令和元年度エネルギー需給構造高度化対策に関する調査等委託事業

エネルギー・レジリエンスに関する調査・分析

最終報告書

2020年3月

一般財団法人日本エネルギー経済研究所
はじめに

我が国は、他国に例をみない様々な災害の経験を有し、特に2018年には、我が国は数多くの台風や地震の被害に見舞われ、エネルギーインフラについてもその被害を受けたことで、停電等により一時的にエネルギー供給が途絶された地域もあった。こうした中で、2018年秋には総理指示によるインフラ総点検が国内で行われ、電力等のエネルギー供給インフラについても、国民経済・生活を支える重要インフラとして位置づけられ、総合資源エネルギー調査会においても電力、ガス、石油の供給システムの強靭化（レジリエンス）に向けた議論が行われ、エネルギー供給インフラの重要性及び災害時にもその機能を維持できる体制について検討をかさねてきており、我が国は、エネルギー・レジリエンスに関する多くの知見を有する。他方、気候変動等による影響も背景として、世界的にも自然災害の発生件数が増加するのに伴い、自然災害による経済損失額も増加しているところ、国際的にもレジリエンス向上の重要性について関心が高まっている。

2015年12月には、アジア太平洋経済協力（Asia Pacific Economic Cooperation、以下APEC）の作業部会の一つであるEnergy Working Group（以下、EWG）のもとに、Energy Resilience Task Force（以下、ERTF）が立ち上げられ、メンバー国・地域による活発な議論がなされているところであり、また、2015年3月には、仙台で開催された第3回国連防災世界会議において仙台防災協力イニシアチブが打ち出され、各国からも注目を集めている。

このように、国際的にもレジリエンスの向上が求められる中で、我が国のエネルギー・レジリエンスに関する知見を世界に共有し、世界をリードしていくことで、我が国のエネルギー安定供給の確保につなげていくとともに、SDGsゴール9（産業と技術革新の基盤を作る：強靭なインフラを整備し、包摂的で持続可能な産業化を推進するとともに、技術革新の拡大を図る）及び11（住み続けられるまちづくり：都市と人間の居住地を包摂的、安全、強靭かつ持続可能にする）の目標を実現し、世界の持続的な成長の実現にも寄与することを目指す。

本事業においては、我が国のエネルギー・レジリエンスに関する知見を世界に共有していくために、世界各国のエネルギー・レジリエンスにかかる議論の状況を整理するとともに我が国における知見を整理し、国際的に共通するエネルギー・レジリエンスの論点・考え方の整理を行うことを目的として実施した。

本報告書の第1章では、エネルギー・レジリエンスに関連する国際的議論の動向について、APECでの動きを含めて整理を行っている。続く第2章では、APEC主要国及びインドのエネルギー政策におけるレジリエンス対策の位置づけと、具体的なエネルギーインフラ強靭化のための施策について整理している。第3章では、エネルギー・レジリエンスの定量評価の取組みについて、先行している米国における動向を、公表されているレポート類を中心に整理している。第4章では、「エネルギー・レジリエンスの定量評価に向けた
専門家委員会」の議論の概要と今後の検討に向けた論点について整理を行っている。そして第5章では、エネルギー・レジリエンスの取り組みを国際的に展開する手段としてのISOにおける国際標準化活用の可能性について整理した。

本報告書の取り纏め内容が、日本の国際的なエネルギー・レジリエンスの向上に向けた働きかけの一助となれば幸いである。

2020年3月
（一財）日本エネルギー経済研究所
目次

はじめに ... 1
図表目次 ... 4
1. エネルギー・レジリエンスをめぐる議論の動向 .. 5
 1.1 国連による防災に向けた取り組み .. 5
 1.2 APEC でのエネルギー・レジリエンスに関連した議論 7
 1.3 APEC/ERTF 会合の概要 .. 8
2. APEC 主要国等におけるエネルギー・レジリエンス向上の取り組み 18
 2.1 インドネシア .. 18
 2.2 マレーシア .. 23
 2.3 フィリピン ... 26
 2.4 タイ .. 31
 2.5 オーストラリア .. 35
 2.6 ニュージーランド .. 40
 2.7 アメリカ .. 45
 2.8 インド .. 50
 2.9 各国の取組の共通点・相違点 .. 53
3. レジリエンスの定量評価の取組み例 ... 54
 3.1 レジリエンスの定量評価に関する文献レビュー ... 54
 3.2 レジリエンスのフェーズに注目した評価指標 ... 56
 3.3 米国規格協会によるレジリエンス・マネジメント規格 59
 3.4 実績ベースの電力レジリエンス指標 .. 61
 3.5 日本の分析事例 ... 63
 3.5 小括 ... 65
4. エネルギー・レジリエンスの定量評価に向けた専門家委員会 66
 4.1 専門家委員会の実施目的 .. 66
 4.2 専門家委員会の実施 ... 67
 4.3 専門家委員会における議論の概要と論点整理 ... 67
5. エネルギー・レジリエンスの国際標準化 .. 75
 5.1 エネルギー・レジリエンスに関する国際標準化の目的 ... 75
 5.2 国際標準の機能 ... 75
 5.3 国際標準開発に向けた取り組みオプションと留意点 ... 79
図表目次

図表 1 インドネシアの緊急時対応体制...22
図表 2 エネルギー省組織図 ...29
図表 3 エネルギー・レジリエンス対策の責任体制（タイ）34
図表 4 エネルギー・レジリエンス対策の責任体制（豪州）40
図表 5 レジリエントな国家モデル ..42
図表 6 Energy Sector-Specific Plan における石油・天然ガス及び電力部門のリスク
..46
図表 7 国土安全保障省の組織図 ..49
図表 8 レジリエンスの構成要素 ..55
図表 9 電力供給システムのレジリエンスの構成要素（例）56
図表 10 RMI におけるレジリエンスの構成要素の分類58
図表 11 被害類型とレジリエンス指標の例 ...62
図表 12 レジリエンスのタクソノミ ...65
1. エネルギー・レジリエンスをめぐる議論の動向

1.1 国連による防災に向けた取り組み

APECをはじめとする国や地域でのエネルギー・レジリエンスに関連した検討に先立って、国際社会では国連を中心として防災に対する取り組みの重要性とその強化に向けた活動が進められていた。

1.1.1 国連による防災に向けた取り組みの流れ

まずは1971年に、自然災害の被災地支援・復興援助と防災・減災について、国連に「国連災害救済調整官事務所(UNDRO)」が設置された。この事務所が所管したのは、地震や干ばつなど、当時顕在化しつつあった世界各地の大規模な自然災害による被害への救援活動の実施であった。

その後、1987年に開催された第42回国連総会において、1990年を「国際防災の10年：IDNDR(Interational Decade for Natural Disaster Reduction)」とし、国際社会が自然災害の軽減のため国際協調に努めることとする決議(日本は共同提案国)が採択され、国連主導による国際的な防災に向けた活動が活発になっていく。決議後に設置された専門家会議の第44回会合が1989年4月に東京で開催され、全世界に向けた「国際防災の10年」への積極参加の呼び掛けを含んだ「東京宣言」が採択された。そして、宣言の中間年に当たる1994年に、横浜市において第1回の国連防災世界会議(WCDRR)が開催された。

1.1.2 第1回WCDRR会議(横浜)とその後の関連する動向

第1回国連防災世界会議では、自然災害の防止とその備え、減災に関するガイドライン「より安全な世界に向けての横浜戦略」が採択された(以降は10年毎に行動計画を継承し、各期間の中間年に国連防災会議を開催する流れとなっている)。横浜会議後の2002年に開催された国連持続可能な開発に関する世界首脳会議(ヤネスブルックサミット)では、持続可能な開発のための地球規模の課題を整理した「ヤネスブルック実施計画」が採択されたが、ここでは多くの防災問題について言及している。また、2003年に開催された第3回世界水フォーラム及び同関係連国際会議の「閣僚宣言」は、水問題における防災の取組みの必要性に言及している。そして、同年に開催された国連総会において、国連防災世界会議開催に関する決議が採択され、①横浜戦略のレビュー作業を完了する、②ヤネスブルック実施計画の防災及びリスク管理に関する条項を実施するための手段を特定する、③防災に関する各国の知見を共有する、④防災に関する意識向上と防災政策を実施促進する、という課題の検討のために第2回WCDRRが開催されることになった。

1 外務省資料 https://www.mofa.go.jp/mofaj/gaiko/kankyo/kikan/wcdr_keii.html：2020年3月アクセス
第2回WCDRR会議（神戸）
第2回のWCDRRは、阪神淡路大震災から10年を経過した神戸において開催された（インド洋の津波災害から1ヶ月後）。168の各国代表により行動枠組みが採択され、防災を政治課題と国家政策の中心に据えるよう各国に呼びかけた。「兵庫行動枠組：2005－2015（Hyogo Framework of Action: 2005－2015）」は、災害に見舞われやすい国々がリスクに取り組み、防災に多くの投資を行う能力を強化することを目指している。また、行動枠組みとともに防災会議で採択された宣言では、「防災の文化と災害への抵抗力」をあらゆるレベルで育成しなければならない、などの提言を行い、防災、持続可能な開発、貧困削減は全て関連しているとの認識を示していることが特徴である。

第3回WCDRR会議（仙台）
続く2015年に開催された第3回WCDRR会合では、「仙台防災枠組：2015-2030」が採択された。当該枠組は、国家計画と国際協力を強化することによって、災害による人命、生計、及び重要なインフラの損失を軽減するために、持続可能な開発のためのポスト2015開発戦略に7つの目標を組み込むよう国連総会に要請している。また、新たな枠組は、気候変動の緩和と適応により、持続可能な開発を促進する世界的な諸制度の一体化を主要な目標の一つとしており、同じく、経済、ガバナンス、構造、法務、社会、文化、教育、及び医療の各セクター、並びに関連する国連機関を通じて包括的にリスクに取り組むことも主な目標の一つとしてあげている。

「仙台防災枠組：2015-2030」では、以下の2030年に向けての4つの優先行動と7つのグローバルターゲットが採択されている。なお、この枠組みでは、横浜・兵庫の両枠組みの原則にも準拠したグイドライン（Guiding Principle）が設定されている。そこでは、各国が防災に一義的な責任を持つことや、国の実情に応じながらステークホルダー間で責任を共有するといった事項に加え、事前の防災投資が災害後の対応・復旧により費用対効果が高いためといった考え方が規定されていることが特徴の一つとなっている。そして本枠組みに合意した国は、この理念に基づいて、優先行動とグローバルターゲットに向けた取り組みを実施するという構造となっている。

● 4つの優先行動
 - 災害リスクの理解
 - 災害リスク管理のための災害リスクガバナンスの強化
 - レジリエンスのための災害リスク軽減への投資
 - 効果的な対応のための災害準備の強化と回復・復旧・復興に向けた「より良い復興」

● 7つのグローバルターゲット
 - 地球規模での災害者数を実質的に減らす。

2 国際連合広報センター（https://www.unic.or.jp/news_press/info/12252/）
3 国際連合広報センター（https://www.unic.or.jp/news_press/info/13083/）
- 地球規模での災害による被害を受ける人々の数を減らす。
- 地球規模での災害を直接の原因とする経済的損失を減らす。
- 重要インフラや基本的サービスの損害を、レジリエンスの開発を通じて実質的に減らす。
- 災害リスク軽減戦略を策定する国を実質的に増やす。
- 発展途上国への十分で持続可能な支援を通じた国際協力を実質的に強化する。
- 多様な災害への早期警戒システムと災害リスク情報・評価へのアクセスを実質的に増やす。

1.2 APECでのエネルギー・レジリエンスに関連した議論

1.2.1 APEC連結性ブループリント

国連での防災向けの取り組みの促進に関する検討が進む中で、APECではその後のエネルギー・レジリエンス検討につながる活動が始動していった。

2014年11月に中国・北京で開催された第22回APEC首脳会議では、前年の首脳合意を受けて、2025年までに地域における物理的、制度的、人的連携性の強化に向けた具体的行動をとることを定めた「連結性ブループリント」が採択された。アジア太平洋地域の連結性は地域経済統合及び持続的成長の基盤であり、日本は地域のインフラ開発投資を推進していく考えを表明した。採択された首脳宣言文書の附属書「2015-2025年APEC連結性ブループリント」では、物理的連結性に関して次のように述べられている。

- 投資環境の改善、APECエコノミーにおける官民パートナーシップ(PPP)やその他の手段を通じたインフラ・ファイナンスの強化、インフラプロジェクトの提案評価において重要な品質要因を考慮する包括的な査定方法の採用、インフラプロジェクトの計画・実施におけるグッド・プラクティスや人間中心の投資の適用を促進することに焦点をあてる。
- 質の高いエネルギーのインフラを開発、維持および更新し、持続可能なエネルギー安全保障の促進、およびエネルギーインフラにおける強靭性の構築に取組む。

連結性ブループリントでは、特にエネルギーインフラの開発やエネルギー安全保障の促進、そしてエネルギーインフラの強靭性を高める取り組みを、APEC加盟国間での協力関係の下で推進していく機運が高められた。また、インフラ強化といった「ハード」に加え、ファイナンスの強化という「ソフト」面での取り組みにも焦点が当てられている点は、その後のエネルギー・レジリエンスを巡る議論を行う上で、重要な論点整理となっている。

1.2.2 APECエネルギー大臣会合(2015)とエネルギー・レジリエンス議論の始動

2015年10月、フィリピン・セブ島で開催されたAPECエネルギー大臣会合は、「エネルギー・レジリエンスなAPEC地域の実現に向けて」をテーマに掲げ、成果文書として「東
アジアのエネルギー・セキュリティに関するセブ宣言（通称「セブ宣言」）を採択した。
要旨は以下のとおりである。
- エネルギー安全保障と持続可能な発展を推進する上で、エネルギー強靱性（レジリエンシ）が重要。エネルギー強靱性には、自然災害、特に異常天災や人災に対して、エネルギーインフラが耐え、適時・効率的に復旧する能力を含む。
- 「エネルギー・レジリエンスなAPEC地域」というテーマに従い、既存インフラの脆弱性評価や、インフラに関する既存の基準の評価を実施することが必要。各メンバーが、必要に応じた能力構築や情報・ベストプラクティスの共有を通じて、エネルギーインフラの頑強性を向上させることを奨励する。
- APEC地域の将来的なエネルギー需要やインフラニーズを満たす上での、民間セクターの重要性を認識。APECビジネス諮問委員会（ABAC）と協力して、重要なエネルギーインフラに対する適切な基準の採用を促す官民連携を育成することを奨励する。
- 異常気象事象に対する強靱性のみならず、ライフサイクルコストや環境影響、変化する市場環境への対応性、ビジネスの継続性を考慮に入れた、新たな「APEC質の高い電力インフラ・イニシアチブ4」を歓迎する。

セブ宣言は、①エネルギー・レジリエンス、即ちエネルギーが寸断することなく安定的に供給されることを、APEC地域経済の持続可能な発展の基盤となる、高次元の政策課題と位置付けた点、②エネルギー・レジリエンスを、エネルギー資源の安定供給確保に加えて、国内のエネルギー流通の確保、エネルギー供給途絶が起きた場合の復旧と、これに起因する経済的悪影響の軽減までを含む幅広い概念として位置付けた点で、重要といえる。

以上を受けて、APECエネルギー大臣よりエネルギー作業部会（Energy Working Group, EWG）に対して、上記テーマにおけるイニシアチブを促進し、他専門機関、専門家会合並びにタスクフォースと共同で取り組むとともに、次回のエネルギー大臣会合にて進捗を報告することが指示された。また、本大臣指示の継続的な促進のため、EWGにエネルギー・レジリエンス・タスクフォース（Energy Resilience Task Force, ERTF）を設置することが指示された。

1.3 APEC/ERTF会合の概要

1.2で述べたように、エネルギー大臣会合からの指示を受けてエネルギー・レジリエンス・タスクフォース（ERTF）が設置され、APECとしてエネルギー・レジリエンスに関
する取り組みが進められている。これまでにERTF会合は7回開催されており、各会合ではそれぞれ、次のような議論が交わされた。

1.3.1 第1回会合（2015年12月、米国・ハワイ）
(1) 共同議長国（米国）より自国のエネルギー・レジリエンスに関する取組紹介
 - 気候変動及び気象条件の変化が電力供給に及ぼす影響に関する米国エネルギー省の分析、2012年のハリケーン到来時の停電回避対策の実例、近年のエネルギー需要構造の大幅な変化が電力供給に及ぼす影響、災害の被害想定、及び復旧対策策定の手順が紹介された。加えて、エネルギー・レジリエンスに水資源を含めて考えることが必要性が指摘された。

(2) クリーンで効率的なエネルギー、及び水資源利用に関する米国の自主的取組の報告
 - 水資源の世界的分布と顕在化しつつある危機、エネルギー産業における水資源の利用状況等について紹介され、水資源とエネルギーを関連付けて検討することの重要性が指摘された。

(3) APEC各国/地域による報告

(4) 世界エネルギー会議（World Energy Council, WEC）による取組紹介
 - 資金調達の面から、強靭なエネルギーインフラの確立に向けた課題として、①エネルギーアクセスを巡る状況、②激甚災害の頻発とエネルギーインフラへの影響に関する分析、③強靭なエネルギーインフラの構築には莫大な投資が必要だが、政府のみで賄うことは不可能であり、民間投資は不可欠、等の点が指摘された。
 - これらを踏まえ、インフラ建設計画を評価するための目標と明確な指標、新規設備のための明確な基準の必要性、投資判断への環境基準の織り込みの推進、丁寧に設計されたファイナンス手法の確立、情報分断やリスク評価モデリング等の課題克服の重要性が指摘された。

(5) 今後の検討作業
 - 中国より緊急時のエネルギー供給維持に太陽光を活用するSolar Powered Emergency Shelter Solutions Projectsが提案された。

(6) その他
 - ERTFの目的やスコープ等の確認がおこなわれた。
1.3.2 第2回会合（2016年5月、オーストラリア・キャンベラ）

(1) 重点検討課題の確認
- 電力系統のレジリエンス（評価尺度を含む）とエネルギーと水利用の相互依存、インフラの強靭化（国内インフラの強靭性評価および技術的審査を含む）を重点検討課題とすることで合意された。

(2) エネルギー安全保障
- アジア太平洋エネルギー研究センター（APERC）より、エネルギー・レジリエンスが、石油・ガス供給途絶等のエネルギー安全保障を含むか否かにつき質問があり、エネルギー安全保障についてはEWG傘下のClean Fossil Energy専門家会合で扱う方が適切である点で合意が得られた。
- シンガポールからサイバーセキュリティを含めるよう提案があり（米国も同問題の重要性を指摘）、通信・対テロ作業部会との協働が望ましい旨が合意された。

(3) 情報交換のプラットホーム
- エネルギー・レジリエンスに関するベスト・プラクティスの情報交換プラットホームとして、既存のESCI Knowledge Sharing Platformが適切であるとして、台湾がKSPにエネルギー・レジリエンスを追加することを提案し、合意された。

(4) エネルギー・レジリエンスに関連する各国の状況に関する報告
- オーストラリア：自然災害や事故の多発を受けて、連邦と州政府および重要インフラの所有者・運用者の連携の枠組み（Critical Infrastructure Resilience StrategyおよびTrusted Information Sharing Network）を設置。
- シンガポール：系統のレジリエンス向上には人材確保が鍵を握るため、電気技術者の国際的な移動を重視。報告を受けてAPEC事務局は、この分野についてはBusiness Mobility Groupと協働することを提案した。
- タイ：緊急時対応計画についてIEAとの協力の下、エクササイズを実施。

(5) 各国の取組状況
- ニュージーランド：WECとBusinessNZ Energy Councilが共催した会議でエネルギー・レジリエンスの重要性が注目されたことを紹介。エネルギー・レジリエンスに関するサミットを隔年で開催する考えを表明した。
- フィリピン：系統未接続地域のエネルギー・レジリエンス向上に関するワークショップ開催が報告された。
- 中国：オフグリッドとオングリッド両方への適用を念頭に、緊急時のエネルギー供給維持に太陽光を活用するSolar Powered Emergency Shelter Solutions Projectsの
進捗が報告された。
- 日本：電力系統のベストプラクティス策定を目指す質の高い電力インフラ（Quality of Electric Power Infrastructure）計画の進捗について、Qualityを評価するための13の尺度を示すガイドライン案を作成中であることが報告された。
- APERC：石油・ガスセキュリティイニシアティブの進捗が報告された。

(6) 他機関との連携
- 米国：電力系統のレジリエンス分野で2018年にエネルギー・レジリエンス・サミットを開催することを提案。エネルギーと水の相互依存問題については、米国の資金拠出によるプロジェクトを実施する方針を表明した。
- APEC加盟国間の協力分野については、共同議長国であるフィリピンと米国が次回ERTF会合で素案を提示することで合意された。
- IEA、WECと連携・協力することが合意された。

1.3.3 第3回会合（2016年10月、ロシア・モスクワ）
(1) 各国の取組状況
- フィリピン：系統未接続地域のエネルギー・レジリエンス向上に関するワークショップを開催したことが報告された。ワークショップでは、欧州委員会、IEA、及び世界銀行により、系統未接続地域のエネルギー・レジリエンス向上のため教訓やベストプラクティスが共有された。
- 中国：Solar Powered Emergency Shelter Solutions Projectsに関する進捗アップデートが報告された。
- 日本：質の高い電力インフラ・イニシアチブ（Initiative for Enhancing the Quality of Electric Power Infrastructure）に関するワークショップ結果の報告。ガイドライン文書はEWGメンバーにより承認された。
- ニュージーランド：IEA In Depth Energy Policy Reviewによりシステムオペレーターによるデマンドレスポンスプログラムの導入や1,000MW火力発電所の2022年までの操業維持決定等の市場メカニズムの導入により同国電力システムのレジリエンシーは向上していることが示された。

(2) IEAはエネルギー・レジリエンスに関する基礎作りや関連した経験・教訓・ベストプラクティスの共有により引き続き支援することを表明した。

1.3.4 第4回会合（2017年4月、シンガポール）
(1) 共同議長国であるフィリピン・米国により、災害時のレジリエンシー向上のための自国の取組みの紹介
(2) 各国の取組状況

直近完了したエネルギー・レジリエンスに関する以下のプロジェクトにつき、各国より報告された。

- 中国：Solar Powered Emergency Shelter Solutions Projects を経て、プロトタイプのコンペを実施し、APEC の事業として拡大させるための提言をまとめる予定である旨報告された。
- 日本：APEC Initiative for Enhancing the Quality of Electric Power Infrastructure のガイドライン草案を前回ERTF第3回会合にて紹介。コメントを得て完成させたものの普及段階にあることが報告された。
- 米国：Smart Energy Technology に関するベストプラクティス、機会及び課題に関する研究成果が報告された。
- シンガポール：エネルギー部門の労働力のレジリエンシー強化に向けたワークショップ開催について報告された。

(3) 新規プロジェクトの提案

- 米国：気候変動リスクのエネルギーインフラに対する影響評価手法に関する能力育成ワークショップを提案し、参加者は同ワークショップに関するEWGからの検討要請に対して支持を表明した。

(4) 今後の取組

共同議長国から3つの重点課題についてコアメンバーを募り、以下に決定した。

- 日本：インフラ強靭化
- IEA：電力系統のレジリエンス
- 米国(・WEC)：エネルギーと水の相互依存問題

1.3.5 第5回会合（2017年11月、ニュージーランド・ウェリントン）

(1) 共同議長国のフィリピン・米国によるレジリエンシー向上のための自国取組紹介

- フィリピン：レジリエンシー向上のため、インフラの再構築のほか、エネルギー・レジリエンスの基準策定を進めている。
- 米国：インフラを所有する民間企業との協力の下、連邦エネルギー省がサイバー対策、エネルギーインフラの防護、及び送電網近代化を通じた減災対策の中心的役割
エネルギー・レジリエンスに関連する各国の状況に関する報告

- ニュージーランド：Wellington Lifelines Group がインフラの脆弱性評価等の自治体レベルの取組や 2010 年以降に起きた地震から得た教訓について報告された。

各国の取組状況

- 中国：Solar Powered Emergency Shelter Solutions Projects について、APEC の 10カ国/地域で実証を行った結果に関して 2016 年に実施した 2 件のワークショップの成果等が報告された。
- 米国：2015 年に石炭産業におけるエネルギーと水の相互依存問題について APEC8カ国/地域の政府と産業界を招いてワークショップを実施。エネルギーと水の相互依存問題はエネルギー部門全体に関わる重要課題であるとの共通認識が示された。
- シンガポール：エネルギー部門は労働者の高齢化に直面しており、エネルギー産業のイメージ改善、若手技術者のための奨学金制度の導入など若者を呼び込む努力を行っている。
- オーストラリア：インドネシア・スラウェシ島での系統未接続地域におけるエネルギー計画策定と持続可能なエネルギーアクセスに取り組んでいる。エネルギーアクセスの面からも ERTF に関連の深い課題として重視していることが報告された。

新規プロジェクトの提案

- 米国：電力分野のサイバーセキュリティ機能強化のための評価モデル (Cybersecurity Capability Maturity Model, C2M2) について報告。ERTF メンバ－の関心が高ければ、2018 年により詳細なプロジェクト紹介のための Webinar を開催する計画が報告された。
- ロシア：持続可能なエネルギー開発に向けてエネルギー孤立地域や島嶼部の地図を作成中であることが報告された。

今後の取組

4つの重点課題の進捗につき報告された。

- IEA：電力系統のレジリエンス取組を進めるべく人材・他資源の確保に向けて動いている。
- 日本：進めている APEC Initiative for Enhancing the Quality of Electric Power Infrastructure のアップデートに加え、関連するライフサイクルコスト分析に関す るワークショップについても報告された。
- 米国（・WEC）：エネルギーと水の相互依存問題について。IEA が WEO2016 で水
資源問題を取り上げたことから、IEA に対し、エネルギーと水の問題について ERTF 第6回会合で概要説明を行うよう依頼し、支持された。

- 米国：エネルギーアクセス（新規）
- EWG 議長より、エネルギーアクセスおよび女性の社会参加推進もレジリエンスと関連の深い分野であるとして APEC 非加盟国も含めた協力の重要性を指摘。エネルギーアクセスをレジリエンシーと併せ検討するよう提案され ERTF に付託。

1.3.6 第6回会合（2018年5月、中国・香港）

(1) エネルギーアクセス問題

議長より前回会合においてエネルギーアクセス問題がERTFに付託された旨を報告。加えて、以下報告がなされた。

- IEA：2017年に行われた特別報告としてエンジニアリングアクセスに関する展望を発表。世界的にエネルギーアクセス改善への政治モメンタムが高まっていることを指摘したうえで、電化の進展、再生可能電力のコスト低減、革新的なオフグリッド電力供給のビジネスモデル、省エネの進展といったトレンドを整理するとともにエネルギーアクセス問題の解決に更なる活動が必要であると指摘。
- 中国：「APEC地域におけるエネルギーアクセス強化イニシアチブ」草案を提出。地域の課題を整理したうえで、政策的対応、技術的解決策、資金面の支援、能力育成と地域間協力に関する包括的な行動指針を提案。

参加各国/地域はこの提案を歓迎した一方、既存の取組との重複を避けることや民間部門との連携の重要性などが指摘された。また共同議長国であるフィリピンはエネルギーアクセス強化に向けた民間セクター関与の必要性が協議し、会合においては草案への合意は形成されず、中国は関係する国/地域と協議のうえ次回ERTFの前に修正草案を提出するよう要請された。

(2) 2018年の優先課題であるデジタル化(スマートグリッド)の各国の取組紹介

- 米国：プエルトリコのハリケーン被害からの復旧支援のために米エネルギー省のラボが開発した系統のモデルリングツールを紹介(マイクログリッド・スマートグリッドの活用も含む)。
- フィリピン：分散型電源とマイクログリッドに重点を置いたスマートグリッドの取組を紹介。系統のレジリエンス向上に向けた課題として追加的費用に政府資金を充当できないことを指摘。
- IEA：エネルギー部門はデジタル化への対応で先行している点を強調。デジタル化による変動性再生可能電力の系統への統合支援、電気自動車からのスマート充電による系統の柔軟性向上、及びスマートドマンドレスポンスへの分散型電源の
更なる系統への統合の円滑化を評価。
- 米国：シンガポールで開催したASEANにおけるデジタル化とエネルギーのワークショップについて共有。エネルギー安定供給と価格の安定、及び持続可能性を実現しつつ増大する地域エネルギー需要を充足するのにデジタル化が寄与し得ることを指摘。

(3) 各国の取組状況
- 米国：APECのエネルギー部門のレジリエンスに関するワークショップに関するアップデートを実施。気候変動の電力システムのパフォーマンスに対する影響と自然災害および人為的災害に対するエネルギーインフラのレジリエンス向上のための施策について検討。
- オーストラリア：インドネシア・スラウェシ島での系統未接続地域における民間投資促進のためのベストプラクティス策定に向けたワークショップに関して簡潔にアップデートを実施。
- IEA：2017年6月にアジア開発銀行と共催した、気候とエネルギー・セキュリティの連関に関するワークショップのアップデートを実施。重要な結論として、資金調達および組織能力の欠如がレジリエンス向上の大きな障壁となっていること、及びエネルギーと水の相互依存問題はより甚大になっているため、持続可能なエネルギー開発には当該問題の適切なマネジメントが要求されることが共有された。

(4) 新規プロジェクトの提案
- 中国：APECにおけるクラウドを用いた複数分散型電源(Multi-Energy Microgrid)プラットホームの孤立地域の電化への適用可能性について説明。
- 米国：APECにおけるエネルギーアクセス拡大、及び環境・人間の健康の便益向上のためのエタノール利用拡大について説明(EWGの従前からの活動の継続)。

1.3.7 第7回会合（2018年11月、ペルー・リマ）
(1) 激甚災害・大規模停電の経験と対応策、及び得られた教訓の各国からの紹介
- 米国：2018年1-10月に11件と過去最大数の災害を経験(早魃、嵐、サイクロン、山火事、寒波)。自然災害に対するレジリエンシーの観点より、電力であり燃料であり、各自治体は7〜10日分の社会サービスの維持に要するエネルギーの備えが必要と指摘。
- フィリピン：2度の大型台風に見舞われ停電が起きたが5日以内に90%が復旧。電力供給計画に激甚災害発生時の影響緩和を予め織り込んでおくこと、エネルギー産業の安全文化的醸成、及び平時エネルギーの備えと有事の際の迅速な対応を計画として作成しておくことの重要性を指摘。
(2) 完了済プロジェクトの報告
- 米国：2018年7-8月にかけて能力育成に関するワークショップを実施、レジリエンスに関する事前計画の作成と水力発電に関する気候リスク評価の枠組み等を共有。

(3) 進行中プロジェクトの報告
- 米国：エネルギーアクセス拡大に向けたエタノールの役割(2019年にワークショップを開催)。エネルギーアクセス、及びAPECの2030年再エネ利用倍増目標の達成に向けてエタノール利用の拡大を図るため、エタノール産業育成策のベストプラクティスの策定とエタノール利用の抱える課題、及び推進政策の策定等について政府と産業界で議論。
- 米国：エネルギー・水統合計画(2019年にワークショップ開催)。APECの全加盟国/地域により各地域のエネルギーと水の相互依存問題と対応策について情報交換。
- オーストラリア：孤立地域における統合エネルギー計画および持続可能なエネルギーアクセス。系統未接続地域における民間投資促進のためのベストプラクティスを策定、地方政府による低炭素ロードマップ作成の能力育成を図る。
- 中国：系統未接続地域におけるオフグリッド電化の可能性。中国・チリ・オーストラリアにおいてオフグリッドの電力供給に関する調査を終えており、系統未接続地域の電化への適用可能性について検討(2018年にワークショップ開催)。
- 中国：クラウドを用いた複数分散型電源(Multi-Energy Microgrid)プラットホームの孤立地域の電化への適用可能性について。中国に加えて日本・英国・カタールを含む10箇所の既存マイクログリッドプロジェクトを対象にクラウドを用いたSharing Platformの実証を既に実施。APECにおける展開可能性を検討。

(4) 新規プロジェクトの提案
- 米国：先進的なスマートグリッド技術がAPECの電力レジリエンシー向上にどれだけ寄与しうるかを検討すべくAPEC Energy Resilience Smart Grid Workshopを提案。

(5) 重点課題の進捗に関する報告
- 日本：インフラ強靱化に関し最近公表された電力インフラに関するガイドラインの概要を報告。
- IEA：電力系統のレジリエンスに関し米国が国内の送電網近代化(Grid Modernization Initiative)の概要を報告。
- 米国(WEC)：エネルギーと水の相互依存に関しプロジェクトの進捗について報告（前述）。
中国：エネルギーアクセスに関し進行中のプロジェクトの進捗について報告。具体的には、①APEC のエネルギーアクセス改善に向けた政策案骨子、②国内の経験を踏まえたエネルギーアクセス改善のベストプラクティス、③中国とASEAN による東南アジア地域のエネルギーアクセスの状況およびマイクログリッドを活用したアクセス改善の提案等。

(6) 2019年EWGおよびERTF会合に向けて
エネルギー・レジリエンス・プリンシプル、及びガイダンス案の検討が提起された（〜2019年10月）
- APEC を構成する各エコノミーのエネルギー需給、エネルギー産業体制、及び地政学的状況が多様であることに留意しつつ、エネルギー・レジリエンスを構成する要素を網羅的に記載。
- 各エコノミーが取捨選択して、その政策検討に際し参照し得るような原則（プリンシプル）、及び取組事例（ガイダンス）を検討。
2. APEC主要国等におけるエネルギー・レジリエンス向上の取り組み

本章では、APEC主要国及びインドのエネルギー政策におけるレジリエンス対策の位置づけと、具体的なインフラ強靭化のための施策について整理を行います。

2.1 インドネシア

2.1.1 エネルギー・レジリエンスの定義

防災を管轄するBadan Nasional Penanggulangan Bencana（BNPB：国家防災庁）によると、レジリエンスは、「災害を予期、適応、防護、回避し、被害を最小化」するものであるとされている5。

BNPBは2007年に、災害リスク軽減に関する新たな行政・規制のフレームワーク（Law 24）を採択しており、そこで、対象となるリスクを自然災害（Natural disasters）、非自然災害（Non-natural disasters）、及び社会的災害（Social disasters）に分類して定義している7；

自然災害（Natural disasters）：地震、津波、火山噴火、洪水、旱魃、ハリケーン、地滑りといった、自然現象に起因して起きる災害
非自然災害（Non-natural disasters）：技術的障害や伝染病を含む、自然現象以外の事象に起因する災害
社会災害（Social disasters）：紛争やテロを含む、人为的な事象に起因する災害

2.1.2 エネルギーインフラ強靭化に向けた取組み

(1) サイバー

インドネシア政府は、サイバーセキュリティを国家的な優先事項として認識しており、2017年にはBadan Siber dan Sandi Negara（BSSN：国家サイバー暗号庁）を設立した。エネルギー部門のサイバーリスクに関するBSSNの取組み詳細は明確ではないが、2019年3月にBSSNが主催したシンポジウムにエネルギー部門の関係者も参加した模様であり、エネルギー部門のサイバーリスクへの認識はあるものと推測される。

原文は「Ketangguhan sebagai budaya hidup harmonis berdampingan dengan ancaman bencana yang mampu mengantisipasi, mengadapastasi, memproteksi, serta menghindari/memminimalisir dampak bencana」
なお、2019年8月には、ジャカルタ及びその周辺都市にて大規模停電が発生した。電力、銀行、信号機、公共交通および通信機能は2日後には復旧したものので、この経験が、デジタルシステムが安全に機能するためのサイバーセキュリティ法の迅速な制定を急ぐ契機となった。大規模停電から1週間後にBSSN長官は、「インドネシアはサイバーコーストとしての安全性と強靭性（レジリエンス）を早急に確立しなければならない」と宣言するとともに、Cyber Security and Resilience Lawの策定に着手している。尚、BSSNによれば、2018年には約130万件のサイバー攻撃を経験しており、その大半がマルウェアによるものであった。

(2) 人為
石油・ガス部門の人為的リスクについてインドネシア政府がどのような認識を持っているかについては、Ministry of Energy and Mineral Resources（MEMR：エネルギー鉱物資源省）のウェブサイトからは確認出来ない。しかし、ERIA主催のワークショップでは、MEMRは自然災害リスクとともにIndustry Emergencyが安定供給上のリスクであるとしており、エネルギー施設でのヒューマンエラー等、人為的なリスクへの認識はされている可能性がある。

他方、電力部門では、前述の2019年8月のジャワ島及びその周辺都市における大規模停電により、インドネシアにおける発電事業を独占するPerusahaan Listrik Negara（PLN：国営電力会社）は、システムレベルの計画の欠如と緊急時対応の遅れによりユーザーに生じた損害への補償金としてIDR 865 billion（USD 61 million）を支払うこととなった。同国エネルギー経済・財務分析研究所（Institute for Energy Economics and Financial Analysis, IEEFA）の分析によれば、ジョコウィ大統領による35GWビジョンに沿って、2017年にはMEMRの指示により、PLNが直接事業者を選定することが可能になった。電力インフラの建設承認取得までの時間短縮や競争・透明性・パフォーマンスの向上を図ったものであるが、この改革では、急速に変化する発電システムに対応可能な強靭性（レジリエンシー）を有するグリッド・マネジメントシステムの構築は最優先として取り扱われなかった。

ただし、前述の2019年8月の大規模停電が技術的な混乱や人為的ミス等に起因したもののか否かにつき、警察庁傘下のCriminal Investigation Department（Badan Reserse
Kriminal, Bareskrim）が原因究明のための調査を実施しており、人為的リスクの存在が認識されている模様である。

(3) 自然災害

① 石油・ガス
BNPBの主要な政策文書では、Rencana Nasional Penanggulangan Bencana 2015-2019（国家災害対策計画）において、海洋での石油流出への対応策を策定する必要があると述べられているのが、石油・ガス部門への唯一の言及であり、石油・ガスインフラ防護に関して特段の言及はないと述べられている。一方、MEMRの政策文書では、石油・ガスに関しては、輸入依存度の上昇がもたらす供給セキュリティや国内価格規制への言及が主である。レジリエンスに関しては、火山、地震、津波といった災害リスクを踏まえ、それらの災害の監視システム構築といった事柄にふれられているが、石油・ガスインフラ防護に関する言及はない。ただし、津波がインド洋で発生することを考慮して、1ヵ所（Cilacap）を除く製油所はジャワ海沿岸に建設されている。

他方、ガス産業では、国内天然ガス生産量が減退する一方で、国内ガス需要は増加する見通しであることから、2020年には天然ガス輸入の必要性が指摘されており、島嶼区域内における国内ガス供給・配給網の構築、及びFSRUの開発を重要課題として捉えている18。この一環で、国営石油ガス会社Pertaminaは2018年4月、国営企業省傘下で国内ガス供給、配給網の構築、及びFSRUの開発を重要課題として捉えている。

14 同上
15 U.N. Global Facility for Disaster Reduction and Recovery, “Building Indonesia’s Resilience to Disaster: Experiences from Mainstreaming Disaster Risk Reduction in Indonesia Program” Technical Note 1, June 2016
17 MEMR, Renstra Ksdm 2015-2019, https://www.esdm.go.id/assets/media/content/Renstra_KESDM.pdf
19 DEN(National Energy Council)、Indonesia Energy Outlook 2019, p35・36・39,
事業を担うPGNを子会社化し、2018年12月にはPGNとPertamina傘下で国内ガス部門のPertagasとの営業統合を完了した。これら一連の営業統合により、Pertaminaは、ASEAN域内で最大のガスパイプライン網（9,600km）を有するに至り、ガス供給セキュリティに資するとしている20。

なお、アジアエネルギー研究センター（APERC）が2013年に実施したOil and Gas Security Exerciseでは、Cilacap製油所が地震で操業を停止した、との想定に基づき緊急時対応のシミュレーションが行われた。Exerciseを通じて、災害時の石油製品供給体制や関係機関のコミュニケーションの脆弱性が認識され、コミュニケーション等の緊急時対応計画作成、緊急時石油配給のための規制緩和、原油輸入契約の柔軟性向上、精製能力の拡張、備蓄拡充等、広範にわたる提言がされた21。

② 電力

インドネシアはCO2の削減に関する国際的な取り決めに合意している。化石燃料の利用量の増加に伴いエネルギー消費に関連したCO2排出量も増加してきており、2035年には8億トンを超える見通しにある。セクター毎のCO2排出量の増加については発電セクターが最大であり、次いで交通セクターとなる22。パリ協定においては、通常のビジネスを継続したうえで、2030年までにGHG排出量を29%削減することに合意している。その達成のため、新・再生可能エネルギーの利用促進による化石燃料の消費量の削減23、産業育成、およびCO2排出量の削減を企図した水力発電の開発が進められている。現在の水力発電の総設備容量は5.45%（インドネシア全体の発電容量の8.8%）であり、パプア島（22.4 GW）、カリマンタン島（21.6 GW）、スマトラ島（15.6 GW）とスマウェシ島（10.2 GW）等に大きなポテンシャルが存在している24。National Energy Policy（NEP）2014-2050では、エネルギー安定供給による自立と安全保障の実現のための公平性・持続可能性・環境保全性に関する原則が強調されている。また、National Mid-Term Development Plan 2020-24では産業界の競争力を高めるための低コスト電源として大型水力発電の開発計画が盛り込まれている25。民間企業による水力発電を促進すべく、各種減税措置も導入されている26。

https://www.esdm.go.id/assets/media/content/content-indonesia-energy-outlook-2019-english-version.pdf

21 APERC
23 Bambang P. Soemantri Brodjonegoro, “Indonesia promotes hydropower to create the demand for industrial development”, June 26, 2019, International hydropower association
24 同上
25 同上
26 法人所得税5%の減税の6年間の適用、10年間以内の固定資産の加速償却の適用、外国投資家の
2.1.3 エネルギー・レジリエンス対策の責任体制
インドネシアのエネルギー・レジリエンスは、一義的にはBNPBが管轄している。BNPCの機能は、防災体制や被災者対応に関する方針を迅速・正確・効果的・効率的に策定・確立し、計画的・統合的・包括的な防災活動実施のための調整を行うこととされている。

災害等緊急時には、国家エネルギー委員会（National Energy Council）の指揮の下、MEMRがBNPBと連携してエネルギー供給の確保や復旧にあたるとされている。MEMRは、災害時における具体的な規則やガイドライン策定、災害を想定した燃料供給チェーンのステリテスト、BCP策定、国際協力の可能性検討といった方針を掲げているが、全体として詳細なレジリエンス体制構築には至っていないうち指摘されている。

上述の通り、サイバーセキュリティ対策はBSSNが、人為的リスク対策は警察庁傘下のCriminal Investigation Department（Badan Reserse Kriminal, Bareskrim）が担っている。

図表 1 インドネシアの緊急時対応体制

（出所）MEMR

配当課税 10%、及び、設備・機械の輸入の際の関税免除など

28 同上
2.2 マレーシア

2.2.1 エネルギー・レジリエンスの定義

マレーシアの政策文書にはエネルギー・レジリエンスの明確な定義は見られない。しかし、マレーシア政府のプレゼンテーションでは、防災管理にはPreparation、Response、Recovery、Mitigationといったサイクルがあることが示されており29、災害発生前の準備や発生後の回復・被害最小化といった点が含まれている点において、一般的なレジリエンスのコンセプトと類似したところがあると言える。

氣候変動対策の分野では、主要セクターにおいて緩和策を実施した場合の潜在的効果に関する評価を継続的に行ってきている。第11期マレーシア計画（Eleventh Malaysia Plan）において、持続可能性及び強靭性（レジリエンス）強化のため、低炭素化、資源の効率的利用、社会全体でのグリーン開発への投資を推進することがより高い成果の獲得を加速させる、と指摘している30。

他方、マレーシアの電気事業を独占する国営電力会社（Tenaga Nasional Berhad, TNB）のChief Strategy and Regulatory Officerは電気事業者の国際会議であるAsian Utility Week 2019に登壇した際に、①電源の分散化（再生可能エネルギーへの投資）促進、②グリッドの増強・近代化（A more resilient and reliable grid will be critical for many of the country’s other energy goals…）、③顧客満足度の改善、の3つを同社の重点分野として挙げた。

以上のように、レジリエンスという用語は使用されているが定義はされておらず、自然災害との関連性というよりはむしろ再生可能エネルギー発電（再生可能エネルギーの導入増加によっても問題なくサービス維持可能な強靭な電力グリッドの整備など31）やグリーン開発への投資の推進と関連付けられている模様である。

2.2.2 エネルギーインフラ強靭化に向けた取組み

(1) サイバー

従来、科学技術イノベーション省（Ministry of Science, Technology and Innovation）が、エネルギー部門を含めた10の産業分野を国家における重要な情報インフラと定義し、それら重要な情報インフラの安全性、強靭性、及び自立性を確保するためのサイバーセキュリティコントロールの有効性の確保に向けて包括的なプログラムと一体のフレームワーク

クを、2006年に国家サイバーセキュリティ政策（National Cyber Security Policy, NCSP）として規定した32。また、公教育やアウトリーチに加えて、技術的ガイダンス、サポートやコンサルティングサービスの企業や政府系機関への提供に特化したサイバーセキュリティ・マレーシア（Cyber Security Malaysia）が設立された33。

2013年に科学技術イノベーション省の文化部門が観光省に移管され、科学技術イノベーション省は通信マルチメディア省（Ministry of Communications and Multimedia）と改組された。Cyber Security Malaysiaはその傘下に置かれ、監視制御・データ収集システム（Supervisory Control、Data Acquisition：SCADA）や分散型制御システム（Distributed Control Systems：DCS）といったITコントロールシステムは、電力・石油・ガス・水や廃棄物処理、製造業、化学、運輸といった部門で使用されており、サーバーリスクからの防護の必要性があることを指摘34。PetronasとITセキュリティに関するイベントの開催や、TNB訪問を実施している35。これらのイベントや訪問の詳細は不明ながら、マレーシア政府が石油・天然ガス・電力といったエネルギー部門でのサイバーリスクについて認識していることがうかがえる。

なお、マレーシア・英国・豪州で石油ガス開発を行っているHibicus PetroleumのITシステムが2019年10月1日にサイバー攻撃を受け、同月7日時点で復旧中であること、石油ガス生産には影響がないことを公表した36。本件について、Cyber Security Malaysiaはコメントを出していない。

(2) 人為

マレーシアは1957年の独立後、農業経済から近代国家への急激な転換が行われてきているが、かかる急速な開発や転換は火災、爆発、建物の崩壊、地滑り、生物学的/疾患関連の人為的な災害に繋がっていることが指摘されている37。また、政府エネルギー委員会にお
において電力グリッドの操作における人為的なミスの可能性が認識されており、可能な限り安全かつ効率的にグリッドシステムの操作を行うことでそのような人為的なミスの発生可能性を減少させることにつき、Electricity Supply Act 1990 (ACT 447)に基づいて作成されたグリッド・コードのなかのオペレーティング・コードにて規定されている38。他方、政府はリスクの一つとして労働災害（Industrial Disaster）についても認識しているが、このようなリスクが石油供給に影響を及ぼしたことはない、と述べている39。

(3) 自然災害

エネルギー・レジリエンスやエネルギー供給セキュリティといった観点から、マレーシア政府がエネルギーインフラの防護に具体的に取り組んでいることを示す政策文書は見られない。この背景には、マレーシアが地震、津波、台風、火山噴火といった災害のリスクが低く、石油・天然ガスの純輸出国であることが考えられる。上述の通り、マレーシア政府は、洪水・地滑り・台風・地震といった自然災害リスクを認識しているが、これまで石油供給に影響を及ぼしたことがないとしている。具体的なエネルギーインフラ防護策は、国営企業であるPetronasやTenaga Nasionalに委ねられているものと推測される。

尚、具体的な取組みについての記載はないものの、2015年5月に発表された国家5ヵ年計画、第11次マレーシア計画（11th Malaysia Plan）では、気候変動対策の一環として、レジリエンスなエネルギー関連インフラの建設が重要である旨の記載がされている40。同計画は、2014年末に発生した豪雨及び洪水は50万人超の国民生活に影響を与えるとともに公共インフラのダメージはRM 2.81 billion（=750億円、1JPY=0.03795MYR）に及んだ41ことを受けけて策定されたものである。生物多様性を守ることで、気候変動や自然災害への自然バッファの継続的機能性を強化し、先進的な洪水緩和策やグリーン・インフラストラクチャーといった構造的アプローチに加えて、ハザードリスクマップや警報システムといった非構造的なアプローチを通じて、災害マネジメントシステムの強化と国民の生活水準の向上を図る方針を掲げている42。

39 ERIA、Oil Supply Resilience in ASEAN、p34、http://www.eria.org/RPR_FY2016_03.pdf
40 Economic Planning Unit, "ELEVENTH MALAYSIA PLAN 2016-2020" 2015, p.188
2.2.3 エネルギー・レジリエンス対策の責任体制

マレーシア政府のエネルギー・レジリエンスは、首相府傘下のNational Disaster Management Agency（NADMA）の管轄である。NADMAは、複数の省庁に点在していた防災管理部署を統合し、2015年に発足した。NADMAは、災害対応方針の策定・実行を国家・地方レベルで行う他、マレーシアの防災に関する国際的な窓口でもある。

但し、サイバーセキュリティに関しては、前述のCyberSecurity Malaysia及びNational Cyber Security Agency（NACSA）が管轄している。2017年2月に設立されたNACSAは、新たな国家サイバーセキュリティ戦略の策定等を担当する、サイバーセキュリティに関する国家主導機関である。CyberSecurity Malaysiaが通信マルチメディア省の傘下にあるのに対し、NACSAは国家安全保障会議（National Security Council）の傘下にある。両者は協力関係にあり、マレーシアのサイバーセキュリティに対するレジリエンスの確保及び強化に取り組んでいる。

2.3 フィリピン

2.3.1 エネルギー・レジリエンスの定義

レジリエンスについて、エネルギー省（Department of Energy, DOE）は、国連国際防災戦略事務局（UNISDR）の定義（ハザードに曝されたシステム、コミュニティあるいは社会が、基本的な機能及び機能を保持・回復することを通じて、ハザードからの悪影響に対し、適切なタイミングで、効果的な方法で抵抗し、それを吸収・受容し、またそこから復興する能力43）を採用している。また災害は、UNISDRの定義である「コミュニティまたは社会の機能の深刻な混乱であって、広範な人的、物的、経済的もしくは環境面での損失と影響を伴い、被害を受けるコミュニティまたは社会が自力で対処する能力を超えるもの」、ハザード（災害原因事象、外力）は「人命の損失、けが、その他健康への影響、財産への損失、生活やサービスの損失、社会的・経済的な混乱、もしくは環境破壊をもたらすような、危険な現象、物質、人間活動、あるいは状況」と定義されており、稀発度重大損害（HILP）の概念には言及していない。

4.3.2 エネルギーインフラ強靭化に向けた取組み
(1) サイバー

サイバー犯罪防止法（The Cybercrime Prevention Act of 2012：CPA）では、機密性のあるコンピューターデータ及びシステムへの攻撃、コンピューター関連の攻撃、及び、コンテンツ関係の攻撃をサイバー犯罪と定義しており、国家調査機構（National Bureau of

43 “the ability of a system, community, or society exposed to hazards to resist, absorb, accommodate to, and recover from the effects of a hazard in a timely and efficient manner, including through the preservation and restoration of its essential basic structures and functions”
Investigation, NBI）及び国家警察（Philippines National Police, PNP）を取締機関に任命している。また、2018年7月1日付にてサイバー犯罪に関する条約に加盟している。エネルギー部門は重要情報インフラ（Critical Information Infrastructure, CII）にカテゴライズされており、国家情報通信技術省（Department of Information and Communications Technology, DICT）が定める基準を守る必要がある44。

(2) 人為
防災を担当する大統領直轄のNational Disaster Risk Reduction and Management Council（NDRRMC）は、自然災害に加えて、人為的災害に言及しているが、どのような災害か、あるいは人為的災害が起こりえる部門等、詳細については説明していない45。一方、DOEは、火災、電力部門における重大なアクシデント、大気汚染、飛行機墜落、地滑り、国民騒乱、テロ、軍によるクーデター等が人為的リスクとして認識している46。同じくDOEは、自然災害、アクシデント、テロ等を石油供給へのリスクと認識している47。

(3) 自然災害
フィリピンは年間で平均20もの台風が通過する自然災害大国であり48、2013年には台風“Yolanda”により、電力部門がPHP 6,830 million（146億円）に上る甚大な被害を被った49。また、国土は海で囲まれているうえに、環太平洋火山帯、及び、地震帯に属しており、国連による調査では世界で3番目に自然災害リスクの高い国にランクされている50。2009年に発表されたStrategic National Action Plan for Disaster Risk Reduction（SNAP）2009-2019は、Hyogo Framework for Actionを踏襲した向こう10年間のロードマップであり、ビジョンと戦略目標を明示している51。

48 Ibid. p.5.
エネルギー省は2018年1月、Section 2, Circular No. DC2018-01-0001においてエネルギー部門における強靭性（レジリエンシー）計画及びそのプログラムを採択し、以下を指すとしている52。

① 困難な状況や壊滅的な事象への対応を可能にするための既存インフラの強化
② ダメージを受けたエネルギーアングラフの再建・リハビリテーションに際しての創造的復興（Build Back Better）原則に沿ったより良い緩和策の導入
③ 壊滅的事象発生後の早急なエネルギー供給の復旧に向けた操業・維持補修の基準及び慣習の改善
④ 災害時のダメージの最小化を可能にする将来のエネルギー施設の建造のためのレジリエンシー・スタンダードの確立及び、継続的なエネルギー供給に向けた早急な復旧・修復手法の適用

同Circularにおいて、Resiliency Compliance Planを制定し、エネルギーインフラや人
的資源の災害への準備強化のための技術的、非技術的な対応策の提供を目的に、エネルギー業界企業に対して自社の計画の作成と3年毎の更新義務を課す、としている。またエネルギー省は企業と協力のうえ、統合的なEnergy Resiliency Planを策定することとされている。2019年11月にPlan策定のためのワークショップが開催されている53が、2020年2月時点ではPlanは発表されていない。

2.3.3エネルギー・レジリエンス対策の責任体制

2010年にDisaster Risk Reduction and Management Actが制定され、災害リスクの低
減・対応を担う大統領直轄の機関としてNational Disaster Risk Reduction &
Management Council（NDRRMC）が設置された。同委員会にはエネルギー、環境・天
然資源、運輸通信を含む14省庁の長などが参加し、防災及び災害対応計画の策定を担う。

エネルギー・レジリエンスに関しては、NDRRMCの指揮の下、エネルギー省
（Department of Energy：DOE）が管轄しているが、エネルギー・レジリエンスを一元的に管轄する部署は存在せず、各エネルギー源を担当する部署が当該エネルギー源のレジリエンスを担当しているものと思われる。例えば、Oil Industry Management Bureauは、2019年11月に災害時の石油製品供給レジリエンスに関するワークショップを開催している54。

52 DOE, “Adoption of energy resiliency in the planning and programming of the energy sector to mitigate potential impacts of disasters,” 2018, p.2.
図表 2 エネルギー省組織図

（出所）Department of Energy
フィリピンには天然ガス事業に関する法律が無いが、天然ガス事業について規定しているエネルギー省通達（DOE circular）では、「DOEは、天然ガス産業の開発及び運営を監督し、規制する全面的な責任を負うものとする」と記載されている55。フィリピンの天然ガス事業は、上流部門は政府主導で下流部門は民間主導のため、ガスの安定供給についての戦略的計画遂行はフィリピン国営石油会社（PNOC）を含む政府部門が、ガスインフラ、ガス火力発電所等の維持管理・災害復旧に関してはPNOCを含む民間会社が責任を負うものと想定される56。なお、フィリピンでは住宅用の都市ガスが普及しておらず、天然ガスのレジリエンス対応としては災害発生時のガスパイプラインやガス火力発電所の復旧が主な課題となると考えられる。

また、DOEが発表したフィリピンエネルギー計画（PEP）2017-2040では、エネルギー・セキュリティ向上の観点から2040年までに「国内での石油、ガス、石炭の埋蔵量と生産量を増加」する方針が示されている。このうち天然ガスについては2040年までに4.04Tcfを生産する目標が掲げられた57。

自然災害対策に関しては、政府機関、非政府機関及び民間により組成されたワーキンググループである国家災害調整評議会（National Disaster Risk Reduction & Management Council, NDRRMC）が責任を負う59。サイバーセキュリティ対策に関しては、国家情報

55 Department Circular No. 2002-08-005
INTERIM RULES AND REGULATIONS GOVERNING THE TRANSMISSION, DISTRIBUTION AND SUPPLY OF NATURAL GAS
56 ガスインフラの維持管理・災害復旧についての明確な記載はないが、事業者が事故・損害の対応とDOEへの報告を行う旨の記載がある。
Department Circular No. dc2017- 11 – 0012
RULES AND REGULATIONS GOVERNING THE PHILIPPINE DOWNSTREAM NATURAL GAS INDUSTRY
57 Energy Annual Report 2017
SECTORAL PLANS AND ROADMAPS 2017-2040
59 NDRRMC (http://www.ndrrmc.gov.ph) (2019年12月アクセス)
通信技術省（Department of Information and Communications Technology, DICT）が、
監督機関として責任を負う60。

2.4 タイ

2.4.1 エネルギー・レジリエンスの定義

タイ財務省が世界銀行と共同で作成したレポートは、自然災害への対策としてレジリエンスを「the capacity to prevent, mitigate, prepare for, respond to and recover from the impacts of disasters61」と定義している。また同報告書は、インフラのレジリエンスを、「洪水や台風などの異常なイベント62の脅威に晒された場合に不可欠なサービスを提供し続けるための資産又はシステムの能力、及び、その回復速度と脅威が発生した後に通常の運用に戻る能力。レジリエンスはインフラの設計、又は適合も含まれ、被害が後退した後においても永続的な損傷を受けず、構造上の安全性が維持され、運用の中断が生じた場合にも通常の操業を迅速に開始できることも含まれる」と定義している。ここでいう「異常なイベント」は、合理的に予見し得る事象や、ある程度の頻度で発生する障害ではないものを想定していると推測され、HILPの概念に通じるものがあるが、報告書でその旨明記されてはいない。

2.4.2 エネルギーインフラ強靭化に向けた取組み

(1) サイバー

タイでは2019年5月に制定されたCyber Security Actで、National Cyber Security Committee（NCSC）が設立されている。2020年2月現在、NCSCのウェブサイトは存在せず、その職掌は明らかではないが、エネルギー・公益事業は、国防、金融、通信、交通といった部門とともにサイバーリスクから防護すべき重要インフラと認識されている63。

Overview of Cybersecurity Status in ASEAN and EU64において、タイはサイバーセキュリティを推進する機関（National Cybersecurity Agency）を設立し、サイバーセキュリティ法を整備するとしている。NCAは深刻なサイバー脅威に対処する方法を決定し、軍事関連を除くIT災害が発生した場合に活動の中心となり、他の国家機関および民間団体と協力する責務を負う。サイバーセキュリティ法では、公共サービスへのインパクトを与える、

60 DICT (https://dict.gov.ph/) (2019年12月アクセス)
62 合理的に予見し得る事象や、ある程度の頻度で発生する障害ではないものを想定していると推測され、HILPの概念に通じるものがあるが、報告書でその旨は明記されてはいない。
傷つけるようなサイバー攻撃に対応し、サイバーセキュリティの強化、リスクの低減、コントロール、レジリエンス構築を目的としており、7つの分野（国防、公共サービス、金融サービス、情報通信、物流、エネルギー、医療健康）にフォーカスする。

タイでは急速にデジタル経済が成長しており、技術革新が集中的に後押しされてきている一方、サイバーセキュリティ問題に対する脅威も高まっている。それらの脅威に対処するため、2019年5月、タイ国政府はサイバーセキュリティ法2562（Cybersecurity Act B.E. 2562（2019））を施行した。このサイバーセキュリティ法は、重要な社会的機能の維持に不可欠なインフラ（Critical Information Infrastructure, CII）を所有し、それらを利用してエネルギー・公共ユーティリティサービスを提供する公共、及び民間事業体の両方に適用される。サイバーセキュリティ法のもと、エネルギー・公共ユーティリティ企業は、サイバーセキュリティの問題を管理することを目的に、国家サイバーセキュリティマスタープランに準拠したガイドラインを策定しなければならない65。

(2) 人為

PTTはAnnual report 2018のDisruption of production and business operationsの中で、ヒューマンエラー、機械の故障、自然災害、政治的不安定、テロ行為またはその他の予想外な災害の結果、ビジネス操業と生産活動の中断にさらされ、PTTの重要インフラに影響を与える可能性があると記載しており、人為的なリスクへの認識があるものと考えられる。また、PTT Business Continuity management System Standard（BCMS）とPTT Group Security Safety Health and Environmental Management Standard（SSHE MS）を活性化するとしており、事業継続に関するISO規格であるISO 22301を取得している66。

2016年度にERIAが実施した調査によると、PTTは自然災害と並んで、アクシデント、油ガス分離プラント・製油所・パイプライン等のインフラに対する破壊工作といった人為的リスクを認識している67。天然ガスに関しては、2017年当時のインフラ状況を基にしていて、LNG気化器がなんらかの理由で稼働できなくなった際の対応策について、ERIAが検討を行っている68。これによると、タイの天然ガス供給の大半は、国内およびマレーシアとの共同開発地区での生産で賄われており、30日程度の稼働停止であれば、生産ガスの増量と、一部の発電所の燃料転換で対応できる。タイの天然ガス火力発電所のほぼすべてに燃料転換設備が設置されており、天然ガスの供給が止まってしまっても、石油やディーゼルで発電を継続できるように対策がなされている。180日程度の稼働停止では、生産ガス増量と一部発電所の燃料転換に加え、一部の天然ガス需要（NGV）を石油製品へ代替することで対

応するとしている。国内天然ガスは枯渇に近づいており、隣国ミャンマーからのパイプライン輸入についても同様の状況であるため、LNG以外では天然ガス供給量の増加を見込めない。現在、タイではマップタップクトLNGターミナルが国内唯一のLNG受入れ基地となっており、今後の輸入量増加や供給安定性向上のため、新たなLNG受入れ基地建設の計画を立ち上げており、付随してパイプラインネットワーク構築の計画もある69。

(3) 自然災害

2011年、タイでは継続的な降雨や強力なモンスーンと、それらに続くダムの決壊によって77州のうちの66州・600万ヘクタールの土地が洪水となり、7月から12月にかけて1,300万人が被害を被ったが、これを受けて、電力部門におけるレジリエンス強化が強く認識されることとなった。財務省と世界銀行の共同レポートは、前述の定義を踏まえたうえで、電力部門における自然災害へのレジリエンスとして、①台風や洪水発生により損傷を受け易い電力網の特定と修繕、②台風直撃時にも耐え得る主要な電力インフラの設計と設置、を挙げている70。なお、分散型発電（Small Power Producer：SPP及びVery Small Power Producer：VSPP）の積極的な導入はタイの電力部門のレジリエンシー強化に寄与するが、ガバナンスの観点からその貢献度は限定的、との指摘もある71。

2015年には、国家災害リスク管理計画2015（National Disaster Risk Management Plan）が制定された。計画では、防災・準備システムの開発、知識と知恵の開発、災害監視システムと対処の強化による災害耐性の作成を含む、新しい考え方と概念が災害リスク管理に統合するとともに、知識や知恵、及び自然災害監視システムの開発、及び「十分な経済哲学」アプローチに沿った自然と調和した生活や社会に対する自己免疫性の創造を通じた自然災害に対する免疫性の創造が図られている。加えて、防災・緩和法（B.E. 2550 (2007)）、及び仙台災害リスク軽減フレームワーク2015 – 2030（Sendai Framework for Disaster Risk Reduction 2015-2030）に基づき災害前、災害中、災害後の各々の災害リスク軽減に対する意識の創造と強化を通じた災害と持続可能性への回復力の構築に向け、一般に認識されている考え方に沿った防災のための災害リスク軽減に関する考え方も纏められている72。しかし、この計画で石油・天然ガス・電力のインフラをどのように防護するべきかという具体策は述べられていない。

69 Energy Policy and Planning Office (EPPO).
70 同上
71 Sara A. Meerow, Isa Baud, “Generating resilience: exploring the contribution of the small power producer and very small power programs to the resilience of Thailand’s power sector,” May 2012, ResearchGate
http://www.disaster.go.th/upload/download/file_attachment/584115d64fcee.pdf (2019年12月アクセス)
また、国家機構変動マスタープラン2015-2050（National Climate Change Master Plan, CCMP）は、同国が2050年までに持続可能な低炭素経済を実現し、気候変動に対する強靭性を強化することを目標に設計されている。

2.4.3 エネルギー・レジリエンス対策の責任体制

政府のエネルギー・レジリエンス対策は、内務省傘下的Department of Disaster Prevention and Mitigation (DDPM)が管轄している。DDPMの職掌としては、防災・減災の政策を立案・実行し、防災・減災に関する研究・広報・啓発を行い、防災・災害救助に係る情報システムを構築し、防災管理や救助に関するトレーニングを提供し、災害時の救助・復旧活動に従事し、防災・減災・救助・復旧活動に関して他省庁や国際的な協力を行う等が挙げられている。DDPMの組織図では、エネルギーあるいはサイバーセキュリティに特化した部署は見られず、国家サイバーセキュリティ委員会が担っている模様である。

図表 3 エネルギー・レジリエンス対策の責任体制（タイ）

（出所）タイ政府資料

73 Thailand Climate Change Master Plan (2019年12月アクセス)
74 DDPM, Mandate, http://www.disaster.go.th/en/about-about01/Background
タイにおける天然ガスネットワークは、PTTによって運用されている。タイのエネルギー事業者は、Energy Industry Act B.E.2550（エネルギー事業法、2007）に沿って事業を行う。本法律のSection 74において、事業ライセンス保有者は、エネルギーネットワーク等の設備に損害や故障が発生した場合には、速やかに修復し操業を回復することを要求されており、インフラストラクチャーに関する責任は事業者にあると推察される。

2.5 オーストラリア

2.5.1 エネルギー・レジリエンスの定義

オーストラリア連邦政府は、従来からCritical Infrastructure Protection Programでエネルギーインフラ防護に取り組んできたが、防御が困難な、あるいは合理的に予見し得ない事象も考慮に含め、また従来は欠落していた途絶が起きた場合の復旧を含めることが必要と認識されるようになった。その結果、2010年に公表した重要インフラレジリエンス戦略（Critical Infrastructure Resilience Strategy）は、レジリエンスを次の様に定義している。

- 異なる部門やネットワーク間で、横断的に調整された計画
- 応答的、柔軟で迅速な復旧措置
- 障害（interruption）や緊急時、災害時の最低限のサービス維持と、迅速な復旧を可能にする組織文化醸成

また、豪州エネルギー市場運営者（AEMO : Australian Energy Market Operator）は、電力システムのレジリエンスを「稀頻度重大損害事象（HILP）を回避（HILPが起きた場合の影響軽減のための事前対策）し、耐久（サービスの継続）し、被害から回復する能力」、セキュリティを「電力システムに対する合理的に予見し得る事象や、ある程度の頻度で発生する障害の影響から、電力システムを防護しサービスを維持する能力」と区別している。なお、石油・天然ガスに関して、連邦議会上院による輸送部門エネルギーのレジリエンスと持続可能性に関する調査報告（2015 年）では、レジリエンスの定義に言及がなく、セキュリティと互換的に使っている模様である。

2016年9月に、南オーストラリア州全土での停電が発生したことを受け、オーストラリア政府間評議会（Council of Australian Governments: COAG）のエネルギー評議会

77 The Senate Rural and Regional Affairs and Transport References Committee, “Australia's transport energy resilience and sustainability,” June 2015.
78 停電の要因としては、電力システムの環境変化、すなわち①少数の、制御可能な供給源のみで構成されたシステムから、多数の、制御不能な、天候に応じて恒常的に変動する供給源が参加するようになった点、②広域的に影響を及ぼす気象災害が発生するようになった点、が指摘されている。停電発生直前時点で、域内の広域の風力発電設備で、出力が設計安全上限を超えた。これ自体は電力システム崩壊にはつながらないが、追加的事象が起きた場合の対応力の不足が懸念されている。ただし、停電の直接の要因は、竜巻と風が起きて州中部の電力線が複数箇所で切断され（稀頻度重大損害事象）、広域停電が発生したものである。
（COAG Energy Council）が豪州エネルギー市場委員会（AEMC：Australian Energy Market Commission）に対し、豪州エネルギー市場運営者（AEMO：Australian Energy Market Operator）と豪州エネルギー規制局（AER：Australian Energy Regulator）の事故調査報告書を踏まえて、構造的問題の有無を検証するよう指示した。AEMCが2019年9月に提出した報告書では、電力システムのレジリエンスに言及している79。それによれば、電力システムのレジリエンスとは、稀頻度重大損害事象（HILP）を回避（HILPが起きた場合の影響軽減のための事前対策）し、耐久（サービスの継続）し、被害から回復する能力をいう。他方で、セキュリティとは、電力システムに対する合理的に予見し得る事象や、ある程度の頻度で発生する障害の影響から、電力システムを防護しサービスを維持する能力をいう。なお、電気事業の基本法であるNational Electricity Act（現行のものは2005年7月1日発効）に記された電力政策の目標National Electricity Objectiveでは、供給信頼度とセキュリティに言及している；

“to promote efficient investment in, and efficient operation and use of, electricity services for the long-term interests of consumers of electricity with respect to:

- price, quality and safety and reliability and security of supply of electricity
- the reliability, safety and security of the national electricity system.”

なお、石油・ガス供給システムについては、連邦議会上院が輸送部門エネルギーのレジリエンスと持続可能性について調査報告を行っている（2015年）が、レジリエンスの定義には言及がなく、セキュリティと互換的に使っている模様である80。

緊急時対応（emergency response）の視点からも、石油・ガス供給問題への対応に関する取組みが進められている。COAGエネルギー評議会の下に、連邦ガス緊急対応諮問委員会（NGERAC: National Gas Emergency Response Advisory Committee）と連邦石油供給緊急委員会（NOSEC: National Oil Supplies Emergency Committee）が設立され、天然ガスと石油それぞれの緊急時の供給対応の責任主体となっている81。NGERAC（2005年設立）には連邦政府、州政府の公務員、AEMO代表者、ガスや産業部門のステークホルダーが参加している82。

なお、COAGの指示は「電力システムのセキュリティ」に関する構造的問題の検証であったが、AEMC報告書はセキュリティとレジリエンスの両方について分析を行った。

80 The Senate Rural and Regional Affairs and Transport References Committee, “Australia's transport energy resilience and sustainability,” June 2015.

NGERACの役割：

- 全州で天然ガスの供給途絶時に均一な管理確保。
- 複数の地域間で発生した緊急時に備えて、全州に対して効率的で効果的な対応策アドバイザリーを行う。
- 複数の地域に亘るガス供給途絶のリスクと影響の分析。

連邦政府は2017年7月に、LNGの輸出増加とVictoria州沖ガス田群の生産が減少する中美で、予測される供給量不足に対して国内向けガス供給確保に役立てるために、国内ガスセキュリティメカニズム（ADGSM: Australian Domestic Gas Security Mechanism）を導入した。2020年1月に行われたADGSMレビューの結果、同メカニズムが、国内消費者向けのガス供給を確保することを支援しつつ、国内ガス価格を下げるために役立ったことが表明された83。Wallumbilla ガス供給ハブの短期ガス価格は、2017年2月から2019年12月に46%低下した。一方でレビューでは、一部の事業主が依然、より長期のガスのオファーを得ることが困難で、国際LNG価格が低いにも関わらず価格オファーが高いままにあることも認識された。このため、政府はADGSMを予定通り2023年まで維持し、オーストラリア競争消費者委員会（ACCC）は2025年までガス部門の監視を続ける。

Victoria州では、National Gas (Victoria) 法案2008に定められたガス緊急時ブﾛトコール（Gas Emergency Protocol）の下で、AEMOは、ガス緊急時対応（Emergency Procedures (Gas)）、ガス負荷削減とガス配給と回収のガイドライン（Gas Load Curtailment and Gas Rationing Recovery Guidelines）、卸市場システムセキュリティ対応（Wholesale Market System Security Procedures）を発表している。ガス緊急時対応は、5段階の緊急時レベルと配送網に関わるセキュリティに分離されている：

- レベル 1: Site Asset-Based Emergency: 被害や環境影響は発生しない、顧客に影響は最低限に留まる。設備管理者が対処する。
- レベル 2: Operational Response – Single Industry Participant: 軽傷や軽い環境影響が発生し、事業継続や IT システム利用が一時的に多少困難になる、マネージャーか緊急管理者が処理する。
- レベル 3: Operational and Management Response – Single Industry Participant: 重傷や死亡、及び重大な環境負荷が発生し、result in serious loss of supply、may result in serious business continuity or IT impacts。Operation manager か executive manager の対処が必要である。
- レベル 4: State Emergency Response Plan: 問題が供給プラントと会社外に拡大し、複数の会社で処理が必要である。
- レベル 5: System Wide Threat, Public Safety Issue or Powers Invoked by Energy

Safe Victoria or the Governor in Council：産業界だけでは対処しきれない周囲コミュニティに長期間の影響を及ぼすと AEMO、Victoria 州政府が判断する。
- 配送網のセキュリティ（Threat to System Security）：緊急時レベル問わず、ガス配送網の一部成は全体の安全性が確保されていないと判断されたとき。

2.5.2 エネルギーインフラ強靭化に向けた取組み

政府の環境・エネルギー部公式ページによれば、オーストラリア政府は自然災害、サイバー攻撃、人為的及び環境面での脅威に対する重要インフラ（Critical Infrastructureと定義されている）のレジリエンシー強化支援のための活動を引き受けるともう84。

(1) サイバー

政府は重要インフラレジリエンス戦略（Critical Infrastructure Resilience Strategy）において、同国における全ての重要インフラはインターネットに接続されたコンピューターシステムに依存しており、幾つかのセクターにおいて当該システムはサービスの提供に不可欠であるとしている。一例として、電力の供給はインターネットにより遠隔で操作される専属的かつネットワーク化された監視制御と、データ収集システムによりコントロールされているため、インターネットによる組織的な犯罪、不道徳な競争相手、何らかの問題に動機付けされた集団や国家的活動家等のサイバー攻撃の脅威に晒されているとしている。そのため、重要インフラの所有者・操業者はそれら脅威への迅速な対応、及び、復旧能力を有することが不可欠としている85。

CERT Australiaは、Australian Cyber Security Centre（ACSC）内の組織であり、オーストラリア政府のコンピューター緊急対応チームであり、オーストラリアにおける主要なビジネス活動に影響を与えるサイバーセキュリティ問題に関する一次コンタクトポイントである。CERTを通して、オーストラリア政府は重要インフラの所有者・操業者に対して助言とサポートを行っている86。尚、ACSCと共存する組織として、Australian Security Intelligence Organization, Australian Federal Police, Australian Signals Directorate, Defense Intelligence Organization, 及びAustralian Crime Commissionがある87。

84 Department of Industry, Science, Energy and Resources, “Energy Infrastructure Resilience”
(2019 年 12 月アクセス)

(2019 年 12 月アクセス)

86 同上(2019 年 12 月アクセス)
87 同上(2019 年 12 月アクセス)
(2) 人为

政府はCritical Infrastructure Resilience Strategyにおいて、重要インフラに影響を及ぼす事象として伝染病、業務上の過失、事故、犯罪行為が潜在的な脅威や危険として認識されており、それら全てを予期する、緩和する、或いは防ぐことは不可能であるとしている。保護的なセキュリティ対策だけではサプライチェーン断絶の緩和や事後の急速な復旧対策としては不十分である中で、物質・サービスの供給が途絶えた場合には重要インフラの所有者・操業者の操業の継続性は限定的となることから、全ての脅威・危機への対処という観点からはレジリエンスのアプローチがより重要としている。

Critical Infrastructure Resilience Strategy等、政府の主要政策文書では、エネルギー部門で具体的にどのような人为的リスクが認識されているかは記載されていない。但し、石油に関してエネルギー省が実施した調査によると、ストライキやインフラ事故といった人为的リスクが石油供給リスクに含まれている。

(3) 自然災害

オーストラリアの重要なインフラのレジリエンスと、広義のオーストラリア・コミュニティの自然災害へのレジリエンスは強い繋がりがあるとしながら、強靭な重要インフラはコミュニティが困難な状況から迅速に復旧、及び、ボランティア団体等が機能し続けることを可能にすると考えられている。オーストラリアでは、National Strategy for Disaster Resilience (NSDR)が政府機関、民間企業、コミュニティ・リーダー、及びNPOセクターに災害マネジメントに関するハイレベルなガイダンスを与える。NSDRは、災害へのレジリエンスを有するコミュニティの形成のため、重要インフラの所有者・操業者の積極的な関与を前提とした7つの優先エリアを定めている。しかし、主要な政策文書からは、石油インフラをどのように具体的に防護するのかは確認出来ない。

2.5.3 エネルギー・レジリエンス対策の責任体制

オーストラリア政府は、2003年4月、エネルギー・電力部門を含む重要インフラ（Critical Infrastructure）のレジリエンス強化を目的に、The Trusted Information Sharing Network（TISN）を組織した。以来、TISNは同国における産業界と政府間の情報共有、及びレジリエンス確立のために国家の関与する主要なメカニズムとして機能し続けている。TISNでは、重要インフラの所有者や操業者は7つのセクターグループに分けられ

88 同上(2019年12月アクセス)
90 同上(2019年12月アクセス)
91 同上(2019年12月アクセス)
情報共有、及びセクター間を跨いでのセキュリティとビジネス継続性の課題を解決するための協力関係の構築のため定期的な会合が持たれている。TISNでは、前述の7つのセクターグループに加えて、一時的な横断的課題に対して助言を行うCross-Sectoral Interest Group (CIAC)、及び組織的レジリエンシーに特化したResilience Export Advisory Groupという専門家によるフォーラムも組織されている93。TISNの全体運営と戦略的ガイダンス付与は、各TISNグループの議長と関係当局からの政府高官、州、及び準州の代表者で構成されるCritical Infrastructure Advisory Council (CIAC)が行う94。また、司法省（The Attorney-General's Department）が、重要な政策に関する政府と民間のステークホルダーへの関与、ならびに政府における重要インフラのレジリエンシーに関する問題への提言を担う。

図表 4 エネルギー・レジリエンス対策の責任体制（豪州）

（出所）https://www.tisn.gov.au/Pages/default.aspxより抜粋

2.6 ニュージーランド

2.6.1 エネルギー・レジリエンスの定義

ニュージーランド政府は長期エネルギー戦略（New Zealand Energy Strategy 2011-2021）において、エネルギー・セキュリティは①変動する需要に対し十分な量が、信頼に足る強固なネットワークを通じて供給されること、②エネルギー源が環境性・社会性・経

94 同上 (2019年12月アクセス)
他方で、政府のインフラ計画（2015 Infrastructure Plan）では、「2045年までにニュージーランドのインフラはレジリエントで、かつ力強い経済成長と高水準の生活の質に資する、調整のとれたものにする」ことを目標に掲げるとともに96、重要インフラ選定基準を明記している。また、重要インフラのひとつである電力部門の規制機関であるElectricity Authorityが発行する"Electricity in New Zealand"では、長期に渡る消費者と国家の利益のために、Electricity Authorityは競争力のある、信頼のもある、効率的な電力産業の促進に努めるとあり、戦略的フレームワークにおける市場開発戦略として“increase flexibility and resilience”としている98。しかし、レジリエンスの定義はなされていない。

2019年4月に民間防衛緊急管理省が公開した国家災害レジリエンス戦略（National Disaster and Resilience Strategy）は、レジリエンスを次の通り定義している99。

- 「破壊的な出来事の影響を予測・抵抗し、悪影響を最小限に抑え、出来事の発生後に効果的に対応し、機能性の維持または回復、学習と繁栄に向けて適応する。」

同戦略は、2002年の民間防衛緊急管理法（CDEM 法）で定められた第3目の戦略であり、ニュージーランドのリスク及びハザードに対する耐久性ビジョンと、2030年に向けた目標を示している。他分野に亘るレジリエンス戦略には、建築物の耐久性（Resilience of the Built Environment100）が柱の一つとなっている。

96 “THE THIRTY YEAR NEW ZEALAND INFRASTRUCTURE PLAN 2015”
97 New Zealand Lifeline Council, “New Zealand’s Critical Infrastructure Resilience”, October 2018
100 同上 p.32, 目標 16: “Address the capacity and adequacy of critical infrastructure systems, and
2.6.2 エネルギーインフラ強靭化に向けた取組み

（1）サイバー

2016年、ニュージーランドの公営電力会社であるTranspower New Zealand Limitedは、既存制御システムであるSCADAを刷新する新システムとして、PRISMを導入しようとしていた。ニュージーランド全土の電圧、周波数、停電、電力消費量をリモートで一元管理できる一方で、電力システムへのサイバー攻撃のリスクの高まりが当時指摘されてきた。Upgrade them as practicable, according to risks identified. [2030 Objective] we more fully understand infrastructure vulnerabilities, including an understanding of interdependencies, cascading effects and impacts on society. There are clarified and agreed expectations about levels of service during and after emergencies and infrastructure providers work to meet those levels (including through planning and investment).”

101 Ministry of Civil Defense & Emergency Management
https://www.civildefence.govt.nz/cdem-sector/cdem-groups/（2020年1月27日アクセス）

102 同上

103 当該システムの導入に関して、13%のコストオーバーランと５か月の遅延が指摘されている
いる104。こうした懸念もひとつの契機となって、2019年7月、首相内閣府（Department of the Prime Minister and Cabinet, DPMC）により「サイバーセキュリティ戦略2019」が策定された105。尚、本戦略には、石油や天然ガス部門におけるサイバーセキュリティには言及されていない。

(2) 人為

Ministry of Economic Developmentが2012年に実施した調査106によると、ニュージーランドの石油供給に係るリスクとして、国際市場での供給途絶事象107や自然災害とともに、製油所等でのInternal Eventによっても供給途絶事象が発生する可能性を認識している。但し、このInternal Eventが事故なのか、内部犯行なのか等、詳細には言及されていない。

(3) 自然災害

2011年2月に同国カンタベリー地方で発生したマグニチュード6.3の大地震では、185名が死亡し、数千人が負傷する大惨事となった108。これを受けて、同国ビジネスイノベーション・雇用省傘下のNational Science Challengesの公式サイトでは、同国では地震、津波、火山噴火、気候、及び、海岸線の損壊が自然災害リスクとして認識され、事前と事後に分けて対策が講じられている109。

2016年2月にも、クライストチャーチ北東95km地点を震源とするマグニチュード7.8の地震が発生し、ニュージーランド全土の合計で18億ドルの損害保険の求償がなされた。

＜事前対策＞

ニュージーランドでは自然災害発生中の電力システムの強靭性を評価する新手法の開発が進められており、それにより、様々な自然災害発生時の、ある特定地域の損害の発生度合の評価が可能になる。電力供給網の提供者は、自社の既存システムが自然災害に対してどれ程の強靭性を有するか、及び、強靭性の向上のためにどの分野に投資すべきかを知ることが可能となる。加えて、電力の復旧を含む、自然災害発生後のより効率的なシステム運営が可能になる。

104 同上（2019年12月アクセス）
105 "New Zealand's Cybersecurity Strategy 2019"
106 Information for NZIER Report on Oil Security、Hale & Twomey、2012年、
107 地域や原因等、詳細は言及していない。
109 https://resiliencechallenge.nz/about/ (2019年12月アクセス)
＜事後対策＞
（自然災害発生直後の対応策）
電力システム上でどれだけ物理的な投資を行っても、どの地域が自然災害時に被害を受けるかを事前に特定することは不可能であり、災害発生時には発電所設備、送配電線、地中ケーブル、サブステーション設備に被害が生じる可能性がある。一例として、2016年のKaikoura地震発生時には、様々な設備に損害が生じ、複数の地域において停電が発生した。そのため、自然災害発生時の数つかのケースにおいて停電は避けられず、早急な復旧に向けた努力が必要であるとして、限られた時間と資源のなかで、エンドユーザーに電気が供給されるための最善の同日中の復旧策についての議論がなされている110。

（数日～数週間内の対応策）
自然災害の規模と影響度により、停電が数時間から数週間続く可能性もある。かかる状況となった場合でも、停電が継続する時間を減らすための電力システムの管理・操業手法が検討されており、対象の一例として、水力発電を含めた分散型マイクログリッド発電の導入が検討されている。例えば、自然災害発生時や系統への過負荷時への強靭性向上のため、ウェリントン市では、25軒の民家の屋根にネットワーク化された太陽光パネルと蓄電池を設置することによる仮想発電所（Virtual Power Plant）の実証試験が実施された111。

石油に関しては、2012年に実施した上記調査112を基に、Ministry of Business, Innovation and Employmentが緊急用の石油パイプラインや貯蔵設備の建設を提言している113。

2.6.3 エネルギー・レジリエンス対策の責任体制
Ministry of Civil Defense and Emergency Management傘下のNational Emergency Management Agencyが、ニュージーランドの防災を管轄している。同Agencyは、防災に関する政府への助言、災害リスクの把握、民防災戦略の策定、関係諸機関の調整等の職掌事項が規定されており、災害対応のLead Agencyとして関係省庁と連携するとされている。エネルギー部門に関しては、National Emergency Management Agencyの指揮のも

110 National Science Challenges
112 Information for NZIER Report on Oil Security, Hale & Twomey, 2012年、
113 Measures to improve domestic oil security, 2012年、
と、Ministry of Business, Innovation and Employment (MBIE) がエネルギー部門の防災に関わることになっている。

2.7 アメリカ

2.7.1 エネルギー・レジリエンスの定義

アメリカでは、既に 2006 年には国土安全保障省（DHS）の Critical Infrastructure Task Force が「レジリエンスを、投資戦略策定のための統合的目標として定める」として、レジリエンスの重要性を指摘していた（セブ宣言は 2007 年）。2013 年には当時のオバマ大統領が、President Policy Directive の中で、「エネルギー部門は重要インフラであり、特に電力供給の維持は死活的に重要」とレジリエンスに言及している。レジリエンスとは、環境の変化に備え、適応するとともに、途絶に対応し早急に回復するための能力を意味する。レジリエンスには自然災害や事故だけでなく、人為的攻撃への対処と復旧の能力も含まれる。

また、国防授権法（U. S. Code Title 10 Armed Forces §101）では、エネルギー・レジリエンスを「エネルギーの供給と供給信頼度を確保するため、予期された、あるいは想定外の途絶を回避し、事前に備え、影響を最小化し、適応し、復旧するための能力」と、エネルギー・セキュリティを「エネルギーの安定的な供給を確保し、死活的に重要な活動を支えるために十分なエネルギーの供給を維持すること」と、区別している。

2.7.2 エネルギーインフラ強靭化に向けた取組み

(1) サイバーリスクへの認識

2013年の大統領令（Presidential Policy Directive 21）で、エネルギー部門は16ある重要インフラ部門の一つとして位置付けられた。同年の National Infrastructure Protection Plan では、重要インフラの防護体制フレームワークがまとめられ、それを受け2015年に策定された Energy Sector-Specific Plan では、石油・天然ガス、及び電力部門におけるリスクの中にサイバーリスクが記載されている。また、後述する通り、国土安全保障省の Operational and Support Components の一つとして、Cybersecurity and Infrastructure Security Agency が位置付けられている。

114 原文は「The term 'resilience' means the ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions. Resilience includes the ability to withstand and recover from deliberate attacks, or naturally occurring threats or incidents.」。

115 原文は「The term “energy resilience” means the ability to avoid, prepare for, minimize, adapt to, and recover from anticipated and unanticipated energy disruptions in order to ensure energy availability and reliability.」。

116 原文は「The term “energy security” means having assured access to reliable supplies of energy and the ability to protect and deliver sufficient energy to meet mission essential requirements.」。

さらに、Energy APIは2018年10月に、石油天然ガス業界におけるサイバー攻撃に対するセキュリティ、レジリエンスと準備についての報告「DEFENSE-IN-DEPTH： CYBERSECURITY IN THE NATURAL GAS AND OIL INDUSTRY」を取り纏めている。これによると、各エネルギー企業はサイバー攻撃による企業リスクを認識しており、包括的なアプローチの開発を行っているとしている。また、企業は自身のITと産業制御システム(ICS)のサイバーセキュリティプログラムを、国立標準技術研究所(NIST)のサイバーセキュリティフレームワークとISA/IEC62443シリーズの産業オートメーション、および制御システム(IACS)セキュリティに合わせていると評価している。加えて、天然ガスの生産、流通、貯蔵などは地理的に多様化しており、柔軟性、弾力性が高いとしている。

<table>
<thead>
<tr>
<th>石油・天然ガス</th>
<th>電力</th>
</tr>
</thead>
<tbody>
<tr>
<td>・自然災害及び極端な気象条件</td>
<td>・サイバー及び物理的攻撃の脅威</td>
</tr>
<tr>
<td>・環境・健康を含む規制・法令の変更および遵守コストの増大</td>
<td>・自然災害及び極端な気象条件</td>
</tr>
<tr>
<td>・石油・ガス需要及び価格の乱高下</td>
<td>・高齢化する作業員の能力及び人為的エラー</td>
</tr>
<tr>
<td>・暴噴、石油流出、作業員の負傷を含む事故</td>
<td>・機器の障害およびインフラの老朽化</td>
</tr>
<tr>
<td>・政治不安、社会騒乱、テロ等による途絶</td>
<td>・環境、経済及び供給信頼度に関する規制要件の絶え間ない厳格化</td>
</tr>
<tr>
<td>・輸送インフラの制約によるエネルギー資源の流通障害</td>
<td>・技術および燃料供給を含む操業環境の変化</td>
</tr>
<tr>
<td>・不充分または負担能力を超えた保険</td>
<td></td>
</tr>
<tr>
<td>・インフラ老朽化と作業員の高齢化</td>
<td></td>
</tr>
<tr>
<td>・内部者からの攻撃を含むサイバーリスク</td>
<td></td>
</tr>
</tbody>
</table>

(出所)Department of Homeland Security, Energy Sector Specific Plan

(2) 人為

上記Energy Sector-Specific Planでは、Regulatory and legislative changesやEvolving Regulatory Requirements（規制・法律改変）、Operational HazardsやHuman Error（運営・操作上の危険・ミス）、Disruption due to political instability, civil unrest, or terrorist activities（政情不安、社会不安、テロによる供給途絶）、Transportation infrastructure constraints（輸送インフラ制約）、Inadequate or unavailable insurance coverage（不十分な保険補償範囲）、Aging infrastructure and workforce（インフラ老朽化や人材高齢化）といった人為的リスクが記載されている。自然災害や価格変動といった

リスクよりも、人為的リスクの項目がはるかに多く、エネルギー部門での人為的リスクが強く認識されていることがうかがえる。

(3) 自然災害

石油・天然ガス及び電力給与に係る上記リスクには、輸送インフラ制約やインフラ老朽化等、インフラに関連するリスクが記載されている。また、National Infrastructure Protection Planでは、エネルギー部門の部会（Energy Sector）の下で具体的な検討を行うサブ部会（Oil and Natural Gas Subsector及びElectricity Subsector）には、各省庁、規制機関、産業・貯蔵、輸送・配給、小売等、エネルギー事業全般をカバーする業界団体や企業が含まれており、さまざまなエネルギーインフラが検討対象になっていると推測される。ランド研究所は、掘削プラットホーム、発電所、パイプライン・送電線、製油所、貯蔵設備、変電所といったエネルギーインフラを潜在的に脆弱であるとしている。しかし、国土安全保障省やエネルギー省の政策文書では、防護すべきエネルギーインフラに関する具体的な記載はない。尚、ランド研究所がDOEの委託により石油・ガス・電力供給システムのレジリエンスの指標化を検討した調査では、石油・ガスインフラよりも電力システムの方が多くの途絶リスクに晒され脆弱ポイントが多いことを指摘している。

2017年7月にNatural Gas Councilは、天然ガス事業に関する“Reliable and Resilient”を発表している。あらゆる操業の問題に対する補償や早期復旧能力を含む、天候に関係したサービスの中断に対する信頼性と回復力への貢献について、天然ガス事業の詳細な特徴を報告している。中で、米国の天然ガスパイプラインは、生産と貯蔵の分散、広域で統合されたパイプラインにより、気候災害に対する信頼性が高く、また、堅牢なサイバー、物理セキュリティを備えており、混乱が生じた場合にも迅速にオンラインに戻せる能力を備えていると述べられている。

(4) 電力

従来から電力部門は供給信頼度維持に取り組んできたが、近年の激甚災害の頻発に対して、信頼度の概念では不十分との問題意識が高まっている。但し、電力の規制機関の団体で

あるNARUCは、レジリエンスの定義は、規制政策に用いるには十分に精緻化されていないと指摘している。これを受け、2013年にエネルギー省（DOE）と電力業界が、気候変動と気象災害に対する電力システムのレジリエンスに関する取組みを開始し、2014年にDOEの4年ごとのエネルギー政策レビュー（QER）でもレジリエンスの分析枠組みの検討を開始、更には2015年に電力系統近代化政策の一環としてレジリエンスの指標の検討を開始している。

2.7.3 エネルギー・レジリエンス対策の責任体制

米国のレジリエンス政策はDepartment of Homeland Security（国土安全保障省）の管轄である。同省は、2001年の同時多発テロを契機として、それまでは点在していた国土安全保障に関する組織や部署を統合し2002年に設立された。Cybersecurity and Infrastructure Security Agency、Customs and Border Protection等、8つの政府機関が国土安全保障省のOperational and Support Componentsとして位置付けられている。上述の通りエネルギーは重要インフラ部門とされており、エネルギー省はSector Specific Agencyとして国土安全保障省と連携する。
図表 7 国土安全保障省の組織図

（出所）国土安全保障省
2.8 インド

2.8.1 エネルギー・レジリエンスの定義

インドで防災を管轄するNational Disaster Management Authority（NDMA）は、国連防災機関（United Nations Office for Disaster Risk Reduction：UNDRR）の方針と整合性を取った政策を取っている123。NDMAのNational Disaster Management Plan124で同様の記述があるが、レジリエンスの定義は見られない。

石油・天然ガス省の管轄下にある石油・天然ガス規制委員会（PNGRB）が2010年に定めた規則（緊急対応及び災害管理計画の実施規範－2015年改訂）には、石油・天然ガスのインフラや設備に関する災害予防や災害発生時の緊急対応方法が記載されているが、レジリエンスの定義はされていない125。

電力部門に関しては、国営電力会社が2015年に、電力インフラの気候変動に対する強靱化に関する報告書126を公表している。そこではレジリエンスを、フィリピンと同様に、当時の国連国際防災戦略事務局（現国連防災機関）の定義127を参照し、「災害による被害の防止、準備、対応と復旧の能力」としている。同報告書では、気候変動への適応を念頭に、気候変動によってもたらされる災害の発生頻度は低いが事後対策の費用は莫大であること、従来の電力システム構築の際のリスク想定では稀少なイベントは通常は考慮に含めないこと、が指摘されている。これらは、稀頻度重大損害（HILP）の概念と合致するが、レジリエンスがHILPに限定され、その点でセキュリティと区別するとまでは言及していない。

2017年には電力省が、電力部門の危機/災害対応計画を策定した128。同計画は、インドが頻繁に自然災害（及び人为的事故等）に見舞われていることから、電力の安定供給及び需要増に見合った設備形成に向けて検討されたものである。ここでもレジリエンスという用語が使われているが定義はされておらず、対象となるリスクには、毎年経験している洪水や旱魃も含まれている（HILPではなく供給信頼度の範疇）。

また、国営電力会社が2015年に、電力インフラの気候変動に対する強靱化に関する報告書を公表し129、そこではレジリエンスを、国連国際防災戦略事務局（UNISDR）の定義

127 “the ability of a system, community, or society exposed to hazards to resist, absorb, accommodate to, and recover from the effects of a hazard in a timely and efficient manner, including through the preservation and restoration of its essential basic structures and functions”
（ハザードに曝されたシステム、コミュニティあるいは社会が、基本的な機構及び機能を保持・回復することなどを通じて、ハザードからの悪影響に対し、適切なタイミングで、効果的な方法で抵抗し、それを吸収・受容し、またそこから復興する能力130を参照し、「災害による被害の防止、準備、対応と復旧の能力」としている。同報告書では、気候変動への適応を念頭に、気候変動によってもたらされる災害について、発生頻度は低いが事後対策の費用は莫大であること、従来の電力システム構築の際のリスク想定では稀少なイベントは通常は考慮に含めないこと、が指摘されている。これらは、HILPの概念と合致するが、レジリエンスがHILPに限定され、その点でセキュリティと区別とまでは言及していない。

2017年には電力省が、電力部門の危機/災害対応計画を策定した131。同計画は、インドが頻繁に自然災害（及び人為的事故等）に見舞われていることから、電力の安定供給及び需要増に見合った設備形成に向けて検討されたものである。ここでもレジリエンスという用語が使われているが定義はされておらず、対象となるリスクには、毎年経験している洪水や旱魃も含まれている（HILPではなく供給信頼度の範疇）。

2.8.2 エネルギーインフラ強靭化に向けた取組み

(1) サイバー

サイバーセキュリティは内務省の管轄にあるが、サイバーリスクに関する具体的な情報は同省のウェブサイトには掲載されていない。NDMAのNational Disaster Management Planや石油・天然ガス省年次報告書等、主要な政策文書では、エネルギー部門に関するサイバーリスクへの言及がない。

なお、日印両政府は、2012年以降3回にわたって日インド・サイバー協議を行っており、サイバーセキュリティに関する情報共有や意見交換が行われているが、外務省のウェブサイトでは、エネルギー部門でのサイバーリスクに関して特段の議論がされているかは確認出来ない。従って、エネルギー部門におけるサイバーリスクに関して、インド政府がどのような認識を持っているかは不明である。しかし、2019年11月に発生したインド原子力発電公社に対するサイバー攻撃132を受けて、送電事業者にサイバーリスク対策強化を義務付けられる予定と報道されており133、エネルギー部門でのサイバーリスクに関する認識が深まっているものと推測される。

Infrastructure,” September 2015.
130 “the ability of a system, community, or society exposed to hazards to resist, absorb, accommodate to, and recover from the effects of a hazard in a timely and efficient manner, including through the preservation and restoration of its essential basic structures and functions”
132 日本経済新聞，2019年11月1日，https://www.nikkei.com/article/DGXMZO51671120R01C19A1EAF000/
(2) 人為

NDMAのNational Disaster Management Planでは、地震・火山噴火・津波等の自然災害とともに、化学プラントや原発の事故、テロ、感染症、治安といった項目が人為的リスクとして認識されている134。エネルギー部門に関しては、油ガス田や原子力発電所での事故リスクが言及されている。石油・天然ガスの政策文書でも、事故リスクという用語は散見されるが、詳細な記述は見られない。

(3) 自然災害

石油・天然ガスに関しては、石油・天然ガス省の管轄下にある石油・天然ガス規制委員会（PNGRB）が2010年に定めた規則（緊急対応及び災害管理計画の実施規範 - 2015年改訂）に石油・天然ガスにインフラに関する予防及び復旧対応が規定されている。災害の想定は①人為的災害、②自然災害、③その他（テロ、暴動等）とし、予防措置（潜在的危険の特定、リスク分析及び評価、対策の文書化、事前訓練等）から、災害発生時の責任体制、緊急連絡体制や災害復旧対策までが規定されている135。

2.8.3 エネルギー・レジリエンス対策の責任体制

インドでの防災を管轄してきたのは内務省（Ministry of Home Affairs）であるが、具体的な政策はNational Disaster Management Authority（NDMA）が担っている。

NDMAは2005年に設立され、モディ首相が議長を務めている。NDMAの職掌範囲には、防災に関する政策立案、National Disaster Management Planの承認、省庁間や地方政府との調整等が含まれる。石油・天然ガス・電力に関しては、石油・天然ガス省、電力省、新・再生可能エネルギー省、原子力庁がそれぞれNDMAと連携し、National Disaster Management Planに反映されている。

石油・天然ガス市場の規制機関である石油・天然ガス規制委員会（PNGRB）のAnnual Report 2018-2019によると、緊急事態を管理し損害を最小限に抑えるために規定された2010年のPNGRB規則（前述）は、「石油、石油製品、天然ガスに関する保管、取り扱い、輸送、流通等に関するすべての下流活動に適用される」と記載されている136。従って、緊急時にはPNGRBが企業と連携して、石油・天然ガスのレジリエンス確保にあたるものと推測される。

2.9 各国の取組の共通点・相違点

アメリカやオーストラリアではエネルギー・レジリエンスを明確に定義し、サイバー・人為・自然災害に関するリスク項目を明確に認識のうえ、強力な責任体制のもと強靭化に向けた取組が進められている。同様に、殆どの国ではエネルギー・レジリエンスが定義されているが、マレーシアやインドなど、一般的なレジリエンスのコンセプトに類似させる、或いは、UNDRR の方策と整合性を取るといった対応がなされている国も存在する。このように統一的に共有されている国際的なエネルギー・レジリエンス概念やその向上に向けた方策は現状存在せず、国際規格化等を通じた確立が課題である。

自然災害リスクに関しては、過去に経験した大災害やそれを発端とする大規模停電の経験がレジリエンシー向上に資する取組強化への契機となっている点や、電力部門を重要インフラと位置付けてサイバー・人為・自然災害リスクへのレジリエンシー向上に資する取組がなされている点で共通している。

一方、石油・ガス部門に関しては、アメリカやインドにおいては各種リスク対策と災害発生時の復旧対策まで含めた文書化を行っているのに対して、インドネシアやオーストラリアなど石油製品の輸入国では安定供給といったエネルギー・セキュリティの文脈で整理されているなど各国固有の事情による相違点も確認される。尚、アメリカでは電力系統近代化政策の一環としてレジリエンス指標の検討がなされている。

エネルギー・レジリエンス向上へのアプローチの規格化等を議論するにあたっては国情の相違を十分に尊重したうえで、共通する項目や方策を整理する必要がある。
3. レジリエンスの定量評価の取組み例

これまで述べてきたとおり、エネルギー・レジリエンスに対する関心が高まる一方で、こうしたエネルギー・レジリエンスの向上に関する事業はコストと見なされることが多く、レジリエンス向上に積極的に取り組んでいる主体が円滑に資金調達を出来ることになることが重要である。

現状では、レジリエンス向上の取組みがファイナンスを確保し難しいことは、多くの調査報告等で指摘されている。その要因として共通して指摘されるのは、レジリエンス向上の取組みが長期的には経済的便益が期待できるとしても、初期コストが大きいこと、レジリエンス向上による経済的便益を定量的に評価することが難しいこと、特に、災害による損害を回避することによる便益を推計するのは困難であり、また、有形・無形の文化的資産が守られる等の、定量評価に難がある便益も含まれ得ること、等の点である。

昨今では、世界的に極端な気象災害の発生を受け、各国政府・自治体や企業がレジリエンス対策の必要性への認識を強めており、政府や保険業界が、レジリエンス向上の取組みに対しプレミアムを付与するスキームを導入する動きがある。また、気候変動に伴う自然災害に対するレジリエンス（Climate resilience）に限れば、グリーンボンド等の制度も始まっていく。但し、金融界からはエネルギー・レジリエンスを定量評価する指標が無く、投融資判断に支障があるという指摘もあり、資金調達には依然として障壁が存在し、便益の定量評価の難しさは、資金調達面での主要な課題となっている。

3.1 レジリエンスの定量評価に関する文献レビュー

－RAND Corporation, Measuring the Resilience of Energy Distribution Systems, 2015－

ランド研究所が2015年に公表した報告書は、エネルギー省（DOE）の委託に基づき、エネルギー供給システムのレジリエンスの定量的指標について文献調査を行ったものである。

138 同上。

139 具体的には、本事業の一環として実施した「エネルギー・レジリエンスの定量評価に向けた専門家委員会」の第1回会合の内容を参照（後出）。
一回の報告となった2015年QERは、第二章で「輸送配給インフラの強靭性、安全性及び資産防護の向上」を取り上げた。ランド研究所は、QER策定の一環として、エネルギー供給システムのレジリエンス向上のための事業評価手法を模索するDOEから、電力・石油製品・天然ガスの供給システムの強靭性を測るための枠組みの開発を委託された。

ランド研究所は、レジリエンスについて様々な定義が存在するものの、共通する要素として次の4項目に注目した。

第一に、システムのレジリエンスとは、当該システムを用いて供給されるサービスの状態に関わる概念であり、レジリエンスを測るためには、①当該サービスが損なわれたか、②どの程度損なわれたか、③どれだけ迅速にサービスが回復したか、④どの程度のサービスが回復したか、が鍵となる、としている。

第二に、システムのレジリエンスは、システムの設計と運用に左右される。すなわち冗長性を備えた設計で、余裕度を持たせた運用がされ、復旧を念頭に置いて設計されたシステムは、サービスが損なわれる度合いが軽微となり、つまりよりレジリエントなシステムである。

第三に、起因事象への対応が異なれば、システムのレジリエンスも、それに伴うコストも異なってくる（災害からの復旧時に追加投資を行い、より効率的な機器を使用する等）。

第四に、時間軸も重要であり、システムの維持向上が継続的に行われて入ればサービスは改善するが相応の費用を伴い、維持向上が行われなければ運転費用は抑えられるが、長期的にはサービスは低下する。

レジリエンスを定量評価する際にランド研究所は、①目標が達成されたか、②改善の余地がどこにあるか、また改善がなされたか、③限られた資源をどこに優先的に投入すべきか、の把握を容易にすることを念頭に置いた。また、定量評価の際に考慮されるべき要素について、ランド研究所は下図のように整理している。

図表8 レジリエンスの構成要素

<table>
<thead>
<tr>
<th>構成要素</th>
<th>能力</th>
<th>技能</th>
<th>性能</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Inputs)</td>
<td>(Capacity)</td>
<td>(Capability)</td>
<td>(Performance)</td>
<td>(Outcome)</td>
</tr>
<tr>
<td>レジリエンス</td>
<td>要素が組み合わせされて備わる能力</td>
<td>必要とならない場面でいかに発揮されるか</td>
<td>システムが創出し得る価値</td>
<td>システムが生む「社会が求める」価値</td>
</tr>
<tr>
<td>向上のために投入可能な要素</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

例)
- 予算
- 機器
- 預備品数
- 発電機数

例)
- 予算
- 機器
- 預備品数
- 発電機数

例)
- 機器を確実に作業ガス漏れや停電を供給可能なエネルギー災害による供給途絶が起きないこと、絶えがたく供給されるか
- 災害時の復旧計画、した導管や電線のシステムの特性、経済活動の活発化、
- 回復に用いる技術、要員の数

上記の整理を踏まえてランド研究所は、1997～2014年に発表されたエネルギーシステムのレジリエンスに関連する58件の報告をレビューし、定量的尺度に盛り込むべき項目を洗い出した。内訳は石油・ガス関連8件、電力関連34件、エネルギー全般が16件で、抽出された項目は、石油・ガス関連67件、電力関連105件であった（重複あり）。例えば電力供給システムの個別設備レベルの要素としては、次のような項目が挙げられている。

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Capacity</th>
<th>Capability</th>
<th>Performance</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料貯蔵</td>
<td>通信/制御システム</td>
<td>通信/制御システム</td>
<td>基幹電力システムの</td>
<td>火災による電力供給システムの</td>
</tr>
<tr>
<td>利用可能な発電回路保護</td>
<td>機器の配置</td>
<td>瞬間故障率に関する機能</td>
<td>エネルギー効率/原単位</td>
<td>遮断</td>
</tr>
<tr>
<td>機の数</td>
<td>機器の配置</td>
<td>延焼ラインの緩和</td>
<td>など</td>
<td></td>
</tr>
<tr>
<td>機器の損壊処理</td>
<td>リミッター制御</td>
<td>負荷バイアス</td>
<td>など</td>
<td></td>
</tr>
<tr>
<td>予備の主要装置</td>
<td>予備力</td>
<td>予備の主要装置</td>
<td>など</td>
<td></td>
</tr>
<tr>
<td>の在庫</td>
<td>変電設備・架空送電線</td>
<td>高調波歪</td>
<td>など</td>
<td></td>
</tr>
<tr>
<td>送配電線の冗長電線/地下送電線の接続</td>
<td>電柱の素材（コンクリートor木製）</td>
<td>電気スイッチ装置</td>
<td>など</td>
<td></td>
</tr>
<tr>
<td>電柱の素材（コンクリートor木製）</td>
<td>電線地中化</td>
<td>など</td>
<td></td>
<td></td>
</tr>
<tr>
<td>スマート機器のパスワード暗号化</td>
<td>作業員の数</td>
<td>など</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（出所）RAND Corporation, Measuring the Resilience of Energy Distribution Systems, 2015より抜粋

このようにレジリエンスの定量評価に用い得る構成要素を例示しながらも、ランド研究所は、多くのデータが事業者の内部情報であり、データの収集・分析が難しいこと、稀発度重大損失事象に対する対応と回復のCapabilityを測定することは困難なことを指摘している。このため、レジリエンスの評価は、依然として、Capabilityに関する理解を深め、いかにして定量評価が可能になるかを模索する段階にある、としている。

3.2 レジリエンスのフェーズに注目した評価指標

−Argonne National Laboratory, Resilience Measurement Index: An Indicator of Critical Infrastructure Resilience, April 2013−

エネルギー省傘下のアルゴンヌ国立研究所が2013年に公表した報告書は、2009年に米
国土安全保障省（DHS）が重要インフラ防護体制の向上のために編み出した指標「Protective Measures Index：PMI」を基にしたレジリエンス指標（Resilience Index：RI）に、既存の民間規格（英国規格協会、全米防火協会、米国規格協会がそれぞれ策定した事業継続性に関するマネジメント規格）を加味して発展させたレジリエンス評価指標（Resilience Measurement Index：RMI）である。

RMI は、様々な施設について、それぞれ最も脆弱な箇所を発見し、施設の強靭性対策を促すための指標として編み出され、RI は様々な施設の強靭性を測定する尺度として考案された。RMI は、事前の準備（preparedness）、緩和（mitigation）、対応力（response capabilities）、回復メカニズム（recovery mechanism）という構成要素をより重視して開発された。報告書では、RMI 作成の手法が紹介されている。

RMI の作成にあたり、まず初めに、レジリエンスの 4 つのフェーズ（準備、緩和、対応、回復）に含まれる様々なアクションを文献調査を通じて収集し、それを階層に分類する作業が行われた。まず準備段階は、①災害等の情報収集とリスク評価を含む「認知」と、②対応策を練る「計画」段階に分かれる。

緩和は、①災害等に対する施設の耐久力を高めるための「設計」と、②「代替拠点」を用いた事業継続（被害抑制）、③事業継続に不可欠なリソース別に、それが途絶した場合の「緩和策」から成る。

事後の対応は、①災害等の発生時に、外部からの支援無しに初動として実施可能なオンサイトの対応と、②警察や救急、消防といった外部支援機関およびリソース供給者との連携を通じて実施可能なオフサイトの対応、そして、③オンサイト、オフサイトを含め、災害等に対する対応と復旧及びサービス継続のための活動について、情報を収集して管理する能力、に分かれる。

回復メカニズムは、災害等の後、ダメージを受けた主体が、その活動を許容可能なレベルにまで効率的に回復するための活動であり、①施設/機器の復旧に必要な部品やサービスのサプライヤーを含む、外部リソース供給者との事前の合意に基づく活動と、②災害等発生前の活動を完全に復旧するまでの活動に分けられる。

このように分類されたレジリエンスの構成要素について、アルゴンヌ研究所は、評価対象の施設に対するヒアリングを交えながら、要素それぞれの重要性を 0～100 の間で評価し、相対的な重みを算出する。そして、各項目の対策が実施できているかいないか（0 か 100 か）の評価を掛け合わせて、対象施設のレジリエンス度を算出する。この定量化の過程では、アルゴンヌ研究所と DHS が 2000 年代初頭以来の協力関係を通じて構築してきた、意思決定の分析モデル（decision analysis methodology）が使われた。
図表 10 RMIにおけるレジリエンスの構成要素の分類

<table>
<thead>
<tr>
<th>事前準備 (preparedness)</th>
<th>認知 (awareness)</th>
<th>レジリエンスを念頭に置いた操業 (resilience operations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>計画 (planning)</td>
<td>情報共有 (information sharing)</td>
<td></td>
</tr>
<tr>
<td>緩和 (mitigation)</td>
<td>新たな計画手順 (new planning measure)</td>
<td></td>
</tr>
<tr>
<td>緩和を念頭に置いた設計 (mitigating construction)</td>
<td>事業継続計画 (business continuity plan)</td>
<td></td>
</tr>
<tr>
<td>サイバー (cyber plan)</td>
<td>緊急措置/行動計画 (emergency operation/emergency action plan)</td>
<td></td>
</tr>
<tr>
<td>自然災害 (natural hazards)</td>
<td>新たな緩和措置 (new mitigation measure)</td>
<td></td>
</tr>
<tr>
<td>スタンドオフ距離 (standoff distance)</td>
<td>重要資産/区域の緩和 (significant asset/area mitigation)</td>
<td></td>
</tr>
<tr>
<td>代替拠点 (alternate site)</td>
<td>電力 (electric power)</td>
<td></td>
</tr>
<tr>
<td>資源 (別の) 緩和措置 (resource mitigation measures)</td>
<td>天然ガス (natural gas)</td>
<td></td>
</tr>
<tr>
<td>通信 (communications)</td>
<td>情報技術 (information technology)</td>
<td></td>
</tr>
<tr>
<td>交通 (transportation)</td>
<td>重要資材 (critical products)</td>
<td></td>
</tr>
<tr>
<td>下水道 (wastewater)</td>
<td>電力 (electric power)</td>
<td></td>
</tr>
<tr>
<td>対応力 (response) 施設内の対応</td>
<td>新たな対応措置 (new response measure)</td>
<td></td>
</tr>
<tr>
<td>對応力 (response) 施設外の対応</td>
<td>事故管理能力 (incident management capabilities)</td>
<td></td>
</tr>
<tr>
<td>初動／緊急要員の連携 (first preventions/responders interaction)</td>
<td>資源 (別の) サービス内容合意 (resources service level agreements)</td>
<td></td>
</tr>
<tr>
<td>依存関係の数 (equivalent number of dependencies)</td>
<td>事故管理 & 指令センター (incident management & command center characteristics)</td>
<td></td>
</tr>
<tr>
<td>地域対策拠点の関与 (local emergency operation center involvement)</td>
<td>施設の事故管理 & 指令センター (facility incident management & command center characteristics)</td>
<td></td>
</tr>
<tr>
<td>回復メカニズム (recovery) 原状回復合意 (restoration agreements)</td>
<td>情報共有 (information sharing)</td>
<td></td>
</tr>
<tr>
<td>回復メカニズム (recovery) 復旧時間 (recovery time)</td>
<td>資源 (別の) 原状回復合意 (resources restoration agreements)</td>
<td></td>
</tr>
<tr>
<td>重要資産/区域の復旧 (significant asset/area recovery)</td>
<td>資源 (別の) 復旧 (resources recovery)</td>
<td></td>
</tr>
<tr>
<td>（出所）Argonne National Laboratory, Resilience Measurement Index: An Indicator of Critical Infrastructure Resilience, April 2013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

アルゴンヌ研究所による RMI は、エネルギーに限らず全ての重要インフラにつき、自然災害に限らずあらゆるリスクに関するレジリエンスを評価できる点で優れているとされるが、定量評価の過程で、評価者の価値判断を挟むため、評価者の訓練とヒアリングの手順に一層の改良余地がある。また、施設レベルのレジリエンス評価には有用だが、地域や産業レベルのレジリエンス評価には適さない、等の課題が指摘されている。
3.3 米国規格協会によるレジリエンス・マネジメント規格

前出のアルゴンヌ国立研究所の RMI が参照した民間規格の一つが、アメリカ規格協会が 2009 年に発行した「組織のレジリエンス」基準である 140。ASIS PSC.1-2009 は定量化された基準ではなく、(営利/非営利、民間/政府・公共のいずれの組織にも適用可能な) マネジメント基準であり、PDCA のプロセス・アプローチを用いている。

ASIS PSC.1-2009 はマネジメントシステムの対象範囲（Scope）として、
- 組織が自ら、OR の対象範囲を（組織全体なのか部分的なのか等）定義すること、
- 組織の重要な活動、機能、内部及び対外的な責任（主要サプライヤー、下請け、顧客等ステークホルダーとの関係を含む）及び法的責任を考慮し OR マネジメント上の要求事項を決定すること、
- 運用上において重要な機能、資産、サービス、製品を特に考慮に含めること、
- 組織の運用及び重要な活動に損害を与え得る内部的および外的事象について、リスクシナリオを策定すること、
- OR マネジメントシステムの継続的改善を図る観点から、OR の対象範囲は適切な規模で、過度に複雑にならないこと、
等と規定している。

経営層は人命や環境、物理的資産の防護と事業継続性を含む OR マネジメントに関する方針を決定し、文書化し、OR マネジメントに経営資源を投入するよう規定されている。ここに要望として考慮すべきは、意図的、非意図的及び自然災害による影響であり、組織の運用、機能及び人、無形及び物理的資産、環境、並びに組織のステークホルダーに関与する影響を及ぼす可能性があるものである。

リスクシナリオ策定においては、リスク評価と影響分析を行わなければならないが、その際の考慮事項として、次の諸点が示されている:
(1) リスク評価と影響分析に当たっての考慮事項
- 組織の活動、機能、製品及びサービス、組織の運用、人、財産、資産、賠償、イメージ、利益、信用、環境等に直接又は間接に影響を及ぼす潜在性について、その重大性とリスクを考慮すること。
- 特定された潜在的なリスクの発生確率、及びそれらが顕在化した場合の影響の重大性を見積もるため、文書化された定量的又は定性的手法を利用すること。

140 なお、内容については「重要インフラ防護におけるレジリエンス・マネジメントについて」、公益財団法人 防衛基盤整備協会報告書（平成25年2月）を参考にした。
(2) 影響分析に当たっての考慮事項
- 人的コスト（従業員、顧客、サプライヤー及びステークホルダーに対する物理的及び心理的危険）
- 財務コスト（装置の交換、中断時間、超過勤務手当、在庫価格の下落、事業機会の喪失、訴訟、罰金等）
- イメージ・コスト（評判、コミュニティにおける名声、否定的報道、顧客喪失など）
- 地域経済に対するインシデント・インパクト、地域経済活動の縮小、管轄地の税基盤の喪失など
- 環境へのインパクト：環境品質の低下又は絶滅危惧種の低下

(3) 最大許容停止時間及び目標復旧時間に対する考慮事項
- プロセスの最大許容機能停止可能時間
- プロセス復旧までの最短の停止許容時間
- 季節条件に従った異なる目標復旧時間
- 戦略提携、相互援助、手動回避策、通知/警告等の代替手順の明確化及び文書化
- 代替手順コスト対システム復旧待機コストの評価

ASIS PSC.1-2009 はマネジメント規格であると自ら定義づけているとおり、定量的要素を含まないが、民間企業/政府・公共団体を問わず、業種を問わずあらゆる組織に適用可能なレジリエンス規格として作成されているため、エネルギー・レジリエンスの定量評価について検討する際には、エネルギー供給産業とエネルギー需要側を含むする指標はどのようなものか、を考察するうえで有用と考えられる。なお、上述のとおり、ASIS PSC.1-2009 は
リスクの定量的評価を要求しているため、ASIS PSC.1-2009 を実際に運用している企業/団体において、エネルギーに関連するリスク評価をどのように行っているかを情報収集できれば、一層有益な情報になると考えられる。

3.4 実績ベースの電力レジリエンス指標

— Sandia National Laboratory, Resilience Metrics for the Electric Power System: A Performance-Based Approach, February 2017 —

アルゴンヌと並び、エネルギー省傘下のラボの一つであるサンディア国立研究所が公表した電力供給システムのレジリエンス指標に関する報告書は、トランプ政権下の 2015 年 11 月に開始された送電網近代化イニシアチブの一環である、国立研究所から成る Grid Modernization Laboratory Consortium で実施した送電網のパフォーマンス評価尺度の検討について、報告書として公表している。評価尺度は、供給信頼度（reliability）、柔軟性（flexibility）、持続可能性（sustainability）、affordability（入手可能性）、安全性（security）およびレジリエンスの 6 分野に分けて検討された。

報告書は前文で、供給信頼度とレジリエンスの違いについて述べている。それによれば、従来から電力部門は供給信頼度維持に取り組んでおり、供給信頼度を評価するための指標は SAIDI（平均停電継続時間）、SAIFI（平均停電回数）、CAIDI（顧客年間平均停電時間）、CAIFI（顧客年間平均停電回数）等が広く使われる。この供給信頼度とは、想定内の供給停止の際のサービス維持を念頭に、夏季ピーク断面での任意の単一設備事故時に、一段負荷切替えや切替先過負荷許容等によって供給支障を解消できるかどうか（n-1 基準）を評価するものである。これに対し、近年の激甚災害の頻発により供給信頼度の概念では不十分であり、稀頻度・巨大損失事象が起きた場合の電力供給サービスの低下と回復を念頭に置くのがレジリエンス、と定義づけている。

報告書はまた、レジリエンス指標のアプローチとして、属性ベース、即ちレジリエンスを高める資産や措置を分類・スコア化し、将来起こり得る事象に対する耐久力・回復力を評価する手法と、実績ベース、即ち実際の災害時の実績データを基に推計する手法とに二分して整理している。実績ベースの方が定量的かつレジリエンス向上のための設備投資の費用対効果を推計する場合等に有用だが、複雑で多分のデータを必要とする。このデータは実際の災害等発生時の実測データのほか、コンピュータシミュレーションにより得られるデータも含む。2015 年にエネルギー省が発表した 4 年毎のエネルギー政策評価（Quadrennial Energy Review）で、レジリエンス評価に際しては、①稀頻度重大損失事象に特化、②電力システムの実績に即する、③定量的な損失推計、④可能な限り不確実性を反映、の 4 点が重要、と指摘されたことも踏まえ、また産業界における実績ベース指標への関心の高まりもあり、報告書では、実績ベースのレジリエンス指標について検討を行っている。レジリエンス指標の検討は、具体的に、以下の手順に沿って行うことが推奨されている。
第1ステップ：レジリエンス（指標）の目標を特定
例）地域の電力供給システムの自然災害に対する耐性を高める
電気事業者の、レジリエンス向上のための投資・修繕費配分の優先度を決める
災害時の医療や交通システムに対する電力供給の確保
第2ステップ：被害類型と、（対応する）レジリエンス指標を特定

<table>
<thead>
<tr>
<th>被害類型</th>
<th>レジリエンス指標</th>
</tr>
</thead>
<tbody>
<tr>
<td>直接的被害</td>
<td></td>
</tr>
<tr>
<td>電力サービス</td>
<td>・供給先の累計停電時間</td>
</tr>
<tr>
<td></td>
<td>・供給されない電力の累計</td>
</tr>
<tr>
<td></td>
<td>・一定期間における需要家の平均停電回数</td>
</tr>
<tr>
<td>重要施設向け</td>
<td></td>
</tr>
<tr>
<td>電力サービス</td>
<td>・重要供給先の累計停電時間</td>
</tr>
<tr>
<td></td>
<td>・重要顧客に対する供給されない電力の累計</td>
</tr>
<tr>
<td></td>
<td>・重要供給先の平均停電回数</td>
</tr>
<tr>
<td>復旧</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・復旧までの時間</td>
</tr>
<tr>
<td></td>
<td>・復旧に要するコスト</td>
</tr>
<tr>
<td>金銭的損失</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・電力会社の収入減少</td>
</tr>
<tr>
<td></td>
<td>・送電網の損傷に伴うコスト</td>
</tr>
<tr>
<td></td>
<td>(e.g. 電線や変圧装置の修繕/交換費用)</td>
</tr>
<tr>
<td></td>
<td>・復旧費用</td>
</tr>
<tr>
<td></td>
<td>・回避可能費用（e.g. 代替エネルギーのコスト）</td>
</tr>
<tr>
<td>間接的被害</td>
<td></td>
</tr>
<tr>
<td>地域社会</td>
<td>・重要施設における停電（e.g. 病院、消防署、警察署）</td>
</tr>
<tr>
<td></td>
<td>・重要施設におけるN時間以上の停電（e.g. 予備燃料持続時間を超える停電）</td>
</tr>
<tr>
<td>金銭的損失</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・資産の減損や価値棄損</td>
</tr>
<tr>
<td></td>
<td>・事業中断コスト</td>
</tr>
<tr>
<td></td>
<td>・地域経済生産（GRP）への影響</td>
</tr>
<tr>
<td>その他重要資産</td>
<td></td>
</tr>
<tr>
<td></td>
<td>・重要な生産施設における停電</td>
</tr>
<tr>
<td></td>
<td>・重要な国防施設における停電</td>
</tr>
</tbody>
</table>

第3ステップ：災害等の原因事象の特性評価
事象が実際に発生する蓋然性、当該事象により深刻な被害が生じる蓋然性、戦略的重要性、リスク評価のベースとなる情報の入手可能性、等に基づき、レジリエンス評価のスコープに含めるべき事象を選別

第4ステップ：供給支障のレベルを特定
特定の災害等の発生シナリオの下で、電力システムが被る被害のレベルを推計

第5ステップ：モデル分析その他の手法を用いてデータを収集
過去の類似の災害等による被害データを基に、特定の災害発生時の被害を推計する等

第6ステップ：損害とレジリエンス指標の算出
金銭的な損害額のような、シンプルな指標で損害を評価、不確実性が高い場合は、ステップ3のリスクシナリオの段階で確率を加味する等して、単一値で測られる指標を算出

以上がレジリエンス指標の作成の手順だが、現実にはこのリスク想定に依拠した分析は、発生し得る事象が地域により異なるため画一的なレジリエンス対策は不可能であるとして、報告書では、地域に委ねるべき、と指摘している。

サンディア研究所によるこの報告書は、あくまで電力システムのレジリエンスの定量評価の方法論を整理したに過ぎないが、これまでに紹介した他の先行研究と異なり実績ベースの評価手法を具体的に提案しており、かつ、6段階に整理された手順は、他のエネルギーシステムのレジリエンス評価にも参考になると考えられる。

3.5 日本の分析事例

－丸山宏、Roberto Legaspi、南和宏「レジリエンスのタクソノミと共通戦略」『オペレーションズ・リサーチ』2014年8月号－

ここまで、APEC地域の中でもレジリエンスの定量評価で先行する米国の事例を紹介してきたが、いずれもビジネス現場でのレジリエンス評価に実際に適用し得る段階ではなく、分類学に止まっている、と言って差し支えないだろう。その点、日本国内でもレジリエンスの構成要素を整理した先行研究があるため、その内容を紹介する。

同論文は、想定外の事象を考えるとき、システムが一時的にせよその機能や完全性を失うのは避けられず、障害を防止するのではなく、障害の発生を避けるものとしたうえでいかに回復し、システム全体を存続させるか、ということをレジリエンスとして捉えた。この観点から、レジリエンスの文脈を①攪乱のタイプ、②対象とするシステム、③レジリエンスの局面、④回復のタイプ、の4つの軸で整理している。

攪乱のタイプはさらに、意図の有無、頻度、予測可能性、継続時間、内部性、により分類できる。自然災害のように意図を持たないものは、一定の確率分布に従ってランダムに発生するが、サイバー攻撃、テロ等の意図的なものは、システムの最も脆弱な点を突く。頻度の面では、極めて稀な事象に備えることは、コスト的に見合わないため、リスクを認識したうえで、敢えて対策をしないことも選択肢に含まれる。高頻度のリスクに対しては防止、稀頻度のリスクに対しては回復の戦略が有効である。予測可能な災害には事前準備が可能だが、事前予測の難しい地震等に対しては、発生後の緊急対応と回復が重要になる。また、落雷のような継続期間の短いものは、その発生中に対策できる可能性が低いが、気候変動のような現象は、発生を検出して対応することが可能になる。そして、金融危機のように、複雑さを
増していくシステムが自己崩壊するパターンも、内部から発生する脅威として整理できる。対象システムは、まず粒度という点では、個別の個体レベルのレジリエンスもあるが、社会全体の存続が主眼となる場合もあり、その間の様々な規模のレジリエンスがあり得る。そして、収益を追求する企業のように明確に目的関数をもつシステムであれば、特定の脅威シナリオに対するレジリエンスを定量化することができるが、社会コミュニティのように多数のステークホルダーがいてシステム全体の目的関数がはっきりしないものもある。

レジリエンス対策が行われる局面は、次のように整理できる：
① 設計時：多くのレジリエンス戦略が設計時に組み込まれる。
② 運用時：通常時にどのように運用されているか、システムの導入、アップデート、監視、訓練、内部点検等システムを継続的に健全に保つための戦略。
③ 事前予測：攪乱事象が予測可能な場合は、早期警戒システムを導入することが可能。
④ 検出：攪乱事象を安定的に検出でき、発生してから被害をもたらすまでの経過時間にある程度の余裕がある場合には、検出に投資するの是有効。
⑤ 緊急対応：システムはモードを変え、人命救助、被害の拡大防止が主目的となる。災害対策本部に意思決定の全権を与えるなど、通常と異なる優先順位で対応。
⑥ 回復/合意形成：限られた資源の中で、どの機能を優先的に回復させるかについて、複数のステークホルダーの間で合意形成が必要になる。
⑦ イノベーション：攪乱事象を契機に、より良いシステムに生まれ変わる機会に繋がる。

攪乱事象からのシステムの回復という場合に、回復のタイプも大きく3つに分けられ、システムが攪乱の前と全く同じ構造に戻る場合（例：工業製品の部品交換）を構造的レジリエンス、システムの構造を変化させつつ機能が維持される場合（例：企業の事業構造を変化させて収益を回復）を機能的レジリエンス、システムが新しいレベルの同一性を維持しつつ別の機能・目的をもって生まれ変わる場合（例：日本の戦後復興）を適応的レジリエンス、と呼んでいる。最後に、様々な分野（ドメイン）やレベル（粒度）のレジリエンス戦略に共通する要素として、冗長性、多様性、適応性が挙げられている。

以上の整理を踏まえて、本研究ではレジリエンスの数理モデルを考案している。具体的には、現在の環境（システムにとっての環境制約）Cと、それに適応したシステムの状態iと、新しい環境C’と、それに適応するために変化を遂げたシステムの状態i’という変数を用いた適応度関数を構築した、と説明されるが、このモデルについては詳述しない。この数理モデルは、検証・発展段階にあるとされるが、下表に示したレジリエンスのタクソノミは、エネルギーシステムに当てはめて検討する際にも有用と考えられる。
図表12 レジリエンスのタクソノミ

<table>
<thead>
<tr>
<th>搖乱のタイプ</th>
<th>意図の有無</th>
<th>頻度</th>
<th>繰り返し</th>
<th>内部性</th>
</tr>
</thead>
<tbody>
<tr>
<td>頻度</td>
<td>高頻度（ランダム）</td>
<td>稀頻度</td>
<td>否</td>
<td>内部的</td>
</tr>
<tr>
<td>予測可能性</td>
<td>予測可能</td>
<td>予測不可能</td>
<td>是</td>
<td>内部的</td>
</tr>
<tr>
<td>継続時間</td>
<td>相対的に短い</td>
<td>相対的に長い</td>
<td>否</td>
<td>内部的</td>
</tr>
<tr>
<td>対象</td>
<td>領域</td>
<td>生態学</td>
<td>工学</td>
<td>金融</td>
</tr>
<tr>
<td>システム</td>
<td>能動性</td>
<td>受動的</td>
<td>能動的</td>
<td></td>
</tr>
<tr>
<td>粒度</td>
<td>個体レベル</td>
<td>社会全体（多数の個体）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>機能(目的)</td>
<td>明確</td>
<td>不明確</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

レジリエンスの局面 設計 運用 事前予測 検出 緊急対応 回復/合意形成 イノベーション 回復のタイプ 構造的 機能的 適応的

*レジリエンスが研究されているドメイン（領域）は多岐にわたります。
**生物や生態系のように、揺乱に対する回復メカニズムを内在的に持つ場合を受動的レジリエンス、社会システムや企業など、維持するために人間の知的作業による介入が関わる場合を能動的レジリエンスと区別しています。

（出所）丸山宏、Roberto Legaspi、南和宏「レジリエンスのタクソノミと共通戦略」『オペレーションズ・リサーチ』2014年8月号を基に弊所にて和訳

3.5 小括

以上、紹介してきた6つの研究について、本事業の一環としてエネルギー・レジリエンスの定量評価の方法論を検討する際に参考になると考えられる点を、次のとおり整理する。

RAND, 2015	レジリエンスを、①構成要素（役割可能な要素）、②能力（要素が組み合わされた能力）、③性能（行動基準が作用するか）、④結果（システムが示す「社会が求める」価値）に基づいて整理。能力指標を作る場合の、評価項目の抽出に役立つ一方、データ収集制約（内部情報）
Argonne, 2013	レジリエンスを、フーズ（手順）に注目して整理。マネジメント基準を作る場合の、評価項目の抽出に有用。各項目の実行状況（〇×）と重みづけを掛け合わせた定量化という手順は、参考になる。
米国規格協会, 2009	マネジメント規格であり定量的要素を含まない（リスクについては定量的評価を要求）あらゆる組織で適用可能であるため需要側と供給側を包摂する指標を考える際に有用。
Sandia, 2017	実績ベースの定量評価の手法確立を目指したもの。「レジリエンスの目標」は、各事業者の「レジリエンス対策の受益者は誰か、費用負担者は誰か」の関心に対応。稀頻度重大損失事象に焦点を置き、本事業のレジリエンスのスコープに一致しない点、注意を要する。
丸山 etc., 2014	レジリエンスの局面に分けた整理はArgonneと類似。揺乱要因の分類は、本事業のレジリエンスのスコープを考慮すると参考になる。レジリエンス戦略の共通項を「冗長性、多様性、適応性」と簡潔に整理している点も、シンプルな指標、の期待に合致。
4. エネルギー・レジリエンスの定量評価に向けた専門家委員会

4.1 専門家委員会の実施目的

4.1.1 背景
燃料・熱・電力といったエネルギーは産業活動や国民生活など社会のあらゆる活動を支える基盤であり、安定的なエネルギー供給は国家・地域の持続可能な発展に必要な前提条件である。

エネルギー・レジリエンスは、エネルギー安全保障と持続可能な発展（経済的繁栄及び環境持続性）を実現するためのキー・コンセプトとして、APECにおいて2014年から継続的に議論されてきている。エネルギー政策の要諦は、「3E+S」（エネルギーの安定供給（Energy Security）、経済効率性（Economic Efficiency）、環境への適合（Environment）、安全性（Safety））であり、APECにおける議論も、3E+Sの観点も踏まえたものとなっている。

このように、アジア諸国を中心として、世界的に3E+Sのバランスをとったエネルギー政策の推進が必要とされている中、大規模な自然災害が多発しており、エネルギー・レジリエンスの向上に資する投資を進展させるファイナンスの重要性がますます高まっている。今後、バランスのとれたエネルギー政策を進め、エネルギー・レジリエンスを向上させるとともに、エネルギー投資を進展させるための十分なファイナンスにつなげていくため、世界的な議論の動向を踏まえ、我が国が獲るべき対応について、検討を進めていくことが必要である。

4.1.2 エネルギー・レジリエンスの定義
エネルギー・レジリエンスとは、平時時には需要者を含む社会に対して所要のエネルギーを安定的に供給するとともに、有事には自然・人為的災害等によるエネルギー供給支障（エネルギーの供給の途絶）が、人命・資産や経済活動及び社会にもたらす影響を低減するための、災害等の発生前後における、ハード・ソフト面での安全性・堅牢性及び迅速な停止復旧能力である。

4.1.3 検討の方向性
上記の背景を踏まえ、政府、国民、産業界、金融界などのステークホルダーが、どのような取組を行えばエネルギー・レジリエンスが向上するのか、また、エネルギー・レジリエンスを向上させる産業界等の取組が金融的にも適正に評価され、ビジネスやファイナンスにつなげていくためにどのような仕組みが必要なのかについて、各分野で先進的な取組を行っている専門家による検討を行う。

取り組むべき内容はステークホルダーごとに異なることが想定される。このため、ステークホルダー別に防災・減災・復旧・復興といった観点や、産業界における調達・生産・物流・
販売といった観点から、検討を行う。
エネルギー・レジリエンスの向上は我が国単独の取組だけでは達成困難であり、国際的な
取組が欠かせない。その際、ビジネスの力を最大限に活用し、我が国の防災・減災・災害対
応の技術や知見を国際展開していくことが肝要である。このため、エネルギー・レジリエン
スを向上させるために重視すべき項目や評価のあり方については、将来的な国際標準化も
見据えながら検討を進めることとする。

4.2 専門家委員会の実施

(1) 第1回会合（2020年2月6日）
① エネルギー・レジリエンスをめぐる国際情勢について
② エネルギー・レジリエンスの概念整理について
(2) 第2回、第3回会合（2020年3月10日、17日）
① 各分野におけるエネルギー・レジリエンスの向上に関する取組
② エネルギー・レジリエンスの向上のために重視すべき項目や評価のあり方について

4.3 専門家委員会における議論の概要と論点整理

(1) 議論の概要

第1回会合
日 時：令和2年2月6日（木）10:00～12:15
場 所：経済産業省本館17階 第1～2共用会議室
欠席者：鈴木委員、中原委員、守谷委員

1. 事務局より委員会の目的・運営について説明。運営について委員等から異論なく、資料
3の案の通りとなった。

2. 事務局よりエネルギー・レジリエンスの概念整理、国際的な議論動向について説明。

3. 委員からの主な意見
○委員会の取組みについて
● 広域災害が発生した際に経済活動を途絶えさせないために何ができるのか。平時の環
境性能、有事の際の防災向上に寄与する取組みの経験を、定量的な評価の仕組みの構築
にも役立てていきたい。
● レジリエンスの観点から、多様化、リスク分散という考え方が非常に重要。また、レジ
リエンス対策といっても、同じ取り組みが、リスク想定に応じて異なる性格を持つ場合
あるので丁寧に議論しながら考えていきたい。

（自然災害の被害が甚大化する中）今までコストだと思われていたものについて、投資を呼び込んでいくことは非常に重要。ESG投資も拡大する中、レジリエンス向上というS（社会）の価値としても重要であり、投資家に発信できるような強いものを作っていきたい。

〇「エネルギー・レジリエンス」の定義について

有事（災害時の対応）と平時（有事に対応するための事前対応）の両方をみるという説明は、エネルギー事業者と平時・有事の捉え方が異なる印象。エネルギー事業者は何も無い時に如何に着実にエネルギーを届けるかに日々努めており、当然有事も想定するが、安定供給は平時・有事関係なく日常の取組である。

災害というより各種多様化しているリスクと捉えては如何か。

通常時においてもかかるリスクは増えており、そもそもレジリエンス対策の必要性は、平常時の持続可能な成長があってこそ。自然災害に対する強靱性より広い解釈で検討しては如何か。

〇評価の視点について

そもそも定量評価を供給側と需要側のどちらに帰属させるのか。強靱化となれば供給側の話になり、BCPやサプライチェーンとなれば需要家側の話となる。最近は自然災害がニューノーマルになっており全く予測できないなか、誰の視点で定量評価をやっていくのが一番良いのか、しっかり検討したい。

4つポイントがある。1点目はレジリエンスを考える単位で、個々の生活者・企業（点）、サプライチェーン（線）、エリア（面）のレジリエンスをどう考えていくか。特にエリアの観点からは、地域の防災拠点という地域貢献を考えるが、企業の自助努力を超える範囲でやる場合にはそれをどう評価していくのかは重要。2点目は、供給側と需要側である。顧客の声も踏まえてレジリエンスはどの動向が視認されているのかという点が大事。3点目はエリアである。エリアも2つに分かれて、都市部・再開発地域でのレジリエンスの取組は多々やっているが人口問題等を抱える地方も重要。4点目は評価である。エネルギーの直接的なメリットやCO2に加え、間接的なメリットとしての非エネルギー・ベネフィットをどう定量化するか、が重要。

「エネルギー・レジリエンス」の国際展開について

自然災害に限らずサイバーリスク等に対しても先端技術でどのように対応していくのか、それによりファイナンス側のリスクを下げ、若しは、早期回復によりダメージを減らせるのではないかと着目している。

今回この取組は日本の強みを海外に広くアピールするチャンスでもある一方、そのよう
な取組・指標・評価が先ずきちんと日本で広まりうまく回っていることを示しながら国際舞台に出ていくことが必要。
● 同様の議論が、APEC等で検討が進んでいるなかで、どのように位置づけていけるのか。世界的に受け入れられるのか・認められるのかというゴールを見据えながら、議論していく必要がある。

第2回会合
日 時：令和2年3月10（火）13:00〜15:00
場 所：Web 会議
欠席者：笹山委員、末廣委員、鈴木委員、中原委員、守谷委員

1. 事務局より、議論のポイントとして、エネルギー・レジリエンスの取組への需要家の反響、エネルギー・レジリエンス取組を評価するシンプルな指標としてのアイディア、投資家や顧客への効果的発信のあり方の３点について説明。

2. 事務局より金融業界におけるエネルギー・レジリエンスの商品化事例について説明。

3. 産業界におけるエネルギー・レジリエンスの取組についてご説明。

4. 委員からの主な意見
 ○金融業界の取組事例について
 ● 一般的に、株式市場は開示がなされている情報でしか評価できない世界。気候変動については、TCFDの議論が始まってからGPIFがSDGs指数を運用するまでに3〜5年を要した。エネルギー・レジリエンスの指標も、色々アイディアを出し、金融業界の方で価値形成が徐々に行われ、最終的に1〜2年スパンでKPIが業界別に収斂していけば、順当といえるのではないか。合わせて個々のプロジェクトの積み上げが大事であり、その積み上げが評価となっていく。
 ● エネルギー・レジリエンスに関する顧客の取組を評価する事は商品設計上、可能。
 ● 現在のところ、ESGの取組として圧倒的に多いのは環境面の取組。例えば再エネでも、エネルギー・レジリエンスではなく環境配慮の観点から見る顧客が多い。指標ありきで商品設計をするのではなく、金融当局の規制や国際合意、そこから派生するムーブメントがあり金融業界での価値形成が出てくることで、徐々に顧客と金融サイドのマインドが一致していくのではないか。

 ○エネルギー・レジリエンスの取組への需要家の反響について
 ● 電力や燃料供給を途絶えさせない「エネルギー・レジリエンス」の取組を開始してから、今まで顧客でなかった外資系企業や準外資系企業からも声がかかるようにな
った。自立分散、エネルギー・レジリエンスという視点は、日本以上に、国際的に見ると評価される対象になり得るのではないかと受け止めている。

○エネルギー・レジリエンス取組を評価するシンプルな指標としてのアイディア
● エネルギーのレジリエンスを、「状況が予見可能か否かに関わらず、必要なエネルギーの供給・需給上の機能を継続する能力」と整理すると、指標について2つ考え方がある。第一に、過去の災害に対しそのシステムがどういった風に振る舞ったかのパフォーマンスを表す指標、第二に、将来起きる災害なり事象に対して、そのシステムがどの程度レジリエントか、システムの能力を表す指標。
● 従来は個人や企業がリスク評価の単位だったが、今後は企業が立地する地域の自然災害やエネルギー供給の条件まで見る必要がある。保険の世界では、立地も踏まえ、ダメージからの回復まで含めてリスク量を減らすという作業を現在どんどん進めていく。
● （メーカー各社が出しているカタログスペックと実際の機器から発生する故障情報が異なる状況が多々あるため、）災害に対しその程度耐えられたか、早期復旧できたかという結果で評価するパフォーマンス指標を考えるべきという意見に同意。過去の実績データを如何に収集し、それを公知のものにしていくかが重要。
● エネルギー・レジリエンスの評価指標の因子の考え方があるが、先ず使えそうな公共データを沢山並べ、その中で3つなら3つの指標に集約すべく当てはめていくという手法が考えられる。但し、複数の指標に関連する因子もあり、誰の視点で定量評価をするか、何を重点的に見ることができる重要な作業が必要。
● 故障情報は共有化・一般化し、指標に落とし込むのは難しいが、これを入ることでエネルギー・レジリエンスの評価ができると思われる。
● （平時運用をしている中でも前提条件は時々刻々変わる）ある時点で異常が起こった際にどの程度の影響があるのかは、その後の異常事態に至るまでの時間も加味すると実際に受ける損害が変わってくる。技術革新により、こうした今まで難しかった部分も評価できるようになるのではないか。
● エネルギー・レジリエンスをシンプルに捉えるなら、やはり供給の多様化・重層化。また、それぞれの手段によって重み付け（評価、効果）が異なる。それを示す指標としては、停電時間だけではなく、電力だけになっているので、例えば何か起きたときに翌日に50%供給できるなど、共通に捉えるもののが良い。

○投資家や顧客への効果的発信のあり方
● 企業の取組事例は、それぞれ、顧客が誰なのか（エネルギー・レジリエンスの指標化を考慮する場合に、評価をする主体は誰か）が重要。
● 過去の激甚災害の経験を踏まえ、業界全体で24時間以内に平時の1/2の供給を確
保するための BCP を実施し、第三者評価も入れて BCP が適切に機能するか常に点検しているが、世間からはなかなか周知されない。
- 海外の同業種の BCP と比較してどうなのか等、比較できるものがあれば、よりエネルギー・レジリエンスがファイナンスに繋がっていくと思われる。
- BCP を考えるうえでは、復旧までの期間やレベル感に加えて、それをどの程度継続できるのか、という点も重要になってくる。
- 個別の家庭の心配事やニーズには個別に対応し新サービスの開発につなげていきたいと思うが、エネルギー・レジリエンスの観点での一番のプレイヤーは自治体。

第３回会合
日 時：令和２年３月１７（火）13:00～15:00
場 所：Web 会議
欠席者：井上委員、笹山委員、末廣委員、鈴木委員、蛭間委員、守谷委員

1. 電力業界におけるエネルギー・レジリエンスの取組みについて
2. 石油業界のエネルギー・レジリエンスの取組みについて
3. ガス業界におけるレジリエンスの取組みについて
4. 需要家サイドにおけるレジリエンスの取組みについて

電力
- 旧一般電気事業者を見渡した場合、エネルギー・レジリエンスの面で地域を判断する場合には、非常用電源が整備されているかどうか、という地域の自助的な点が１つの指標になり得る。
- 地域防災において人通りの多い場所であれば建物発信機器を、自治体や地域産業などが活用し得る。エリア開発技術であれば不動産会社や大手法人が利用し、平常時・非常時の電源ソリューションは、小規模事業所や学校、マンションなど多様に活用できる。
- お客様や自治体と連携した、社会の皆様の声を踏まえた太陽光や蓄電池を組み合わせたレジリエンス向上への取り組みや、ヒートポンプ等の電力利用機器や VPP の構成要素の一部として使って需給バランスを取る、といった取組みを行っている。エネルギー・レジリエンスはリスク管理の 1 要素であり、サプライチェーンも含めた BCP でどのようにになっているかという捉え方だと認識。ネットワークの標準化もさることながら、供給側のエネルギーの多様化と需要家側のバックアップの多様化の両方が進むことが、社会のレジリエンスの強化になるのではないかと考えている。
石油

石油各社は、製油所等の出荷拠点から給油所（SS）に至るサプライチェーン全体をカバーする「系列 BCP」を整備し、不斷の見直しをおこなっているとのこと。この取組に感銘を受けた。是非 PR していくべきものと考える。

お客様にとっては安定供給が最も重要な要素と考えており、エネルギー・レジリエンスが差別化要因になると期待しているが、現状は、実際に有事にならなければ評価いただけないところであり難しいところ。

大規模災害時には被災地からの連絡を受け、燃料供給要請が自治体から始まって官邸経由でエネ庁に届くことになる。その際、石油連盟に緊急要請対応室が立ち上がり、調整のうえ元売り各社に依頼し対応可能な会社から供給を行っている。

「系列 BCP」の評価は、エネ庁がシンクタンクに依頼して災害対応の専門家の評価を受け、各社が BCP のバージョンアップを図る。第三者評価の過程で質を高めるコメントを頂き、各社が対応している。

ガス

災害時のガス供給停止の際に LP ガス発生設備を送る取組みは、顧客との追加的な契約に最初から入っている。数に限りがあるため、エリア内のお客様を社会的優先度によるもので優先的に供給する。平時を通じて確保とのバランスもみて、できるだけ広く対応できるよう各事業者が保有している。

下水道については、第三者利用ということで自社設備というよりは新規参入者も含めたレジリエンスという観点になる。また、有事の際は事業者間連携の体制が確立している。バリューチェーンの面で新規参入者と既存事業者の差は少なく、その点でエネルギー・レジリエンスを差別化し難いと感じる。

エネルギー・レジリエンスの定量化については過去にも対応した事例がある。評価の部分で、復旧時間の最小化やダウンタイムはエネルギー供給だけを捉えているのではなく、対象先の設備や設備の損壊まで考慮している。お客様に自社への影響やサプライチェーンへの影響、設備の損壊をヒアリングし、そこに重要度の点数付けを実施。経済損失の規模に重みを乗じて、アウトプットとして被害総額を算出。コストに関しては、コージェネ導入費用等を積算した上で「見える化」した。

ガス業界の事業者間連携は、基本的には被災ガス事業者の応援要請に基づいて動き、差配等については日本ガス協会の中で対策本部を経時的に立ち上げ、各地の土木部会と連携しながら活動を有効に回らせる仕組みが出来ており、年に 1 度程度練習を行っている。

需要家側

エネルギーに関しユーザとしてやるべき事とユーザとして求めるとの 2 つがある。
前者は使う量を減らす工夫、後者は、ユーザ側として本当に必要な機器に対し、非常時
に最低限必要とするエネルギーを受けられる仕組みを、新しい技術を含めながら実現
していくことである。

● エネルギー・レジリエンスをより適正な指標とするためにはフィールドデータを共有
化、集約することが重要。フィールドデータは、設備構成の際にカタログスペックをベ
ースの信頼度評価ではなく、設備の故障の生データを活用するという意味で用いた部
分と、複数の企業や供給者との連携により対策を打つことで、コストを抑制できる可能
性を念頭に用いた部分とがある。

● 電力・ガス・石油会社の中で実際にここの部分だけは供給し続けるといったことを保証
するような取り組みは、何かでき得るものなのか。
電力業界は、グループ会社の中にエネルギーサービスを行っている会社があり、例えば、
停電時非常電源の保守まで含めて供給を行っている。
石油の場合は貯蔵できるという優れた特性があるため、毎日供給し続けるよりは、在庫
として保有いただき、それが不足すればまたお届けする事は可能だと考えている。
都市ガスは、例えば、地点の重要顧客に対し中圧という非常に耐震性の高い導管で供給
すると同時に分散型電源であるコージェネを配置、臨時供給を併せて対応している。

● 直流技術は、既存の設備等に照らしてそれが効率的であれば、商用の交流系統の信頼度
も踏まえたうえで直流技術をミックスさせることで、信頼度を一層高めることができ
る。地域防災×エネルギー＋ICT ということで、将来ローカルグリッドやマイクログリ
ッドがかなり普及した段階で直流分散型電源（太陽電池、燃料電池、蓄電池、EV）か
らの直流をそのままローカルで活用してレジリエンスを高めていくと同時に、省エネ
の観点からも効率化を図ることも考えられる。

(2) これまでの議論における主たる論点

● 企業によるエネルギー・レジリエンス向上に資する取組は、これまでコストとして捉え
られる活動であったが、昨今の自然災害等による社会・経済的影響を考慮すればその重
要性は高まっており、金融機関が投資判断を行う場合に参考となる指標の構築は、エネルギ
ー・レジリエンスに向けたファイナンスの促進に結びついていくことが期待される。

● また、エネルギー・レジリエンス関連分野は、これまで日本の経験や知見、さらには
レジリエンス強化に供するエネルギー関連技術といった強みを広く海外にアピールす
るチャンスでもあり、世界的に受け入れられる様々な指標構築の検討を積極的に進めて
いくことは重要である。

● エネルギー・レジリエンスをシンプルに捉えれば、供給インフラの多様化や重層化であ
り、それぞれの手段によって重み付け（評価、効果）がなされるべきである。

● 定量化指標については、シンプルであり、共通して利用可能なものであり、且つ、海外
の同業企業と比較可能な特性を有していることが、ファイナンス促進の観点から
望ましい。また、供給側と需要側の双方に帰属すべきものである。

定量化指標の一つの考え方として、過去の災害に対して当該システムが発揮したパフォーマンスに即した指標と、将来何らかの事象が生じた場合における当該システムの対応能力を表す指標、の２通りの指標が考えられる。

エネルギー・レジリエンスを捉える単位（適応範囲：バウンダリ）は、個々の生活者・企業（点）、サプライチェーン（線）、エリア（面）など、各々の視点について考えていくことが重要である。
5. エネルギー・レジリエンスの国際標準化

5.1 エネルギー・レジリエンスに関する国際標準化の目的

日本では、他国に例をみない様々な災害の経験を有しており、その中でも停電等による一時的なエネルギー供給の途絶といったエネルギーインフラへの数々の影響に対峙し、エネルギー供給インフラの重要性や災害時での機能維持・回復に向けた体制のあり方につながって検討を重ねてきている。その結果日本は、他国に比べてエネルギー・レジリエンスに関する多くの知見を有している。

一方で、気候変動等による影響も背景として考えられながら、世界的にも自然災害の発生件数の増加が認識されるようになってきており、国際的にもエネルギーインフラを含めたレジリエンス向上の重要性に関心が高まってきた。そのため、日本のエネルギー・レジリエンスに関する知見を自然災害リスクが高い国も含めた世界と共知しながら世界をリードしていくことで、日本のエネルギーインフラの強靭化と世界全体での持続的な成長の実現にも寄与することは、SDGs到達に向けた取り組みとして有益であると考えられる。

日本が、国際的なエネルギー・レジリエンス強靭化に貢献するためには、個別の自然災害等に関する経験や知見の共有化、更には日本が有するエネルギー・レジリエンス強化に寄与する技術等の導入を促進するといった具体的な行動をどう進めるかといった「手段」を考えねばならない。しかし、国際的な共有化や行動の促進を図るには、各国がエネルギー・レジリエンス強化を行うことの目的や対応策などを包含する「理念（Principle）」と検討すべき「活動範囲（Scope）」を共通の定義（議論するための用語を含む）の下で共有するという「環境の整備」が不可欠であると考えられる。

そうした環境の構築を行うことを念頭に、国際社会とのエネルギー・レジリエンスに関する知見の共有を図るアプローチの一つとして、国際標準化を通じた働きかけが考えられる。以下では、エネルギー・レジリエンスに貢献する取り組みを国際標準化するためのアプローチと可能性について、取り纏めることにする。

5.2 国際標準の機能

5.2.1 国際標準化の定義

標準化の国際的な定義は、「実在の問題又は起こる可能性がある問題に関して、与えられた状況において最適な秩序を得ることを目的として、共通にかつ繰り返して使用する
るための記述事項を確立する活動141」とされている。これをエネルギー・レジリエンスと関連付ければ、政府や地方政府、エネルギー供給事業者や需要家、投資家を含む企業などの各主体が、個別に実施するエネルギー・レジリエンスの強化に関連する活動を検討・実施するために、継続的で実効性を高めるために有効な要素（クライテリア）を国際的に共通化する取り決め文書、ということになる。一般的な意味での国際標準とは、ISOやIECといった標準化を行う専門の機関が主導して策定するものであるが、環境NGOである米国のWRI（World Resource Institute）が産業界や専門家等と共同で、気候変動等の特定分野におけるガイドライン142を策定し、国際的に活用が広がった（市場等でデファクト化が進行した基準）ものを国際標準と位置付ける場合など、その形態は様々である。ここでは、国際的に最も認知度が高いと考えられるISO規格を参考に、国際標準の概要と機能について述べることにする。

5.2.2 ISO規格の分類とエネルギー・レジリエンス規格への適応
ISOは164の国が加盟する非政府組織であり、これまでに23,088件の国際規格を発行している世界最大の自主的な国際規格開発機関である143。ISOで開発される国際規格は、その内容に応じて4種類に分類される144。

(1) 基本規格
基本規格は、ISO規格で使用される用語、記号、単位、などの定義を規定したものである。エネルギー・レジリエンスに関係する用語や概念の定義が、国や業界等によって異なる設定が行われている場合、新たに開発を行う国際規格の中で異なる用語等を統一化することで、国際的なエネルギー・レジリエンスに関する共通理解を促進させるとともに、類似する国際規格間における相互関係の判断を容易にし、より適切な内容の規格開発や、国際規格を参照した国際的な取り組みを促進することが期待される。

(2) 方法規格
方法規格は試験、分析、検査及び測定方法、作業方法などを規定したものである。例えば、家電製品のエネルギー消費効率の試験方法を国際規格化することで、異なった国の試験機関で測定した場合でも、その結果に同一性をもたせることができる。また、製造におけるGHG排出量の測定・算定を行うための対象範囲や測定・算定方法を規格化すれば、当該製造分野におけるエネルギー消費効率やGHG排出単位を客観的な比較を可能とする。
エネルギー・レジリエンスへの適用では、様々な自然災害に対する各種設備・インフラ等の強靭性を工学的に測定する方法の規格化等が考えられる。

(3) 製品規格

製品規格は、製品の形状、寸法、材質、成分、品質、性能、耐久性、安全性、機能などを規定したものである。製品規格に沿った工業製品が供給されることで、信頼性のある取引や消費者選択による市場形成が促進される。エネルギー・レジリエンスの観点では、特定の自然災害による影響を考慮した設備・製品の設計に関する規格や、強靭性を十分に発揮する設備・製品の性能（例えば、強風に対する強度の基準値）を規定することで、自然災害等のリスクが低いと判断される国や地域における適切な設備・製品の強度の設定と認証制度を構築することで、工業製品市場等での設備・製品の信頼性を高めるとともに、エネルギー・レジリエンスに留意した市場形成を促進することが期待できる。

(4) マネジメントシステム規格

マネジメントシステム規格は、その対象を従来の「モノ」から「組織」に拡大した、ISOとしては新たな領域の規格である。その開発の端緒となったのがISO 9001（品質マネジメントシステム：1991年制定）であり、特に環境対策に特化したISO 14001（環境マネジメントシステム：1996年制定）や、最近ではISO 50001（エネルギーマネジメント：2011年制定）等が広く認知されている。

マネジメントシステム規格では、企業や政府、NPO等の組織(organization)が方針や目標を定めて、その目標を達成するためのシステムに関する要件や手順が規定され、対象となる分野における組織マネジメントの継続的な向上を図ることを目的としている。具体的には、方針に基づいて計画を立て(Plan)、実施マニュアルを作成・運用(Do)、定期的にチェック評価し(Chcek)、見直す(Act)という所謂PDCAサイクルの実行を基本的なモデルとして規定されている。近年規格化が活発に進行する地球温暖化対策に適用する規格群も、基本的にはこの取り組みサイクル全体を視野に入れた構成となっており、この点が算定や計測方法等の手法に特化した方法規格とは異なる。

今後のエネルギー・レジリエンス分野における規格化で期待されるのは、マネジメントシステム規格としての国際標準化である。例えば、国や地方自治体がエネルギーインフラの強靭化を促進するには、どういった自然災害が想定されるか、想定される自然災害に対して各エネルギーインフラの強靭性をどういった評価項目に基づいて検討・検証するかが重要である。その上で、適切なエネルギーインフラ導入促進に向けたエネルギー供給事業者、需要家、投資家等の各ステークホルダーに求められる要件（分野固有の評価すべき要素）や運用のあり方を規定し、各ステークホルダーが共通の考え方に基づいてPDCAサイ

145 一般的には「マネジメント規格」と呼称される場合が多い
クルを展開することが可能となる。また、関連する技術規格や方法規格を組み合わせて補完することで、各ステークホルダーの取組みを促進することも期待できる。

(5) 企業の社会的責任への対応に関する「原則」を規定したマネジメントシステム規格 (ISO 26000) の特徴

上述したように、マネジメントシステム規格は、環境や品質管理、組織ガバナンス等の改善や強化を実現するための具体的な手順を、対象とする詳細化されたテーマ別に取り纏めたものであるが、ISO 26000（社会的責任に関するガイダンス：Guidance on social responsibility）は、社会的責任における企業の広範な活動分野を包含した「原則」を規格化したマネジメントシステム規格であり、エネルギー・レジリエンスやその向上に向けたアプローチについて概念を整理する国際規格策定への示唆が多いため、ここで細説する。

ISO 26000は、1990年代の経済のグローバル化が進展する状況のなか、様々な課題が顕在化し、企業が社会的に取り組むべき対応を共通の考え方として整理して共有化を図る必要が高まったことを背景に開発されたものである。当該規格では、企業をはじめとするあらゆる組織の社会的責任として活動する際の原則として、「説明責任」「透明性」「倫理的な行動」「ステークホルダーの利害の尊重」「法の支配の尊重」「国際行動規範の尊重」「人権の尊重」という7つの原則が規定されている。そして、その原則に基づいて企業が取り組む社会的課題として、「組織統治」「人権」「労働慣行」「環境」「公正な事業慣行」「消費者課題」「コミュニティへの参画及びコミュニティの発展」の7つの事項が規定されている。また、これらの課題共通して留意すべきものとして「男女が異なった形で影響を受ける」可能性が考慮されている。更に、具体的な取り組みを実行する際には、「組織の何らかの決定又は活動に利害関係を持つ個人またはグループ」であるステークホルダーを特定し、対話を行い、両方のコミュニケーションをとるエンゲージメントが主要な行動であるとしている。ステークホルダー・エンゲージメントは、組織が社会的責任を理解し、運営体制をそれと組み入れ、実践し、見直し、改善する各局面で推奨されている。

特に当該規格が特徴的な点は、その規格開発までのプロセスにある。1990年代の半ばに、国連機関やOECD、さらには数多くのNGOが、企業の社会的責任に関する規格や基準の制定を主導・関与していたが、そうした行動規範や基準が多数存在することによる社会的混乱や企業への過大な要請といった課題が認識され、ISO理事会の判断により、社会的責任の統一的な国際標準の開発が開始された。通常のISOプロセスではTC（技術委員会）を新規に設立し、その下でWGを形成して規格化を行うという流れが一般的であるが、ISO 26000はそのテーマの重要性から、技術管理評議委員会（TMG：Technical Management Board）直下に作業グループを形成し規格化を行うというプロセスによって実行されている。

ISO 26000が規定している7つの原則は、それぞれのテーマに関連したTC等において詳細な規格開発が進められている。そういった意味でISO 26000は、より広範な規格開発の
広がりが想定される分野においては、その共通する原則と適応分野、基本的な活動というより上位に位置する規格を開発し、その後にデファクト化される（用語の定義を含む）ことで、世界全体での課題と実践の共有化を図っていくツールとして、ISO国際標準活用の可能性を示唆した事例の一つと考えられる。

5.3 国際標準開発に向けた取り組みオプションと留意点

5.3.1 国際標準化のガバナンスとアプローチ

ISOにおける具体的な規格開発の運営は、主として理事会（Council）、技術管理評議会（TMB）、そしてTMBの下部に設置された数多くの専門委員会（TC：Technical Committee）が国際規格の策定に向けた具体的な議論を行う（必要に応じて、サブ委員会（SC：Sub Committee）を設置）。各組織の主たる役割は以下の通りである。

1. 理事会：ISOの主要役員及び20の選ばれた会員団体からなる理事会の判断によって、ISOの運営内容が決定される。その中には、TMBから報告される事項の判断が含まれる。
2. TMB：ISOの組織、調整、戦略企画、及び専門業務の計画等、全ての事項に関する報告と助言を理事会に報告する。その中には、各TCのタイトルや適用範囲、および業務計画の承認、更にはISOのTCと、IECなど他の国際組織や地域組織間の技術的な調整問題の解決が含まれる。
3. TC：国際規格原案や技術分野の専門的事項を審議する場であり、必要に応じてSCやWGを設置して国際規格策定の業務を行う（具体的な規格内容の検討の場）

一方で、エネルギー・レジリエンスをはじめとして、新たに規格開発を行うにあたってのアプローチとしては、①新たなTCを設置して規格開発を行う、②既存のTCの中でWGを設置して規格開発を行う、③既存のTCの中に設置されているSCで規格開発を行うという選択肢が考えられる。以下では、アプローチ間の違いとメリット、課題について整理を行う。

(1) 新たなTCを設置して規格開発を行うケース

このケースでは、新たなTCの規格開発における適用範囲（Scope）が、既存のTCと重複がないかが重要になる。TCの承認は、ISOメンバー国の投票により設立の判断がなされる（投票国の2/3以上の賛成が必要）が、TMBが他のTCとの適応範囲の重複が認められると判断した場合には、申請者（もしくは投票で採択されたTC）は適応範囲の調整を行い、最
終的にTMBの承認をもってTCとしての活動が進行することになる（適応範囲の調整中には有効とする柔軟性もある）。

メリット:
- 期待する新たな適応範囲全般をカバーする規格開発を行う基盤の形成。
- 事務局（チェアを含む）業務を担うことで、開発する規格の内容やスケジュール等をリードすることができる。
- 適用範囲を理解・認識したメンバー国や専門家を得ることで、より詳細で建設的な規格化に向けた議論が期待される。

課題:
- 適応範囲の重複（例えば、エネルギー・レジリエンスと気候変動適応策）がある場合の調整が必要になる可能性
- 規格化に賛同するメンバー国の確保（含、TC設立投票への対応）

(2) 既存の TC の中で WG を設置して規格開発を行うケース
このケースでは、TCの適用範囲にある程度合致しているが、当該TCのSCでは詳細に適用範囲が規定されていない新たな分野での規格開発を、新設するWGにおいて実施することを提案するケースである。規格の発行も類似性のある規格の市場性が高まっていった場合、それらの規格群を統合して新たなSCを設立し、更なる規格開発へと繋がっていく（活用される）ケースも認められる。147

メリット:
- 既存の TC の規格開発を開始することができ、時間的に効率的な作業の実施と、他国の専門家確保が可能になる。
- 事務局（チェアを含む）業務を担うことで、開発する規格の内容やスケジュール等をリードすることができる。

課題:
- 既存 TC の適用範囲と新規の規格のそれが完全に一致しない場合、新規規格の内容に関して専門的知見を有する他国の専門家を得るプロセスが必要になる。
- 既存TCにおいて開発されている規格との適応範囲に不整合がある場合、既存規格と新規規格内容との調整が必要になる可能性がある。147 ISO TC207 では、気候変動に関する GHG 排出量の算定、報告、検証に係る国際標準化のニーズに対応して 3 つの WG が設立され、3 つの ISO 14064 ファミリー規格が発行されたが、その後も関連する規格開発のニーズが拡大したことから、WG を統合して SC7（GHG マネジメントと関連する活動）を設立し、新たな GHG インベントリ・検証関連規格や、脆弱性評価、適応（adaptation）、製品のカーボンフットプリント算定、Climate finance など幅広い気候変動関連規格の開発を呼び込むプラットホーム化が進められている。
(3) 既存の TC の中に設置されている SC で規格開発を行うケース

このケースでは、既に TC 内に設置されている SC において新規規格開発提案を行い、当該 TC に参加するメンバー国の投票による承認によって、規格開発が可能になる。ここでは、新規提案が既存の SC の規格適用範囲に合致しているかが問われることになるが、SC の適応範囲が TC の適応範囲よりも詳細に規定されていることが一般的であり、新規提案の受け入れ可能性の検討が、前述（2）のケースに比べて容易となる。

● メリット:
 ➢ 既存の TC での規格開発を開始することができ、時間的に効率的な作業の実施と、他国の専門家確保が可能になる。
 ➢ 事務局（チェアを含む）業務を担うことで、開発する規格の内容やスケジュール等をリードすることができる。

● 課題:
 ➢ 既存 SC において開発されている規格との適応範囲に不整合がある場合、既存規格と新規規格内容との調整が必要になる可能性がある。

以上のように、新たな国際標準の規格化にあたっては、既存の TC や SC の開発動向によって、アプローチの仕方が複数あることに留意することが重要であると考える。その理由としては、国際標準化のプロセスが抱える課題にどう取り組むかの見当が必要であるからである。

課題の一つは、規格開発の最終判断は 1 国 1 票の投票に委ねられるということである。仮に、自らの技術や政策に関連する規格内容の標準化を目指しても、異なった意見を有するメンバー国が多い場合には、内容の調整を余儀なくされる可能性がある。各 TC や SC 参加国の適合範囲も含めた意識がどうなっているか、内容に対して同調者をどの程度確保できるのか、それぞれのチャネルの特性を十分に吟味して提案を行う必要がある。

第 2 の課題は、開発に要する時間である。ISO 規格の通常の開発期間は 2~3 年程度であるが、意見対立の多いテーマでは、議論に要する時間が長くなったり、投票結果を踏まえた仕切り直しを必要としたりするケースも認められる。そのため、規格の発行時期に対する要請が強く認められる場合、よりコンセンサスを得ることが可能な提案の場を検討することも重要となる。

工藤拓毅、地球温暖化対策における国際標準化の役割に関する一考察、第 31 回エネルギー・資源学会システム・コンファレンス発表資料、2015 年

工藤拓毅、地球温暖化対策における国際標準化の役割に関する一考察、第 31 回エネルギー・資源学会システム・コンファレンス発表資料、2015 年
5.3.2 既存の TC/SC での規格開発の可能性

新規にエネルギー・レジリエンスの国際規格化を実施するにあたっては、2・3・1 で述べたように、既存の TC/SC において提案することに、規格開発の時間的要素や専門家確保といった観点からメリットがあると考えられる。ここでは、既存の TC/SC における適用範囲や規格開発の概要から、エネルギー・レジリエンス関連規格の開発可能性について考えることにする。

(1) TC 268/SC1 Smart community infrastructures

TC 268（Sustainable cities and communities）の適応範囲は、以下となっている。

- TC 268 での標準化では、すべての都市とコミュニティおよび農村と都市に関するスマートさとレジリエンスを考慮した持続可能な開発の達成に関連する要件、フレームワーク、ガイダンス、サポート技術およびツールの開発が含まれる。

(注: TC 268 は、標準化作業を通じて国連の持続可能な開発目標に貢献する)

- 提案された一連の国際標準は、持続可能な開発と持続可能性に対する全体的かつ統合的なアプローチの開発と実装を奨励する。

このうち TC268/SC1（Smart community infrastructures）では、Infrastructure metrics (WG1)、Integration and interaction framework for smart community infrastructures (WG2)、Smart transportation (WG3)、Data exchange and sharing for smart community infrastructures (WG4)、Power plant (WG5) といった分野の規格開発が行われている。

エネルギー・レジリエンスの適応範囲との関係では、TC268 の適応範囲は都市や地域といった対象範囲が限定されている点に留意する必要がある。仮に、新規提案の適応範囲を、例えば広域のネットワークや電源構成のあり方等に拡大する場合には、当該 SC における適応範囲との適合性が議論になることも考えられる。

一方で、インフラ建設を考えるにあたってのメトリックス（要因）にエネルギーシステムの強靭性が対象として認識されており 150、エネルギー・レジリエンスのテーマ性に対する理解や、当該 SC に参加する専門家の知見は、エネルギー・レジリエンス分野での専門的議論を展開する可能性が認められる。

(2) TC 262 Risk Management

TC 262（Risk management）の適応範囲は、非常にシンプルなものである。

- リスクマネージメント分野における標準化（Standardization in the field of risk management）

エネルギー・レジリエンス分野との関連では、TC262 は TC292 と JWG を構築して

150 ISO TS 37151 “Smart community infrastructures – Principles and requirements for performance metrics” (2015)
「Managing emerging risk」に関する規格開発を行っており、特にレジリエンスに関する規格開発への適合性を考えるには、TC292 の適合範囲と合わせて考慮する必要がある。

(3) TC 292 Security and Resilience

TC 292（Security and resilience）の適応範囲は、以下の通りである。

- 社会の安全性と回復力を高めるためのセキュリティ分野の標準化（Standardization in the field of security to enhance the safety and resilience of society）
- TC262（リスクマネジメント）と PC278（贈収賄防止関連規格）で開発された分野特有の規格開発を除く

TC292 では、社会の安全性や強靭性を実現するための、General な規格開発を行っている。具体的には、定義（Terminology：WG1）、継続性と組織の回復力（Continuity and organizational resilience：WG2）、緊急時管理（Emergency management：WG3）、製品およびドキュメントの信頼性、整合性、信頼性（Authenticity, integrity and trust for products and documents：WG4）、コミュニティの強靭性（Community resilience：WG5）、保護セキュリティ（Protective security：WG6）、イベントに関するガイドライン（Guidelines for events：WG7）、サプライチェーンでのセキュリティ（Supply chain security：WG8）、危機管理（Crisis management：WG9）といった分野での規格開発が行われている。

TC292 の各 WG における規格開発の視点は、エネルギー・レジリエンスに関係する様々な要素を、個別の WG において分担している構造にもみえる。そのため、包括的なエネルギー・レジリエンスの規格化を TC292 で実施するためには、規格開発に適切な WG があるか、もしくは新たな WG 設立の提案を行うことになる。

また、TC292 の特徴は、一般的ですべての組織に適応する（generic and intend to be applicable all organization）規格の開発を行っている点である。したがって、エネルギー・レジリエンス関連規格の開発にあたって、エネルギー分野固有の規格開発を実施することが TC292 の適用範囲に合致するか確認が必要になる。

(4) TC 322 Sustainable Finance

2018 年に設立された TC322（Sustainable finance）の規格化における適応範囲は下記の通りである。

- 経済活動における環境、社会、ガバナンス（ESG）の実践を含んだ、持続可能性の考慮事項を統合するための、持続可能なファイナンス分野における標準化。
- TC322 は、金融サービス分野では TC68、環境管理分野では TC207、資産管理分野では TC251、組織ガバナンス分野では TC309 と密接な協力関係を築く。

TC322 は、SDGs に関連した持続可能な社会実現のために金融分野で実施する行動に関する指針（ガイドライン）や言葉の定義を行う場と想定され、環境のみならず、社会的問題
やガバナンスといった ESG 全般に関する規格の検討を行っていく。現在は、規格開発向けたビジネスプランの策定と関連する用語の定義の検討が行われている。今後は、TC322 で開発される規格群の基盤となる Sustainable Finance フレームワーク規格の開発が行われるとともに、ESG 各分野における市場ニーズに沿って他の規格群の検討が進むものと考えられる。

エネルギー・レジリエンス関連規格の開発を TC322 で行う場合には、特に Social 分野での規格開発が考えられる。エネルギー・レジリエンスの促進は SDGs の 9 と 11 に貢献することから、SDGs に貢献する投資行動（投資選択）を判断する指針の開発が想定される。また、環境関連では、気候変動対策での適応措置との相互関係があることから、適応に向けた投資判断を行うための評価要素として、エネルギー・レジリエンスを強化する活動の一部を、持続可能な投資として位置付けるような指針の検討も考えられる。

TC322 設立提案国の英国の意図は、EU で検討が進められている気候変動対策に重点をおいた金融分野による投資行動の促進策と整合した国際標準の構築であるが、気候変動に重点を当てた評価と、エネルギー・レジリエンスとの評価軸が、技術選択の面で整合しない点があることに留意する必要がある。

(5) TC207/SC7（Greenhouse gas management and related activities）

TC207（Environment management）は環境分野でのマネジメント関連規格の開発を担っているが、その中の SC7（GHG マネジメントと関連する活動）では、組織の GHG インベントリの策定と報告・検証に加え、適応、脆弱性評価、更には気候変動対策に関連した幅広い特性を持つ規格開発が行われている。例えば、気候変動対策に係る投資やファイナンス（WG10），適応計画（WG12），気候変動のリスクアセスメント（WG12）といった分野の規格開発が進行中であるが、規格化の機運はより活発化している SC といえる。

エネルギー・レジリエンスの要素は、気候変動対策と共通の部分で重なっているという特性を有しており、TC322 もその適応範囲で、環境的側面での協力関係を深めることが示されている。そのため、エネルギー・レジリエンスの要素を TC207/SC7 の規格開発に組み込む、もしくは新規の規格提案を行うという可能性も考えられなくはない。ただし、TC322 でも指摘したが、当該 SC の適用範囲は、持続可能性のある社会の実現と特に環境面でのパフォーマンスに重点を置いていることから、期待するエネルギー・レジリエンス規格の内容がスムーズに受け入れられるが、精査が必要であると考えられる。

5.3.3 国際標準化に向けた戦略的取り組み事例と留意点

ここでは、2-3.1で触れたようなISOの規格開発に内在する課題を出来るだけ回避する戦略事例を示し、戦略を考える際の留意点を考えることにする。

(1) 事前のステークホルダー調整による規格化プロセスの効率化
ISO 14404（鉄鋼CO2排出量・原単位計算方法）は、鉄鋼の生産プロセス全体におけるCO2排出量算定方法を規定したものであり、ISOで初めての生産プロセスに関する規格として2013年に発行した。本規格の開発に当たっては、世界鉄鋼協会（worldsteel）により開発された「製鉄所のCO2排出強度を評価する手法」を基礎として日本鉄鋼連盟が規格提案を行い、日本が主査となって規格化に至ったものである。規格化に向けたアプローチのタイプとしては「既存のTCの中でWGを設置して規格開発を行うケース」に該当し、TC17（鉄鋼）の下にWGを設立し規格化を進めた事例である。

アプローチとして重要な点は、世界鉄鋼協会の中での十分な技術的議論を事前に行った結果を参照情報（規格）としたことで、規格内容に関する基本的なコンセンサスが鉄鋼分野のステークホルダー間で形成されていたことである。これは、ISOのプロセスが1国1票を前提とする特徴に配慮した上での、事前調整に力点をおいた規格化プロセスの実現戦略と捉えることができる。

(2) ヴィーン協定の行使と規格内容の転換

欧州の欧州標準化委員会（CEN）とISOは、1991年にウィーン協定を締結し、欧州のEN規格をISO規格として採用することが容易なる様なプラットホームが形成されている。具体的には、CENで規格化（規格検討）が行われたEN規格をISO規格にするにあたっては、ISO規格の開発ステップ151を簡略化し、投票をDIS（国際規格ドラフト）段階として実施して作業を開始できるというものである。

ISO TC146（大気）で、EUのCENで規格化が進展していた部門別GHG排出量の測定に関するEN規格をISO規格にするという新規提案が行われたが、EU以外のメンバー国から、EN規格内容がEU排出取引制度に準拠したものであり、国際標準として提案内容は適切ではないとの意見が出された。議論の結果、一部パート（鉄鋼）に関してはIS（国際規格）ではなくTR（技術報告書）として再編成すること、ならびにTC207（環境マネジメント）規格群と重複するパート（部門別GHG測定の総論）については、TC207とJWG（共同ワーキンググループ）を構築して、TC207の規格群との調整を行うこととなった。

本事例が示唆するのは、特定の国・地域で構築された活動を国際標準化することを意図しても、他のメンバー国との理解が得られない、もしくは類似した国際規格の適用範囲と重複する場合には、規格案の内容調整が行われる可能性があるという点である。そのため、新たな規格提案を検討するにあたっては、提案するTCやSCの適応範囲や既に規格化が実施・検討されている事案、更には他のTCにおける同様の事案について、事前に状況の精査を行う必要がある。

151 国際規格の作成は基本的に、新規提案（NP：new item proposal）、WD（working draft：ワーキングドラフト）、CD（committee draft：コミッティードラフト）、DIS（draft international standards：国際規格ドラフト）、FDIS（final draft international standards：最終版国際規格ドラフト）の段階毎に投票を行い、IS（international standards：国際規格）発行という手順となっている。