15 SwiftBOM

CERT
Coordination

Center
(CERT/CC)

 It allows manual input for SBOM generation.
 It imports previously created SBOM and

displays SBOM in a tree-like view.

16
Syft &
Grype

Anchore
Enterprise

 It seamlessly integrates SBOM generation by
Syft and vulnerability detection by Grype.

 It converts SBOM information between SBOM
formats such as CycloneDX, SPDX, and Syft's
own format.

 It detects and manages major vulnerabilities in
OS packages and language packages.

17 Trivy

Aqua
Security

Software,
Ltd.

 It detects and manages various security issues
such as known vulnerabilities, IaC
misconfigurations, etc.

 It scans various targets such as container
images, file systems, etc.

189

 SBOM data formats

The SBOM “Minimum Elements” include a category of “Automation Support”, which
considers support for automation in the automatic generation, readability of SBOM,
etc. As specific data formats, three formats—SPDX, CycloneDX, and Software
Identification Tags (SWID tags)—have been discussed internationally. In addition
to these three formats, the following section outlines SPDX Lite, a format
developed by Japan based on SPDX. The SBOM data format is a standard for
exchanging SBOM across organizations. The selection of the data format and the
data fields to be included in an SBOM should be decided upon agreement between
the SBOM user and the supplier.

(1) SPDX
SPDX was developed by a project under the Linux Foundation and recognized as
an international standard for the SBOM format in September 2021 as an ISO/IEC
5962:2021 standard. The detailed specification of SPDX is available on the website,
55 and the project continues to study and update it. In April 2024, a new version,
SPDX v3.0, was announced. In SPDX v3.0, the focus is on security licenses, AI,
datasets, and software construction processes to accommodate more common
SBOM generation and usage use cases.

In the following, as an overview of the SPDX v2.3.0, the format structure,
examples, and purposes of use of the format, and features of the format are
described.

1) Format configuration
SBOM in the SPDX format contain information about components created
according to the SPDX Specification, license, and copyright. Tag:Value(txt), RDF56,
XLS, JSON57 , YAML58 , and XML59 formats are supported. Sections and items

55 https://spdx.GitHub.io/spdx-spec/v2.3/
56 As a method of analyzing RDF format files, it is known, for example, to utilize the SPARQL
language to search and manipulate data described in the file.
57 As a method of analyzing a json format file, for example, it is known to utilize the jq
command to obtain necessary information from the file.
58 By using tools that support YAML format files, such as Visual Studio Code and IntelliJ IDEA, it
is easy to view and analyze files.
59 As a method of analyzing xml format files, for example, it is known to utilize the xmllint
command to obtain the necessary information from the file.

https://spdx.github.io/spdx-spec/v2.3/

190

classified into each section are specified as contents to be included in an SBOM
document. A summary of each section is given below. Only the section “Creation
Information” is defined as mandatory. Other sections that are not mandatory are
used when the SBOM document author judges that they should be included in the
SBOM. In addition, the items defined in each section that must be included if the
relevant section is used are also defined.

 Creation Information [Mandatory section]:
A section where the supplier provides the SBOM document and presents the
information (e.g., SPDX version, SBOM data license, and author) necessary
for the user to use the SBOM document. This section needs to be included
in every SBOM document with SPDX.

 Package Information:
A section in the SBOM that presents information necessary to group products,
containers, components, etc.

 File Information:
A section that presents information (name, checksum, license, copyright,
etc.) about the files of a product, container, components, etc.

 Snippet Information:
A section that is used when a file is generated from another resource. This
section is useful to indicate that part of a file has been copied from another
file.

 Other Licensing Information:
SPDX defines a license list called SPDX License List to show licenses for file
information. In the “Package Information”, “File Information”, and “Snippet
Information” sections, the license information for the package, file, or
snippet to be described is selected from the SPDX license list. However, the
SPDX License List does not cover all licenses for packages, files, and snippets.
Therefore, it is possible to present license information other than the SPDX
License List (such as restrictions by proprietary software) in this section.

 Relationships:
A section that presents the relationships between files and packages such as
products, containers, and components in the SBOM.

 Annotations:
A section that is used to review the SBOM and share the information obtained
from the review with others. In addition, this section can be used by SBOM

191

document authors who wish to store information in an SBOM that does not
apply to the other sections or items mentioned above.

2) Examples and purposes of use
The following examples and purposes of use are expected regarding the SPDX:

 Describing relationships between system components,

 Managing intellectual property (licenses, copyrights) of software
components,

 Performing a risk assessment of the software supply chain and validating
components,

 Creating an inventory of software components, container content, etc.,

 Tracking executables back to individual source files and source snippets,

 Identifying lines of code embedded in files, and

 Associating CPE, SWHID (SoftWare Heritage persistent IDentifiers), and
package URLs, which are formats for uniquely identifying software, with
specific packages to facilitate additional security analysis.

3) Data format features
The SPDX has the following features:

 Ability to extend beyond snippets and files to include packages, containers,
and OS distributions, as software for which SBOM are created,

 Ability to verify whether SBOM data has been tampered with in deliverables
created as SBOM documents, by using the provided hash value,

 Having an extensive list of intellectual property and license information
(SPDX license),

 Ability to integrate with other package reference systems and security
systems, and

 Ability to logically partition documents related to complex systems and
manage them in sections or items of the SBOM document.

192

(2) SPDX Lite
SPDX Lite is a format developed by the OpenChain Japan Work Group (WG) license
information subgroup, which is mainly active for Japanese companies in the
OpenChain Project, a project under the umbrella of the Linux Foundation. SPDX
Lite is included in part of the ISO/IEC 5962:2021 standard for SPDX and is defined
as being included in SPDX. The detailed specifications of SPDX Lite are published
on the website60 as part of the SPDX v2.3.0 specifications. The following presents,
as an overview of the SPDX Lite, the structure of the format and specific items,
usage examples and purposes of the format, and the characteristics of the format.

1) Format configuration and specific items
An SBOM in SPDX Lite format contains information such as components, licenses,
and copyrights, and supports Tag-Value (txt), RDF, XLS, JSON, YAML, and XML
formats. The content to be included in an SBOM document consists of the
mandatory items and other basic information classified into the “Creation
Information” and “Package Information” sections in SPDX described above. The
items required for SPDX Lite are as follows:

Table 10-2 Relationship between SPDX Lite items and SPDX
Section name in SPDX Item name in SPDX-Lit

Creation Information

SPDX Version
Data License

SPDX Identifier
Document Name

SPDX Document Namespace
Author
Created

Package Information

Package Name
Package SPDX Identifier

Package Version
Package File Name
Package Supplier

Package Download Location
Files Analyzed

60 https://spdx.GitHub.io/spdx-spec/v2.3/SPDX-Lite/

https://spdx.github.io/spdx-spec/v2.3/SPDX-Lite/

193

Section name in SPDX Item name in SPDX-Lit
Package Home Page
Concluded License
Declared License

Comments on License
Copyright Text

Package Comment
External Reference field

Other Licensing
Information

License Identifier
Extracted Text
License Name

License Comment

2) Examples and purposes of use
The following examples and purposes of use are expected regarding the SPDX

Lite:

 Manually managing only, the mandatory fields that are classified in the SPDX
section of the “Creation Information” and “Package Information” and

 Creating SBOM that are not at the level of SPDX but rather correspond to
the minimum required fields in the automotive industry and consumer
electronics industry with an emphasis on usability.

3) Data format features
SPDX Lite has the following features:

 Ability to manage SBOM with a focus on operability, as it contains only the
minimum required items compared to SPDX,

 High SBOM tool compatibility with SPDX, as it contains mandatory fields that
fall under the “Document Information” and “Package Information” sections
of SPDX, and

 Ability to manually create SBOM documents in SPDX Lite format without the
need for specialized tools.

(3) CycloneDX
CycloneDX was developed by a project of the OWASP community with the goal of

194

developing a fully automated, security specific SBOM format standard. The detailed
specifications of the CycloneDX are available on the web site61 and are being
maintained and updated by the core working group of the OWASP community. A
new version, CycloneDX 1.6, was released in April 2024.

As an overview of the CycloneDX v1.5, the following provides the structure of the
format, examples of use and purpose of the format, and features of the format.

1) Format configuration
SBOM in the CycloneDX format contain information about components, and
licenses, copyrights. The JSON, XML, and Protocol Buffers (protobuf) formats are
supported. An SBOM document must include object models and fields that are
classified into each object model. An overview of each object model is shown below.
In addition, the items specified in each object model that must be included when
the relevant model is used are also defined. Although not classified as an object
model, the SBOM document must be in the CycloneDX format and must include an
item for the CycloneDX version and the SBOM document version.

 SBOM Metadata︓
An object model that presents information about the supplier, the developer,
the scope of the software covered by the SBOM document, the tools used to
create the SBOM document, etc.

 Components︓
An object model that presents an inventory of first and third-party software
components. This object model can include information about software
components, including type, ID, license, copyright, cryptographic hash
function, provenance, history, and changes made. In addition, this object
model can represent a combination of components, and a combined
component can have various information as a single component.
Furthermore, it is possible to apply a digital signature to components and
combined components.

 Services:
An object model that presents information about external APIs that may be
invoked by the software covered by the SBOM document. This object model
can include information such as the endpoint URI of the external API,
authentication requirements, trust boundaries with the external API, and

61 https://cyclonedx.org/docs/1.4/json/

https://cyclonedx.org/docs/1.4/json/

195

data flow and classification between services. Furthermore, it is possible to
apply digital signatures to services.

 Dependencies:
An object model that presents dependencies between components and other
components. It can represent not only components among components but
also components that depend on services and services that depend on
services. Dependencies can also represent transitive dependencies.

 Compositions:
An object model that presents each component (including components,
services, and dependencies) and the completeness of the component within
the SBOM. The aggregate of each composition can be described as
“complete”, “incomplete”, “incomplete first party only”, “incomplete third-
party only”, or “unknown”. With this object model, it is possible to understand
how complete the created SBOM is and whether there are components in
the SBOM where completeness is unknown.

 Vulnerabilities:
An object model that presents known vulnerabilities and their exploitability
in third-party software and OSS is included in the SBOM. It can also present
unknown vulnerabilities affecting components and services and can be used
as a security advisory for VEX, etc.

 Extensions︓
An object model that enables experimentation of new functions in CycloneDX
and support for specialized and future use cases. the CycloneDX project
encourages community participation and development targeting extensions
for specialized and industry-specific use cases.

2) Examples and purposes of use
The following examples and purposes of use are expected regarding the

CycloneDX:

 Describing the components of a system and the relationships between
components,

 Managing intellectual property (licenses, copyrights) for software
components,

 Performing a risk assessment of the software supply chain and validating

196

components,

 Creating an inventory of software components, container content, etc.,

 Tracking executables back to source files and source snippets,

 Identifying the source of code embedded in files,

 Associating formats for uniquely identifying software (such as CPE, SWID,
package URL) with specific packages, thus facilitating additional security
analysis,

 Validating the integrity of signed or combined components and the SBOM,
and

 Using as a convenient format for creating and distributing software when
building software and as a binary format for M2M (machine-to-machine).

3) Data format features
The CycloneDX has the following features:

 An SBOM format with security management in mind, allowing the imputing
of information about known vulnerabilities and their exploitability,

 A security related SBOM format for various types of software, including
applications, components, services, firmware, and devices, used in a wide
range of industries and suitable for commercial use,

 A format consisting of a structured object model, which enables one to easily
learn and implement,

 Achieving automation when integrated with many development ecosystems,
and

 Extensible specifications allow a rapid trial of new functions to meet
organizational and industry-specific requirements.

(4) SWID Tag
Software Identification (SWID) Tags were designed to provide a transparent way
for organizations to track the software installed on their managed devices. It was
defined by ISO in 2012 and updated as ISO/IEC 19770-2:201523 in 2015. As part
of the software installation process along the software lifecycle, when software is
installed on a device, information about the installed software called a tag, is

197

attached to the device, and when the software is uninstalled, the tag is removed.
The following provides an overview of SWID tags, including the format
configuration, examples, and purposes of use of the format, and the format
features.

1) Format configuration
An SBOM in the SWID tag format describes information such as software installed
in the device created according to the SWID tag and patches applied to the
software and supports the XML format. A SWID tag defines a tag that indicates
information about software installed on a device to understand the life cycle of the
target device. An overview of each tag is shown below. Each tag can present
information such as the tag creator, the software installed on the device, and the
dependencies by linking to other software, and can be used as an SBOM of the
target device.

 Primary Tag:
A tag that identifies and presents the software installed on the target device.

 Patch Tag:
A tag that identifies and presents patches that have been applied to the
software installed on the target device, e.g., by updating the software.

 Corpus Tag:
A tag that identifies and describes software installed on the target device.
This tag is used to represent software metadata such as software installation
packages, installers, software updates, and patches.

 Supplemental Tag:
A tag that is used to add additional information to the above tags. This tag
is used by device users and software management tools to add optional
information.

2) Examples and purposes of use
The following examples and purposes of use are expected regarding the SWID

tag:

 Creating SBOM with software installed on devices managed by the
organization as a component,

 Continuously tracking software installed on devices,

 Identifying vulnerable software on endpoints,

198

 Ensuring whether the software installed on devices is properly patched,

 Preventing the installation of unauthorized or corrupted software,

 Preventing corrupted software from running, and

 Managing user rights and access rights for managed devices.

3) Data format features
The SWID tag has the following features:

 Updating information about each tag as it moves through the software
lifecycle, so that information about software IDs created at build time can
be accurately assigned to the tag and provided,

 Standardizing software information that can be exchanged between
suppliers and users during software installation, and

 Enabling association of software-related information, such as relevant
patches and updates, configuration settings, security policies, and
vulnerability and threat advisories.

	1. Background and objectives
	1.1. Background
	1.2. Objectives
	1.3. Main target readers
	1.4. Main target software
	1.5. How to use
	1.6. Summary of this Guidance

	2. Overview of SBOM
	2.1. What is SBOM?
	2.2. Benefits of SBOM
	2.3. “Minimum Elements” of SBOM
	2.4. SBOM formats (Examples)
	(1) SPDX
	(2) CycloneDX
	(3) SWID tag（Software Identification tag）

	2.5. Myths and facts

	3. Basic guidance and overall view on SBOM introduction
	3.1. Basic guidance for SBOM introduction
	3.2. SBOM introduction process

	4. Environment and system development phase
	4.1. Clarification the scope of the SBOM application
	4.2. SBOM tools selection
	4.3. SBOM tools installation
	4.4. Learning about SBOM tools

	5. SBOM production and sharing phase
	5.1. Component analysis
	5.2. SBOM production
	5.3. SBOM sharing

	6. SBOM use and management phase
	6.1. Vulnerability management, license management, etc.
	6.2. SBOM information management

	7. Specification of Vulnerability Management Process
	7.1. Purpose
	7.2. Challenges and issues in vulnerability management
	7.3. Overview of the entire process
	7.4. Procedures and methods for each phase
	7.4.1. Vulnerability Identification Phase
	(1) Selection of a matching method category
	(2) Identification of available SBOM data
	(3) Selection of target vulnerability database
	(4) Selection or design of a matching method

	7.4.2. Vulnerability Response Prioritization Phase
	(1) Vulnerability filtering
	(2) Selection and acquisition of prioritization information
	(3) Category determination based on prioritization decision tree
	(4) Priority score evaluation

	7.4.3. Information Sharing Phase
	7.4.4. Vulnerability Response Phase (Temporary and Fundamental Responses)

	8. Appendix: SBOM Compliance Model
	8.1. Purpose and background
	8.1.1. Purpose
	8.1.2. Awareness of issues
	8.1.3. Target readers
	8.1.4. Structure of this chapter

	8.2. SBOM visualization framework and Compliance Model
	8.2.1. What is the SBOM Compliance Model?
	8.2.2. Basic concepts and expected benefits
	8.2.3. SBOM visualization framework
	(1) Structure of the visualization framework
	(2) Options for SBOM compliance items
	1) Extraction from key literature on SBOM
	2) Information extraction from domestic and international empirical results related to SBOM.
	3) Organization of SBOM compliance Item Options (draft)
	4) Empirical evidence for SBOM by field
	5) Feedback from the METI Software Task Force (2022, 7th to 9th Task Forces)
	6) Development of SBOM compliance item options (draft)

	(3) Visualization of scope of SBOM compliance

	8.3. SBOM Compliance Model and utilization methods
	8.3.1. Positioning of the SBOM Compliance Model
	8.3.2. Utilization methods

	8.4. Reference example of SBOM Compliance Model (Automotive Sector)
	8.4.1. Overview of legal frameworks and standards
	8.4.2. Proposed SBOM Compliance Model (Draft) based on the PoC
	8.4.3. Utilization methods and considerations

	8.5. Reference example of SBOM Compliance Model (Software Product Sector)
	8.5.1. Overview of preconditions
	8.5.2. Proposed SBOM Compliance Model (Draft) based on the PoC
	8.5.3. Utilization methods and considerations

	8.6. Reference example of SBOM Compliance Model (Medical Device Sector)
	8.6.1. Overview of legal framework and standards
	8.6.2. Proposed SBOM Compliance Model (Draft) based on the PoC
	8.6.3. Utilization methods and considerations

	8.7. Cross-sector comparison of the SBOM Compliance Models (Draft)

	9. Appendix: SBOM Contract Model
	9.1. Background and purpose (problem awareness)
	9.2. Overview
	9.2.1. What is the SBOM Contract Model?
	9.2.2. Target readers
	9.2.3. Structure of this chapter

	9.3. Concept of the Contract Model
	9.4. SBOM Contract Model
	9.4.1. Structure of the model
	9.4.2. Key provisions to be specified in the commissioning contract (Draft)

	9.5. Relationship and positioning of the SBOM Compliance Model and the SBOM Contract Model
	9.6. Relationship with existing model contracts
	9.7. Utilization patterns
	9.8. Challenges and future directions for consideration

	10. Appendix
	10.1. Checklist of actions for the introduction of SBOM
	10.2. Glossary
	10.2.1. Terms related to SBOM and software
	10.2.2. Other terms

	10.3. Reference information
	10.3.1. Reference documents for SBOM
	10.3.2. SBOM Tools
	(1) Commercial tools
	(2) OSS tools

	10.3.3. SBOM data formats
	(1) SPDX
	1) Format configuration
	2) Examples and purposes of use
	3) Data format features

	(2) SPDX Lite
	1) Format configuration and specific items
	2) Examples and purposes of use
	3) Data format features

	(3) CycloneDX
	1) Format configuration
	2) Examples and purposes of use
	3) Data format features

	(4) SWID Tag
	1) Format configuration
	2) Examples and purposes of use
	3) Data format features

