令和2年度化学物質安全対策 (インベントリ関連調査)

報告書

2021年3月

株式会社 リベルタス・コンサルティング

1. 調査の目的・背景	1
2. 調査概要	
2.1.2019 年インベントリの集計等の調査	2
2.2. 業務用空調機器(ビルマルチエアコン)における冷媒転換の検討	3
3.2019 年インベントリの集計等の調査	3
4. 業務用空調機器(ビルマルチエアコン)における冷媒転換の検討	22
4.1.「本検討会」設置の目的	22
4.2.「本検討会」の概要	23
4.3. 産業構造審議会での報告内容	24
5. 付録	26

1. 調査の目的・背景

我が国の温室効果ガス排出総量については、毎年、国内の排出量(インベントリ)を集計して気候変動枠組条約(以下「条約」)事務局へ提出されている。また、平成27年4月施行の「フロン類の使用の合理化及び管理の適正化に関する法律(以下「フロン排出抑制法」)」では、フロン類のライフサイクル全般を見据えた包括的な対策を講じることとなっており、フロン類の製造からフロン類使用機器の製造、当該機器ユーザーによる使用段階の管理、当該機器からの回収・破壊・再生までのマテリアルフローの把握、加えて、フロン類使用機器の市場導入動向等の分析がフロン類対策の基礎データとして必要となってくる。

そのため、本調査では、条約事務局に提出する温室効果ガス排出量のうち、代替フロン等 4 ガスについて、2019 年インベントリの集計等(暦年ベース、以下同様)を行った。また、インベントリの集計に当たっては、IPCC ガイドラインに準拠する等の条約事務局審査にも耐えうる適切な推計方法で行う必要があるため、指摘に対する対応策の検討も行った。

2. 調査概要

本調査の概要は以下の通りである。

2.1.2019 年インベントリの集計等の調査

2019 年の代替フロン等 4 ガス(HFCs、PFCs、SF6、NF3)に係る各分野別の基礎データの集計、推計、数値の確認、修正を行った。具体的には、以下の 9 分野(25 業種)について、Excel を用いた調査シートを作成し、排出量の集計、推計、数値の確認、修正を実施した。

① HFC 等製造分野

- HFC 等製造時(日本フルオロカーボン協会)
- · PFC 製造時(一般社団法人日本化学工業協会)
- · SF6 製造時(一般社団法人日本化学工業協会)
- · NF3 製造時(一般社団法人日本化学工業協会)
- ② 発泡·断熱材分野
 - ・ ウレタンフォーム (ウレタンフォーム工業会)
 - ・ 押出発泡ポリスチレン (押出発泡ポリスチレン工業会)
 - ・ 高発泡ポリエチレン (高発泡ポリエチレン工業会)
 - フェノールフォーム(フェノールフォーム協会)
- ③ エアゾール等分野
 - ・ エアゾール (一般社団法人日本エアゾール協会)
 - · 医療用定量噴射剤 (MDI) (日本製薬団体連合会)
- ④ 冷凍空調機器分野
 - · 業務用冷凍空調機器(一般社団法人日本冷凍空調工業会)
 - 自動販売機(一般社団法人日本自動販売機工業会)
 - 輸送機器用空調機器(カーエアコン)(一般社団法人日本自動車工業会)
 - 家庭用エアコン(一般社団法人日本冷凍空調工業会)
 - 家庭用冷蔵庫(一般社団法人日本電機工業会)
- ⑤ 洗浄剤·溶剤等分野
 - 電子部品等洗浄(一般社団法人電子情報技術産業協会)
 - その他洗浄剤・溶剤等
- ⑥ 半導体等製造分野
 - 半導体製造(一般社団法人電子情報技術産業協会)
 - 液晶製造(一般社団法人電子情報技術産業協会)
 - · 光電池製造(一般社団法人太陽光発電協会)
- ⑦ 電気絶縁ガス使用機器分野
 - · 電気絶縁機器(製造時)(一般社団法人日本電機工業会)
 - · 電気絶縁機器(使用·廃棄時)(電気事業連合会)

⑧ 金属製品分野

- ・ マグネシウム鋳造(一般社団法人日本マグネシウム協会)
- ・ アルミニウム精錬(一般社団法人日本アルミニウム協会)
- ⑨ その他分野
 - 消火剤

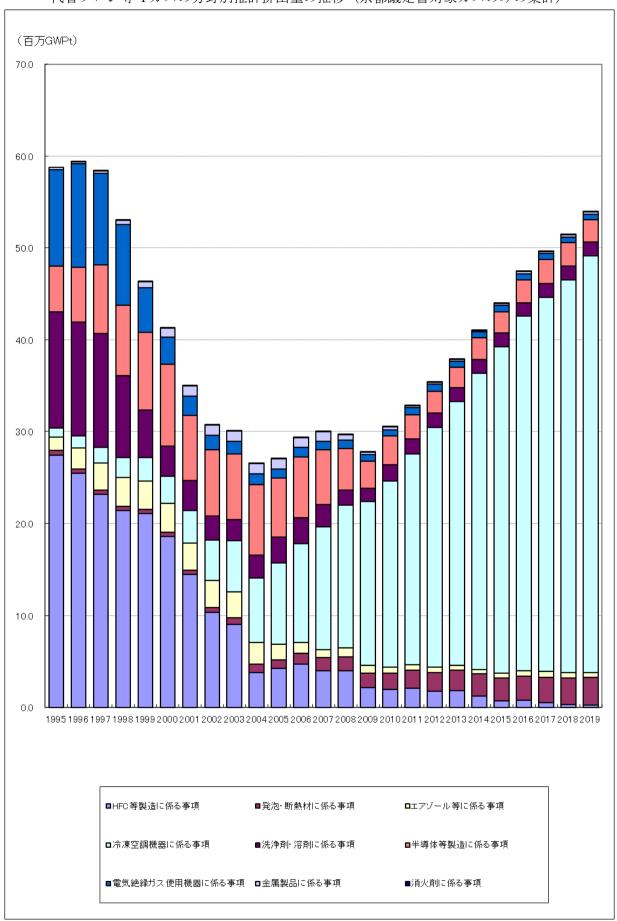
2.2. 業務用空調機器 (ビルマルチエアコン) における冷媒転換の検討

大きな排出量を有しているビルマルチエアコンに関して、今後の冷媒転換についての検討に資することを目的に、2回の「検討会」(以下「本検討会」)を実施した。

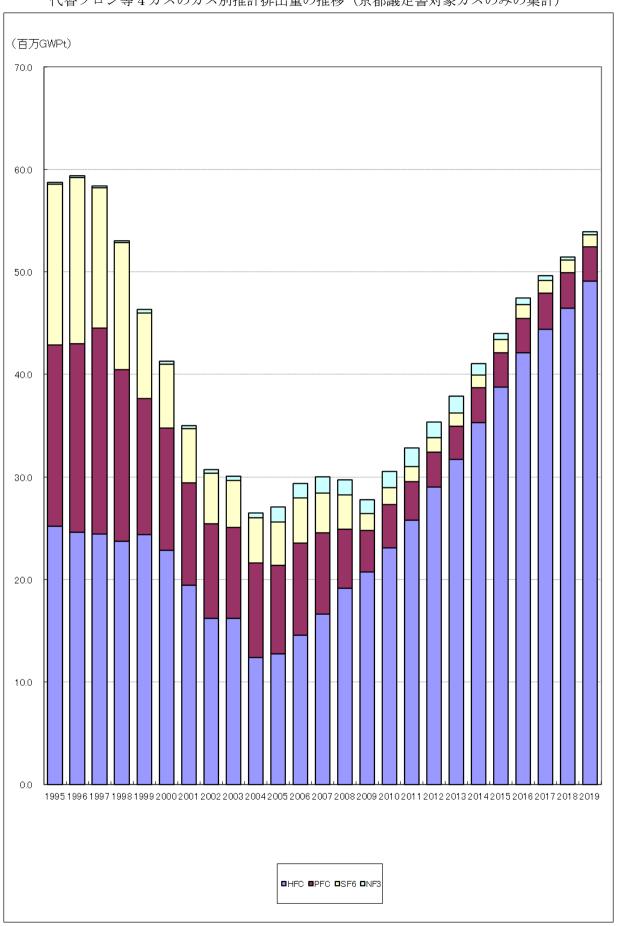
なお、「本検討会」は、有識者、専門家、関係業界団体、行政機関等の委員で構成した。

3. 2019 年インベントリの集計等の調査

1995年から2019年までの代替フロン等4ガスの推計排出量は以下の通りである。


1995年~2019年における代替フロン等4ガスの推計排出量(京都議定書対象ガスのみの集計)

		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
(1)HFC等製造に係る事項		27.4	25.5	23.2	21.4	21.1	18.6	14.4	10.4	9.0	3.8
HFC-23(HCFC-22製造時副生)	HFC	21.5	19.7	18.6	17.4	17.8	15.7	11.8	7.7	6.4	1.3
その他HFC	HFC	0.6	0.5	0.4	0.3	0.2	0.3	0.4	0.4	0.5	0.6
PFC	PFC	0.9	1.2	1.7	1.6	1.6	1.7	1.3	1.3	1.2	1.1
SF ₆	SF ₆	4.5	4.0	2.5	2.0	1.5	0.8	0.8	0.8	0.8	0.7
NF ₃	NF ₃	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.1	0.1
(2)発泡・断熱材に係る事項		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.7	0.9
ウレタン発泡	HFC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.3
押出発泡ポリスチレン	HFC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2
高発泡ポリエチレン	HFC	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4
フェノールフォーム	HFC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(3)エアゾール等に係る事項		1.5	2.3	2.9	3.1	3.1	3.1	2.9	2.9	2.8	2.3
エアゾール製造等	HFC	1.5	2.3	2.9	3.1	3.1	3.1	2.9	2.8	2.7	2.1
MDI製造等	HFC	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.2
(4)冷凍空調機器に係る事項		0.9	1.3	1.7	2.1	2.5	3.0	3.6	4.4	5.5	7.0
業務用冷凍空調機器	HFC	0.0	0.1	0.1	0.2	0.2	0.3	0.5	0.9	1.6	2.7
自動販売機	HFC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
カーエアコン	HFC	0.9	1.2	1.6	1.9	2.2	2.5	2.8	3.1	3.2	3.2
家庭用エアコン	HFC	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.3	0.6	0.9
家庭用冷蔵庫	HFC	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2
(5)洗浄剤・溶剤に係る事項		12.6	12.4	12.3	8.9	5.2	3.3	3.3	2.6	2.3	2.5
電子部品等洗浄		0.5	0.5	0.5	0.3	0.4	0.2	0.1	0.1	0.1	0.1
(6)半導体等製造に係る事項		5.0	6.0	7.5	7.7	8.5	8.9	7.0	7.2	7.2	7.6
HFC	HFC	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2
PFC	PFC	4.0	4.7	6.0	6.1	6.5	7.0	5.3	5.4	5.3	5.6
SF ₆	SF ₆	0.5	0.8	1.1	1.2	1.4	1.5	1.3	1.4	1.4	1.4
NF ₃	NF ₃	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2	0.3	0.3
(7)電気絶縁ガス使用機器に係る事	頁	10.5	11.2	10.0	8.8	4.9	2.9	2.1	1.6	1.4	1.2
製造	SF ₆	9.1	9.6	8.1	7.4	4.0	2.3	1.6	1.3	1.0	0.8
使用	SF ₆	1.4	1.7	1.9	1.4	0.9	0.6	0.5	0.3	0.4	0.4
(8)金属製品に係る事項		0.2	0.2	0.3	0.5	0.7	1.0	1.1	1.1	1.1	1.1
マグネシウム鋳造	SF ₆	0.1	0.1	0.2	0.4	0.6	1.0	1.1	1.1	1.1	1.1
	HFC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
アルミニウム精錬	PFC	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
(9)消火剤に係る事項		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
消火剤	HFC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HFC		25.2	24.6	24.4	23.7	24.4	22.8	19.5	16.2	16.2	12.4
PFC		17.7	18.4	20.1	16.7	13.3	11.9	10.0	9.2	8.9	9.2
SF ₆		15.6	16.2	13.7	12.4	8.4	6.2	5.3	4.9	4.6	4.4
NF ₃		0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.5
숨 計		58.7	59.4	58.4	53.0	46.3	41.3	35.0	30.7	30.1	26.5


(百万 t-CO2)

2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
4.2	4.7	4.0	4.0	2.1	1.9	2.1	1.7	1.8	1.3	0.7	0.8	0.5	0.3	0.3
0.6	0.8	0.3	0.6	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.4	0.4	0.4	0.3	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
1.0	1.1	1.0	0.6	0.5	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0.9	1.3	1.1	1.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0
1.2	1.1	1.2	1.2	1.1	1.3	1.6	1.3	1.5	1.0	0.4	0.4	0.2	0.1	0.0
0.9	1.2	1.4	1.5	1.6	1.7	1.9	2.1	2.2	2.4	2.5	2.7	2.8	2.9	3.0
0.7	1.0	1.2	1.4	1.5	1.6	1.8	1.9	2.1	2.2	2.3	2.5	2.6	2.8	2.8
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.7	1.1	0.9	0.9	0.8	0.7	0.6	0.6	0.5	0.5	0.5	0.6	0.6	0.5	0.6
1.5	0.9	0.7	0.7	0.6	0.5	0.4	0.4	0.3	0.4	0.4	0.4	0.4	0.3	0.4
0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2
8.8	10.8	13.4	15.6	17.8	20.3	22.9	26.1	28.7	32.2	35.5	38.6	40.7	42.8	45.3
4.2	6.1	8.2	9.8	11.6	13.5	15.6	18.0	19.8	22.6	25.3	27.7	29.4	31.3	33.5
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.2	2.7	2.8	2.8	2.8	2.8	2.7	2.7	2.8	2.8	2.7	2.7	2.7	2.6	2.5
1.2	1.6	2.0	2.5	3.0	3.5	4.2	5.0	5.7	6.5	7.3	8.0	8.5	8.9	9.3
0.3	0.3	0.4	0.4	0.5	0.5	0.4	0.4	0.3	0.3	0.2	0.2	0.1	0.0	0.0
2.8	2.8	2.4	1.6	1.4	1.7	1.6	1.6	1.5	1.5	1.5	1.5	1.5	1.5	1.6
0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6.5	6.7	6.0	4.5	2.9	3.1	2.7	2.4	2.2	2.3	2.3	2.5	2.6	2.5	2.4
0.2	0.2	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
4.7	5.1	4.5	3.4	2.1	2.3	1.9	1.7	1.6	1.7	1.7	1.8	1.9	1.9	1.8
1.3	1.0	0.8	0.6	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.3	0.3
0.2	0.3	0.4	0.3	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2
0.9	1.0	0.9	0.9	8.0	0.7	8.0	0.8	0.7	0.6	0.7	0.7	0.6	0.6	0.6
0.6	0.5	0.5	0.5	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1
0.4	0.5	0.4	0.4	0.5	0.5	0.5	0.6	0.5	0.5	0.4	0.5	0.5	0.5	0.5
1.1	1.1	1.1	0.6	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.3	0.3
1.1	1.0	1.0	0.6	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.3	0.3
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0 14.5	0.0	0.0	0.0 20.7	0.0	0.0 25.8	0.0 29.0	0.0 31.7	0.0 35.3	0.0 38.8	0.0 42.1	0.0 44.4	0.0 46.5	0.0 49.1
12.7	9.0	16.6	19.1	4.1	23.1 4.2			31.7		38.8				
8.6 4.2	4.4	7.9 3.9	5.7 3.3	1.6	1.7	3.7 1.5	3.4 1.4	1.3	3.4 1.2	1.3	3.4 1.4	3.5 1.3	3.4 1.2	3.4 1.2
1.5	1.4	1.6	1.5	1.4	1.7	1.8	1.4	1.6	1.1	0.6	0.6	0.4	0.3	0.3
27.0		30.0		27.8				37.8						
27.0	29.3	30.0	29.7	27.8	30.5	32.8	35.4	37.8	41.0	44.0	47.5	49.6	51.4	53.9

代替フロン等4ガスの分野別推計排出量の推移(京都議定書対象ガスのみの集計)

代替フロン等4ガスのガス別推計排出量の推移(京都議定書対象ガスのみの集計)

推計に用いた数値情報は以下の通りである。

1. HFC等製造に係る事項

■総実排出量の推移(京都議定書対象ガス)

	44h 111 ph/m 555	単位	実排出量								
HFC等3ガスの排出源	排出物質	单 位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	521 0.406 280 1.257 130 0.821 36 0.155	2003年
	HFC-23(HCFC-22副生)	(百万t-CO₂)	21.460	19.728	18.589	17.434	17.834	15.688	11.810	7.711	6.354
	RFG-23(RGFG-22画)生/	(t)	1,450	1,333	1,256	1,178	1,205	1,060	798	521	429
	HFCs(HFC-23を除く)	(百万t-CO ₂)	0 ₂) 0.556 0.530 0.425 0.304 0.184 0.290 0.431 0.406 342 320 263 169 81 152 230 280	0.513							
	HPOS(HPO-23を除く)	(t)	342	320	263	169	81	152	230	280	266
	PFCs	(百万t-CO ₂)	0.914	1.207	1.685	1.646	1.570	1.661	1.330	1.257	1.212
炎 坦时守	FFGS	(t)	107	141	201	199	7.434 17.834 15.688 11.810 7.711 6 1,178 1,205 1,060 798 521 0.304 0.184 0.290 0.431 0.406 0 169 81 152 230 280 1.646 1.570 1.661 1.330 1.257 1 199 166 181 143 130 2.006 1.459 0.821 0.752 0.821 0 88 64 36 33 36 0.034 0.052 0.120 0.120 0.155 0 2 3 7 7 9	121			
	SF ₆	(百万t-CO ₂)	4.492	3.990	07 1.685 1.646 1.570 1.661 1.330 1.257 1. 11 201 199 166 181 143 130	0.775					
	3F ₆	(t)	197	175	108	88	64	36	33	36	34
	NE	(百万t-CO ₂)	0.017	0.017	0.017	0.034	0.052	0.120	0.120	0.155	0.138
	NF ₃	(t)	1	1	1	2	3	7	7	9	8
総実排出量		(百万t-CO ₂)	27.439	25.472	23.179	21.424	21.099	18.580	14.445	10.349	8.991

■多有数性											
	項目	単位	諸数値								
HFC等3ガスの排出源	項目	早 1型	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	HCFC-22の生産量	(t)	81,000	79,489	80,265	85,487	94,525	95,271	88,157	72,787	77,310
HCFC-22製造時	HFC-23副生率	(%)	2.13%	2.04%	2.09%	1.95%	1.75%	1.70%	1.39%	1.54%	1.65%
	HCFC-22生産に対する排出割合	(%)	1.79%	1.68%	1.56%	1.38%	1.27%	1.11%	0.91%	0.72%	0.56%
HFC製造時	HFCの生産量	(t)	27,981	25,030	23,784	21,076	26,686	29,506	38,352	43,698	49,113
HF O 表 但 时	HFCの生産量に対する排出割合	(%)	1.22%	1.28%	1.10%	0.80%	0.30%	0.51%	0.60%	0.64%	0.54%
PFC製造時	PFCの生産量	(t)	1,147	1,345	1,483	1,790	1,855	2,316	2,140	2,270	2,591
PFO表迫时	PFCの生産量に対する排出割合	(%)	9.29%	10.48%	13.55%	11.12%	8.94%	7.82%	6.66%	5.71%	4.68%
SF。製造時	SF ₆ の生産量	(t)	2,392	2,420	2,542	2,440	1,838	1,556	1,666	1,642	1,757
31 6表趋时	SF ₆ の生産量に対する排出割合	(%)	8.24%	7.23%	4.25%	3.61%	3.48%	2.31%	1.98%	2.19%	1.94%
NF₃製造時	NF₃の生産量	(t)	37	45	50	62	107	208	274	371	487
INI 32XTERA	NF ₃ の生産量に対する排出割合	(%)	2.70%	2.22%	2.00%	3.23%	2.80%	3.37%	2.55%	2.43%	1.64%

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
1.288	0.586	0.831	0.275	0.593	0.050	0.053	0.016	0.018	0.016	0.024	0.030	0.024	0.038	0.012	0.013
87	40	56	19	40	3	4	1	1	1	2	2	2	3	1	1
0.562	0.443	0.359	0.348	0.301	0.228	0.122	0.146	0.115	0.125	0.095	0.077	0.143	0.089	0.083	0.113
283	244	218	247	205	136	101	116	90	91	82	72	91	67	63	87
1.086	1.041	1.091	0.977	0.649	0.459	0.248	0.206	0.148	0.111	0.107	0.115	0.097	0.081	0.087	0.064
110	107	112	99	67	46	25	24	16	13	13	13	12	9	10	7
0.730	0.930	1.303	1.144	1.229	0.233	0.189	0.132	0.123	0.093	0.062	0.052	0.050	0.041	0.046	0.040
32	41	57	50	54	10	8	6	5	4	3	2	2	2	2	2
0.139	1.240	1.123	1.228	1.223	1.149	1.323	1.601	1.314	1.486	0.965	0.404	0.432	0.234	0.058	0.019
8	72	65	71	71	67	77	93	76	86	56	24	25	14	3	1
3.805	4.240	4.708	3.972	3.995	2.118	1.936	2.102	1.717	1.831	1.252	0.678	0.746	0.484	0.285	0.250

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
61,900	65,715	65,905	61,197	60,401	26,682	46,149	45,314	54,388	47,546	51,753	49,116	48,833	52,646	56,933	57,872
1.94%	1.90%	1.94%	1.82%	2.00%	2.34%	2.01%	1.53%	1.60%	1.41%	1.46%	1.46%	1.38%	1.47%	1.80%	1.88%
0.14%	0.06%	0.09%	0.03%	0.07%	0.01%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
51,955	56,889	48,135	49,318	47,800	29,932	30,647	33,438	27,732	24,116	21,596	24,015	20,088	21,614	22,944	23,133
0.55%	0.43%	0.45%	0.50%	0.43%	0.45%	0.33%	0.35%	0.33%	0.38%	0.38%	0.30%	0.45%	0.31%	0.27%	0.38%
2,899	2,726	3,211	3,216	2,802	2,028	2,800	2,670	2,446	2,612	2,783	2,842	2,987	2,961	3,026	2,964
3.79%	3.93%	3.49%	3.08%	2.38%	2.25%	0.89%	0.89%	0.67%	0.50%	0.46%	0.47%	0.39%	0.31%	0.33%	0.24%
1,895	2,313	2,787	2,723	2,647	2,562	2,201	1,993	2,230	2,128	1,997	2,027	2,003	1,680	1,658	1,573
1.69%	1.76%	2.05%	1.84%	2.04%	0.40%	0.38%	0.29%	0.24%	0.19%	0.14%	0.11%	0.11%	0.11%	0.12%	0.11%
609	1,663	2,390	3,028	3,353	2,887	3,642	3,612	3,501	4,148	4,660	4,963	4,366	4,649	4,719	3,829
1.33%	4.34%	2.73%	2.36%	2.12%	2.31%	2.11%	2.58%	2.18%	2.08%	1.20%	0.47%	0.57%	0.29%	0.07%	0.03%

2. 発泡・断熱材に係る事項

■総実排出量の推移]

■心大が山里の形の」			1								
HFC等3ガスの排出源	排出物質	単 位	実排出量								
HFO等3万人仍挤山源	孙山彻县	平 位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	366 0.0000 0.0000 0.013 9 0.428 299 0 0 0.0000 0.0000	2003年
	HFC-134a	(百万t-CO ₂)	0.000	0.000	0.000	0.000	0.000	0.024	0.036		0.068
	INFO-134a	(t)	0	0	0	0	0	17	25	36	48
ウレタンフォーム製造	HFC-245fa	(百万t-CO ₂)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
等	HFO-2451a	(t)	0	0	0	0	0	0	0	0	0
	HFC-365mfc	(百万t-CO ₂)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	HFG-303IIIIC	(t)	0	0	0	0	0	0	0	0	0
押出発泡ポリスチレン	HFC-134a	(百万t-CO ₂)	0	0	0	0	0	0	0.004	0.013	0.229
フォーム製造等	HFO-134a	(t)	0	0	0	0	0	0	3	0.051 36 0.000 0 0.000 0 0.013 9 0.428 299 0 0 0.000 0 0.000	160
	HFC-134a	(百万t-CO ₂)	0.495	0.450	0.468	0.450	0.455	0.460	0.412	0.051 36 0.000 0 0.000 0 0.013 9 0.428 299 0 0 0.000 0 0.000	0.420
高発泡ポリスチレン	HFO-134a	(t)	346	315	327	315	318	322	288	299	294
フォーム製造等	HFC-152a	(百万t-CO ₂)	0.002	0.002	0.000	0	0	0	0	0	0
	HFO-1928	(t)	14	13	4	0	0	0	0	0	0
	HFC-245fa	(百万t-CO ₂)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
フェノールフォーム製	HFO-2451a	(t)	0	0	0	0	0	0	0	0	0
造等	HFC-365mfc	(百万t-CO ₂)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ILLO-200MIC	(t)	0	0	0	0	0	0	0	0	0
総実排出量		(百万t-CO ₂)	0.497	0.452	0.468	0.450	0.455	0.484	0.451	0.491	0.717

■参与数但												
		й П	» / -	諸数値								_
HFC等3ガスの排出源		項目	単 位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	4.5% 35 75.0%	2003年
		HFC-134a	(t)	0	0	0	0	0	167	177	201	233
	HFCの使用量	HFC-245fa	(t)	0	0	0	0	0	0	0	0	0
ウレタンフォーム製造等		HFC-365mfc	(t)	0	0	0	0	0	0	0	0	0
	発泡時漏洩率		(%)	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%
	使用時HFC年	間排出率	(%)	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	201 0 0 10.0% 4.5% 35 75.0% 0.8% 299 0	4.5%
	HFCの使用量	HFC-134a	(t)	0	0	0	0	0	0	10	35	638
押出発泡ポリスチレン フォーム製造等	フォーム製品化	比率	(%)	-	-	-	-	-	-	75.0%	75.0%	75.0%
, , , , , , , ,	使用時HFC年	間排出率	(%)	-	-	-	-	-	-	0.8%	0.8%	0.8%
高発泡ポリエチレン	HFCの使用量	HFC-134a	(t)	346	315	327	315	318	322	288	299	294
フォーム製造等		HFC-152a	(t)	14	13	4	0	0	0	0	.8% 0.8% 88 299 0 0	0
フェノールフォーム製	HFCの使用量	HFC-245fa	(t)	0	0	0	0	0	0	0	0	0
造等		HFC-365mfc	(t)	0	0	0	0	0	0	0	0	0

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
0.077	0.094	0.114	0.124	0.128	0.132	0.133	0.137	0.137	0.138	0.138	0.139	0.138	0.138	0.138	0.138
54	66	80	87	90	92	93	96	96	97	97	97	96	96	96	96
0.197	0.490	0.692	0.874	0.960	1.039	1.144	1.277	1.399	1.516	1.631	1.718	1.857	1.978	2.075	2.108
191	475	672	849	932	1,008	1,111	1,240	1,359	1,472	1,584	1,668	1,803	1,921	2,014	2,047
0.059	0.130	0.192	0.238	0.266	0.284	0.318	0.355	0.391	0.421	0.450	0.474	0.503	0.532	0.556	0.579
74	164	241	299	335	358	401	448	492	531	567	597	634	670	700	730
0.192	0.022	0.015	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
134	16	10	9	9	9	9	9	9	9	9	9	9	9	9	9
0.363	0.183	0.172	0.172	0.143	0	0	0	0	0	0	0	0	0	0	0
254	128	120	120	100	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.888	0.920	1.184	1.421	1.510	1.468	1.609	1.783	1.941	2.089	2.233	2.344	2.511	2.661	2.782	2.838

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
190	224	259	216	145	109	66	65	34	28	14	12	0	0	0	0
1,912	3,893	4,111	4,024	3,044	2,440	2,365	2,597	2,613	2,570	2,533	2,230	2,577	2,596	2,365	1,626
739	1,311	1,492	1,401	1,122	847	900	960	977	921	866	779	794	802	744	702
10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%
4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%
517	26	5	0	0	0	0	0	0	0	0	0	0	0	0	0
75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%	75.0%
0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%
254	128	120	120	100	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3.エアゾール等に係る事項

■総実排出量の推移

リアの笑のギュの牡川原	44h 111 ph/m FFF	単位	実排出量								
HFC等3ガスの排出源	排出物質	早 14	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	HFC-134a	(百万t-CO₂)	1.502	2.292	2.911	3.144	3.067	3.056	2.850	2.820	2.646
	HFO-134a	(t)	1,050	1,603	2,036	2,199	2,145	2,137	1,993	1,972	1,851
	HFC-152a	(百万t-CO ₂)	0.000	0.000	0.000	0.000	0.000	0.002	0.010	0.020	0.049
エアゾール製造等	INFO-132a	(t)	0	0	0	0	0	18	79	159	399
エアノール表担守	HFC-245fa	(百万t-CO ₂)									
	HFG-245Ta	(t)									
	HFC-365mfc	(百万t-CO ₂)									
	HFG-300mrc	(t)									
	UEO 104	(百万t-CO ₂)	0	0	0.002	0.004	0.024	0.053	0.064	0.067	0.068
医薬品用定量噴射剤	HFC-134a	(t)	0	0	1	3	17	37	45	47	48
(MDI)使用等	HFC-227ea	(百万t-CO ₂)	0	0	0	0	0	0.006	0.026	0.041	0.071
	INFO-22/ea	(t)	0	0	0	0	0	2	8	13	22
総実排出量	10 22764	(百万t-CO₂)	1.502	2.292	2.912	3.148	3.091	3.117	2.950	2.947	2.835

		_		諸数値								
HFC等3ガスの排出源		項目	単 位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	HFC-134aの港	在排出量	(t)	1,300	1,905	2,166	2,035	2,070	2,044	1,827	2,003	1,598
	HFC-152aの潜	在排出量	(t)	0	0	0	0	0	34	119	189	553
	HFC-245faの》	替在排出量	(t)									
	HFC-365mfc)潜在排出量	(t)									
	HFC製品中の・	一液製品率	(%)	70%	90%	91%	86%	88%	88%	86%	95%	93%
	一液製品(HFC 混合実施率	C-134a)への可燃ガス	(%)						15%	13%	16%	16%
	製品への充填	時漏洩率	(%)	5.0%			4.7%	4.6%	3.8%	3.1%	2.8%	3.5%
	自主表示実施	率	(%)					10%	8%	15%	42%	56%
		国内生産MDI使用量	(t)	0	0	1	1	1	1	1	1	1
	HFC-134a	輸入MDI使用量	(t)	0	0	1	2	30	42	45	47	47
医薬品用定量噴射剤 (MDI)使用等		廃棄処理量	(t)	0	0	0	0	0	0	0	0	0
		国内生産MDI使用量	(t)	0	0	0	0	0	0	6	8	28
	HFC-227ea	輸入MDI使用量	(t)	0	0	0	0	0	4	7	5	4
		廃棄処理量	(t)	0	0	0	0	0	0	0	0	1

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
2.030	1.299	0.710	0.497	0.483	0.424	0.319	0.289	0.268	0.250	0.297	0.328	0.347	0.357	0.307	0.328
1,420	908	497	347	338	297	223	202	187	175	208	230	243	250	215	230
0.104	0.151	0.175	0.178	0.209	0.196	0.161	0.156	0.122	0.084	0.065	0.053	0.046	0.048	0.040	0.028
838	1,217	1,409	1,439	1,685	1,584	1,299	1,260	986	680	522	425	372	391	326	230
0.000	0.001	0.001	0.001	0.001	0.001	0.000	0.001	0.002	0.001	0.001	0.001	0.000	0.000	0.000	0.000
0	1	1	1	1	0	0	1	2	1	1	1	0	0	0	0
0.000	0.001	0.001	0.001	0.001	0.000			0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	1	1	2	1	0			0	0	0	0	0	0	0	0
0.074	0.090	0.101	0.091	0.088	0.086	0.079	0.077	0.073	0.068	0.064	0.056	0.058	0.053	0.051	0.050
51	63	70	64	61	60	56	54	51	47	45	39	41	37	35	35
0.133	0.155	0.136	0.127	0.150	0.138	0.107	0.110	0.096	0.087	0.077	0.102	0.135	0.142	0.146	0.166
41	48	42	39	46	43	33	34	30	27	24	32	42	44	45	52
2.341	1.695	1.123	0.895	0.931	0.845	0.666	0.634	0.561	0.489	0.503	0.540	0.587	0.600	0.544	0.572

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
1,162	604	361	307	343	230	200	190	168	168	223	206	236	193	159	226
1,077	1,300	1,438	1,193	1,416	764	558	502	542	320	353	279	328	276	226	142
0	1	1	1	1	0	0	2	1	0	1	0	0	0	0	0
0	1	2	1	1				0		0	0	0	0	0	0
94%	94%	93%	93%	95%	92%	88%	86%	87%	80%	79%	85%	84%	87%	86%	83%
31%	32%	15%	19%	10%	26%	35%	24%	15%	11%	13%	9%	8%	7%	1%	1%
2.7%	2.7%	2.9%	2.8%	2.3%	2.7%	2.5%	2.5%	2.3%	2.3%	3.0%	2.5%	2.1%	2.5%	3.0%	3.3%
67%	68%	74%	74%	87%	86%	84%	88%	93%	91%	72%	86%	78%	69%	65%	52%
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
57	71	69	60	62	57	57	54	48	46	42	41	39	34	35	33
1	2	0	1	0	0	3	2	1	1	0	4	0	0	0	0
52	43	41	38	48	29	37	32	27	27	22	24	22	19	19	20
4	2	1	1	9	2	0	1	1	1	0	19	20	27	26	38
3	1	2	1	2	1	1	1	1	1	1	1	0	0	0	0

4. 冷凍空調機器に係る事項

■総実排出量の推移

ロ この 生 の 土 こ の 朴 山 海	44h (1) ph/m 555	単位	実排出量								
HFC等3ガスの排出源	排出物質	早 14	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
業務用冷凍空調機器		(百万t-CO ₂)	0.047	0.081	0.131	0.183	0.240	0.318	0.484	0.885	1.628
(一般)製造等	HFCs	(t)	33	56	89	118	148	189	266	466	843
業務用(自動販売機)	Infos	(百万t-CO₂)	0	0	0	0	0.000	0.001	0.001	0.001	0.001
製造等		(t)	0	0	0	0	0	0	1	0	0
カーエアコン製造等	HEC-124a	(百万t-CO ₂)	0.865	1.229	1.590	1.910	2.207	2.516	2.812	3.097	3.191
カーエアコン級迫守	HFC-134a	(t)	605	859	1,112	1,335	1,543	1,759	1,967	2,166	2,231
家庭用エアコン製造等	P-410A P-22	(百万t-CO ₂)	0	0	0	0	0	0	0	0	1
永庭用エノコン表担守	R-410A, R-32	(t)	0	0	0	3	14	38	95	161	270
宝庭田会議康制选等	HEC-124a	(百万t-CO ₂)	0.012	0.018	0.021	0.026	0.040	0.057	0.082	0.119	0.164
	RE用冷蔵庫製造等 HFC−134a	(t)	9	13	15	18	28	40	57	83	114
総実排出量		(百万t-CO ₂)	0.924	1.328	1.742	2.125	2.516	2.972	3.577	4.437	5.546

HFC等3ガスの排出源 項目 単位 諸数値 1995年 1996 1995年 1996 214 214 214 214 214 214 214 214 214 214	年 1997年						
1995年 1996	年 1997年						
HFC機器生産台数 (千台) 214		1998年	1999年	2000年	2001年	2002年	2003年
	275 26	2 269	329	374	440	936	1,057
工場生産時平均冷媒充填量 (g/台) 372	406 43	5 466	525	597	1,032	2,535	3,075
工場生産時冷媒排出係数 (%) 0.2%	0.2% 0.	2% 0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
HFC機器現場充填実施台数 (千台) 9	10 2	7 26	27	32	40	68	101
現場設置時平均冷媒充填量 (g/台) 17,806 20,0	9,76	9,483	7,809	9,221	12,475	18,396	18,873
業務用冷凍空調機器 現場設置時冷媒排出係数 (%) 1%	1%	1%	1%	1%	2%	2%	2%
製造等 HFC機器市中稼働台数 (千台) 375	659 94	1,232	1,574	1,957	2,379	3,294	4,355
機器稼働時平均冷媒充填量 (g/台) 1,012	991 1,0	6 1,016	1,006	1,043	1,235	2,291	3,310
機器稼働時冷媒排出係数 (%) 7%	7%	8%	8%	7%	7%	5%	5%
使用済HFC機器発生台数 (千台) 1	2	3 7	14	23	37	51	65
法律に基づく整備時HFC回収量 (t) 0	0	0 0	0	0	0	0	0
法律に基づく使用済HFC回収量 (t) 0	0	0 0	0	0	0	66	94
HFC使用機器生産(販売)台数 (千台) 0	0	0 0	12	272	344	321	344
1台当たり充填量 (g) 0	0	0 0	300	300	280	240	220
生産時漏洩率 (%) 0.4%	0.4% 0.	0.4%	0.4%	0.4%	0.5%	0.3%	0.3%
自動販売機製造等 (千台) 0	0	0 0	12	284	628	949	1,293
事故・故障発生率 (%) 0.4%	0.4% 0.	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%
故障時平均漏洩率 (%) 20.0% 2	0.0% 20.	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%
修理時平均漏洩率 (%) 0.9%	0.9% 0.	0.9%	0.9%	0.9%	0.9%	0.6%	0.5%
廃棄台数 (千台) 0	0	0 0	0	0	0	0	0
HFCエアコン車生産台数 (千台) 9,745 9,745	10,54	9,664	9,517	9,761	9,413	9,887	9,909
1台当たり生産時漏洩量 (g) 4	4	4 4	4	4	4	4	4
HFCエアコン車両保有台数 (千台) 15,655 22,	131 28,07	32,986	37,663	42,374	46,684	50,731	54,488
1台当たり平均冷媒充填量 (g) 700	700 70	700	650	615	603	588	582
1台当たり年間使用時漏洩量(普通自動車) (t) 15	15 1	5 15	15	15	15	15	15
カーエアコン製造等 故障発生割合 (%) 4%	4%	1% 4%	4%	4%	4%	4%	4%
故障事故車両冷媒漏洩率 (%) 50%	50% 5	50%	50%	50%	50%	50%	50%
全損事故車両数 (千台) 50	72 9	106	121	136	149	162	174
全損事故車両冷媒充填量 (g) 681	669 65	647	629	610	591	573	556
使用済HFC車国内台数 (千台) 116	191 32	2 465	611	789	996	1,290	1,596
使用済HFC車冷媒充填量 (g) 676	660 64	6 629	612	593	579	567	560
HFC回収量(2002年度以降は法律に基づく) (t/年)	_	_	-	_	8	61	246

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
2.742	4.151	6.111	8.164	9.810	11.609	13.499	15.594	17.965	19.815	22.633	25.263	27.720	29.408	31.260	33.460
1,384	2,006	2,853	3,630	4,236	4,874	5,566	6,312	7,112	7,778	8,832	9,954	11,000	11,771	12,625	13,720
0.001	0.001	0.001	0.001	0.022	0.030	0.029	0.034	0.022	0.022	0.024	0.021	0.021	0.016	0.015	0.012
1	1	1	1	12	17	16	19	15	15	17	15	15	11	10	8
3.203	3.153	2.702	2.780	2.798	2.771	2.791	2.679	2.728	2.835	2.757	2.690	2.661	2.676	2.604	2.533
2,240	2,205	1,889	1,944	1,956	1,938	1,952	1,874	1,908	1,983	1,928	1,881	1,861	1,871	1,821	1,771
1	1	2	2	3	3	3	4	5	6	7	7	8	9	9	9
421	596	783	981	1,206	1,426	1,675	2,014	2,400	2,775	3,216	3,707	4,160	4,548	4,852	5,210
0.214	0.269	0.326	0.371	0.406	0.453	0.475	0.404	0.364	0.289	0.258	0.219	0.154	0.091	0.021	0.002
150	188	228	259	284	317	332	283	254	202	181	153	107	64	14	1
7.040	8.818	10.775	13.364	15.553	17.841	20.292	22.915	26.087	28.694	32.197	35.517	38.570	40.736	42.768	45.296

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
1,306	1,413	1,339	1,391	1,444	987	1,122	1,198	1,212	1,303	1,250	1,228	1,296	1,350	1,355	1,400
3,280	3,378	3,627	3,548	3,533	3,276	3,280	3,360	3,462	3,413	3,539	3,473	3,358	3,329	3,480	3,627
0.2%	0.2%	0.2%	0.2%	0.1%	0.1%	0.2%	0.2%	0.2%	0.2%	0.1%	0.3%	0.2%	0.2%	0.2%	0.2%
114	138	168	190	199	175	171	190	239	225	260	240	246	249	229	217
22,703	23,914	26,073	25,170	26,676	25,955	24,527	24,276	22,826	20,754	20,394	20,073	19,520	18,388	18,816	18,801
2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
5,526	6,770	7,884	8,983	10,027	10,847	11,743	12,678	13,616	14,568	15,414	16,134	16,859	17,571	18,183	18,738
4,021	4,549	5,024	5,361	5,632	5,802	5,981	6,192	6,440	6,596	6,799	6,950	7,041	7,074	7,123	7,167
5%	5%	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%	6%
96	127	169	220	269	325	397	453	512	576	663	748	816	887	972	1,063
0	0	0	236	436	503	548	571	671	682	759	772	861	979	1,016	1,066
140	183	206	186	200	230	269	352	522	689	668	735	952	1,158	1,296	1,499
350	355	338	301	270	173	173	124	30	10	8	7	7	6	6	5
220	220	219	219	219	219	219	219	219	219	219	219	219	219	219	219
0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
1,643	1,999	2,265	2,393	2,384	2,368	2,279	2,055	1,759	1,530	1,068	748	431	330	187	140
0.4%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%	20.0%
0.6%	0.5%	0.5%	0.5%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%
0	0	0	183	213	293	286	347	277	273	299	266	264	196	188	148
10,129	10,407	11,074	11,191	11,163	7,653	9,292	8,136	9,856	9,613	9,753	9,273	9,205	9,639	9,362	8,140
4	3	3	3	3	1	1	1	1	1	1	1	1	1	1	1
57,746	60,364	62,351	63,687	64,543	65,375	66,043	67,366	70,406	72,054	72,813	73,272	73,856	74,236	74,087	72,019
553	548	536	522	520	497	497	497	497	497	497	497	497	497	497	497
15	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%
50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%
185	193	200	204	207	209	211	216	225	231	233	234	236	238	237	230
539	522	506	490	475	461	448	439	426	417	409	404	400	394	388	382
1,756	2,058	1,471	1,893	2,176	2,498	2,895	2,235	2,709	2,835	2,839	2,694	2,666	2,927	2,941	2,920
538	522	484	475	466	456	444	427	404	412	393	380	370	360	349	347
349	531	489	604	686	787	898	645	786	785	773	710	682	720	718	694

		M 1T	諸数値								
HFC等3ガスの排出源	項目	単 位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	HFC使用機器生産台数	(千台)	0	0	0	135	515	1,077	2,576	2,913	4,101
	1台当たり充填量	(g)	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	生産時排出係数	(%)	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
	HFC機器市中稼働台数	(千台)	0	0	0	135	650	1,726	4,298	7,199	12,056
家庭用エアコン製造等	機器稼働時平均冷媒充填量	(g/台)	0	0	0	1,000	1,000	1,000	1,000	1,000	1,000
	機器稼働時冷媒排出係数	(%)	2%	2%	2%	2%	2%	2%	2%	2%	2%
	使用済HFC機器発生台数	(千台)	0	0	0	0	0	2	4	12	24
	機器廃棄時平均冷媒充填量	(g/台)	0	0	0	0	960	954	948	942	932
	法律に基づく使用済HFC回収量	(t)	-	1	-	-	1	-	0.2	0.5	1.8
	製造時HFC充填総量	(t)	520	653	663	614	632	590	563	414	250
	生産時漏洩率	(%)	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	0.49%	0.44%	0.21%
	HFC使用機器国内稼働台数	(千台)	7,829	13,137	18,557	23,702	28,514	33,213	37,614	41,312	43,337
家庭用冷蔵庫製造等	1台当たり充填量	(g)	150	150	140	130	140	125	128	125	125
	使用時(故障時含む)漏洩率	(%)	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
	HFC使用機器廃棄台数	(千台)	0	1	3	23	68	177	349	618	959
	法律に基づくHFC回収量	(t/年)	-	-	-	-	-	-	4	10	20

5. 洗浄剤・溶剤に係る事項(液体PFCs等)

■総実排出量の推移(京都議定書対象ガス)

ロロの知られるの世の原	44h 111 Man 1955	単位	実排出量								
HFC等3ガスの排出源	排出物質	早 12	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
一般電子部品洗浄時	液体PFCs等	(百万t-CO₂)	0	0	0.042	0.040	0.047	0.024	0.021	0.026	0.025
一枚电丁印印元/F时	/枚体PFUS 寺	(t)	0	0	5	4	5	3	3	3	3
半導体製造時	液体PFCs等	(百万t-CO ₂)	0.485	0.498	0.492	0.219	0.327	0.187	0.108	0.047	0.041
十等件表坦时	放体という	(t)	52	54	53	24	35	20	12	5	4
液晶製造時	流体DECo等	(百万t-CO ₂)	0	0	0	0	0	0.008	0.008	0.014	0.001
/仪	夜体PFCs等	(t)	0	0	0	0	0	1	1	1	0
半導体製造時	液体PFCs等	(百万t-CO ₂)									
冷媒使用	放体という	(t)									
液晶製造時	海休DEC。笙	(百万t-CO ₂)									
冷媒使用	液体PFCs等	(t)									
総実排出量	·	(百万t-CO ₂)	0.485	0.498	0.534	0.259	0.374	0.220	0.137	0.087	0.068

HFC等3ガスの排出源	項目	単 位	諸数値								
RFU等3万人仍挤出源	県日	単位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
洗浄剤・溶剤	液体PFCの出荷量	(t)	1,400	1,500	1,500	1,412	996	953	803	549	610

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
4,321	3,981	4,116	4,172	3,970	2,618	3,169	3,155	3,263	3,581	3,076	8,166	8,528	9,055	9,815	9,344
1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%	0.1%	0.1%
18,752	26,091	33,238	40,356	47,584	53,966	61,540	68,769	75,833	83,349	89,020	94,197	99,157	104,067	109,193	113,317
1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
45	83	142	227	351	524	764	1,075	1,456	1,907	2,423	2,990	3,567	4,145	4,688	5,220
922	911	898	884	870	856	841	827	814	803	796	792	795	796	804	815
4.9	10.2	19.2	40.5	67.3	122.0	230.5	263.8	321.8	465.5	508.0	570.0	699.7	892.0	1,181.4	1,367.3
49	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.25%	0.17%	0.05%	0.00%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
43,320	41,796	39,754	37,225	34,509	31,471	28,085	24,509	20,984	17,637	14,520	11,691	9,182	7,045	5,280	3,862
125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	125
0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
1,379	1,839	2,314	2,771	3,154	3,445	3,588	3,600	3,456	3,204	2,850	2,451	2,027	1,620	1,249	929
35	52	68	91	111	111	111	160	169	189	166	144	138	132	136	132

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
0.012	0.014	0.012	0.009	0.009	0.012	0.013	0.004	0.007	0.005	0.004	0.003	0.004	0.003	0.009	0.003
6	7	7	6	5	7	8	3	4	3	2	2	2	2	5	2
0.089	0.040	0.014	0.012	0.009	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.001	0.001	0.001	0.000
10	4	2	1	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0.000	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									0.007	0.006	0.007	0.007	0.007	0.006	0.006
									1	1	1	1	1	1	1
0.101	0.053	0.026	0.021	0.018	0.013	0.014	0.005	0.007	0.013	0.010	0.011	0.011	0.011	0.016	0.010

ĺ	2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
ĺ	721															

6. 半導体等製造に係る事項(ガスPFCs等)

■総実排出量の推移

HFC等3ガスの排出源	排出物質	単位	実排出量								
TH 040337(07)3/ H///	外田 列東	1	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	PFCs	(百万t-CO ₂)	3.589	4.363	5.415	5.435	5.868	6.064	4.654	4.480	4.366
	PFGS	(t)	412	479	569	571	612	634	484	472	465
	HFC-23	(百万t-CO ₂)	0.255	0.257	0.286	0.263	0.265	0.262	0.205	0.196	0.187
半導体製造時	HFG-23	(t)	17	17	19	18	18	18	14	13	13
十等件表担时	SF ₆	(百万t-CO ₂)	0.372	0.395	0.472	0.471	0.478	0.525	0.378	0.378	0.370
	SF 6	(t)	16	17	21	21	21	23	17	17	16
	NF ₃	(百万t-CO ₂)	0.168	0.169	0.124	0.119	0.212	0.100	0.117	0.167	0.130
	INF ₃	(t)	10	10	7	7	12	6	7	10	8
総実排出量		(百万t-CO ₂)	4.385	5.184	6.297	6.287	6.823	6.951	5.355	5.220	5.053
	PFCs	(百万t-CO ₂)	0.087	0.084	0.155	0.171	0.213	0.214	0.144	0.182	0.168
	PFGS	(t)	12	11	20	22	28	27	18	23	21
	HFC-23	(百万t-CO₂)	0.000	0.000	0.001	0.001	0.004	0.002	0.001	0.002	0.002
液晶製造時	HFG-23	(t)	0	0	0	0	0	0	0	0	0
	er.	(百万t-CO ₂)	0.142	0.412	0.536	0.648	0.868	0.877	0.824	0.903	0.854
	SF ₆	(t)	6	18	23	28	38	38	36	40	37
	NE	(百万t-CO ₂)	0.016	0.006	0.030	0.035	0.052	0.066	0.057	0.050	0.148
	NF ₃	(t)	1	0	2	2	3	4	3	3	9
総実排出量		(百万t-CO ₂)	0.244	0.502	0.722	0.855	1.137	1.159	1.026	1.136	1.172

多分数區			諸数値								
HFC等3ガスの排出源	項 目	単 位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	PFC-14の購入量	(t)	313	300	281	279	283	300	215	224	228
	PFC-116の購入量	(t)	210	316	464	468	515	561	449	447	449
	PFC-218の購入量	(t)	0	0	0	0	4	10	29	81	126
	PFC-c318の購入量	(t)	1	3	5	6	9	39	15	13	15
	HFC-23の購入量	(t)	48	48	54	49	50	49	40	43	38
	SF ₆ の購入量	(t)	91	96	115	115	117	132	94	95	95
半導体製造時	NF3の購入量	(t)	54	55	40	38	68	106	175	205	252
	プロセス供給率	(%)	90%	90%	90%	90%	90%	90%	90%	90%	90%
	PFC等の反応消費率	(%)	物質により	10%~98%							
	PFC、SF ₆ の反応消費率除害効率	(%)	90%	90%	90%	90%	90%	90%	90%	90%	90%
	NF ₃ の反応消費率除害効率	(%)	95%	95%	95%	95%	95%	95%	95%	95%	95%
	副成CF4等発生率	(%)	物質により	12% ~ 20%							
	副成CF4等除害効率	(%)	90%	90%	90%	90%	90%	90%	90%	90%	90%
	PFC-14の購入量	(t)	21	19	36	40	48	47	31	41	47
	PFC-116の購入量	(t)	0	1	1	1	2	3	4	3	5
	PFC-c318の購入量	(t)	0	0	0	0	0	0	0	0	0
	HFC-23の購入量	(t)	0	0	0	0	1	1	1	1	1
	SF ₆ の購入量	(t)	12	34	47	58	80	85	83	94	99
液晶製造時	NF3の購入量	(t)	8	16	31	49	78	107	102	153	184
/汉阳表坦时	プロセス供給率	(%)	90%	90%	90%	90%	90%	90%	90%	90%	90%
	PFC等の反応消費率	(%)	物質により	√40% ~ 97%							
	PFC、SF ₆ の反応消費率除害効率	(%)	90%	90%	90%	90%	90%	90%	90%	90%	90%
	NF ₃ の反応消費率除害効率	(%)	95%	95%	95%	95%	95%	95%	95%	95%	95%
	副成CF₄等発生率	(%)	物質により	10.9%~7%							
	副成CF₄等除害効率	(%)	90%	90%	90%	90%	90%	90%	90%	90%	90%

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
4.610	3.802	3.797	3.540	2.791	1.581	1.690	1.338	1.098	1.028	1.090	1.057	1.196	1.322	1.254	1.154
493	411	415	396	324	191	207	165	134	125	134	130	149	164	157	144
0.213	0.200	0.210	0.236	0.216	0.145	0.160	0.137	0.117	0.104	0.108	0.108	0.112	0.118	0.108	0.095
14	13	14	16	15	10	11	9	8	7	7	7	8	8	7	6
0.397	0.346	0.289	0.271	0.222	0.135	0.148	0.120	0.107	0.105	0.098	0.108	0.116	0.124	0.106	0.097
17	15	13	12	10	6	7	5	5	5	4	5	5	5	5	4
0.182	0.161	0.193	0.245	0.227	0.182	0.191	0.175	0.177	0.110	0.132	0.145	0.183	0.194	0.203	0.224
11	9	11	14	13	11	11	10	10	6	8	8	11	11	12	13
5.402	4.510	4.489	4.292	3.456	2.042	2.189	1.770	1.499	1.347	1.429	1.417	1.607	1.758	1.671	1.570
0.179	0.152	0.158	0.107	0.083	0.039	0.046	0.059	0.068	0.076	0.090	0.086	0.071	0.084	0.079	0.075
23	18	19	14	11	5	6	8	9	10	12	12	10	11	11	10
0.003	0.003	0.003	0.003	0.003	0.002	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.850	0.712	0.572	0.366	0.296	0.199	0.269	0.198	0.172	0.170	0.191	0.191	0.157	0.163	0.167	0.147
37	31	25	16	13	9	12	9	8	7	8	8	7	7	7	6
0.165	0.071	0.085	0.114	0.031	0.023	0.026	0.024	0.021	0.021	0.026	0.022	0.020	0.022	0.021	0.019
10	4	5	7	2	1	2	1	1	1	2	1	1	1	1	1
1.198	0.937	0.818	0.589	0.413	0.264	0.345	0.285	0.263	0.269	0.309	0.302	0.249	0.271	0.270	0.243

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
235	232	233	278	277	209	265	248	222	218	254	285	317	365	376	369
434	393	356	321	285	171	194	160	139	118	105	96	102	126	93	80
159	182	189	195	181	129	167	137	115	106	117	111	108	130	127	108
22	25	28	33	40	33	36	37	40	42	53	63	70	107	167	208
42	42	49	62	74	54	67	68	67	67	77	86	83	84	85	73
105	97	86	83	79	60	77	65	64	58	65	68	73	87	87	84
328	407	600	731	822	725	861	834	881	905	1,055	1,232	1,310	1,597	1,876	2,010
90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%
90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
65	78	86	80	69	52	94	124	121	155	192	177	152	185	176	164
9	10	9	5	4	2	0	0	0	0	0	0	0	0	0	0
1	1	1	2	2	2	2	2	2	1	2	1	1	1	1	1
2	2	2	2	2	1	1	1	1	1	2	1	1	1	1	1
101	101	107	117	147	127	177	129	104	107	126	127	110	116	117	99
226	232	296	439	556	532	764	718	668	784	919	808	692	813	767	664
90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%
90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%

7. 電気絶縁ガス使用機器に係る事項

■総実排出量の推移

HFC等3ガスの排出源	排出物質	単位	実排出量								
RFU等3万人仍排出源	排山初貝	早 世	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
電気絶縁ガス使用機	SF ₆	(百万t-CO ₂)	9.120	9.576	8.094	7.394	3.990	2.164	1.494	1.186	0.846
器の製造等	SF 6	(t)	400	420	355	324	175	95	66	52	37
電気絶縁ガス使用機	SF ₆	(百万t-CO ₂)	1.375	1.655	1.733	1.284	0.746	0.502	0.445	0.287	0.303
器の使用時	3F ₆	(t)	60	73	76	56	33	22	20	13	13
総実排出量		(百万t-CO ₂)	10.495	11.231	9.827	8.678	4.736	2.665	1.938	1.473	1.149

■参考数値

	75 P	334 /±	諸数値								
HFC等3ガスの排出源	項目	単 位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	SF ₆ ガス購入量	(t)	1,380	1,480	1,300	1,487	925	649	577	470	591
電気絶縁ガス使用機	絶縁機器へのSF ₆ 充填量	(%)	1,464	1,464	1,297	1,075	682	450	425	348	459
器の製造等	機器充填以外の保有量	(%)	-	ı	ı	88	68	105	87	70	95
	製造時漏洩率	(%)	29%	28%	27%	22%	19%	15%	11%	11%	6%
	機器SF ₆ ガス保有量	(t)	6,300	6,600	7,000	7,300	7,700	8,000	8,300	8,400	8,600
電気絶縁ガス使用機	使用時漏洩率	(%)	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
器の使用時	点検時SF ₆ ガス回収率	(%)	60%	61%	66%	77%	87%	93%	96%	97%	97%
	機器廃棄時SF ₆ ガス回収率	(%)	0%	43%	59%	80%	88%	94%	97%	98%	98%

8. 金属製品に係る事項

■総実排出量の推移

HFC等3ガスの排出源	排出物質	単位	実排出量								
RFU等3万人仍排出源	拼出初貝	平 位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	SF ₆	(百万t-CO ₂)	0.114	0.137	0.182	0.388	0.616	0.980	1.094	1.072	0.966
マグネシウム鋳造時	3F6	(t)	5	6	8	17	27	43	48	47	42
	HFC-134a	(百万t-CO ₂)									
	HFO-134a	(t)									
	PFC-14	(百万t-CO ₂)	0.091	0.086	0.077	0.064	0.038	0.023	0.020	0.019	0.019
アルミニウム精錬時	PFC-14	(t)	12	12	10	9	5	3	3	3	3
	PFC-116	(百万t-CO₂)	0.013	0.012	0.011	0.009	0.005	0.003	0.003	0.003	0.003
	PFC-116	(t)	1	1	1	1	0	0	0	0	0
総実排出量		(百万t-CO ₂)	0.218	0.235	0.271	0.461	0.659	1.007	1.117	1.093	0.989

■参考数値

HFC等3ガスの排出源	15 日	単位	諸数値								
RFU等3万人の排出源	項目	平 位	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	SF ₆ 使用量	(t)	5	6	8	17	27	43	48	47	42
マグネシウム鋳造時	HFC-134a使用量	(t)									
	マグネシウム溶解量	(t)	1,840	2,681	3,656	6,447	9,138	14,231	14,562	17,500	18,753
アルミニウム精錬時	アルミニウム生産量	(t)	17,338	17,198	16,709	15,045	9,676	6,500	6,675	6,300	6,466
アルミーリム有螺吁	PFC-14発生係数	(kg/t-AI)	0.709	0.675	0.627	0.579	0.530	0.482	0.407	0.411	0.407

9. 消火剤に係る事項

■総実排出量の推移

HFC等3ガスの排出源	排出物質	単位	実排出量								
日下 0 寺 3 万 人 の 排 出 源	75山初貝	平 世	1995年	1996年	1997年	1998年	1999年	2000年	2001年	2002年	2003年
	HFC-23	(百万t-CO ₂)	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.005	0.006
消火剤	HFO-23	(t)	0	0	0	0	0	0	0	0	0
用 次則	HFC-227ea	(百万t-CO₂)	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001
	HFG-227ea	(t)	0	0	0	0	0	0	0	0	0
総実排出量		(百万t-CO ₂)	0.000	0.000	0.001	0.002	0.004	0.005	0.005	0.006	0.007

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
0.653	0.437	0.377	0.410	0.456	0.286	0.215	0.209	0.177	0.156	0.165	0.214	0.175	0.137	0.114	0.108
29	19	17	18	20	13	9	9	8	7	7	9	8	6	5	5
0.283	0.255	0.312	0.294	0.321	0.283	0.287	0.360	0.395	0.340	0.287	0.269	0.299	0.301	0.276	0.283
12	11	14	13	14	12	13	16	17	15	13	12	13	13	12	12
0.935	0.692	0.690	0.704	0.778	0.568	0.502	0.569	0.573	0.496	0.453	0.483	0.473	0.438	0.390	0.391

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
558	630	597	620	786	461	317	396	332	234	240	300	320	328	321	414
469	582	527	555	726	410	282	352	331	249	224	274	271	316	296	410
61	29	54	47	40	38	26	35	-19	-11	8	15	42	6	20	0
5%	3%	3%	3%	3%	3%	3%	2%	2%	3%	3%	3%	2%	2%	2%	1%
8,600	8,700	8,800	8,900	9,000	9,000	9,100	9,200	9,300	9,400	9,400	9,400	9,600	9,700	9,600	9,400
0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%	0.1%
97%	97%	99%	99%	99%	99%	99%	99%	99%	99%	99%	99%	99%	99%	99%	99%
99%	99%	98%	99%	99%	99%	99%	99%	99%	99%	99%	99%	99%	99%	99%	99%

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
0.922	0.953	0.933	0.951	0.622	0.228	0.294	0.182	0.182	0.160	0.182	0.228	0.315	0.246	0.274	0.251
40	42	41	42	27	10	13	8	8	7	8	10	14	11	12	11
							0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001
							1	1	1	1	1	1	1	1	1
0.019	0.019	0.019	0.019	0.019	0.014	0.013	0.013	0.012	0.008	0.002					
3	3	3	3	3	2	2	2	2	1	0					
0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.001	0.000					
0	0	0	0	0	0	0	0	0	0	0					
0.944	0.975	0.954	0.972	0.644	0.244	0.309	0.199	0.197	0.170	0.186	0.229	0.316	0.248	0.275	0.252

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
40	42	41	42	27	10	13	8	8	7	8	10	14	11	12	11
							1	1	1	1	1	1	1	1	1
20,782	26,308	27,283	25,084	20,863	12,912	15,241	13,940	14,149	12,570	13,196	12,300	13,232	11,363	13,335	12,001
6,432	6,490	6,600	6,610	6,600	4,930	4,670	4,670	4,075	2,950	588					
0.401	0.398	0.392	0.388	0.388	0.390	0.388	0.387	0.386	0.386	0.386					

2004年	2005年	2006年	2007年	2008年	2009年	2010年	2011年	2012年	2013年	2014年	2015年	2016年	2017年	2018年	2019年
0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
0.007	0.007	0.007	0.008	0.008	0.008	0.008	0.008	0.007	0.008	0.008	0.008	0.008	0.008	0.008	0.008

4.業務用空調機器(ビルマルチエアコン)における冷媒転換の検討

大きな排出量を有しているビルマルチエアコンに関して、今後の冷媒転換についての検討に資することを目的に、2回の「検討会(正式名称:ビル用マルチエアコンの指定製品検討に係るステークホルダー会議)」(以下「本検討会」)を実施した。

なお、「本検討会」は、有識者、専門家、関係業界団体、行政機関等の委員で構成した。

4.1. 「本検討会」設置の目的

現在、わが国では、地球温暖化抑制の観点から、モントリオール議定書キガリ改正を受けたオゾン層保護法改正により、HFC 冷媒の生産、消費量の段階的削減に取り組んでいるところである。その中で冷凍空調機器に充填される冷媒については、温暖化への影響が低い温暖化係数(低 GWP)冷媒への転換を進めるべく、「フロン排出抑制法」の指定製品制度により GWP の目標値や目標年度を設定している。

店舗・オフィス用途の業務用エアコンでは、具体的に達成すべき目標値(GWP)や目標年度が設定 (指定製品化)されている。業務用エアコン製造業者等では、この目標達成に向けた事業展開を進めているところである。現在、採用されている低 GWP 冷媒(=R32)は、僅かながら燃焼性を有しているが、業務用エアコン製造業界では学会等との連携によるリスクアセスメントを実施済みである。その結果、店舗・オフィス用業務用エアコンでは、使用に際しての安全性担保が確認されている。

一方、冷媒が大量に充填されるビル用マルチエアコンでの低 GWP 冷媒 (=R32) の採用については、機器を安全に使用するため、追加的な安全対策の実施等が必要とされている。なお、ビル用マルチエアコンは業務用ビルの空調設備として、施工性の容易さなどの利点から建築設計・施工事業者から好評を得てきた。しかし、低 GWP 冷媒を採用するためには、一部これまでの製品とは異なる設計・施工、さらには保守・管理事項も増えることを想定せざるを得ない。

そこで、このビル用マルチエアコン用冷媒を低 GWP 冷媒へ転換していく上で、関連する事業者に今後市場投入される当該製品についての理解と、当該製品導入に対する各ステージ(発注から設置、設置後の運用管理など)で求められる課題及び対応策について、具体的に議論を行うべく、中立の有識者、建築業界、建築設計業界、設備工事業界、使用者にて構成されたステークホルダー会議である「本検討会」を発足した。

「本検討会」では、以下の事項の説明、議論を実施した。

- ビル用マルチエアコンの指定製品に係る設定(目標年度、目標値等)
- 課題対応WG (SH-WG) の検討報告
- 今後の検討の進め方
- 抽出された優先課題に対する課題解決の進め方と活動体制

4.2. 「本検討会」の概要

本調査では、2回の「本検討会」を実施した。以下に、「本検討会」の概要を記載する。

【第1回検討会(第1回ビル用マルチエアコンの指定製品検討に係るステークホルダー会議)】

≪開催日時≫

令和2年11月4日(水)10時00分~12時00分

≪議題≫

- (1) ビル用マルチエアコンの指定製品に係る設定(目標年度、目標値等)について
- (2) 課題対応WG (SH-WG) の検討報告について
- (3) 今後の検討の進め方について
- (4) その他(次回の日程等)

≪配布資料≫

- 資料1 委員名簿
- 資料2 フロン類対策の概要とビル用マルチエアコンの指定製品に係る設定について
- 資料3-1 課題対応WG (SH-WG) の活動経過と概要
- 資料3-2① A2Lビル用マルチエアコンの課題
- 資料3-2② 抽出した優先課題の一覧
- 資料3-3① 周知・説明のスケジュールと周知・説明の考え方
- 資料3-3② 周知・説明スケジュール (案)
- 資料3-4① 「製品内での完結・内蔵」に関する主な意見
- 資料3-4② A2L 冷媒を採用したビル用マルチエアコンに関する安全装置の完結・内蔵化検討

【第2回検討会(第2回ビル用マルチエアコンの指定製品検討に係るステークホルダー会議)】

≪開催日時≫

令和2年12月9日(水)10時00分~12時00分

≪議題≫

- (1) ビル用マルチエアコンの指定製品に係る設定(目標年度、目標値等)について
- (2) 抽出された優先課題に対する課題解決の進め方と活動体制について
- (3) その他(次回の日程等)

≪配布資料≫

資料1 委員名簿

資料2 第1回議事録

資料3-1 ビル用マルチエアコン:段階的指定製品化のご提案

資料3-2 ビル用マルチエアコン:タイプ別概要

資料3-3 ビル用マルチエアコンの指定製品(目標値、目標年度)の設定等(案)

資料4-1 抽出された優先課題に対する課題解決の進め方と活動体制(案)

資料4-2 周知・説明スケジュール (案)

参考資料1 ビル用マルチエアコン各社カタログ

参考資料 2 抽出した優先課題の一覧

参考資料3 A2Lビル用マルチエアコンの課題

参考資料4 周知・説明のスケジュールと周知・説明の考え方

4.3. 産業構造審議会での報告内容

「本検討会(ビル用マルチエアコンの指定製品検討に係るステークホルダー会議)」の検討結果を踏まえて、「産業構造審議会 製造産業分科会化学物質政策小委員会 フロン類等対策ワーキンググループ(第16回、令和3年3月3日(水)10:00~12:00)」にて、「ビル用マルチエアコン」の最新動向が報告された。以下に、報告資料のうち、「ビル用マルチエアコン」に関する部分を抜粋したものを掲載する。

【産業構造審議会の報告資料 (抜粋)】

(2) 各論

①ビル用マルチエアコン

「中間とりまとめ」では、「業務用の分離型であって1の室外機に2以上の室内機を接続して用いる構造のもので各室内機を個別に制御するもの(ビル用マルチエアコンディショナー)」について、以下の理由により、目標値及び目標年度を設定することは妥当ではないとされた。

<目標値及び目標年度の設定が妥当でないとされた理由>

冷媒充填量が非常に多く、ビル内の複数の部屋に冷媒を循環させて個別に温度調整することを前提にしているところ、冷媒漏えい発生時には室内に大量の冷媒が充満することとなるため、店舗・オフィス用エアコンディショナーとは別途の微燃性冷媒使用に係る安全性評価の実施が必要であり、現時点では評価中(未了)。安全性評価終了後も、別途、機器又は使用環境に係る安全性確保のための措置の検討が必要となる見込み。

- その後、ビル用マルチエアコンディショナーへの<u>低 GWP 微燃性冷媒(HFC-</u>32)の適用検討は機器メーカー各社にて実施。
- 機器の普及のためには製品開発のみならず、<u>安全を確保するために</u>種々の 建物を考慮した設置施工に係る手法の検討と普及に向けた施策が必要で あり、施主、建築事業者、設備設計事業者や設備事業者等との連携が必要。
- こうした関係者からなる会合として「ステークスホルダー会議」(事務局: 経産省・日冷工)を設置し、具体的な導入に当たっての課題や目標値、目標年度について検討を重ねてきたところ、今般、ビル用マルチエアコンディショナーのうち、まずは新設及び冷媒配管一式の更新を伴うものについて、目標値750、目標年度2025年度として指定製品化を進めることとされた。
- 上記以外のビル用マルチエアコンディショナー (既設冷媒配管を流用するタイプの製品や冷暖同時運転型、寒冷地用、水冷式、氷蓄熱型といった製品)については、更なる安全確保等の対策を検討する必要があることから、引き続き日冷工を中心に検討を行い、2029年の極めて厳しい規制の達成のためにも、早期の目標値、目標年度の決定に向けて検討を進めてはどうか。
 - ※ 冷暖同時運転型:冷房と暖房を同時に使用するため冷媒を分流する構造を備えたもの。寒冷地用:寒冷地で使用されるエアコンディショナーであって、低外気温度時での暖房能力低下を抑制する機能を備えたもの。水冷式:水を熱源とする構造のもの。氷蓄熱型:冷房のための熱を蓄える専用の蓄熱槽を有する構造を備えたもの。

5. 付録

「4. 3. 産業構造審議会での報告内容」で一部抜粋したものを掲載した、「産業構造審議会 製造産業分科会化学物質政策小委員会 フロン類等対策ワーキンググループ(第16回、令和3年3月3日(水) $10:00\sim12:00$)」で報告された報告資料の全文を以下に掲載する。

資料6

新たな指定製品の目標値及び目標年度の設定等について(案)

令和3年3月3日 経済産業省製造産業局 化学物質管理課 オゾン層保護等推進室

1. 指定製品制度の運用状

- 指定製品制度の運用については、「改正フロン法における指定製品の対象 と指定製品製造業者等の判断の基準について(中間とりまとめ)」(平成26 年8月29日)及び「今後の指定製品制度の運用等について」(平成26年 12月19日)にて整理。
- 「中間取りまとめ」において、目標値・目標年度が設定されなかった製品についても、その後の代替技術の確立・製品供給等の状況を踏まえ、順次設定を進めてきている。
- 現在、指定製品の目標値・目標年度は、以下の13区分について設定済み。 (2021年より14区分となる予定)

指定製品の区分	現在使用されている 主なフロン類等及び GWP	環境影響度 の目標値	目標年度
家庭用エアコンディショナー (壁貫通型等を除く)	R410A (2090) R32 (675)	750	2018
店舗・オフィス用エアコンディショナー			
① 床置型等除く、法定冷凍能力3トン 未満のもの	R410A (2090)	750	2020
② 床置型等除く、法定冷凍能力3トン 以上のものであって、③④を除くも の	R410A (2090)	750	2023
③ 中央方式エアコンディショナーの うちターボ冷凍機を用いるもの	R134a (1430) R245fa (1030)	100	2025
④ ビル用マルチエアコンディショナ 一 (新設及び冷媒配管一式の更新を伴 うものに限り、冷暖同時運転型や寒冷 地用等を除く)	R410A (2090)	<u>750</u>	2025
自動車用エアコンディショナー (乗用自動車(定員 11 人以上のものを除く)に搭載されるものに限る)	R134a (1430)	150	2023

コンデンシングユニット及び定置式冷凍冷	R404A (3920)		
蔵ユニット	R410A (2090)	1500	2025
(圧縮機の定格出力が 1.5kW 以下のもの等を除	R407C (1770)	1300	2020
<)	CO2(1)		
硬質ポリウレタンフォームを用いた冷蔵機	HFC-245fa (1030)	100	2024
器及び冷凍機器	HFC-365mfc (795)	100	2024
硬質ポリウレタンフォームを用いた冷蔵又	HFC-245fa (1030)	100	2024
は冷凍の機能を有する自動販売機	HFC-365mfc (795)	100	2024
中央方式冷凍冷蔵機器	R404A (3920)		
(有効容積が5万㎡以上の新設冷凍冷蔵倉庫向	アンモニア (一桁)	100	2019
けに出荷されるものに限る)	// 11/		
仕事用研修ポリカレクショナー / 用原洗	HFC-245fa (1030)	100	2020
住宅用硬質ポリウレタンフォーム用原液	HFC-365mfc (795)	100	2020
######################################	HFC-245fa (1030)	100	2024
非住宅用硬質ポリウレタンフォーム用原液	HFC-365mfc (795)	100	2024
研覧ポリウレクンフェー / た用いた 監禁せ	HFC-245fa (1030)	100	2024
硬質ポリウレタンフォームを用いた断熱材	HFC-365mfc (795)	100	2024
東に噴針刻の2丸本橋した噴霧県	HFC-134a (1430)		
専ら噴射剤のみを充塡した噴霧器 (天鮮性を悪する思念のものも除く)	HFC-152a (124)	10	2019
(不燃性を要する用途のものを除く)	CO2(1), DME(1)		

【参考:指定製品の対象となる製品の考え方】

- (1) 国内において大量に使用され、相当量のフロン類が使用されていること
 - > フロー要件:製品の現状(直近年度)における国内出荷量と当該製品あたりのフロン類使 用量を掛け合わせた値(CO2換算)が1万CO2-t程度あること。
 - ストック要件:製品の市中ストック量と当該製品あたりのフロン類使用量を掛け合わせた値(002換算)が5万002-t程度あること。
- (2) 転換候補となる代替技術があること(以下の4点に留意して判断)
 - 安全性(燃焼性、毒性等の人体又は財産への危害に関するものを含む)
 - 経済性(価格、供給安定性、漏えい防止による経済的便益、回収・再生・破壊に要する費用等を総合的に勘案したもの)
 - ▶ 性能 (エネルギー消費性能を含む)
 - > 新たな技術開発・商品化の見通し

2. 指定製品化に関する検討状況

(1) 総論

● 業務用エアコンディショナーのうち、「ビル用マルチエアコンディショナ 一」については、低 GWP 微燃性冷媒 (HFC-32) の適用検討が機器メーカー 各社にて実施されているとともに、経済産業省・(一社)日本冷凍空調工業 会(以下、日冷工)を中心として、機器メーカー、設備設計業者、施主、 <u>建築事業者等を交え課題解決に向けて関係者による議論</u>が進められ、まず は<u>冷媒配管一式の更新を伴う新設用製品について指定製品化を進めるこ</u> <u>ととされた</u>。その他の既設冷媒配管を流用するタイプの製品等については、 安全性確保などの課題解決ができ次第、目標値、目標年度を設定すること としてはどうか。

● 自動車用エアコンディショナーのうち、トラック(貨物の輸送の用に供するもの)やバス(乗用定員が11人以上のもの)については、代替が本格化している乗用自動車とエアコンの構造は基本的に同じで、HFO-1234yfの使用が可能と考えられることから、冷媒量増加及び搭載レイアウトによるリスク評価の結果が得られた後、2021年度中に指定製品化を行うことを前提に、目標年度は遅くとも2029年度と定めてはどうか。

(2) 各論

①ビル用マルチエアコン

「中間とりまとめ」では、「業務用の分離型であって1の室外機に2以上の室内機を接続して用いる構造のもので各室内機を個別に制御するもの(ビル用マルチエアコンディショナー)」について、以下の理由により、目標値及び目標年度を設定することは妥当ではないとされた。

< 目標値及び目標年度の設定が妥当でないとされた理由>

冷媒充塡量が非常に多く、ビル内の複数の部屋に冷媒を循環させて個別に温度調整することを前提にしているところ、冷媒漏えい発生時には室内に大量の冷媒が充満することとなるため、店舗・オフィス用エアコンディショナーとは別途の微燃性冷媒使用に係る安全性評価の実施が必要であり、現時点では評価中(未了)。安全性評価終了後も、別途、機器又は使用環境に係る安全性確保のための措置の検討が必要となる見込み。

- ◆ その後、ビル用マルチエアコンディショナーへの低 GWP 微燃性冷媒 (HFC-32) の適用検討は機器メーカー各社にて実施。
- 機器の普及のためには製品開発のみならず、安全を確保するために種々の 建物を考慮した設置施工に係る手法の検討と普及に向けた施策が必要で あり、施主、建築事業者、設備設計事業者や設備事業者等との連携が必要。

- こうした関係者からなる会合として「ステークスホルダー会議」(事務局: 経産省・日冷工)を設置し、具体的な導入に当たっての課題や目標値、目標年度について検討を重ねてきたところ、今般、ビル用マルチエアコンディショナーのうち、まずは新設及び冷媒配管一式の更新を伴うものについて、目標値750、目標年度2025年度として指定製品化を進めることとされた。
- 上記以外のビル用マルチエアコンディショナー (既設冷媒配管を流用するタイプの製品や冷暖同時運転型、寒冷地用、水冷式、氷蓄熱型といった製品)については、更なる安全確保等の対策を検討する必要があることから、引き続き日冷工を中心に検討を行い、2029年の極めて厳しい規制の達成のためにも、早期の目標値、目標年度の決定に向けて検討を進めてはどうか。
 - ※ 冷暖同時運転型:冷房と暖房を同時に使用するため冷媒を分流する構造を備えたもの。寒冷地用:寒冷地で使用されるエアコンディショナーであって、低外気温度時での暖房能力低下を抑制する機能を備えたもの。水冷式:水を熱源とする構造のもの。氷蓄熱型:冷房のための熱を蓄える専用の蓄熱槽を有する構造を備えたもの。

②自動車用エアコン (トラックや乗車定員 11 人以上のバス)

「中間とりまとめ」では、「自動車用エアコンディショナーのうち、乗車定員が11人以上の乗用自動車用のもの及び乗用自動車用以外のもの」について、以下の理由により、目標値及び目標年度を設定することは妥当ではないとされた。

<目標値及び目標年度の設定が妥当でないとされた理由>

トラック(貨物の運送の用に供するもの)やバス(乗車定員が11 人以上のもの)は乗用車に対して機器の搭載レイアウトが異なるため、世界的に性能評価・安全性評価等が進んでいない。特に、バス等の大型車は、冷媒充塡量が多いため普通乗用車とは異なる微燃性冷媒の評価が必要。今後、安全性、経済性、省エネ性能等を完備した新冷媒や機器の開発状況を踏まえ、順次追加指定を検討。

- 無用自動車用は、指定製品検討時にモデルチェンジサイクルを考慮した新型車開発に必要な年数等を踏まえて策定した 2023 年度という目標年度に向けて代替が本格化している。
- ▶ トラックやバスのエアコンについても、乗用自動車と搭載レイアウトは異なるものの、コンポーネントの構成は基本的に同じであり、技術的には

HF0-1234yf の使用が可能であると考えられるが、冷媒量増加や搭載レイアウトによるリスク評価が必要である。現在、NEDO事業を通じて、事故発生時等における微燃性冷媒の漏えい・発火の発生頻度を含めた<u>リスク評価を継続中であり、この結果を踏まえ、2021年度中の指定製品化を行う</u>こととしたい。

- 代替候補としては、乗用自動車と同様に <u>HF0-1234yf の使用を想定してい</u>ることから、目標値は、乗用自動車と同様に 150 と設定してはどうか。
- <u>目標年度</u>については、大型車のモデルチェンジサイクルは一般的に 10 年 超程度と言われており、これらを考慮し<u>遅くとも 2029 年度と定めること</u> としてはどうか。

3. 現時点では指定製品に指定しないがフォローアップすべき分野について (1)総論

- 業務用一体型冷凍冷蔵機器については、冷媒に炭化水素(HC)の使用する場合も想定して国内規制法(高圧ガス保安法等)での取扱いについて一定の確認がなされつつあるが、依然として製品ライフサイクル全体をとおした安全対策や周知、圧縮機等の開発といった課題がある。現時点では本分野をHC等にて指定製品化は難しいものの、環境影響度の目標値 150~300を目指しつつ、全体課題への対応の具体化を踏まえ、可能なものから段階的に導入を進めるよう目標年度の設定する方向で、速やかに指定製品化を行うこととしてはどうか。
- 洗浄剤・溶剤分野については、HFC 系洗浄剤等のユーザー業界での代替検討・評価遅延を受け、同洗浄剤等メーカー各社の指定製品化に向けた代替技術開発等に遅れが生じている。このため、予定を1年後ろ倒しし、2023年度までの指定製品化を前提に、2022年度中に目標値に関する検討を行う。なお、目標年度は変更せずに2025年度と定めてはどうか。

(2) 各論

①業務用一体型冷凍冷蔵機器(内蔵型小型冷凍冷蔵機器)

「中間とりまとめ」では、「コンデンシングユニット及び定置式冷凍冷蔵 ユニットのうち、圧縮機の定格出力が 1.5kW 以下のもの」について、以 下の理由により、指定製品の対象とすることは適当ではないとされたが、 順次追加指定を検討することとされた。

<指定製品の対象について>

以下の製品については、それぞれ下記の理由から現時点で指定製品の対象とすることは適当ではないと考えられるが、安全性評価や性能評価等の他、フロン類製造業者との連携等により、安全性、経済性、省エネ性能等を完備した、環境影響度の低減に向けた新冷媒や機器の開発が進むことが期待されるため、その状況について定期的に確認し、順次追加指定を検討することとする。

(略)

- 2) 冷凍冷蔵機器のうち、今回対象から除外するもの
- ◆コンデンシングユニット及び定置式冷凍冷蔵ユニットのうち、以下に掲げるもの
- 〇圧縮機の定格出力が 1. 5kW 以下のもの

(理由) コンデンシングユニットのうち圧縮機の定格出力が 1. 5kW 以下のものについては、基本的に全ての出荷製品が業務用一体型冷凍冷蔵機器に組み込まれることとなるため、業務用一体型冷凍冷蔵機器として指定製品の対象化を検討。

- 現状は、主な冷媒として R404A、R410A といった比較的 GWP が高い冷媒が 用いられており、<u>グリーン冷媒を含めた低 GWP 冷媒への転換が急務</u>。こう した中、一体型の内蔵ショーケースにグリーン冷媒である<u>炭化水素 (HC)</u> を用いた場合の安全性を日冷工にて検討中。
- 具体的には、業務用一体型冷凍冷蔵機器のうち、国内外の規格(IEC、JIS 等)で定められている充填上限値である 500g までの機器に関して、日冷 工でのリスクアセスメントの結果により安全規格原案を整備し、機器廃棄 時に安全に廃棄できるよう「可燃性冷媒を使用した内蔵形冷凍冷蔵機器の 処理業者への引き渡し段階における廃棄の手引き」について原案を整備。
- 継続して当該機器の国内規制法での取扱い等、製品のライフサイクル全体での課題の対応が検討されているが、当該分野の関連業界の裾野は広く、依然として安全対策の検討・周知や圧縮機等の開発といった課題が存在。
- 今般、<u>日冷工における検討において</u>、低 GWP 冷媒の HC 冷媒及び微燃性冷媒等の導入をも視野にしていることから、環境影響度の目標値 150~300 として進めることについて、一定のコンセンサスが得られた。これに向けて引き続き国内規制法の確認及び関連業界と取組を進め、<u>目標年度については、課題の対応状況を踏まえながら、可能なものから段階的に導入する方</u>向で検討を進めていく。

● 以上を踏まえ、現時点では本分野を指定製品化は難しいものの、2029年の極めて厳しいキガリ規制達成のためにも、環境影響度の目標値 150~300を目指しつつ、目標年度の検討を開始し、全体課題への対応の具体化の状況を踏まえ、速やかに指定製品化を行うこととしてはどうか。

②洗浄剤·溶剤

洗浄剤・溶剤とその他用途の国内で主に使われる HFC としては、HFC-365mfc (GWP:794) や HFC-43-10mee (GWP:1640) があり、その総量は概ね 108 万 CO2 トン/年程度で (2017 年:日本産業洗浄協議会 (JICC) 調査)、うち洗浄剤製品としての量は 33 万 CO2 トン/年程度 (2018 年:経済産業省ヒアリング調査結果) と見積もられる。

「第14回フロン類対策等WGにおける、資料4「新たな指定製品の目標値及び目標年度の設定等について(案)」では、「洗浄剤・溶剤」について、以下の理由により、現時点では指定製品化することは難しく、フォローアップすべき分野として追加し、今後、見通しが得らえた段階で、指定製品化を検討するとされた。

< 目標値及び目標年度の設定が妥当でないとされた理由>

- ▶ HFC に代替する物質として、化学メーカーから複数の HFO が提案されている。しかし、その一部は供給に向けた準備が進められている段階であり、本格的な供給開始には至っていない。
- また、洗浄剤メーカーにおいては、提案されている HF0 と他物質との混合による洗浄剤・溶剤の開発、供給が期待される。しかしながら、2019 年度末に迫った HCFC 全廃への対応に注力しており、HFC 系洗浄剤・溶剤を代替しうる製品群の開発、供給には至っていない。
- 以上を踏まえれば、現時点では本分野を指定製品化することは難しいと考えられる。このため、フォローアップすべき分野として追加し、今後 HFC を代替しうる HFO 及びその混合による洗浄剤・溶剤の開発・供給の状況を随時確認し、見通しが得らえた段階で、指定製品化を検討することとしてはどうか。
- 現状、新型コロナウイルス感染症拡大の影響によるユーザー側での代替検討・評価の遅延が生じ、目標値検討に向けた洗浄剤等メーカーとの議論が停滞。同様の理由により、ユーザー業界の生産量の落ち込みから HCFC-225の在庫削減が進まず、HCFC から HFC への転換に遅れが生じている。

- 化学メーカーの HFO 国内生産能力は、HFC 系洗浄剤等の総需要に対して半 分程度しか見込まれておらず、また、技術課題が未解決な分野が残ってお り、<u>引き続き、HFC 系洗浄剤等を代替しうる製品群の開発、供給には至っ</u> ていない。
- 以上を踏まえれば、昨年と状況が大きく変わっていないことから、<u>現時点</u>では本分野の HFC 系洗浄剤等を指定製品化することは難しいと考える。
- <u>他方</u>で、HCFC の在庫は残り1年分程度であることや、化学メーカーの HFO 供給能力が増強されたことなど、状況が好転する要素を勘案すると、<u>遅く</u> とも 2023 年度までにはこれら課題の解決の見通しが立つ可能性がある。
- そのため、2023 年度までの指定製品化を前提に、2022 年度中にも目標値 に関する検討を開始することを目指すが、不確定要素があるため、指定製 品化開始時期はこれ以降になることも考えられる。他方で、キガリ改正に よる削減が一段と厳しくなることに対応する必要性があることから<u>目標</u> 年度は2025 年度と定めることとしてはどうか。

【まとめ:今後の指定製品化の見込み】

指定製品の区分	現在使用されている 主なフロン類等及び GWP	環境影響度 の目標値	目標年度
家庭用エアコンディショナー (壁貫通型等を除く)	R410A (2090) R32 (675)	750	2018
店舗・オフィス用エアコンディショナー			
①床置型等除く、法定冷凍能力3トン 未満のもの	R410A (2090)	750	2020
②床置型等除く、法定冷凍能力3トン 以上のものであって、③④を除くもの	R410A (2090)	750	2023
③中央方式エアコンディショナーのう ちターボ冷凍機を用いるもの	R134a (1430) R245fa (1030)	100	2025
(来年度初旬施行予定) ⑤ ビル用マルチエアコンディショナー(新設及び冷媒配管一式の更新を伴うものに限り、冷暖同時運転型や寒冷地用等を除く)	R410A (2090)	750	2025
自動車用エアコンディショナー (乗用自動車(定員 11 人以上のものを除く)に搭載されるものに限る)	R134a (1430)	150	2023

自動車用エアコンディショナー (乗用自動車(定員 11 人以上のものを除く)に搭 載されるもの以外のもの)	R134a (1430)	<u>150</u>	<u>遅く</u> とも 2029
コンデンシングユニット及び定置式冷凍冷蔵ユニット (圧縮機の定格出力が 1.5kW 以下のもの等を除く)	R404A (3920) R410A (2090) R407C (1770) C02 (1)	1500	2025
業務用一体型冷凍冷蔵機器	R134a (1430) R404A (3920) R410A (2090) R407C (1770) C02 (1)	<u>150~300</u>	<u>遅く</u> とも 2029
硬質ポリウレタンフォームを用いた冷蔵機 器及び冷凍機器	HFC-245fa (1030) HFC-365mfc (795)	100	2024
硬質ポリウレタンフォームを用いた冷蔵又 は冷凍の機能を有する自動販売機	HFC-245fa (1030) HFC-365mfc (795)	100	2024
中央方式冷凍冷蔵機器 (有効容積が5万㎡以上の新設冷凍冷蔵倉庫向 けに出荷されるものに限る)	R404A(3920) アンモニア (一桁)	100	2019
住宅用硬質ポリウレタンフォーム用原液	HFC-245fa (1030) HFC-365mfc (795)	100	2020
非住宅用硬質ポリウレタンフォーム用原液	HFC-245fa (1030) HFC-365mfc (795)	100	2024
硬質ポリウレタンフォームを用いた断熱材	FC-245fa (1030) HFC-365mfc (795)	100	2024
専ら噴射剤のみを充塡した噴霧器 (不燃性を要する用途のものを除く)	HFC-134a (1430) HFC-152a (124) CO2 (1) 、 DME (1)	10	2019
洗浄剤・溶剤	HFC-43-10mee (1640) HFC-365mfc (795)	<u>2023 年に</u> 設定	2025