令和2年度 地球温暖化・資源循環対策等に資する調査委託費

令和元年度実績に基づく

低炭素社会実行計画の削減効果評価等事業

令和3年3月31日

一般財団法人 日本エネルギー経済研究所

目次

Ι.	はじめに	•	1	
II.	低炭素社	:会実行計画の評価・検証の実施	3	
III.	2019年月	度実績を対象とする評価・検証結果	5	
IV.	今後の課題等 2			
V.	各業種の	目標指標の推移・要因分析等	33	
	V-1.	業種別 CO₂排出量の状況 (2018 年度実績・調整後排出係数)		
	V-2.	CO ₂ 排出量及び原単位の増減要因分析		
	(1)	CO₂排出量の増減要因分析		
	(2)	CO₂排出原単位の増減要因分析		
	V-3.	各業種における指標の国際的な比較		
	V-4.	京都メカニズム等の活用状況		
	V-5.	国内の企業活動における対策の状況		
	V-6.	BAT 導入状況		
	V-7.	業務部門(本社等オフィス)における排出削減目標策定状況		
	V-8.	業務部門(本社等オフィス)における CO2排出実績		
	V-9.	業務部門(本社等オフィス)における CO ₂ 排出削減対策とその効果	具	
	V-10.	運輸部門における排出削減目標策定状況		
	V-11.	運輸部門における CO2排出実績		
	V-12.	運輸部門における CO2排出削減対策とその効果		
	V-13.	低炭素製品・サービス等による他部門での削減の状況		
	V-14.	海外での削減貢献の状況		
	V-15.	革新的技術の開発・導入の状況		
	V-16.	情報発信等の取組		
	V-17.	各業種の低炭素社会実行計画カバー率		
	V-18.	各業種の電力排出係数		
VI.	来年度に	.向けたフォローアップの改善案の検討	130	
VII.	地球温岡	援化対策計画にかかるフォローアップ	133	
WII.	情報発信内容の拡 136			
IX	将本の:	排出削減効果の封管 おおおお おおお おおお おおお おお おお お お お お お お お	138	

I. はじめに

1. 低炭素社会実行計画の評価・検証について

(1)産業構造審議会産業技術環境分科会地球環境小委員会・中央環境審議会地球環境部会低炭素社会実行 計画フォローアップ専門委員会合同会議の役割

2016年5月に閣議決定された地球温暖化対策計画において、低炭素社会実行計画は「京都議定書目標達成計画における自主行動計画での削減取組とその評価・検証結果を踏まえ、地球温暖化対策計画における削減目標の達成に向けて排出削減の着実な実施を図るため、産業界における対策の中心的役割として引き続き事業者による自主的取組を進めることとする。」とされている。これを踏まえ、「政府は、各業種により策定された低炭素社会実行計画及び 2030 年に向けた低炭素社会実行計画に基づいて実施する取組について、関係審議会等による厳格かつ定期的な評価・検証を実施する。」という方針が示された。

同方針を踏まえ、経済産業省所管 41 業種の低炭素社会実行計画については産業構造審議会産業技術環境分科会地球環境小委員会の7つの業種別ワーキンググループ、環境省所管 3 業種については中央環境審議会地球環境部会低炭素社会実行計画フォローアップ専門委員会において、各業界の低炭素社会実行計画における取組のフォローアップを実施し、上位機関に当たる産業構造審議会産業技術環境分科会地球環境小委員会・中央環境審議会地球環境部会低炭素社会実行計画フォローアップ専門委員会合同会議において審議結果について報告、低炭素社会実行計画の評価・検証結果及び今後の課題等を整理することとされている。

2020 年度は、低炭素社会実行計画の 2019 年度の実績に基づく評価・検証が行われてきたところ、本合同会議では、2020 年度 低炭素社会実行計画 評価・検証の結果及び今後の課題等について報告書をとりまとめる。

(2) 2019 年度の実績に基づく低炭素社会実行計画の評価・検証のスケジュールについて

○ 産業構造審議会産業技術環境分科会地球環境小委員会業種別WG

資源・エネルギーWG2020 年 12 月 7 日 (月)鉄鋼WG2021 年 2 月 8 日 (月)自動車・自動車部品・自動車車体WG2021 年 1 月 28 日 (木)製紙・板硝子・セメント等WG2020 年 12 月 16 日 (水)流通・サービスWG2021 年 2 月 17 日 (水)化学・非鉄金属WG2021 年 1 月 26 日 (火)電子・電機・産業機械等WG2021 年 1 月 21 日 (木)

○ 中央環境審議会地球環境部会 低炭素社会実行計画フォローアップ専門委員会 2021 年 3 月 1 日(月)・2 日(火)

○ 産業構造審議会産業技術環境分科会地球環境小委員会・中央環境審議会地球環境部会低炭素社会実行 計画フォローアップ専門委員会合同会議 3月9日-12日 書面審議

2. 低炭素社会実行計画の参加業種

低炭素社会実行計画策定 経団連参加業種 全62団体・企業(民生業務・運輸部門を含む)

日本鉱業協会 2 資: 石灰石鉱業協会 資: 石油鉱業連盟 鉄: 日本鉄鋼連盟 化:日本化学工業協会 化: 石灰製造工業会 化: 日本ゴム工業会 化: 日本電線工業会 化: 日本アルミニウム協会 化: 日本伸銅協会 紙: 日本製紙連合会 11 紙: セメント協会 12 紙: 板硝子協会紙: 日本レストルーム工業会 13 14 紙: 日本印刷産業連合会 電:電機・電子温暖化対策連絡会 電: 日本ペアリング工業会 電: 日本産業機械工業会 電: 日本工作機械工業会 18 19 自: 日本自動車部品工業会 20 21 自: 日本自動車工業会・日本自動車車体工業会 22 自: 日本産業車両協会 23 <mark>財務:</mark> ビール酒造組合 24 **厚**労: 日本製薬団体連合会 25 農水: 日本乳業協会 26 農水: 全国清涼飲料工業会 27 農水: 製粉協会 日本建設業連合会 住宅生産団体連合会 日本造船工業会・日本中小型造船工業会

低炭素社会実行計画策定 経団連非参加業種

NO.		産業制質	
1	紙:	日本染色協会	経済産業省
2	紙:	日本ガラスびん協会	【凡例】所属W
3	紙:	プレハブ建築協会	資:資源・エネ
4	電:	日本建設機械工業会	化:化学・非鉄
5	化:	炭素協会	電:電子・電機
6	財務:	日本たばこ産業株式会社	鉄:鉄銅WG
7	農水:	日本スターチ・糖化工業会	紙:製紙・板硝
8	農水:	日本パン工業会	自:自動車・自
9	農水:	日本ビート糖業協会	流:流通・サー
10	農水:	日本冷凍食品協会	M - MLM - 9 —
11	農水:	日本植物油協会	
12	農水:	全日本菓子協会	環境省
13	農水:	日本ハム・ソーセージ工業協同組合	
14	農水:	全日本コーヒー協会	金融庁
15	農水:	日本即席食品工業協会	
16	農水:	日本醤油協会	総務省
17	農水:	日本缶詰協会	
18	農水:	全国マヨネーズ・ドレッシング類協会	財務省
19	農水:	日本ハンバーグ・ハンバーガー協会	
20	農水:	日本精米工業会	文部科学省
21	農水:	精糖工業会	
22	国交:	日本舶用工業会	厚生労働省
23	国交:	日本舟艇工業会	
			農林水産省
			国土交通省

経済産業省	41 業種
【凡例】所属WG	
資:資源・エネルギー	WG
化:化学·非鉄金属W	G
電:電子・電機・産業	機械等WG
鉄:鉄鋼WG	
紙:製紙・板硝子・セ	メント等WG
自:自動車・自動車部	品・自動車車体W
流:流通・サービスW	G
環境省	3 業種
金融庁	6 業種
総務省	7 業種
財務省	2 業種
文部科学省	1 業種
厚生労働省	3 業種
序工力制官	3 床俚
農林水産省	20 業種
Technology III	
国土交通省	30 業種
警察庁	2 業種

32	流:	日本チェーンストア協会
33	流:	日本フランチャイズチェーン協会
34	流:	日本百貨店協会
35	流:	日本貿易会
36	資:	日本LPガス協会
37	金融:	全国銀行協会
38	金融:	生命保険協会
39	金融:	日本損害保険協会
40	金融:	日本証券業協会
41	総務:	電気通信事業者協会
42	総務:	テレコムサービス協会
43	総務:	日本インターネットプロバイダー協会
44	国交:	日本冷蔵倉庫協会
45	国交:	日本ホテル協会
46	国交:	不動産協会
47	国交・	日本ビルジング協会連合会

<u>民生業務部門</u>

日本鉄道車輌工業会

		エイルナー科技師「
48	資:	電気事業低炭素社会協議会
49	資:	石油連盟
50	資:	日本ガス協会

		運輸部門
51	国交:	日本船主協会
52	国交:	全日本トラック協会
53	国交:	定期航空協会
54	国交:	日本内航海運組合総連合会
55	国交:	日本民営鉄道協会
56	国交:	全国通運連盟
57	国交:	JR東日本
58	国交:	JR西日本
59	国交:	JR東海
60	国交:	JR四国
61	国交:	JR貨物

		<u>民生業務部門</u>
24	流:	大手家電流通懇談会
25	流:	日本DIY協会
26	流:	情報サービス産業協会
27	流:	日本チェーンドラッグストア協会
28	流:	リース事業協会
29	流:	日本ショッピングセンター協会
30	環境:	全国産業廃棄物連合会
31	環境:	日本新聞協会
32	環境:	全国ペット協会
33	金融:	全国信用金庫協会
34	金融:	全国信用組合中央協会
35	総務:	日本民間放送連盟
36	総務:	日本放送協会
37	総務:	日本ケーブルテレビ連盟
38	総務:	衛星放送協会
39	文科:	全私学連合
40	厚労:	日本生活協同組合連合会
41	厚労:	日本医師会
42	農水:	日本フードサービス協会
43	農水:	日本加工食品卸協会
44	国交:	日本倉庫協会
45	国交:	国際観光旅館連盟・日本観光旅館連盟
46	国交:	日本自動車整備振興会連合会
47	警察:	全日本遊技事業協同組合連合会
48	警察:	全日本アミューズメント施設営業者協会連

48 營祭:	全日本アミュー人メント他設呂業有協会連
	<u>運輸部門</u>
49 国交:	日本旅客船協会
50 国交:	全国乗用自動車連合会
51 国交:	日本バス協会
52 国交:	日本港運協会
53 国交:	JR北海道
	_

II. 低炭素社会実行計画の評価・検証の実施

1. 評価・検証プロセスの改善方針

(1) フォローアップのプロセスに関する改善

フォローアップ実施に当たっては、WG及び専門委員会における審議の活性化を図るため、業界団体からの説明及び委員の質疑に関する論点を事務局において予め提示した上で、論点に沿って議事を進行することとした。これらの論点以外の事項に関しては、WG及び専門委員会開催前に書面による質疑応答を実施し、WG及び専門委員会において資料配布した。【継続】

(2) フォローアップ調査票の記載例の作成

他業界の取組を把握するとともに、業種間で優良事例を共有するために、調査票の記載例や記載事例集 を作成し、調査票を作成する際の参考として配布した。【継続】

(3) データシートの手引きの作成

作業負担を軽減するために、データシート作成の手引きを作成し、配布した。【継続】

2. 評価・検証におけるレビューの視点

これまでの評価・検証における指摘事項等を踏まえ、以下の視点から評価・検証を行った。加えて、新型コロナウイルスの流行のよる低炭素社会実行計画への影響や2050年のカーボンニュートラルに向けた業界として取組についても聴取した。

(1) 国内の企業活動における 2030 年の削減目標

- これまでの実績や要因分析、今後の見通し、地球温暖化対策計画との整合性等を鑑み、自業界が設定する目標指標・設定水準は妥当か。また、目標設定の前提条件等は変化していないか。
 - ◆ 足元で既に 2030 年目標(CO2 原単位目標、エネルギー原単位)を超過達成している業界は、 目標引き上げを検討できないか(引き上げが困難な場合、今後悪化すると考える根拠が定量的・ 定性的に説明されているか)。
 - ◆ 足元で既に 2030 年目標 (CO2 総量目標、エネルギー消費量目標) を超過達成している業界は、 総量目標の引き上げを検討できないか (引き上げが困難な場合、活動量想定や他の要因の説明 が示されているか)。
 - ◆ 省エネ法に基づくエネルギー原単位目標(年1%改善)を設定し、基準年度を5年以上前としている業界は、足下の技術をベースとした基準の設定を検討できないか(設定が困難な場合、その理由が示されているか)。
 - ◆ BAU からの削減目標を設定している業界は、「目標指標として最も適切と考える理由」、「対策 効果などの算定根拠」、「BAU及び削減目標の妥当性」が示されているか。
- 排出削減が着実に進んでいる業界において、効果的だった取組は何か。また、他業界でも参考になりそうな取組事例はないか。

(2) 低炭素製品・サービス等による他部門での削減

- グローバルバリューチェーン(「原料採取」、「製造」、「輸送」、「製品使用」、「廃棄」)における自業界の立ち位置を認識した上で、削減貢献につながる可能性のある他部門への働きかけを棚卸しできているか。また、定量化に当たっては、「温室効果ガス削減貢献定量化ガイドライン(https://www.meti.go.jp/press/2017/03/20180330002/20180330002-1.pdf)」も適宜参照のこと。
- 統計や文献等のデータを活用し、足元の削減実績の定量化を試みているか。削減貢献量の定量化に あたって、何が課題となっているか。
- 削減貢献量の定量化ができている業界は、前提条件やベースライン等の設定方法を明確化すること により計算過程の透明性を確保できているか。また、国際的な展開を検討できないか。

(3) 海外での削減貢献

- 強みのある自社製品等のグローバル展開は十分か。
- 自社の製品・サービス・技術が海外で普及することによる定量的な評価はできているか。削減貢献 量の定量化にあたって、何が課題となっているか。
- 相手国や国際社会との関係で評価されるような発信を十分行っているか。
- 毎外でも国内事業所と同様の排出削減の取組への貢献を行っていないか。

(4) 革新的技術の開発・導入

- 当該団体及び業種に属する企業が実施している主要な国家プロジェクトは全て記載されているか。
- 2050年の長期も視野に入れた自業界の革新的技術・サービス(具体的内容、規模感、商用化の目処などのスケジュール)とは何か。
- 革新的技術の開発にあたってのボトルネック(技術、資金、制度など)は何か。
- 2050年の長期も視野に入れた以下の想定される社会への対応は何か。

例1:再エネの導入拡大(または再エネ由来の割合の増加が見込まれる電力の利用拡大)のための 業界としての革新的取組

例2:循環型社会の構築に資する業界としての横断的取組

● 技術開発の主体が自社か他社かにかかわらず、革新的技術・サービスの導入によって、自らの産業のみならず、社会や他産業にどのように波及し削減効果をもたらすか等、2050年の長期も視野に入れた業界が描く将来像・ビジョンについても触れられないか。業界全体のみならず、可能な範囲で個社の取組も公表できないか

Ⅲ.2019 年度実績を対象とする評価・検証結果

1. 概要

以上のフォローアッププロセスの改善やフォローアップの視点を踏まえ、WG において各業種から報告された 2019 年度実績を対象とする 2020 年度低炭素社会実行計画のフォローアップを実施した。その結果の概要を表 II-3-1 に示す。

表 II -3-1 2019 年度実績を対象とする 2020 年度低炭素社会実行計画フォローアップ結果概要

業界名	2020 年度 目標進捗率	2030 年度 目標進捗率	低炭素製品・サ ービス等による 他部門での貢献	海外での削減 貢献	革新的技術の 開発・導入
電気事業低炭素社会協議会	133.0%	85.0%	0	0	Δ
石油連盟	130.0%	69.0%	0	Δ	Δ
日本ガス協会	102.0%	103.0%	0	0	0
日本鉄鋼連盟	110.0%	37.0%	0	0	0
日本化学工業協会	307.0%	49.0%	0	0	0
日本製紙連合会	274.0%	82.0%	0	0	Δ
セメント協会	426.0%	133.0%	0	-	0
電機・電子温暖化対策連絡会	300.0%	70.0%	0	0	Δ
日本自動車部品工業会	105.6%	68.7%	0	0	0
日本自動車工業会・日本自動車車体工業会	117.0%	109.0%	0	0	Δ
日本鉱業協会	164.4%	94.7%	0	0	0
石灰製造工業会	147.0%	82.0%	0	-	Δ
日本ゴム工業会	120.1%	85.8%	0	Δ	Δ
日本印刷産業連合会	100.8%	77.2%	Δ	Δ	Δ
日本アルミニウム協会	109.0%	90.1%	Δ	0	Δ
板硝子協会	67.0%	53.4%	0	Δ	Δ
日本染色協会	97.7%	95.1%	Δ	-	-
日本電線工業会	121.2%	106.9%	Δ	Δ	Δ
日本ガラスびん協会	104.2%	64.1%	0	0	0
日本ベアリング工業会	113.9%	93.4%	0	0	0
日本産業機械工業会	181.8%	120.0%	Δ	-	-
日本建設機械工業会	447.3%	137.3%	0	0	-
日本伸銅協会	-118.0%	-79.0%	Δ	-	Δ
日本工作機械工業会	291.7%	135.9%	Δ	Δ	0
石灰石鉱業協会	186.0%	139.0%	Δ	Δ	Δ
日本レストルーム工業会	120.3%	109.4%	0	-	Δ
石油鉱業連盟	92.0%	55.0%	Δ	0	Δ
日本産業車両協会	122.9%	111.9%	0	Δ	Δ

業界名	2020 年度 目標進捗率	2030 年度 目標進捗率	低炭素製品・サ ービス等による 他部門での貢献	海外での削減 貢献	革新的技術の 開発・導入
プレハブ建築協会	-73.7%	-73.7%	0	-	0
日本チェーンストア協会	105.0%	105.0%	Δ	-	Δ
日本フランチャイズチェーン協会	153.7%	66.5%	0	-	Δ
日本ショッピングセンター協会	279.2%	159.5%	-	-	-
日本百貨店協会	271.9%	121.6%	0	-	-
日本チェーンドラッグストア協会	143.8%	105.2%	-	-	-
情報サービス産業協会	208.0%	101.5%	0	Δ	Δ
大手家電流通協会	103.8%	102.2%	-	-	-
日本 DIY 協会	333.6%	56.1%	0	-	-
日本貿易会	194.9%	84.0%	Δ	0	-
日本 LP ガス協会	149.3%	76.3%	0	0	-
リース事業協会	92.1%	92.1%	0	Δ	-
炭素協会	269.0%	215.0%	0	0	-
日本新聞協会	-	-	Δ	-	Δ
全国産業廃棄物連合会	-	-	Δ	-	-
全国ペット協会	6.5%	6.5%	-	-	-

^{※1} 複数の目標指標を設定している業種のうち、一方の目標指標と他方の目標指標の分類が異なる場合については、いずれ か低い方の分類を採用している。

※2 低炭素製品・サービス等による他部門での貢献、海外での削減貢献、革新的技術の開発・導入の凡例は以下としている。

○:製品や技術のリストアップを実施した上で、定量化も実施している

△:リストアップは実施しているが、定量化には至っていない

- :検討中

2. 国内の企業活動における 2020 年・2030 年の削減目標

各業種から報告された目標に対する 2019 年度実績における進捗状況、及び目標の引き上げや見直しの状況を整理した。

(1) 2020年・2030年目標に対する進捗状況

各業種の 2020 年・2030 年目標に対する 2019 年度実績の進捗状況は以下の通り。経済産業省及び環境省所管の 44 業種中 35 業種が 2019 年度の時点で既に 2020 年目標を上回っている。また、17 業種が 2030 年目標を上回っている。

進捗状況	2020 年目標	2030 年目標
2019 年度実績が目標水準を上回る	35 業種(79.5%)	17業種(38.6%)
基準年度比/BAU 比で削減しているが、2019 年度実績において目標水準には至っていない	5 業種(11.4%)	23 業種(52.3%)
2019 年度実績が基準年度比/BAU 比で増加 しており、目標水準には至っていない	2 業種(4.5%)	2 業種(4.5%)

進捗状況	2020 年目標	2030 年目標
データ未集計等	2業種 (4.5%)	2 業種(4.5%)

^{※1} 合計は、四捨五入により100%にならない場合がある。

(2) 目標引き上げ・見直しの状況

2019 年度実績のフォローアップ時点で前回の進捗点検時から目標見直しの報告があった業種は以下の2業種であった。

業界名	目標指標	2020 年目標の見直し	2030 年目標の見直し	見直し内容
日本印刷産業連合会	CO₂排出量	2010 年度比▲22.8% → 2010 年度比▲23.9%	2010 年度比▲30.2% → 2010 年度比▲31.2%	目標水準見直 し
日本染色協会	CO₂排出量	1990 年比▲69%→1990 年比▲78%	1990 年比▲72%→1990 年比▲80%	目標水準見直 し

(3) 2019 年度見通しとの比較

各業種の目標指標について、2019年度の実績と見通しを比較した結果は以下のとおり。経済産業省及び環境省所管の44業種中15業種において見通しを上回る削減がなされていた。見通しを下回った業種は6業種であった。なお、全体の半数以上にあたる26業種が2019年度見通しを立てていなかった。

見通しの状況	業種数
2019 年度実績が見通しを上回る	15 業種(34.1%)
2019 年度実績が見通しを下回る	3業種 (6.8%)
2019年度見通しを立てていなかった	26 業種(59.1%)

^{※1} 複数の目標指標を設定している業種のうち、一方の目標指標と他方の目標指標の分類が異なる場合については、いずれ か低い方の分類を採用している。

(4) 各業種の低炭素社会実行計画の目標設定及び CO 2 排出量の 2019 年度実績

2019 年度実績のフォローアップを実施した時点での 2020 年・2030 年目標の目標指標、基準年度又は BAU、目標水準、調整後排出係数 $(0.444 kg-CO_2/kWh)$ を用いた CO_2 排出量の実績値を表II-3-2 に示す。

^{※2} 複数の目標指標を設定している業種のうち、一方の目標指標と他方の目標指標の分類が異なる場合については、いずれ か低い方の分類を採用している。

表 II - 3-2 2019 年度各業種の低炭素社会実行計画における 2020 年・2030 年目標、及び 2019 年度調整後 CO 2 排出量の実績

		2020 目標	画		2030 年目	西	調整後 CO₂排出量
業種	目標指標	基準年度	目標水準	目標指標	基準年度	目標水準	調 達後 CO₂ 辨出量 (万 t-CO₂)
未 俚	日标用标	/BAU	日信小牛	日紀初日宗	/BAU	日保小牛	(/) (-002)
経済産業省所管 41 業種							
電気事業低炭素社会協	CO₂排出量	BAU	▲700万 t-CO₂	CO₂排出量	BAU	▲1,100万t-CO₂	34500
議会	CO23升山里	DAO	A 700 /J (-CO ₂	CO₂原単位	BAU	0.37kg-CO₂/kWh 程度	34300
石油連盟	エネルギー削減量	BAU	▲53万 kl(原油換算)	エネルギー削減量	BAU	▲100 万 kl(原油換算)	3440
日本ガス協会	CO₂原単位	1990 年度	▲89%	CO₂原単位	1990 年度	▲88%	40
日本鉄鋼連盟	CO₂排出量	BAU	▲300 万 t-CO₂ +廃プラ実績分	CO₂排出量	BAU	▲900万t-CO₂	17261
日本化学工業協会	CO₂排出量	BAU(2005 年度基準)	▲150万 t-CO₂	CO₂排出量	BAU(2013年 度基準)	▲650万t-CO₂	5784
					2013 年度	▲679万t-CO₂(▲10.7%)	
日本製紙連合会	CO₂排出量	BAU	▲139万t-CO₂	CO₂排出量	BAU	▲466万t-CO₂	1658
セメント協会	エネルギー原単位	2010年度	▲39MJ/t-cem	エネルギー原単位	2010 年度	▲125MJ/t-cem	1614
電機·電子温暖化対策連絡会	エネルギー原単位改 善 率	2012 年度	▲7.73%	エネルギー原単位改 善率	2012 年度	▲33.33%	1299.3
日本自動車部品工業会	CO₂原単位	2007 年度	▲13%	CO₂原単位	2007 年度	▲20%	618.8
日本自動車工業会・日本 自動車車体工業会	CO₂排出量	1990 年度	▲35%	CO₂排出量	1990 年度	▲38%	583
日本鉱業協会	CO₂原単位	1990 年度	▲15%	CO₂原単位	1990 年度	▲26%	330.6
石灰製造工業会	CO₂排出量	BAU	▲15万t-CO₂	CO₂排出量	BAU	▲27万t-CO₂	209.9
日本ゴム工業会	CO₂原単位	2005 年度	▲ 15%	CO₂原単位	2005 年度	▲21%	168.6 (141.0)
日本印刷産業連合会	CO₂排出量	2010年度	▲23.9%	CO₂排出量	2010年度	▲31.2%	104.5

		2020 目標	<u> </u>		2030 年目標	=	調整後 CO₂排出量
業種	目標指標	基準年度	目標水準	目標指標	基準年度	目標水準	响
术 性	口行形日本	/BAU	日派小平	디자바자	/BAU	日振小干	(), (002)
日本アルミニウム協会	エネルギー原単位	BAU	▲1.0GJ/t	エネルギー原単位	BAU	▲1.2GJ/t	127.1
	(圧延量:t)			(圧延量:t)			
板硝子協会	CO₂排出量	2005 年度	▲25.5%	CO₂排出量	2005 年度	▲32%	111.4
日本染色協会	CO₂排出量	1990 年度	▲ 78%	CO₂排出量	1990 年度	▲80%	87.9
日本電線工業会	エネルギー消費量	2005 年度	▲20%	エネルギー消費量	2005 年度	▲23%	71.7
日本ガラスびん協会	CO₂排出量	2012 年度	▲10.2%	CO ₂ 排出量	2012 年度	▲ 18.4%	73.1
日本のクスの心臓区	エネルギー消費量	2012 年度	▲ 12.7%	エネルギー消費量	2012 年度	▲20.7%	
日本ベアリング工業会	CO₂原単位	1997 年度	▲23%	CO₂原単位	1997 年度	▲28%	67.7
		2008~2012					
日本産業機械工業会	 エネルギー原単位	年度5ヵ年	年平均▲1%	CO2 排出量	2013 年度	▲10%	48.5
口华庄来版似工来云	エイルュ 赤半位	平均(暫定	+ ++3 ▲ 170	002 折山里	2013 平及	A 1070	46.3
		目標)					
		2008~2012					
日本建設機械工業会	エネルギー原単位	年度5ヵ年	▲ 8%	エネルギー原単位	2013 年度	▲ 17%	35.7
		平均					
日本伸銅協会	エネルギー原単位	BAU	▲ 4%	エネルギー原単位	BAU	▲6%	38.2
		2008~2012			2008~2012		
日本工作機械工業会	エネルギー原単位	年度5ヵ年	▲ 7.7%	エネルギー原単位	年度5ヵ年平	▲ 16.5%	29.38
		平均			均		
石灰石鉱業協会	CO₂排出量	BAU	▲4,400t-CO ₂	CO ₂ 排出量	BAU	▲5,900t-CO ₂	25.59
日本レストルーム工業	CO₂排出量	1990 年度	▲ 50%	CO₂排出量	1990 年度	▲ 55%	19.8
会							
石油鉱業連盟	CO₂排出量	2005 年度	▲ 5%	CO₂排出量	2013 年度	▲28%	21.2
日本産業車両協会	CO _z 排出量	2005 年度	▲37.5%	CO ₂ 排出量	2005 年度	▲ 41%	3.7

		2020 目標	重		2030 年目	壶	調整後 CO ₂ 排出量
**	D+=+6+=	基準年度	口標し、従		基準年度	口+売-1/ 注	調整後 CO₂辨出重 (万 t-CO₂)
業種	目標指標	/BAU	目標水準	目標指標	/BAU	目標水準	(/J [-CO ₂)
プレハブ建築協会	CO₂原単位	2010 年度	▲10%	CO₂原単位	2010 年度	▲10%	11.73
日本チェーンストア協	エネルギー原単位			エネルギー原単位			
ロー・ファイン Min 会	(床面積×営業時	1996 年度	▲ 24%	(床面積×営業時	1996 年度	▲24%	206
A	間:㎡×h)			間:m²×h)			
日本フランチャイズチ	エネルギー原単位	2013 年度	▲6.8%	エネルギー原単位	2013 年度	▲ 15.7%	375.6
ェーン協会	(売上高:円)	2013 平反	■0.870	(売上高:円)	2013 平反	A 15.776	373.0
日本ショッピングセン	エネルギー原単位			エネルギー原単位			
ター協会	(床面積×営業時	2005 年度	▲13%	(床面積×営業時	2005 年度	▲23%	220.7
	間:㎡×h)			間:m³×h)			
	エネルギー原単位			エネルギー原単位			
日本百貨店協会	(床面積×営業時	2013 年度	▲6.8%	(床面積×営業時	2013 年度	▲ 15.7%	113.2
	間:m³×h)			間:m [*] ×h)			
日本チェーンドラッグ	エネルギー原単位			エネルギー原単位			
ストア協会	(床面積×営業時	2013年度	▲19%	(床面積×営業時	2013 年度	▲26%	155.1
A17 W/A	間:㎡×h)			間:m²×h)			
	【オフィス系】			【オフィス系】			
	エネルギー原単位	2006 年度	▲2%	エネルギー原単位	2006 年度	▲37.7%	9
	(床面積: m)			(床面積: m)			
	【データセンタ系】			【データセンタ系】			
情報サービス産業協会	エネルギー原単位			エネルギー原単位			
	(サーバー等の IT 機	2006 年度	▲ 5.5%	(サーバー等の IT	2006 年度	▲ 7.8%	47.7
	器の消費電力に対す	2000 +13	_3.070	機器の消費電力に対	2000 113		
	るデータセンタ全体			するデータセンタ全			
	の消費電力)			体の消費電力)			

		2020 目標	-		2030 年目	查	調整後 CO2排出量
業種	目標指標	基準年度 /BAU	目標水準	目標指標	基準年度 /BAU	目標水準	// (万 t-CO₂)
大手家電流通協会	エネルギー原単位 (売場面積:㎡)	2006 年度	▲48.3%	エネルギー原単位 (売場面積:㎡)	2006 年度	▲ 49.1%	60.3
日本 DIY 協会	エネルギー原単位 (床面積×営業時 間:㎡×h)	2004 年度	▲15%	エネルギー原単位 (床面積×営業時 間:㎡×h)	2013 年度	▲17%	33.33
日本貿易会	エネルギー原単位 (床面積: ㎡)	2013 年度	▲6.8%	エネルギー原単位 (床面積: ㎡)	2013 年度	▲15.7%	3.2
日本 LP ガス協会	エネルギー消費量	2010年度	▲ 5%	エネルギー消費量	2010 年度	▲9%	2.377
リース事業協会	エネルギー原単位 (本社床面積:㎡)	2013 年度	▲ 5%	エネルギー原単位 (本社床面積:㎡)	2013 年度	▲5%	1.4
炭素協会	CO₂原単位	2010年度	▲ 4%	CO₂原単位	2010年度	▲ 5%	35
環境省所管3業種							
日本新聞協会	-	-	-	エネルギー原単位	2013 年度	年平均▲1%	34.88
全国産業廃棄物連合会	温室効果ガス排出量	2010 年度	±0%	温室効果ガス排出量	2010 年度	▲10%	539.3
全国ペット協会	CO₂原単位	2012 年度	±0%	CO₂原単位	2012 年度	±0%	0.501

3. 低炭素製品・サービス等による他部門での削減の状況

表 II -3-3 に示すとおり、経済産業省及び環境省所管 44 業種のうち、低炭素製品・サービス等による他部門での削減の状況について具体的項目の記載があった業種は 42 であった。そのうち、削減貢献量に関する定量的記載があった業種は 28 業種であった。また、28 業種のうち低炭素製品・サービス等による 2019 年、2020 年、2030 年の削減貢献量を試算した結果が表 II -3-4 のとおり 18 業種から報告があり、表 II -3-5 のとおり 21 業種から試算の検討段階の報告があった。

表 II-3-3 低炭素製品・サービス等による他部門での削減貢献についての記載状況

7,2	5 5 医灰泉表面 ターン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	具体的項目の記載がある業種	具体的項目の記載がない業種
	(<u>下線</u> は削減貢献量の定量的記載がある業種)	
エネルギー転	計3業種	_
換部門	電気事業低炭素社会協議会、石油連盟、日本ガス協会	
(全3業種)		
産業部門	計 27 業種	-
(全27業種)	日本鉄鋼連盟、日本化学工業協会、日本製紙連合会、	
	セメント協会、電機・電子温暖化対策連絡会、日本自	
	動車部品工業会、日本自動車工業会・日本自動車車体	
	工業会、日本鉱業協会、石灰製造工業会、日本ゴムエ	
	業会、日本印刷産業連合会、日本アルミニウム協会、	
	板硝子協会、日本染色協会、日本電線工業会、日本ガ	
	ラスびん協会、日本ベアリング工業会、日本産業機械	
	工業会、日本建設機械工業会、日本伸銅協会、日本工	
	作機械工業会、石灰石鉱業協会、日本レストルーム工	
	業会、石油鉱業連盟、日本産業車両協会、プレハブ建	
	築協会、炭素協会	
業務部門	計 12 業種	計2業種
(全 14 業種)	日本チェーンストア協会、日本フランチャイズチェー	日本チェーンドラッグストア協
	<u>ン協会</u> 、日本ショッピングセンター協会、 <u>日本百貨店</u>	会、全国ペット協会
	協会、大手家電流通協会、情報サービス産業協会、日	
	<u>本 DIY 協会</u> 、日本貿易会、 <u>日本 LP ガス協会</u> 、 <u>リース</u>	
	事業協会、日本新聞協会、全国産業資源循環連合会	
	計 42 業種	計2業種
	(うち削減量の定量的記載有り:28 業種)	

表Ⅱ-3-4 低炭素製品・サービス等による削減貢献量1

	低炭素製品・サービス等	2019 年度 削減効果	2020 年度 削減見込量	2030 年度 削減見込量
	電気を効率的にお使いいただく観点から、 トータルソリューションによる高効率電気 機器等の普及	-	-	-
	省エネ・省 CO2 活動を通じたお客様の CO2 削減貢献	-	-	-
電気事業低炭素社 会協議会	お客様の電気使用の効率化を実現するため の環境整備としてのスマートメーター導入	-	-	-
. 云伽戴云	ヒートポンプ普及拡大による温室効果ガス 削減効果	-	-	3754 万 t-CO₂
	電気自動車普及拡大による温室効果ガス削減効果	-	-	1640 万 t-CO₂
	削減効果合計		-	5394 万 t-CO₂
	潜熱回収型高効率石油給湯器「エコフィー ル」	10.0 万 t-CO₂	11 万t-CO₂	-
石油連盟	バイオマス燃料の導入	-	-	-
	省燃費型自動車用エンジンオイルの開発・ 市場での普及促進	10.0 万 t-CO₂	11 万 t-CO₂	-
	コージェネレーション	3 万 t-CO₂	820 万 t-CO₂	3800 万 t-CO₂
	家庭用燃料電池(エネファーム)	6 万 t-CO₂	180 万 t-CO₂	650 万 t-CO₂
	産業用熱需要の天然ガス化	7 万 t-CO₂	320 万 t-CO₂	800 万 t-CO₂
日本ガス協会	ガス空調	5 万 t-CO₂	120 万 t-CO₂	288 万 t-CO₂
	天然ガス自動車	0.3 万 t-CO₂	73 万 t-CO₂	670 万 t-CO₂
	高効率給湯器(エコジョーズ)	16 万 t-CO₂	400 万 t-CO₂	1
	削減効果合計	37.3 万 t-CO₂	1913 万 t-CO₂	6208 万 t-CO₂
	自動車用高抗張力鋼板	1426 万t-CO₂	1487 万 t-CO₂	1671 万 t-CO₂
	船舶用高抗張力鋼板	269 万 t-CO₂	283 万 t-CO₂	306 万 t-CO₂
口十分切害田	自動車用高抗張力鋼板	1426 万 t-CO₂	1487 万 t-CO₂	1671 万 t-CO₂
日本鉄鋼連盟	船舶用高抗張力鋼板	269 万 t-CO₂	283 万 t-CO₂	306 万t-CO₂
	ボイラー用鋼管	562 万 t-CO₂	660 万t-CO₂	1086 万 t-CO₂
	方向性電磁鋼板	908 万 t-CO₂	988 万t-CO₂	1099 万 t-CO₂
	太陽光発電材料	-	898 万 t-CO₂	-
İ	自動車用材料	-	8 万 t-CO₂	-
	航空機用材料	-	122 万 t-CO₂	-
	低燃費タイヤ用材料	-	636 万 t-CO₂	-
日本化学工業協会	LED 関連材料	-	745 万 t-CO₂	-
	住宅用断熱材	-	7580 万 t-CO₂	-
	ホール素子・ホール	-	1640 万 t-CO₂	-
	配管材料	-	330 万 t-CO₂	-

-

 $^{^{1}}$ CO_{2} の算定方法は業種ごとに異なり、単年度での削減貢献量と複数年度を累積した削減貢献量とが混在している

	低炭素製品・サービス等	2019 年度 削減効果	2020 年度 削減見込量	2030 年度 削減見込量
	濃縮型液体衣料用洗剤	_	29 万t-CO₂	-
	低温鋼板洗浄剤	_	23 万 t-CO₂ 4 万 t-CO₂	-
	高耐久性マンション用材料	_	4 万 t-CO ₂ 224 万 t-CO ₂	-
		_	1万t-CO ₂	-
	高耐久性塗料 ・シャンプー容器			
		-	0万t-CO₂	-
	飼料添加物 2014年11日	-	16 万 t-CO₂	-
	次世代自動車材料	-	1432 万 t-CO₂	-
	削減効果合計	-	13666 万 t-CO₂	-
	紙の10%軽量化	-	52 万 t-CO₂	52 万 t-CO₂
日本製紙連合会	段ボールシートの軽量化	36 万 t-CO₂	38 万 t-CO₂	64 万 t-CO₂
	削減効果合計	0 万 t-CO₂	90 万 t-CO₂	116 万 t-CO₂
	発電	301 万 t-CO₂	-	-
	家電製品	122 万 t-CO₂	-	-
電機・電子温暖化	産業用機器	7 万 t-CO₂	-	-
対策連絡会	IT 製品・ソリューション	103 万 t-CO₂	-	-
	削減効果合計 *稼働年数を考慮した削減効果(合計)1億 1768万t-CO ₂	531 万 t-CO₂	-	-
	インバーター(HEV、EV 用)による CO2 削 減貢献	171 万t-CO₂	185 万t-CO₂	676 万t-CO₂
日本自動車部品工	家庭用コージェネレーションシステム	0 万 t-CO₂	0 万 t-CO₂	-
業会	パワースライドドア用常時給電ユニット	-	-	-
	削減効果合計	702 万 t-CO₂	185 万 t-CO₂	676 万 t-CO₂
日本自動車工業	自動車燃費改善、次世代車の開発・実用化	-	702.5 万 t-CO₂	-
付 会・日本自動車車 体工業会	削減効果合計	-	702.5 万 t-CO₂	-
	水力発電	16.0 万 t-CO₂	14.7 万 t-CO₂	14.7 万 t-CO₂
	太陽光発電	2.9 万 t-CO₂	3.0 万 t-CO₂	3.0 万 t-CO₂
	地熱発電	25.7 万 t-CO₂	33.5 万 t-CO₂	42.3 万 t-CO₂
	次世代自動車向け二次電池用正極材料の開 発・製造	74.0 万 t-CO ₂	111.0 万 t-CO₂	184.0 万 t-CO ₂
日本鉱業協会	信号機用 LED(赤色発光と黄色発光)向け 半導体材料の開発・製造	1.8 万 t-CO₂	-	-
	高効率スラリーポンプ、高濃度高効率スラ リーポンプの開発・製造	0.15 万 t-CO₂	-	-
	高効率粉砕機の開発・製造	0.04 万 t-CO₂	-	-
	家庭用鉛蓄電池システムの普及拡大	-	-	-
	削減効果合計	121 万 t-CO₂	162 万 t-CO₂	244 万 t-CO₂
プロ集11サイ米人	高反応性消石灰の製造出荷	0.24 万 t-CO₂	-	-
石灰製造工業会	運搬効率の改善	0.16 万 t-CO₂	-	-

	低炭素製品・サービス等	2019 年度 削減効果	2020 年度 削減見込量	2030 年度 削減見込量
	鉄鋼業で石灰石を生石灰に代替	-	-	-
	削減効果合計	0.39 万 t-CO₂	-	-
	低燃費タイヤ(タイヤラベリング制度)	297 万 t-CO₂	-	
	自動車部品の軽量化	-	-	
日本ゴム工業会	省エネベルト	-	-	
	各種部品の 軽量化	-	-	
	削減効果合計	297 万 t-CO₂	-	
板硝子協会	複層ガラス及び、エコガラスの普及	26.6 万 t-CO₂	-	-
似明」励云	削減効果合計	26.6 万 t-CO₂	-	
	ガラスびんの軽量化	3.4 万 t-CO₂	0.6 万 t-CO₂	0.6 万 t-CO₂
日本ガラスびん協	リターナブルびん(R マークびん:リユー ス:再使用)	8.8 万 t-CO₂	9.7 万 t-CO₂	8.8 万 t-CO₂
会	エコロジーボトルの推進	0.2 万 t-CO₂	0.2 万 t-CO₂	0.2 万 t-CO₂
	輸入びんのカレット化	6.1 万 t-CO₂	5.6 万 t-CO₂	5.6 万 t-CO₂
	削減効果合計	19 万 t-CO₂	16 万 t-CO₂	15 万 t-CO₂
日本建設機械工業	建設機械の燃費改善及びハイブリッド式を 含めた省エネ型建設機械の開発と実用化	88 万 t-CO₂	100 万t-CO₂	160 万t-CO₂
会	削減効果合計	88 万 t-CO₂	100 万 t-CO₂	160 万 t-CO₂
日本フランチャイ	【LAW】CO2オフセット運動	0.03 万 t-CO₂	-	-
ズチェーン協会	削減効果合計	0.03 万 t-CO₂	-	-
	家庭用燃料電池 (エネファーム)	0.29 万 t-CO₂	-	-
 日本 LP ガス協会	高効率 LP ガス給湯器(エコジョーズ)	9.3 万 t-CO₂	-	-
	ガスヒートポンプ式空調(G H P)	8.7 万 t-CO₂	-	-
	削減効果合計	18.3 万 t-CO₂	-	-
	低炭素設備のリース取引(47社)	-	-	-
	再生可能エネルギー設備のリース取引(23 社)	-	-	-
	エコリース促進事業等の補助事業を活用し たリース取引の推進(41 社)	3.30 万 t-CO₂	-	-
	21 世紀金融行動原則署名(72 社)	-	-	-
リース事業協会	国際的指標等の導入 4 社導入済、5 社導入検討 ①気候変動に関する情報開示 1 社導入済、5 社導入検討 ②SBT (Science Based Targets) の設定 1 社導入済、4 社導入検討 ③再エネ 100%目標(RE100)への参加 4 社導入検討 ④経済指標 2 倍化目標(EP100)への参加 7 社導入検討 ⑤電気自動車移行目標(EV100)への参加 1 社導入済、4 社導入検討	-	-	-

低炭素製品・サービス等	2019 年度 削減効果	2020 年度 削減見込量	2030 年度 削減見込量
⑥グリーン・バリューチェーンプラットフォーム 1 社導入済、4 社導入検討			
両面コピー等による用紙の削減(86 社)	-	-	-
書類の電子化、業務プロセス改善による書 類削減等のペーパーレス化(61 社)	-	-	-
リユース・リサイクル率の高いリース終了 物件取扱業者の選定(33 社)	-	-	-
削減効果合計	3.30 万 t-CO₂	-	-

表Ⅱ-3-5 試算段階の低炭素製品・サービス等による削減貢献

業種	低炭素製品・サービス等			
	コンクリート舗装			
セメント協会	 廃棄物・副産物の有効活用			
	自動車用材料アルミ板材			
日本アルミニウム協会	鉄道車両用アルミ形材			
	GP 製品のサプライチェーン全体での採用拡大			
	「CLOMA」や印刷資材メーカーの活動に参加			
日本印刷産業連合会	製品の軽量化			
	地球環境に配慮した用紙・資材の採用			
日本染色協会	夏季の「クールビズ」や冬季の「ウォームビズ」商品の製造段階において、素材の特性を 生かすように工夫して、染色加工を行っている			
	導体サイズ最適化			
	データセンタの光配線化			
	エネルギー・マネジメント・システム			
日本電線工業会	超電導き電ケーブル			
	洋上直流送電システム			
	車両電動化・軽量化			
	超電導磁気浮上式リニアモーターカー			
	複列深溝玉軸受 (株)不二越)			
日本ベアリング工業会	第5世代低トルク円すいころ軸受 FLT®-V(㈱ジェイテクト)			
ロ本へアリング工業云	モータ・ジェネレータ機能付ハブベアリング「eHUB」(NTN㈱)			
	高信頼性 鉄道駆動装置用軸受(日本精工㈱)			
	プッシュプル式粉塵回収機			
日本産業機械工業会	SF6 (六フッ化硫黄) ガス回収装置			
	定流量ポンプシステム			
口个注来饭帆上未云	下水処理用3次元翼プロペラ水中ミキサ			
	小型ごみ焼却設備用パネルボイラ式排熱回収発電システム			
	高圧貫流ポイラ・クローズドドレン回収システム			

業種	低炭素製品・サービス等
	オイルフリースクロールコンプレッサ
	水熱利用システム
	高効率型二軸スクリュープレス脱水機
	片吸込単段渦巻きポンプ
	小型バイナリー発電装置
	セメント・ごみ処理一体運営システム
	省電力・エアーレスコンベヤ
	野外設置型モータコンプレッサ
口士仙组协人	高強度薄板銅合金条
├ 日本伸銅協会 	高導電高強度銅合金条
	高効率ユニット搭載工作機械
	複合加工機
日本工作機械工業会	最適運転化工作機械
	油圧レス化工作機械
	高精度・高品質な加工
プロア体帯 切入	品質の高位安定化
↑ 石灰石鉱業協会 	再エネ発電
	節水形便器
→ 日本レストルーム工業会 	温水洗浄便座一体型便器
石油鉱業連盟	天然ガスは、燃焼時の発生熱量あたり CO2 排出量が他の化石燃料に比べて少なく、高い環境優位性を備えている。天然ガスを供給することにより、生産過程での温室効果ガス排出量の増加を伴うものの、消費過程での CO2 排出量は燃料転換が進むことにより削減される。
	太陽光発電事業の実施
	電気式産業車両の開発・普及
日本産業車両協会	燃料電池式産業車両の開発・普及
	テレマティクスによる効率的な車両運用
	住宅の断熱性能向上
 プレハブ建築協会	高効率給湯システム導入推進
プレバク建築励云	高効率照明システム導入推進
	太陽光発電、コージェネレーションシステム導入推進
情報サービス産業協会	データセンタを利用したクラウド化によるエネルギー節減
	環境配慮型商品の販売の実施
	環境配慮型商品の開発の実施
	ばら売り・量り売り等の実施
日本チェーンストア協会	レジ袋の無料配布中止
	レジ袋辞退時のインセンティブの付与
	簡易包装の実施
	常温販売の増加

業種	低炭素製品・サービス等		
	テレビモニターを使用した販促活動の見直し		
1 日本百貨店協会	紙製容器包装の削減		
口平日貝店協会	プラスチック製容器包装の削減		
	LED シーリングライトの販売		
│ ・日本 DIY 協会	ソーラー式 LED センサーライト 2 灯式の販売		
日本 DIT 励云	節水シャワーヘッドの販売		
	網戸の変え網張替えサービス		
	製品、サービス等を通じた CO2 排出削減対策(連結ベース)		
日本貿易会	再生可能エネルギー (太陽光、風力、水力、地熱、バイオマスなど)・新エネルギー事		
	森林吸収源の育成・保全に関する取組み (連結ベース)		
	スクラップリサイクルへの貢献		
炭素協会	太陽電池、LED 等半導体製造装置の部材、自動車。鉄道車両等運輸業界の基礎部材、 リチウムイオン二次電池の負極材、摩擦材、粉末冶金などに利用されている		
	R P F 製造量(千 t)		
人口产类次派任理体人人	廃油精製・再生量(千 kl)		
· 全国産業資源循環連合会	木くずチップ製造量(千 t)		
	肥料・飼料製造量(千 t)		
日本新聞協会	各種活動(「環境啓発記事・広告の掲載」「環境関連イベントの主催・共催・協賛」「新 間協会主催の研修会を通じた環境問題に対する社員の意識向上・啓発」)を行っている が、それらによる削減実績等の具体的な数値は把握していない。		

4. 海外での削減貢献の状況

海外での削減貢献の状況について、26業種において具体的項目の記載があった。そのうち、削減貢献量の定量的記載があった業種は15業種であった(表II-3-6)。

また、海外における CO₂削減方法としては、①当該業種が海外で実際に削減するもの(例:海外現地工場での省エネ)、②当該業種の低炭素製品・素材・サービスを海外に輸出・普及するもの、③海外の同種業種等に研修等で技術支援するものに大別された。表Ⅱ-3-7に示すとおり、①を行っている業種は 17 業種、②を行っている業種は 15 業種、③を行っている業種は 5 業種あった(重複有り)。

なお、海外での削減貢献による 2019 年、2020 年、2030 年の削減貢献量は表 II -3-8 のとおり 15 業種から報告があった。

表Ⅱ-3-6 海外での削減貢献についての記載状況

表 11-3-6 海外での削減負紙についての記載状況			
	具体的項目の記載がある業種	具体的項目の記載がない業種	
	(<u>下線</u> は削減貢献量の定量的記載がある業種)		
エネルギー転換	計3業種		
部門	電気事業低炭素社会協議会、石油連盟、日本ガス協		
(全3業種)	<u>숲</u>		
産業部門	計 19 業種	計8業種	
(全 27 業種)	日本鉄鋼連盟、日本化学工業協会、日本製紙連合	セメント協会、石灰製造工業会、日	
	会、電機・電子温暖化対策連絡会、日本自動車部品	本染色協会、日本産業機械工業会、	
	工業会、日本自動車工業会・日本自動車車体工業	日本伸銅協会、日本工作機械工業	
	会、日本鉱業協会、日本印刷産業連合会、日本ゴム	会、日本レストルーム工業会、プレ	
	工業会、日本アルミニウム協会、板硝子協会、日本	ハブ建築協会	
	電線工業会、日本ガラスびん協会、日本ベアリング		
	工業会、日本建設機械工業会、石灰石鉱業協会、石		
	油鉱業連盟、日本産業車両協会、炭素協会		
業務部門	計4業種	計 10 業種	
(全 14 業種)	日本貿易会、情報サービス産業協会、リース事業協	日本チェーンストア協会、日本フラ	
	会、 <u>日本 LP ガス協会</u>	ンチャイズチェーン協会、日本ショ	
		ッピングセンター協会、日本百貨店	
		協会、日本チェーンドラッグストア	
		協会、大手家電流通協会、日本 DIY	
		協会、日本新聞協会、全国産業資源	
		循環連合会、全国ペット協会	
	計 26 業種	計 18 業種	
	(うち削減量の定量的記載有り:15 業種)		

表 II - 3-7 海外での削減貢献内容の分類

	類型	実施業種
1	当該業種が海外で実際に	計 17 業種
	削減するもの	日本鉄鋼連盟、日本化学工業協会、日本製紙連合会、日本自動車部品工業会、
		日本自動車工業会・日本自動車車体工業会、日本鉱業協会、日本ゴム工業会、
		日本アルミニウム協会、板硝子協会、日本電線工業会、日本ベアリング工業
		会、石油鉱業連盟、日本産業車両協会、日本フランチャイズチェーン協会、
		日本ショッピングセンター協会、日本貿易会、日本 LP ガス協会
2	当該業種の低炭素製品・	計 15 業種
	素材・サービスを海外に	電気事業低炭素社会協議会、石油連盟、日本ガス協会、日本化学工業協会、
	輸出・普及するもの	電機・電子温暖化対策連絡会、日本ゴム工業会、日本印刷産業連合会、日本
		電線工業会、日本産業機械工業会、日本建設機械工業会、日本レストルーム
		工業会、石油鉱業連盟、情報サービス産業協会、リース事業協会、炭素協会
3	海外の同種業種等に研修	計5業種
	等で技術支援するもの	石油連盟、日本鉄鋼連盟、石灰製造工業会、日本ガラスびん協会、石灰石鉱
		業協会

表 II - 3-8 海外での削減貢献による削減貢献量2

	海外での削減貢献等	2019 年度 削減効果	2020 年度 削減見込量	2030 年度 削減見込量
電気事業	海外発電事業	1334 万 t-CO₂	-	-
低炭素社会 協議会	削減効果合計	1334 万 t-CO₂	-	-
	LNG 出荷基地事業	370 万 t-CO₂		-
	LNG 受入、パイプラン、都市ガス配給事業	260 万t-CO₂		-
	発電事業(天然ガス火力、太陽 光、風力)	500 万t-CO₂	1200 万 t-CO₂	-
日本ガス協会	ガスコージェネレーション等の 産業利用の海外展開(エネルギ ーサービス事業)	10 万 t-CO₂		-
	エネファームの海外展開		-	-
	ガス瞬間型給湯器(エコジョー ズ含む)の海外展開	5 万 t-CO₂	-	-
	GHP の海外展開	1120 万 t-CO₂	-	-
	削減効果合計	2265 万 t-CO₂	1200 万 t-CO₂	-
日本鉄鋼連	CDQ (コークス乾式消火設備)	2296 万 t-CO₂	1180 万 t-CO₂	1300 万 t-CO₂
盟	TRT (高炉炉頂圧発電)	1150 万 t-CO₂	900 万 t-CO₂	1000 万 t-CO₂
(※注) 削減実績及 び削減見込	副生ガス専焼 GTCC (GTCC:ガス タービンコンバインドサイクル 発電)	2402 万 t-CO₂	5000 万t-CO₂	5700 万t-CO₂
みは、対象	転炉 OG ガス回収	821 万t-CO₂		

 2 CO_2 の算定方法は業種ごとに異なり、単年度での削減貢献量と複数年度を累積した削減貢献量とが混在している

20

	海外での削減貢献等	2019 年度 削減効果	2020 年度 削減見込量	2030 年度 削減見込量
とする技術	転炉 OG 顕熱回収	90 万 t-CO₂	13,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13311/03/2.2
に相違があ ること等に	焼結排熱回収	98 万 t-CO₂		
より、算定	COG、LDG 回収	-		
の基準が異 なる。	削減効果合計	6857 万 t-CO₂	7080 万 t-CO₂	8000 万 t-CO₂
3, 30	イオン交換膜法か性ソーダ製造 技術	922 万 t-CO₂	650 万t-CO₂	-
	逆浸透膜による海水淡水化技術	-	17000 万 t-CO₂	-
	自動車用材料 (炭素繊維)	-	150 万 t-CO₂	-
日本化学工	航空機用材料(炭素繊維)	-	2430 万 t-CO₂	-
業協会	エアコン用 DC s モーターの制 御素子	-	19000 万t-CO₂	-
	代替フロン3ガスの排出削減	-	2000 万 t-CO₂	-
	次世代自動車材料	-	10043 万 t-CO₂	45873 万 t-CO₂
	削減効果合計	922 万 t-CO₂	51273 万 t-CO₂	45873 万 t-CO₂
口十制机冲	植林事業	-	13500 万 t-CO₂	15400 万 t-CO₂
日本製紙連 合会	紙の 10%軽量化	-	-	520 万 t-CO₂
	削減効果合計	-	13500 万 t-CO₂	15920 万 t-CO₂
	発電	602 万 t-CO₂	-	-
電機・電子	家電製品	78 万 t-CO₂	-	-
温暖化対策	ICT 製品・ソリューション	847 万 t-CO₂	-	-
連絡会	削減効果合計 *稼働年数を考慮した削減効果 (合計) 24306 万 t-CO ₂	1527 万 t-CO₂	-	-
	省エネ照明設備の導入	0.08 万 t-CO₂	0.07 万 t-CO₂	0.1 万 t-CO₂
日本自動車	空調・コンプレッサー更新	0.06 万 t-CO₂	0.06 万 t-CO₂	0.06 万 t-CO₂
部品工業会	再生エネルギー(太陽光発電)の 導入	0.16 万 t-CO₂	0.21 万t-CO₂	0.28 万 t-CO₂
	削減効果合計	0.30 万 t-CO₂	0.35 万 t-CO₂	0.42 万 t-CO₂
日本自動車	次世代車による削減累積	5591 万 t-CO₂	-	-
工業会・日 本自動車車	海外事業所での削減	15 万 t-CO₂	-	-
体工業会	削減効果合計	5606 万 t-CO₂	-	-
	ペルーの自社鉱山における水力 発電 (ワンサラ亜鉛鉱山)	1.40 万 t-CO₂	1.4 万 t-CO₂	1.4 万 t-CO₂
日本鉱業協会	ペルーの自社鉱山における水力発電(パルカ亜鉛鉱山)	0.13 万 t-CO₂	0.1 万 t-CO₂	0.2 万 t-CO₂
	タイの自社廃棄物処理施設にお ける余剰熱利用発電	0.22 万 t-CO₂	0.2 万 t-CO₂	0.2 万 t-CO₂
	削減効果合計	1.8 万 t-CO₂	1.7 万 t-CO₂	1.8 万 t-CO₂
日本アルミ	リサイクルの推進	1147 万 t-CO₂	-	-
ニウム協会	削減効果合計	1147 万 t-CO₂	-	-
日本ガラス	中国での技術指導(T社3窯分)	0.11 万 t-CO₂	0.11 万 t-CO₂	0.11 万 t-CO₂
びん協会	ブラジルでの技術指導(I 社 2 窯 分)	0.13 万 t-CO₂	0.13 万 t-CO₂	0.13 万 t-CO₂

	海外での削減貢献等	2019 年度 削減効果	2020 年度 削減見込量	2030 年度 削減見込量
	削減効果合計	0.24 万 t-CO₂	0.24 万 t-CO₂	0.24 万 t-CO₂
日本ベアリ	タイの工場で水の蒸散効果を活用した冷却システムの導入により空調稼働率を低減するなど、 CO2 排出量を削減。	0.11 万t-CO₂	-	-
ング工業会	フランス及び中国の工場で、太 陽光発電パネルを設置し稼働し ている。	0.13 万 t-CO₂	-	-
	削減効果合計	0.24 万 t-CO₂	-	-
日本建設機	油圧ショベル(6 ½以上)、ホイルローダ(80HP 以上)、ブルドーザ	-	-	435.2 万 t-CO₂
		-	-	435.2 万 t-CO₂
	随伴ガスの利用	-	-	-
	随伴ガスの圧入	-	-	-
	廃熱利用	-	-	-
	植林事業	-	-	-
石油鉱業連 盟	地中隔離	-	-	-
	CO₂分離技術	-	-	-
	石炭発電所からの CO2 回収及び EOR 利用	58 万 t-CO₂	12 万 t-CO₂	65 万t-CO₂
	地熱発電事業	-	-	-
	削減効果合計	58 万 t-CO₂	12 万 t-CO₂	65 万 t-CO₂
	再生可能エネルギーによる IPP の削減貢献	721 万t-CO₂	-	-
	物流における取組	-	-	-
日本貿易会	製品、サービス等を通じた CO2 排出削減対策(連結ベース)	-	-	-
	森林吸収源の育成・保全に関す る取組み	-	-	-
	削減効果合計	721 万 t-CO₂	0 万 t-CO₂	0 万 t-CO₂
日本 LP ガス 協会	フィリピン中部ボホール島での マングローブ植樹活動	0.24 万 t-CO₂	-	-
	高効率 LP ガス機器等の普及促 進	-	-	-
	削減効果合計	0.24 万 t-CO₂	-	-

5. 革新的技術の開発・導入の状況

革新的技術については、経済産業省及び環境省所管の 44 業種中 32 業種において具体的項目の記載があった (表 II-3-9)。そのうち、削減貢献量の定量的記載があったのは 6 業種に限られた。2019 年度実績から、石灰製造工業会、日本産業機械工業会、日本 LP ガス協会が新たに具体的な記載がなされた。

部門別では、エネルギー転換部門は全業種について、産業部門は大半の業種(27業種中24業種)について、具体的項目の記載があった。業務部門については、14業種中5業種での記載に留まった。

表 II - 3-9 革新的技術の開発・導入についての記載状況

	具体的項目の記載がある業種	具体的項目の記載がない業種
	(<u>下線</u> は削減貢献量の定量的記載がある業種)	
エネルギー転換	計3業種	_
部門	電気事業低炭素社会協議会、石油連盟、日本ガス	
(全3業種)	協会	
産業部門	計 24 業種	計3業種
(全 27 業種)	日本鉄鋼連盟、日本化学工業協会、日本製紙連合	日本染色協会、日本建設機械工業会、
	会、セメント協会、電機・電子温暖化対策連絡会、	炭素協会
	日本自動車部品工業会、日本自動車工業会・日本	
	自動車車体工業会、日本鉱業協会、石灰製造工業	
	会、日本ゴム工業会、日本印刷産業連合会、日本	
	アルミニウム協会、板硝子協会、日本電線工業会、	
	日本ガラスびん協会、日本ベアリング工業会、日	
	本伸銅協会、日本産業機械工業会、日本工作機械	
	工業会、石灰石鉱業協会、日本レストルーム工業	
	会、石油鉱業連盟、プレハブ建築協会、日本産業	
	車両協会	
業務部門	計5業種	計9業種
(全 14 業種)	日本チェーンストア協会、日本フランチャイズチ	日本ショッピングセンター協会、日
	ェーン協会、情報サービス産業協会、日本 LP ガ	本百貨店協会、日本チェーンドラッ
	ス協会、日本新聞協会	グストア協会、大手家電流通協会、日
		本 DIY 協会、日本貿易会、リース事
		業協会、全国産業資源循環連合会、全
		国ペット協会
	計 32 業種	計 12 業種
	(うち削減量の定量的記載有り:6業種)	

表 II - 3-10 革新的技術の開発・導入による削減見込み量³

表 II - 3-10 早利的技術の開発・導入による削減見込み重。			
業種	革新的技術	2020 年度 削減見込量	2030 年度 削減見込量
	環境負荷を低減する火力技術	-	-
- 電気事業低炭素	再生可能エネルギー大量導入への対応	-	-
社会協議会	エネルギーの効率的利用技術の開発	-	-
	削減効果合計	-	-
石油連盟	ペトロリオミクスによる石油精製高効率化技 術	-	-
	削減効果合計	-	-
	コージェネレーション、燃料電池の低コスト 化、高効率化	-	-
	スマートエネルギーネットワーク	-	-
	水素製造装置の低コスト化	-	-
日本ガス協会	LNG バンカリング供給手法の検討	-	-
	家庭用燃料電池を活用したバーチャルパワー プラント(仮想発電所)	-	-
	メタネーション	-	-
	削減効果合計	-	-
	COURSE50	-	総合的に約 30%の CO ₂ 削 減を目指す
日本鉄鋼連盟	フェロコークス	-	高炉1基あたりの省エネ 効果量(原油換算)約3.9 万 kL/年
	削減効果合計	-	-
	二酸化炭素原料化基幹化学品製造プロセス技 術開発	-	
	有機ケイ素機能性化学品製造プロセス技術開 発	-	- 632.8 万 kl-原油
日本化学工業協 会 	非可食性植物由来原料による高効率化学品製 造プロセス技術開発	-	032.0 /J KI ////Д
	機能性化学品の連続精密生産プロセス技術の 開発	-	
	削減効果合計	-	-
・電機・電子温暖 化対策連絡会	分散電源 + 次世代蓄電池	-	-
	スマートグリッド、VPP(バーチャルパワー プラント)	-	-
	超電導、高圧直流送配電技術	-	-
	CCUS 技術(CCS、BECCS 等)	-	-
	水電解水素製造装置、純水素燃料電池	_	_

.

 $^{^3}$ CO_2 の削減見込み量の算定方法は業種ごとに異なり、単年度での削減見込み量と複数年度を累積した削減見込み量とが混在している

業種	革新的技術	2020 年度 削減見込量	2030 年度 削減見込量
	5G モジュール、LPWA チップ	-	-
	パワー半導体	-	-
	次世代充電システム(急速充電、ワイヤレス 充電)	-	-
	自動運転支援システム	-	-
	カーシェアリング、オンデマンド交通システ ム	-	-
	スマートファクトリー(工場可視化、工場間連携)	-	-
	オンデマンド型製造・物流システム	-	-
	高精度気象観測、洪水予測シミュレーション 技術	-	-
	削減効果合計	-	-
	セルロースナノファイバー	-	-
日本製紙連合会	バイオ燃料	-	-
	削減効果合計	-	-
セメント協会	革新的セメント製造プロセス	-	約 15 万 kl(原油換算)
ー ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	削減効果合計	-	約 15 万 kl(原油換算)
	電動ダイカストマシンの開発	270 (t-CO2/Y)	-
日本自動車部品	スマートバッテリーヒューズユニット	従来品比▲26.5%	-
工業会	ハイブリッド溶解保持炉の開発	197(t-CO2/Y)	-
	削減効果合計	467 tCO2/y	-
	Wet on Wet 塗装	-	-
] 」日本自動車工業	アルミ鋳造のホットメタル化	-	-
会・日本自動車	ヒートポンプの活用	-	-
車体工業会	塗装設備の小型化	-	-
	削減効果合計	-	-
口士体类均人	銅製錬におけるリサイクル原料比率の拡大	-	-
日本鉱業協会	削減効果合計	-	-
プロ制サエ ザ ム	焼成炉排ガス中の CO2 回収技術	-	-
- 石灰製造工業会	削減効果合計	-	-
日本ゴム工業会・	生産プロセス・設備の高効率化	-	-
	革新的な素材の研究等	-	-
	低燃費タイヤ	-	-
	非タイヤ製品の高技術化	-	-
	再生技術	-	-
	削減効果合計	-	-
日本印刷産業連 合会	乾燥工程の高効率化1. (UV 光源の LED 化)	-	-

業種	革新的技術	2020 年度 削減見込量	2030 年度 削減見込量
	乾燥工程の高効率化2. (乾燥・臭排熱の有効利用)	-	-
	省エネ型印刷システム(印刷インキの高濃 度・ハイソリッド化)	-	-
	削減効果合計	-	-
	水平リサイクルシステム開発	-	-
 ・日本アルミニウ	革新的熱交換・熱制御技術開発	-	-
ム協会	アルミニウム素材の高度資源循環システム構 築	-	-
	削減効果合計	-	-
	全酸素燃焼技術	-	-
板硝子協会	気中溶解技術	-	-
	削減効果合計	-	-
	高温超電導ケーブル	-	-
日本電線工業会	超軽量カーボンナノチューブ		
日本电脉工来云	レドックスフロー電池	-	-
	削減効果合計	-	-
	予熱酸素燃焼技術	-	6.5 万 t-CO₂
 日本ガラスびん	全電気溶融技術	-	19.4 万 t-CO₂
協会	CO2 排出しない燃焼技術(アンモニア燃焼、 水素燃焼)	-	34.8 万 t-CO₂
	削減効果合計	-	-
日本ベアリング 工業会	自動車の変速機用途として「磁(じ)歪(わい) 式トルクセンサ」を開発。軸と非接触で測定 可能。軸受と併用する事で、センサと軸のギャップを管理でき、より安定したトルク測定 ができる。既存の変速機への適用による車両 燃費改善や、今後増加が期待される2速変速 EVへの適用で車両の航続距離延伸が期待できる。 (日本精工㈱)	-	-
	削減効果合計	-	-
日本建設機械工 業会	バッテリ建機の商品化 削減効果合計	-	<u>-</u>
***	削減効果合計 ペテロナノ構造を用いた材料の高強度化	-	-
日本伸銅協会	ペテロノノ構造を用いた材料の高強度化 省エネルギー戦略に寄与する"ヘテロナノ"超	-	-
	高強度銅合金材の開発	-	-
	削減効果合計	- 従来機より 20%の消	•
日本工作機械工業会	CFRP(炭素繊維強化プラスチック)製 5 軸 M C 設計開発	費エネルギー削減、 2020 年以降	-
	削減効果合計	-	-
石灰石鉱業協会	日本の鉱山で導入出来る革新的技術の探索	-	-

業種	革新的技術	2020 年度 削減見込量	2030 年度 削減見込量
	削減効果合計	-	-
日本レストルー ム工業会	高効率焼成窯(廃熱利用)、超高効率変圧器、設備の間欠運転化、トップランナーモーターなど高効率機器、自働化の無人搬送装置、設備のインバータ化、コンプレッサーのインバータ化、台数制御化、高効率エアコン、照明のLED化、通路等の感知式照明化など	-	-
	削減効果合計	-	-
 石油鉱業連盟	CO 2 地中貯留(CCS)技術	-	-
	削減効果合計	-	-
	FEMS 導入等による工場生産におけるエネル ギー使用の効率化	-	-
	生産工場等への再生可能エネルギー由来の電力の積極導入	-	-
プレハブ建築協 会	サプライチェーンと一体となった CO2 排出 量削減		
	ZEH、LCCM 住宅等、高度な省エネ性能・低 炭素性能を有する戸建住宅および低層集合住 宅の普及推進	-	-
	削減効果合計	-	-
日本産業車両協会	燃料電池式産業車両のラインナップ拡大	-	-
A	削減効果合計	-	-
	省エネ型照明(LED 等)の導入	-	-
	省エネ型空調設備の導入	-	-
日本チェーンス	省エネ型冷蔵・冷凍設備(自然冷媒、扉付き 等)の導入	-	-
トア協会	効率的な制御機器(BEMS、スマートメータ 一等)の導入	-	-
	再エネ発電設備(太陽光発電、風力発電等) の導入	-	-
	削減効果合計	-	-
日本フランチャ	次世代型店舗の研究・開発	-	-
ロ本ノノンテヤ イズチェーン協 会	省エネに貢献し温暖化係数も低い自然冷媒等 の利用	-	-
	削減効果合計	-	-
	水の気化熱の活用により、超高効率を実現するデータセンタ用空調システム	-	-
・情報サービス産・ 業協会	自然エネルギーの利用	-	-
	様々な水冷技術	-	-
	ダブルデッキシステム	-	-
	削減効果合計	-	-
	renewable LPG	-	-

業種	革新的技術	2020 年度 削減見込量	2030 年度 削減見込量
日本 LP ガス協 会	合成 LP ガス製造(プロパネーション・ブタ ネーション)	-	-
	削減効果合計	-	-

[※] 各業種から報告された革新的技術の開発・導入の状況のうち、当該年度の活動が報告されているが、一覧表の項目に合致していないため、この表で取り上げていない業種もある。

IV. 今後の課題等

産業界の地球温暖化対策の中心的な取組である「低炭素社会実行計画」について、政府においては、①新規参加の促進、②BATの最大導入、③PDCAサイクルの推進、④低炭素製品・サービスの提供を通じた他部門での削減、⑤海外での削減貢献、⑥革新的技術の開発・実用化、⑦対外的な情報発信の強化の7つの観点から関係審議会等において厳格かつ定期的な評価・検証を引き続き実施することとしている。

こうした方針の下、2020 年度においても、継続的に関係審議会等による評価・検証が実施された。2013年の「自主行動計画の総括的な評価に係る検討会」での提言を踏まえ、過年度審議会での議論を基にフォローアップ調査票を見直し、記載例やデータシート作成の手引きなどの参考資料を充実させ、各業種の取組の記載を促すとともに、各業種の取組の実効性、透明性、信頼性の確保に努めた。

また、国内の企業活動における 2020 年・2030 年の削減目標へ向けた取組に対する評価・検証に加え、 低炭素社会実行計画の柱立てである、低炭素製品・サービス等による他部門での削減、海外での削減貢献、革新的技術の開発・導入の取組を含めたフォローアップを実施した。

さらに、2020 年 10 月 26 日の第 203 回臨時国会において、菅総理より「2050 年カーボンニュートラル、脱炭素社会の実現を目指す」ことが宣言されたことを踏まえ、事前質問や業種別 WG において各業界の 2030 年以降の取組に関する考え方やビジョンについて議論を行った。

加えて、コロナウイルスの蔓延による社会経済の大きな変化を踏まえ、低炭素社会実行計画の目標年である 2020 年実績への影響についても事前質問等により把握に努めた。

各業種の進捗・取組の報告状況、及び審議会等での委員指摘事項を踏まえ、今後の課題を以下に整理する。

1. 2020年・2030年の目標達成に向けた業種の評価と課題

2019 年度実績フォローアップでは、2020 年目標に対して、経済産業省及び環境省所管の 44 業種中 35 業種が目標水準を前倒しで達成しているとの結果となった。自主行動計画に続き、低炭素社会実行計画においても各業種による弛まぬ自主的かつ着実な取組の積み重ねによる成果であるといえる。さらに、2 業種が 2020 年度の目標水準を引き上げたと報告があり、積極的な温暖化対策への貢献を評価できる。引き続き、2020 年度の目標達成の蓋然性を確保するようフォローアップを継続することが重要である。

目標未達の業種について、目標達成に向けた課題を調査票やフォローアップワーキンググループでの議論を踏まえて把握するとともに、他業種との協力やベストプラクティスを参考とし、目標達成の蓋然性を確保できるように、引き続き 2020 年度に向けてフォローアップを継続していく。

2030 年目標に対して、経済産業省及び環境省所管の 44 業種中 17 業種が既に目標水準に達している。昨年度の 18 業種から減少したが、これらの業種においては 2030 年に向けて一層の自主的な取組強化を促すために、経済動向に留意しつつ、目標の引上げ余地を継続的に点検していく。

加えて、各業種から報告されたベストプラクティスを水平展開していくことが、今後の自主的な取り組みを一層深めていくために重要であり、この視点に立って政府としてこれまでのフォローアップワーキンググループに報告された事例を整理した事例集を作成した。今後、HPや説明会等を通じて情報発信に努める。

さらに、各業種フォローアップ WG において、地球温暖化対策計画において産業界の中心的役割と

して位置付けられている低炭素社会実行計画と、我が国の 2030 年目標との整合性について、WG 委員からの指摘があった。2030 年に向けて低炭素社会実行計画が着実に進展することが重要であり、政府としても 2030 年目標に対する産業界の自主的な取組による貢献を念頭に入れたフォローアップの在り方について検討を深めていく。

2. 低炭素製品・サービス等による他部門での削減への取組

低炭素社会実行計画は、業種に閉じた自らの事業活動だけでなく、業種を超えた低炭素製品・サービスによる温暖化対策への貢献を柱立ての一つとしている。

本年度フォローアップでは、経済産業省及び環境省所管の 44 業種中 42 業種から他部門での削減に関する報告があった。各業種がサプライチェーン・バリューチェーンの中で、温暖化対策にどのような貢献ができるのかという観点を踏まえた検討が進展していると評価できる。さらに、28 業種は削減効果を定量的に示し、各業種がサプライチェーン・バリューチェーンの中で積極的に温暖化対策に取り組むことによる貢献が可視化されている。引き続き、貢献量の定量化を検討している業種に対して、先行する業種の方法論を参考にする等の取組を拡大していくために、フォローアップ WG での議論を行っていく。同時に、定量化した結果や方法論の透明性を確保し、第三者の視点からレビューすることができるように情報を Web サイトなど通じて共有していくことが重要である。

各業種の間の情報共有を強化するために、報告された各業種のベストプラクティスを水平展開していくことで、各業種に気づきを促し、業種を超えた協力によって他部門での貢献のリストアップや定量化の深堀を進めていくことが温暖化対策として重要である。

3. 海外での削減貢献への取組

国内だけでなく、我が国の低炭素製品・サービスによる国際的な貢献も柱立ての一つである。各業種による海外での削減貢献が、パリ協定の下で世界的な排出削減に貢献していくことになる。

経済産業省及び環境省所管の 44 業種中 26 業種からグローバルな排出削減への貢献について報告があり、26 業種中 15 業種が定量的に海外での削減貢献を試算している。国内で培った技術を海外展開することによる排出削減が示されており、これを後押しすることがパリ協定の目指す 1.5℃目標の達成に向けて不可欠である。

一方で、特に業務部門の業種を中心として残りの半数は調査票に具体的な取組が記載されていなかった。各業種の特色を踏まえつつ、海外製品を輸入する際の運輸事業者との協力、廃棄物処理など広い 視点での検討の余地が残っている。

引き続き、海外での削減貢献について各業種に検討を促すとともに、先進的な業種の取組を参照できるよう情報の共有を進めていく。また、定量化のためのデータベースの整備や方法論の共有といった必要な環境整備を進めていく。

こうした海外での削減貢献を具現化し、実際に排出削減に貢献していくことが今後求められていく。 製品・サービスによる貢献を定量化した結果を活用し、地球規模での排出削減に寄与していることを着 実に積み上げていることを国内外に広く広報していくことも必要となる。

4. 革新的技術の開発・導入への取組

2020年を超えて、2030年、2050年といった長期的な目標に向けた排出削減、効率改善には、BAT

ではなく今後開発される革新的な技術の導入が必要となる。ただし、各業種の将来の競争力に直結する 部分であることに配慮しつつ、低炭素社会実行計画でも革新的な技術開発の進捗や成果をフォローア ップにおいて共有することは、今後の各業種の長期的な排出削減を議論するためにも重要である。

5. 低炭素社会実行計画に関する透明性の改善

過年度の関係審議会等における委員からの指摘を踏まえ、フォローアップ調査票とデータシートを 改善するとともに、ガイダンス資料の更なる充実を図った。また、PDCA サイクルを念頭に置いた調 査票の改善や審議会運営を行い、昨年度の委員からの指摘事項及び事前質問に対する今年度の進捗状 況を説明することを各業種に求めた。

これまでの取組によって、各業種から提出される調査票、データシートを通じて透明性が改善されつつある。今後は、各業種の 2020 年や 2030 年に向けた取組や課題を業種別 WG において共有し、対外的に取組をアピールすることを通じて適切な評価を得るためにも、業種の特性に応じた報告の工夫を進めることが重要である。また、PDCA サイクルを円滑化する観点から、過年度の指摘事項や事前質問への回答を調査票に反映させていくことで、議論を充実させていくことが求められている。

引き続き、低炭素社会実行計画を厳格に評価・検証していくためには、透明性を改善していく。同時に、各業種がフォローアップを通じて新たなアプローチに気付き、他業種の取組を参考とすることによる相乗効果を得ることが重要であり、自主的な取組を広く波及させていくためにも、これまでの議論を踏まえた調査票等の改善を進める余地がある。これは、低炭素社会実行計画の実効性を高めるためにも必要であり、PDCAサイクルの仕組みが円滑化されることが期待される。

6. 国内外への積極的な情報発信

産業界の自主的な取組は、我が国の温暖化対策における主要政策の一つであり、国内外へ積極的な情報発信をすることは、我が国産業界が積極的に地球規模の温暖化対策に広く寄与していることを示すためにも重要である。わが国では、産業界が中心となって自ら目標を設定し、PDCAを進めるというパリ協定の考え方を先取りする取組を20年以上続けてきた経験と実績を広く世界に情報発信し、今後も厳しい目標を達成していく姿勢をアピールしていくことの重要性が一層増している。

加えて、低炭素製品・サービス等による他部門での削減、海外での削減貢献、革新的技術の開発・導入といった新たな柱立てにより、低炭素社会実行計画が広く温暖化対策に寄与している実績も各業種が積極的にアピールしていくことが重要である。

このために、2020年に経済産業省は、低炭素社会実行計画の認知度向上を目指し、日本語・英語のパンフレットを作成した。さらに、経済産業省のウェブサイトに産業界における温暖化対策の自主的取組に関するページ4を立ち上げており、これを通じてより積極的な発信を実施する。

7.2050年のカーボンニュートラルに向けた取組

2020年10月に菅首相から2050年にカーボンニュートラルを目指すと宣言があったところ、2019年実績のフォローアップにおいても、10業種から2030年以降の取組やビジョンの策定状況について報告があった。ただし、カーボンニュートラル宣言より前に策定されており、どのようにカーボンニュートラルに向けた各業種の取組をフォローアップしていくのかは今後の課題である。

⁴ 産業界の自主的取組 HP https://www.meti.go.jp/policy/energy_environment/kankyou_keizai/va/index.html

WG においても、委員からの事前質問や当日の議論において、菅首相の発言を踏まえた各業種の考え方について指摘があったが、一部の 2030 年以降のビジョン等を策定しる業種を除き、多くの業種が今後の課題として検討を進めるとの回答があった。政府としても、エネルギー基本計画や温暖化対策計画の見直しにおいて、カーボンニュートラルの達成に向けた取組を検討しているところ、各業種でも積極的なカーボンニュートラルへの取組を進められ WG に報告されることが期待される。

Ⅴ. 各業種の目標指標の推移・要因分析等

- V-1. 業種別 CO₂排出量の状況 (2019 年度実績・調整後排出係数)
- V-2. CO₂排出量及び原単位の増減要因分析
 - (1) CO₂排出量の増減要因分析
 - (2) CO₂排出原単位の増減要因分析
- V-3. 各業種における指標の国際的な比較
- V-4. 京都メカニズム等の活用状況
- V-5. 国内の企業活動における対策の状況
- V-6. BAT 導入状況
- V-7. 業務部門(本社等オフィス)における排出削減目標策定状況
- V-8. 業務部門(本社等オフィス)における CO₂排出実績
- V-9. 業務部門(本社等オフィス)における CO₂排出削減対策とその効果
- V-10. 運輸部門における排出削減目標策定状況
- V-11. 運輸部門における CO₂排出実績
- V-12. 運輸部門における CO₂排出削減対策とその効果
- V-13. 低炭素製品・サービス等による他部門での削減の状況
- V-14. 海外での削減貢献の状況
- V-15. 革新的技術の開発・導入の状況
- V-16. 情報発信等の取組
- V-17. 各業種の低炭素社会実行計画カバー率
- V-18. 各業種の電力排出係数

1. 業種別CO₂排出量の状況 (2019年度実績・調整後排出係数)

(排出量単位:万 t - CO₂)

	基準年度	2018年度	(排出量単位:力 t − CO ₂) 2019年度					
業界名	CO ₂	CO ₂	CO ₂ 増減					
	排出量	排出量	排出量	基準年度比	率 (%)	~ 2018年度比	遬 (%)	
エネルギー転換部門	が出土	が山主	лш					
1 電気事業低炭素社会協議会	-1	37,200.0	34,500.0	-	-	-2700.0	-7.3%	
2 石油連盟	3,945.1	3,682.4	3,439.5	-505.5	-12.8%	-242.9	-6.6%	
3 日本ガス協会	133.3	43.0	40.0	-93.3	-70.0%	-3.0	-7.0%	
エネルギー転換部門 計		40,925.5	37,979.5			-2,945.9	-7.2%	
産業部門								
4 日本鉄鋼連盟	18,843.9	17,721.8	17,261.0	-	-8.4%	-460.8	-2.6%	
5 日本化学工業協会	6,384.1	5,872.1	5,784.0	-600.1	-9.4%	-88.1	-1.5%	
6 日本製紙連合会	2,519.8	1,741.6	1,658.0	-	-34.2%	-83.6	-4.8%	
7 セメント協会	1,649.0	1,691.2	1,614.0	-35.0	-2.2%	-77.2	-4.6%	
8 電機・電子温暖化対策連絡会	1,169.5	1,342.3	1,299.3	129.8	11.1%	-43.0	-3.2%	
9 日本自動車部品工業会	789.3	642.9	618.8	-170.5	-21.6%	-24.1	-4.8%	
10 日本自動車工業会・日本自動車車体工業会	910.9	632.0	583.0	-327.9	-36.0%	-49.0	-7.0%	
11 日本鉱業協会	397.4	341.8	330.6	-66.8	-16.8%	-11.2	-5.4%	
12 石灰製造工業会	-	223.7	209.9	-	-	-13.8	-5.9%	
13 日本ゴム工業会	236.5	183.3	168.6	-67.9	-28.7%	-14.7	-7.1%	
14 日本印刷産業連合会	117.0	110.0	104.5	-12.5	-10.7%	-5.5	-6.6%	
15 日本アルミニウム協会	168.1	134.8	127.1	-41.0	-24.4%	-7.7	-5.4%	
16 板硝子協会	134.4	110.0	111.4	-23.0	-17.1%	1.4	1.3%	
17 日本染色協会	382.2	98.8	87.9	-294.3	-77.0%	-10.9	####	
18 日本電線工業会	91.5	78.7	71.7	-19.8	-21.6%	-7.0	-9.2%	
21日本ガラスびん協会	86.3	77.6	73.1	-13.2	-15.3%	-4.5	-4.8%	
22 日本ベアリング工業会 23 日本産業機械工業会	56.4 46.9	74.6 48.4	67.7 48.5	11.3 1.6	20.1%	-6.9 0.1	-9.1%	
24 日本建設機械工業会	42.7	41.1	35.7	-7.0	3.5% -16.4%			
25 日本伸銅協会	42.7	37.8	38.2	-7.0	-10.4%	0.4	1.0%	
	25.7				1 4 40/			
26 日本工作機械工業会	25.7	34.5	29.4	3.7	14.4%	-5.1	####	
27 石灰石鉱業協会	-	26.0	25.6	-	-	-0.4	-1.0%	
28 日本衛生設備機器工業会	49.7	20.5	19.8	-29.9	-60.2%	-0.7		
29 石油鉱業連盟 30 プレハブ建築協会	22.3	23.6 12.9	21.2 11.7	-1.1	-5.0% 8.4%	-2.4	-8.0% -4.5%	
31 日本産業車両協会	10.8 7.0	4.0	3.7	0.9 -3.3	-47.3%	-1.2 -0.3		
32 炭素協会	63.8	67.0	35.0	-28.8	-47.3% -45.1%			
産業部門 計	03.8	31,247.2	30,332.7	-20.0	-43.170	-1,083.1		
*** 2 55 4 77 B B								
業務部門								
33 日本チェーンストア協会	-	209.7	206.0	-	-		-1.7%	
34 日本フランチャイズチェーン協会	419.2	401.4	357.6	-61.6	-14.7%	-43.8	-6.4%	
35 日本ショッピングセンター協会	219.2	231.2	220.7	-	0.7%	-10.5		
36 日本百貨店協会	189.9	119.6	113.2	-76.7	-40.4%	-6.4		
37 日本チェーンドラッグストア協会	71.5	168.3	155.1	83.6	117.0%	-13.2		
38 情報サービス産業協会	44.3	50.4	56.7	12.4	27.9%			
(オフィス系) (データセンター系)	9.7 34.6	9.6 40.8	9.0 47.7	-0.7 13.1	-7.4% 37.8%	-0.6 6.9	-5.7% 16.9%	
39 大手家電流通協会	75.1	60.5	60.3	-14.8	-19.7%	-0.2		
40 日本DIY協会	73.1 57.6	28.3	33.3	-14.8	-19.7% -42.1%	5.0		
41 日本貿易会	5.4	3.4	3.2	-2.2	-41.0%			
42 日本LPガス協会	2.4	2.5	2.4	0.0	-0.4%	-0.2	-4.1%	
43 リース事業協会	0.5	1.4	1.4	0.9	155.6%	-		
44 全国産業資源循環連合会	428.0	580.8	539.3	111.3	26.0%	-41.5	-3.5%	
45 日本新聞協会	53.7	41.9	34.9	-18.9	-35.1%	-7.0	-6.6%	
46 全国ペット協会	0.6	0.5	0.5	-0.1	-13.9%	0.0	-1.0%	
業務部門 計	5.0	1,899.9	1,784.6			-115.3		
							•	

^{※1} 端数処理の関係で合計値が一致しない場合がある。

2-1 CO2排出量の要因分析

		cc	D₂排出量[万t-CC	02]			基準年度比		COz排出量の要因	分析[万t-CO2]]	2018年度比		
業種名	基準年度設定	= # 任 库	2010年度	2010年度	亦ルラ	/h>10-h/\		購入電力分原単	作在亦動 八	赤ル目	(A) 100 + ()		購入電力分原単	+在亦私八
		基準年度	2018年度	2019年度	変化量	省エネ努力分	る変化	位変化	生産変動分	変化量	省工ネ努力分	る変化	位変化	生産変動分
エネルギー転換部門電気事業低炭素社会協議会	-	-	37,200.0	34,500.0	-	-	-	-	-	▲ 2,700.0	-	-	-	-
石油連盟	2009年度	3,945.1	3,682.4	3,439.5	▲ 505.6	▲ 90.9	▲ 51.0	47.2	▲ 410.9	▲ 242.9	▲ 3.4	▲ 61.5	8.0	▲ 186.0
日本ガス協会 * 2	1990年度	130.5	35.6	33.7	▲ 96.8	▲ 173.8	▲ 51.5	28.3	100.3	▲ 1.9	0.9	▲ 0.2	▲ 1.1	▲ 1.4
産業部門														
日本鉄鋼連盟 * 3	BAU目標のため 基準年度設定なし	-	17,442.0	17,034.4	-	-	-	-	-	▲ 407.6	266.9	115.6	▲ 60.0	▲ 730.0
日本化学工業協会 * 3	2005 2013年度 (BAU目標及び絶対量目標)	6,869.1	5,754.0	5,725.0	-	-	-	-	-	▲ 29.0	▲ 2.4	46.0	▲ 31.4	▲ 41.2
日本製紙連合会 * 1	BAU目標のため 基準年度設定なし	-	1,742.1	1,657.5	-	-	-	-	-	▲ 84.6	▲ 2.0	▲ 0.7	▲ 9.3	▲ 72.6
セメント協会	2010年度	1,649.0	1,691.2	1,613.8	▲ 35.2	-	-	-	-	▲ 77.4	-	-	-	-
電機 電子温暖化対策連絡会	2012年度	1,174.4	1,342.9	1,295.7	121.3	▲ 67.5	▲ 44.5	▲ 14.7	248.1	▲ 47.3	73.1	▲ 10.9	▲ 37.1	▲ 72.4
日本自動車部品工業会 * 4	2007年度	788.3	640.5	627.4	▲ 160.9	▲ 91.3	▲ 47.9	34.2	▲ 55.8	▲ 13.0	15.8	3.9	▲ 4.9	▲ 27.9
日本自動車工業会 日本自動車車体工業会 * 1	1990年度	990.0	622.6	582.7	-	-	-	-	-	▲ 39.9	▲ 16.2	3.1	▲ 17.0	▲ 9.8
日本鉱業協会 * 5	1990年度	436.8	352.5	349.6	▲ 87.2	▲ 121.8	▲ 75.4	62.1	47.9	▲ 2.9	2.3	2.3	▲ 0.6	▲ 6.9
石灰製造工業会 * 4	BAU目標のため 基準年度設定なし	-	223.0	209.9	-	-	-	-	-	▲ 13.0	0.1	0.2	▲ 0.5	▲ 12.9
日本ゴム工業会 * 3	2005年度	213.0	151.3	141.0	▲ 72.0	▲ 2.6	▲ 4.9	0.2	▲ 3.0	▲ 10.3	▲ 8.7	▲ 26.1	0.0	▲ 37.6
日本印刷産業連合会 * 1 0	2010年度	108.0	85.8	82.4	▲ 25.6	▲ 24.2	▲ 6.4	4.2	0.3	▲ 3.4	▲ 2.6	▲ 0.7	0.5	▲ 0.6
日本アルミニウム協会 * 1	BAU目標のため 基準年度設定なし	168.2	134.4	127.1	-	-	-	-	-	▲ 7.3	2.5	0.2	▲ 2.5	▲ 7.5
板硝子協会 * 1	2005年度	134.3	109.7	111.4	▲ 23.0	▲ 10.1	▲ 6.7	3.2	▲ 9.4	1.7	4.0	2.2	▲ 0.9	▲ 3.6
日本染色協会	1990年度	377.4	98.2	87.9	▲ 289.5	27.3	▲ 58.3	15.0	▲ 273.6	▲ 10.3	▲ 4.8	▲ 2.5	▲ 0.4	▲ 2.6
日本電線工業会【合算】	2005年度	91.4	78.7	73.3	▲ 18.1	-	-	-	-	▲ 5.3	-	-	-	-
日本電線工業会 【光ファイバー】	2005年度	8.6	13.2	13.2	4.6	▲ 2.6	▲ 0.3	0.8	5.0	0.0	1.7	0.2	▲ 0.7	▲ 2.8
日本電線工業会 【メタル電線】	2005年度	82.8	65.3	60.1	▲ 22.7	▲ 11.0	▲ 2.7	5.0	▲ 14.0	▲ 5.3	▲ 3.6	▲ 0.1	▲ 2.3	0.8
日本ガラスびん協会	2012年度	86.3	76.8	73.1	▲ 13.2	2.7	▲ 1.8	▲ 0.1	▲ 14.0	▲ 3.7	3.9	▲ 1.1	▲ 1.2	▲ 5.5
日本ベアリング工業会 * 6	1997年度	49.9	54.0	50.8	0.9	▲ 15.8	▲ 4.2	4.5	16.4	▲ 3.2	1.7	0.2	▲ 0.2	▲ 4.9
日本産業機械工業会 * 1	2008~2012年度 5ヵ年平均(暫定)	49.8	50.2	48.5	▲ 1.3	▲ 7.3	▲ 2.2	0.8	5.0	▲ 1.7	1.3	0.4	▲ 1.8	▲ 1.6
日本建設機械工業会	2008~2012年度 5カ年平均	42.7	41.1	35.7	▲ 7.1	▲ 18.3	▲ 0.1	3.1	7.7	▲ 5.4	0.8	0.2	▲ 1.3	▲ 5.1
日本伸銅協会	BAU目標のため 基準年度設定なし	-	37.7	38.2	-	-	-	-	-	0.5	5.9	▲ 0.9	▲ 0.3	▲ 4.2
日本工作機械工業会	2008~2012年度 5ヵ年平均	25.7	32.9	29.4	-	-	-	-	-	▲ 3.5	3.2	0.1	▲ 1.3	▲ 5.6
石灰石鉱業協会 * 2	BAU目標のため 基準年度設定なし	-	21.9	22.1	-	-	-	-	-	0.1	0.8	▲ 0.0	0.0	▲ 0.7
日本レストルーム工業会	1990年度	49.6	20.3	19.8	▲ 29.8	▲ 34.8	▲ 9.6	6.0	8.6	▲ 0.6	▲ 0.2	▲ 0.1	▲ 0.4	0.2
石油鉱業連盟 * 1	2005年度	22.3	23.0	21.1	▲ 1.2	0.9	▲ 1.7	0.1	▲ 1.2	▲ 1.9	7.9	▲ 4.7	2.8	▲ 7.0
プレハブ建築協会 * 7	2010年度	10.8	10.3	9.9	▲ 0.9	0.6	0.4	▲ 0.2	▲ 1.7	▲ 0.5	0.2	▲ 0.0	0.0	▲ 0.7
日本産業車両協会 * 8	2005年度	8.2	4.6	4.4	▲ 3.8	▲ 2.2	▲ 1.0	1.1	▲ 1.6	▲ 0.2	0.2	▲ 0.0	0.0	▲ 0.4
炭素協会	2010年度	90.1	71.3	41.9	▲ 48.2	▲ 8.3	0.3	0.8	▲ 41.0	▲ 29.4	▲ 3.2	1.6	▲ 1.2	▲ 26.6
業務部門														
日本チェーンストア協会	1996年度	-	209.4	206.0	-	-	-	-	-	▲ 3.5	▲ 13.1	▲ 2.4	▲ 5.9	17.9
日本フランチャイズチェーン協会	2013年度	437.9	401.4	375.6	▲ 62.3	▲ 50.0	0.0	▲ 94.9	82.7	▲ 25.8	▲ 13.2	0.0	▲ 16.3	3.7
日本ショッピングセンター協会	2005年度	-	230.8	220.7	-	-	-	-	-	▲ 10.1	▲ 0.7	▲ 0.8	▲ 7.6	▲ 1.0
日本百貨店協会	2013年度	189.9	119.5	113.2	▲ 76.8	▲ 31.4	4.4	▲ 32.5	▲ 17.3	▲ 6.3	▲ 2.0	0.5	▲ 4.3	▲ 0.4
日本チェーンドラッグストア協会 * 1 情報サービス産業協会	2013年度	132.5	167.6	155.1	22.5	▲ 48.7	▲ 12.7	▲ 22.4	106.3	▲ 12.5	▲ 9.1	▲ 10.0	2.2	4.4
情報サービス産業協会 【オフィス系】 情報サービス産業協会	2006年度	9.8	9.6	9.0	▲ 0.7	▲ 4.6	0.0	1.0	2.9	▲ 0.5	▲ 0.2	0.0	▲ 0.4	0.1
『データセンタ系』	2006年度	34.6	40.8	47.7	13.1	▲ 5.0	0.0	4.4	13.7	6.9	▲ 0.1	0.0	▲ 1.9	8.9
大手家電流通協会	2006年度	75.1	60.5	60.3	▲ 14.8	▲ 48.8	0.3	8.8	25.1	▲ 0.2	▲ 1.4	▲ 0.5	0.3	1.3
日本DIY協会 * 1	2004年度	57.6	28.1	33.3	▲ 24.2	▲ 32.2	▲ 1.8	5.4	4.3	5.2	4.4	▲ 0.5	▲ 0.4	1.7
日本貿易会	2013年度	5.4	3.4	3.2	▲ 2.2	▲ 0.7	▲ 0.0	▲ 0.9	▲ 0.6	▲ 0.2	0.0	0.0	▲ 0.1	▲ 0.1
日本LPガス協会 * 1	2010年度	2.4	2.5	2.4	▲ 0.0	▲ 0.0	0.0	▲ 0.1	0.0	▲ 0.1	0.1	0.0	0.2	▲ 0.3
リース事業協会	2013年度	0.9	1.4	1.4	0.5	▲ 0.1	0.0	▲ 0.3	0.8	▲ 0.0	▲ 0.0	0.0	▲ 0.1	0.0
全国産業資源循環連合会	2010年度	502.7	580.8	580.8	78.1	-	-	-	-	0.0	-	-	-	-
日本新聞協会	2013年度	53.7	37.4	34.9	▲ 18.9	▲ 12.3	0.3	▲ 9.0	2.1	▲ 2.5	▲ 1.7	0.6	▲ 1.7	0.3
全国ペット協会 * 9	2012年度	0.6	0.5	0.5	▲ 0.1	▲ 0.1	0.0	0.0	▲ 0.0	▲ 0.0	▲ 0.0	0.0	0.0	0.0

(注1)本表は、以下を除き電力の調整後排出係数(受電端)に基づいて算定。

- * 1 基礎排出係数 (受電端) に基づき算定。 * 2 日本ガス協会、石灰石鉱業協会は、電力排出係数0 37kg-CO2/kWh (2020年度 電事連目標数値) に基づき算定。 * 3 日本鉄銅連盟、日本化学工業協会、日本ゴム工業会は、0.423kg-CO2/kWh (2005年度 実排出係数) に基づき算定。
- * 4 日本自動車部品工業会、石灰製造工業会は、0.453kg-COz/kWh (2007年度 実排出係数) に基づき算定。
 * 5 日本鉱業協会は、0.492kg-COz/kWh (2020年度 業界独自想定値) に基づき算定。
 * 6 日本ペアリング工業会は、0.305kg-COz/kWh (自主行動計画固定係数) に基づき算定。
- **7 プレバブ建築協会は、0.35kg-CO2/kWh (2010年度 調整後排出係数) に基づき算定。 *8 日本産業車両協会は、0.57kg-CO2/kWh (2013年度 実排出係数) に基づき算定。

- * 9 全国ペット協会は、0.41kg-CO₂/kWh (2006年度 実排出係数) に基づき算定。 * 1 0 日本印刷産業連合会は、0.316kg-CO₂/kWh (2010年度 調整後排出係数 発電端) に基づき算定。

(注2)日本自動車工業会・日本自動車車体工業会は他業種と異なる分析手法を採用しており、各数値は以下を表す。

- ※: CO₂排出係数の変化を要因としたCO₂排出変化量(%)を表す。 ※※: 生産活動量あたりのエネルギー使用量の変化を要因としたCO₂排出変化量(%)を表す。
- ※※※:生産活動量の変化を要因としたCOz排出変化量(%)を表す。
- (注3) 日本ゴム協会は経団連提示の方法により実施した要因分析を報告書へ記載 (注4) 電気事業連合会および特定規模電気事業者は業界独自の方法により実施した要因分析を報告書へ記載

2-2 CO2排出原単位の要因分析

			CO2排出原単位	!		基準	年度比	COz排出原単	位の要因分析	2018	年度比		
業種名	基準年度設定	単位	基準年度	2018年度	2019年度	変化量	省工ネ努力分	燃料転換等に	購入電力分原	変化量	省工ネ努力分	燃料転換等に	購入電力分原
マラリ ギ 生物を700			基华牛皮	2018年度	2019年度	炎化重	省 工个务力力	よる変化	単位変化	≫16 ■	自工个务儿刀	よる変化	単位変化
エネルギー転換部門電気事業低炭素社会協議会	-	kg-CO2/kWh	_	0.463	0.444	_	_	_	-	▲ 0.019	_	_	_
石油連盟	2009年度	kg-CO2/万kl-換算通油	2.081	2.061	2.028	▲ 0.053	▲ 0.056	▲ 0.012	0.015	▲ 0.033	▲ 0.004	▲ 0.025	▲ 0.003
日本ガス協会*2	1990年度	<u>量</u> g-CO₂/㎡	89.100	8.708	8.601	▲ 80.499	▲ 68.163	▲ 5.747	0.311	▲ 0.107	0.273	▲ 0.252	▲ 0.127
産業部門	1990年度	g-co2/m	09.100	8.708	8.001	2 60.499	2 00.103	2 3.747	0.311	2 0.107	0.273	2 0.232	2 0.127
日本鉄鋼連盟*3	BAU目標のため 基準年度設定なし	t-CO2/粗鋼t	-	0.176	0.180	-	-	-	-	0.003	0.003	0.000	▲ 0.000
日本化学工業協会 * 3	2005 2013年度 (BAU目標及び絶対量目標)	万t-CO2/生産指数	68.693	63.438	63.573	-	-	-	-	0.135	0.127	0.008	0.000
日本製紙連合会 * 1	BAU目標のため 基準年度設定なし	-	-	0.741	0.736	-	-	-	-	▲ 0.005	▲ 0.000	▲ 0.002	▲ 0.003
セメント協会	2010年度	t-CO2/万t	295.000	281.518	278.345	▲ 16.655	-	-	-	▲ 3.173	-	-	-
電機電子温暖化対策連絡会	2012年度	t-CO2/十億円	219.683	195.402	199.163	▲ 20.520	▲ 12.157	▲ 0.225	▲ 9.068	3.761	10.769	▲ 0.111	▲ 6.897
日本自動車部品工業会 * 4	2007年度	t-CO2/10兆円	431.095	362.790	371.371	▲ 59.724	▲ 54.348	▲ 12.595	7.219	8.581	9.542	▲ 0.961	0.000
日本自動車工業会 日本自動車車体工業会 * 1	1990年度	t-CO2/t	54.396	28.560	27.166	▲ 27.229	-	-	-	▲ 1.393	▲ 0.725	▲ 0.054	▲ 0.614
日本鉱業協会 * 5	1990年度	t-CO2/万t	2.049	1.437	1.453	▲ 0.596	▲ 0.688	0.009	0.084	0.017	0.011	0.005	0.000
石灰製造工業会 * 4	BAU目標のため	t-CO2/百万t	-	0.246	0.246	-	-	-	-	▲ 0.000	▲ 1.511	11.205	▲ 11.075
日本ゴム工業会*3	基準年度設定なし 2005年度	t-CO₂/ft	1,358.423	1,170.891	1,113.781	▲ 244.642	▲ 60.529	▲ 199.908	15.795	▲ 57.110	▲ 20.189	▲ 36.922	0.000
日本印刷産業連合会 * 1 0	2010年度	t-CO2/億円	34.017	26.334	25.478	▲ 8.539	▲ 8.070	▲ 0.113	0.000	▲ 0.856	▲ 0.852	▲ 0.004	▲ 0.000
日本アルミニウム協会*1	BAU目標のため	t-CO2/t	0.108	0.105	0.105	- 0.003	-		-	0.000	0.002	▲ 0.000	▲ 0.002
板硝子協会*1	基準年度設定なし 2005年度	kg-CO ₂ /(換算箱*10)	0.049	0.042	0.044	▲ 0.005	▲ 0.004	▲ 0.001	0.000	0.002	0.002	0.007	▲ 0.003
────────────────────────────────────	1990年度	kg-CO2/(换异相*10) t-CO2/万㎡	5.372	5.415	4.987	▲ 0.385	0.548	▲ 1.095	0.162	▲ 0.428	▲ 0.270	▲ 0.105	▲ 0.053
日本電線工業会	2005年度			5.415								- 0.103	- 0.055
【合算】 日本電線工業会					- 21 272	-			2.466	- 2.052	- 4 100		
【光ファイバー】 日本電線工業会	2005年度	t-CO ₂ /万kmc	38.053	28.520	31.372	▲ 6.680	▲ 8.790	▲ 0.357	2.466	2.853	4.108	▲ 0.055	▲ 1.200
【メタル電線】	2005年度	t-CO₂/万t	0.615	0.599	0.544	▲ 0.071	▲ 0.091	▲ 0.014	0.034	▲ 0.055	▲ 0.033	▲ 0.003	▲ 0.019
日本ガラスびん協会 	2012年度	t-CO₂/万t	0.730	0.719	0.737	0.007	0.022	▲ 0.007	▲ 0.008	0.017	0.039	▲ 0.016	▲ 0.007
日本ベアリング工業会 * 6 	1997年度 2008~2012年度	t-CO ₂ /億円	163.211	116.580	120.518	▲ 42.693	▲ 45.486	▲ 7.238	10.032	3.938	4.245	▲ 0.307	0.000
日本産業機械工業会*1	5ヵ年平均(暫定) 2008~2012年度	t-CO ₂ /億円	29.361	24.480	24.406	▲ 4.955	▲ 4.023	0.088	▲ 0.598	▲ 0.074	0.662	▲ 0.004	▲ 0.733
日本建設機械工業会	5ヵ年平均 BAU目標のため	42.713	21.430	14.804	14.676	▲ 6.754	▲ 8.254	▲ 0.044	1.391	▲ 0.128	0.341	▲ 0.046	▲ 0.424
日本伸銅協会	基準年度設定なし 2008~2012年度	t-CO2/万t	-	0.996	1.127	-	-	-	-	0.131	0.163	▲ 0.001	▲ 0.030
日本工作機械工業会	5ヵ年平均	t-CO2/百万円	0.246	0.195	0.209	-	-	-	-	0.014	0.021	▲ 0.000	▲ 0.007
石灰石鉱業協会 * 2	BAU目標のため 基準年度設定なし	t-COz/百万t	-	0.203	0.210	-	-	-	-	0.008	0.008	▲ 0.000	0.000
日本レストルーム工業会	1990年度	t-CO ₂ /億円	92.522	30.167	29.046	▲ 63.476	▲ 58.784	▲ 8.366	3.674	▲ 1.121	▲ 0.362	▲ 0.118	▲ 0.641
石油鉱業連盟 * 1	2005年度	t-CO₂/ Ť GJ	0.002	0.002	0.002	0.001	0.000	▲ 0.000	▲ 0.000	0.000	0.001	▲ 0.000	0.000
プレハブ建築協会*7	2010年度	kg-CO2/mi	10.371	10.932	11.141	0.769	8.751	▲ 2.825	1.766	0.209	0.215	▲ 0.006	0.000
日本産業車両協会 * 8	2005年度	t-CO2/台	0.562	0.374	0.393	▲ 0.169	▲ 0.167	▲ 0.011	0.008	0.019	0.019	▲ 0.001	▲ 0.000
炭素協会	2010年度	t-CO2/万t	3.996	3.757	3.573	▲ 0.423	▲ 0.000	▲ 0.000	0.000	▲ 0.184	▲ 0.000	0.000	0.000
業務部門 日本チェーンストア協会	1996年度	kg-CO2/m2 h 10^7	_	29.645	26.743	_	_	_	_	▲ 2.902	▲ 1.807	0.007	▲ 1.101
日本フランチャイズチェーン協会	2013年度	kg-CO2/千円	0.476	0.360	0.334	▲ 0.142	▲ 0.049	0.000	▲ 0.093	▲ 0.026	▲ 0.012	0.000	▲ 0.015
日本ショッピングセンター協会	2005年度	kg-CO2/mi h	-	20.906	20.082	- 0.142	- 0.049	-	- 0.093	▲ 0.824	▲ 0.068	0.001	▲ 0.757
日本百貨店協会	2013年度	万t-CO2/10^10mi 時間	50.099	35.270	33.525	▲ 16.574	▲ 8.704	0.042	▲ 7.912	▲ 1.745	▲ 0.588	▲ 0.011	▲ 1.146
ロ本日見店協会 	2013年度	kg-CO2/mi h 10^7	44.923	28.743	25.886	▲ 19.038	▲ 11.326	▲ 0.092	▲ 7.620	▲ 2.857	▲ 1.824	▲ 0.051	▲ 0.982
情報サービス産業協会				7.073		▲ 3.027	▲ 3.909	0.000	0.882	▲ 0.439	▲ 0.152		
【オフィス系】 情報サービス産業協会	2006年度	t-CO2/kmi	9.661		6.634							0.000	▲ 0.287
【データセンタ系】	2006年度	t-COz/万kl	3.356	3.460	3.308	▲ 0.048	▲ 0.406	0.000	0.357	▲ 0.152	▲ 0.010	0.000	▲ 0.142
大手家電流通協会	2006年度	10kg-CO ₂ /m	0.017	0.099	0.096	0.079	▲ 0.009	0.000	0.002	▲ 0.003	▲ 0.000	▲ 0.000	▲ 0.000
日本DIY協会 * 1	2004年度	kg-CO ₂ /10^7 m h	22.138	10.424	11.696	▲ 10.442	▲ 11.905	▲ 0.165	1.621	1.273	1.556	0.066	▲ 0.349
日本貿易会	2013年度	kg-COz/万㎡	0.064	0.045	0.043	▲ 0.020	▲ 0.009	▲ 0.000	▲ 0.012	▲ 0.001	0.000	▲ 0.000	▲ 0.002
日本LPガス協会 * 1 	2010年度	kg-CO2/t-LPG	3.588	4.235	4.049	0.461	0.127	0.000	0.334	▲ 0.186	▲ 0.030	0.000	▲ 0.156
リース事業協会	2013年度	万t-CO2/万㎡	0.060	0.047	0.045	▲ 0.015	▲ 0.003	0.000	▲ 0.012	▲ 0.002	▲ 0.444	0.000	▲ 19.108
全国産業資源循環連合会	2010年度	_	-	-	-	-	-	-	-	-	-	-	-
日本新聞協会	2013年度	t-COz/千㎡	0.022	0.015	0.014	▲ 0.008	▲ 0.005	0.000	▲ 0.004	▲ 0.001	▲ 0.001	0.000	▲ 0.001
全国ペット協会*9	2012年度	t-CO2/万㎡ 万h	0.003	0.003	0.003	▲ 0.000	▲ 0.000	0.000	0.000	▲ 0.000	▲ 0.000	0.000	0.000
(注1)本表は、以下を除き電力の調整後排出係数(受電端)(*1 基礎排出係数(受電端)に基づき算定。	こ基づいて算定。												

- *1 基礎排出係数(受電端)に基づき算定。
- *2 日本ガス協会、石灰石鉱業協会は、電力排出係数0.33kg-COz/kWh (2020年度 電事連目標数値) に基づき算定。
 *3 日本鉄鋼連盟、日本化学工業協会、日本ゴム工業会は、0.423kg-COz/kWh (2005年度 実排出係数) に基づき算定。
- *3 日本鉄鋼連盟、日本化子工業協会、日本コム工業会は、0.423kg-CO2/kWh (2005年度 実排出係数) に基づき算定。

 *4 日本自動車部品工業会、石灰製造工業会は、0.453kg-CO2/kWh (2007年度 実排出係数) に基づき算定。

 *5 日本鉱業協会は、0.492kg-CO2/kWh (2020年度 業界独自想定値) に基づき算定。

 *6 日本ベアリング工業会は、0.305kg-CO2/kWh (自主行動計画固定係数) に基づき算定。

 *7 プレバブ建築協会は、0.35kg-CO2/kWh (2010年度 調整後排出係数) に基づき算定。

 *8 日本産業車両協会は、0.57kg-CO2/kWh (2013年度 実排出係数) に基づき算定。

 *9 全国ペット協会は、0.41kg-CO2/kWh (2006年度 実排出係数) に基づき算定。

 *10 日本印刷産業連合会は、0.316kg-CO2/kWh (2010年度 調整後排出係数 発電端) に基づき算定。

3. 各業種における指標の国際的な比較

	業種	指標	日本	ドイツ	フランス	アメリカ	カナダ	韓国	中国	インド	その他の国・地域	出典	業界団体による説明(抜粋)
経済	產業省所管41業種			•							•	•	
1	電気事業低炭素社会協議会	CO2排出係数(発電 端)	0.45	0.38	0.05	0.41	0.13	-	0.63	0.74	イギリス:0.21 イタリア:0.32	IEA, World Energy Balances 2020	震災前(2010年)の日本のCO2排出係数(発電端)は、原子力発電比率の高いフランスと水力発電比率の高いカナダ等には及ばないものの、日本の電気事業者が、供給側のエネルギーの低炭素化とお客さま側のエネルギー利用の効率化等需給両面での取組みを追求してきた結果、他の欧米主要国と比較して低い水準にあった。しかしながら、原子力発電所の長期停止等の影響により、非化石電源比率が低下したこと等から、震災前に比べてCO2排出係数が約15%上昇した。
		火力発電熱効率	45%	41%	46%	43%	-	43%	38%	37%	英国・アイルランド: 51% 北欧:41% 豪州:36%	INTERNATIONAL COMPARISON OF FOSSIL POWER EFFICIENCY AND CO2 INTENSITY (2020 年)(GUIDEHOUSE社)	火力発電設備の熱効率向上を積極的に推進してきた結果、現在、火力熱効率は東日本大 震災以降も継続して世界トップレベルの水準を維持。
2	石油連盟	エネルギー消費指数	100.0	-	-	-	-	ı	-	ı	EU: 100.4、 アジア: 100.3、 米国 カナダ: 111.3	米国調査会社(Solomon Associates社)	製油所のエネルギー効率の国際比較(2016年)。米国調査会社(Solomon Associates社)による2016年の調査結果を世界の主要地域毎の平均として見ると、日本を100.0とした場合、アジア100.3、EU 100.4、米国およびカナダ111.3であった(値が小さいほど高効率)。 アジアは日本を除くアジア各国であり、EUは加盟28カ国(2016年調査当時)である。
3	日本ガス協会	LNG気化器の熱源種別	86%	_	-	-	1	1	-	ı	海外: 52%	外部シンクタンク及び日本 ガス協会調べ	2014年度時点で、日本の都市ガス原料は、LNGが約90%を占める。LNG基地(受入基地)のガス製造プロセスは、LNGを熱交換してガス化し送出するが、熱交換の熱源が日本は大部分が海水や空気であるのに対し、海外は化石燃料を使う基地が多い。海水 空気を使う事で、自然エネルギーを有効活用しており、海外基地よりもエネルギー効率が良いと言える。
4	日本鉄鋼連盟 —	エネルギー原単位 (電炉鋼)	100	109	119	130	-	103	116	123	イギリス:117、 ブラジル:122、 ロシア:128	「2015年時点のエネル ギー原単位の推計」 (RITE、2018年1月(転炉	国際的なエネルギー効率比較について、RITEが、国際エネルギー機関(IEA)のエネルギー統計に加え、企業 協会データや還元材比も一体的に評価した2015年時点のエネルギー効率(転炉網及び電炉網)の国別比較を試算しており、これによると、転炉網、電炉網何れのエネルギー効率は世界で最も高いと評価されている(日本を100として示した各国比較結果は下表の通り)。
		エネルギー原単位 (転炉鋼)	100	102	-	102	-	101	104	113	西欧(2)スペイン ポルトガル: 102 EU(28): 105 トルコ: 106 ロシア: 113 イタリア: 106	鋼)、7月(電炉鋼)発表)	転炉鋼では、我が国鉄鋼業の高炉のエネルギー効率は22.9 GJ/t-粗鋼で、韓国(23.7)、ドイツ(24.9)、中国(26.6)、フランス(27.2)を凌駕している。電炉鋼では、我が国鉄鋼業の電炉のエネルギー効率は8.3 GJ/t-粗鋼で、韓国(8.4)、米国(8.5)、ドイツ(8.5)を凌駕している。

	業種	指標	日本	ドイツ	フランス	アメリカ	カナダ	韓国	中国	インド	その他の国・地域	出典	業界団体による説明(抜粋)
		化学産業 エネルギー効率	100	106	103	105	110	100	116	112	ベネルックス: 103、 イタリア: 106	IEA Energy Efficiency Potential of the Chemical & Petrochemical sector by application of Best Practice Technology Bottom up Approach 2006	オイルショック以降、①製法転換、プロセス開発、②設備 機器効率の改善、③運転方法の改善、④排出エネルギーの回収、⑤プロセスの合理化等の省エネ活動を積極的に推進してきた。これらの省エネ努力により化学 石油化学産業全体において、世界最高レベルのエネルギー効率を達成している。
5	日本化学工業協会	か性ソーダ エネルギー効率	100	-	-	110	108	100	105	108	西湾: 100、 中東: 104、 ブラジル: 115、 東欧: 115、 西欧: 119、 メキシコ: 119	SRI chemical economic handbook,August 2005 及びソーダハンドブック	か性ソーダの国際比較は、か性ソーダ製造プロセス(水銀法 隔膜法 イオン交換膜法)の各国における普及率を加重平均して求めたものである。 日本はエネルギー効率に優れたイオン交換膜法への製造プロセスの転換が順調に進んでおり、欧米に比べて、エネルギー効率が10~20%優れている
		エチレンプラント エネルギー効率	100	_	-	-	-	-	-	-	欧州:112、 北米:132	国際エネルギー機関 Chemical and Petrochemical Sector 2009	地道な省工ネ技術の積み重ねとプラント保全による安定稼働によりエネルギー原単位は 欧米に比べて10~30%優れている。
6	5 日本製紙連合会	BATを利用した場合の 省エネ可能ポテンシャ ル		0.1	2.3	6.5	8.3	-	-	-	世界:3.0、 フィンランド:1.0、 ロシア:12.9	IEAエネルギー技術展望 「ETP2012」(Energy Technology Perspective)紙パルプ産業	(Best Available Technology:最善利用可能技術)を導入した場合の省エネ可能ポテンシャルを図7に示した。 日本の0.3GJ/tの削減量は、化石エネルギー原単位で約3%の削減に相当し、原油換算で20万 k I /年、CO2排出量では54万トン/年の削減が可能なことを示しているが、これは日本の削減ポテンシャルは非常に少なく、省エネが進んでいることを示している。なお、省エネポテンシャルが最も大きいのはカナダ、ロシア、米国だが、これら3国は他の国に比べ、設備の老朽化が進んでいると示われている。
	7 セメント協会	エネルギー削減ポテン シャル (BAT導入によ り削減可能なエネル ギー原単位)	0.6GJ/t	_	-	1.6	1.5	1.4	1.1	0.3	世界: 1.1、 ロシア: 2.6、 ブラジル: 0.5、 OECDヨーロッパ: 0.7、	IEAエネルギー技術展望 (Energy Technology Prospective) 2012 p.403	国際エネルギー機関 (IEA: International Energy Agency)の世界各国のセメント産業におけるエネルギー削減ポテンシャルの調査によれば、わが国の削減ポテンシャルはごく僅かであり、言い換えれば、エネルギー効率は世界最高レベルにあると言える。
		クリンカ生産量あたり の熱投入量(クリンカ 製造の熱エネルギー原 単位)	3.3GJ/tク	3.8	3.9	4.0	-	-	4.0	3.3	ロシア: 5.2、 英国: 3.8	原単位の推計 (セメント 部門) 平成26年9月2日 RITEシステム研究グルー ブ	地球環境産業技術研究機構(RITE)の試算によれば、エネルギー効率の国際比較として示されたクリン力生産あたりの投入熱量の比較を行った場合でも、高い水準にあることが示されている。

	業種	指標	日本	ドイツ	フランス	アメリカ	カナダ	韓国	中国	インド	その他の国・地域	出典	業界団体による説明(抜粋)
8	電機・電子温暖化対策 連絡会	GHG排出量原単位 デバイス	-	_	-	-	-		1	-	_	各社財務報告書(売上 高)、CDPのGHG排出量な ど公開データから、電機 電子温暖化対策連絡会で作 成(2014年度)	CDP公開データ、環境報告書、財務報告書等の公開データで得られる情報の範囲から 2014年度の売上高GHG原単位での比較を実施。 デバイス分野では、日系企業は、回路線幅の微細化、ウェハー大口径化、パネル製造におけるマザーガラス基板大型化等による生産効率の向上、(最新)製造装置部分の効率化とその導入/更新に加え、省エネ法に基づくエネルギー原単位改善努力を継続している。 さらに、比較的早い時期から自主的な取組みとして、製造ラインのエッチング等で使用されるGWP係数の高いPFCなどについて、その除害装置を導入してきた。海外でも、自主的な動きはあるが、現時点では日系企業の取組みにアドバンテージがあると推定され、売上高GHG原単位の評価では、その取り組みが原単位改善に大きく寄与する。 実行計画は、エネルギー原単位目標であり、目の製造工程の省エネ努力比較という目的とは、対象が異なることに留意する必要がある。 その他、欧米日及び新興国の各企業の努力について、それを評価する考え方も一律ではない。また、電機、電子各社の事業は多角化し特定分野のデータの入手は非常に難しくなってきている。今後、生産におけるエネルギー効率に関して、公開データ等からの国際比較を行うことは実質的に困難であると考える。
9	日本自動車部品工業会	未回答	-	T -	-	-	-	-	_	_	-	-	-
10	日本自動車工業会 · 日本自動車車体工業会	自動車業界の生産額当 たりのエネルギー消費 量(TJ/百万ドル)	0.217	0.243	0.422	0.267	-	-	-	-	英国: 0.330 スペイン: 0.469	エネルギー経済研究所による調査	日本の自動車産業の生産額当たりのエネルギー消費量は最も低い水準にある。特に化石燃料由来の生産額当たりのエネルギー消費量は、各国と比較して高い効率を誇っている。一方で、電力由来のエネルギー原単位では他国との効率差は遜色のないレベルとなっている。
11	日本鉱業協会	実施していない	-	_	-	-	-	-	-	-	-	-	2015年度実績の調査票では2000年度に当協会で実施した調査に基づいて「北朱、欧州、南米、アジアの代表的な銅製錬工場のエネルギー原単位との比較」を記載していたが、データが古く実状に合っていない可能性があるため、2016年度実績報告から記載しないこととした。 国内と海外の生産プロセスには概略大差はないものと考える。国内の非鉄金属製錬所のエネルギー効率は世界トップクラスであると考えているが、非鉄金属製錬業を国際的に統括する機関はなく、また、海外の非鉄金属製錬会社とは競合関係にあることからエネルギー原単位、CO2原単位に関する直接の情報収集は困難である。また、公開可能な海
12	石灰製造工業会	石灰焼成に関わるCO2 原単位 (t-CO2/生産 t)	0.30	_	_	0.64	_		_	-	EU: 0.32 中国: 不明	アメリカの数値: National Lime Association -2008 Status Report、 EUの数値: National Lime Association -2008 Status ReportとZKG International No.11- 2007を用いて算出	日本の石灰焼成に係わるエネルギー起源CO2原単位を諸外国と比較すると、日本は直近0.30 t -CO2/生産 t 、米国では0.64 t CO2/生産tであり、日本の値は諸外国より良好なものである。 ただし、焼成炉の形式によるエネルギー効率 保有率の差や、使用燃料やカウント方法にも差があるため、CO2原単位にも差がある。
13	日本ゴム工業会	実施していない	-	_	-	_	-	-	_	-	-	-	国際比較については、比較できるデータを調査中である
14	日本印刷産業連合会	実施していない	-	_	-	-	-	-	_	-	-	-	印刷業界には、国際的に比較できるような指標 データがない。

	業種	指標	日本	ドイツ	フランス	アメリカ	カナダ	韓国	中国	インド	その他の国・地域	出典	業界団体による説明(抜粋)
15	日本アルミニウム協会	エネルギー原単位 (GJ/ t)	15.4	ı	-	-	-	-	-	_	IAI(International Aluminium Institute: 国際アルミニウム協会) が算出した数値:16.2	IAI (国際アルミニウム協会) 及び日本アルミニウム協会	IAI(International Aluminium Institute: 国際アルミニウム協会)が算出した平均的なアルミ板材1トン当たりの圧延工程で必要とされるエネルギー(エネルギー原単位)は、16.2GJ/tとなっている。 一方で、日本アルミニウム協会がLCA日本フォーラムLCAデータベース(2006年2月作成)で公表している代表的なアルミ材料の原単位は、缶ボディ材13.0GJ/t、箔地材12.7GJ/t、汎用板材15.2GJ/t、自動車パネル材20.6GJ/tなどであり、平均では15.4GJ/tとなり、国際水準以上の実力を有している。
16	板硝子協会	実施していない (CO2 排出原単位 (参考 値))	455kg-CO₂ /溶融ガラス ton※1	-	-	-	-	-	-	-	452 ^{×2}	記載なし	適切な公開情報を確認していないため、比較することができない ※1 国内会員3社の比較すべき数値を欧州同様に天然ガス燃焼にした場合を想定した 数値 ※2 欧州TOP4の平均数値
17	日本染色協会	実施していない	-	-	-	-	-	_	-	_	-	-	海外のデータを入手できない。 海外は小品種 大口ット、日本国内は多品種 小口ットの傾向があり、一概には比較で
18	日本電線工業会	実施していない	-	-	-	-	-	-	-	_	-	-	海外における電線製造業のデータについては、公表されていないため比較 分析は出来ない。
19	日本ガラスびん協会	実施していない	-	-	-	-	-	-	-	_	_	_	ガラスびん製造に関する、適切な指標がないため比較はできない。
20	日本ベアリング工業会	実施していない	-	-	-	-	-	-	-	-	-	-	海外においては、業界としてCO2排出量等について公表しておらず、国際比較は難しい。
21	日本産業機械工業会	実施していない	-	-	-	-	-	-	-	-	-	-	諸外国で当工業会と同じ業種の工業会は存在しないことから、比較対象となるデータの収集は難しい。
22	日本建設機械工業会	実施していない	-	_	-	-	-	_	_	_	-	_	-
23	日本伸銅協会	実施していない	-	_	-	_	-	_	_	-	-	_	公表されている国際データが無いため
24	日本工作機械工業会	未回答	-	_	_	_	-	_	_	_	-	-	-
25	石灰石鉱業協会	実施していない	-	-	-	-	-	_	-	_	-	-	石灰石鉱業協会に類する外国の組織はない。米国には同様の名前を持つ団体が一部の州にあるが、骨材等建設関連専門の団体で、我が国における日本砕石協会のような存在である。その他の国々でも、石灰石鉱業に特化した活動は知られておらず、生産量のデータすら最新のデータを入手するのは難しい。現時点では比較へのアプローチが見つかっていない。
26	日本レストルーム工業会	実施していない	-	-	-	-	-	-	-	-	-	-	主要品目である衛生陶器のエネルギー原単位に係る諸データについて調査した範囲で は、海外において比較できるような具体的な情報は得られなかった。
27	石油鉱業連盟	未回答	-	-	-	-	-	_	-	-	-	-	_
38	プレハブ建築協会	実施していない	-	_	-	-	-	_	_	_	-	_	他国において、工業化住宅が一般的ではないため。
29	日本産業車両協会	実施していない	-	-	-	-	-	-	_	-	-	-	国際比較については、海外での公的な統計データや海外の同業者団体による情報が存在 しないため。
30	日本チェーンストア協会	実施していない	-	_	-	-	-	_	-	-	_	-	当協会の会員企業は様々な業態から構成されており、比較分析が困難となっております。
31	日本フランチャイズ チェーン協会	実施していない	-	-	-	-	-	_	-	-	-	-	今後、各社 各国等の実態を把握し、国際的な比較 分析等につき検討を行う。
32	日本ショッピング センター協会	未回答	-	-	-	-	-	-	-	-	-	-	-
33	日本百貨店協会	実施していない	-	_	-	-	-	_	_	-	-	-	-

	業種	指標	日本	ドイツ	フランス	アメリカ	カナダ	韓国	中国	インド	その他の国・地域	出典	業界団体による説明(抜粋)
34	日本チェーンドラッグスト ア協会	実施していない	-	_	-	-	-	-	ı	-	-	-	日本のドラッグストア業界は、米国をモデルに産業としての発展を遂げてきている。当 協会からの米国現地店舗視察および、調査範囲においては比較検討を行った事項は確認 できていない。また、近年、中国、台湾、韓国といった東アジア諸国においても業界と しての立ち上がりの兆しはあるものの、具体的な比較検討を行った事項は確認できてい ない。
35	情報サービス産業協会	未回答	-	_	_	_	_	_	ı	_	_	-	_
36	大手家電流通協会	実施していない	-	-	-	-	-	-	-	-	_	_	国際比較可能なデータがないため、実施しておりません。
37	日本DIY協会	実施していない	-	-	-	-	-	-	-	-	-	-	当業界は、参加企業数の変動が大きいことや、業界内のカバー率が低いこと等から、正確な業界実態の把握ができておらず、国際的な比較は困難である。
38	日本貿易会	未回答	-	_	-	_	-	-	_	_	-	-	-
39	日本LPガス協会	未回答	-	-	-	_	_	_	_	_	-	-	-
40	リース事業協会	実施していない	-	_	-	_	_	_	_	_	-	-	他国におけるリース業の電力消費量が入手不能。
	炭素協会	未回答	-	_	_	_	-	_	-	_	-	-	-
環境	省所管3業種												
1	日本新聞協会	実施していない	-	-	-	-	_	_	-	-	_	_	第3次自主行動計画において、国際的な比較 分析は目標に含まれていないため。
2	全国産業資源循環連合会	実施していない	_	_	_	_	-	_	-	-	_	_	利用可能な統計がないことから、国際的な比較は行っていない。
3	全国ペット協会	実施していない	_	_	_	-	-	_	-	-	-	_	比較できるデータの存在を確認したことがありません。

4. 京都メカニズム等の活用状況

単位: 万t-CO2

	業種 (2018年度CO₂排出量)	年度		カニズム ジット	JCMク	レジット] – クレ	ンジット ブット含む)	クレジッ	位: /ht-CO2 / ト合計
			取得量	償却量	取得量	償却量	取得量	償却量	取得量	償却量
		2012年度まで								
		2013年度								
		2014年度								
	 電気事業低炭素社会協議	2015年度						3.8		3.8
1	会	2016年度						90.8		90.8
		2017年度						23.4		23.4
		2018年度						13.7		13.7
		2019年度						13.7		13.7
		2020年度								
		2012年度まで					0.3	0.1	0.3	0.1
		2013年度					1.9	1.6	1.9	1.6
		2014年度					0.4	0.0	0.4	0.0
		2015年度					0.8	0.5	0.8	0.5
2	プレハブ建築協会	2016年度					0.4	0.0	0.4	0.0
		2017年度					0.4	0.0	0.4	0.0
		2018年度								
		2019年度								
		2020年度								
		2012年度まで			0.8	0.8			0.8	0.8
		2013年度			0.3	0.3			0.3	0.3
		2014年度			0.1	0.1			0.1	0.1
		2015年度			0.1	0.1			0.1	0.1
3	3 日本チェーンストア協会	2016年度			0.1	0.1			0.1	0.1
		2017年度			0.1	0.1			0.1	0.1
		2018年度			0.1	0.1			0.1	0.1
		2019年度			0.1	0.1			0.1	0.1
		2020年度			0.1	0.1			0.1	0.1

5. 国内の企業活動における対策の状況

							削	減効果		
	業種	実施年度	対策名	対策内容	投資額				当該業種2020	備考
紁沱								排出量比	年度削減目標比	
11年/月/	生未省川省41未但				05.676.0	/ * m	46 004 TH			
		1	原子力発電の導入、水力発電の導入		35,676.0		46,201 万kl	4		
		1701/年及まで	火力発電所の熱効率維持対策		24,263.0			-	-	
		1	省エネ情報の提供、省エネ機器の普及啓発		8,543.0			4		
		I	温暖化に係る研究	 	12,354.0				 	
		1	原子力発電の導入、水力発電の導入		1,431.0		965 万kl	4		
		1 7018年度	火力発電所の熱効率維持対策		1,075.0			-		
		1	省エネ情報の提供、省エネ機器の普及啓発		240.0 528.0			4		
1	電気事業低炭素社会協議会		温暖化に係る研究	 					 	
			原子力発電の導入、水力発電の導入		1,277.0		980 万kl	4		
		1 7019年段 1	火力発電所の熱効率維持対策		1,014.0			-		
		1	省エネ情報の提供、省エネ機器の普及啓発		263.0			4		
		I	温暖化に係る研究 原子力発電の導入、水力発電の導入		546.0	(息円 		· 	 	
			火力発電所の熱効率維持対策					1		
		120204/皮以降	省工ネ情報の提供、省工ネ機器の普及啓発					-	-	
			温暖化に係る研究					1		
\neg			熱の有効利用に関するもの	熱交換器の設置、熱相互利用、廃熱回収等			38.1 原油換算万kl	 		
		1	高度制御・高効率機器の導入に関するもの				13.4 原油換算万kl	1		
		1	動力系の効率改善に関するもの	動力のモーター化等	928.2	億円	8.7 原油換算万kl	-	- 1	
			プロセスの大規模な改良・高度化に関する					1		
		1	もの	用量の抜本的削減等			14.5 原油換算万kl			
		1	熱の有効利用に関するもの	熱交換器の設置、熱相互利用、廃熱回収等		+	2.0 原油換算万kl		†h	
				ヒートポンプ、コージェネ、高効率発電設備の設置、コンピュータ制御の推進等			0.7 原油換算万kl	1		
2	石油連盟		動力系の効率改善に関するもの	動力のモーター化等	31.2	億円	0.5 原油換算万kl	-	- 1	
		1	プロセスの大規模な改良・高度化に関する					1		
		1	もの	用量の抜本的削減等			0.1 原油換算万kl			
			型・	111=5/3/C+4/1111/W(3		+			†h	
			高度制御・高効率機器の導入に関するもの				0.1 原油換算万kl	1		
		1 /1119正局	動力系の効率改善に関するもの		154.0	億円	0.1 原油換算万kl	-	-	
			プロセスの大規模な改良・高度化に関する				0.2 原油換算万kl	1		
		2020年度以降				† -		· <u>-</u>	† <u>-</u>	
\dashv			BOGの有効利用	LNGタンクより発生するBOGを原料ガスとして全量処理		1	1,323 t-CO ₂	1		
			ポンプ・コンプレッサー等の設備更新	高効率機器への更新によるエネルギー削減	2.0	億円	172 t-CO ₂	1		
		2017年度まで	冷熱発電設備の更新	自家発電量の増加に伴う購入電力量削減	3.0	18円	970 t-CO2	† -	-	
			ポンプ類の運用見直し	運用見直しによるエネルギー削減			826 t-CO ₂	1		
			電力事業用発電設備の廃熱利用	電力事業用発電設備の廃熱を都市ガス製造に利用			5,645 t-CO ₂		†	
			BOGの有効利用	LNGタンクより発生するBOGを原料ガスとして全量処理			302 t-CO ₂	1		
		2018年度	冷熱発電設備の稼働率向上	リフレッシュ工事を伴う操業形態変更による稼働率向上	7.0	億円	1,477 t-CO ₂	1 -	-	
			海水ポンプの設備更新	海水ポンプのVVVFインバーター制御化			1,808 t-CO ₂	1		
3	日本ガス協会		コージェネレーションの導入	電力と廃熱の有効利用			953 t-CO₂	1		
3	口平刀人勝云		隣接する廃棄物処理場の廃熱利用				6,848 t-CO2		†	
		2019年度	隣接する発電所の廃熱利用		9.0	億円	6,082 t-CO2	_	_	
		2019年及	コージェネレーションの導入		8.0	1总门	971 t-CO ₂	1	-	
			ポンプ類の運用見直し				338 t-CO ₂	1		
'		'	·	···				· -		

						ķ	削減効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020 年度削減目標比	備考
			冷熱発電設備の稼働率向上			1,042 t-CO ₂			
		2020年度	ポンプ類の運用見直し		2.0 億円	156 t-CO ₂	_	_	
		2020年及	高効率照明への更新		2.0 1思门	33 t-CO ₂			
			BOG圧縮機の設備更新			27 t-CO ₂			
		2021年度以降	高効率照明の導入		1.0 億 円	33 t-CO ₂			
			コークス炉の高効率改善	次世代型コークス炉(SCOPE21)を日本製鉄大分製鉄所に導入(2008年)					
			発電設備の高効率化	GTCCを神鋼加古川発電所に導入(2011年)					
			発電設備の高効率化	ACCを君津共同火力に導入(2012年)					
			コークス炉の高効率改善	次世代型コークス炉(SCOPE21)を日本製鉄名古屋製鉄所に導入(2013年)					
			発電設備の高効率化	ACCを鹿島共同火力に導入(2013年)					
			発電設備の高効率化	ACCを和歌山共同火力に導入					
			発電設備の高効率化	ACCを大分共同火力に導入(2015年)					
		2017年度まで	発電設備の高効率化	GTCCを神鋼加古川発電所に導入 (2015年)	150.0 億円		-	-	
			発電設備の高効率化	GTCCをJFE千葉西発電所に導入(2015年)	250.0 億円				
			コークス炉の更新(竣工)	JFE倉敷のコークス炉を更新竣工 (2016年1月)	200.0 億円				
			コークス炉の更新(竣工)	日本製鉄鹿島のコークス炉更新竣工	180.0 億円				
			コークス炉の更新(竣工)	JFE千葉のコークス炉更新竣工					
4	日本鉄鋼連盟		コークス炉の更新(竣工)	日本製鉄君津のコークス炉更新竣工	290.0 億円				
			コークス炉の更新(竣工)	JFE倉敷のコークス炉更新竣工	184.0 億円				
			発電設備の高効率化	BTGを日鉄日新製鋼呉発電所に導入	140.0 億円				
			コークス炉の更新(着工)					†	
			コークス炉の更新(竣工)	日本製鉄君津のコークス炉更新竣工	330.0 億円				
		2018年度	コークス炉の更新(竣工)	日本製鉄鹿島のコークス炉更新竣工	310.0 億円		-	-	
			コークス炉の更新(竣工)	JFE千葉のコークス炉更新竣工			\dashv		
			コークス炉の更新	日本製鉄室蘭製鉄所	130.0 億円			t	
		2019年度	コークス炉の更新	JFEスチール西日本製鉄所福山地区	135.0 億円		_	-	
			発電設備の高効率化	JFEスチール扇島火力発電所					
		2020年度	 発電設備の高効率化	福山共同火力発電所				†	
				JFEスチール西日本製鉄所福山地区	135.0 億円			†	
		2021年度以降	コークス炉の更新 コークス炉の更新	日本製鉄名古屋製鉄所	570.0 億円			-	
		2017年度まで		Part 1 artists (part 1 community of 1)			-	-	
					12.1 億円			†	
			排出エネルギーの回収	排出温冷熱利用・回収他	18.4 億円	2.5 万kl			
		2018年度	プロセスの合理化	プロセス合理化他	41.4 億円	2.1 万kl	-	-	
			設備・機器効率の改善	高効率設備の設置他	230.0 億円	5.6 万kl			
			その他	製品変更他	9.2 億 円	0.9 万kl			
			 運転方法の改善	上, 压力、温度、流量、還流比等条件変更他				†	
_	D+11 ***		排出エネルギーの回収	排出温冷熱利用・回収他	36.3 億円	2.5 万kl			
5	日本化学工業協会	2019年度	プロセスの合理化	プロセス合理化他	7.1 億円	1.3 万kl	-	-	
			設備・機器効率の改善	機器性能改善他	310.4 億円	9.4 万kl	\dashv		
			その他	製品変更他	6.3 億円	0.7 万kl	\dashv		
			運転方法の改善	 圧力、温度、流量、還流比等条件変更他	105.4 億円	4.7 万kl		t	
			排出エネルギーの回収	排出温冷熱利用・回収他	62.9 億円	3.1 万kl	\dashv		
		2020年度以降	プロセスの合理化	プロセス合理化他	15.6 億円	2.7 万kl		-	
			設備・機器効率の改善	機器性能改善他	854.3 億円	23.0 万kl	\dashv		
			その他	製品変更他	23.0 億円	1.4 万kl	\dashv		
$\vdash \vdash$		001-5-		ボイラー給水加熱装置更新、プレス改造、空調機更新、変圧器更新、LED照明導			1		
		2017年度まで	省工不対策	入、生産フロー見直し他	50.4 億円	1.4 PJ	-	-	
			<u> </u>	へ、工産ノロー光道ン階 へッドボックス更新、ウェットパート脱水改善、変圧器更新、高効率設備への更				t	
		2018年度	省工ネ対策	新、LED照明導入、ボイラー最適燃焼制御装置導入、他	181.9 億円	2.2 PJ	-	-	
1 1			l .	がい LEV常労等人、ハーフ 取過点が即呼衣息等人、他					

							削減効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020 年度削減目標比	備考
				ガスコージェネ採用、タービン高効率翼導入、抄紙機駆動装置更新、石炭ボイ	89.8 億円	1.6 PJ			
6	日本製紙連合会	2019年度		ラー排熱回収、ポンプインバーター化、LED照明採用		1.015		- [
ľ		l	L	苛性化キルン燃料転換、ボイラー老朽化対策	10.7 億円	0.1 PJ	L	1l	
		2020年度		抄紙機改造、変圧器・空調機更新、LED照明採用、老朽化設備更,新工程見直し	24.6 億円	1.0 PJ	_	_ [
		2020 1/2	L	バイオマスボイラー設置、嫌気性処理設備導入	90.2 億円	1.5 PJ	L	ll	
		[抄造設備更新、太陽光発電設備導入、LED照明採用、変圧器更新	44.3 億円	0.5 PJ			
		2021年度以降		廃棄物発電設備・バイオマスボイラー・LNG発電設備導入、廃棄物ボイラー出	244.3 億円	3.5 PJ	-	-	
				カアップ、苛性化キルンのLNGへの燃料転換					
		2017年度まで	省工ネ設備の普及促進	省工ネ設備の新設/更新/改造等(設備の補修、保安も含む)	26,792.0 百万円			-	
			エネルギー代替廃棄物使用拡大	使用拡大に向けた、既設設備の更新や、能力増強に関する設備投資等	13,564.0 百万円			l	
		2018年度	省工ネ設備の普及促進	省工ネ設備の新設/更新/改造等(設備の補修、保安も含む)	2,975.0 百万円	0.6 万kl		_	
			エネルギー代替廃棄物使用拡大	使用拡大に向けた、既設設備の更新や、能力増強に関する設備投資等	3,379.0 百万円	1.0 万kl	L	1l	
			省工ネ設備の導入		11,256.0 百万円	0.4 万kl			
		2019年度	エネルギー代替廃棄物の使用拡大に向けた		3,018.0 百万円	1.4 万kl	-	-	
		2013 1/2	設備投資		· 1	1.17310			
1 7	セメント協会	l	その他		188.0 百万円	0.4 万kl	L	ll	
′			省工ネ設備の導入						
		2020年度	エネルギー代替廃棄物の使用拡大に向けた		4,641.0 百万円	0.5 万kl	-	-	
		2020-10	設備投資		1,011.0 [[73]]	0.5 /JKI			
1			その他				-	-	
			省工ネ設備の導入		百万円	万kl		T	
		 2021年度以降	エネルギー代替廃棄物の使用拡大に向けた		百万円	万kl	-	-	
		2021年皮以降	設備投資			/JKI			
1			その他		百万円	万kl	-	-	
		2017年度まで					-	-	
			高効率機器の導入		14,313.1 百万円	64,986 t-CO2		T	
			管理強化		2,517.8 百万円	47,629 t-CO ₂			
		2018年度	生産のプロセス又は品質改善		1,645.8 百万円	23,189 t-CO ₂	-	-	
			廃熱利用		246.0 百万円	5,689 t-CO2			
	 電機・電子温暖化対 策 連絡会		制御方法改善		241.3 百万円	4,979 t-CO ₂			
ľ	电成。电子温吸化对象连相云				17,919.0 百万円	72,336 t-CO2		†	
		2019年度	管理強化		446.0 百万円	25,863 t-CO ₂	-	-	
			生産のプロセス又は品質改善		2,272.0 百万円	22,939 t-CO ₂			
			高効率機器の導入		11,850.0 百万円	33,420 t-CO ₂		†	
		2020年度	管理強化		208.0 百万円	18,600 t-CO ₂	-	-	
			生産のプロセス又は品質改善		1,295.0 百万円	16,385 t-CO ₂			
			エネルギー供給側の対策	蒸気配管放熱ロス対策 等	629.0 百万円	4.6 T kl			
		2017年度まで	エネルギー使用側の対策	蒸気レス、エアレス化 等	3,792.0 百万円	17.9 ⊺ kl			
		2017年 支まじ	運用管理の改善	運用改善 等	357.0 百万円	7.6 T kl		-	
			その他	ライン統廃合 等	238.0 百万円	13.2 ⊺ kl			
		l	 エネルギー供給側の対策	ガスエンジン発電 等	2,989.0 百万円	6.9 ∓k l		†	
			エネルギー使用側の対策	蒸気レス、エアレス化 等	4,152.0 百万円	21.6 ⊺ kl			
		2018年度	運用管理の改善	運用改善 等	332.0 百万円	12.5 ⊺ kl	-	-	
				設備運転条件適合・最適化等	50.0 百万円	7.3 T kl			
	口士白卦本如口工类人			オフィス対策等	221.0 百万円	3.9 T kl			
9	日本自動車部品工業会		 コジェネ、太陽光導入、高効率化		4,052.0 百万円	20,099 t-CO2		†	
		2019年度	空調設備の高効率化		776.0 百万円	1,679 t-CO2	-	-	
		l	照明のLED化		521.0 百万円	2,002 t-CO2			
			コジェネ、太陽光導入、高効率化		1,525.0 百万円	10,059 t-CO2		†	
		2020年度	空調設備の高効率化		632.0 百万円	1,623 t-CO2	-	-	
			照明のLED化		570.0 百万円	1,890 t-CO2			
I	I	I	W. 11-25 CED ID		370.0 [17]	1,050 1 002		ı l	

							削減効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020 年度削減目標比	備考
					百万円	t-CO2			
		2021年度以降			百万円	t-CO2	-	-	
					百万円	t-CO2			
		2017年度まで					-		
			コジェネ、太陽光導入、高効率化		4,057.0 百万円	20,100 t-CO ₂		[
			空調設備の高効率化		879.0 百万円	2,730 t-CO₂			
		2018年度	照明のLED化		504.0 百万円	2,595 t-CO₂	-	- [
			コンプレッサの高効率化		65.2 百万円	1,236 t-CO ₂			
10	日本自動車工業会・日本自動		17改善		24.0 百万円	490 t-CO2	L	l	
	車車体工業会		設備改善		12,531.0 百万円	61,000 t-CO ₂			
		2019年度	運用改善		2,897.0 百万円	39,000 t-CO ₂		-	
			その他		727.0 百万円	17,000 t-CO ₂	L	l	
			設備改善		7,247.0 百万円	29,000 t-CO ₂			
		2020年度以降			2,903.0 百万円	23,000 t-CO ₂		- [
			その他		78.0 百万円	9,000 t-CO2			
		<u> </u>		炉の酸素富化、コークス粒度変更による燃料炭使用量削減、電動機インバーター					
			銅製錬 省工ネ対策	化、廃熱利用,高効率機器への更新(ポンプ、コンプレッサー、変圧器)、LED	5,653.0 百万円	137.0 1 t-CO₂			
				照明化、蒸気口ス削減、操作条件の改善など					
				蒸気口ス削減、コンプレッサ大型集約化、廃熱回収、高効率機器への更新(ボイ					
			亜鉛製錬 省エネ対策	ラ、ブロア、ポンプ、コンプレッサー、変圧器)、LED照明化、電気集塵機・電	4,268.0 百万円	20.0 T t-CO₂			
		2017年度まで		気炉・整流器の更新、蒸気口ス削減、電解液管理の強化など				_ [
		2017-720-0	鉛製錬 省エネ対策	蒸気口ス削減、熱交換器の更新など	52.0 百万円	0.5 T t-CO₂			
				電気炉高電圧低電流操業、トップランナー変圧器導入、バーナー改良、バイオマ					
			ニッケル、フェロニッケル製錬 省エネ対	ス混焼、キルン改造、反応槽操作条件の改善、高効率機器への更新(ポンプ、変	817.0 百万円	87.0 T t-CO₂			
			策	圧器)、LED照明化、蒸気ロス削減、ボイラ廃熱回収、再生油・廃プラスチック	017.0	07.0 11 002			
				の燃料利用など					
			その他 省エネ対策	熱交換器設置、保温など	12.0 百万円	7.0 1 t-CO₂	L	l[
			銅製錬 省工ネ対策	高効率機器への更新(ポンプ、圧縮機、空調設備、変圧器)、モーターのイン	401.0 百万円	6.6 T t-CO₂		[
			到94次9年 日上午7月末	バーター化、LED照明化、保温・蒸気漏れ対策強化、電解液の管理強化など	401.0 Д/Л/)	0.0 1 0.02			
		2018年度	 亜鉛製錬 省工ネ対策	硫酸工程の更新、リサイクル燃料の利用、高効率機器への更新(ポンプ、変圧	45.0 百万円	2.7 T t-CO₂	_	_	
		2010-72	五型表述 日工1707水	器)、モーターのインバーター化、LED照明化など	45.0 Ц/Л	2.7 1 CO2			
			鉛製錬 省エネ対策	高効率機器への更新(変圧器)、LED照明化など	19.0 百万円	3.6 ↑ t-CO₂			
			ニッケル、フェロニッケル製錬 省エネ対	高効率機器への更新(ポンプ、変圧器)、LED照明化、蒸気ロス削減、など	36.5 百万円	7.0 1 t-CO₂	L	<u> </u>	
				高効率機器への更新(ボイラ、冷却塔、ポンプ、圧縮機集約、空調設備、変圧					
11	日本鉱業協会		銅製錬における省工ネ対策	器)、モータのインバータ化、LED照明化、送風機適正化、電解液の管理・抵抗	1,915.0 百万円	8.7 T t-CO₂			
				値改善強化など					
		2019年度	 亜鉛製錬における省工ネ対策	高効率機器への更新(ポンプ、変圧器)、リサイクル燃料の利用、モータのイン	176.0 百万円	12.0 T t-CO₂	_	_	
		2017 + IX	TENEXINGUIN O HITCHYIM	バータ化(回生エネルギー回収)、LED照明化など					
			鉛製錬における省エネ対 策	高効率機器への更新(変圧器)、送風機インバータ化、LED照明化など	20.0 百万円	1.1 T t-CO₂			
			ニッケル、フェロニッケル製錬における省	高効率機器への更新(ポンプ、変圧器、高効率モータ)、蒸気ロス削減、LED照	34.0 百万円	3.6 T t-CO₂			
			エネ対策	明化など	34.0 [[7]	3.0 1 (-002	L	<u> </u>	
				高効率機器への更新(熱交換器、ボイラ、冷却塔、ポンプ、圧縮機、冷凍機、変	-		<u>-</u>	-	
			銅製錬における省工ネ対策	圧器)、モータのインバータ化、LED照明化、送風機適正化、など(査定中の案	400.0 百万円	10.9 T t-CO₂			
				件を含まず)など					
		2020年度	亜鉛製錬における省工ネ対策	高効率機器への更新(ポンプ、変圧器)、モータのインバータ化(回生エネル	187.0 百万円	12.5 T t-CO₂		_	
		2020十1又	正地な味(このが、の目エインが)を	ギー回収)、LED照明化、リサイクル燃料の利用など	107.0 日/1日	12.5 71-002			
			鉛製錬における省エネ対 策	高効率機器への更新(変圧器、ポンプ、送風機)、廃熱回収、LED照明化など	301.0 百万円	1.2 T t-CO₂			
			ニッケル、フェロニッケル製錬における省	高効率機器への更新(モータ、ポンプ、変圧器)、蒸気ロス削減対策、LED照明	112.0 百万円	4.8 T t-CO₂			
1			エネ対策	化、など	112.0日万円	4.0 T-002			

						i	削減効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020 年度削減目標比	備考
			亜鉛製錬における省エネ対策	操業監視用計算機の更新、高効率機器への更新(動力トランス)、送風機のイン バータ化、LED照明化など	121.0 百万円	2.0 T t-CO₂			
		2021年度以降		高効率機器への更新(ボイラ、ポンプ、変圧器)、LED昭明化など	356.0 百万円	0.4 T t-CO₂			
			ニッケル、フェロニッケル製錬における省 エネ対策	高効率機器への更新(変圧器)、LED照明化、など	15.0 百万円	0.1 ∓t-CO₂			
\neg			 省エネ・高効率設備の導入		1,518,363.0 千円	16,113 t-CO ₂			
			排熱の回収		90,710.0 千円	3,174 t-CO ₂			
		2017年度まで	燃料転換		308,117.0 千円	56,886 t-CO ₂	-	-	
			運用の改善		742,926.0 千円	12,142 t-CO ₂			
			その他		300.0 千円	105 t-CO ₂			
			トニュニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニ		455,700.0 千円	2,382 t-CO ₂		†	
		1	排熱の回収		39,000.0 千円	724 t-CO ₂		1 1	
		1	燃料転換		131,000.0 千円	11,487 t-CO ₂		-	
		1	運用の改善		241,750.0 千円	5,858 t-CO ₂		1 1	
		1	その他		0.0 千円	0 t-CO ₂	\dashv	1 1	
		1	1 1 1 1 1 1 1 1 1 1		439,000.0 千円	2,737 t-CO ₂		†	
		1	排熱の回収		75,000.0 千円	2,735 t-CO ₂	_	1 1	
12	石灰 製 造工 業 会		燃料転換		23,000.0 千円	9,469 t-CO ₂		_	
	石八	1	運用の改善		69,000.0 千円	1,192 t-CO ₂	_	1 1	
		1	その他		0.0 千円	0 t-CO ₂		1 1	
			省エネ・高効率設備の 導 入		240,900.0 千円	2,743 t-CO ₂		t	
		2020年度	排熱の回収		0.0 千円	0 t-CO ₂	_	1 1	
			燃料転換		2,800.0 千円	4,341 t-CO ₂	┥ -	_	
			運用の改善		48,400.0 千円	285 t-CO ₂	\dashv	1 1	
			その他		0.0 千円	0 t-CO ₂	\dashv	1 1	
			省エネ・高効率設備の導入		1,369,400.0 千円	3,581 t-CO ₂		 	
		1	排熱の回収		50,000.0 千円	320 t-CO ₂	_	1 1	
		2021年度以降			6,000.0 千円	582 t-CO ₂	_	_	
		1			56,000.0 千円	1,740 t-CO ₂	_	1 1	
			運用の改善		30,000.0 千円	71 t-CO ₂	_	1 1	
-+			その他		30,000.0 🗂	71 (-002		 	
		2017年度まで	<u> </u>	コッニュール チェエロ (ギノー・佐) にもはっ毛込む じの焼物 もおった (ガナギ	├ -			 	
			コジェネ・生産での燃料転換	コジェネ、生産工程(ボイラー等)における重油などの燃料をガス化(都市ガ	237,723.0 千円	32,338 t-CO ₂			
				ス、LNG等に転換)、動力(蒸気)を電化、再生可能エネルギー(太陽光)利			\dashv		
			京効変機 聖の道 1	空調・照明(Hf、LED化等)・生産設備(押出機、成形機等)・ポンプ・ファ	266 026 0 7 111	12 100 t CO		1 1	
		2018年度	高効率機器の導入	ン・ブロアー・コンプレッサー・モーター・トランス・受電設備・冷凍機・集塵	266,826.0 千円	12,108 t-CO ₂	_	1 1	
		2018年度		機・ボイラー等に、高効率機器・システムを導入、インバーター化、等。				-	
				設備・機械の更新・改善・効率利用(運転方法改善、時間短縮(立上げ)、温度				1 1	
			生産活動における省工ネ	適正化、運用改善、配管保守、口ス削減、整備・点検・修理、仕様改善、保温・	318,193.0 千円	15,292 t-CO ₂		1 1	
				断熱強化、放熱・遮熱対策、廃熱・ドレン回収、制御運転、エア・蒸気等の漏れ					
			ļ	対策、省工之化、停止・休止、撤去等)				ļļ	
				コジェネ、生産工程(ボイラー等)における重油などの燃料をガス化(都市ガス	200 200 2	44 004 1 00			
			コジェネ・生産での燃料転換	に転換)、動力(蒸気)を電化、回収エネ利用、再生可能エネルギー(太陽光)	380,900.0 千円	41,301 t-CO ₂			
				利用、RE100工場等。					
				空調・照明(Hf、LED化等)・生産設備(押出機、成形機等)・ポンプ・ファ	,				
13	日本ゴム工業会	2019年度	高効率機器の導入	ン・ブロアー・コンプレッサー・モーター・トランス・受電設備・蒸気機器・ボ	1,085,355.0 千円	11,166 t-CO ₂	-	_	
				イラー等に、高効率機器・システムを導入、インバーター化、等。				1 [

							削減効果		
	業種	実施年度	対策名	対 策 内容	投資額			当該業種2020 年度削減目標比	備考
				設備・機械の更新・改善・効率利用(運転方法改善、時間短縮(立上げ、空			が四季ル		
			 生産活動における省エネ	調)、運用改善、配管保守、口ス削減、整備・点検・修理、仕様改善、放熱・遮	442,440.0 千円	8,025 t-CO ₂			
			工作用到1000000日工作	熱対策、圧力制御運転、エア・蒸気等の漏れ対策、集中管理・台数削減、見える	112,110.0 [1]	0,025 (002			
				化、省工ネ化、低速運転、消灯管理、停止・休止、等) コジェネ・ボイラー等における重油燃料をガス化、生産工程等における化石燃料					
			コジェネ・生産での燃料転換	使用の削減・低炭素化(再生可能エネルギー利用、ヒートポンプ対策)、空調の	40,300.0 千円	114 t-CO ₂			
				電化、等。					
				空調・照明(Hf、LED化等)・生産設備(油圧装置、押出温調機等)・ポン					
		2020年度以降	高効率機器の導入	プ・ファン・コンプレッサー・冷凍機・冷温水発生機・モーター・トランス・ボ	698,848.0 千円	8,500 t-CO ₂	_	_	
		2020-12014		イラー等に高効率機器を導入、インバーター化、システム化、等する。					
				設備・機械の効率利用(運転方法改善、時間短縮(立上げ)、整備・点検点検・					
			 生産活動における省エネ	修理、使用改善、仕様改善、制御自動化・ロス削減、保温・断熱強化、放熱・放	770,000.0 千円	8,146 t-CO ₂			
				散工ネ対策、遮熱対策、消灯管理、設定圧力低減、容量適正化・台数制限、工	770,000.0	3/110 (331			
\sqcup		ļ		ア・蒸気等の漏れ対策、廃熱回収、等)					
		2017年度まで						↓	
			照明関係		158.0 百万円	1,749 t-CO ₂			
		0040/5	空調関係		464.0 百万円	3,651 t-CO ₂			
		2018年度	動力関係		473.0 百万円	17,797 t-CO ₂		-	
			受変電関係		401.0 百万円	397 t-CO ₂			
			その他	<u> </u>	423.0 百万円	3,337 t-CO₂		 	
			照明関係		312.0 百万円	2,287 t-CO ₂	_		
			空調関係		597.0 百万円	4,397 t-CO ₂			
	2019年度 受変 再工 日本印刷産業連合会	動力関係		1,128.0 百万円 272.0 百万円	11,021 t-CO ₂		-		
		受変電関係 アスター・アスト おり		306.0 百万円	50 t-CO ₂				
		再エネ、エネルギー改修		527.0 百万円	1,347 t-CO ₂				
14		での他 照明関係		267.0 百万円	2,013 t-CO ₂		 		
			空調関係		597.0 百万円	2,013 t CO2 2,226 t-CO2			
			動力関係		1,098.0 百万円	14,951 t-CO ₂			
		2020年度	受変電関係		50.0 百万円	247 t-CO ₂	-	-	
			文文電景		0.0 百万円	887 t-CO ₂			
			その他		279.0 百万円	942 t-CO ₂			
				 	164.0 百万円	1,537 t-CO ₂		†	
			空調関係		588.0 百万円	2,029 t-CO ₂			
		2024 在 5 125	動力関係		850.0 百万円	12,645 t-CO ₂			
		2021年度以降	受変電関係		73.0 百万円	44 t-CO ₂	_	-	
			再エネ、エネルギー改修		2,020.0 百万円	545 t-CO ₂			
			その他		119.0 百万円	337 t-CO ₂			
			溶解炉・均熱炉回収等	溶解炉・均熱炉回収等	173.0 百万円	1,038 t-CO ₂			
			高効率・省工ネ性の高い機器への更新等	高効率・省工ネ性の高い機器への更新等	580.0 百万円	2,103 t-CO ₂			
		2017年度まで	省工ネ照明導入	省工ネ照明導入	107.0 百万円	1,057 t-CO ₂	-	-	
			機器のインバーター化、高効率化等	機器のインバーター化、高効率化等	102.0 百万円	129 t-CO ₂			
			操業管理等の見直し・最適化による省工ネ	操業管理等の見直し・最適化による省エネ	16.0 百万円	2,127 t-CO₂		1i	
			溶解炉・均熱炉回収等	溶解炉・均熱炉回収等	356.0 百万円	633 t-CO ₂		[
			高効率・省工ネ性の高い機器への更新等	高効率・省工ネ性の高い機器への更新等	332.0 百万円	2,640 t-CO2			
		2018年度	省工之照明導入	省工之照明導入	107.0 百万円	790 t-CO ₂		-	
			機器のインバーター化、高効率化等	機器のインバーター化、高効率化等	134.0 百万円	443 t-CO ₂			
			操業管理等の見直し・最適化による省工ネ	操業管理等の見直し・最適化による省工ネ	4.0 百万円	2,433 t-CO ₂	L	اـــــا	.

						削	減効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020	備考
							排出量比	年度削減目標比	
			溶解炉・均熱炉などの改修及び熱回収高効		77.0 百万円	226 t-CO ₂			
			率化等						
			高効率・省工ネ性の高い機器への更新等		132.0 百万円	242 t-CO ₂			
15	 日本アルミニウム協会		省工ネ照明導入		121.0 百万円	498 t-CO ₂			
		2019年度	機器のインバーター化、高効率化等		120.0 百万円	180 t-CO ₂		-	
			操業管理等の見直し・最適化による省エネ		0.3 百万円	1,106 t-CO ₂			
			既存設備の改善、配管の集約化等		10.0 百万円	130 t-CO ₂			
			圧縮空気使用量削減対策の強化		0.0 百万円	119 t-CO ₂			
			その他		42.0 百万円	458 t-CO ₂	_L	l	
			溶解炉・均熱炉などの改修及び熱回収高効		1,316.0 百万円	18,525 t-CO₂			
			率化等		1,510.0 Д/Л/Л	10,525 € 602			
			高効率・省工ネ性の高い機器への更新等		229.0 百万円	217 t-CO ₂			
			省工之照明導入		109.0 百万円	398 t-CO ₂			
		2020年度以降	機器のインバーター化、高効率化等		268.0 百万円	1,509 t-CO ₂		-	
			操業管理等の見直し・最適化による省エネ		21.0 百万円	4,732 t-CO ₂			
			既存設備の改善、配管の集約化等		0.0 百万円	3,595 t-CO₂			
			圧縮空気使用量削減対策の強化		4.0 百万円	1,722 t-CO ₂			
			その他		175.0 百万円	1,582 t-CO ₂			
			酸素の部分的使用		1,028.0 百万円	29,971 kl			
		 2017年度まで	定期修繕時の窯の保温対策等		553.5 百万円	13,398 kl			
		2017年及まで	設備のインバーター化		147.5 百万円	1,434 kl		_	
			設備の新設、更新、運転条件改善等、その		997.7 百万円	21,507 kl			
			設備の新設、変更、更新等		11.8 百万円	230 kl	-	†	
		2018年度	製造条件変更等による燃料、電力削減		百万円	8,380 kl			
		2018年及	設備のインバーター化		20.8 百万円	656 kl		_	
1,0	七世フカム		照明のLED化		33.9 百万円	942 kl			
16	板硝子協会				12.0 百万円	181.0 kl		† <u>-</u>	
		2040/7/2	製造条件変更等による燃料、電力削減		1.0 百万円	1,766.0 kl			
		2019年度	設備のインバーター化		7.0 百万円	42.0 kl			
			照明のLED化		24.0 百万円	188.0 kl			
			設備の新設、変更、更新等		11.0 百万円	21.0 kl	-	†	
		0000000000000000	製造条件変更等による燃料、電力削減		- 百万円	3,460.0 kl	1		
		2020年度以降	設備のインバーター化		10.0 百万円	70.0 kl	1		
			照明のLED化	1	57.0 百万円	231.0 kl	┪ -	-	
\square			燃料転換と分散型ボイラーの導入(更新を	重油からガスへ燃料転換に伴い、ボイラーも大型から小型複数へ更新			1		
			含む)		3,071.5 百万円	13,892 原油換算KL	1		
			台	 乾燥機や水洗機を省力型・節水型へ更新			1		
			機以外)		1,904.5 百万円	7,072 原油換算KL	1		
		2017年度まで	INVESTAL I	 染色機設備の更新時に、水量の少ない染色機へ更新	2,526.0 百万円	3,166 原油換算KL		-	
				加熱設備の保温、高温排水からの排熱回収等の各種省エネ対策	677.5 百万円	6,273 原油換算KL	1		
			電気機器のクバーター化	ブロアーなどをインバーター方式へ更新	16.5 百万円	45 原油換算KL	1		
			照明のLED化	蛍光灯等、既存の照明をLEDへ変更	67.0 百万円	326 原油換算KL	1		
			省工之型加工設備の導入(低浴比液流染色	乾燥機や水洗機を省力型・節水型へ更新				†	
			機以外)	TOWNS 1 AVOING CHATE NAVA E NAVA	348.9 百万円	1,520 原油換算KL	1		
			保温・排熱回収・制御方法の変更	」 加熱設備の保温、高温排水からの排熱回収等の各種省エネ対策	50.7 百万円	254 原油換 算 KL	1		
		2018年度	高湿度センサー/PID制御の導入	制御機器の導入で過乾燥防止や速度向上	18.0 百万円	338 原油換算KL		-	
			電気機器のクバーター化	プロアーなどをインバーター方式へ更新	11.0 百万円	21 原油換算KL	\dashv		
17	 日本染色協会		照明のLED化	出光灯等、既存の照明をLEDへ変更	10.3 百万円	15 原油換算KL	\dashv		
1		·	N. 100 C C D IO	TOTAL OF MILL AND	1	10 ///mi//94/10		1	L

						削	咸効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020 年度削減目標比	備考
Т			高効率ヒートセッターの導入		36.0 百万円	790 原油換算KL			
			低浴比液流染色機の導入		33.0 百万円	20 原油換算KL			
		2010年度	照明のLED化		17.0 百万円	104 原油換算KL	1		
		2019年度	燃料転換と分散型ボイラーの導入(更新を		4.0 百万円	28 原油換算KL	1 -	-	
					2.0 百万円		-		
			保温・排熱回収・制御方法の変更		2.0 日万円			 	
			省エネ型加工設備の導入(低浴比液流染色 機以外)		391.0 百万円	935 原油換算KL			
		2020年度	保温・排熱回収・制御方法の変更		199.0 百万円	4,809 原油換算KL	_	_	
		2020-72	燃料転換と分散型ボイラーの導入(更新を 含む)		90.0 百万円	500 原油換算KL			
			照明のLED化		6.0 百万円		1		
		2021年度以降	, , , , , , , , , , , , , , , , , , ,	 		23/14/2777	<u>-</u>	†	
$\overline{}$			熱の効率的利用	断熱パ・礼更新	1,779.1 百万円	17,590 t-CO ₂	1	+ +	
			高効率設備導入	冷凍機導入	11,716.9 百万円	,	1		
		2017年度まで	電力設備の効率的運用	#° >フ°、ファ>、コ>フ° レッサーのインバータ化	6,018.9 百万円	•	-	-	
			その他	「	6,906.1 百万円	·	1	-	
			熱の効率的利用	炉の断熱改善対策、排熱回収利用	155.5 百万円	693 t-CO ₂		 	
			高効率設備導入	モーターインバーター化(押出機、伸線機)	6,216.0 百万円	32,252 t-CO ₂	-		
		2018年度	電力設備の効率的 運 用	トランスの集約・更新、変圧器更新	775.8 百万円	21,413 t-CO ₂	-	-	
			电力設備の効率的 建 用 その他		1,652.0 百万円	<u>'</u>	-		
				生産性向上・Iネルギーの見える化、照明・誘導灯のLED化	43.0 百万円	897 t-CO ₂		 	
			熱の効率的利用	炉の断熱改善対策など	847.0 百万円		-		
18	日本電線工業会 2019年度 電	高効率設備導入	押出機・伸線機のモーターインバータ化など	629.0 百万円	32,556 t-CO ₂	-	-		
		電力設備の効率的運用	トランスの集約・更新など		29,661 t-CO ₂	-			
			その他	照明・誘導灯・外灯のLED化など	1,443.0 百万円	51,101 t-CO ₂		 	
			熱の効率的利用	炉の断熱改善対策など	26.0 百万円	838 t-CO ₂	-		
		2020年度	高効率設備導入	押出機・伸線機のモーターインバータ化など	1,116.0 百万円	23,973 t-CO ₂	-	-	
			電力設備の効率的運用	トランスの集約・更新など	396.0 百万円	,	1		
			その他	照明・誘導灯・外灯のLED化など	746.0 百万円	l— <i></i>	L		
				炉の断熱改善対策など	380.0 百万円	2,622 t-CO ₂	-		
		2021年度以降	高効率設備導入	押出機・伸線機のモーターインバータ化など	1,417.0 百万円	32,793 t-CO ₂	-	-	
			電力設備の効率的運用	トランスの集約・更新など	469.0 百万円	28,133 t-CO ₂			
			その他	照明・誘導灯・外灯のLED化など	1,175.0 百万円	50,730 t-CO ₂		ļI	
			生産設備の更新(ガラス炉修理)、生産設備集		1,000.0 百万円	1.8 万t-CO ₂	1		
		2017年度まで	生産設備の更新(ガラス炉修理)、生産設備集		540.0 百万円	0.1 万t-CO₂	-	-	
			生産設備の更新(ガラス炉部分修理)	ガラス溶解炉の修理 	242.0 百万円	0.3 万t-CO ₂	L	↓l	
		2018年度	生産設備の更新(ガラス炉修理)、生産設備集		1,400.0 百万円	0.3 万t-CO₂	-	_	
			生産設備の更新(ガラス炉全面修理)	ガラス溶解炉の修理 	1,478.0 百万円	0.4 万t-CO2	L	↓l	
19	日本ガラスびん協会	2019年度	ガラス溶解炉の更新(NY社)		1,400.0 百万円	0.3 万t-CO₂	-	_	
			ガラス溶解炉の更新(TG社)		178.0 百万円	0.3 万t-CO₂	L	1l	
			ガラス溶解炉の更新(I社)		900.0 百万円	0.2 万t-CO₂			
		2020年度	ガラス溶解炉の更新 (NY社)		1,350.0 百万円	0.3 万t-CO₂	_	-	
			ガラス溶解炉の更新 (TG社)		155.0 百万円	0.3 万t-CO₂	L	<u> </u>	.
		2021年度以降	ガラス溶解炉の更新(NY社)		1,400.0 百万円	0.3 万t-CO₂			
			ガラス溶解炉の更新(NT社)		700.0 百万円	0.2 万t-CO₂		<u> </u>	
			空調関連	高効率型(インバータ化など)への更新、燃料転換、集中制御など	27.8 億円	23,000 t-CO ₂			
		2017年度まで	コンプレッサ関連	台数制御、インバータ化、エア漏れ改善など	13.3 億円	18,700 t-CO ₂	-	- [
			生產設備関連	インバータ化、高効率設備への置き換えなど	50.1 億円	10,400 t-CO2	1		

	A111-2						削減効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020	備考
_			熱処理炉関連	断熱強化、リジェネバーナ化、ガス炉燃焼時のガスに対する空気量の最適化など	2.1 億円	3,100 t-CO ₂	排出量比	年度削減目標比	
			コンプレッサ関連	回熱強16、サンエイバーナ16、ガス炉燃焼時のガスに対する呈気量の最適16なと 台数制御、インバータ化、エア漏れ改善など	0.4 億円	1,000 t-CO ₂			
		2018年度			1.5 億円	900 t-CO ₂		-	
			照明関連 空調関連	蛍光灯の省エネ化(インバータ化等)、LEDライトの採用、人感センサー化な 富効変型(インバータルなど)。の事業、嫌料を挽り集中制御など	2.7 億円	800 t-CO ₂	_		
	日本ベアリング工業会			高効率型(インバータ化など)への更新、燃料転換、集中制御など	2:/ 18口	3,100 t-CO ₂			·
	ロ4ペパリング上来云	2019年度	熱処理炉関連	断熱強化、リジェネバーナ化、ガス炉燃焼時のガスに対する空気量の最適化など	2.3 億円	<u> </u>		_	
		2019年度	コンプレッサ関連 照明関連	台数制御、圧縮空気の需要変動に応じて最適運転するインバータ化など	2.3 億円	1,000 t-CO ₂ 800 t-CO ₂			
			L	ᄣᅒᅭᄊ, エトジー→ ピ ㅗㅆ 광고伝媒ははの광고(- \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\					}
l			熱処理炉関連	断熱強化、リジェネバーナ化、ガス炉燃焼時のガスに対する空気量の最適化など	4.5 億円	3,100 t-CO ₂	_		
		2020年度	空調関連	インバータ制御により冷暖房負荷に応じた運転を行う高効率型への更新など	3.3 億円	800 t-CO ₂		-	
			生産設備関連	クーラントポンプ、集塵機、油圧モータなどのインバータ化や、高効率生産設備	5.4 億円	400 t-CO ₂			
		2021年度以降	ļ	への 置 き換えなど 					ļ
_		2021年及以降		=	2.F. 停田	2 222 1 22	-	-	
			照明関係	高効率照明への更新	3.5 億円	3,230 t-CO ₂			
		2017年度まで	空調関係	空調機器の更新	6.9 億円	3,505 t-CO ₂		-	
			動力関係	コンプレッサ等の更新	1.8 億円	1,526 t-CO ₂	_		
			受変電関係	変圧器の高効率化、電力監視システムの導入等	2.0 億円	618 t-CO ₂		 	ļ
			その他	工作機械等の更新	14.1 億円	2,700 t-CO ₂	_		
		2010/5	照明関係	高効率照明への更新	3.8 億円	6,069 t-CO ₂	_		
		2018年度	空調関係	空調機器の更新	8.9 億円	5,343 t-CO ₂		-	
			動力関係	コンプレッサ等の更新	1.7 億円	641 t-CO ₂			
	日本産業機械工業会		受変電関係 	変圧器の高効率化、電力監視システムの導入等	1.6 億円	424 t-CO ₂		 	ļ
			照明関係	LED等の高効率照明の導入等	3.9 億円	3,870 t-CO ₂			
		2019年度	空調関係	高効率空調機への更新等	3.7 億円	1,090 t-CO ₂		-	
			動力関係	インバータ化等	0.5 億円	555 t-CO₂			
		₹	受変電関係	変圧器の高効率化 等	2.7 億円	685 t-CO ₂		 	ļ
		2020年度	その他		6.2 億円	1,384 t-CO ₂			
			照明関係		1.6 億円	496 t-CO ₂		-	
			空調関係		2.6 億円	1,014 t-CO ₂	_		
			動力関係		0.2 億円	209 t-CO ₂		1	ļ
		2021年度以降			億円 億円	t-CO ₂	-	-	
			工場電灯LED化	工場電灯LED化					
			コンプレッサ入れ替え	2台(11k,15k)を1台(22k)へ, インバーター有りに変更	1.6 百万	10.0 Mwh			
			変電所トランス更新		1.2 百万	8.0 Mwh			
			明石事業所 部品工場の天井照明LED化	LED照明に変更	30.0 百万円	711.0 MWh/年			
			明石事業所 事務所棟の空調機更新	経年空調機の更新入れ替え	5.0 百万円				
			休日停電の拡大	停電日の増加	0.0 百万円	180.0 MWh/年			
			明石事業所 事務所棟窓の二重サッシ化	建屋窓の二重構造化	5.0 百万円	3,883.0 kw/年			
			コンプレッサの節電②	エア漏れ低減	4,900.0 千円	3,860.0 千円/年			
			溶接電源インバータ化	インバータ化	19,200.0 千円	2,880.0 千円/年			
			空調改善	高効率空調等		610.0 原油換算kL			
			コンプレッサ改善	分散設置、低圧化		247.0 原油換算kL			
			建屋省工ネ	断熱化		223.0 原油換算kL			
			生産設備、ライン改善	工程改善、設備集約化等		91.0 原油換算kL			
			LED照明エリア拡大	電力削減	2.0 百万円	5.0 干kWh			
			塗装ライン脱臭炉温度変更	都市ガス削減	0.0	18.0 ⊺ ㎡			
			塗装 ブース給気フィルタメッシュ 変更 によ	電力削減	0.0	64.0 T kWh			
			る給排気ファン周波数低減		0.0	04.U TKWII			
		2017年度まで	エアーバルブ電動化による非稼動時のエ	電力削減	20 75	CZ O TIANA			
		201/年度まじ	アー供給遮断		2.0 百万円	67.0 ∓kWh	-	_	
			照明の効率化	LED化	10.0 百万円	9.0 mwh			
			エアコンの効率化		2.0 百万円	1.0 mwh			
		1		置き場の変更とクレーン設置	50.0 百万円	10.0 KL		1	

						削	咸効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020	備考
							排出量比	年度削減目標比	
			高効率照明ランプに更新	志度工場(屋外照明灯避難誘導灯含む)、その他事業所で、既存よりも高効率な		27.0 kL/年			
				照明ランプに 更 新しました。(LEDも導入しているところです)					
			高効率エアコンに更新	全事業所にて、既存の古いエアコン設備を、最新の高効率エアコンに更新しまし		5.0 kL/年			
			大型クレーン製品の省工ネ化(前期より継	開発の段階から、省エネ・排ガス等を意識した製品の開発を行っております。		7.0 kL/年			
				高松工場、多度津工場にて、プレス装置(3基)の大型モーターを高効率タイプ		0.5 kL/年			
			率タイプ(トップランナー)に更新	(トップランナー)に更新					
				志度工場にて、転角装置導入し、クレーン車走行燃料を削減しました。		0.7 kL/年			
			減(前期より継続)				1		
22	日本建設機械工業会		高効率照明の導入	滋賀工場棟の水銀灯をLEDへ変更	683.0 万円	63,245.0 kWh	1		
			照明の高効率化	工場照明のLED化	172.0 M¥	2,362.0 MWh/年	1		
			エネルギーマネジメントシステム拡充	待機電力削減	46.0 M¥	143.0 MWh/年			
			未利用I礼‡*活用	試験動力の回収、熱処理排熱回収	64.0 M¥	460.0 MWh/年			
			コンプレッサ省エネ	Iア攪拌機の電動化、ルーツプロア適用	22.0 M¥	61.0 MWh/年			
]ジェネ導入] ジェネ排熱塗装利用	457.0 M¥	2,400.0 GJ/年	L		
			LPGをLNG化	LPGをLNG化	=. -				
			明石工場内天井照明LED化	LED照明に変更	50.0 百万円		1		
			Iレベータ更新		30.0 百万円	2,520 kwh/年	1		
			生産設備、ライン改善	設備集約等		952 原油換算kL			
			再工之導入	太陽光発電導入、バイオス熱利用		290 原油換 算 kL			
			電気設備改善	送電損失改善、高能率変圧器導入等		188 原油換 算 kL			
			コンプレッサ改善	エアー漏れ低減等		142 原油換算kL			
			建屋省エネ	建替え、断熱化等		65 原油換 算 kL			
			LED照明エリア拡大	電力削減	4.8 百万円	22 T kWh			
			フレーム塗装ライ下塗冷却給排気設備INV化	電力削減	3.3 百万円	40 ∓kWh			
			加工機集約			18 ∓kWh			
		2018年度	照明の効率化	LED化	10.0 百万円	9 mwh	-	-	
			エアコンの効率化	事務所エアコンの更新	2.0 百万円	1 mwh			
			高効率照明ランプに更新(前期より継続)	志度工場、高松工場、多度津工場で、既存よりも高効率な照明ランプに更新しま		27 kL/年			
				す。		27 KL/ +			
			高効率エアコンに更新(前期より継続)	全事業所にて、既存の古いエアコン設備を、最新の高効率エアコンに更新しま		5 kL/年			
			省エネ対応した配管N C切断機に更新	志度工場にて、省エネ対応した配管NC切断機に更新します。		1 kL/年			
			大型クレーン製品の省工ネ化(前期より継	開発の段階から、省エネ・排ガス等を意識した製品の開発を行っております。		7 kL/年			
			照明の高効率化	工場照明のLED化	160.0 百万円	2,197 MWh/年			
			未利用Iネルギ活用	試験動力の回収、熱処理排熱回収	40.0 百万円	192 MWh/年			
			コンプレッサ省エネ	Iア攪拌機の電動化、ルーツプロア適用	36.0 百万円	245 MWh/年			
			照明の高効率化	工場照明のLED化	9.3 百万円	127 MWh/年			
			コンプレッサ省エネ	Iア攪拌機の電動化、ルーツプロア適用	4.5 百万円	90 MWh/年	L	1	
		2019年度					L		
		2020年度					L		
		2021年度以降					-	-	
			間接部門省工之活動		2.0 億円	2,733 kℓ			
		2017年度まで	設備・機器導入・更新		38.8 億円	6,571 kℓ	-	-	
			制御・操業管理		6.0 億円	8,779 kℓ	L	_	
			間接部門省工ネ活動		0.0 億円	9 kℓ			
		2018年度	設備・機器導入・更新		13.2 億 円	2,163 kℓ	-	-	
			制御・操業管理		11.6 億 円	559 kℓ	L		.
23	日本伸銅協会		間接部門省工ネ活動		0.0 億 円	1 kℓ			
		2019年度	設備・機器導入・更新		7.1 億円	1,078 kℓ			
		L	制御・操業管理		0.1 億円	35 kℓ	L	1	
			間接部門省工ネ活動		0.0 億 円	0 kℓ		T	
		2020年度	設備・機器導入・更新		13.5 億 円	536 kℓ			
1			制御・操業管理		0.6 億 円	209 kℓ			

						削	減効果		
	業種	実施年度	対策名	対策内容	投資額		2018年度CO ₂ 排出量比	当該業種2020 年度削減目標比	備考
		2021年度以降					-	-	
\neg		2017年度まで					-	-	
			空調機更新		2,139.0 百万円	1,026 kl	-	†	
		2018年度	高効率照明導入(LED照明等)		403.0 百万円	1,205 kl	7 -	-	
			その他効率的な機器の導入		439.0 百万円	890 kl	1		
ر ا ۲	日本工作機械工 業 会		空調機更新		1,480.0 百万円	617 kl		†	
24	口平上作成忧土未云	2019年度	高効率照明導入(LED照明等)		433.0 百万円	842 kl	-	-	
			その他効率的な機器の導入		511.0 百万円	810 kl			
			空調機更新		1,492.0 百万円	970 kl		†	
		2020年度以降	高効率照明導入(LED照明等)		825.0 百万円	1,027 kl	T -	-	
			その他効率的な機器の導入		365.0 百万円	114 kl	1		
			省工ネ重機への更新	省工ネ機器への更新	1,438.8 百万円	742 t-CO ₂			
			省エネベルトへの更新	省工ネ機器への更新	150.0 百万円	54 t-CO ₂			
		2017年度まで	照明のLED化	省工ネ機器への更新	48.6 百万円	148 t-CO ₂	-	-	
			高効率変圧器	省工ネ機器への更新	101.9 百万円	61 t-CO ₂	7		
			その他		207.0 百万円	519 t-CO ₂	1		
			 省工ネ重機への更新	省工ネ機器への更新	883.4 百万円	859 t-CO2		†	
			省エネベルトへの更新	省工ネ機器への更新	236.8 百万円	149 t-CO ₂	1		
		2018年度	照明のLED化	省工ネ機器への更新	19.7 百万円	46 t-CO ₂	-	-	
			高効率変圧器	省工ネ機器への更新	28.1 百万円	25 t-CO ₂			
			高効率集塵機への更新	省工ネ機器への更新	87.0 百万円	44 t-CO ₂			
ا ء			 省工ネ重機への更新		1,327.2 百万円	657 t-CO ₂		†	
25	石灰石鉱業協会	004055	省エネベルトへの更新		38.1 百万円	134 t-CO ₂			
		2019年度	に 照明のLED化		102.1 百万円	14 t-CO ₂	-	-	
			高効率変圧器		14.5 百万円	28 t-CO ₂	1		
			 省工ネ重機への更新		153.1 百万円	401 t-CO ₂		†	·
			省エネベルトへの更新		48.0 百万円	106 t-CO ₂			
		1 2020年度	照明のLED化		56.0 百万円	45 t-CO ₂	-	-	
		1	高効率変圧器		28.8 百万円	13 t-CO ₂	1		
			ト 省工ネ重機への更新		899.0 百万円	374 t-CO ₂		† -	
			省エネベルトへの更新		20.0 百万円	28 t-CO ₂	1		
		2021年度以降	照明のLED化		106.7 百万円	22 t-CO ₂	-	-	
			高効率変圧器		11.0 百万円	6 t-CO ₂			
\neg			 設備更新・省エネ対策	設備の高効率化・LED導入等省エネ対策 17年度	362,000.0 千円	2,739 t-CO ₂			
				変圧器更新	910.0 千円	5 t-CO ₂			
			 設備更新・省エネ対策	変電所更新	47,100.0 千円	11 t-CO ₂	1		
		1701/年段末(*)	生産向上・設備更新・省工ネ対策	生産設備更新	689,596.0 千円	191 t-CO2	1		
		1	生産向上・省工ネ効果	新技術導入	177,800.0 千円	38 t-CO ₂	1		
		1	生産効率改善	工程集約・増強	310,880.0 千円	66 t-CO ₂	1		
				設備の高効率化・LED導入等省エネ対策18年度	194,000.0 千円	3,665 t-CO ₂		†	
			設備更新	コンプレッサー更新	1,746.0 千円	13 t-CO ₂	1		
			意識向上による省工ネ	見える化設備導入	300.0 千円	3 t-CO ₂	1		
		2018年度	老朽設備更新・省工ネ効果	変電所更新	184,600.0 千円	46 t-CO ₂		-	
			生産向上・設備更新・省工ネ効果	生産設備更新	585,533.0 千円	152 t-CO ₂	1		
_			生産効率改善	工程集約・増強	206,500.0 千円	69 t-CO ₂	1		
26	日本レストルーム工業会		設備の高効率化・省工ネ対策、再工ネ導入		63,780.0 千円	10,439 t-CO ₂		†	·
			工程集約・増強		409,010.0 千円	1,579 t-CO ₂	1		
			生産設備更新		1,319,430.0 千円	187 t-CO ₂	1		
		1 7019年度	建屋改修		121,600.0 千円	86 t-CO ₂		-	
		1	車両切替		10,400.0 千円	1 t-CO ₂	\dashv		
			半回り自 コンプレッサー更新		1,280.0 千円	6 t-CO ₂	\dashv		
I	l	I		ــــــــــــــــــــــــــــــــــــــ			-L		ــــــ

						削減効果			
	業種	実施年度	対策名	対策内容	投資額			当該業種2020	備考
							排出量比	年度削減目標比	
			設備の高効率化・省エネ対策、再エネ導入		45,000.0 千円	7,734 t-CO ₂			
			工程集約・増強		51,420.0 千円	15 t-CO ₂			
		2020年度以降	生産設備更新		396,900.0 千円	354 t-CO ₂		-	
			建屋改修		8,800.0 千円	158 t-CO ₂			
			高圧成型導入による乾燥エネルギーの削減		45,000.0 千円	13 t-CO ₂			
			焼成炉統合		- 千円	- t-CO ₂			
			 未利用低圧ガスの有効利用 	天然ガスや原油の処理時に発生し、未利用のまま放散されていた天然ガスを昇 圧・回収し、販売や自家消費として有効利用する。	52.3 億円				
		2017年度	放散天然ガスの焼却	新堀集油所におけるグランドフレア装置の設置及び吉井鉱場におけるVOC除去 (燃焼)装置の設置	2.2 億円		-	-	
			電力使用量の削減	生産鉱場における複数台のコンプレッサーの運転最適化により、稼働台数を削減	0.0 円				
			電力使用量と燃料ガス使用量の削減	生産した天然ガスに含まれる不純物の燃焼分解用焼却装置の運用改善	0.0円	0.7 千トン		†···	
1 7	石油鉱業連盟	2040/5	電力使用量と燃料ガス使用量の削減	生産した天然ガスに含まれる不純物除去装置の運用改善	0.0 円	0.3 干トン			
		2018年度	 電力使用量の削減	生産鉱場におけるコンプレッサーの運転最適化	0.0 円	0.2 チトン	-	-	
		1	燃料ガス使用量の削減	ヒーターの運転最適化	0.0 円	0.2 チトン			
		I	操業プラントにおいて、余剰ガスの処理を 焼却設備に改造			BAUより約7千トン		-	
		2020年度	特になし	 	·	ー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		+ <u>-</u>	
		I	付になり 施設の更新に際して高効率機器を導入						
		2021年及以降 2017年度まで	肥政の更新に除して同効率成品で等人		不明 口	7/1/1		 	
		2017年及まで						-	
	レハブ建築協会							-	
'	レハノ建築励云	2019年度 2020年度							
		2021年度以降						-	
		2017年度まで	L 08 1/ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	 		<u> </u>			
			太陽光パネルの増設		120.0 百万円				
			塗装設備熱源のヒートポンプ化		50.0 百万円				
		2018年度	塗料循環ポンプの電動化 LED照明の更新		35.0 百万円 23.0 百万円			-	
			シートシャッターの設置		9.5 百万円				
			エアコンのGHP化	 	11.0 百万円				
			太陽光発電等		28.0 百万円				
			シートシャッター化		5.0 百万円				
			工場の空調更新		560.0 百万円	270 t-CO ₂			
			廃液濃縮装置の個別ボイラー化による送気		22.0 百万円	20 t-CO ₂			
			工程制度上海水		77	05 1 00			
		2019年度	非稼働時設備停止強化		百万円			-	
			照明のLED化(蛍光灯、水銀灯からLED)		44.2 百万円				
			GHP更新		10.2 百万円				
			エアー関連更新		4.5 百万円				
			屋根遮熱塗装		25.0 百万円				
			換気扇改修		18.7 百万円				
			残業、休日出勤の削減		百万円			↓	
日 ²	本産業車両協会		太陽光発電等		35.0 百万円				
			非稼働時設備停止強化		百万円				
			塗装ブース空調用チラー老朽化更新		70.0 百万円				
			塗装ブース用照明LED更新		1.0 百万円	1 t-CO ₂			

						肖	減効果		
	業種	実施年度	対 策 名	対策内容	投資額		2018年度CO ₂	当該業種2020	備考
							排出量比	年度削減目標比	
						上場内で使			
						用する			
			 COLLD L 田小事が持続機能		非公表 百万円	フォークリ t-CO2			
			FCリフト用水素充填設備増設		升公弦日刀	フトの燃料			
		0000/5				転換効果を			
		2020年度				期待	-	-	
			照明のLED化		4.5 百万F		_		
			GHP更新		10.2 百万F	6 t-CO ₂	\dashv		
					5.0 百万F	7 t-CO ₂			
			油圧ユニットのインバータ化		5.0 百万F		\dashv		
			エアー機器の連動化		3.4 百万円		\dashv		
			ファンの高効率モータ化		1.0 百万円		\dashv		
			粉体塗装の稼働時間削減		百万円		\dashv		
			残業削減		百万円		_		
			プスポイラー化	 	300.0 百万円			 	
		2021年度以降	メインコンプレッサーの更新		百万円		-	-	
				店舗照明を蛍光灯等からLED 等の省エネ型照明への切り替え。	547,457 万円	25,026 t-CO ₂	+	+	
				自然冷媒を用いた冷蔵・冷凍設備や冷気漏れを防ぐ扉付きの冷蔵・冷凍設備の設		· ·	\dashv		
				これの	115,578 万円	3,302,554 t-CO ₂			
			100	追、小丸浦れで防くナイトガバーの設直。 BEMSやスマートメーター等の利用により、電力使用量をモニタリングし、一定			\dashv		
		2017年度まで	ター等)の導入	のレベルに維持。	22,890 万円	48,796 t-CO ₂	-	-	
				こまめな消灯・明るすぎない照明環境を実現。			\dashv		
			感センサー等)	こののな用が、切るするない無切象をで失死。					
			感ビブリー等 冷蔵・冷凍設備の設定温度の調整	 冷凍冷蔵庫を過剰に冷やしすぎないことで電力使用量を低減。			\dashv		
			一風・	店舗照明を蛍光灯等からLED 等の省エネ型照明への切り替え。	314,784 万円	3,683 t-CO ₂	·- -	 	
				自然冷媒を用いた冷蔵・冷凍設備や冷気漏れを防ぐ扉付きの冷蔵・冷凍設備の設	314,704 /3[]	3,003 (CO2	\dashv		
				日 ※ 一	104,308 万円	596,715 t-CO ₂			
				BEMSやスマートメーター等の利用により、電力使用量をモニタリングし、一定			\dashv		
		2018年度		のレベルに維持。	15,680 万円	29,889 t-CO ₂	-	-	
				こまめな消灯・明るすぎない照明環境を 実 現。			\dashv		
30	日本チェーンストア協会		感センサー等)	ころの(A/A/A)					
				 冷凍冷蔵庫を過剰に冷やしすぎないことで電力使用量を低減。	570 万円		\dashv		
		l -	省工ネ型照明 (LED等) の導入	7月水月成年で週初に7月1日のすさないことで電力は用量で高減。				 	
			省エネ型空調設備の導入						
			日土小主土・町及畑グラス 省エネ型冷蔵・冷凍設備(自然冷媒、扉付				\dashv		
		2019年度	き等)の導入				-	-	
			Cマアリンタス 効率的な制御機器(BEMS、スマートメー				\dashv		
			ター等)の導入						
			ソーサ/ い号人 省エネ型照明(LED等)の導入	 		-		 -	
			省工ネ型空調設備の導入						
			日エイ・宝工・岡及師グラス 省エネ型冷蔵・冷凍設備(自然冷媒、扉付						
		2020年度以降	き等)の導入				-	-	
			Cマインクラス 効率的な制御機器(BEMS、スマートメー				\dashv		
			ター等)の導入						
			LEDファサード看板(仕様改良)	2,938店【FM】	2,562 百万円	6,455 T kWh	1		
			店内LED照明+調光システム(改良)	1,522店【FM】	1,218 百万円				
			サイン看板のLED化	1,474店【FM】	242 百万円	· · · · · · · · · · · · · · · · · · ·	\dashv		
			総合熱利用システム(冷凍冷蔵・空調一体	· ·		· ·	\dashv		
			型システム)又は最新省エネ型冷凍冷蔵機		611 百万円	∃ 9,832 T kWh			
				新店【LAW】	50 百万円	8,500 T kWh	\dashv		
			要冷空調一体型システム導入	新店【LAW】	200 百万円	,	\dashv		
		l		新店【LAW】	1,544 百万円	, , , , , , , , , , , , , , , , , , ,	⊣ -	-	
I			5 VINI JAN 737		2,011 [273]	-1 -,552 ; 87711	I	ı l	

						ř	削減効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020 年度削減目標比	備考
			LED (ラインサイン)	新店【LAW】	214 百万円	5,688 ∓kWh			
			トイレ人感センサー	新店【LAW】	16 百万円	344 ∓kWh			
			CO2冷媒機器	新店【LAW】	16,182 百万円	32,538 T kWh			
			冷凍機入れ替え	既存店【LAW】	1,141 百万円	11,805 T kWh			
			空調機入れ替え	既存店【LAW】	1,053 百万円	9,750 T kWh			
			既存店LED照明	既存店【LAW】	2,188 百万円	26,180 T kWh			
			CO2冷媒機器	既存店【LAW】	44 百万円	88 T kWh			
			太陽光発電パネル設置	新型太陽光設備の入替装置【SEJ】		2,239 t-CO ₂			
			新型店内 L E D 照明	新型店内 L E D 照明の設置を促進【S E J】		6,200 t-CO ₂	_		
			店内LED照明の導入	[D Y]	72 百万円	714 t-CO ₂	_		
			インバーターコンプレッサーの導入(空調	[D Y]	59 百万円	133 t-CO ₂			
			インバーターコンプレッサーの導入(冷凍	[D Y]	128 百万円	288 t-CO ₂			
			看板のLED照明採用	[D Y]	77 百万円	51 t-CO ₂			
			LEDファサード看板(仕様改良)	1,282店【F M】	1,118 百万円	2,817 ∓kWh	_		
		2012/5	店内LED照明+調光システム(改良)	773店【F M】	618 百万円	3,653 ∓kWh	_		
		2018年度	サイン看板のLED化	737店【F M】	121 百万円	985 T kWh		-	
			総合熱利用システム(冷凍冷蔵・空調一体型システム)又は最新省エネ型冷凍冷蔵機	492店【F M】	522 百万円	8,398 ∓kWh			
			自然冷媒CO2冷凍機	33店【F M】	48 百万円	804 ∓kWh			
			CO2冷媒機器	新店【LAW】	8,030 百万円	16,148 ∓kWh			
			冷凍機入れ替え	既存店【LAW】	455 百万円	4,710 ∓kWh			
			空調機入れ替え	既存店【LAW】	232 百万円	2,150 T kWh			
			既存店LED照明	既存店【LAW】	3,782 百万円	45,239 ∓kWh			
			CO2冷媒機器	既存店【LAW】	55 百万円	110 ∓kWh	L		
			新型オープンケースの設置			3,368 t-CO ₂			
日本	 		新型 I Hフライヤー			2,400 t-CO ₂			
31	協会		オイルスマッシャー			932 t-CO ₂			
	W) 14]クレジット購入			10,000 t-CO ₂			
			LEDファサード看板(仕様改良)		385 百万円				
			店内 L E D照明+調光システム(改良)		720 百万円	4,253 T kWh			
			サイン 看 板の L E D化		72 百万円	354 T kWh			
			総合熱利用システム(冷凍冷蔵・空調一体		469 百万円	7,545 T kWh			
			型システム)又は最新省エネ型冷凍冷蔵機				_		
		2019年度	自然冷媒CO2冷凍機		38 百万円	152 ∓kWh	-	-	
			インバ−ク空調機		41 百万円	152 t-CO ₂			
			インパータ冷凍機		36 百万円	118 t-CO ₂			
			店内LED照明		12 百万円	24 t-CO ₂			
			看板LED照明		29 百万円	37 t-CO ₂	\dashv		
			CO2冷媒機器(新店)		4,763 百万円	10,274 T kWh	\dashv		
			冷凍機入れ替え(既存店)		302 百万円	3,120 ∓kWh	\dashv		
			空調機入れ替え(既存店)		89 百万円	788 ∓kWh	\dashv		
			LED照明(既存店)		772 百万円	9,711 T kWh	_		
			CO2冷媒機器(既存店)		112.0 百万円	242 ∓kWh			
			老朽化空調入替工事			9,953 t-CO ₂			
			LED照明交換 太陽光パネル設置			3,095 t-CO ₂ 12,814 t-CO ₂	\dashv		
					6 百万円	12,814 t-CO ₂	\dashv		
			インパ・- タ空調機 インパ・- タ冷凍機		5 百万円	24 t-CO ₂	\dashv		
			店内LED照明		3百万円	4 t-CO ₂	\dashv		
		2020年度	看板LED照明		6百万円	9 t-CO ₂	-	-	
			1年版にED思明 CO2冷媒機器(新店)			9 t CO2	\dashv		
							\dashv		
1 1			/巾状伝入れ管へ(以付店)		ı l		I	1 1	

1111					削減	或効果 		
業種	実施年度	対策名	対策内容	投資額		1	当該業種2020	備考
						排出量比	年度削減目標比	
		空調機入れ替え(既存店)						
		L E D照明(既存店)				1		
		CO2冷媒機器(既存店)				L	l	
		CO2冷媒機器(新店)						
		冷凍機入れ替え(既存店)						
	2021年度以降	空調機入れ替え(既存店)] _	_ [
	2021年及以降	CO2冷媒機器(既存店)				1		
		既存店LED照明				1		
		CO2冷媒機器				1		
	2017年度まで					-	-	
	2018年度					-	-	
		LED照明化				-	-	
		電力契約内運転(デマンド)		投資額について				
日本ショッピングセンター	協 2019年度			は未回答		-	-	
会		 人感センサー化		投資額について		 		
				は未回答		-	-	
	2020年度			18不凹音		_		
	2021年度以降							
		LED照明への 更 新		201 442 0 🎹	721 b CO		-	
	I			201,443.0 千円	721 t-CO ₂	-		
	2018年度以前			76,985.0 千円	313 t-CO ₂	-	-	
日本百貨店協会		熱源設備関連対策 			1 t-CO ₂	L		
	I .	LED照明への更新		134,250.0 千円	55 t-CO ₂	1		
	2019年度	空調関連対策		639.0 千円	1 t-CO ₂	-	-	
		熱源設備関連対 策		20,300.0 千円	- t-CO ₂			
	2017年度まで					-	-	
 日本チェーンドラッグスト	2018年度					-	-	
協会	2019年度					-	-	
协工	2020年度							
	2021年度以降					-	-	
	2017年度まで					-	-	
	2018年度					-	-	
情報サービス産業協会	2019年度					_	-	
	2020年度							
	2021年度以降					_	- 1	
	2017年度まで					_	-	
	2018年度					_	-	
 大手家電流通協会	2019年度					_	_	
/ I MANUMENTA	2020年度					-		
	2020年及					_	_	
	2021 + 反以阵	設備投資等	パソコンの最近オコの母庁	0.0 万円		-	 	
			パソコンの電源オフの徹底			-		
	2017年度まで	設備投資等	高効率照明に交換	32,220.0 万円		-	-	
		空調設備	冷房温度28度	0.0 万円		-		
		空調設備	暖房温度20度	0.0 万円		L	ļl	
		設備投資等	パソコンの電源オフの徹底	0.0 万円		1		
	2018年度	設備投資等	高効率照明に交換	11,139.0 万円			_ [
		空調設備	冷房温度28度	0.0 万円]		
日本DIY協会		空調設備	暖房温度20度	0.0 万円		L	<u> </u>	
		高効率照明に交換		25,451.0 万円				
	2019年度	パソコンの電源オフの設定		0.0 万円		1 -	-	
1								

						į	削減効果		
	業種	実施年度	対策名	対策内容	投資額			当該業種2020 年度削減目標比	備考
			高効率照明に交換		4,198.0 万円				
		2020年度	冷房温度28度		0.0 万円				
			暖房温度20度		0.0 万円			1	
		2021年度以降					-	-	
		2017年度まで					-		
			省Iネ型OA機器の導入	PC,複合機の導入	不明	141,000 kWh			
		2018年度		810Fで実施	46.5 百万円	9 kl	-	-	
		l	照明の一部LED化	B2F~18F トイレ・メール室・ゴミ処理室, 19F~21F ハロゲンランプ	60.0 百万円	48,000 kW h	L	1	
			仮想システム導入によるシステム電力削減		34.0 百万円	83 t-CO ₂			
			システムストレージ更改		92.0 百万円	12 t-CO ₂			
38	日本 貿易 会	2019年度	空調設備更新(厨房・食堂系統及び一部事		74.0 百万円	26 t-CO₂	-	-	
			務所)		74.0 [[7]]	201 002			
			照明の一部LED化		430.0 百万円	100 t-CO ₂	_L	l	
			空調設備更新		89.0 百万円	20 kl		T	
		2020年度	照明器具LED化更新Ⅱ期		38.0 百万円	16 kl	-	-	
			照明の一部LED化(6階〜12階)	<u> </u>	490.0 百万円	109 t-CO ₂	L	<u> </u>	
		2021年度以降	オフィスにおける省エネ活動の継続					T	
			進相コンデンサー更新		13,400.0 千円	2.6 t-CO ₂			
			構内、外灯のLED化		300.0 千円	6.0 t-CO ₂			
			守衛所横照明補修		1,360.0 千円	3.0 t-CO ₂			
		 2017年度まで	桟橋照明補修		697.0 千円				
		2017年度まで	特高受電設備更新工事(1期)	特高GISのSF6ガス使用量減	200,000.0 千円			-	
			操業に係る電力使用量の削減			16.0 t-CO ₂			
			変圧器の取り換え		1,400.0 千円	27.1 t-CO ₂			
		照	照明器具LED化(屋内外)		16,400.0 千円		7		
			構内照明灯のLED化		14,950.0 千円	18.0 t-CO ₂		†	
			変圧器の更新		21,000.0 千円	32.3 t-CO ₂			
		2018年度	事務所遮光フィルム貼り		420.0 千円		T -	-	
			空調機更新		3,600.0 千円	2.0 t-CO ₂	7		
			構内照明LED化		23,100.0 千円	15.0 t-CO ₂	7		
			事務所等遮光フィル貼			不明 t-CO2		†	
39	日本LPガス協会		事務所の空調更新		11,200.0 千円	動力用電気 t-CO2			
			構内照明 L E D化工事 桟橋照明 L E D化工事		9,960.0 千円 2,296.0 千円	14.8 t-CO ₂ 不明 t-CO ₂	_		
			空調機更新		6,600.0 千円	13.0 t-CO ₂	\dashv		
		2019年度	構内照明LED化		18,100.0 千円	18.0 t-CO ₂	-	-	
			操業に係る電力使用量の削減 (海水温度と低温タンク用照明蛍光灯からLEDへ変更		0.0 千円 5,500.0 千円	目標: t-CO ₂ t-CO ₂	_		
			力率改善100%維持継続		- 千円	1.2 t-CO ₂			
			照明灯LED化		62,420.0 千円	88.8 t-CO ₂ 1.8 t-CO ₂	_		
			二次変電所電気設備更新 角内建産照明虫元月茄具のLEU茄具取貨		179,400.0 千円 2,500.0 千円	1.8 t-CO ₂ 3.3 t-CO ₂	\dashv		
			構内照明 L E D化工事		10,000.0 千円	t-CO ₂		†	
		2020/5	空調機更新		13,700.0 千円	40.0 t-CO ₂			
		2020年度	構内照明LED化		23,100.0 千円 投資案 (海水ボ 千円	24.0 t-CO ₂ t-CO ₂		-	
			操業に係る電力使用量の削減 (海水温度と 短明な L E D 16		22,835.0 千円	32.1 t-CO ₂	\dashv		
			構内照明LED化工事		10,000.0千円	t-CO ₂		†	
		2021年度以降	空調機更新 構内照明LED化		8,000.0 千円 64,000.0 千円	20.0 t-CO ₂ 52.0 t-CO ₂		_	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	現場照明水銀灯投光器のLED化		13,250.0 千円	3.0 t-CO ₂			
\sqcup			非常用発電機のLPガスエンジン発電機更新		80,000.0 千円	t-CO ₂			
		2017年度まで					-	-	
		2018年度					-	-	
40	リース事業協会	2019年度					-	-	
		2020年度							
		2021年度以降					-	-	

						削減効果	果		
	業種	実施年度	対 策 名	対策内容	投資額	20	18年度CO2	当該業種2020	備考
						1	排出量比	年度削減目標比	
		2017年度まで					-	-	
		2018年度					-	-	
41	炭素協会	2019年度					-	-	
		2020年度					-	-	
		2021年度以降					-	-	
環境	衸所管3業種								
		2017年度まで					-	-	
			削減支援ツールや利用可能な各種制度紹介						
		2018年度	の内容等の更新、個別会員企業におけるG						
			HG削減努力						
			削減支援ツールや利用可能な各種制度紹介						
	全国産業資源循環連合会	1	の内容等の更新						
1			個別会員企業におけるGHG削減努力						
		2020年度	削減支援ツールや利用可能な各種制度紹介				_	_	
			の内容等の更新						
			個別会員企業におけるGHG削減努力						
		2021年度以降	削減支援ツールや利用可能な各種制度紹介				_	_	
			の内容等の更新						
			個別会員企業におけるGHG削減努力						
		2017年度まで					-	-	- "
		2018年度					-	#出量比 年度削減目標比	
2	日本新聞協会	2019年度					-	-	
		2020年度					-	-	
		2021年度以降					-	-	
		2017年度まで					-	-	
		2018年度					-	-	
3	全国ペット協会	2019年度					-	-	
		2020年度					-	-	
		2021年度以降					-	世比 年度削減目標比	

6. BAT導入状況

業種	BAT・ベストプラクティス等	導入状況・普及率等	導入・普及に向けた課題						
経済産業省所管41業種									
	火力発電所の新設等に当たり、プラント規模に応じて、経	2018年度 BAU比 ▲850万t-CO ₂							
電気事業低炭素社会協議会	次力光電別の制設寺に当たり、フラフト税候に心して、経 済的に利用可能な最良の技術(BAT)を活用すること等	2020年度 BAU比 ▲700万t-CO ₂							
	用的に利用可能は取成の技術(DAT)で用用すること等	2030年度 BAU比 ▲1,100万t-CO ₂							
石油連盟	日本国内の製油所は、世界最高水準のエネルギー効率を達成している(後述の【国際的な比較・分析】参照)ため、省エネ余地が限られた水準において導入される省エネ技術は、碁 本的にBAT・ベストプラクティスの概念に合致していると考える。								
		2018年度 – (立地条件から導入可能な工場には導入済							
	オープンラックベーパライザー(ORV)	み)	 立地条件により導入可否が決まる						
	(OKV)	2020年度 —	世代末日により毎人もロックをの						
		2030年度 —							
		2018年度 - (熱電比がバランスし、省エネ・省CO2化が							
	 コージェネレーション導入	図れる箇所には導入済み)	 省エネ・省CO2性により導入可否が決まる						
		2020年度 —							
		2030年度 —							
		2018年度 - (熱電比がバランスし、省エネ・省CO2化が							
	図れる箇所には導入済み) 冷熱発電 図れる箇所には導入済み) 省エネ・省CC	 省エネ・省CO2性により導入可否が決まる							
日本ガス協会	/ I / I / I / I / I / I / I / I / I / I	2020年度 —	自工小・自COZILICの分等人引口が入るる						
		2030年度 —							
	2018年度 —								
	BOG圧縮機の吐出圧力低減による電力削減	2020年度 —	お市ガスの安定供給に支障のない範囲で実施						
	2030年度 —								
		2018年度 —							
	海水ポンプ吐出弁絞り運用	2020年度 —	都市ガスの安定供給に支障のない範囲で実施						
		2018年度 —							
	運転機器予備率の低減	2020年度 —	都市ガスの安定供給に支障のない範囲で実施						
		2030年度 —							
	コークス炉効率改善	2018年度 ▲273万t-CO2							
	発電設備の高効率化	2020年度 ▲300万t-CO2							
	省工之強化	2030年度 ▲440万t-CO2							
		2018年度	2030年断面における技術の確立						
日本鉄鋼連盟	革新的技術の開発・導入	2020年度	導入の際の経済合理性の確保						
		2030年度 ▲260万t-CO2	国際的なイフールフッティングの確保						
		2018年度 +14万t-CO2	 政府等による集荷システムの確立						
	廃プラスチック等の製鉄所でのケミカルリサイクルの拡大	2020年度 -	2018年度は基準年度(2005年度)に対し集荷量が減少						
		2030年度 ▲200万t-CO2	2010 下区10金十下区(2000下区)に内10米恒里/7順少						

		2018年度 27 万t-CO2	
	エチレン製造設備の省エネプロセス技術		中長期的な設備更新時期が読みづらい
		2030年度 34 万t-CO2	
日本化学工業協会		2018年度 70 万t-CO2	町/ 2020 2020左座郷建口標 / 4 〒 20) たきむし
	か性ソーダ+蒸気生産設備の省エネプロセス技術	2020年度 70 万t-CO2	
		2030年度 70 万t-CO2	ている
		2018年度 21%	
	高効率古紙パルパー	2020年度 40%	 設備導入に対する国の支援が重要。
		2030年度 40%	
日本製紙連合会		2018年度 49%	
	高温高圧回収ボイラー	2020年度 56%	 設備導入に対する国の支援が重要。
		2030年度 69%	
		2018年度 -	<導入見通し>
	排熱発電	2020年度 -	
		2030年度 -	<普及率(注3)>
		2018年度 -	<導入見通し>
	クリンカクーラの高効率化	2020年度 -	2019⇒2030年度: 4 基 導入予定
I- 15 1 ID A		2030年度 -	<普及率(注3)>
セメント協会		2018年度 -	<導入見通し>
	竪型石炭ミル	2020年度 -	2019⇒2030年度: 0 基 導入予定
		2030年度 -	<====================================
		2018年度 -	<導入見通し>
	高炉スラグミルの竪型化	2020年度 -	
		2030年度 -	<普及率(注3)>
電機・電子温暖化対策連絡会	当業界は多岐にわたる事業分野で構成されており、個々の事セス、最新の省エネ機器及びその制御方法」について、投資	、省エネ量は把握しているが、特定の技術についての	定義している、「施設及び生産装置において、導入可能な高効率プロ の導入状況、普及状況を把握することは難しい。
		2018年度 50%	
	加熱炉の断熱強化(断熱材・断熱塗料等)	2020年度 65%	
		2030年度 100%	
		2018年度 35%	
日本自動車部品工業会	モータ(ファン・ポンプ等)の高効率化	2020年度 50%	
	,	2020年度 30%	
		2030年度 100%	
	再生可能エネルギー(太陽光発電等)の導入	2030年度 100%	
		2030年度 100% 2018年度 5%	
		2030年度 100% 2018年度 5% 2020年度 15%	
		2030年度 100%2018年度 5%2020年度 15%2030年度 100%	
	再生可能エネルギー(太陽光発電等)の導入	2030年度 100%2018年度 5%2020年度 15%2030年度 100%2018年度 %	
	再生可能エネルギー(太陽光発電等)の導入	2030年度 100% 2018年度 5% 2020年度 15% 2030年度 100% 2018年度 % 2020年度 85%	
日本自動車工業会・日本自動車車体工業会	再生可能エネルギー(太陽光発電等)の導入	2030年度 100% 2018年度 5% 2020年度 15% 2030年度 100% 2018年度 % 2020年度 85% 2030年度 100%	

1		2018年度 %	
	高効率冷凍機	2010年度 70	-
	同刈竿/70休饭		4
		2030年度 100%	
	高効率機器への更新、電動機インバータ化、熱回収設備の	2018年度 12%	設備投資費用の回収が長期になる。(省工ネ補助金施策の
	設置など	2020年度 43%	- 拡充が必要)
		2030年度 100%	
		2018年度 76%	
日本鉱業協会	製造工程の運転条件の最適化	2020年度 89%	- 乏しい、さらなる工夫が必要。
		2030年度 100%	2001 23602777 2530
		2018年度 32%	│ - 木質ペレット、再生油、廃プラスチックなどの代替燃料の
	代替燃料の利用	2020年度 49%	
		2030年度 100%	- 安定な調達性
		2018年度 -	
	新炉(立窯等)への転換	2020年度 -	1
		2030年度 -	-
		2018年度 —	
	 廃プラスチック、廃棄物燃料	2020年度 -	1
	DUS STORY DUNING T	2030年度 -	1
		2018年度 -	
石灰製造工業会	バイオ燃料の利用	2020年度 —	-
石八衣起工未去	/ パープト が流れるシケリ/ロ	2030年度 -	-
		2018年度 —	_
	LNG、低力ーボン燃料の使用 2020年度 -	4	
		カーボン燃料の使用 2020年度 - 2030年度 - 2018年度 - 2018年年度 - 2018年年年年年年年年年年年年年	
	省工ネの推進]
		2030年度 —	
		2018年度までに累計73基導入済み(高効率設備への更新含	: ・コジェネ燃料について、安定供給・調達価格の低減
	 高効率コジェネの稼働維持	む)	-・国への報告等で、コジェネによるCO2削減効果に関する
	同が十コンエイツが動作的で	2020年度 —	■ 適切な算定方法の採用
		2030年度 -	
		2018年度 -	
	低炭素エネルギーへの転換、	2020年度 -	- ・低炭素な燃料(天然ガス等)について、安定供給・調達価
	(燃料)・重油→ガス化など	2030年度 -	1
	ー 低炭素エネルギーへの転換、	2018年度	
	(再生可能エネルギー)	(事例 * 1: 2019年度 100%)	 ・設備導入の費用等について、公的支援の活用
日本ゴム工業会	・太陽光発電の導入など	2020年度 —	 ・再工ネ電力価格の低減
	・再工ネ電力の購入	2030年度 -	1
		2018年度 -	
	高効率機器導入・省エネ対策	(事例 * 2 : 2020年度 30% CO2削減見込み量 150 t-	-
	「事例*2:ゴム、樹脂成型機の電動化の促進)		・機器導入の費用等について、公的支援の活用
	(尹77)↑ Z . コム、1970円以空1成の电影116の促進/	CO2)	-
i		2030年度 —	

		2018年度 -	
	再資源化技術(原材料の削減)	2020年度 -	
		2030年度 -	
		2018年度 -	
	デジタル印刷機の導入促進	2020年度 -	生産性向上、トナー・インキ費等ランニングコストの削
		2030年度 -	
日本印刷産業連合会		2018年度 -	
	乾燥・脱臭排熱の有効利用ほか	2020年度 -	設備導入負担
		2030年度 -	
日本アルミニウム協会			
板硝子協会			
		2018年度 25%	各メーカーの規格が統一されていない。高温多湿の製造
日本染色協会	事務所及び事業所における照明の L E D化	2020年度 50%	場に適さない、使用環境によっては予想より寿命が短い
		2030年度 100%	中小の工場では照明の数が少なくメリットも少ない。
		2018年度 -	
	高効率設備導入	2020年度 -	
		2030年度 -	
		2018年度 -	
	熱の効率的利用	2020年度 -	
日本電線工業会		2030年度 -	
口个电脉上未云		2018年度 -	
	電力設備の効率的運用	2020年度 -	
		2030年度 -	
	고하셔 / 무효싸이 그 그 기 차 하므로 기계 때 그 그 그 사이 그 그 기계 기계 그 그 기계	2018年度 -	
	その他(生産性向上・エネルギーの見える化、照明・誘導	2020年度 -	
	灯・外灯のLED化)	2030年度 -	
		2018年度 7%	・ガラス溶解炉の更新時に導入した省工ネ設備などの情
日本ガラスびん協会	ガラス溶解炉の更新	2020年度 11%	
		2030年度 -	
	「赤加」田心に思います。 はない はこもん (丁 かも ギ フ ル) 吹に 赤 24 ルナン じ	2018年度 52%	
	【熱処理炉関連】燃料転換(天然ガス化)、断熱強化など	2020年度 110%	
	の最新設備の導入	2030年度 -	
		2018年度 172%	
日本ベアリング工業会	【コンプレッサ関連】台数制御、インバータ化、エア漏れ ――――	2020年度 190%	
	改善などの実施	2030年度 -	
	【仕在乳焼風油】 ノンボーカル・古熱を乳焼 ヘアナ梅	2018年度 137%	
	【生産設備関連】インバータ化、高効率設備への置き換	2020年度 150%	
	え、高効率トランスの導入などを実施 ————	2030年度 -	
日本産業機械工業会			
日本建設機械工業会			
日本伸銅協会			

		2018年度 —					
	空調機更新	2018年度 -	1				
	工帥1成史材	2020年度 -	1				
		2030年度 -	┃ ・各社とも設備更新のタイミングで省エネ設備に更新され				
日本工作機械工業会	 高効率照明の導入(LED照明等)	2016年度 -	- 日代と O設備更初のタイミングで自工不設備に更初される。				
口个工作城城工来云	同劝平照明の等人(LED照明书)	2020年度 -	る。 ・設備更新できる程度の好況が維持できるかが課題。				
			・設備支利できる性反の対が心が持てきるがが赤起。				
	 その他効率的た機器道法(コンコ゚レッサ トランスの再新)		-				
	この他が干町な成品等八(コルドが、ドカルの更利)		-				
			-				
	同刈平友圧領		-				
			-				
工匠工针类协会	タ番電与機型INIV//レ	2 32 2					
石 次口	合性电对版码INV1G	2018年度 - 2020年度 - 2030年度 - 2018年度 - 2018年度 - ボテ上記のように導入は進んでいるが、全体のンシャルが 2020年度 - ボテ上記のように導入は進んでいるが、全体のンシャルが 7・明のため進捗率を定量化する事が出来ない。 2018年度 - 2020年度 - 2030年度 - 2013年度 23% 2020年度 100% 2020年度 100% 2030年度 - 2018年度 - 2018年度 - 2018年度 - 2020年度 - 2030年度 - 2030年					
	有工インソルト		-				
		2.72					
	1771H OL FD/k		-				
日本レストルーム工業会	照明のLEDIC						
石油砂柴油明		2030年度 -					
1		2019年度					
	【エネルギー源対策】太陽光発電など、再生可能エネル		-				
	ギーの導入および燃料転換の推進		-				
	2018年度 — 2020年度 — 2030年度 — 2						
	【熱損失防止】生産ラインや工場事務所等における高断熱						
	化		-				
プレハブ建築協会			-				
	【生産プロセス改善】生産ラインや工程の改善、生産拠点		-				
	の統廃合とそれに伴う工場建て替え等による生産性向上		-				
	「CEMC道】】 丁提内のエクルギニ※弗里に加って、乳炭機	ZU3U牛皮 -	-				
		※工提建工基ラー発記時に道1					
		※工物柱(百ん、세段吋に得入					
	フィムと引加しするシヘノムで等へし、主性は凹上で通し		1				
	サプライチェーンと一体となったCO2排出量削減の取組の	第一段階として2020年度までに全社SCOPE3を算定、把					
	推進	握。2017年時点で6社実施(9社中)					
山作注来十門伽石							

		2018年度:92.9%	
	 当工ネ型照明(LED等)の導入	2020年度 -	
		2030年度 -	
		2018年度:92.9%	――――遅くなる可能性があります。
		2020年度 -	省エネ型冷蔵・冷凍設備や効率的な制御機器については、
		2030年度 -	
		2018年度: 83.3%	
日本チェーンストア協会		2020年度 -	―――――――――――――――――――――――――――――――――――――
	WHO WIND WIND COLLIS A C I A D 47 WAY	2030年度 -	
		2018年度:100%	
		2010年度:100%	
	無切削金(旧JIC、無以用以时间制金、人感じノジー等) 	2030年度 -	お客様の安全の確保の観点で過度な消灯・明るさ調整がで
			きません。よって、直近数年は現状維持と想定しておりま
		2018年度: 100%	 す。
	冷蔵・冷凍設備の設定温度の調整	2020年度 —	
		2030年度 -	
	太陽光発電装置※	2018年度:6社 13,821店舗	
		2020年度 —	
		2030年度 —	
	L E D照明〔看板〕	2018年度:7社 41,805店舗	
		2020年度 -	
		2030年度 -	
	L E D照明〔店内(売場)〕	2018年度:8社45,308店舗	
日本フランチャイズチェーン協会		2020年度 -	
		2030年度 -	
	L E D照明〔店内(トイレ等)〕	2018年度:5社 4,814店舗	
		2020年度 -	
		2030年度 -	
	冷蔵・冷凍、空調用熱電源一体型システム	2018年度:5社 8,369店舗	
		2020年度 -	
		2030年度 -	
日本ショッピングセンター協会			
		2018年度:68%	
	インバーター導入を含めた高効率空調機への改修	2020年度 -	 店舗の改装・投資計画等を踏まえ導入に努める
		2030年度 -	
		2018年度:89%	
日本百貨店協会	LED等高効率器具への更新	2020年度 -	 店舗の改装・投資計画等を踏まえ導入に努める
HTHR/HW/A	LED O 101/01 THAT WILLIAM	2030年度 -	/山地へのな 込気に目立てに知られて持八に力がる
	日本橋室町再開発地区に設置されるガス・コージェネ		
	ロ本倫全町丹用光地区に設置されるガス・コーシェ不 レーョンシステムから供給される電気・熱により、エネル		ランニングコスト上昇(将来の設備投資額が付加されるた
		2020年度目標 10%	めPL (こ影響)
ロナイニーヽ. レー バフレラカヘ	ギーの効率化(従前の▲13%を見込む)と災害時のBCP	2030年度目標 15%	
日本チェーンドラッグストア協会			
情報サービス産業協会			

大手家電流通協会		
日本DIY協会		
日本貿易会		
日本LPガス協会		
リース事業協会		
炭素協会		
環境省所管3業種		
	廃棄物発電・熱供給事業	
	熱輸送システム事業	
全国産業資源循環連合会	バイオマス燃料製造事業	
	廃棄物エネルギー導入・低炭素化促進事業	
	第4類固体燃料(GREENCOAL/RPPWF)製造事業	
日本新聞協会		
全国ペット協会		

7. 業務部門(本社等オフィス)における排出削減目標策定状況

	業種	目標策定の状況及びその内容	業種全体としての数値目標	
経済	產業省所管41業種			
1	電気事業低炭素社会協議会	各会員事業者がそれぞれ具体的な目標を掲げ、その達成に向け取り組んでいる。 (主な目標例) ・電力使用量の削減 ・水道使用量の削減 ・廃棄物排出量の削減 ・ クールビズ・ウォームビズの励行 ・ 環境マネジメントシステムに基づく、オフィスにおける省エネ実施	_	
2	石油連盟	石油業界の主たる事業活動の場は製油所であること、また、本社部門の形態が自社ビル/テナント等によって省エネの余地(ポテンシャル)が左右されることもあり、業務部門の削減目標における統一目標は掲げていないが、一部の会社では自主的に削減目標を設定している。	_	
3	日本ガス協会	バウンダリー外のため	_	
4	日本鉄鋼連盟	定量的な削減目標はないものの、鉄鋼業界一丸となって業務(オフィス)部門における省工ネ・省CO2に取り組む。	_	
5	日本化学工業協会	化学業界は製造時のCO2排出量に比較して、オフィスにおけるそれは極めて小さく、それを排出削減目標に加えると、参加企業に対し、成果に見合わない程の更なる集計作業等での負担を強いることになる。 低炭素製品・サービスの提供を通じた貢献に重点的に取り組むことで、オフィスからのCO2排出削減目標の 策定には至っていない。	_	
6	日本製紙連合会	社等オフィスからの消費エネルギー量およびCO2排出量については、連合会として業界全体の削減目標の設定はせず、会員各社の自主的な目標管理活動に委ねている。なおフォローアップ調査は、本社・営業所、研究所、倉庫を対象に継続的に実施している。	_	
7	セメント協会	テナントとして事務所が入居している場合が多く、統一目標の設定は難しい状況のため、会員企業の自主的 な取り組みに任せている。	_	
8	電機・電子温暖化対策連絡会	・オフィス個別での目標は策定していないが、実行計画の目標対象にオフィスを含め、効率改善を進めることとしている。・個社で目標設定をして取組を進めているケースもある。	_	
9	日本自動車部品工業会	当工業会は業務部門における排出削減目標は省工ネ法と同様の考えで、生産活動量として一括している。よってオフィスとして新たに目標は設定していない。	_	
10	日本自動車工業会・ 日本自動車車体工業会	低炭素社会実行計画より、本社部門等のオフィス及び研究所まで、バウンダリーを拡大。生産部門とあわせて、削減努力をしている。そのため、2013年度よりオフィス部門も内数として扱っている	_	
11	日本鉱業協会	各社の本社等オフィスは大部分が賃貸ビルの中のテナントであるため、主体的に実施できる対応としては昼休みの消灯、冷暖房の温度設定、クールビズ・ウォームビズなどの運用面に限られる。また、当業界では、エネルギー消費量のほとんどが工場の製造段階に由来しているため、本社等オフィスでのエネルギー消費量は全体への影響は無視できる程度である。そのため、CO2排出量削減の目標は業界として定めていない。	_	
12	石灰製造工業会	自社ビルやテナント等の形態に関わらず、本社オフィスとしてエネルギー使用量が把握できる企業を対象としている。本社オフィス等からの排出量は石灰製造に関わる排出量と比較して遥かに少量であるため、当業種において目標設定を行っていない。	_	
13	日本ゴム工業会	本社ビルが工場の敷地内にある場合が多く、生産エネルギー使用量の調査に含まれているため、 エネルギー起源CO2の算定で報告済みである。そのため、業界としての目標は設定していない。なお、各社 での取組は【2019年度の取組実績】(次頁)に示すとおり進められている。	_	
14	日本印刷産業連合会	本社ビル等オフィスについてはその実態把握に努めることとしているが、大手以外はオフィスと工場を同じ建物で兼用しているところが多く、個別にデータを収集することは難しい。印刷業界は工場から排出するCO2がほとんどであり、オフィスから排出するCO2は少なく、エネルギー管理指定工場に該当する、本社ビル等を有する企業からの報告を取りまとめたオフィスのCO2排出実績は以下の通り。目標設定については、今後の検討課題とする。	_	
15	日本アルミニウム協会	業界として業務部門(本社等オフィス)における排出削減目標は設けていないが、参加企業が各社の取り組みおいて、照明の間引きやこまめな消灯、クールビズの適用期間拡大、パソコンの不使用時における電源遮断、エレベーターの1台使用停止など、細やかな省エネ活動に取り組んでいる。	_	

16	板硝子協会	会員各社とも、テナントビルを多数使用しており、その移転等に伴い業界全体としての数値目標の設定は困難だが、各社ともに活動目標を持って管理されている。	_
17	日本染色協会	本社等オフィスとして目標を設定しているのは、ごく一部の大企業などの先進的企業に限られる。なお、中小の工場では、オフィス部門は事業部門の一部のため、工場全体として目標を設定している工場もある。	-
18	日本電線工業会	業界で削減目標を設定していないが、参加企業の多数が、昼休みや休憩時の消灯、利用以外の消灯対策として廊下やトイレの人感センサーを導入、パソコンのECOモード導入、退社時のパソコンの確実な電源停止クールビズ、ウォームビズなどに取組んでいる。	_
19	日本ガラスびん協会	・業界としての統一目標はない。 ・オフィス部門のCO2発生量は、生産活動で発生する量の0.5%未満であり生産活動で発生するCO2の抑制を主に活動している。しかし、ISO14001など環境対策の取り組みの一貫として実施中である。 ・事務所が工場の一部にあるという事情もあり、定量的な把握がしづらい企業もあるが、業界各社とも実績の把握に努め、業界統一の目標設定が可能かどうか、さらに検討を進めていく。※既に加盟6社ともISO14001取得済み。	_
20	日本ベアリング工業会	当工業会では、本社等オフィスの実態把握に努めることとし、本年度は、以下のとおり、アンケート結果をいただいた7社の合計値を公表することとした。目標策定については、今後の検討課題とする。	_
21	日本産業機械工業会	会員企業は産業機械以外にも様々な製品を生産しており、本社等オフィス部門のエネルギー消費量の削減目標を業種や製品毎に設定することは混乱を招くため、目標策定には至っていない。	_
22	日本建設機械工業会	当業界におけるエネルギー消費の実態としては、工場における製造段階でのエネルギー消費に比べて本社等オフィスでのエネルギー消費はごく僅かであり、今後もこの傾向に変化はないと見ている。したがって、本社等オフィスでのエネルギー消費は全体への影響は無視できる程度であり、重要性に乏しい。よって目標は設定していない。	_
23	日本伸銅協会	賃貸ビルへの入居なので、エネルギー削減努力が把握し難いため。	_
24	日本工作機械工業会	当業界のエネルギー消費は、工場の操業で大部分を占めるため、オフィス部門については、特に目標を定めていない。	_
25	石灰石鉱業協会	フォローアップ対象鉱山の多くは、セメント・化学系企業の原料部門であり、他業種と同一の事務所を 使用しているケースが多く、対象となるオフィスの区分が困難である。会社としての取り扱いがはっきりし ている場合のみを報告対象としている。	_
26	日本レストルーム工業会	各社の取り組みや管理区分などの相違から統一した指標の設定が困難であるため、業界全体としての目標設定は行っていない。全ての企業で業務部門を包含した企業全体のCO2削減活動を推進していることから、各社の取り組み状況を確認していく。	_
27	石油鉱業連盟	当連盟としての削減目標は設定していないが、当業界では本社事務所、その他の事業所において温室効果ガス削減に努めており、今後とも各会員企業で省エネ対策に積極的に取り組んでいく方針である。	_
28	プレハブ建築協会	事務所等業務部門における床面積当りCO2排出量を2010年比で15%削減する 【対象としている事業領域】参加企業の本社クラスの事務所	事務所寺業務部門における CO2排出量 2010年度比▲ 15%
29	日本産業車両協会	計画参加企業のうち、2社は工場内に本社機構を持ち、工場からの報告値に包含されており、残り2社は、本社については主たる事業(それぞれ自動車製造業、建設機械製造業)の低炭素実行計画で報告しているため。	_
30	日本チェーンストア協会	エネルギー原単位の計算については、店舗(バックヤード部分を含む)のみとなっており、本社等オフィスは含まれていません。ただ、本社等オフィスについては「お取引先様等にご不便をおかけしない」範囲で実践できる省エネ対策として従来より率先して下記の取り組みを進めてきています。 •LEDなど高効率照明の導入、こまめな消灯・明るすぎない照明調整・空調温度設定の適切な調節・環境eラーニングプログラムの実施、eco検定の受験費用負担による従業員の環境教育の推進・CSRレポートやEMSハンドブックの社内回覧による従業員の企業取組への認知度・理解度の向上…等、独自の目標や社内基準を策定し、積極的に省エネルギー対策に取り組んでいます。	_
31	日本フランチャイズチェーン協	本社等オフィスにおけるCO2削減目標は現時点では設定していない。各チェーンにおける対策を共有するとともに、業界としての削減目標設定の是非について、引き続き、検討していきたいと考えている。 ※業界としての目標は設定していないものの、各社にて目標を設定している。	_
		SC業界としてのSC施設を対象とした取り組みであるため、各企業の本社・支社等の事務所(オフィス)については目標を設定していない(SC内に事業所を置いている企業もある)。ただ会員企業では各社で、クールビズに代表されるような室内温度の管理や照明の管理、ゴミの分別やリサイクル、働き方改革に伴う勤務時間の多様化・テレワーク・サテライトオフィス・社員の通退勤時における公共交通機関の利用促進等、様々な取り組みを積極的に行っている。	_
	日本百貨店協会	_	-
34	日本チェーンドラッグストア協	_	_

-	ketou u vootsuuts A		<u> </u>
35	情報サービス産業協会	_	_
36	大手家電流通協会	エネルギーを多く消費する店舗のエネルギー消費の把握、対策に重点をおいてきたこと、また今後運輸部門 について検討を行うことから、業務部門(本社等オフィス)はエネルギー消費実態を把握することまでと し、目標設定は行っていません。	_
	日本DIY協会	目標指標は、店舗における生産量(床面積×営業時間)当たりのエネルギー消費量(エネルギー消費原単位)とし、目標年度(2020年度)において、基準年度(2004年度)比15%の削減を目指す。 【対象としている事業領域】参加企業の店舗等	店舗における生産量(床面積 ×営業時間)当たりのエネル ギー消費量を2004年度比▲ 15%
38	日本貿易会	_	_
39	日本LPガス協会	当協会としての目標設定は行っていないが、会員企業においては、それぞれ環境目標を設定し、環境活動等を実施している。各社の本社等オフィスは大部分が賃貸ビルの中のテナントであるため、主体的に実施できる対応としては昼休みの消灯、冷暖房の温度設定、クールビズ・ウォームビズなどの運用面に限られる。	_
40	リース事業協会	本社床面積当たりの電力消費量について、基準年度(2013年度)105.4kwh/㎡に対し、2020年度の目標水準を100.1kwh/㎡(基準年度対比5%削減)、2030年度の目標水準を100.1kwh/㎡(基準年度対比5%削減)とする。 【対象としている事業領域】 本社	本社床面積当たりの電力消費 量を2013年度比▲5%
41	炭素協会	_	_
環境			
1	全国産業廃棄物連合会	業務部門(本社等オフィス及び産業廃棄物処理施設におけるエネルギー使用に伴うGHGの排出)については、会員企業において産業廃棄物処理に由来するエネルギー使用量を区分けして把握することが困難なため、産業廃棄物処理以外のエネルギー使用量を含めた結果となっており、当面、GHG排出抑制目標の評価対象に含めないが、会員企業に対する実態調査によりGHG排出量や対策状況の把握等を行い、数値目標の有無に関わらず、排出抑制に向けて可能な限り努力するよう奨励する。今後、状況に応じて目標の策定等についても検討する予定である。	_
2	日本新聞協会	新聞協会は自主行動計画策定時から部門ごとのエネルギー消費量を算出しておらず、支社、支局、通信局などオフィスの定義も 統一していない。	_
3	全国ペット協会	ペット小売業の多くを占める零細事業所では、店舗がオフィス機能も兼ねている場合が多い。	_

8. 業務部門(本社等オフィス)におけるCO2排出実績

単位:万t-CO2位:万t-CO2

											<u>以</u> :万t-CO2	± 1770 002	
業種	2008年度	2009年度	2010年度	2011年度	2012年度	2013年度	2014年度	2015年度	2016年度	2017年度	2018年度	2019年度	2019年度の集計企業数
経済産業省所管41業種													
1 電気事業低炭素社会協議会	39.60	36.30	37.60	38.20	40.40	39.70	37.60	35.80	35.20	32.70	29.00	28.60	47社計
2 石油連盟	_	-	0.50	0.50	0.52	0.58	0.56	0.56	0.48	0.44	0.37	0.38	7社計
3 日本ガス協会	2.22	2.27	2.39	2.35	2.42	2.39	2.75	2.89	3.01	2.91	2.70	2.80	15社計
4 日本鉄鋼連盟	3.10	3.10	3.10	3.20	3.40	3.30	3.10	2.90	2.70	2.60	2.10	2.00	67社計
5 日本化学工業協会	_	_	-	_	-	_	_	_	-	_	_	-	
6 日本製紙連合会	2.20	2.30	2.00	1.80	1.50	1.50	1.70	1.70	1.70	1.50	1.40	1.20	25社計
7 セメント協会	0.60	0.45	0.37	0.36	0.39	0.38	0.19	0.18	0.18	0.18	0.13	0.11	9社計
8 電機・電子温暖化対策連絡会		_	-	_	_	61.00	59.00	55.00	53.00	49.00	44.00	38.00	308社計
9 日本自動車部品工業会	_	_	-	_	_	_	_	_	-	_	_	-	
10 日本自動車工業会・日本自動車車体工業会	_	_	-	_	_	_	_	_	-	_	_	-	
11 日本鉱業協会	0.18	0.15	0.17	0.20	0.20	0.18	0.17	0.17	0.18	0.18	0.18	0.18	9社計
12 石灰製造工業会	0.15	0.14	0.15	0.11	0.13	0.11	0.11	0.11	0.10	0.09	0.08	0.08	57社計
13 日本ゴム工業会	_	_	_	_	_	_	_	_	_	_	_	-	
14 日本印刷産業連合会	2.70	2.40	2.30	2.50	2.20	2.30	2.00	1.80	2.80	2.20	2.10	2.10	2社計
15 日本アルミニウム協会	_	_	0.08	0.09	0.09	0.07	0.07	0.07	0.07	0.06	0.05	0.07	5社計
16 板硝子協会	0.07	0.06	0.05	0.07	0.05	0.04	0.04	0.04	0.04	0.04	0.05	0.04	3社計
17 日本染色協会	_	_	-	-	-	0.10	0.31	0.32	0.37	0.30	0.17	0.15	6社計
18 日本電線工業会	0.40	0.60	0.60	0.60	0.70	0.90	0.90	0.80	0.80	0.70	0.70	0.70	18社計
19 日本ガラスびん協会	0.24	0.24	0.26	0.25	0.24	0.23	0.23	0.23	0.23	0.23	0.23	0.23	6社計
20 日本ベアリング工業会	_	_	0.17	0.14	0.14	0.14	0.13	0.15	0.15	0.16	0.15	0.15	7社計
21 日本産業機械工業会		_	_	_	_	_	_	_	3.70	3.40	2.40	2.40	70社計
22 日本建設機械工業会	_	_	_	_	_	_	_	_	_	-	_	-	
23 日本伸銅協会		_	0.02	0.02	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.04	3社計
24 日本工作機械工業会	_	_	-	_	_	_	-	-	-	_	_	-	
25 石灰石鉱業協会	_	_	0.07	0.08	0.08	0.08	0.08	0.07	0.07	0.06	0.05	0.05	3社計
26 日本レストルーム工業会	_	_	-	_	_	_	_	_	-	_	_	-	
27 石油鉱業連盟	0.62	0.61	0.59	0.82	0.80	0.96	0.94	0.88	0.85	0.89	0.84	0.10	4社計
28 プレハブ建築協会	_	_	1.07	1.17	1.16	1.16	1.14	1.09	1.05	1.03	1.04	1.00	7社計
29 日本産業車両協会	_	_	_	_	_	_	_	_	_	_	_	_	
30 日本チェーンストア協会	_	_	_	_	_	_	_	_	_	0.72	0.43	0.34	7社計
31 日本フランチャイズチェーン協会	_	_	-	_	_	_	0.20	0.51	0.61	0.60	0.53		2社計
32 日本ショッピングセンター協会	_	_	-	_	-	_	_	_	-	-	_	-	
33 日本百貨店協会	_	_	_	_	_	_	54.60	65.10	58.10	52.00	35.40	25.80	54店舗計
34 日本チェーンドラッグストア協会	_	_	-	_	_	_	_	-	-	-	_	-	
35 情報サービス産業協会	-	_	-	_	_	_	_	_	-	-	_	-	
36 大手家電流通協会	0.91	0.79		1.10	1.08	0.57	0.35	0.55	0.56	0.77	0.86		6社計
37 日本DIY協会	_	53.15	39.72	51.76	55.13	48.69	46.34	46.32	46.64	34.90	28.19	33.33	13社計
38 日本貿易会	-	5.10	5.30	5.40	5.60	5.40	5.10	4.50	4.10	3.70	3.40	3.20	28社計
39 日本LPガス協会	-	_	-	_	_	0.10	0.10	0.10	0.10	0.10	0.06	0.06	7社計
40 リース事業協会	_	0.80	0.70	0.90	0.90	0.90	1.80	1.70	1.60	1.50	1.40	1.40	198社計
41 炭素協会	_	_	_	_	_	_	_	_	_	-	_	_	
環境省所管3業種													
1 全国産業資源循環連合会	75.4	72.9	73.2	81.3	86	86.8	83.1	81.2	80.9	84.4	78.9	63.1	14,379社計
2 日本新聞協会	_	_	-	_	_	_		_	_	_		_	
3 全国ペット協会		_	_	_	_	_	_	_	_	_	_	-	
· · ·	-												

9. 業務部門(本社等オフィス)におけるCO2排出削減対策とその効果

							主な対策と	とその効果(調整後排出係	数ケースCO	2削減量)						
			照明設備等			空調設備			エネルギー			建物関係			合計		
	業種	・退社時の・照明・高・トイレ等	明のインバー 動率照明の	Fの徹底化 ター化 導入 2ンサー導入	・暖 ・冷房開始 ・空調	房温度の28度 房温度の20度 台時の外気取 機の外気導力 式空調シスラ	度設定 り入れ停止 入量削減	• 太陽	用高効率給湯 場光発電設備の 力発電設備の	の導入	・エレハ	ラスの遮熱 ベータ使用台 売機の夜間	一般の削減				その他の対策
			減量(t-CO			川減量(t-CO)2/年)	CO ₂ 肖	減量(t-CO	2/年)	-	減量(t-CC			減量(t-CO	2/年)	
		2019年度	2019年度 まで	2020年度 以降	2019年度	2019 年度 まで	2020年度 以降	2019年度	2019年度 まで	2020年度 以降	2019年度	2019年度 まで	2020年度 以降	2019年度	2019年度 まで	2020年度 以降	
経済	各產業省所管41業種 																
1	電気事業低炭素社会協議会		-			-			-			_			_		・空調の効率運転(設定温度の適正管理、使用時間・使用エリアの制限、扇風機等の効果的活用、空調機冷房と自然換気を併用するハイブリッド空調、シーリングファン併用による冷房温度の高め設定、ブラインドカーテンの活用等) ・照明の間引きや照度調整、昼休み・時間外の消灯等の利用時間の短縮、不要時消灯の徹底 ・OA機器、照明器具等の省エネ機器・高効率機器への変更(LED化等)や不使用時の電源断、不使用機器のコンセントプラグ技きの徹底、離席時・休憩時間のPC休止・スリープ利用 ・画像処理センサによる空調・照明制御システムの導入 ・排熱を利用したデシカント空調(温度と湿度を分離制御する省エネ型の空調システム)とガスヒートポンプの高効率運転の組み合わせ ・冷媒自然循環を組み合わせた放射パーソナル空調システムの導入 ・クールビズ/ウォームビズの徹底 ・エレベータの間引き運転及び近隣階へのエレベータ利用の自粛 ・太陽光発電や燃料電池、ソーラークーリング、コージェネレーション等の導入やBEMSの導入 ・省エネステッカーやポスターによる節電意識の啓蒙活動の実施 ・屋上/壁面線化の実施 等 (取組実績の考察)
2	石油連盟		-			-			-			-			-		(28.6万t-CO2相当)であった。 ・石油各社では、目標に掲げている省エネ対策量の取り組みのみならず、オフィスについても積極的に省エネルギー対策に取り組んでいる。特に、東日本大震災以降、クールビズ・ウォームビズ期間の延長、照明の間引きやLED照明への切り替え等の節電対策を強化している。 ○空調温度管理の徹底(夏期28°C・冬期20°Cへの設定等)○高効率ボイラー等、省エネルギー機器の採用○最新省エネ型○A機器の導入○エレベーター運行台数削減○最適化配置等による床面積の削減○クールビズ・ウォームビズの実施拡大、期間延長○長期離席時・退社時のパソコン・ブリンター等の電源OFF徹底○退社促進の館内放送○人感センサー導入によるきめ細かな節電、使用していない照明の消灯の徹底、照明の間引き、昼休みの消灯、LED照明への切り替え○給湯室の温水の停止、トイレの水洗温水・座面ヒーターの停止・一部の会社ではオフィスにおけるCO2排出量またはエネルギー消費量削減目標を自主的に設定している。下記に目標の具体例を挙げる。また、数値目標を設定しない会社においても、東日本大震災以降、オフィスにおける節電対策を強化している。○本社/支店オフィスの対前年度比原単位▲1%を目指す。○2019年度までに自社ビルの2009年度比原単位▲10%を目指す。○紙のリサイクル率100%(紙購入重量と排出重量を同数量とする)を目指す。
3	日本ガス協会	614	18,411	1,955	288	532	231	183	221	206	1	115	2	1,086	19,279	2,394	①運用の徹底・意識向上による省エネ対策 ・昼休み、帰宅時等の消灯の徹底・パソコン等の事務機器の待機電力の削減・クールビズ、ウォームビズの実施・空調設定温度 や稼働時間の適正管理(冷房28℃、暖房20℃)・一部エレベーターの停止及び階段使用の励行・ノー残業デー徹底によるエネ ルギー使用量の低減・省エネパトロール、省エネ啓発活動の実施・ブラインドを活用した空調負荷の抑制・オンライン車両予約 によるカーシェアリングの実施・エネルギーの見える化による省エネ推進・コピー紙使用枚数の削減 ②建物及び設備の省エネ対策 ・コージェネレーションの導入・高効率空調設備の導入(太陽熱・氷雪熱・地下冷熱・廃熱利用、タスク&アンビエント空調、 BEMS等)・高効率照明設備の導入(LED照明、タスク&アンビエント照明、人感センサー等)・事務室照明の間引き・屋上緑 化、遮熱塗料の塗布・業務用自転車の導入・ビル用二重窓ガラスの設置・ペーパーレス会議用設備の導入(タブレット端末、電 子黒板等)・省エネタイプPC等事務機器の導入
4	日本鉄鋼連盟		-			-			-			-	•		-		 ✓ 空調温度設定のこまめな調整、会議室に室温目標28°C(夏季)を掲示等✓クールビズ(夏季軽装、ノーネクタイ)、ウォームビズ ✓ 使用していない部屋の消灯の徹底 ✓ 昼休みの執務室の一斉消灯 ✓ 退社時のパソコン、プリンター、コピー機の主電源OFF ✓ 廊下、エレベーター等の照明の一部消灯✓トイレ、給湯室、食堂等での節水✓省エネルギー機器の採用(オフィス機器、電球型蛍光灯、Hf型照明器具、エレベーター等)

							主な対策と	とその効果 (ii	周整後排出係	数ケースCO	2削減量)								
			照明設備等			空調設備			エネルギー			建物関係			合計				
	業種	・退社時の ・照明 ・高 ・トイレ等	月のインバー 高効率照明の	Fの徹底化 ター化 導入 Zンサー導入 き	・暖 ・冷房開始 ・空調 ・氷蓄熱	房温度の28度 房温度の20度 治時の外気取 機の外気導力 式空調シスラ	度設定 り入れ停止 人量削減 Fムの導入	• 太陽 • 風	高効率給湯 光発電設備の 力発電設備の 減量(t-CO	の導入 D導入	エレ/自動販	ラスの遮熱ス ベータ使用台 売機の夜間通	数の削減	CO ₂ ř	则減量(t-CO	2/年)	その他の対策		
		2019年度	2019年度 まで	2020年度 以降	2019年度	2019年度 まで	2020年度 以降	2019年度	2019年度 まで	2020年度 以降	2019年度	2019年度 まで	2020年度 以降	2019年度	2019年度 まで	2020年度 以降			
5	日本化学工業協会		_	2.7.7		-	.53,7		_	.5.4.1		-			-	.5.4.1	_		
6	日本製紙連合会		-			-			-			-			-		具体的なCO2削減活動としては以前から継続的に実施しているものがほとんどで、本社・営業所・工場事務所を中心に冷暖房温度の設定変更、エアコンの更新、照明の間引きによる照度調整やLED照明への変更、昼休憩時の執務室消灯やパソコン節電、エレベーターの使用抑制、太陽光発電設備の利用などの節電対策の徹底や、社用車の低燃費・ハイブリッド車への変更やアイドリングストップ、適正な貨物積載量の管理、船舶輸送の活用(モーダルシフト)などがある。また、クールビズ・ウォームビズの推進、一斉休日・ノー残業デーの設定、年休取得の奨励等、多彩な取り組みを行っている。プレミアムフライデーによる退社時刻の前倒しを行っている会社も有る。		
7	セメント協会	1	214	0	0	87	0	0	8	0	0	0	0	1	309	0	事務所の冷暖房温度の設定、照明設備の節電および省工ネ化等		
	電機・電子温暖化対策連絡会	14,516	0	0	22,851	0	0	1,810	0	0	821	0	0	39,998	0	0	等物がの内域房画度の設定、照明設備の即電のよび自工不行等 特にCO2削減量の多い施策は、以下の通り。 ・氷蓄熱式空調システムの導入・照明のインバータ化・高効率照明の導入		
	日本自動車部品工業会		_			_			_			_			_				
10	日本自動車工業会・日本自動車車体工業									Г			T			Ι	2019年度では、業務部門での省エネ活動は継続実施しているが、2018年度から照明消灯の徹底の対象床面積が285m2と拡大		
11	日本鉱業協会	0	3,713	0	0	1,064	0	0	8	0	1	230	0	1	5,015	0	2019年度では、業務部门での有工不治動は経続美地しているか、2018年度から無明消刃の徹底の対象床面積が265m22拡入となり、CO2排出量0.12 t - CO2、退社時のPC電源オフの徹底化で0.22t- CO2、窓力ラスへの遮熱フィルム貼付け面積増大で0.82 t - CO2のが追加で削減された。		
12	石灰製造工業会	0	80	0	0	40	0	81	839	9	-0	0	-0	82	959		・事務所内温度管理の徹底、不要電灯の消灯。・室内照明の間引きを行っている。・冷房時の室温28℃、暖房時の室温23℃を目途に調整している。・PC省エネモード、照明の間引き、昼休みの消灯を行っている。・充電器の取り外し、電源付タップ式コンセント使用で、待機電力の削減をしている。・省エネ法のエネルギー原単位1%改善をベースに、対前年度比1%減を目標としている。・対前年度比3%削減を目標としている。・省エネ法削減目標に各部門同調し、前年度比1%削減を目標としている。・事務所棟電力使用量の目標を2014・2015年度の実績平均値45,000kWhより14%低減の38,850kWhに設定し、達成を続けている。・前年度の年間電力使用量を下回ることを目標としており、2019年度は▲6,956kWhだった。・2019年度実績は、目標に比べて+6,000kWhと冬場の暖冬にも関わらず、夏場の空調電力が増加したため悪化した。		
	日本ゴム工業会			1		_	1		-	1			1			·	照明設備等、空調設備、エネルギー、事務機器、建物・設備関係、その他合計で676件の対策		
\vdash	日本印刷産業連合会											_			-				
15	日本アルミニウム協会		_			-			-			-			-		・LED等の省エネ照明への切り替え・照明の間引き・こまめな消灯・クールビズの実施・パソコンの不使用時における電源遮断		
	板硝子協会	56	17,483	3,748	22	176	22	0	0	0	1	7	1	80	17,667	3,771	空調設定温度、ペンダント照明の L E D 化、昼休み時の照明の消灯、クールビズ、ウォームビズ等の他に、一部会員会社で、窓 ガラスの断熱化(既存Low-E複層ガラスに後付追加Low-Eガラスの施工による 3 層化対策)が行われている。		
17	日本染色協会	5	16,503	303	0	8	0	0	0	0	0	0	0	5	16,512	303	照明の間引き、LED照明への転換		
18	日本電線工業会	1,464	310,346	125,222	202	18,056	63	0	51	0	10	41	9	1,676	328,494	125,293	照明のLED化、ペアガラス、遮熱フィルム、昼休みや休憩時の消灯、利用以外の消灯対策として廊下やトイレの人感センサーを 導入、パソコンのECOモード導入、退社時のパソコンの確実な電源停止などの取組を行っている。		
19	日本ガラスびん協会	2	82	0	0	204	0	51	0	0	0	0	0	53	287	0	・退社時にはパソコン電源OFFの徹底化・高効率照明の導入・太陽光発電の導入(売電)		
20	日本ベアリング工業会		-	-		_	1		-			-			-		クールビズ・ウォームビズの実施(空調温度設定の徹底など)。本社、支店の休憩時間の消灯等による節電活動。階段・トイレの自動消灯、蛍光灯の使用削減。水栓の自動化による節水(工場・事務所取り付け)。コピー用紙の使用量削減(裏紙の使用、両面コピーの推進)。 以上の関係の収取組等を行っている。		
21	日本産業機械工業会		-			-			-		_			_		・照明関係の省エネルギー対策 20時の自動消灯、既存照明の更新、自動センサーの採用、間引き照明の実施、自然光の導入等・空調関係の省エネルギー対策 省エネルギー型空調機の導入、局所空調の実施、燃料転換、ルーフファン設置、窓ガラスへの断熱フィルム施工等・受変電設備関係の省エネルギー対策 変圧器の更新、デマンドコントロールの実施等・その他の省エネルギー活動 グリーン電力の活用、太陽光発電システム導入、機器の省エネ運転、グリーンカーテンの設置、クールビズ・ウォームビズ実施、夜間残業の削減、アイドリング停止、離席時パソコンOFF、室内・機械洗浄、エレベータの運転台数削減等●その他の省エネルギー活動 グリーン電力の活用、太陽光発電システム導入、機器の省エネ運転、グリーンカーテンの設置、クールビズ・ウォームビズ実施、夜間残業の削減、アイドリング停止、離席時パソコンOFF、室内・機械洗浄、エレベータの運転台数削減等			
22	日本建設機械工業会	918	374,224	725	450	11,666	355	391	6,394	300	1	4,781	1	1,760	397,065	1,381	照明設備LED化 空調高効率化		
23	日本伸銅協会			'		_	•		_			<u>' - </u>			<u>' - </u>				
24	23 日本伸銅協会				-			-		-			-			クールビズ、ウォームビズの実施、不要時消灯の徹底、照明の間引き、OA機器の更新、区画照明の実施、省エネ空調機器への更新、省エネ型照明への更新、断熱塗装の実施			

									周整後排出係	数ケースCO	2削減量)								
			照明設備等			空調設備			エネルギー			建物関係			合計				
	業種	・退社時の ・照明 ・高 ・トイレ等	み時等の消炊 PC電源 O F 用のインバー 高効率照明の 照明の人感t ・照明の間引	Fの徹底化 ター化 導入 Zンサー導入	·暖 ·冷房開始 ·空調	房温度の28度 房温度の20度 台時の外気取 機の外気導み 式空調シスラ	度設定 り入れ停止 【量削減	• 太陽	目高効率給湯 場光発電設備 力発電設備の	の導入	・エレ	ラスの遮熱フ ベータ使用台 売機の夜間選	数の削減				その他の対策		
		CO ₂ 肖	削減量(t-CO	2/年)	CO2肖	川減量(t-CO	2/年)	COz削	減量(t-CO:	2/年)	CO ₂ 肖	削減量(t-CO	2/年)	CO2削	減量(t-CO	2/年)			
	. I T. C. T. A. W. I. A.	2019年度	2019 年度 まで	2020年度 以降	2019年度	2019年度 まで	2020年度 以降	2019年度	2019年度 まで	2020年度 以降	2019年度	まで	2020年度 以降	2019年度	まで	2020年度 以降			
2	5 石灰石鉱業協会 																		
2	5 日本レストルーム工業会		-			-			-			-			-		空調設備:設定温度の啓発、冷房時の室温28℃に管理、空調使用時間の削減 照明設備:・昼休みの消灯、不要照明のこまめな消灯・LED照明など省エネタイプ照明の導入・照明の人感センサー化・高効率 照明機器の導入・業務に差し支えない範囲での蛍光灯本数の間引き、 OA機器、その他:・クールビズ、ウォームビズ・早期帰宅、ノー残業デーの実施・パソコンの外出時、未使用時間の電源 OFF・夏の網戸、冬の隙間風対策・ショールームで再生可能エネルギー100%の電力を採用		
2	7 石油鉱業連盟	4	12,622	14	4	65	0	0	13	0	0	271	0	8	12,972	14	事務所その他の事業所での削減については、照明設備・空調設備・オフィス機器の省エネルギー機器導入によるco2削減継続。・室温の調節、寒暖調節を容易にするための服装自由化、退社時に各自の執務用PC電源OFFおよび昼休み時間の消間外終業時の定時刻ごとの一斉消灯等による節電取り組みを実施。・本社の紙・ごみ・電気の量を毎月モニタリングし、近との比較を実施。結果をHSE定例会やマネジメントレビュー等で報告。・役職員の執務用PCを軽量ノートPCに変更。会議科を、基本的に紙から電子ファイルで配付することによりペーパーレス化を推進。ゴミ焼却によるco2排出量削減に貢献記取組みについては、社内セミナーなどの啓蒙活動を実施し普及化の努力を継続。・省エネ・環境対策を踏まえた外部性による自社サーバルームの縮小化。・東京都内にオフィスを持つ加盟企業では、東京都環境確保条例に基づくビルオーのGHG排出削減に協力する企業がある。その中には、東京都からトップレベル事業所の認定を受けたビルに入居し、2007年度のGHG排出量の平均値である基準排出量に対し2015年度~2019年度までの5年間で8.5%を削減するとしたビルオーナーに達成に協力している企業もある。・東京都以外のオフィスからのco2排出量の目標値は設定していないが、各会員企業では対策に積極的に取り組んでいく。		
2	3 プレハブ建築協会		_			-			-			-			-		昼休み時などに消灯徹底化、退社時にはパソコンの電源OFFの徹底化、照明のインバーター化、高効率照明の導入、トイレ等の照明の人感センサー導入、照明の間引き、冷房温度を28度設定にする、暖房温度を20度設定にする、冷暖房開始時の外気取り入れの停止、空調機の外気導入量の削減、氷蓄熱式空調システムの導入、業務用高効率給湯器の導入、太陽光発電設備の導入、風力発電設備の導入、窓ガラスの遮熱フィルム、エレベータ使用台数の削減、自動販売機の夜間運転の停止		
2	日本産業車両協会		-			-			-			-			_		・空調の集中管理(温度設定、非稼働時間での自動切) ・部署別エネルギー消費量の集計と上位会議体での報告 ・省エネ意 識調査実施による各自の意識向上		
3	日本チェーンストア協会	335	323	321	363	376	348	195	180	15	0	1	0	893	879	685	・LEDなど高効率照明の導入、こまめな消灯・明るすぎない照明調整・空調温度設定の適切な調節・環境eラーニングプログラムの実施、eco検定の受験費用負担による従業員の環境教育の推進・CSRレポートやEMSハンドブックの社内回覧による従業員の企業取組への認知度・理解度の向上		
3	. 日本フランチャイズチェーン協会 ※1	329	716	335	5,640	5,089	5,672	7,980	46,106	8,880		_		13,949	51,911	14,887	昼休み時等に消灯徹底化 退社時にはパソコンの電源OFFの徹底化 照明のインパータ化 高効率照明の導入 トイレ等の照明に人感センサー導入 照明の間引き 冷房温度を28度設定する 暖房温度を20度設定する 冷暖房開始時の外気取り入れの停止 空調機の外気導入量の削減 氷蓄熱式空調システムの導入 業務用高効率給湯器の導入 太陽光発電設備の導入 風力発電設備の導入 窓ガラスの遮熱フィルム エレベータ使用台数の削減 自動販売機の夜間運転の停止		
3	! 日本ショッピングセンター協会		_						_						_		○水畜祭式・空調ンステムの導入 (2,54/t-CO2/年) ○エレヘータ使用台数の削減 (1264 t-CO2/年) ○照明の間引き (620 t-		
L	日本百貨店協会	1,489	0	495	3,025	0	213	21	0	0	1,223	0	604	5,759	0	1,312			
_	日本チェーンドラッグストア協会 情報サービス産業協会	-			-	_								_ _					
r	5 大手家電流通協会		-			-			-			-			-		省エネルギー責任者の任命,省エネ目標(数値目標)の設定,省エネ目標(行動目標)の設定,省エネ目標達成状況の把握,省エネ目標達成状況の従業員への周知,冷房時の設定温度は28℃を目安に設定,暖房時の設定温度は20℃を目安に設定,空調の冷やしすぎ、暖めすぎに注意する。フィルターの定期的な清掃の実施,従業員に夏期ケール*プ、冬期ウォームピズの採用,再生可能エネルギー設備の導入		
3	7 日本DIY協会	474	970	407	348	697	348	9	11	2	457	914	457	1,288 2,592 1,		1,214	照明設備等:「高効率照明に交換する」 空調設備:「冷房温度28度設定」、「暖房温度20度設定」 エネルギー:「太陽光 発電設備の導入」 建物関係:「窓ガラスへの遮熱フィルム貼付」		

							主な対策と	とその効果(i	周整後排出係	数ケースCO:	2削減量)									
			照明設備等	Į.		空調設備			エネルギー			建物関係			合計					
	業種	・退社時の ・照E ・ i ・ トイレ等	明のインバー 高効率照明の	F F の徹底化 -ター化 D導入 センサー導入 Iき	・暖 ・冷房開始 ・空調 ・氷蓄熱	房温度の28月 房温度の20月 台時の外気取 機の外気導力 式空調シスラ	度設定 り入れ停止 し量削減 Fムの導入	• 太陽 • 風	高効率給湯 光発電設備の 力発電設備の 減量(t-CO:	の導入	エレク自動販	ラスの遮熱ス ベータ使用台 売機の夜間通 川滅量(t-CO	数の削減重転の停止	ርርንጀ	減量(t-CO	2/年)	その他の対策			
		2019年度	2010年度	2020年度	-	T		2019年度	2019年度	,		I	2020年度		2019年度	,				
		2019年度	まで	以降	2019年度	まで	以降	2019年度	まで	以降	2019年度	まで	以降	2019年度	まで	以降				
38	日本貿易会		-			-			-			-			-		省工不設備等の導入 ② エネルギー管理の徹底 ③ 啓蒙活動の推進 《その他》・クールビズ6ヶ月間の実施 環境・社会ニュースレターを隔月で発行 ・環境関連イベントや環境関連情報等のイントラネットによる定期的な発信 を環境 C S R 月間と位置づけ、省エネ・省資源・リサイクルを呼び掛け、啓蒙活動等により、社内の環境意識向上を図って ・ ・モバイルワーク・テレワーク制度が定着。また、「全社服装ガイドライン」を設定し、ネクタイ・上着を着用せず低 とにより、クールビズ期間以外も節電環境に適応。			
39	日本LPガス協会	42	55	95	12	16	5	0	0	0	0	0	0	54	71	100	・事務所室温の管理 冷房時:25℃~28℃、暖房時:20℃~23℃・昼休み時間(12:00~13:00)の事務所照明の消灯・事務用機器(パソコン、プリンター等)の不要時電源OFF・事務所窓開放による省エネ・冷暖房時におけるコマメな室温管理・離席時のパソコン画面消灯 ・電量使用料を各部署で前年比較し社内周知をしている・環境マネジメントシステムで目標を設定して照明、空調等電気量削減を目標に活動している・紙ごみのミックスペーパーとしての廃棄徹底回収量5.0t(2019年4月~2020年3月)全廃棄物に対するミックスペーパーの割合:38.3% 2020年目標:5.0t、割合40% CO2削減量2.47t-CO2(1tあたりCO2削減量=0.49t-CO2と仮定) 2019年目標 2.45t-CO2			
40	リース事業協会	440	12,525	1,089	329	1,454	305	23	193	31	147	1,545	148	939	15,717	1,573	昼休み時などの消灯徹底化、退社時にパソコンの電源オフの徹底、照明の間引き、冷暖房温度の設定を行う会員が多い。			
41	炭素協会		_			_			_			_			_		-			
	省所管3業種全国産業資源循環連合会		-			-			_			-			_		クールビズの推進, ウォームビズの推進, 消灯の徹底、パソコン電源オフ, 節水の徹底, 環境省 Fun to Share キャンペーンへの参加, 紙の使用量削減, 燃料の使用量削減, 業務移動時の乗り合せの実施, 社員教育・社内勉強会の実施, 照明の間引き, エスカレーター、エレベーターの停止, 空調設定温度の適正化, 稼働曜日や操業時間の変更(ピークシフト), 高効率給湯器(CO2冷媒ヒートポンプ等), 業務用高効率空調機(氷蓄熱式空調システム等), コージェネレーションシステム, 高効率照明・電球型蛍光灯(LED照明等), 太陽光発電・風力発電設備, 低燃費型建設機械・バッテリー型フォークリフト, 低燃費型建設機械(中間処理業), 低燃費型建設機械(最終処分業), バッテリー型フォークリフト(中間処理業), ビル用エネルギー管理システム(BEMS), 省エネ機器(OA機器、空調機等), 省エネ型施設(省エネ型破砕機等), スマートメーターの導入, 断熱フィルム・復層ガラス等の導入(冷暖房効率の向上に向けた取り組み), 人感センサーの導入, 屋上緑化の施工・グリーンカーテンの実施, 天然ガス・ハイブリッド・電気自動車の導入(営業車)			
	日本新聞協会 -					_			-			-			-					
13	全国ペット協会				1	_		ı	_		ı	_		1	_					

^{※1} 削減量の記載があった企業のみの集計結果

10. 運輸部門における排出削減目標策定状況

業種		目標策定の状況及びその内容	業種全体としての数値目標
	業省所管41業種		
1	電気事業低炭素社会協議会	各会員事業者がそれぞれ具体的な目標を掲げ、その達成に向け取り組んでいる。 	_
2	石油連盟	 ・石油業界としての削減目標は定めていない。 ・業界全体としての目標策定ではなく、省工ネ法の制度に基づき、各々の石油元売会社が運輸部門に係る省エネルギー対策の計画を策定している。 ・省エネ法では、全ての荷主企業に省エネルギー対策を講じることが求められている。 ・特に、輸送量の大きい事業者である特定荷主は、毎年度、経済産業大臣に、貨物輸送に関する省エネルギー計画と、エネルギー消費量の報告(定期報告)を提出することとなっており、石油元売会社はこの特定荷主に該当する。 ・石油連盟では、省エネ法の適切な解釈や運用のため、『石油業界の改正省エネ法荷主ガイドライン』(2006年10月)を取りまとめた。同ガイドラインを指針に、石油元売各社は、省エネ法における特定荷主として、省エネルギー計画及び定期報告(委託輸送に係るエネルギー消費量、エネルギー消費原単位、省エネ措置の実施状況等)を策定し、経済産業大臣に提出している。 ・このように、荷主企業の省エネルギー対策について定められた法制度に則り、また業界のガイドラインを指針として、個々の石油元売会社が、運輸部門のエネルギー使用の合理化について計画を策定し、取組みに努めている。 	_
3	日本ガス協会	パウンダリー外のため	_
4	日本鉄鋼連盟	定量的な削減目標はないものの、鉄鋼業界一丸となって運輸部門における省エネ・省CO2に取り組む。	_
5	日本化学工業協会	化学業界は製造時のCO2排出量に比較して、物流におけるそれは極めて小さく、それを排出削減目標に加えると、参加企業に対し、成果に見合わない程の更なる集計作業等での負担を強いることになる。 低炭素製品・サービスの提供を通じた貢献に重点的に取り組むことで、オフィスからのCO2排出削減目標の策定には至っていない。	_
6	日本製紙連合会	運輸部門については、業界全体の CO2の削減目標は設定せず、各社の自主的な目標管理活動に委ねている。環境負荷の低減に向けたグリーン物流対策の取組み状況および紙・板紙の一次輸送(工場から消費地まで)における輸送機関別の輸送トン数や輸送トンキロ、エネルギー使用量の把握等、運輸部門における温暖化対策に寄与するデータの収集/蓄積を目的に、物流委員会において加盟企業10社を対象に、業界ベースとしては16回目となる実態調査を実施している。フォローアップ調査結果(2019年度実績)の概要は下項目の通りである。なお、紙・板紙の一次輸送に関するエネルギー消費量は生産工程の消費量に対し3.2%、CO2排出量は2.8%となっている	ı
7	セメント協会	セメントの輸送手段であるタンカーやトラックなどの利用状況は、個々の会社の工場、物流拠点、顧客によって物流形態が異なるため、統一した削減目標を設定するのは困難である。但し、荷主として個々の会社において、低炭素社会の実現に向け、物流の合理化等を継続的に進めている。	-
8	電機・電子温暖化対策連絡会	・当業界における物流部門における排出量のウェイトは極めて小さく、目標策定はしていないが、実績調査を行っている。・個社では、目標設定をして取組を進めているケースもある。	-
9	日本自動車部品工業会	当工業会の運輸業務は主に委託である。	-
10	日本自動車工業会・日本自動車車体工業会	●現状、自動車業界は運輸部門においても、モーダルシフトをはじめ最大限の省工ネ努力をしているが、今後の更なる削減が難 しい。目標設定は困難だが、引き続きモーダルシフトや共同輸送等による輸送効率向上を進め、削減に向けて取り組んでいきた い。	-
11	日本鉱業協会	当業界において、物流は顧客の要求により製品の輸送形態、輸送先が多岐に渡り異なる。また、主に輸送会社に外注であることから各社で事情が異なるため、各社間のデータ調整が難しく、業界の実状を示すデータを取得することができない。そのため、CO2排出削減の目標は定めていない。	-
12	石灰製造工業会	輸送部門の調査は、工場内物流を調査範囲とした。工場内物流とは、工場敷地内の物質の輸送で客先への出荷前までを対象としている。運輸部門からの排出量は石灰製造に関わる排出量と比較して遥かに少量であるため、当業種において目標設定を行っていない。	-
13	日本ゴム工業会	調査の結果、省工ネ法の特定荷主となる対象会社が数社しかなく、また、特定荷主の場合も、自家物流がなく、委託物流のみで、委託先のグループ内物流関連会社も省工ネ法の特定輸送事業者となっているところがなかったため、フォローアップ対象企業における調査は行っていない。 また、自社で使用する燃料については、事業所ごとのエネルギー使用量に含まれている(実際上、運輸関係を分離集計することは不可能である)。	-
14	日本印刷産業連合会	印刷業界は工場からのCO ₂ 排出がほとんどであるため、運輸部門における取組については、その活動対象としておりません。	_
15	日本アルミニウム協会	各社ともに荷主として、輸送エネルギーの合理化に取り組んでいるが自家物流に該当する部門が存在しないため、自家物流の実績数値は『0』である。ただし、一部参加企業においては、製品の輸送を、陸上中心物流システムから、輸送効率に優れた海上輸送へとモーダルシフトを推進しCO2などの低減に貢献している。これにより、国土交通省からエコシップ・モーダルシフトの優良事業者として表彰を受けた実績がある。	-
16	板硝子協会	会員各社とも物流に関してアウトソーシングとなっており、燃料使用量が把握できない。また、輸送量は会員企業によりt-km 法と燃料法を併用しており記載不可なため。	-
17	日本染色協会	ほとんどの企業において、運輸部門の目標を設定するまでには至っていない。	-
18	日本電線工業会	各社とも自社に輸送部門を保有しない中、荷主としてモーダルシフトを初め物流効率化に鋭意取り組んできた。かかる状況において、一層の削減は困難と考え、業界としての目標策定は行わないが、削減努力は継続する。	-
19	日本ガラスびん協会	・業界としての統一目標はない。 ・個社では、輸送量が3000万トン・kmをこえる企業においては、『エネルギーの使用の合理化に関する法律』の目標値を設定し、個々に取り組みを行っている。目標の一例として、a. 輸送にかかる2008~2012年平均のCO2排出量を2002年度比10%削減する。b. 目標として、輸送エネルギー原単位を2006年度対比で、4%削減する。 (原単位の単位:エネルギー使用量 (原油換算 k I) /売上高(百万円))として、取り組んでいる企業もある。	_

### 19-7-2001/19-18-2001-19-200-2011-19-201-2011-19-				
日本草軸株式事会	20	日本ベアリング工業会	(課題及び今後の取組方針)会員企業は自家物流部門がない企業がほとんどであり、数少ない省工ネ法の特定荷主になっている企業においても、当業界は機械部品産業であり、ベアリング以外の機械部品の製造も行うのが常であることなどから、これらが混載される実態にあり、パウンダリー調整が困難なことから、業界としての数値を算出することは難しい。また、各社によって	_
日本海峡(金)	21	日本産業機械工業会	様々な製品を製造しており、輸送に関するエネルギー消費量の削減目標を製品別に区別することは混乱を招くため、目標策定に	-
1	22	日本建設機械工業会	費はごく僅かであり、今後もこの傾向に変化はないと見ている。従って、運輸部門でのエネルギー消費は全体への影響は無視で	-
19		日本伸銅協会	参加会社各社とも自家物流に該当する部門が無いため	_
日本レストル・ム工業会 本社的の総数学院をしていない。				_
	\vdash			_
お. 大部 (人のパイナンイン機能がある。この日本 (市産) である。ようで (日本 (日本) 日本	20	ロ本レストルーム工業会	日代日刊の利息子技でも フ C いない いこの、 飲当な し。	_
1月金、している事業権制 新生工事のための物質(含申1単から生態系統・含申1単的とは、刑事、現場発生 2010年は 10%	27	石油鉱業連盟	油・天然ガスのパイプライン輸送がある。これらは石油鉱業連盟加盟会社が直接行っているよりも外部業者への委託事業が大半である。よって下記輸送部門等排出量には含まれていない。 ・下記輸送部門等排出量は道路工事等第三者要請によるパイプライン切り替え工事の安全確保による放散と、原油出荷時のIPCC	-
日本産業業所協会	28	プレハブ建築協会	【対象としている事業領域】新築工事のための物流(会員工場から中継拠点、会員工場および中継拠点から施工現場、現場発生	2010年比▲10%
はってのります。一帯として、他意味養育にご協力をいただきながら下記の取り組み得を行い、効率化に関めている企業が見られます。 ・ 他活体材が開発に 2019年度 課題:1009年1 (有効問題:6日ま2) 2020年度 課題:1009年度 (有效問題:6日ま2) 2020年度 課題:1009年度 (有效問題:6日ま2) 2021年度 2019年度 2019	29	日本産業車両協会		-
### 2009 一日本アランチャイズチェーン協会	30	日本チェーンストア協会	なっております。一例として、物流事業者にご協力をいただきながら下記の取り組み等を行い、効率化に努めている企業が見られます。 ●物流資材の簡素化 2019年度実績:100%※1 (有効回答:6社※2) 過去の実績:2013年度69.8%、2014年度74.2%、2015年度74.1%、2016年度88.9%、、2017年度100%、2018年度 100% ●多頻度小口配送や短リードタイムの改善 2019年度実績:100%※1 (有効回答:4社※2) 過去の実績:2013年度58.1%、2014年度60.0%、2015年度64.2%、2016年度85.7%、、2017年度100%、2018年度 100% ●通い箱等の活用 2019年度実績:100%※1 (有効回答:7社※2) 過去の実績:2013年度93.0%、2014年度92.9%、2015年度92.9%、2016年度92.9%、、2017年度100%、2018年度	_
CO2削減に向けた取り組みを共同して進めている。館内配送を一括化して効率化を図っている事例(施設周辺の渋滞緩和も)、 バス会社と連携して共同運行バスを導入している事例、パイオディーゼルを燃料として使用した無料が入を運行している事例、 上車場事業者と共同でパークアンドライドを実施している事例、電気自動車の充電スタンドを設置している事例等、様々な取り 組みがある。	31	日本フランチャイズチェーン協会	データの把握を行うとともに、取引先と連携した取組み等を実施していきたいと考えている。 ※業界としての目標は設定していないものの、各社にて目標を設定している。 【SEJ】削減目標:2019年3月策定	_
33 日本百貨店協会 た。この度店舗のエネルギー使用量の調査と併せて店舗の外商車両の台数とガソリン使用量を確認した。○回収率の低さや車両 や運輸部門の定義などについては検討や改善の必要があるものの、今後も継続的な把握により、業務・運輸部門におけるさらな る省エネを検討したい。 -	32	日本ショッピングセンター協会	CO2削減に向けた取り組みを共同して進めている。館内配送を一括化して効率化を図っている事例 (施設周辺の渋滞緩和も)、バス会社と連携して共同運行バスを導入している事例、バイオディーゼルを燃料として使用した無料バスを運行している事例、駐車場事業者と共同でパークアンドライドを実施している事例、電気自動車の充電スタンドを設置している事例等、様々な取り	-
			た。この度店舗のエネルギー使用量の調査と併せて店舗の外商車両の台数とガソリン使用量を確認した。〇回収率の低さや車両 や運輸部門の定義などについては検討や改善の必要があるものの、今後も継続的な把握により、業務・運輸部門におけるさらな	-
35 情報サービス産業協会 -	\vdash	•	-	_
	35	情報サービス産業協会	_	_

36	大手家電流通協会	現在、実態を把握するためにデータ収集に努めている段階です。	-
37	日本DIY協会	対象とする事業領域は、流通小売業(ホームセンター業)として、業務部門(店舗等)を対象としていることから、運輸部門における業界独自の目標策定は行っていない。	-
38	日本貿易会	_	_
39	日本LPガス協会	LPガスの国内物流は大部分を外部事業者に委託しており、当協会で管理可能な範囲を超えているため、当協会としての目標は設定していない。ただし当協会会員会社はそれぞれ削減目標等を設定し、委託事業者に働きかけを行う等、物流からの排出削減、削減量等の改善を行っている。	-
40	リース事業協会	リース設備の輸送は、設備メーカー等が行うため、リース会社は運輸部門を有していない。	-
41	炭素協会	-	_
環境省	介管3業種 		
1	全国産業資源循環連合会	2020年度の排出量を、基準年度の2010年度と同程度(±0%)に抑制する。 2030年度の排出量を、基準年度の2010年度と同程度(−10%)に抑制する。 【対象としている事業領域】産業廃棄物の収集運搬に伴う二酸化炭素排出量。	2020年目標:基準年度の 2010年度と同程度 (±0%) 2030年目標:基準年度の 2010年度と同程度 (▲ 10%)
2	日本新聞協会	取材・営業用の自家用貨物車や社有車は、各社の業務や業態が異なるので把握できない。なお、新聞輸送は新聞社本体の取り組みではない。	-
3	全国ペット協会	ペット小売業界は、零細規模の事業者が多くを占めており、その事業活動においてCO2排出の主な原因となっているのが、店舗での電気使用量であることから、当該計画では、電気使用量以外の調査・目標策定は行っていない。	-

^{※1} 毎年の実施率の算出方法:アンケート調査の該当項目に回答した企業のうち、該当項目に関連する対策を1件以上「実施した」と回答した企業の割合。

^{※2 2017}年度実績より、有効回答社数の記載を開始しました。

11. 運輸部門におけるCO2排出実績

															単位:万t-CO2
	業種		2008年度	2000年度	2010年度	2011年度	2012年度	2013年度	201/任度	2015年度	2016年度	2017年度	2018年度	2010年度	(参考)2019年度総 CO₂排出量(調整後排
	米 佳		2000年度	2003年度	2010年度	2011千皮	2012年度	2013年及	2014年度	2013年度	2010年度	2017年度	2010年度	2019年度	出係数ケース)
経済	産業省所管41業種														
1	電気事業低炭素社会協議会	%1	6.7	6.6	6.8	6.1	5.8	5.5	5.4	5.8	5.5	5.3	5.5	5.2	34,493
2	石油連盟 ※2		_	_	105.5	105.5	103.7	104.4	103.6	107.1	105.5	97.4	95.8	94.9	3,440
3	日本ガス協会 ※3		1.06	1.06	1.09	1.07	1.04	1.00	1.00	1.00	0.99	0.93	0.90	0.70	34
4	日本鉄鋼連盟 ※4		156.3	121.4	144.7	143.5	143.3	146.8	142.4	135.4	137.5	143.1	148.4	137	17,261
5	日本化学工業協会		_	_	_	_	_	_	_	_	_	_	_	_	5,725
6	日本製紙連合会		59.9	55.7	54.1	53.8	51.9	53.4	50.9	50	50.8	50.2	49.6	46.8	1,658
			82	71	71	72	75	79	78	76	72	71	72	71	
7	セメント協会	(バラトラック)	37	34	32	32	34	37	35	32	32	32	32	31	1,614
		(コンテナ)	45	37	39	40	41	42	43	44	38	39	40	40	
8	電機・電子温暖化対策連絡会	☆ ※5	_	_	_	_	-	5.3	1	1.0	3.9	2.2	1.8	0.9	1,299.3
9	日本自動車部品工業会		_	-	_	-	-	-	-	_	-	-	_	_	617.3
40	日本自動車工業会・		00.0	74.5	70.0	74.6	77.4	00.6	00.7	76.7	70.7	70.0		70.4	500
10	日本自動車車体工業会		80.3	71.5	70.8	71.6	77.1	83.6	80.7	76.7	78.7	79.9	77.7	73.1	583
11	日本鉱業協会 ※13		_	_	_	11.22	11.42	10.98	10.88	10.93	11.19	11.01	11.40	11.18	419.8
12	石灰製造工業会 ※6		0.49	0.41	0.53	0.55	0.49	0.64	0.61	0.44	0.48	0.5	0.54	0.47	209.9
13	日本ゴム工業会		_	_	_	-	-	-	-	_	_	-	_	_	141.0
14	日本印刷産業連合会		_	_	_	_	-	-	-	_	_	-	_	_	82.4
15	日本アルミニウム協会		_	_	_	_	-	-	-	_	_	-	_	_	127.1
16	板硝子協会		4.236	3.292	3.65	3.48	3.458	3.516	3.31	4.48	2.899	3.045	2.947	2.946	111.4
17	日本染色協会 ※15		_	_	_	_	-	-	-	_	_	-	_	_	87.9
18	日本電線工業会		4.4	4.4	4.3	4.2	4.6	5	5	4.6	4.5	4.7	5.1	5.2	71.7
19	日本ガラスびん協会 ※7		3.17	3.48	3.03	3.54	4.66	4.79	4.87	5.11	5.11	5.05	4.77	4.64	73.1
20	日本ベアリング工業会		_	_	_	_	-	_	_	_	_	-	_	_	50.8
21	日本産業機械工業会 ※16		_	-	-	_	-	-	-	-	_	-	_	_	48.5
22	日本建設機械工業会 ※8		10.4	9.8	9.7	12.8	18.5	_	-	-	_	-	_	_	35.7
23	日本伸銅協会		_	-	_	_	-	_	-	_	_	-	_	_	38.2
24	日本工作機械工業会 ※17		_	-	-	_	-	_	-	-	_	-	_	_	29.38
25	石灰石鉱業協会 ※9		_	-	0.46	0.47	0.46	0.48	0.51	0.5	0.49	0.48	0.46	0.48	22.10
26	日本レストルーム工業会		_	-	_	_	-	_	-	_	_	-	_	_	19.8
27	石油鉱業連盟		10.94	13.06	13.14	14.27	13.61	13.84	13.12	12.1	14.5	13.85	19.23	9.38	21.2
28	プレハブ建築協会 ※10		_	-	13.15	14.18	14.3	15.49	14.63	14.76	14.43	12.94	12.25	11.89	9.87
29	日本産業車両協会		_	-	_	_	-	_	-	_	_	-	_	_	4.40
30	日本チェーンストア協会		_	_	_	_	-	21	22	25.4	23.2	23.2	22.7	22.9	206.0
31	日本フランチャイズチェーン	ン協会 ※11	_	8.02	7.75	7.53	7.49	7.4	7.59	7.51	6.71	7.55	7.58	7.01	375.60
32	日本ショッピングセンターは		_	_	_	_	-	-	_	_	_	-	_	_	220.7
33	日本百貨店協会		_	_	_	_	-	_	_	_	_	_	_	_	113.20
34	日本チェーンドラッグストス	ア協会	_	_	_	_	_	-	_	_	_	_	_	_	155.10
35	情報サービス産業協会		_	_	_	_	_	_	_	_	_	_	_	_	56.7
36	大手家電流通協会 ※18		_	_	_	_	-	-	0.56	0.27	0.6	0.56	0.72	0.45	60.3
37	日本DIY協会		_	_	_	_	_	_	_	_	_	-	_	_	33.30
38	日本貿易会		_	_	_	-	_	-	-	_	-	_	_	_	3.20
39	日本LPガス協会 ※14		_	_	_	-	_	6.5	6.5	8.2	7.9	8.1	7.6	7.3	2.377
40	リース事業協会		_	_	_	_	_	_	_	_	-	_	_	_	1.4
41	炭素協会		_	_	_	-	_	_	-	_	-	_	_	_	41.9
環境	省所管3業種														
1	全国産業廃棄物連合会 ※12		45.7	44.5	45.3	46.9	47.6	48.6	50.2	50.6	51	51	51.2	48.7	539.3
2	日本新聞協会		_	_	_		_	_	_	_		_	_		34.88
3	全国ペット協会		_	-	_	_	-	-	-	_	_	-	_	_	0.501
													_		

- ※1 2015年度以降は協議会会員事業者のうち、当該年度に協議会の下で事業活動を行っていた事業者の実績を示し、2014年度以前は参考として電事連の実績を示す。
- ※2 原油換算量を、12年度以前は12年度の排出係数、13年度以降は13年度の排出係数を用いて事務局にてCO2排出量に換算
- ***3** -
- ※4 II. (2) に記載のCOz排出量等の実績と重複
- ※5 当該項目は、当業界内では任意回答としているため、年度毎の回答に差異が生じた。
- ※6 調査年度によって回答社数が異なる(59~63社)。16年度は59社が回答
- ※7 取り組みを継続しておこなっているが、業界としての定量的な把握は行っていない。個々の対策における削減効果の算出については、今後検討していく。
- ※8 本年度、注記なし
- ※9 海運の一部を自社輸送で実施している唯一の鉱山の数値である。
- ※10 本年度報告より電力の排出係数を0.350kg-CO2/kWhに変更し、2010年度以降再計算した
- ※11 CO2排出量は、配送センターから各店舗間の配送車両における燃料使用量から算出。

	2009年度	2010年度	2011年度	2012年度	2013年度	2014年度	2015年度	2016年度	2016年度	2016年度	2016年度
1店舗当たりの年間数値(9社平均数値)(t-CO2)	8.02	7.75	7.53	7.49	7.40	7.59	7.51	6.71	6.71	6.71	6.71

配送車両におけるカバー率:82.6%(たばこ 雑誌 新聞等の専用車を除く)。

算出に当たり、環境省 経済産業省『温室効果ガス排出量算定 報告マニュアルの「CO2排出係数(軽油: $2.58t-COz/k\ell$)」を使用。

- %12 会員企業を対象にした実態調査結果に基づく主な燃料消費量を掲載。 II. (2) に記載の CO_2 排出量等の実績と重複
- ※13 前述のとおり、当業界では物流データの取得の難しさから2016年度の回答票までは実績を記載していなかったが、当業界の物流におけるエネルギー消費量などを大まかに把握するため、また、各社の取り組みの参考となることを期待して、各社から省エネ法の定期報告書(特定 荷主)に基づいて可能な範囲でデータを収集することとした。データ算定方法 精度は各社の実情によって異なったまま、調整は実施していない。
- ※14 当協会の低炭素社会実行計画に参画している7社からデータを集め、集計している。引き続き、LPガスの配送を行う外部委託事業者等にCO2排出量等の削減等の働きかけを行う。
- ※15 物流については運送業者への依託がほとんどであるため。
- ※16 業界として削減目標の策定に至っていないためデータ収集を行っていない。
- ※17 会員各社では運輸部門を外部委託しているため。
- ※18 低炭素社会実行計画参加企業に対する実施企業数(6 グループのうち一部については法人別に集計しているため、全11社)

12. 運輸部門におけるCO2排出削減対策とその効果

42	業種	実施年度	主な対策内容	削減効果 (t-CO ₂ /年)	(参考) 2019年 排出量(万t (調整後排出係 うち運輸部門 (万t-CO ₂)	-CO ₂) 数ケース)
経	済産業省所管41業種 					1
	電気事業低炭素社会協議 会	2019年度	・低公害・低燃費型車両、電気自動車の導入 ・EV導入推進のキャンペーン参加、充電サービス事業への着手 ・エコドライブの励行(適正タイヤ空気圧による運転、急発進・急加速・急ブレーキの抑制、アイドリングストップの実施、ノーマイカーデーの実施 等) ・燃料運搬船の大型化、他社との共同輸送の実施 ・産業廃棄物の効率的回収(共同回収等)による輸送面での環境負荷低減 ・鉄道、船舶の活用によるモーダルシフト等の省エネ施策の実施 ・車両の大型化、積み合わせ輸送・混載便の利用、輸送ルートの工夫、計画的な貨物輸送の実施 ・公共交通機関の利用 ・TV会議システムの活用による事業所間移動に係る環境負荷低減 等		5.20	34,493
		2020年度以降	自らの運輸部門における取組により、引き続き省エネ・省CO2に努めていく。	_	_	_
	2 石油連盟	2019年度	・タンクローリーや内航タンカーの大型化、油槽所の共同利用化及び製品融通等による総輸送距離の削減などの物流の効率化およびタンクローリーの走行燃費の改善による燃料消費の削減を推進している。具体的な推進策は以下の通り。具体的な物流の効率化の推進策は以下のとおり。 〈陸上輸送の効率化対策〉 ○タンクローリーの大型化と積載率の向上 ○油槽所の共同化、製品融通による総輸送距離の削減 ○給油所地下タンクの大型化等による配送の効率化 ○夜間・休日配送の推進(交通渋滞による燃費悪化防止) ○エコドライブ推進による走行燃費の向上 〈海上輸送の効率化対策〉 ○船舶の大型化と積載率の向上 ○油槽所の共同化に伴う共同配船による総輸送距離の削減 業界全体の目標を別途策定してはいないが、引き続き省エネ法に基づき、個々の石油元売会社が省エネルギー計画を策定し、取組		94.9	3,440
	3 日本ガス協会		みに努める。 ・天然ガス自動車、燃料電池自動車等の次世代自動車の導入促進(都市ガス事業者における2019年度末の天然ガス自動車導入台数:10,229台) ・エコドライブ(省エネ運転)の徹底 ・テレマティクスによる車両・運行管理	- - -	0.70	34
	- 1 (2 () 1/1/2 ()		・天然ガス自動車、燃料電池自動車等の次世代自動車の導入促進	_	_	_
		2020年度以降	・エコドライブ (省エネ運転) の徹底	_	_	_
			・テレマティクスによる車両・運行管理	_	_	_

	業種	実施年度	主な対策内容	削減効果 (t-CO ₂ /年)	(参考) 2019 排出量(万t (調整後排出係 うち運輸部門 (万t-CO ₂)	:-CO ₂)
		2019年度	モーダルシフト化(トラック輸送から、船舶・貨車輸送への切替)	_	137	17,261
4	日本鉄鋼連盟		船舶の陸電設備の活用(停泊地で陸電設備の活用により重油使用量の削減) モーダルシフト化(トラック輸送から、船舶・貨車輸送への切替)	*1		
		2020年度以降	C	*1	_	_
5	日本化学工業協会	2019年度	_	-	_	5,725
	口本化于工来励云	2020年度以降	-	_	_	_
6	日本製紙連合会	2019年度	グリーン物流対策(省エネ対策)として、以下のような取り組みを進めている。・工場倉庫の充実、消費地倉庫の再配置による物流拠点の整備 ・積載率の向上および空車、空船率の削減(積み合わせ輸送・混載便の利用)・製品物流と調達資材物流との連携強化(復荷対策) ・顧客(代理店、大口ユーザー等)への直納化・交錯輸送の排除 上記のほか、物流量の単位当りのエネルギー使用の削減に寄与するモーダルシフトの推進や輸送便数の削減を目的とした車両の大型化及びトレーラー化等が進められている。また、ロットの縮小やトラックドライバーの不足等を背景に、輸送効率の向上等に寄与する共同物流・共同配送が本格的に検討されている。	_	46.80	1,658
		2020年度以降		_	_	_
7	セメント協会	2019年度	・タンカー1) 燃費向上に繋がるフレンドフィンなど省エネ設備の採用 2) 船底、スクリューの研磨の徹底、抵抗の少ない塗料の使用 3) 減速航行による経済速度の徹底など 4) 船舶の大型化・トラック1) デジタルタコグラフ、省エネタイヤ、省燃費潤滑油の導入 2) エコ運転の教育、車両整備の徹底など 3) 車両の大型化	-	71	1,614
		2020年度以降	個々の会社において物流の合理化が進められる予定である。	-	_	_
			モーダルシフト拡大(トラック輸送からCO2排出の少ない鉄道、船舶へ輸送手段を切り替え。)	3,301 t-CO2/年		
8	電機・電子温暖化対策	2019年度	輸配送ネットワーク効率化(IT技術を活用し、域内輸配送、車両・輸送ルートを整備し最適な輸配送網を実現。)	1,240 t-CO2/年		
	連絡会		 積載効率の向上(梱包荷姿の小型化・軽量化設計、コンテナの設計等による積載効率の向上。)	517 t-CO2/年	0.9	1,299.3
		2020年度以降	実施予定の対策に関する調査は行っていない。	_	_	_
9	日本自動車部品工業会	2019年度	_	-	_	617.3
<u> </u>		2020年度以降	_	_	_	_
10	日本自動車工業会・	2019年度	・モーダルシフトによる輸送効率の向上 ・共同輸送、直接輸送、輸送ルート短縮等による輸送効率の向上 ・梱包・包装資材使用量の低減、積載荷姿見直し等による積載率向上	_	73.10	583
10	日本自動車車体工業会	2020年度以降	・モーダルシフトによる輸送効率の向上 ・共同輸送、直接輸送、輸送ルート短縮等による輸送効率の向上 ・梱包・包装資材使用量の低減、積載荷姿見直し等による積載率向上	-	_	_

	業種	実施年度	主な対策内容	削減効果 (t-CO ₂ /年)	(参考) 2019年 排出量(万t (調整後排出係 うち運輸部門 (万t-CO ₂)	-CO ₂)
11	日本鉱業協会	2019年度	a. 業務提携による物流の効率化 b. 物流の短距離化と積載率の向上 c. モーダルシフト	-	11.18	419.8
		2020年度以降	引き続き輸送コストの削減および輸送業務の合理化の観点から運輸部門のエネルギー消費量削減およびCO2排出量削減に寄与していく。また、良好事例については会員企業間で情報共有を図ることを推進する。	-	-	-
12	石灰製造工業会	2019年度	・アイドリングストップの徹底、急発進、急停車しない。・重機・フォークリフト等の燃料に「植物由来の添加剤」を加え、エネルギー節減と排ガスのクリーン化を推進している。・電気式フォークリフトの採用により、軽油1300L/年相当が削減できた。・工場内の横持ちを減らしたことにより、軽油1800L/年が削減できた。・大型作業車の廃止により、軽油3000L/年が削減できた。・専門スタッフによるフォークリフトやダンプの定期点検・整備の実施。・特定特殊自動車排出ガス規制基準適合車を導入。	_	0.47	209.9
		2020年度以降	-	_	-	_
13	日本ゴム工業会	2019年度	・輸送ルート・運行等の見直し・トラック輸送の積載効率向上・モーダルシフトの実施・拡大・自動車に関する対策(輸送効率向上、輸送便数の減少、低CO2走行)・フォークリフト(低CO2走行)	_	_	141.0
		2020年度以降	引き続き各社での取組を実施していくこととしている。	_	_	_
14	日本印刷産業連合会	2019年度	_	-	-	82.4
14	日本印刷任来连口云	2020年度以降	_	-	_	_
15	日本アルミニウム協会	2019年度	_	_	_	127.1
		2020年度以降		-	_	
16	板硝子協会	2019年度	モーダルシフト 空パレット回収効率化 輸送のロットアップ	576 t-CO ₂ /年 350 t-CO ₂ /年 42 t-CO ₂ /年	2.946	111.4
16		2020年度以降	モーダルシフト 輸送のロットアップ 輸送効率化	27 t-CO ₂ /年 53 t-CO ₂ /年 78 t-CO ₂ /年		_
		2019年度	自家用車通勤の社員には、省エネ・安全運転を指導している。	-	_	87.9
17	日本染色協会	2020年度以降	「トラック輸送」よりは「JRコンテナ」の利用を心がけて、CO2削減に取り組むつもりであるが、緊急便やJRコンテナを利用できない地域では、引き続きトラック輸送に頼ることになる。アンケートには報告が無かったが、共同運航便の導入を検討している企業グループがある。	_		
			輸送・積載効率の向上(輸送ロット見直しによる積載率向上)	_		
		2019年度	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	-		
18	日本電線工業会		輸送距離の短縮(輸送ルート変更による輸送距離短縮)	_	5.2	72
10	山外电水上未云		輸送・積載効率の向上(輸送ロット見直しによる積載率向上)	_		
-	-	-	81			

	業種	実施年度	主な対策内容	削減効果 (t-CO ₂ /年)	(参考)2019年 排出量(万t- (調整後排出係 うち運輸部門 (万t-CO ₂)	-CO ₂)
		2020年度以降	モーダルシフトの推進(鉄道コンテナによる直送化、中継拠点活用による幹線輸送の鉄道及びフェリーへのシフト	_	_	
			輸送距離の短縮(輸送ルート変更による輸送距離短縮)	_	_	_
19	日本ガラスびん協会	2019年度	・トラック輸送からフェリー、鉄道による輸送への切替(モーダルシフト)。・軽量パレットの使用およびびんの軽量化により積載重量の軽減。 ・包装形態のバルク化によるトラック積載効率アップ。・デポ倉庫の設置、再配置による物流拠点の最適化。・工場間輸送、交差出荷の削減 ・製品用包装材資材(パレット等)の回収に製品輸送トラックの帰り便を使用。・製品のストックヤードの活用⇒計画的な配送を実施。・工場間の製品転送をトラック輸送から鉄道輸送に切り替え。・運輸部門の数値には表れないが、物流パレットの回収において業界での共同回収を開始した。	<u>-</u>	4.64	73.1
		2020年度以降	・これまでの取り組みを継続していく。・物流パレットの共同回収は6社中3社で実施しているが、社数を増やし効率的な回収を励行する。・今後は、業界各社による共同配送、物流パレットの共有化、配送拠点を共有し、相互利用などを検討していく予定である。	_	_	_
20	日本ベアリング工業会	2019年度	・エコドライブの徹底(燃費の良い速度、アイドリングストップ)・積載効率向上(梱包方法の見直しなど)・輸送距離の短縮 (輸出品積出港の変更など)	-	_	50.8
		2020年度以降	同上	_	_	_
21	日本産業機械工業会	2019年度	モーダルシフトの導入や、部品供給業者から部品を集荷する際、トラックで最適なルートを回って1度の集荷で済ませる等、輸送 の効率化を図っている等の事例が報告されている。	_	_	48.5
		2020年度以降	効率的な輸送に向けた運送業者との協力など、会員各社の積極的な取り組みを推進する。	_	_	_
22	日本建設機械工業会	2019年度 2020年度以降		-	_ _	35.7
23	日本伸銅協会	2019年度 2020年度以降	- -	<u>-</u>		38.2
24	日本工作機械工業会	2019年度 2020年度以降	- -	<u>-</u> -	-	29.38 –
25	石灰石鉱業協会	2019年度 2020年度以降	積載量最大化による納入など、無駄のない輸送を目指した配船に努めている。 -	-	0.48	22.10 –
26	日本レストルーム工業会	2019年度 2020年度以降	・物流計画の見直し(再配拠点整備、巡回集荷等)・輸送効率アップ(積載効率、運送業者へのエコドライブ要請等)・省エネ法の特定荷主として定期報告・積み込み時にアイドリングストップ 引き続き上記を遂行していく。	-		19.8
27	石油鉱業連盟	2019年度 2020年度以降	・委託先でのローリーによるエコドライブを徹底するとともに、輸送距離の削減、ローリーやコンテナの大型化を検討中。・LNG 輸送におけるLNGコンテナ輸送を開発し、モーダルシフトを実現したのが、大きな貢献であり、今後も創意工夫を凝らして、輸送効率を上げる努力をする。	-	9.38	21.2

	業種	実施年度	主な対策内容	削減効果 (t-CO ₂ /年)	(参考) 2019年 排出量(万t- (調整後排出係 うち運輸部門 (万t-CO ₂)	-CO ₂)
28	プレハブ建築協会	2019年度	・トラックの輸送距離短縮(大型部材工場の主要販売エリアへの配置) ・調達物流の集約による輸送効率向上(物流センターへ納入する対象商材の拡大) ・ミルクラン輸送による輸送効率向上(ミルクラン輸送対象の部材及び部材メーカーの拡大)	-	11.89	9.87
20		2020年度以降	・トラックの輸送距離短縮(大型部材工場の主要販売エリアへの配置) ・調達物流の集約による輸送効率向上(物流センターへ納入する対象商材の拡大) ・ミルクラン輸送による輸送効率向上(ミルクラン輸送対象の部材及び部材メーカーの拡大)	-	_	_
29	日本産業車両協会	2019年度	・部品調達便トラック輸送ファクタのデータベース化推進 ・デポ倉庫活用によるトラックへの積載効率向上		_	4.40
		2020年度以降	各参加企業での取り組みを継続	ı	_	_
30		2019年度 2020年度以降	 ●物流資材の簡素化 ●低温物流においてカゴ車での保冷マテハンで配送していたが、輸送トラックから店舗売場引込みによりカートラックやドーリー台車での納品へ変更し、輸送機器の軽量化を実現・店舗納品時のダンボール使用の削減と通いの大袋等の使用拡大・折りたたみコンテナの利用やハンガー納品によりダンボール使用量を低減・青果物イフコ・コンテナの活用 ●多頻度小口配送や短リードタイムの改善・冷凍食品の店舗発注回数を見直し、車両積載効率を改善・店舗へのオリコンサイズを減らすことで使用比率を高め、車両積載効率を改善・商品のDC(在庫保管型物流センター)化を進め、リードタイムの短縮と毎日納品による店舗在庫削減を実現・店配送車輌の便別納品ボリュームの平準化施策により述べ車輌台数を削減・仕入先納品ルートの共同配送化の拡大により車両台数を削減・首都圏における物流センターの集約により店舗への納品車両台数を削減・遠距離配送の中止など非効率な配送エリアの見直しにより車両台数を削減・通い箱等の活用・リピートボックス(特定荷主用の専用オリコン)の利用を推進し、ダンボール箱の利用を少なくして省資源を図る・同上 	<u>-</u>		206.0
31	日本フランチャイズ チェーン協会	2019年度	《燃費の向上》 ・配送車両使用燃料削減・エコドライブ(省燃費運転)の実施・配送車両の燃費向上・エコタイヤの導入促進・アイドリングストップ運動の実施 《共同配送の推進》 共同配送推進による車両の削減 《配送の効率化》 配送車両の運行台数の削減 《低公害車の導入》 ・低公害車の導入促進・環境対応車両の効果測定と運用・導入の促進 《その他》 ・配送員のエコドライブの技術指導・配送コース見直しによる車両の削減	*2	7.01	375.60

	業種	実施年度	主な対策内容	削減効果 (t-CO ₂ /年)	(参考) 2019年 排出量(万t (調整後排出係 うち運輸部門 (万t-CO ₂)	-CO ₂)
		2020年度以降	・同上	_	-	-
32	日本ショッピング	2019年度	_	_	-	220.7
32	センター協会	2020年度以降	_	_	_	-
33	日本百貨店協会	2019年度	○納品、配送等の物流に関する取り組みは運送事業者への依頼という形で実施しており、アイドリングストップの推進が80%と最も割合が高く、次いでエコドライブの推進が72%である。また、共同運送や積載率向上の要求についても半数以上の店舗で取り組まれている ○百貨店保有の営業車両については、エコドライブ、アイドリングストップが70%以上の店舗で取り組まれている。	-	_	113.20
		2020年度以降		_	_	-
34	日本チェーンドラッグ	2019年度	_	_	_	155.10
	ストア協会	2020年度以降		_	_	- -
35	情報サービス産業協会	2019年度	_		_	56.7
		2020年度以降		_	_	_
36	大手家電流通協会		○納品、配送等の物流 省エネの取り組みを示す方針を策定 省エネの取り組みの推進体制を整備 物流に伴う自動車用エネルギー使用量の把握 低燃費車、低公害車の使用状況等の把握 物流事業者に対し低燃費/低公害車両の使用推進を求めている 物流事業者に対しエコドライブの推進を求めている 物流事業者に対しアイドリングストップの推進を求めている 物流事業者に対し共同配送の推進を求めている 物流事業者に対し、積載率の向上を求めている つ自社保有の営業車両・エコドライブの推進・アイドリングストップの推進・低燃費、低公害車化の推進・エネルギー使用量の把握	_	0.45	60.3
		2020年度以降	_	_	_	_
27	□+bn44^	2019年度	・保有車両の運行、運用管理の効率化:低公害車(ハイブリッド車等)の導入・入替 燃費の向上(アイドリングストップ等) 配送車両の積載物の軽量化(配送資材の簡素化等) 社有車の燃費向上(燃費向上のため軽自動車比率を高める・47台中軽自動車26台(55.3%)・配送の効率化:運行台数の削減(1台あたりの積載効率向上のため混載店舗積みによる積載効率向上、物流・宅配業務の委託配送車両の運行台数の削減(店舗配送日程調整による削減) 共同配送の実施(遠距離店舗への配送ルートの見直しを実施) 東松山センターの新設(取扱量・金額ともに1.7倍、生産性向上率は1.8倍のセンター稼動)	*3	_	33.30
37	日本DIY協会	2020年度以降	・保有車両の運行、運用管理の効率化:店舗使用車両の更新に合わせ、アイドリングストップ車への切替を実施 低公害車の導入 (社有車 の普通車21台を段階的に八イブリッドに変更) ・配送の効率化:関西センターの新設(関東からのDC商品の輸送を関西センターへ移管) 九州物流センターの拡張 (4店舗 から9店舗へモー ダルシフトを拡大) センター通過お取引先様の拡大(配送の一本化による配送トラックの軽減)	* 3	_	_

	業種	実施年度	主な対策内容	削減効果 (t-CO ₂ /年)	(参考) 2019 排出量(万t (調整後排出係 うち運輸部門 (万t-CO ₂)	:-CO ₂)
38	日本貿易会	2019年度	①物流拠点、ルート、システムの合理化、効率化を図った結果、CO2排出削減につながった取組 ②輸送手段、方法の変更で合理化、効率化を図った結果、CO2排出削減につながった取組 ③その他、啓蒙活動などを行った結果、CO2排出削減につながった取組	-	_	3.20
39	日本LPガス協会	2019年度	・陸上輸送の効率化 (大型化ローリー、バルク配送) ローリーの大型化を促進し、物流の効率化を図る、出荷ポイントの最適化により輸送距離の短縮を目指す ・海上輸送の効率化 (大型船舶化等)内航船の大型化を促進し、物流の効率化を図る。納入先に近い出荷ポイントを選定し、輸送距離の短縮を図る。・原単位(※)=0.00254以下の達成に努める。※原単位=エネルギーの使用量(原油換算KL)÷輸送量(千t・km) ・安定走行の遵守、無用な空ぶかしや急発進をしないといったエコドライブ推進、車検および整備の実施によって、燃費向上を図る。 ・陸上では可能な限りローリーの大型化を図る。 ・最適航路での配船により輸送回数、並びに輸送距離を削減し、船舶の燃料消費量低減を図る。 ・陸上、海上ともに納入ロットアップを推進し、輸送回数減による燃料消費量の削減を図る。	_	7.3	2.377
		2020年度以降	_	_	_	_
40	リース事業協会	2019年度	_	_	_	1.4
		2020年度以降	_	_	_	-
41	炭素協会	2019年度		_	_	41.9
理培養		2020年度以降	<u> </u>	_	_	_
保児1		2019年度	収集運搬時の燃料使用量削減, 収集運搬の効率化, バイオマス燃料の利用, 収集運搬車両の低炭素化	_	48.70	539.3
1	全国産業廃棄物連合会		収集運搬時の燃料消費削減, 収集運搬の効率化, バイオマス燃料の使用	_	-	-
		2019年度	_	_	_	34.88
2	日本新聞協会	2020年度以降	_	_	_	_
	☆団∾… ト 切△	2019年度	_	_	_	0.501
3	全国ペット協会	2020年度以降	_	_	_	_

^{※1} 鉄鋼内航船では停泊地での重油使用を70~90%程度削減

^{※2} 個社ベースでは、削減量の記載あり

^{※3} 削減効果の事例としての記載あり。

13 低炭素製品・サービス等による他部門での削減の状況

業種	MARKAGO 11 12-00	当該製品等の特徴、	年度消	0 2030 削 年度削 込 減見込	2019年度		2020年後以蘇維格罗士斯納
	低炭素製品・サービス等	従来品等との差異など	量(万t	t- 量(万t-		削減効果(万t-CO2	2020年度以降実施予定取組
経済産業省所管41業	通		CO2)) CO ₂)			
	電気を効率的にお使いいただく観点から、トータ ルエネルギーソリューションによる高効率電気機 器等の普及	具体例 ・高効率ヒートポンプや大規模蓄熱槽・排熱利用設備の活用と共に人工知能(AI)技術を活用した効率的なエネルギー供給 サービスを導入 ・加熱性能を強化した空冷ヒートポンプ熱源機を共同開発し発売			-		-
		具体例 ・再生可能エネルギー100%による世田谷線の運行 ・水力や地熱等の電力を提供するプランの提供 ・省エネコンサルティングサービスの充実			自社設備の省エネ対策はもとより、お客さまが省エネ・省CO2を実現するための情報提供を通じ、お客さまと - ともに低炭素社会の実現を目指していく。		-
電気事業低炭素社会協議会	お客様の電気使用の効率化を実現するための環境 整備としてのスマートメーター導入			-	お客さま倒におけるピーク抑制、電気使用の効率化を実現する観点から、政府目標「2020年代早期に全世帯、 全工場にスマートメーター導入」の達成に向けて、しっかりと取り組んでいく。		電気事業においては、引き続き、電気を効率的にお使いいただくための高効率機器の普及や、省エネ・省CO2を実現するためのご提案・情報提供、スマートメーターによる節電支援等、低炭素製品・サービスの開発・普及を通じて、お客さまとともに社会全体での一層の低炭素化に努めていく。
	果	一般財団法人 ヒートポンプ・蓄熱センターによる「ヒートポンプ普及拡大による最終エネルギー消費量及び温室効果ガスの削減効果の見通しについて」(2020年8月公表)によれば、民生部門(家庭及び業務部門)や産業部門の熱需要を賄っているポイラ等をヒートポンプ機器で代替した場合、温室効果ガス(CO2換算)削減効果は、2030年度で▲3,754万t-CO2/年(2018年度比)と試算。		- 3,754	4		-
	電気自動車普及拡大による温室効果ガス削減効果	国土交通省の「自動車燃料消費量統計年報(令和元年度分)」のエネルギー消費量を用いて、仮に我が国の全ての軽自動車が電 気自動車に置き換わった場合、温室効果ガス(CO2換算)削減効果は、約1,640万t-CO2/年と試算される。これは日本のCO2排 出量の約1.4%に相当する。 ※ 試算条件・・・CO2排出係数0.444kg-CO2/kWh(協議会2019年度実績)、軽自動車燃費: 26.2km/l、電気自動車電 費: 0.118kWh/kmと仮定。日本のCO2排出量: 2018年度温室効果ガス排出量(環境省発表)の1,138百万t。		- 1,640			-
	削減効果合計			- 5,394	4		
	潜熱回収型高効率石油給湯器「エコフィール」	○従来機の熱効率83%○工力イール熱効率95%○年間省工ネ効果79リットル○年間CO2削減量197kg○出典:日本ガス石油機器工業会資料・機器メーカーパンフレット等	10.	.9 -	- 2006年度から2019年度末までに約50.7万台が導入	10.0	0 エコフィールについては、機器メーカー団体(日本ガス石油機器工業会)と連携し、普及促進活動を展開する。
石油連盟	パイオマス燃料の導入	・石油業界は、LCAでの温室効果ガス削減効果、食料との競合問題、供給安定性、生態系への配慮など、持続可能性が確保され、かつ安定的・経済的な調達が可能なパイオ燃料の導入に取り組んでいる。 ・パイオ燃料の利用にあたっては、既存のガソリン流通設備をそのまま使用できる等の観点より、パイオエタノールと石油系ガス(イソブテン)を合成した「パイオETBEI をカソリンに配合する方式を採用している。ガソリン中のパイオETBE配合率10voNk以上を保証する場合には「パイオカソリン」の名称を使用できる等の体制も整備した。 ・2007 年度より実証事業としてパイオETBEを配合したガソリンの販売を開始し、2011年度以降は、エネルギー供給構造高度化法(高度化法)における毎年度の導入目標※を各社は葡実に達成している。 ・今後も、持続可能性基準を巡る国際動向、次世代パイオ燃料の技術開発の動向、政府の方針等をふまえ、高度化法に基づくパイオエタノール等の導入目標の達成に向けて取り組んでいく。 ※2018 年度から2022年度までの各年度において石油各社全体で原油換算50万kLのパイオエタノールを導入することも可能)。		-	-		-
	************************************	・エンジンオイルは、自動車や、船舶等の輸送機械のエンジン内部に封入され、その動作等に際して潤滑性、密閉性、冷却性、清浄性、防錆性の作用をし、エンジン性能を確保する。 ・近年、地球温暖化対策の推進のため、自動車の燃費向上の要求が高まる中、国内外では、粘性負荷の少ない低粘度の省燃費型自動車用エンジンオイルの規格が制定されると共に、これらに準拠した製品の開発・市場への導入が進められている。 ・また自動車業界、石油業界等は、JASOのエンジンオイル規格およびその準拠製品を国内外で適正に普及促進するため、「JASOエンジン油規格普及促進協議会」を設立・運営し、製造・販売事業者によるJASOグレードの自己認証およびラベル表示、同協議会による自己認証製品の登録および公表、市場サーベイランス(試質分析)調査を行っている。			-		-
	自動車燃料のサルファーフリー化	 石油連盟では、国の規制を前倒しして、2005年1月から加盟各社の製油所から出荷される自動車燃料について硫黄分10ppm 以下のサルファーフリー化を行った。 ・サルファーフリー自動車燃料の製造にあたり製油所のエネルギー消費量は増加しCO2排出量の増加要因となるものの、同燃料が可能とする新型エンジンや最新排力ス後処理システムとの最適な組み合わせにより燃費が改善し、自動車側での燃費改善という形でCO2排出量の削減が可能であることが明らかになっている。 			-		-
	削減効果合計		10.	_	-	10.0	0
	コージェネレーション	ガスタービン、ガスエンジンにより発電するとともに廃熱を有効利用することで、エネルギーを効率的に利用できる。	82	20 3,800	oj -	3	3
	-	従来の給湯器+火力発電より49%のCO2削減効果	18	+	発電する際の機熱を利用することで省エネルギーに資するコージェネレーション・エネファーム等の普及を促	•	5
日本ガス協会	産業用熱需要の天然ガス化	石炭や石油に比べ燃焼時のCO2発生量が少ない天然ガスへの転換(石炭のCO2発生量を100とすると、石油80/天然ガス57)	32		800 進するため、行政と一体となった連絡会・協議会、各種教育・研修・セミナーを開催したほか、導入事例集・ パンフレットを作成・公開した。また、都市ガス事業者の電力事業において、太陽光(約188千kW)、風力		7 業務用燃料電池のラインナップ拡大を予定しているほか、コージェネレーション・家庭用燃料電池などのガスシス
	ガス空調	COz発生量が少ない天然ガスのエネルギーで空調するものであり、系統電力削減効果やピークカット効果がある	12	20 288 (約130千kW)、バイオマス(約71千kW)等の再工ネ電源を導入している(2019年度実績)。その他、エネ			5 テムの更なる効率の向上とコストダウンによる一層の普及促進を図る。 -
	天然ガス自動車	ガソリン車と比較し、COz排出量を約20%削減	7.	73 670	ファーム &太陽光によるW発電システムを約5,000台販売している(2019年度単年度実績)。 670		3
	高効率給湯器(エコジョーズ)	従来型の給湯器と比較し、CO2排出量を約13%削減	40		-	16	5
	削减効果合計		1,91	13 6,208	3	37	7

		当該製品等の特徴、		2030	2019年度		
業種	低炭素製品・サービス等			△ 減見込 - 量(万t-	Date 18	Window (To co.)	2020年度以降実施予定取組
				CO ₂)	取組実績	削減効果(万t-CO2)	
	自動車用高抗張力鋼板	従来の普通銅鋼板を用いた自動車に対し軽量化を実現し、走行時における燃費改善によるCO2排出量削減効果を得ることが出来る	1,487	7 1,671		1,426	・引き続き、上記5品種の定量的な把握に努める。
	船舶用高抗張力鋼板	従来の普通銅鋼板を用いた船舶よりも軽量化を実現し、航走時における燃費改善によるCO2排出量削減効果を得ることが出来 る	283	3 306	・2002年3月に経済産業省より「L C A的視点からみた鉄鋼製品の社会における省エネルギー質献にかかる調査」事業を受託し、一般財団法人日本エネルギー経済研究所のご協力の下、2000年度断面における鋼材使用段	269	・上記5品種に限らず、高機能鋼材の多くは、低燃費自動車や高効率発電設備・変圧器等の製品のエネルギー効率の 向上に貢献し、使用段階でのCO2排出削減に貢献している。 ・現在、上記5品種の粗鋼生産に占める比率は6.6%に留まることから、対象の拡充の可能性を引き続き検討する。 ・なお、経団連は、グローバル・バリューチェーン (GVC) を通じた削減貢献の重要性を分かり易くPRする観点か
日本鉄鋼連盟	ボイラー用鋼管	従来型の耐熱網管よりも更に高温域に耐えうるものであり、汽力発電設備における発電効率の向上を実現し、投入燃料消費量 の改善によるCO2排出量削減効果を得ることが出来る	660	0 1,086	階のCO2削減効果を取りまとめたが、今回、これらの数値を更新し2019年度断面における削減効果を試算し	562	ら、日本の各業種・企業の製品・サービスによる削減貢献事例を取りまとめた事例集「グローバル・パリューチェーンを通じた削減貢献-民間企業による新たな温暖化対策の視点-Jを2018年11月に公表した。 ・本事例集では17業種・企業における削減貢献事例が掲載されており、当連盟ではエコプロダクトとして削減効果
	方向性驚厥緩緩物	現在のトランス用方向性電磁網板は、従来の電磁網板に比べ変圧時に生じる鉄損(エネルギーロス)を低減可能であり、効率 的な送配電に寄与することからCO2排出量削減効果を得ることができる	988	8 1,099	から、方向性電磁鋼板は1996年度からの評価。	908	を定量評価している高機能網材5品種の事例提供を行った。2017年度断面における削減実績に加え、ベースライン シナリオと設定根拠、定量化の範囲、評価期間についても包括的に紹介している。 ・本事例集は英語版も作成され、経団連HPにおける掲載の他、COP等国際会議における各国関係者へのPRに活用さ
	ステンレス鋼板	高強度性を確保しながら薄肉化が可能な鋼板(鋼材重量の削減)であり、これを用いた電車は、その様な特性を有しない従来 の普通鋼鋼板を用いた電車に対し軽量化を実現し、走行時における電力消費量改善によるCO2排出置削減効果を得ることが出 来る	30			28	กรเง .
	削減効果合計	ナ陽平のエラルゼニを直接機等に交換	898	8 4,189		3,194	
	太陽光発電材料	太陽光のエネルギーを直接電気に変換。	350	8	<u> </u>		
	自動車用材料	炭素繊維複合材料を用い従来と同じ性能・安全性を保ちつつ軽量化。			家庭向け及び産業界向け製品(415万tCO2、2019) 高耐久性マンション(340万tCO2、2010~2109)		
	航空機用材料	炭素繊維複合材料を用い従来と同じ性能・安全性を保ちつつ軽量化。	122	+-	発泡樹脂断熱材(280万tCO2、2019)		
	低燃費タイヤ用材料	自動車に装着。走行時に路面との転がり抵抗を低減。	636	+	エンジン油用粘度指数向上剤(163万tCO2、2011~2019) 大容量磁気テープ(135万tCO2、2019~)		
	LED関連材料	電流を流すと発光する半導体。発光効率が高く、高寿命。	745	5 -	潤滑油添加剤(132万tCO2、2018~2019) 樹脂窓枠用部材(130万tCO2、2019)	-	
	住宅用断熱材	住まいの機密性と断熱性を高める。	7,580	0 -	ハウス (創エネ・高効率・省エネ設備付) (50万tCO2、2010~2019) リチウムイオン電池セパレータ(50万tCO2、2010~2019)		
	ホール素子・ホール	整流子のないDCモータを搭載したインバータはモータ効率が向上。	1,640	0 -	制震コート使用自動車(31万tCO2、2012~2021)	-	現在の事例は、2020年度の削減見込量を算定したものであるが、2020年は直近すぎて事例として有効ではなくな
日本化学工業協会	配管材料	鋳鉄製パイプと同じ性能を有し、上下水道に広く使用。	330	0 -	太陽光発電システム(30万tCO2、2019) 配管・継手用部材 (24万tCO2、2019)	-	りつつある。2019年度は2030年度削減見込み量への改訂作業に着手し、2020年度に改訂作業を終了する予定であ
	濃縮型液体衣料用洗剤	濃縮化による容器のコンパクト化とすすぎ回数の低減	29	9 .	LED電球(9万tCO2、2019) 医療画像情報システム(8万tCO2、2019~)	-	300
	低温鋼板洗浄剤	銅板の洗浄温度を70 →50℃に低下。	4.4	4	」)パ 外洗剤用基材(8万tCO2、2010~2019)	-	
	高耐久性マンション用材料	鉄筋コンクリートに強度と耐久性を与える。	224	4	自動車フロントガラスの合わせガラス用遮熱中間膜(4万tCO2、2019) 人造黒鉛微粉(18万tCO2、2013~)	-	
	高耐久性塗料	耐久性の高い塗料の使用による塗料の塗り替え回数の低減	1.1	1 .	レアアース概石合金(1.8万tCO2、2013~) シートクサション用ポリオール(1.1万tCO2、2011~2019)	-	
	シャンプー容器	再生可能なパイオ資源のサトウキビを原料としてポリエチレンを製造。	0.01	1 -	レッ・光源搭載内視鏡(0.6万tCO2、2019~) 無処理CTP(0.5万tCO2、2019~)	_	
	飼料添加物	メチオニン添加による必須アミノ酸のバランス調整。	16	6 -	耐熱配管用部材 (0.5万tCO2、2019)	_	
	次世代自動車材料	電池材料等の次世代自動車用の材料を搭載した次世代自動車の燃費向上、CO2排出量削減	1,432	2 .			
	削減効果合計		13,666	6 -		-	
日本製紙連合会	l e	面積あたりの軽量化を進めることで、輸送時のCO2削減が可能で、ライフサイクルでの温暖化対策に貢献する。なお、製造段階での貢献は、紙品種ごとによる差異があるため、考慮しないこととする。 製品重量10%軽量化により貨物輸送時のエネルギーは10%削減となる。産業部門中の紙板紙がしプ業のCO2排出比率は全産業の5.8% (2008年実績)なので、運輸部門中の紙板紙がリプ業のCO2排出量も同じ比率と想定すると、運輸部門CO2排出量合計 (2008年実績)8,975万t-CO2×5.8% 521万t-CO2となる。軽量化によるCO2排出削減量はこの10%分となるので、521万t-CO2×10% 52万t-CO2となる。	52	2 52	段ボ-ル原紙の薄物・軽量化の開発と普及により、機能を維持しながら省資源・省エネルギーを図る。ユーザーから低炭素社会に適応した製品要求があり、選択肢を広げるために、軽量段ボール原紙を開発しており、その 普及が進んできている。	-	-
	段ポールシートの軽量化	製紙業界では段ポールの原料として使用される段ポールシートの軽量化を実現することにより、製造段階と輸送段階の一部 (製造メーカー→需要家)でのCO2排出削減に貢献している。段ポールシートの平均原紙使用量は、2005年度 638.8g/㎡、 2019年度 605.8g/㎡であったので、2005年を基準年とした場合、2019年の削減実績は35.7万t - CO2となる。また、 2020年と2030年の削減量はそれぞれ、38.2万t - CO2、63.7万t - CO2と見込まれる。	38.2	2 63.7		35.7	
	削減効果合計		90	0 116		36	
	コンクリート舗装	道路の舗装面が「コンクリート」の場合、「アスファルト」の場合に比較して重量車の「転がり抵抗」が小さくなり、その結果として重量車の燃費が向上する。			②コンクリート舗装の普及推進 ア. 地方自治体へのコンクリート舗装の基礎的知識や1DAY PAVEに関する講習会、地方自治体との意見交換会を開催した。 イ. 地方自治体主催の講習会に講師を派遣し、コンクリート舗装について解説した。 ウ. コンクリート舗装の適用事例、基礎知識について理解を深めるためのセミナーを実施した。	-	 ・国土交通省と連携した地方自治体へのコンクリート舗装の普及活動を推進する。 ・全国生コンクリート工業組合連合会と連携した、発注者、設計者、施工者への啓蒙活動を推進する。
セメント協会	l e	セメント業界は他産業や自治体などから排出される廃棄物や副産物を大量に受け入れ、セメント生産に有効活用している。 セメント業界が廃棄物や副産物を大量に受け入れることで天然資源が節約されるだけでなく、セメント業界以外での廃棄物の 処分に伴う環境負荷が低減される。		-	1 DAYPAVEの施工実績調査を実施し、ホームページで施工件数および施工面積の推移を公開した。 オ. コンクリート舗装の活用に関する有識者との懇談会を開催し、情報交換した。 ②関係機関との連携した取組み ア. 全国生コンクリート工業組合連合会と連携して、発注者や施工者への啓蒙活動を実施した。 イ. 北海道地区の産官学による北海道士木技術会コンクリート舗装小委員会に参画した。	-	・コンクリート舗装の適用事例、基礎知識について理解を深めるためのセミナーを実施する。 ・1 DAYPAVEの施工実績調査を実施し、ホームページで施工件数および施工面積の推移を公開する。 ・
	削減効果合計		-			-	

			2020		2019年度					
業種	低炭素製品・サービス等	当該製品等の特徴、	年度削 減見込	減見込	<u> </u>		2020年度以降実施予定取組			
			量(万t- CO ₂)		取相実績	削減効果(万t-COz)				
	発電	火力発電(石炭)、火力発電(ガス)、原子力発電、地熱発電、太陽光発電	-	-	-	301				
*** **********************************	家職製品	テレビジョン受信機、電気冷蔵庫(家庭用)、エアコンディショナー(家庭用)、照明器具(LED器具)、電球形LEDランプ、家庭用燃料電池、ヒートポンプ給湯器	-	-		122				
電機・電子温暖化対 策連絡会	産業用機器	三相誘導電動機(モータ)、変圧器	-	-	-	7	フェーズ I 取組期間の最終年度として、2020年度実績も削減貢献量定量化の取組みを実施。その上で、これまて 対組みの総括を行い、フェーズ II 取組計画へ繋げていく。			
	IT製品	サーバ型電子計算機、磁気ディスク装置、ルーティング機器、スイッチング機器、クライアント型電子計算機、複合機、プリ ンター、データセンター	-	-	-	103	3			
		遠隔会議、デジタルタコグラフ	-	-	-					
	削減効果合計		-	-		531				
	インパーター(HEV、EV用)によるCO2削減貢献	電気自動車ではガソリンに代わって電気で車両を走行させる。モーターを回転させて動力とするために、大容量のパッテリー に蓄えられた電力を直流から交流に変換する電力変換器の役割を果たす製品。	185	676	①回生蓄電システムの市場投入 ②JAPIA「LCI算出ガイドライン」に基づき主要製品のCO2排出量、CO2削減見込み量の算出 https://www.japia.or.jp/work/kankyou/lciguideline/	171	L ・2017年度に発表した中期経営計画「Compass 2021」のもと、注力ドメインの柱のひとつに「エネルギーマネジメントの推進」を掲げ、環境問題解決の重要なアプローチとして、クルマのエネルギーロスを最小化する技術と製品の開発を進めている。EVにおいて、世界一の量産実績を誇るインバーターやリチウムイオンバッテリーコント			
日本自動車部品工業会	家庭用コージュネレーションシステム	排熱回収回路と暖房機器制御の改善、筐体部品の一体化や廃止による軽量化 従来のガス給湯暖房機と比較し▲1.0t-CO2/年 削減	0.269	-	1,190台販売(前年度比+9%)	0.191	ローラで培った電力マネジメント技術、熱や空調などの熱エネルギーマネジメント、さらにはそれらを総合的にマネジメントすることで車両エネルギーパランスを最適化し、EVの電力消費およびエンジンエンジン搭載車の燃料消費を最小化する。加えて開発品についてJAPIA「LCI算出力イドライン」に基づきCO2排出量やCO2削減見込み量を算出し、定量的に管理していく。			
	パワースライドドア用常時給電ユニット	スライドドアの多様化に伴い、パワースライドドアへの給電ユニットの小型軽量化のニーズが高まっている。このユニットでは、ばねを主体としていた部品を廃止し、部品点数を13点から9点に削減することにより、従来品と比較して、21%の軽量化を行った。	-	-	0.61kg-CO2/台		- 2019年度の取り組みを継続すると共に、CO2削減に貢献する自動車の電動化に寄与する新規部品を開発、供給予定。			
	削減効果合計		185	676		171				
	自動車燃費改善、次世代車の開発・実用化により、運輸部門でもCO2削減に貢献。	CO2削減ポテンシャルは地球温暖化対策計画策定時に試算し、702.5万t-CO2。	-	-	・自工会会員会社は継続的な技術開発により、新車燃費の向上に不断の努力を行っている。 ・具体的には新車販売乗用車の平均燃費は過去10年以上にわたり最ね向上を続けている。 ・2014年度には、究極のエコカーとされるFCEVも市販化。各社が積極的に次世代車(HEV等)を投入、販売・保有増に伴い実走行燃費ともに顕著に改飾している ・自工会会員各社は、燃費の良い車を市場に供給することで、運輸部門のCO2排出量の削減に貢献。 ・19年度中に国内で新規発売された次世代乗用車(EV、PHEV、HEV、FCEV)はマイナーチェンジも含め44 モデルに及ぶ					
	削減効果合計		-	-	•	-	•			
	水力発電 太陽光発電	最近では、企業の環境格付けが投資判断に活用されており、地球温暖化対策についてはCDPは、CO2排出削減活動として「敷地内または顕客に行わってのクリーンエネルギー発電」を掲げ企業を評価している。そのため、水力発電、太陽光発電、地熱発電などの再生可能エネルギー電源の創出(建設)に関する各社の取り組みがCO2排出削減へ貢献し、企業の環境価値を高め	3.0		2019年度主体としては14箇川の外の汚電所、24箇川の入場元が電所において発電を行い、電り云仁に元電している。2019年度のFIT制度を活用した発電所の発電容量は2018年度比42%増の9.6万kW、発電電力量は2018年度比134%増の約38.5万kWh/年となり、約19万年のCO:排出削減に貢献した。これは、神回鉱業の5基の水力発電所の本格稼働の寄与によるものである。	16.0	今後もFIT制度を活用し積極的に利用拡大を目指す。水力発電においては、秋田県北秋田市において、2019年5月に小又川新発電所(出力10,326kW)の着工を計画し、2022年12月の完成を目指している。神岡鉱業が岐阜県で1箇所、DOWAホールディングスが秋田県で2箇所に、新規稼働の計画がある。また、住友金属鉱山は、2018年4月に鹿島太陽光発電所の容量増加および蓄電池を導入した。以降は生産性向上のための運用ノウハウの積み上げを検討する。JX金属では、静岡県下田でバイナリ―発電施設の建設を完了しており、発電を本格化する。			
	地熱発電	るごとに結びついている。 一方、国では2030年度のエネルギーミックスを実現するため再生可能エネルギーの導入拡大が進められているが、安定電源である水力発電、地熱発電は太陽光発電に比ぐ拡大されていない状況である。このような状況の中、各社が取り組んでいる水力発電、地熱開発・地熱発電の事業、および休廃止鉱山・旧非鉄金属製錬所の遊休地を利用したFIT制度による太陽光発電事業は国の施策にも貢献している。このような背景の下、再生可能エネルギー創出の意義と各社のポテンシャルを勘案して、当協会は再生可能エネルギーの創出目標を各社へのアンケート調査に基づき設定し、再生可能エネルギー創出の取り組みを省エネ活動と合わせて推進している。		42.3	各社は長年培ってきた探査技術を活かして地熱開発に取り組んでおり、地元の電力会社に蒸気を供給、または電力を販売している。具体的は、以下の4箇所の地熱発電所に関わっており、地熱発電の発電容量は12-15万kW、設備利用率を50%とすると、毎年度、約25-30万t-COz/年程度のCOz/排出削減への貢献能力を有している。 ② 澄川発電所: 認可出力 50,000kW (三菱マテリアル/東北電力に蒸気を供給) ② 大沼発電所: 認可出力 9,500kW (三菱マテリアル/東北電力に蒸気を供給) ③ 柳津西山発電所: 認可出力 30,000kW (奥会津地熱/東北電力に蒸気を供給) * 奥会津地熱: 三井金属鉱業の子会社 ④ 大霧発電所: 認可出力 30,000kW (霧島地熱/九州電力に蒸気を供給) * 霧島地熱: 日鉄鉱業の子会社	25.7	三菱マテリアルは他社との共同で岩手県八幡平市において発電所の建設工事開始を開始した。大霧地熱 (日鉄鉱業 7 子会社) の大霧発電所に隣接する白水越地区では、新たに数十MWの規模を想定した地熱開発に向けて、地元自治体、地域住民、温泉事業者及び地元関係者の理解を得る取組を継続している。			
日本鉱業協会	次世代自動車向け二次電池用正極材料の開発・製造	住友金属鉱山は、電気自動車用のリチウムイオン電池の需要拡大に対応するため、リチウムイオン電池の正極材料であるニッケル酸リチウムの生産設備の増強を進めている。約180億円の設備投資により2018年1月にニッケル酸リチウムの生産能力が1,850トン/月から3,550トン/月に増強され、さらに2018年度中には約78億円の設備投資により4,550トン/月に増強した。2019年度は約30億円の設備投資を実施した。さらに2024年度中期経営計画期間中に、電池材料の生産能力を合計10,000トン/月体制に確立するため、段階的に能力を増強する。また、同社は燃料電池の中で最も発電効率の高い固体酸化物形燃料電池(SOFC)の電極に使用される微細で高純度な酸化ニッケル粉を開発してきた。今後、燃料電池の本格的な製品化に向け、酸化ニッケル粉の需要増加が見込まれることから、2018年度から量産化実延設備を導入し運用を開始している。	111	184	正極材料はハイブリッド車・電気自動車のサプライチェーンの一翼を担うものであり、正極材料単独でのCOz 排出剤減量を評価することはできないが、2019年度のハイブリッド車、電気自動車 (PHV、EV) の販売台数を 前提に推計すると、正極材料の製造と供給を通して約74万t-COz/年のCOz排出剤減に部分貢献した。	74	住友金属鉱山は、電気自動車用のリチウムイオン電池の需要拡大に対応するため、リチウムイオン電池の正極材料であるニッケル酸リチウムの生産増強を継続する。また今後、燃料電池の本格的な製品化に向け、酸化ニッケル粉の需要増加を見込み稼働させた量産化実証設備を本格化させ、SOFCの発電効率や耐久性の向上に寄与する、微細で高純度な酸化ニッケル粉の機能高度化を図る。			
	信号機用LED(赤色発光と黄色発光)向け半導体 材料の開発・製造	古河機械金属(古河電子)は、国内で唯一高純度金属砒素を生産している。省工ネ関係の用途としては、車両用及び歩行者用 信号機に用いられているLED(赤色発光用と黄色発光用)の材料などがある。白熱灯などの従来光源に比べ、大幅な消費電力 の削減に貢献している。	-	-	国内LED信号機台数を前提に推計すると、従来の発熱灯信号機と比較して約15.5万t-CO2/年のCO2排出削減量 に貢献した。	1.8	3 今後も白熱灯信号機からLED信号機への更新が進むことによりCO2の排出削減に貢献する。			
		古河機械金属の事業会社である古河産機システムズでは、新型の高効率スラリーポンプを開発し、移送対象スラリの流体解析 結果に基づく技術を取り入れ、従来よりも約10%の高効率移送を実現した。新型の高濃度高効率スラリーポンプについても同様に新技術を導入し、従来よりも約14%の高効率移送を実現し、代替化を進め、使用段階での消費電力の削減に貢献している。	-	-	各産業では、当該機器への入れ替えの推進が実施されており、2019年度の入れ替えによって、約1,500t-CO ₂ /年が削減された。	0.15	 古河機械金属は、今後も当該機器の更なる性能・機能の向上を目指すとともに、充実したアフターケアによって普及拡販を推進する。			
	高効率粉砕機の開発・製造	古河機械金属(古河産機システムズ)は、鉱石等の粉砕エネルギー効率を向上させるために、高効率グライディングロール粉砕機を開発し、従来のダブルロール型機と比べ5~10倍の押力を実現し、粉砕動力の約30%耐減し、代替化による使用段階での消費電力の耐減に貢献している。	-	-		0.04				

			2020		2019年度		
業種	低炭素製品・サービス等	当該製品等の特徴、	年度削減見込	減見込	(利) [35]		2020年度以降実施予定取組
		化米品等と の歴異なる	量(万t- CO ₂)	-	取組実績	削減効果(万t-COz)	
	家庭用鉛蓄電池システムの普及拡大	民生郎門である業務部門と家庭部門のCO:排出量は年々増加しており、CO:排出量削減は重要かつ急務である。国は対策として「エネルギー基本計画」において再生可能エネルギーの普及拡大の方針を示しており、今後、家庭用の太陽光発電の普及拡大が加速される。このような中、太陽光発電の天候による不安定性の解消、電力需要のピークの平準化、昼間の余剰電力の夜間への使用、さらに太陽光発電の固定価格の買い取りが終了した後の家庭での電力の自給自足を考えると、太陽光発電とともに家庭用の蓄電池システムの普及拡大が重要であると考える。また、鉛の使用済みパッテリをリサイクル原料として鉛製錬を行っている当業界においては、近年、国内で回収された使用済みパッテリの海外への輸出が増え、国内でのリサイクル率が低下しリサイクル原料が適正価格で手に入らない事態が生じていたが、この調達リスクは、パーゼル法改正によって、2019年4月以降改善された。このような状況を踏まえて、当協会は、新たな鉛需要の創出と鉛資源の蓄積・リサイクルによる原料の安定確保の観点から、家庭向けの鉛蓄電池に鉛をリース供給、リサイクルを容易であることから、この事業構想に取り組んでいる。鉛蓄電池は安全性が高くな価で安定性にも優れており、リサイクルを容易であることから、この事業構想に取り組んでいる。鉛蓄電池は安全性が高く社会の構築に貢献できるとともに、災害時の緊急電源として活用することによって災害対策にも貢献できる。なお、CO:排出削減ポテンシャルについては、事業構想の具体化に合わせて、海外貢献も含め検討中である。	-	-	家庭用鉛蓄電池システム事業の実運営の中心となる事業会社が事業構想について鉛電池メーカー、蓄電地システムメーカー、電機メーカー、住宅設備メーカー、電力アグリゲーターなどと検討を行っている。当協会もその活動を支援している。	-	鉛製錬のリサイクル原料の確保と事業安定化の立場から、引き続き、鉛蓄電池を活用した事業構想に取り組み、鉛蓄電池リサイクル事業の事業主体となる事業会社の支援を行う。
	削減効果合計	従来の消石灰と比べて反応効率が良く使用量約40%が削減できるため、製造及び運搬に要するエネルギーの削減	162	244		121	
	高反応性消石灰の製造出荷	使来の用句がこれへく及応効率が良く使用量が940%が削減できるだめ、製造及が準拠に要するエイルキーの削減 個別企業の実績に基づき算出	-	-	2019年度出荷実績138,420t(14社)より算定	0.2395	
	運搬効率の改善	個別企業の実績に基づき算出(1社より報告)	-	-	約21百万トンキロを陸上輸送から船輸送に切り替え	0.1550	
石灰製造工業会	鉄鋼業で石灰石を生石灰に代替	0.15 t -CO2/ t -CaO	-	-	①石以専用炉は予熱活用が可能であるごとから転炉と比較して熱効率が良好。 ②焼結工程で生石灰を使用することで通気性が改善され、コークス原単位が削減される。 ③鉄鋼業ではコークス等カーボン系の燃料を使用することが多いが、石灰炉では廃プラスチック等リサイクル 系燃料使用が可能であり、CO2原単位が低位。石灰石から生石灰への反応を以下の2つプロセスを想定し、原単位差を算出した。 1)製鉄所内でコークス燃焼によって生石灰を製造した場合のCO2原単位 2)当業界の生石灰製造におけるCO2原単位	-	未定
	削減効果合計		-	-		0	
日本ゴム工業会	低燃費タイヤ(タイヤラベリング制度) 自動車部品の軽量化 省下ネベルト		-		算定根拠: 「乗用率タイヤの転がり抵抗低減によるCO2排出量削減効果について」(2015年1月、2018年1月にラベリング制度の効果確認として(一社)日本自動率タイヤ協会HPでCO2削減実績データを公表)より。具体的には、乗用率用タイヤの市販用/新率用、夏用/冬用の全てを対象として、2006年、2012年、2016年のデータを収集し、『タイヤのLCCO2算定ガイドライン』*に基づき、比較した結果となっている。 (*(一社)日本自動率タイヤ協会発行(Ver.2.0、2012年4月): ライフサイクル全体で排出される 温室効果ガスの排出量を、CO2に換算して算定する。) 普及率: タイヤラベリング制度では、乗用率用タイヤの市販用、夏用のみを対象としており、開始時の2010年は普及率21.7%であったが、導入10年目の2019年では、夏用タイヤの80.7%が低燃費タイヤとなり、普及拡大している。 なお、タイヤ以外の製品に関する算定も今後の検討課題として、ライフサイクル全体(原材料の調達、製品の製造・流通・使用・廃棄段階)の低炭素化に貢献する取組を進めていくこととしている。	297.2 (2006年と 2016年の比 較)	
	省エネベルト		-	-	-	-	
	各種部品の 軽量化 削減効果合計		-	-		297	
		環境に配慮したGP製品の採用拡大を進め、サプライチェーン全体でCOzを削減する。		_		_	
日本印刷産業連合会	「CLOMA」や印刷資材メーカーの活動に参加製品の軽量化	「海洋プラスチックごみ問題」がクローズアップされる中、バイオマスプラスチックの利用に期待する声 も高まっており、印刷業界からも経済産業省主導で行われている「CLOMA」に参加し、川上・川下業界と連携して、「海洋プラスチックごみ問題」とCO2耐減に取り組んでいる。印刷資材メーカーが行っているプロジェクトに参加し、アルミ版の回収・再製造に関わるCO2を削減する取組に参加する印刷会社が増えている。 輸送エネルギーの削減他に貢献している。	-		環境に配慮した資材を使用し、環境に配慮した印刷工場で製造した印刷製品にグリーンプリンティング(以下:GP)マークを表示している。またGPマークを多く記載した印刷物を製作した印刷発注者を表彰するGP環境大賞を設け、大賞4社・団体、準大賞5社・団体を選考し、表彰した。	- 	・ GP認定制度を拡充し、登録事業所数を更に増やすとともに、官公庁や関連する団体並びに各企業にGPの採用を働き掛け、環境に配慮した印刷物を増やす。 ・環境関連団体への協賛や、ステークホルダーとの連携等、広範な活動を実施していく。
	地球環境に配慮した用紙・資材の採用	印刷業界として石化製品の使用量削減を目的とした「環境対応型インキ」の拡大や、森林資源の保護に結び付く森林認証用紙 の採用拡大を進めている。	-	-		-	
	削減効果合計		-	-		-	
	自動車用材料アルミ板材	「温室効果ガス剤減貢献定量化ガイドライン」を踏まえ、外部調査機関により「自動車用材料のアルミ化によるCO2剤減試算効果」を算定し昨年度に報告したが一部見直した。	-	-	-	-	
日本アルミニウム協会	鉄道車両用アルミ形材	鉄道車両のエネルギー消費量やCO2排出量は製造時やメンテナンス、解体時に比べ走行時の値が圧倒的に大きい。アルミニウム形材製造時のエネルギー消費量やCO2排出量は、鋼材やステンレス鋼材にくらべ大きいが、車両のライフサイクル全体では、アルミニウム形材使用による走行時の軽量化効果が大きい。リサイクル材を使用することで効果はさらに大きくなる。	-	-	-	-	-
	飲料缶の軽量化によるCO2排出削減効果	飲料用アルミ缶は形状変更や薄肉化等により軽量化が進み、輸送時等のCO2剤減に貢献している。この度、削減貢献量の算定を行うべく、アルミ缶のLCAの更新など製缶メーカーと検討を開始した。上記の自動車や鉄道など様々な分野におけるアルミニウムの普及により、アルミニウムの使用段階での環境負荷低減を通じて、社会に貢献していく。	-	-	-	-	
	削減効果合計			-		-	

業種		当該製品等の特徴、	年度削	2030年度削	2019年度				
PRV TIME	低炭素製品・サービス等	従来品等との差異など		減見込 量(万t- CO ₂)	取組実績	削減効果(万t-COz)	2020年度以降実施予定取組		
板硝子協会	復層ガラス及び、エコガラスの普及	低炭素社会の実現には、エコガラスS(高性能Low-E複層ガラス)やエコガラスなど断熱性の高い複層ガラスの新設、既設住 をへの普及が必要と考えている。 新規需要のガラス製品製造に伴うCO2排出はあるが、LCAの調査結果によれば、社会全体ではそれらの増加分をはるかに上回るCO2削減効果が期待できる。 「住宅窓の断熱化による省エネルギー効果(Low-E複層ガラスによるCO2排出量削減)」(SMASHによるシミュレーション計算結果)では、既存住宅の既設の窓を北海道では透明複層ガラス、本州以南では透明単板ガラスとし、日本全国の住宅の窓をエコガラス(Low-E複層ガラス)に交換した場合に暖冷房に起因するCO2排出の削減量の試算結果では、住宅全体で暖冷房合わせると、1年あたりCO2換算にして約1700万トンモのCO2排出を削減することが可能となる結果が得られた。また、自動車用のガラスとして、太陽光線の赤外線を効率的にカットし、車内の温度上昇を抑えエアコンへの負荷を軽減することによって、燃費を減少させるためのガラス等の開発、上市をしている。 板硝子協会としては、これらの製品の有効性を広く世間に理解していただく努力を行い、低炭素社会の実現に貢献していきたいと考えている。	-		低炭素社会の実現に向け、拡版を積極的に進めている「エコガラス」(Low-E複層ガラス)のLC-CO2の検討を行い、2010年に第三者機関によるクリティカルレビューを受けた。 標準的なエコガラスをモデルとして原料調達、生産、輸送、破棄までの全工程で排出されるCO2の総量を算出した結果、そのトータル量はエコガラスが住宅に設置され、その住宅の冷暖房負荷を低減することによるCO2 削減効果と比較すると、わずか2年足らずで回収できることが刊明した。 これらの結果から、板硝子協会会員3社及びその関連会社で販売した復層ガラス、エコガラスの販売量をもとに推算される使用段階のCO2削減量を複層ガラスCO2削減量(下記図の縁色パー)とエコガラスCO2削減量(下記図の青色パー)と、板硝子協会3社がその板ガラス製造で排出しているCO2量(下記図の赤色パー)を比較した。 その結果、2007年以降は、これら市場に提供されたエコ製品の省エネ効果に伴うCO2削減量が、板ガラス製造に伴うCO2排出量を上回っており、エコガラスの普及に伴いCO2削減量が大幅に増えていることが推算された。	26.5704	エコガラスSの普及促進を図る。		
D-Mains	削減効果合計 夏季の「クールビズ」や冬季の「ウォームビズ」商品 の製造段階において、素材の特性を生かすように	<u>-</u>	-	-	_	27	-		
日本染色協会	工夫して、染色加工を行っている。 削減効果合計		-	-		-			
	導体54次 最適化	送電ロスの低減	-	-			・導体サイズ最適化:導体サイズ*最適化の技術は工場・ビルの低圧ケーブルで生じる電力損失の半		
	データセンターの光配線化	回線をメタル電線から光ファイバ化することでCO2削減	-	-			減及びピーク電力カットによる経済的効果のみならず、COz削減を図ることができる環境配慮設計として、関連規格への反映検討を継続すると共に、需要家・ユーザー向けのPR活動を行う。 ・超電導き電ケーブル:電気抵抗ゼロを目指した超電導き電システムの送電試験を実施。実用化に向けた適用試験		
	エネルギー・マネジメント・システム	複数の分散電源を自動最適運用する。環境負荷軽減・エネルギー効率運用	-	_	導体サイズ・最適化:電力用電線・ケーブルの導体サイズ最適化を推進するため、日本発のIEC規格化を実施した。 (2019年9月発行、IEC 62125 ED1) この導体サイズ最適化技術が、工場・ビルの低圧ケーブルで生じ		の一環として中央本線(直流1500V)の超電導き電系統に本システムを接続し、実車両を走行させた通電試験と ステム切り難し試験実施した。今後も実用化を目指した課題解決に取組む。(鉄道総研ニュースリリース		
日本電線工業会	超電導き電ケーブル	鉄道の電力消費量の削減	-	-	る電力損失の半減及びピーク電力カットによる経済的効果のみならず、CO2削減を図ることができる環境配慮 設計として需要家・ユーザー向けにPR活動を行っている。2018年度はメガソーラ発電所構内配線用のECSO設 計プログラムのウェブサイトへの掲載、「グローバリ・バリューチェーンを通じた削減貢献」への提案・掲	-	2019 8.6) ・ 次世代洋上直流送電システム: 発電した電力を効率よく直流で送電するための計画・設計、事業性の評価などを実施するシステム開発と長距離送電に適した直流送電システムの実用化にむけた要素技術開発を行う。高い個類性		
	次世代洋上直流送電システム	低炭素エネルギー洋上風力発電電力を効率的に送電	-	-	載、各種雑誌等への投稿、外部への講演等積極的なPR活動を引き続き実施した。		を備え、かつ低コストを実現する多端子直流送電システムを開発し、今後の大規模な洋上風力発電の導入拡大・加速に向けた基盤技術を確立する。 (NEDOウェブサイト2019.5.10) ・風力の直流送電線を多端子化して適切に保護制御・滞流制御を行うことで、信頼性が高く効率的な風力送電を可		
	車両電動化・軽量化	電気自動車、プラグインハイブリッド自動車・燃料電池自動車普及拡大によるCO2削減	-	-			能とする高圧直流 (HVDC) 技術を開発する。また、これらの直流送電線を地域間への電力供給などの用途に利用 できる制御技術を開発し、風力の導入普及のみならず、地域の需給パランス維持、再エネ抑制の回避、レジリエン スの強化などに貢献するための技術要件をまとめる。 (NEDOウェブサイト2020.7.14)		
	超電導磁気浮上式リニアモーターカー	中央新幹線計画(東京〜名古屋)推進…電源線供給	-	-					
	削減効果合計 ガラスびんの軽量化	循環型社会を築く上で、必要とされるのは"3 R"。その中でも最優先すべきはリデュース(発生抑制)であり、ガラスびんの軽量化の推進が欠かせない要件となる。軽量化することにより、省資源、省エネルギーを実現し、CO2排出量の抑制にもつながる。このガラスびんの軽量化のなかでも、極限まで重量を軽くした「超軽量びん」は最先端の技術で使い勝手も格段に改善されているが、特に環境にやさしい製品ということで、日本環境協会から、ガラスびんとして、「エコマーク」の認定を得た、製品群もある。	0.632	0.632	ガラスびんの軽量化については、各加盟企業において、積極的に取り組んでいる。	3.410			
日本ガラスびん協会	リターナブルびん(Rマークびん: リユース: 再 使用)	日本ガラスびん協会では、規格統一リターナブルびん(Rびん)を認定し、リターナブルびんとして使用いただけるように、Rびんの型式図面を公開している。日本ガラスびん協会ではLCA手法を用い、リターナブルびんのCO2排出量削減効果の試算をおこない、業界の統一LCAデータとして共有し、リターナブルのPR活動に取組んでいる。このように、リターナブル使用はCO2排出量の抑制に直接作用するので今後、3Rのひとつである、リユース対策の中では、有効な手法であろう。また、リターナブル使用はガラスびんだけが持つ大きな特性と云える。	9.650	8.780	日本ガラスびん協会では、規格統一リターナブルびん(Rびん)を認定し、リターナブルびんとして使用していただけるように、Rびんの型式図面を公開している。	7.92	上記の取り組みにおける、CO2削減量を算出する事は困難だが、今後も出荷推移を把握し、モニタリングをしていく。		
	エコロジーボトルの推進	原科としてカレットを90%以上使用し製品化したものを「エコロジーボトル」、無色・茶色以外のその他色のカレットを90%以上使用し製品化したものを特に「スーパーエコロジーボトル」と名付け、カレット使用量の増加につなげるため、ボトラー、ユーザーへの利用促進を継続している。	0.259	0.236	エコロジーボトルの使用をボトラーなどユーザーに対し利用促進を継続している。	0.234			
	輸入びんのカレット化	市場の輸入びんをカレットとしてリサイクル使用することで、省資源、省エネルギーを実現し、CO2排出量の抑制にもつながる。	5.647	5.647	-	6.082			
	削減効果合計		16.19	15.30		17.65			
	復列深溝玉軸受 (佛)不二越)	自動車の駆動装置用軸受としての複列深溝玉軸受の採用により使用段階のCO2排出量を0 22%削減。従来の円筒ころ軸受に対し、65%の7川分3ンを低減。	_	_		-			
日本ベアリング工業	第5世代低トルク円すいころ軸受FLT®-V (㈱ジェイテクト)	自動車トランスミッション及びテ゚ファレシテャルス ットに使用される円すいころ軸受で樹脂保持器形状の最適化により、車両燃費約1.8%向上、 CO2排出量約4.0g/km削減。	-	-	- - - - - - - - - - - - - - - - - - -		◆最小級大け、他につ、よ「機関と連接」でITの問題なる場合でいる		
슾	モータ・ジェネレータ機能付ハブベアリング 「eHUB」 (NTN(株))	タイヤの回転を支えるハプ^゚アリング(ニモータ ジエネレータを組み合わせた「eHUB」を開発。スタータジェネレータなど実用化された「48V MHEV」 と組み合わせて従来のエンジンのみの自動車と比較して最大25%の燃費向上。	-	-	り、省エネルギーに大きく貢献している。	-	会員企業では、常にユーザー業界と連携して研究開発を進めている。		
	高信頼性 鉄道駆動装置用軸受(日本精工院)	すきま調整不要の円筒ころ軸受と四点接触玉軸受を開発。隅R形状の最適化とリング案内改良により保持器強度を大幅に向上。 駆動装置の省メンテナンス化、鉄道車両のライフサイクルコストの削減に貢献。	-			-			
	削減効果合計		-	-		-			

			2020	2030	2019年度			
業種	低炭素製品・サービス等	当該製品等の特徴、		年度削減見込	2019年度		2020年度以降実施予定取組	
	INICAPINALIS J. CAN	従来品等との差異など	量(万t-	量(万t- CO ₂)	取組実績	削減効果(万t-CO2)		
	プッシュプル式粉塵回収機 SF6 (六フッ化硫黄) ガス回収装置	消費電力67%削減 SF6ガス(温暖化ガス)99%回収・再利用		-		-		
	定流量ポンプシステム	消費電力34%削減	-	-		-		
	下水処理用3次元翼プロペラ水中ミキサ	消費電力40%削減	_	-		-		
	小型ごみ焼却設備用パネルボイラ式排熱回収発電 システム	CO2排出體500t/年削減		-	会員企業の製品事例(3件)	- PMR基例 (3/4)		
日本産業機械工業会	高圧貫流ボイラ・クローズドドレン回収システム		-	-	産機工環境活動報告書(2019年度)より抜粋	- 工業会では、関係省庁・関連団体と連携を図りなから、新技術・製品の	工業会では、関係省庁・関連団体と連携を図りながら、新技術・製品の普及・促進に向けた規制緩和等の要望を行	
	オイルフリースクロールコンプレッサ 水熱利用システム	エネルギー効率14%向上 CO2排出量を53%削減		-	https://www.jsim.or.jp/pdf/publication/a-1-55-00-00-00-20200322.pdf	-	い、製品の使用吸附で発生するCO2削減への取り組みを続ける。	
	高効率型二軸スクリュープレス脱水機	消費電力を16%程度に抑制		-		-		
	片吸込単段渦巻きポンプ 小型バイナリー発電装置	CO2排出量を99.3i削減 1年間で81.3t-CO2の環境負荷低減				-		
	セメント・ごみ処理一体運営システム	セメント生成工程の燃料5%低減	-	-		-		
	省電力・エアーレスコンベヤ 野外設置型モータコンプレッサ	消費電力最大50%削減 省工ネ効果149万円/年	-	-		-		
	削減効果合計	国上个 划来147 /月刊牛	-	-		-		
日本建設機械工業会	建設機械の燃費改善及びハイブリッド式を含めた 省エネルギー型建設機械の開発と実用化	燃費改善及びハイブリッド式を含めた省エネ型建設機械	100	160	省エネルギー型建設機械の普及促進の検討 保有台数中に占める省エネルギー型建設機械の割合は増えている。	88	ハイブリッド建機やICT建機の普及促進策の検討	
	削減効果合計		100	160		88		
日本伸銅協会	高強度薄板網合金条	自動車や携帯端末などの小型コネクタに使用され、機器の小型化・軽量化による低炭素化に貢献。5Gや高度ICT(自動運転等) 等に必要な機器中で、コネクタ用材料としての使用量が増大していくと予想され、5Gや高度ICTの普及による低炭素化に貢献 していくものと予想される。		-	伸綱品(特に板条製品)については直接に低炭素社会化への効果が出せる製品は極めて少なく、削減実績や見込みの算出は困難であり、個々の具体的事例は表すことが出来ない。定性的には、コネクタの小型化ニーズに対応するため、より高強度な綱合金を提供することで、強度を維持しつつ板厚の減少を可能にしている。その結果、部材の軽量化に貢献できると考えている。	-	今までの取組み(より高性能な網合金条の開発・上市)を継続していくことで、低炭素社会に貢献していく。	
	高導電高強度銅合金条	xEV中の電子ユニットのブスパー等に使用され、xEVの普及促進による低炭素化に貢献。次世代自動車で使用されるSiパワー半導体は、SiCパワー半導体への置き換えで2030年に約1,515万トン/年のCO2排出量削減を漏っており、この削減の一部にも貢献していくものと予想される。		-1 -1	モーター駆動を有する自動車(HV, PHV, EV)では、通電部材の発熱を低減するため、高導電高強度銅合金条のニーズが強く、その特性に適した銅合金を開発・上市することで、低炭素化に貢献できると考えている。	-		
	削減効果合計		-	-		-		
	高効率ユニット搭載工作機械	②左記にある機器を組み合わせることで、従来よりも大幅な省エネを図る。	-	-		-		
	複合加工機	②工作機械は大小様々、種類も様々で、具体的なエネルギー削減量を一律に算出することは大変難しい。	-	-		-		
日本工作機械工業会	最適運転化工作機械	③各社で機械本体の省工ネ性能を個別に発表しているので、参考まで下記に記載する。	-	-	・左記機能を備えた工作機械の開発・製造が進んだ。	-	顧客の省工ネに対する要望も強いことから、省工ネ型工作機械の開発は進むものと考えられる。	
	油圧レス化工作機械	- A社マシニングセンタ: アイドルストップ機能を搭載し、不要な周辺機器をこまめに停止することで、非加工時の消費エネルギーを74%削減	-	-		-		
	高精度・高品質な加工	> 11 /D/11 >> WIND COMMON TO CONTROL OF THE PROPERTY OF THE PR	-	-		-		
	削減効果合計		-	-		-		
	品質の高位安定化	-	-		セメント工場では、多くの種類の廃棄物を受け入れてセメントの原料としているが、これは従来鉱山からの石 灰石以外の岩石を使用していたものの代替である。従って、原料としての石灰石が、より純粋なCaCO3に近い 程、廃棄物受け入れの余力が出てくることになる。このため、石灰石品質の高位安定化は、セメント産業の廃 棄物原単位上昇の必要条件となっている。	-		
石灰石鉱業協会	再生可能エネルギー発電	-	-		広大な事業用地を有すると言う業界独特の特性のため、以下2つの目的で再工本発電を行っている。 ②配線の届きづらい現場の観測機器用等に設置している。 発電能力1kw未満の発電機(主に太陽光)が16機報告されている。 ②採掘跡地等の有効利用として売電(発電事業者への用地減与含む)用発電所の設置が報告された。 14発電所 計4万kw以上の発電能力を有する。主に太陽光、一部小水力等。日本鉱業会等 関連業界と重複あり。 また、買電先を再工本発電業者に切り替える検討も行っている。	-	引き続き取り組みを継続していく。	
					- 部購入中・・・1鉱山 (水力発電) 検討中・・・ フォローアップ対象鉱山で3鉱山 非対象鉱山で2鉱山			
	削減効果合計		-	-		-		
日本レストルールエ	節水形便器	大便器の洗浄水量は、取替対象の20年ほど前の1回あたり大洗浄13Lから、継続的に節水化を進めて、現在では1回あたり3.8L の製品まで登場しており、節水によるCO2排出削減にも貢献している。			・節水便器の普及によって、節水による水資源保全やCO2削減を図り、グローバリに貢献するために、当業界のホームページにて、節水便器の節水による水資源保全やCO2削減の貢献について周知、啓発のための情報を発信した。 ・当工業会のホームページで節水便器普及による、節水効果やCO2削減効果の概算値を公表した。	-	・節水便器を普及させることによって、節水による水資源保全やCO2削減を図り、グロー/ULに貢献する。 ・そのために、引き続き、節水便器の節水による水資源保全やCO2削減の貢献について正しい情報を周知、啓発するため、グロー/ULに情報発信を強化する。 ・節水便器の節水による水資源保全やCO2削減の貢献量について正確な情報を発信するため、毎年、水のCO2換算	
日本レストルーム工 業会	温水洗净便从一体型便器	便器洗净:12kg- COz/年削減(73%節水) 温水洗净便座:121kg- COz/年削減(76%節電)	-	-	(https://www.sanitary-net.com/saving/) ・「水のCO2換算係数」の推奨値の最新値を試算し、更新、公表した。(最新値 0.54kgCO2/m3) ・各社では引き続き、よりエネルギー消費量の少ない環境配慮製品の開発・販売を進め、そのエネルギー削減 効果をCO2削減量に換算し、ホームページやカタログ等で製品の環境貢献効果の情報を発信した。	-	係数の更新を行う。 ・各社では引き続き、水やエネルギーの消費量の少ない環境配慮製品の開発・販売を進め、そのエネルギー削減効果をCO 2削減量に換算し、各社ホームページやカタログ等で消費者に分かりやすく記載することで、製品の環境貢献効果をグローバルに訴求していく。	
	削減効果合計		-	-		-		

業種		以乾酮只竿小林渤	年度削		2019年度				
20118	低炭素製品・サービス等	労力日禁しの大田小 じ	減見込 量(万t- CO ₂)	量(万t-	取組実績	削減効果(万t-COz	- 2020年度以降実施予定取組		
石油鉱業連盟	が他の化石燃料に比べて少なく、高い環境優位性 を備えている。天然ガスを供給する場合、生産過程での温室効果ガス排出量は増加するが、消費過程でのCO2排出量は燃料転換が進むことにより削減される。	·LNG 輸入基地およびLNG受け入れ基地の運営により、国内天然ガス供給ネットワークの安定性向上に寄与している。石油鉱業 連盟では、こうした天然ガス供給域拡大事業を通じて、民生部門における天然ガスへの燃料転換が促進され、温室効果ガス排	-		2019年度においても引き続き、天然ガスの供給拡大事業を通じて、他燃料からの産業用/民生用天然ガスへの燃料転換を促進することにより、CO2排出削減に貢献している。		・引き続き天然ガス需要に応えるため、天然ガスパイプラインネットワークの整備およびLNGサテライト供給の拡充を図る。 ・天然ガスは他の化石燃料に比較して燃焼時のco2排出量は少ないが、生産過程、特にLNG化にエネルギーを必要とする。よって生産から輸送、供給を通じたパリューチェーンでのco2排出量削減の検討を続ける。		
	太陽光発電事業の実施	・日本国内の各所において、発電規模が1,000kWを超えるメガソーラー発電所を運営しており、商業運転を開始。	-	-					
	住字の断動性能の向 -	戸建住宅:住宅の省エネ基準を大きく上回る断熱性能を有する住宅の供給拡大 低層集合住宅:省エネ基準を満たす断熱性能の住宅の供給拡大	-		②新築戸建住宅 2019年度においては、ZEH対応可能な戸建商品ラインナップの拡充をすすめ、光熱費削減メリット、快適性向上、健康増進の観点からも訴求した結果、新築注文戸建住宅におけるZEH供給率はさらに高まり、61.8%(前年比10.4ポイント増)となった。また、こうしたZEHの提案・普及を進めたことが、それ以外の住宅における				
プレハブ建築協会	高効率給湯システムの導入推進	高効率給湯機、省エネ型配管システム、節湯型水栓、保温型浴槽導入	-	-	等は10-0パライ 3/1 となった。また、とうじたという無常 国法を進むたととが、 とはあげる ともにおりません 3/1 という 2019年度に供給した新築戸建住宅の居住段階におけるCO2 排出量は 1,240kg-CO2/戸・年 (前年比4.5%減) となり、2020年目標の達成に向け、2010年比45.9%減と着実に削減が進んだ。 ②新築低層集合住宅		新築戸建住宅については、さらに高い断熱・省エネ性能を有し、より高度なZEH として定義された「ZEH+(プラス)」や、住宅の生涯を通じてCO2 排出量をマイナスにする「LCCM(ライフサイクルカーボンマイナス)住宅」の推進においても先導的な役割を果たす。		
	高効率照明システムの導入推進	より高効率なランプの普及+人感センサー等	-	-	②新架版層集合任モ 賃貸住宅では建築主と入居者が異なることなどから、省工ネ性能の高い賃貸住宅の十分な市場展開が進んでい ない点が指摘されている。そこで当協会では、賃貸住宅の低炭素化と居住性の向上を先導していくため、低層 集合住宅の居住段階におけるCC2排出削減目標を設定し、取り組みを推進している。 2019年度に供給した新築低層集合住宅においては、太陽光発電システムの設置率が減少したが、外皮の高断熱 化、省工本機器の導入がさらに進み、居住段階におけるCO2 排出量は1,485kg-CO2/戸・年(前年比0 2%		新築低層集合住宅については、「ZEH-M(集合住宅版ZEH)」への取り組みを強化するとともに、BELS認証の関 得にも取り組み、建築主、入居者の双方にわかりやすく省工ネ住宅のメリットを訴求することを通じて、断熱・名 工ネ性能の高い賃貸住宅のさらなる普及につとめる。		
		太陽光発電システムの殺国率および殺国容量の拡大、コージェネレーションシステムの殺国率の拡大	-	-	減、2010年度比23 0%減)となった。				
	削減効果合計		-	-		•			
	より効率的な電気式等の産業車両の開発・普及	エンジン式産業車両から電気式産業車両への更新で、使用中のエネルギーからのCO2排出量を概ね半減できる。	-	I -I	2015年度以降、各社で長時間稼働や急速充電が可能な機種の投入が進み、エンジン式との使用上の不使さの解 消に努めて、電気式産業車両の普及促進に寄与				
日本産業車両協会	燃料電池式産業車両の開発・普及	水素を燃料とするため、水素を再生エネルギーで生産することでさらに低炭素化を促進	-	-	2016年秋に初めて国内で販売を開始		燃料電池式フォークリフトの普及促進に向け、規格の制定、規制の見直し、政府への導入支援措置の要望等を継続		
	テレマティクスによる効率的な車両運用の浸透 耐滅効果合計	搭載車両を拡大し、幅広需要先での活用を目指す。	-	I -I	車両の運行データを収集・解析し、作業に最適な車両台数の算出やより効率的な車両の運行を提案して、使用 時のエネルギー/CO2排出量を削減				
	環境配慮型商品の開発・販売		-	-	 プライベートブランドのもとで環境配慮型商品を展開(総合スーパー) 再生トレーにより資源を有効活用(総合スーパー) カーボン・オフセット付きシューズの開発・販売(総合スーパー) 再生紙使用商品の販売(食料品スーパー) 				
日本チェーンストア協会	ばら売り・量り売り等の実施		-	I -I	新型コロナウイルスの感染拡大防止のため、2019年度冬期より、「ばら売り・量り売り」をはじめとしたサービスを一時的に取りやめた店舗が増えてきております。この傾向は2020年度も継続すると考えられます。		今後も上記の取組を継続していくことが重要となりますが、チェーンストアにおいては、商品の販売活動を通じて の際のCO2削減の取組はお客様の環境問題への啓発になる部分がある一方で、ご理解・ご協力をいただくことが必		
1000 ZX	レジ袋の無料配布中止		-	-	レジ袋辞退時に購入代金から2円引き(総合スーパー) レジ袋辞退時に会員ポイントカードに2ポイント付与(食料品スーパー) 産学協同プロジェクトにて大学とオリジナルエコバッグを共同開発(食料品スーパー) マイバスケットの拡版(食料品スーパー)		要なため、一層の理解推進に努めていきます。		
	簡易包装の実施 常温販売の増加		-	-	・ギフトの簡易包装を推進(総合スーパー、食料品スーパー)-				
	テレビモニターを使用した販促活動の見直し 削減効果合計		-	-					
日本フランチャイズ		Loppi端末での1t販売やカードポイントの利用にてCO2排出権が購入できるサービス。	0.0200	0.0200		0.0290	【全 社】2020年7月1日よりバイオマス素材の配合率30%のレジ袋について有料化を実施。 ※「レジ袋有料化実施に伴うJFA統一方針(カイドライン)」を策定		
チェーン協会	【SEJ】 弁当・惣菜等の容器にパイオマスポリ プロピレン素材、軽量化ポリスチレン、再生ペット素材を使用、軽量化を図ることでCO2削減。		-	-		0.5783	(] F AホームページU R L: https://www.jfa-fc.or.jp/particle/3003.html) 【S E J】 2030年までにオリジナル商品にて使用する容器は、環境配慮型素材を50%以上使用。 【L A W】 「CO 2 オフセット運動」を継続実施。		
	削減効果合計		0.02	0.02		0.607			

		NAMES OF TAXABLE PARTY.	2020 200 年度削 年度		2019年度		
業種	低炭素製品・サービス等	当終表品等の特徴。 従来品等との差異など	減見込 減見 量(万t- 量(7 CO ₂) CO	見込 — (万t-	取相実績	削減効果(万t-CO2)	2020年度以降実施予定取組
日本ショッピングセンター協会	-	-	-	る ・ ・ ・ ・	C事業を行う企業によっては、他事業やグループ会社等で環境に配慮したPB商品等を製造している企業もある。またテナント企業と連携・協力し、環境に配慮した商品の扱いを拡大する取り組みも進められている。の他にも以下のような他部門での取り組みを行っている。「クールシェア」「ウォームシェア」への参加 対テナントへの廃棄物計量システム導入(廃棄物の発生抑制) 使用済み容器や前間・雑誌・ペットボトル等の回収(リサイクルへ)電気自動車の充電スタンド設置 地域社会貢献としての省エネ啓発イベント開催(展示会等)、子供向け勉強会や体験会等の環境教育の実施 ライトダウンキャンペーンへの参加 テナントや関係企業等との環境に関するコミュニケーション(情報提供・意見交換等) ・	-	今後も他部門で賈献できる取り組みを継続的に行う。
	削減効果合計		-	-		-	
日本百貨店協会	紙製容器包装の削減		-	- - - 1	業界統一の保治パックを全店舗で販売し、容器包装の削減を呼びかけ。(売上の一部寄行) 環境配慮型商品(フェアトレード商品・再生素材等)の展開や環境配慮選定基準を策定しPR。 お客様がご不要になった衣料品・靴・パック、ダウン (廃棄羽毛) などの回収プロジェクトへ参加し、リサ グル及びCOz削減に取組む。	273.49 (kg/億 円) [前年比△ 0.7%]	-
	プラスチョク製容器包装の削減		-	ال -	商品の運搬に高速バスの荷物置場の空きスペースを活用した「貨客混載」催事の実施。	63 5(kg/億円) [前年比△ 15.9%]	
日本チェーンドラッ	削減効果合計 -	-	-			-	-
	削減効果合計		-	-		-	
情報サービス産業協会	データセンターを利用したクラウド化によるエネ ルギー節減	-	-		行前システムの消費電力量合計1,287,075kWh/年から、クラウド化移行後の消費電力量合計は 92,673kWh/年となり、77.2%のエネルギーが削減された。他、各社の具体的な取り組み多数。	-	引き続き、各社において2019年度と同等程度の取り組みが実施される見込み。
	削減効果合計		-	-		-	
大手家電流通協会	-	-	-	- 気	・レビ、ジャー炊飯器の省エネルギー家電製品販売割合は9割を超えており、次いで電子レンジ、エアコン、電 便座、冷蔵庫といずれの機器も60%を超えており、多くの省エネ製品を販売しています。また、統一省エネ ギーラベル5つ星の冷蔵庫の販売は47.1%となっております。	-	引き続き、省エネ家電製品の販売を通じて、低炭素社会に貢献していく予定です。
	削減効果合計 LEDシーリングライトの販売	従来型蛍光灯の消費電力が少なく、かつ長寿命	-	-1	ED電球(電球、ナツメ球)約40,500個販売(前年比11%減)、照明器具(シーリングライト、和風ペンダント とご約20,000個販売(前年比11%増)	-	LEDシーリングライト、LED電球を積極的にチラシ販売実施
	LEDシーリングライトの販売	4000時間の長寿命、消費電力の大幅削減	-	- 26	5Wタイプ: 780個販売、31Wタイプ: 500個販売	-	LEDシーリングライトの継続販売
	ソーラー式LEDセンサーライト2灯式の販売	ソーラー電池とLEDを使用	-	- 1,	.150台販売(2019年9月~2020年8月)	-	年間目標1,300台(113.0%)
日本DIY協会	LEDシーリングライト(6畳タイプ)の販売	6畳目安タイプ消費電力比較すると、LEDは30W、蛍光管は58Wとなり、1機種で約28Wの差が見られる。	-	- 約	126,400個販売	-	自社CSR活動の推進を図るため、当該製品の年間販売目標を10%引き上げる(26,400個→29,040個)
	節水シャワーヘッドの販売	従来品と同じ使用感で節水ができる。	-	-	00個販売	-	更なる買い換え促進のための販促を行う
		節水シャワーに変更することで、CO2の排出量を抑える。節水シャワーは手元で水を出し止めできるものもある。	-	-	水タイプ: 35,700台販売、手元ストップ付節水タイプ: 21,000台販売	-	自社CSR活動の推進を図るため、当該製品の年間販売目標を10%引き上げる(54,000個→59,000個)
		網戸の張替え無料見積を自社宅配サービスで実施し、網戸の販売件数をアップ。		- 2,	040件	-	配達とも連動し、最短の経路と計画の実施で販売目標10%引上げ (2,040件→2,244件)
日本貿易会	削減効果合計	-	-	-	製品、サービス等を通じたCO2排出削減対策(連結ベース)> 環境に係るサービス・事業(事業出資も含む)> ②再生可能エネルギー(太陽光、風力、水力、地熱、バイオマスなど)・新エネルギー事業 ②その他 森林吸収源の育成・保全に関する取組み(連結ベース)>	-	-
	削減効果合計		-	-		-	
	家庭用燃料電池(エネファーム)		-	-		0.2926	
日本LPガス協会	高効率LPガス給湯器(エコジョーズ)		-	لل -	ガラストップコンロ、高効率LPガス給湯器、家庭用燃料電池(エネファーム)、家庭用コージェネの販売に こる家庭等でのCC2排出量削減への貢献 ガスヒートポンプ空調(GHP)や業務用厨房機器「涼厨」の普及啓発		今後も高効率LPガス機器の普及促進の展開を図っていく。
	ガスヒートポンプ式空調(GHP)		-	-		8.7026	
	削減効果合計		-	-		18	
	低炭素設備のリース取引 (47社)		-	-1	019年度新規リース契約件数 4,026件 019年度新規リース取扱高 1,597億円	-	
	再生可能エネルギー設備のリース取引(23社)		-	- 20	019年度に新規リース契約をした設備数 619設備	-	

業種	低炭素製品・サービス等	当談製品等の特徴、	年度削	2030 年度削 減見込	2019年度		2020年度以降実施予定取組
	BRICA PROBLEM 3 EXTEN	北木加寺とり左共ふと	量(万t-	- 量(万t- CO₂)	取組実績	削減効果(万t-CO2)	
1	エコリース促進事業等の補助事業を活用したリース取引の推進(41社)				エコリース促進事業をはじめ11制度を利用	-	
リース事業協会	21世紀金融行動原則署名(72社)				_	-	- 2020年度以降においても、左記で紹介した取組を実施し、低炭素社会実現に貢献する。
	両面コピー等による用紙の削減(86社)			-	紙使用量を2g 削減することにより2.9g -CO2の削減が可能となる(環境省「3R 原単位の算出方法」より)。 * 左記86社に加えて、2020年度に48社が実施予定	-	-
	書類の電子化、業務プロセス改善による書類削減 等のペーパーレス化 (61社)			-	紙使用量を2g 削減することにより2.9g -CO2の削減が可能となる(環境省「3R 原単位の算出方法」より)。 * 左記61社に加えて、2020年度に59社が実施予定	-	
	リユース・リサイクル率の高いリース終了物件取 扱業者の選定 (33社)			-	*左記33社に加えて、2020年度に17社が実施予定	-	
	削減効果合計					-	
	鉄スクラップリサイクルへの貢献	-	<u> </u>	-	2019年度 1,870万(トュースクラップ)	-	•
	太陽電池、LED等半導体製造装置の部材、自動						
	車。鉄道車両等運輸業界の基礎部材、リチウムイ		Ι.	_		_	
	オン二次電池の負極材、摩擦材、粉末冶金などに						
	利用						
	削減効果合計					-	
環境省所管3業種							
	RPF製造量(千t)	産業廃棄物処理業界は、産業廃棄物を原料とした燃料(精製廃油・RPF等)を製造している。これらの燃料が他業界において	Τ.			-	-
全国産業資源循環連	廃油精製・再生量(千kl)	代替燃料として有効利用され、この分の産業廃棄物の単純焼却が回避されるとともに、最終処分場の延命にも貢献していると			RPF製造や廃油精製・再生、木くずチップ化や肥料・堆肥化なども行っている。	-	- A (4 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本
	木くずチップ製造量(千t)	考えられる。			R P F 製造量580(千t)、廃油精製・再生量286(千kl)、木くずチップ製造量2,206(千t)、肥料・飼料製造量	-	- 今後も産業廃棄物を原料とした燃料・製品の製造を推進する。 -
I		今後も産業廃棄物を原料とした燃料・製品の製造を推進する。	<u> </u>		189(† t)	-	•
	削減効果合計					-	
日本新聞協会	各種活動 (「環境啓発記事・広告の掲載」「環境 関連イベントの主催・共催・協賛」「新聞協会主 催の研修会を通じた環境問題に対する社員の意識 向上・啓発」)を行っているが、それらによる削減実績等の具体的な数値は把握していない。	_			新聞・通信社として、環境啓発記事・広告の掲載や環境関連イベントの主催・共催・協賛をしている。 新聞協会主催の環境対策実務担当者研修会は、2019年度で12回を数える。この研修会を通じて、様々な情報が、共有されている。	-	- 2019年度と同様の活動を推進する。
	削減効果合計					-	
全国ペット協会	-	-		-	-	-	
1	削減効果合計			-		-	-

14. 海外での削減貢献の状況

業種			2020年度	2030年度	2019年度		
	海外での削減貢献等	削減貢献の概要	削減見込量	削減見込量	取組実績	削減効果	2020年度以降実施予定取組
産業省所管41業種							
	二国間オフセットメカニズム(JCM※1)を含む国際的な制度の動向 を踏まえ、先進的かつ実現可能な電力技術の開発・導入等により地球 規模での低炭素化を目指す。	-	-	ı	二国間クレジット制度(JCM)による実現可能性調査や実証事業、その他海外事業活動への参画・協力を通じ て、地球規模での省エネ・省CO2に資する取組みを展開。海外取組活動のうち、報告対象年度まで取組みを実 施・継続している発電・送配電事業案件のCO2削減貢献量を試算したところ、削減貢献量は約1,334万t-CO2/ 年と推計。[参考値扱い]	-	JCMによる実現可能性調査・実証事業、その他海外事業活動への参画・協力を通じて、引き続き地球規模での省エネ・省CO2に資する取組みを展開していく。
電気事業低次素社会協議会	運用補修 (O&M) 改善によるCO2排出削減ポテンシャル	電気事業者は、発電設備の運転や保守管理において、長年培ってきた知見や技術を活かしつつ発電設備の熱効 率維持向上に鋭趣努めており、これらの知見・技術を踏まえつつ日本の電力技術を海外に移転・供与すること で地球規模での低炭素化を支援していくことが重要である。公益財団法人 地球環境産業技術研究機構 (RITE) による石炭火力発電所の運用補修 (O&M※1) 改善に集点を当てたCO2排出削減ポテンシャル分析 ※2によれば、主要国でのO&Mによる削減ポテンシャル (各地域合計) は、対策ケース※3において2020年時 点で2.29億1-CO2との試算結果が示されている(高効率プラント導入の効果も含めた削減ポテンシャルは、最 大5億1-CO2/年)。 ※1 O&M [Operation & Maintenance] ※2 「主要国の石炭火力CO2削減ポテンシャルの評価:運用補修と新設の効果」(2014年8月公表)) ※3 対策ケース:現時点からUSC、2030年から1500で級IGCC相当の発電効率設備を導入した場合を想定	22,900 万t-CO2	-		-	
	削減効果合計		22,900 万t-CO2	-		-	
	石油・ガスと新エネルギーの将来 (インドネシア)	-	-	-			
	クウェート水素シンポジウム(クウェート) アプダビ首長国SSへのPV系統連係システム導入のパイロットモデル	-	-	-	① 専門家派遣事業		 製油所の安定運転のための改善に関する支援化確認事業(インドネシア) 石油分野におけるCO2低減技術の共同検討(サウジアラピア) アブダビ首長国SSへのPV系統連係システム導入のパイロットモデル設置事業(UAE)
石油連盟	設置事業 (UAE)	-	-	-	- 産油国からの要望に基づき、製油所の運転、経営管理、人材育成、教育訓練等に関する指導を行うため日本から専門家を派遣している。 ② 基盤整備事業	-	・製油所廃棄物の処理に関する共同事業(オマーン) ・製油所競争力強化に関する共同事業(ペトナム) ・バンチャック製油所のメンテナンス及び運転改善に関する共同事業(タイ)
	製油所廃棄物の処理に関する共同事業(オマーン)	-	-	-	- 産油国石油産業の技術的な課題解決への寄与を目的として、我が国の技術やノウハウの移転、およびその応用や共同開発を通して、安全操業、近代化、合理化、経済性向上、環境保全等に貢献している。		・サウジアラムコでの蒸気システム最適化プログラム(Steam System Optimization Program)のパイロット事業(サウジアラピア) ・低炭素技術導入を目指すサウジアラピアにおけるSPHプロセスとSPERA水素システムの適用検討(サウジアラピア) ・パターン製油所の安定運転のための改善に関する支援化確認事業(フィリピン)
	製油所競争力強化に関する共同事業(ベトナム)		-	-			※(一財)国際石油・ガス協力機関実施の事業の中から抜粋
	バンチャック製油所のメンテナンス及び運転改善に関する共同事業 (タイ) 削減効果合計	-	-	-		-	
	田典が未口町						
	LNG上流事業(天然ガス開発・採掘、液化・出荷基地)	天然ガスが石油の代替エネルギーとして使用されたとみなし、LNG上流事業(天然ガス開発・採掘、液化・出 荷基地)への都市ガス事業者の出資・権益比率、LNG出荷量、重油と天然ガスのCO2原単位から算定した。		-	東京ガス、大阪ガス、東邦ガスの3社が、オーストラリア、北米等において、LNG上流事業(天然ガス開発・ 採掘、液化・出荷基地)に参画している。	370 万t-CO₂	
	LNG受入、パイプラン、都市ガス配給事業	天然ガスが石油の代替エネルギーとして使用されたとみなし、LNG受入、パイプライン、都市ガス配給事業への都市ガス事業者の出資・権益比率、LNG受入量、都市ガス配給量、重油と天然ガスのCO2原単位から算定した。	1,200 万t-CO2	-	東京ガス、大阪ガス、東邦ガス、静岡ガスの4社が、北米、東南アジア、ヨーロッパにおいて、LNG受入事業、パイプライン事業、都市ガス配給事業に参画している。	260 万t-CO2	
	発電事業 (天然ガス火力、太陽光、風力)	発電事業 (天然ガス火力、太陽光、風力) により、既存の火力発電所の電力が代替されたとみなし、発電事業 への都市ガス事業者の出資・権益比率、想定発電量、当該国の火力平均排出係数と天然ガス火力排出係数から 算定した。	1,200 %4402	_	東京ガス、大阪ガス、静岡ガスの3社が、北米、ヨーロッパ、東南アジア等において、発電事業(天然ガス火 カ、太陽光、風力)に参画している。	500 万t-CO2	都市ガス事業者が、LNG出荷事業や天然ガス火力発電への参画を予定しているほか、日本のガス機器メーカーは、エネファーム、ガス瞬間
日本ガス協会	ガスコージェネレーション等の産業利用の海外展開(エネルギーサー ビス事業を含む)	都市ガス事業者が関与しているエネルギーサービス事業やJCM案件のプロジェクトごとの想定削減量から算定した。		I	東京ガス、大阪ガスの2社が、北米、東南アジアでエネルギーサービス事業やJCMプロジェクトに参画、産業 用需要家へのガスコージェネレーションの導入やバイオガス精製システムの導入事業の可能性調査事業を進め ている。	10 万t-CO2	式給湯器、GHPの更なる普及拡大を目指している。
	エネファーム及びGHPの海外展開	・エネファーム(家庭用燃料電池)の海外展開 メーカーの海外出荷実績を元に、従来型ポイラー及び当該国の系統電力排出係数をベースラインとして算定した。 ・GHPの海外展開	- 75t-CO2	-	・エネファームの海外展開 日本の力ス機器メーカーが、ヨーロッパにおいて、エネファームの販売を行っている。 ・GHPの海外展開 日本の力ス機器メーカーが、韓国、ヨーロッパ、北米等において、GHPの販売を行っている。	5 万t-CO2	
	ガス瞬間型給湯器(エコジョーズ含む)の海外展開	カス瞬間式給湯器の輸出実績(貿易統計)を元に、貯湯式電気温水器のエネルギー使用量、当該国の火力平均 係数をベースラインとして算定した。	- 万t-CO2	-	日本のガス機器メーカーが、アジア、北米等において、ガス瞬間式給湯器の販売を行っている。	1,120 万t-CO₂	
	削減効果合計		1,200 万t-CO2	-		2,265 万t-CO₂	
	CDQ(コークス乾式消火設備)	従来水により消火していた赤熱コークスを、不活性ガスで消火すると共に、顕熱を蒸気として回収する設備である。排熱回収の他、コークス品質向上、環境改善の効果もある。	1,180 万t-CO2	1,300 万t-CO2	日本鉄鋼栗において開発・実用化された技術の海外展開によるCO2削減効果は、CDQ、TRT等の主要設備 (上記参照)に限っても、合計約6900万t-CO2/年に達した。日系企業の主な技術導入先は、中国、韓国、インド、ロシア、ブラジル等。	2,296 万t-CO2	
	TRT (商炉炉頂圧発電)	高炉ガスの圧力エネルギーを電力として回収する省エネルギー設備である。高炉送風動力の40~50%の回収が可能となる。	900 77t-CO2	1,000 万t-CO2	鉄連は、省エネ技術等の移転・普及による地球規模でのCO2削減関献として、中国、インド、ASEAN諸国との間で省エネ・環境分野における協力を実施している。	1,150 万t-CO2	*2019 年度に続き、省工ネ技術等の移転・普及による地球規模での削減貢献を目的とした活動を実施する。但し、新型コロナウイルス感染拡大の影響を受けて、中国を対象とした取り組みは延期、インド、ASEAN諸国を対象とした取力出実施形態の変更し、実施する。 ・インド電炉メーカーを対象に今後の活動を検討するため、省工ネ技術の普及率等について実態調査を実施する。また、これまでISO
	副生力ス専焼GTCC (GTCC:ガスターピンコンパインドサイクル発電)	-	-	-	・2019 年度において、中国とは、「第11回日中交流鉄鋼業環境保全・省エネ先進技術専門家交流会」を開催し、日本鉄鋼業の長期ビジョンや最新の省エネ・環境保全技術対策の動向に関する情報・意見交換を実施した。加えて、本会合開始より10年以上が経過し、最新の環境・省エネ股価を導入する企業が増えている中、管	2,402 万t-CO2	14404シリーズを用いて、実施したインド高炉製鉄所省エネ診断のその後の取組状況について、フォローアップ調査を行う。 *ASEAN 諸国とは、「日ASEAN鉄鋼イニシアチブ」の活動の一環として、インドネシア、シンガポール、タイ、フィリピン、ベトナム、マ
日本鉄鋼連盟	転炉OGガス回収	-	-	-	理・操業といったソフト面での対策にも拡大し、全体マネジメントに関する意見交換も行われた。また、イン ドの製鉄所を対象にISO 14404に基づいた「製鉄所省エネ診断」を実施し、省エネのポテンシャルや推奨技術 の提案を行った。	821 万t-CO2	来事時、及び中我用的は対象で動物を描すていた。 ・昨年に引き続き、ASEAN鉄鋼業におけるJCM案件組成事業への支援を行った。
	転炉OG顕熱回収	_	-	-	 加えて、ASEAN諸国とは、「日ASEAN鉄鋼イニシアチブ」の活動の一環として、インドネシアでワークショップを開催し、「ISO 14404の応用と活用法」と「LCAの取組み」に加え、インドネシア鉄鋼関係者から 		 また、既存のISO 14404シリーズを補完するガイドライン規格であるISO 14404-4を国際規格として発行予定。これにより、インド等における複合的なプロセスが混在する製鉄所にも幅広く適用可能となる。当該国・地域に相応しい省エネ等の技術を掲載した技術カスタマイズドリストとともに活用することで、日本の鉄鋼架が強みを持つ省エネ技術等の普及可能性が高まり、更なる世界規模の省エネ・CO2削減
	機結排制回収 COG、LDG回収	_	5 000 75t-CO+	5,700 万t-CO2	要望のあった省エネ関連技術のプレゼンを行い、高い評価を得た。また、ASEAN鉄鋼業におけるJCM案件組成事業への支援を行った。 ・ 既存のISO14404シリーズを補完するガイドライン規格であるISO 14404-4を策定中。数年以内の完成を目	98 万t-C02 - 万t-C02	に貢献することが明待される。
					指す。		
	削減効果合計		7,000 万t-CO2	8,000 万t-CO2		6,857 万t-CO2	

業種			2020年度	2030年度	2019年度		
9R-188	海外での削減貢献等	削減貢獻の概要	削減見込量	削減見込量	取組実績	削減効果	2020年度以降実施予定取組
	イオン交換膜法か性ソーダ製造技術	水銀法、陽腰法をイオン交換機法に転換ストックベース法とフローベース法で算定	650 75t-CO2	-		922 万t-CO2	
	逆漫透膜による海水淡水化技術	逆浸透機エレメント1本あたりの削減効果。282.9t-CO2×610千本の需要エレメント数	17,000 万t-CO2	-	今回の調査において参加企業から報告あった事例を下記に示す。 ① 製造プロセスでの貢献事例	- 万t-CO2	
	自動車用材料(炭素繊維)	自動車1台あたりの削減効果 5t-CO2×30万台の炭素繊維使用自動車	150 万t-CO₂	-	イオン交換機法が性ソーダ製造技術, イオン交換機法電解システム, ノンホスゲン法 P C 製造法, 高純度テレ	- 万t-CO₂	御途的には宋の並取に彼はま
日本化学工業協会	航空機用材料(炭素繊維)	航空機1台あたりの削減効果 27kt-CO2×900機の炭素繊維使用航空機	2,430 万t-CO2	-	フタル酸、OMEGA法エチレングリコール、VCMプラント/分解炉の熱回収技術、コークス炉自動加熱λステム ③ 炭素製品を通じた貢献事例	- 万t-CO2	継続的に技術の普及に努める。
	エアコン用DCモータの制御素子	エアコン 1 台あたりの各国の削減効果×各国の出荷台数	19,000 万t-CO2	-	エコタイヤ用合成ゴム, 耐熱配管用部材 , エンジン油用粘度指数向上剤, 自動車フロントガラスの合わせガラス 用遮熱中間膜	- 万t-CO₂	
	次世代自動車材料	従来のガソリン自動車に対して、ハイブリッド、プラグインハイブリッド、電気、燃料電池自動車のCO2排出 割減	10,043 万t-CO₂	45,873 万t-CO₂		- 万t-CO₂	
	削減効果合計	123/96	49,273 万t-CO2	45,873 万t-CO2		922 万t-CO2	
日本製紙連合会	植材事業	極林面積を1990年度比で42.5万ha増やし2020年には70万haとする。これにより極林された森林資源のCO2 蓄積量は9,900万 t - CO2増加り1億3,500万 t - CO2となる。(これは2019年度の製紙業のCO2排出量1,658 万 t - CO2/年の8.1年分に相当) 2030年には植林面積を80万haとする。これにより植林された森林資源のCO2蓄積量は2020年よりも1,900万 t - CO2増加し1億5,400万 t - CO2となる。(これは2019年度の製紙業のCO2排出量1,658万 t - CO2/年の 9.3年分に相当)		15,400 77t-CO2	植林面積は2019年度末で国内・海外合わせ52.1万haで、2018年度実績に対して5千haの減少であり8年連続 の減少となった。 減少の理由としては、製品生産量の落込みを受けて原料調達量が2008年度以前と比べ減少していることから 投資意欲が消極的になっていること、現地事情として、雨量減少に起因した成長量の低下等による植林事業か らの搬退等があったことにより、植林面積が増やせなかったことが挙げられる。 なお、海外植林の地域はブラジル、ニュージーランド、チリ、インドネシア、オーストラリア、ベトナム、中 国、南アフリカ、カンボジアの9ヶ国で24プロジェクトが実施されている。	-	
	紙の10%軽量化		-	520 75t-CO2 -650		-	!
	削減効果合計		13,500 万t-CO2	15020		-	
セメント協会	-	-	-		セメント協会のホームページにおいて、Sustainabilityと題した英文ページを作成し、省エネルギー技術、廃棄物の最新の使用状況について公開している。 (URL: http://www.jcassoc.or.jp/cement/2eng/e_01 html) また、会員会社において以下の取り組みがなされた。 ・中国のセメント工場にて低NOX採集、股税効率向上にかかわる技術指導を実施。 ・中国やセメント企業に対する省エネ 環境エンジニアリング事業を進めており、省エネ診断や股偏の導入など技術的サポートを行っている。 ・海外の自社工場においても、国内の取り組みと同様に省エネ設備の導入並びに、エネルギー代替廃棄物の利用が進められた。	-	未定
	削減効果合計		-	-		-	
	発電	火力発電(石炭、ガス)、原子力発電、太陽光発電、地熱発電、太陽光発電	-	-	-	602 万t-CO2	フェーズ I 取組期間の最終年度として、2020年度実績も削減貢献量定量化の取組みを実施。その上で、これまでの取組みの総括を行い、
	家電製品	テレビジョン受信機	-	-	-	78 万t-CO2	フェーズII取組計画へ繋げていく。 また、電機・電子業界は、IEC/TC111(電気電子製品の環境配慮)に削減貢献量定量化の国際標準「IEC TR 62726 (2014) Ed 1 0 Guidance on quantifying greenhouse gas emission reductions from the baseline for electrical and electronic products and
電機・電子温暖化対策連絡 会	IT製品	サーバ型電子計算機、磁気ディスク装置、複合機、プリンター	-	-	-	847 万t-C02	systems (電気電子製品のペースラインからのGHG排出削減量算定のガイダンス)」の作成を提案し、国際主査としてガイダンス文書を取締 めた(2014年8月にIECから正式に発行)。 現在、このリニューアル新規格(電気電子製品及びサービス/システムの温室効果ガス排出量及び削減両献量の算定とコミュニケーションー
	ITソリューション(Green by IT)	速隔会議、デジタルタコグラフ	-	-	-	017731333	原則、方法論とガイダンス)の開発をIECに提案し、承認された(2020年12月)。今後、2021年2月から開発に着手し、2023年内の国際 規格最終原案作成をめざす。
	削減効果合計		-	-		1,527 万t-CO2	
	省工ネ照明設備の導入	蛍光灯、水銀灯をLED灯に交換。人感センサーによる自動点灯/消灯	0.0720 万t-CO2	0.0720 万t-CO2	省エネと環境対策として、LED化により省エネ化し 作業エリアの照度も向上した。 ポーランド工場内の約300本の蛍光灯をLED化。	0 0750 万t-CO2	LED化は投資回収年数が長いが、省エネ効果が大きいので今後も計画的に取り組んでいく。
日本自動車部品工業会	空調・コンプレッサー更新	系統の設備に動作不良のない事を確認しながらコンプレッサーの吐出圧を下げる。	0.0645 万t-CO2	0.0645 万t-CO2	中国工場にてコンプレッサーの吐出圧を0.1MPa下げる。同時にエアー漏れ箇所を改修。	0 0605 万t-CO₂	予算を組んで、空調更新、コンプレッサー更新を計画的に実施。
	再生エネルギー(太陽光発電)の導入	太陽光発電設備の設置	0.2093 万t-CO2	0.2848 万t-CO2	タイ(1,456kW). フランス(1,710kW) 及びインド(100kW)に太陽光発電装置を新たに導入した。	0.1620 万t-CO2	中国とマレーシアに太陽光発電装置の導入を予定している。
	削減効果合計			0.4213 万t-CO2		0 2975 万t-CO2	
	次世代車による削減累積	ハイブリッド車 (HEV) が海外で販売され始めた2000 年から直近の2019年までの期間における従来ガソリ	-	-		5,591 万t-CO2	
日本自動車工業会・日本自		ン車と電動化車両(HEV, EV, PHEV,HFCV)によるCO2 排出量の差を積算した。			国内で実施している省エネ事例の海外展開 海外のエネルギー・地域の実情に合わせた省エネ事例を展開している。		引き続き、国内省エネ事例の海外展開、太陽光発電や風力発電等の再生可能エネルギー設備の更なる拡充と利用拡大
動車車体工業会	海外事業所での削減	会員各社の海外生産拠点等の事業所での削減実績(2019年)	-	-	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15 万t-CO₂	
	削減効果合計		-	-		5,606 万t-CO2	
	ペルーの自社鉱山における水力発電 (ワンサラ亜鉛鉱山)	三井金属鉱業は、ペリーのワンサラ亜鉛鉱山(三井金属鉱業100%権益保有)において1986年に4,500kWの 自家水力発電所(以下、ワジャンカ水力発電所)を建設し、地元自治体へ約400kWを無機提供している。乾 期は水量が減少し、2,000kW程度しか発電できないこともあるため、2007年に全国送電線網と接続し、電力 不足分を買電する体制を整えた。このワジャンカ水力発電所は、ワジャンカ町に送電(10kW)するととも に、ワンサラ亜鉛鉱山の鉱山・道鉱工程に電力(33kW)を送電しており、水力発電だけでなく、送配電調整 の機能も果たしている。	1.4 <i>T</i> it-CO2	1.4 77t-CO2	2019年度の発電量は約2.8万MWhとなり、COz緋出削減量は約1.4万t-COz/年となった。	1.4 万t-CO2	今後も海外事業展開先では環境配慮の周知徽底、環境設備の維持・更新、各種環境規制の遵守など、的確に環境保全活動、CO2排出削減へ
日本鉱業協会	l .	三井金属鉱業は、ベルーのパルカ亜鉛鉱山(三井金属鉱業100%権益保有)においても1,000kWの水力発電を建設し、2015年2月からディーゼル発電を水力発電に切り替えている。この水力発電は軽油1,500k/年(CO2排出量3,900トン相当)の削減ポテンシャルを有するが、パルカ鉱山は2013年12月より生産調整していることから、完成した水力発電は250kWに出力を落として運転中であったが、2017年より生産を継続している。	0.1 77t-CO2	0.1 万t-CO2	2019年度の発電量は約0.28万MWhとなり、CO2排出削減量の約0.13万t-CO2/年となった。2020年度および 2030年度のCO2排出削減見込量は、それぞれの水力発電所の定格能力に基づき求めた。電力の炭素排出係数 は0.4913kg-CO2/kWhとした。	0.13 万t-CO2	の両献を進める。また、実績に基づいて蓄積される技術とノウハウを活かし、事業展開先の地域のマザー工場として、技術面のみならず環境保全・地球温暖化対策面でも先導的な役割を果たしていく。さらには、事業展開の拡大により、国際貢献の領域を広げ、質、量ともに高
	タイの自社廃棄物処理施設における余剰熱利用発電	DOWAホールディングスは、タイの廃棄物処理施設において、廃熱ポイラの余剰蒸気を利用して2012年10月から発電を開始した(発電容量1,600kW)。	0.2 77t-CO2		2019年度の発電量は0.44万MWhとなり、CO3排出削減量の0.22万t-CO3/年となった。CO3排出削減量は静電率などの操業状態によって変動するが、2020年度および2030年度のCO3排出削減見込量は2019年度および2018年度の適近の発電量に基づき0.2万t-CO2/年とした。電力の炭素排出係数は0.4913kg-CO2/kWhとした。	0.22 万t-CO2	
	削減効果合計		1.7 万t-CO2	1.7 万t-CO2		1.8 万t-CO₂	

					No. of Friedrick		
業種	海外での削減貢献等	削減貢献の概要	2020年度	2030年度	2019年度		2020年度以降実施予定取組
			削減見込量	削減見込量	取組実績	削減効果	
石灰製造工業会	技術指導員の派遣	-	-	-	日本の石灰製造に係るエネルギー効率やCO2発生量を諸外国と比較する他、温暖化防止に関わる新技術を戻るために、国際石灰協会に加盟し、情報交換を継続中である。年一回開催されている国際石灰協会の総会と情報交換会は、2019年はアルゼンチン共和国の首都であるブエノスアイレスで開催され、日本を含め世界19月から99名の参加があった。2018年の世界の石灰生産量は424百万トンであるが、このうち中国の生産量は300百万トンある。温暖化対策関連の発表では、EUは排出権取引の説明と2050年までにはゼロエミッシニンの目標とする動きの説明があった。カナダは炭素税の導入が州レベルで行われていて、その価格が州により異なるため問題が生じているとの説明があった。	-	未定
	削減効果合計		-	-		-	
	生産時の省工ネ技術(コジェネレーションシステム、高効率の生産設	-	_	_		-	
	備、生産ノウハウ等) の海外移転 省エネ製品(低燃費タイヤ、省エネベルト、 遮断効果製品等) の海外	_	_	_	○海外拠点における再生可能エネルギーの取組事例 ○生産時の省エネ技術の海外移転(海外工場(製造プロセスの技術移転)での削減・貢献事例	-	- 引き続き各社での取組を進めていく。
日本ゴム工業会	生産・販売拡大 海外輸送によるCO2削減	_	_	_	○省工ネ製品の海外生産・販売拡大 (海外での製品による貢献事例)○公害対策に関する国際貢献 (海外での公害対策で、環境技術やノウハウを活用)		
	削減効果合計		-	-		-	
	環境技術標準化	ISO TC130/WG11 (印刷) での取組	-	-	TC130/WG11 (印刷) で紙リサイクル・脱墨評価方法の国際標準化について内容を詰めている。	-	・紙リサイクル・脱墨評価方法についてISO TC130で国際標準化が検討されており、関連団体と連携を図っていく。また、I SO化と並行して、JIS化を目的とした取組を進める。
日本印刷産業連合会	情報交換	海外関連業界団体との情報交換	-		2019年度に行われたWPCF(世界印刷会議)において、日本の省エネやVOC排出抑制の取り組みを紹介する 等、環境関連の情報交換を行った。	-	- 世界印刷会議等での省工不等環境関連の情報交換継続。 - 環境技術標準化の推進 (ISO TC130 WG11 (環境) での活動)
	削減効果合計		-	-		-	
日本アルミニウム協会	1リザインルの推進	アルミニウム缶のリサイクル等で製造される「再生地会」1t当たりのCO2排出置は309kg-CO2/tであり、新地会の発生置9,218kg-CO2/tに対して、わずか約3%程度である。	-	-	2019年度は、日本で再生地金が128.7万トン生産されており、新地金を使用した場合と比較すると、CO2削減量は1,147万トンになる。(データの出典等((一社)日本アルミニウム協会LCA及び統計)) (取組の具体的事例) アルミ缶、アルミサッシ、アルミ鋳造品等のアルミニウムのリサイクル	1,147 万t-CO2	-
	削減効果合計		-	-		1,147 万t-CO2	
	燃料転換技術	板ガラス製造の燃料である重油に変えて、単位熱量あたりのCO2排出量の少ない天然ガスを使用することで、 板ガラス製造段階の排出CO2を削減できる。その際に、比較的大きなガラス熔解構窯に適したエネルギー効率 の高い燃焼技術が必要とされる。	-	-		-	
板硝子協会	全酸素燃燒技術	燃料燃焼時に空気の代わりに酸素を使用し、空気中の燃焼に寄与せずNOxの原因となる窒素(空気中の約8割を占める)を燃焼温度まで上昇させるための顕熱をカットすることで、大幅にCO2排出量を削減する技術。比較的大きなガラス熔解構窯に適した特殊な構造のパーナー等の燃焼技術が必要とされる。		-	ガラスカレットの利用量を増やし、天然原料使用量を減らすことで製造工程でのCO2排出削減に努めた。	-	2019年度の取組みを継続する。
	排熱利用発電技術	カラスの溶解炉で発生する排熱を有機ランキンサイクル (ORC) モジュールなどで回収し、電力に変換するシステム技術。 有機ランキンサイクルは、蒸気ターピン発電機における水の代わりに、低沸点の有機媒体を使用し、排力ス排熱回収発電をおこなう。	-	-		-	
	削減効果合計		-	-		-	
日本染色協会	特になし。 削減効果合計	-	-	-	-	-	-
	導体が八°最適化	送電ロスの低減が図れる技術のIEC規格化、英文パンフレット作成。	-	-	日本初のIEC規格化	-	
日本電線工業会	データセンターの光配線化 超電導磁気浮上式リニアモーターカー「超電導リニア」向け電源線	回線をメタル電線から光ファイバ化することでCO2削減 車両に搭載される磁力による反発力または吸引力を利用して、車体を軌道から浮上させ推進する鉄道。最高設計速度505km/hの超高速走行が可能で、2027年の中央新幹線(東京〜名古屋)開業を目指しており、最速で40分で結ぶ予定。	-	-	-	<u>-</u>	- 超電導ケーブル: 超電導電力ケーブルは、送電損失がほぼゼロで、低電圧で大容量の送電が可能であるという利点があり、実用化に向けた開発が進められ、民間プラントでの三相同軸超電導ケーブル実証試験を2020年2月に運転を開始する予定。プラント内の既存の冷熱の利用により、超電導ケーブルの冷却に必要なエネルギーを大幅に削減することを目指す。 (NEDOウェブサイト2019 6.12)
	車両電動化・軽量化	EV (電気自動車) PHV (プラグインハイブリッド自動車) は、電動モーターを駆動させるため、CO2を発生 しない。 燃料電池自動車は、水素と空気中の酸素の電気化学反応により発生する電気を使ってモーターを駆動させるた め、CO2排出量を低減できる。	-	-	-	-	
	削減効果合計		-	-		- Theo	
日本ガラスびん協会	中国での技術指導 (T社3 第分) ブラジルでの技術指導 (I社2 第分)	-	0.129 万t-CO2	0.111 万t-CO ₂ 0.129 万t-CO ₂	東芥の柱中2柱で、中国ペンフンルルなどでの時外技術機制による生産社内上に参与	0.111 万t-CO ₂ 0.129 万t-CO ₂	
	削減効果合計		0.240 万t-CO2	0.240 万t-CO ₂		0.240 万t-CO2	
	タイの工場で水の蒸散効果を活用した冷却システムの導入により空調 稼働率を低減するなど、CO2排出量を削減。	-	-	-	会員企業では、海外の現地法人においても、国内と同様に省工ネ活動などを推進している。	0.1100 万t-CO2	省工ネ活動を実施する。
日本ペアリング工業会	フランス及び中国の工場で、太陽光発電パネルを設置し稼働している。	-	-	-	THE PROPERTY OF THE PROPERTY O	0.1300 万t-CO ₂	
	削減効果合計		-	-		0.240 万t-CO2	

業種	No. 10 To the William Address	White the comment	2020年度	2030年度	2019年度		2020年度11時中華至402年
	海外での削減貢献等	門減貢獻の概要	削減見込量	削減見込量	取組実績	削減効果	2020年度以降実施予定取組
日本産業機械工業会	新興国、途上国の資源・エネルギー開発やインフラ整備、工業化投資等に対して、我々産業機械業界が培ってきた技術力を活かしていくことで、世界各国の低炭素社会づくりや地球環境保護等に貢献している。なお、受注生産品である産業機械は、製品毎にLCAが異なり、その定量化には会員各社が多大なコストを負担することになるため、削減見込量等の把握は困難である。	-	-	-	【NEDO「エネルギー消費の効率化等に資する我が国技術の国際実証事業】 (実施中)】 ・海水淡水化・水再利用統合システム実証事業 (南アフリカ共和国) (温室効果力ス門減目標値:1,760 ト-CO2/年) ・ウズベキスタン共和国における分散型中・小型力スターピン高効率コジェネレーションシステム実証事業 (ウスペキスタン) (温室効果力ス門減目標値:44,649 ト-CO2/年) ・省エネルギー型海水淡水化システムの実規模での性能実証事業 (サウジアラピア) (温室効果力ス門減目標値:2,096 ト-CO2/年) 【2019年度「二国間クレジット制度資金支援事業のうち設備補助事業」】 ・繊維工場におけるコージェネレーション設備への排力ス熱交換器の導入による高効率化 (タイ) (温室効果力ス門減目標値:359 ト-CO2/年) 【公益財団法人廃棄物・3 R研究財団「令和2年度二酸化炭素排出抑制対策事業費等補助金 (我が国循環産業の軟勢的国際展開による海外でのCO2門減支援事業)】】 (CO2門減量の記載なし)・インドネシアにおける原タイヤ利用発電事業・インドネシア国ジャカルタ特別州における原棄物発電施設と下水処理施設の統合事業・ベトナム国ハノイ市南部地域における都市固形廃棄物発電施設と下水処理施設の統合事業・ベトナム国ハノイ市南部地域における都市固形廃棄物焼却発電施設導入事業	-	世界に誇る環境装置や省工ネ機械を供給する産業機械業界は、持続可能なグローバル社会の実現に向けて、インフラ整備や生産設備等での 省工ネ技術・製品の提供を始めとする多角的で大きな貢献を続ける。
	削減効果合計		-	-		-	
日本建設機械工業会	-	調査会社のデータを1部用いて、2030年の全世界での油圧ショベル(6 t 以上)、ホイルローダ(80HP以上)、ブルドーザの稼働台数を想定。削減見込量を試算した。 [試算方法] ●海外CO2排出量削減量 平均CO2排出量/台×CO2排出量削減率×想定稼働台数 ・平均CO2排出量/台 1990年における国内稼動建機の平均CO2排出量 ・CO2排出量削減率 21.8%(2020年燃費基準100%達成建機レベル) ・想定稼働台数 世界での稼働台数(想定備)×国内メーカ市場占有率	-		② 照明の即電で迅味境場に貢献 事業所の天井をシースルーのものに更新し、日中降り注ぐ自然光を活用できるようにしたことで消費電力を 30%削減することに成功した。またLED・蛍光灯といった高効率照明を野外セキュリティーライト等に導入 し、年間合計で約34560kWhの電力を削減することができた。	-	-
日本伸銅協会	削減効果合計	-	-	435 万t-CO2	-	-	-
	削減効果合計		-	-		-	
	空調機器の効率化 高効率照明の導入	-	-	-	左記の通り、工場設備の効率化がすすめられた。 ・海外に進出している企業は少ないが、日本と変わらない省エネ対策を行っている。 ・タイ王国において、2019年11月に「Thailand Energy Awards 2019」を受賞した会員企業がある。工場全	-	2019年と同様に、工場設備の効率化がすすめられると考えられる。
日本工作機械工業会	 コンプレッサの更新	_	_	_	体で電力使用量の削減に取り組み、モニターでの管理システムを構築し3年連続で成果を上げたことが評価さ	_	TOTAL CHANGE THINGS & SANDIES CANDIES
					れ、受賞したもの。海外においても積極的なエネルギー削減の取り組みを行っていることが推察される。		
	生産設備の効率化	-	-	-		-	
	削減効果合計		-	-		-	
	海外からの調査団や技術研修者の受入	-	-	-	福岡県の1鉱山にて韓国から14名、ブータンから7名、中国から52名の見学を受入し、同鉱山の省工ネ技 係について紹介した。山口県の1鉱山にてモザンピークから12名の見学を受入し、同鉱山の省工ネ技術について紹介した。	-	
石灰石鉱業協会	海外技術移転	-	-	-	出責している海外鉱山に技術者(管理者)を駐在派遣。日本の鉱山管理技術を随時指導している中で省工术に 関することも指導している。例えば、採掘現場である切羽面を出来るだけ平滑に保つことにより、ダンプト ラックの燃費向上を図る など。また、重機等設備の更新に於いては、価格のみではなく、エネルギー効率も 重要な尺度とするよう指導、特に燃費の良い日本製の重機等を推薦している。	-	今後も、研修要入や技術移転を模様的に進めていく。
	削減効果合計		-	-		-	
日本レストルーム工業会	ている。	一例として、日本では洗浄水量13リットルの便器を使用している家庭で、洗浄水量6リットルの節水型便器に 交換した場合、節水量から換算されるCO2削減量は、1台あたり年間約24.4kgになることを公表している。 これらの貢献については、程度は異なるものの、海外でもこの考え方が展開できると考えている。ただし、削減見込み量及び算定根拠は、諸外国でそれぞれ条件が異なり、数値を取得することが難しく今後の課題である。今後GVCの検討の中でも海外への貢献について検討をしていく。 また、海外でも節水便器の普及により、水資源保全への貢献や節水によるCO2削減貢献が可能と考えられるため、当工業会では節水便器の海外への普及のためASEAN諸国をはじめとする、各国節水規格策定のサポートを推進している。	-	-	・当業界では、節水便器の普及を通じて、海外も含めたグローバリンでの水資源保全とCO2削減ができることをホームページなど様々な媒体を通じて啓発を継続している。 ・海外での節水便器の普及のため、グリーン建材事業(通称)の推進(経済産業省施策・日本建材・住宅設備産業協会受託事業)に参画し、日本の節水便器規格をASEAN諸国へ普及活動を推進した。 (ベトナム) 「水通り製品の節水ラベリング制度」について国家規格への導入促進と技術支援を実施。(インドネシア)「節水トイレ」の規格発行までのフォローアップを実施。	-	・ホームページ等で行っている情報発信を継続していく。 ・業界として引き続き、節水便器の海外での普及促進のため、ASEAN諸国をはじめとした各国節水規格策定をグローバルにサポートをしていく。
	削減効果合計		-	-		-	
	ゼロフレア	World Bankが推進する"Zero Routine Flaring by 2030"に参加しており、ゼロエミッション確立へ向けて、 ガスフレア量を最小限に抑えた生産操業を継続。原油と共に生産される随件ガスは海上での燃料ガスに使用す る他、原油回収率向上を目的として油層への再圧入に利用するコンセプトでガスのフレアを抑えることにより CO2排出量を極力抑えている。	-	-	随作ガスの利用:UAE、カナダ、アゼルバイジャン、タイにて実施。 随作ガスの圧入:UAE、アゼルバイジャン、カザフスタン、インドネシアにて実施。 放散ガスの削減:ベネズエラ、UAE、米国、豪州にて実施。 残造油の焼却削減(再利用):UAEにて実施。	-	
	廃熟利用	オイルサナーの収作業時に廃熱リサイクルを実施。従来はフレアさせていた随伴ガスを回収し、水蒸気発生燃料として購入している天然ガスと混焼することにより有効利用を図るとともに、購入ガスの削減を実現。	-	-	インドネシア、カナダにて実施。	-	
石油鉱業連盟	植材事業	参加各国の石油・天然ガス生産施設周辺やその他の地域にて実施	-	-	インドネシア、オーストラリアにて実施。 ・豪州ユーカリ極林'08年から50年で45万トン削減。 ・豪州森林火災管理プロジェクト'06年から継続。年間13.7万トン削減。	-	基本的には、今までに行われた取り組みが、引き続いて行われ、新たな取組も開始される予定。
	石炭発電所からのCO2回収及び EOR利用	石炭火力発電所の燃焼排力スからCO2を回収するプラントを建設し、回収したCO2を油田に圧入、原油の増産 と同時にCO2の地下貯蔵を図るもの。2017年に増進回収による生産を開始	12 75t-CO2	65 75t-CO2	米国にて実施	58 万t-CO2	
		参加国における発電所から国営電力会社へ販売	- 13 Fr 00s		インドネシアにて実施、約330MW	FO Thiss	
	削減効果合計		12 /jt-C02	65 万t-CO2		58 万t-CO2	

海外での削減貢献等	削減貢献の概要	削減見込量	削減見込量	2.000		2020年度以降実施予定取組	
- 削減効果合計			122-00-	取組実績	削減効果	TO CONTRACT AND A PARTICULAR AND A PARTI	
	-	-	-	-	-	-	
-	-	-	-		-	今後も、好事例の収集、紹介、共有を促進。	
削減効果合計		-	-		-		
一	-	-	-	-	-	•	
	-	-	-	[MS] 現在、韓国、フィリピン、中国、ベトナムへ出店し、各国の特性に応じて省エネ機器の導入、厨房加工のオペレーションの効率化を進めることで店舗の環境負荷低減を図っている。	-	-	
削減効果合計		-	-		-		
	-	-	-	国内の取り組み事例・実績を基に、海外店舗への導入も進められている。 - 太陽光発電設備の設置 - 高効率空調機の採用 - LED照明導入 - 屋上緑化や植栽活動 等	-	今後も海外で貢献できる取り組みを継続的に行う。	
削減効果合計		-					
- 削減効果合計		-	-		-		
-	-	-	-	-	-	-	
豪州においてテレプレゼンスロボットと呼ばれる可動式ロボットを使		-	-	-	-	-	
ソリューションの展開	風光解析ソフトウェアによって乱ポリスクを評価し、設置疾機型点を選定。 <事例2>無線基地同選定の効率化	-	-	-	-	-	
飛行方式設計システムの海外展開	通流を実現するシステム。航空機の効率的な運航および航空交通の安全性の向上、航空管制官の作業負荷の平 準化、および航空機が上空待機中に消費する燃料の削減が可能となる。航空交通量の増加が見込まれるアジア		-	-	-	-	
「オープンコンピュートプロジェクト」(OCP)仕様のインフラ構築	Facebook社が提唱し2011年に発足した取り組み。最も効率が良いサーバやストレージ、ネットワークなどを構築するために、参加企業が仕様を決めて、それを公開・共有する。 OCP仕様のハードウェアは、データセンター向けに最適化された設計により、低消費電力、低コストでのシステム提供が可能である。消費電力は従来品に比べ約10%削減できるとされている。	_	-	-	-	-	
削減効果合計		-	-		-		
削減効果合計		-	-		-		
- 削減効果会計	-	-	-	-	-		
	物流拠点、ルート、システムの合理化、効率化を図った結果、CO2排出削減につながった取組	-	-	I I	-		
	輸送手段、方法の変更で合理化・効率化を図った結果、CO2排出削減につながった取組 例)モーダルシフト の推進	-	-		-		
		-	-		0 0385 万t-CO2		
製品、サービス等を通じたCO2排出削減対策 (連結ベース)	-	-	-	北木川 「北京県 タイマの 和田弘大 チリ綱鉱山の生産力強化と調達資金のグリーンローン認定	-		
		-	-	チリ銅鉱山の再生可能エネルギー調達	-		
	活用し、全世界でIPP事業を展開してきた。近年は、IPP事業の中でもCO2の排出削減に寄与する再生可能エネルギー(太陽光・風力・水力・地熱・パイオマス等)発電事業の拡大に注力している。2019年度に全世界 (除日本) 31か国で稼働済みの発電案件は、7社会計で98件、総発電設備容量(グロスペース)は2,233万	_	_	31か国で98件のIPPを実施中(うち、CO2削減関献量が計算できたものは92件721万t)。CO2削減関献量の 地域別内訳は欧州34件237万t、北米11件197万t、アジア大洋州24件189万t、中南米18件58万t、中東ア フリカ5件40万t。種類別内訳は、風力45件489万t、太陽光・太陽熱27件56万t、水力11件70万t、地熱	- 721 万t-CO2		
	別域効果合計			関連関係的 「関連関係的 「関連関係的 「「ディスタンス」と呼ばれる大人の世上的のする関係の利力したいている。 「「ディスタンス」と呼ばれる大人の世上的のする関係の利力したいている。 「「アイスタンス」と呼ばれる大人の世上的のする関係の利力したいている。 「「アイスタンス」と呼ばれる大人の世上的のする関係の利力したいている。 「「アイスタンス」と呼ばれる大人の世上的のする関係の利力したいている。 「「アイスタンス」と呼ばれる大人の世上的のする関係の利力したいている。 「「アイスタンス」と呼ばれる大人の世上的のする関係の表現したのでは、アイスタンス 「「アイスタンス」と呼ばれるとは、「、関係的研究域」と 「「アイスタンス」と呼ばれるとは、「、関係的研究域」と 「「アイスタンス」と呼ばれるとは、「、関係的研究域」と 「「アイスタンス」と呼ばれるとは、「、関係的研究域」と 「「アイスタンス」と呼ばれるとは、「、関係的研究域」と 「「アイスタンス」と呼ばれるとは、「、関係的研究域」と 「「アイスタンス」との関係の関係は、「、			

業種	White a White	W-1-11-1-	2020年度	2030年度	2019年度		
	海外での削減貢献等	削減貢献の概要	削減見込量	削減見込量	取組実績	削減効果	2020年度以降実施予定取組
			-	-	産業用冷蔵庫における省エネ冷却システムの導入	0 0293 万t-CO2	
			-	-	塩素製造プラントにおける高効率型電解機の導入	0 3289 万t-CO₂	
			-	-	製紙工場における省エネ型段ボール古紙処理システムの導入	1.9011 万t-CO₂	
			-	-	蓄電プラントを完工し、米国最大の独立系統連用機関(米国北東部13州を管轄、域内の総発電容量は約 185,600MW)が運営する周波数調整市場向けに無給調整サービスを実施。	-	
			-	-	電気自動車を投入したカーシェアサービスを開始	-	
	環境に係るサービス・事業(事業出資も含む)		-		全契約電力量約3GWの内、再生可能エネルギー電源比率が約80%を占める英国連結子会社をはじめとする、電力卸売・小売業における再生可能エネルギー電源の取扱いの拡充を推進	-	
		②その他	-	-	CO2の回収 - 有効利用 / 再資源化 (CCU) 技術を有する企業への出資	-	
			-	-	鋼鉱山の操業にかかる電源を、2022年より100%再生可能エネルギー使用に転換	-	
日本貿易会			-	-	未職化地域にて太陽光発電を用いた電力サービス事業への出資	-	
			-	-	分散型電源案件の開発支援サービスや、太陽光パネル試験事業を行う米国企業への出資	-	
			-	-	EVに必要なリチウム電池材料、コバルト、ニッケル等の供給や、アルミニウム等の軽量化素材の供給	-	
			-	-	電気自動車用蓄電池を活用した定着型蓄電池での電力の調整力を提供	-	
			-		非電化地域で主に再生可能エネルギーを用いて電力の安定供給を行うミニグリッド事業(分散電源事業)に出 資参画。CO2排出削減に貢献	-	
			-	-	焼烟耕作の抑制によるREDD+プロジェクト	-	
			-		国際NGOと協働してBBOP(ビジネスと生物多様性オフセットプログラム)を策定し、希少動物のための緩衝 地帯設定や鉱石運搬パイプラインのルート迂回等、絶滅危惧種の保護を推進。	-	
			-		森林経営において持続可能な伐採方法を採用、生態系に配慮した開発方法により絶滅危惧種の生息数増加や野 生馬も見られる自然環境を維持。	-	
			-	-	渡り鳥の生態に配慮する栽培方法を採用する農園からのコーヒー豆 (パードフレンドリー®コーヒー) を調達・販売。	-	
	森林吸収源の育成、保全等に関する取組み(連結ベース)	-	-	-	当グループ木材両達方針に基づき、全ての両達木材のトレーサビリティを確保済 (2020年度迄の目標を前倒し達成)。引き続き、森林管理の適切性を伴う木材両達に注力する。	-	
			-	-	植林事業	-	
			-		1990年代より植材事業を展開し、現在グループで14万ヘクタール(総事業面積32万ヘクタール)の植林可能 地の管理を実施。事業の適正管理を引き続き推進し、持続可能な森林経営を進める。	-	
			-	-	オセアニア、アジア、北米で極林アセットマネジメント事業を展開する会社に出資・参画。特続可能な森林資 漆の供給、森林吸収源・排出権を創出する森林ファンド事業を通じ、地球温暖化防止に貢献	-	
			-		熱帯林再生プロジェクトの実施。宮脇博士による方式 (植物を密植・混植し植物の競争を促すもの) により、通常300~500年かかるところ、40~50年の短期での熱帯林再生を目指し継続実施。1990年のプロジェクト開始以来、累計160万本を植樹している。	-	
	削減効果合計		-		サンゴ確保全プロジェクトの実施。アースウオッチや研究機関と協働し、サンゴの生態や環境ストレス反応についての研究(セーシェル諸島)、季節変動、光、温度や水質がザンゴに与える影響(黒帯病等)の評価(豪州)や保全活動を継続実施。	- 723 万t-C02	
		フィリピン中部、ボホール島でのマングローブの植樹活動ある会員企業により毎年行っている取り組みであ					
	フィリピン中部ボホール島でのマングローブ植樹活動	3.	_	-		12 t-CO ₂	
日本LPガス協会	LPガスに関する国際交流事業	-	-		関連団体である L Pガス振興センターでは、LPガスに関する国際交流事業を行っている。毎年3月に日本において L Pガス国際セミナーを開催し、日本の現状を世界に紹介していたが、2019年度は新型コロナウィルスの影響で中止となった。		関連団体であるLPガス振興センターでの国際交流事業や日本LPガス協会が加盟している世界LPガス協会(WLPGA)を通じ、を通じて継続的に活動を展開していく。
	削減効果合計		-	-		12 t-CO ₂	

業種			2020年度	2030年度	2019年度		
未催	海外での削減貢献等	削減貢献の概要	削減見込量	削減見込量		Whatem	2020年度以降実施予定取組
			13399/62388		取組実績	削減効果	
	海外における低炭素設備のリース取引(2社)	-	-		2019年度新規リース取扱高 144億円	-	
	再生可能エネルギー設備のリース取引 (2社)	-	-	-	2019年度に新規リース契約実行 (太陽光設備)	-	
リース事業協会	二国間クレジット制度(JointCreditingMechanism (JCM))の補助制度を利用したリース取引	-	_		2017年度~2019年度に、環境省及び執行団体である公益財団法人地球環境センター(GEC)が募集したJCM 設備補助事業において、インドネシア、フィリピン、タイの3か国で、6つのプロジェクトが採択された。太陽		2020年度以降においても、左記で紹介した取組を実施し、海外のCO2削減に貢献する。
					光設備の導入により、CO2排出削減に貢献している。		
	削減効果合計		-	-		-	
炭素協会	鉄スクラップリサイクルへの貢献 削減効果合計	-	-	-	2019年度 1,989万('>-スクラップ)	-	
省所管3業種	刑減効果合計		-				
自川官3条程							
△ 同	会員企業が環境省事業のFS調査や事業採択等された件数は、過去4年間で21件程度である。これは、中小企業が多い業界であるため、これらの取り組みが進みにくいことが考えられる。前述のとおり、海外での取り組みを行っている会員企業はあるが、当連合会としては、国内の取り組みを優先して推し進めたいと考えている。	-	-	-	-	-	
	削減効果合計		-	-		-	
日本新聞協会	-	-	-	-	日本国内での事業活動を前提にしているため、把握していない。	-	各社の取り組みなので、協会では把握していない。
	削減効果合計		-	-		-	
全国ペット協会	-	-	-	-	-	-	
	削減効果合計		-	-		-	

15. 革新的技術の開発・導入の状況

(株式の大学の大学の大学を表現しています。	2020年度 2030年度	0年度 2030年度	2			2020年	20年度	2030年度		
MOD_MIX - NOT - ADMINISTRATE (MODIS) GREAT DEBRING (MODIS) GREAT DEBRI	- M 2019年度取組事績				技術の概要・革新的技術とされる機関				2019年度取組実績	2020年度以降実施予定取組
100-0019 2-C-00389-3/07/2019 4-0001-01 2-000				曾41業種						
電影響展示 1 1 1 1 1 1 1 1 1	①参加している国家プロジェクト ・ 寒冷地でのZEB普及に向けた実証 ・ NEDO事業「水素社会構築技術開発事業/水素エネルギーシステム技術開発」(東芝エネルギーシステムズ, 岩谷産業, 当社の3社共同参画) ・ 電力系統出力変動対応技術研究開発事業 ・ 再生可能エネルギーの大量導入に向けた次世代電力ネットワーク安定化技術開発 ・ 「需要家側エネルギーリソースを活用したパーチャルパワープラント構築実証事業費補助金」 ・ 再エネ導入と電力系統安定化を低コストで両立させる社会的実証 ・ 大崎クールジェンプロジェクト ・ EV駆動用パッテリーのリユース技術を活用したVPP実証事業 ・ VPP技術の実証および事業化に向けた検討	-		(IGCC※2) などの高効率火力発電技術の採用 バイオマス燃料の混焼・専焼利用 1700で級ガスターピンや先進超~臨界圧石炭火力発電(A-USC※3)、石炭ガス化燃料電池接 発電(IGFC※4)などの更なる高効率火力発電技術の開発 水素・アンモニアの混焼技術の開発 CCUS※5に同けたCO2分離・回収技術の開発 ※1 USC [Ultra Super Critical] ※2 IGCC [Integrated coal Gasification Fuel cell Combined cycle] ※3 A-USC [Integrated coal Gasification Fuel cell Combined cycle]	(IGCC※2) などの高効率火力発電技術の採用 バイオマス燃料の混焼・専焼利用 1700で級ガスターピンや先進超々臨界圧石炭火力発電(A-USC※3)、石炭ガス化燃料電池複合 発電(IGFC※4)などの更なる高効率火力発電技術の開発 水素・アンモニアの混焼技術の開発 CCUS※5に向けたCO2分離・回収技術の開発 ※1 USC [Ultra Super Critical] ※2 IGCC [Integrated coal Gasification Combined Cycle] ※3 A-USC [Advanced-Ultra Super Critical] ※4 IGFC [Integrated coal Gasification Fuel cell Combined cycle]	-	-	-	- 寒冷地でのZEB普及に向けた実証 NEDO事業「水素社会構築技術開発事業/水素エネルギーシステム技術開発」(東芝エネルギーシステムズ, 岩谷産業, 当社の3社共同参画) - 電力系統出力変動対応技術研究開発事業 - 再生可能エネルギーの大量導入に向けた次世代電力ネットワーク安定化技術開発 - 「需要家側エネルギーリソースを活用したパーチャルパワープラント構築実証事業費補助金」 - 再エネ導入と電力系統安定化を低コストで両立させる社会的実証 - 大崎クールジェンプロジェクト - EV駆動用パッテリーのリユース技術を活用したVPP実証事業 - VPP技術の実証および事業化に向けた検討	- 寒冷地でのZEB普及に向けた実証 NEDO事業「水素社会構築技術開発事業/水素エネルギーシステム技術開発」(東芝エネルギーシステムズ,岩谷産業,当社の3社共同参画) - 再生可能エネルギーの大量導入に向けた次世代電力ネットワーク安定化技術開発 - 「需要家側エネルギーの大量導入に向けた次世代電力ネットワーク安定化技術開発 - 「需要家側エネルギーリソースを活用したパーチャルパワープラント構築実証事業費補助金」 - 多用途多端子直流送電システムの基盤技術開発 - 再エネ導入と電力系統安定化を低コストで両立させる社会的実証 - 大崎クールジェンプロジェクト - EV駆動用パッテリーのリユース技術を活用したVPP実証事業
プ上医力導入促進に向けた、次世代子上面別延度システムの開発 開意業をエネルギーシリースを范明したバーチャルパー・プラントの構築 光海大発生、回義性を影響したスルボー・イスキッシントに関する経 人力大機能のラービン、ボイン、発展等を開いたとかでは、100 円、運転・保守に関する名称 デークに言うべ、機体学習セディープラーニング等の以技術の側による週間の等型上に向けた検証 研究が大型の開発を 日成火力内集構のの影響を開発が出来した。関する研究 ・機体学型セディープラーニング等の以技術の側による週間の等型上に向けた検証 日成火力角集所の影響を開発が出来した。日本の影響を開発が出来した。日本の影響を開発が出来した。 ・一般活躍をの一点では、100 円、運転・保守に関する名称 デークに言うべ、機体学型セディープラーニング等の以技術の側による週間の等型上に向けた検証 の影響が開発が出来した。日本の影響を開発が出来した。日本の影響を開発を引き、一般活躍を引き、これて、一般活躍を引き、これて、一般活躍を引き、これて、一般活躍を引き、これて、一般活躍を引き、これて、一般活躍を引き、これて、これに対した機関がある。 ・ 関連が関係を引き、これでは、100 円 に対している。 (10) 日本の単心のよりに対している。 (10) 日本の単心のよりに反応が開発を発生した。 100 機能が出来した。 100 機能が出来していて、実験と多点分規集モデル (MCAM) による子報を主要、および形力の影響が再発しなど記念の構造的がある。 100 の影響と関係の影響を開発を引き、「日本の制度の影響を開発を引き、「日本の制度の影響を開発を引き、「日本の制度の影響を開発を引き、「日本の制度の影響を開発を引き、「日本の制度の影響を発展を開発した。」 ・ 100 日本の単心のよりに対している。 (10) 日本の単心のよりに対している。 (10) 日本の単心のよりに対している。 (10) 日本の単心のよりに対している。 (10) 日本の単心のよりに対している。 (10) 日本の単心のよりに対している。 (10) 日本の単心のよりに対しているとの情報が影響を表える。「日本のの事業の対しなが異など思想が表現を表した。」 ・ 100 日本の単心のよりに対しているとの情報を記述された。 100 機能が対け接続や確としいて、影響を開発を引き、またが表が知るとなるといるといるといるといるといるといるといるといるといるといるといるといるといる	5研究開発 ・アンモニア混焼火力発電技術の開発・デ体式洋上風力発電システム・次世代浮体式洋上風力発電システム・次世代浮体式洋上風力発電システム・次世代浮体式洋上風力発電システム ・アンモニア混焼火力発電システム・アライ・アライ・アライ・アライ・アライ・アライ・アライ・アライ・アライ・アライ		- の開発	正炭素社会協議会 再工ネ利用水素システムの事業モデル構築と大規模実証に係る技術開発 CO2フリーの水素社会構築を目指したP2G※6システム技術開発 SA象予報データを基にした日射量予測から太陽光発電出力を予測するシステムの開発 エネルギーマネジメント技術を用いた蓄電池等のエネルギーリソースの統合的制御技術の開発 再生可能エネルギーの大量導入に向けた次世代電力ネットワーク安定化技術の開発	再エネ利用水素システムの事業モデル構築と大規模実証に係る技術開発 CO2フリーの水素社会構築を目指したP2G%6システム技術開発 気象予報データを基にした日射量予測から太陽光発電出力を予測するシステムの開発 エネルギーマネジメント技術を用いた蓄電池等のエネルギーリソースの統合的制御技術の開発 再生可能エネルギーの大量導入に向けた次世代電力ネットワーク安定化技術の開発	-	-	-	アンモニア混焼火力発電技術の開発 浮体式洋上風力発電システム 次世代浮体式洋上風力発電システム ②業界レベルで実施しているプロジェクト ③個社で実施しているプロジェクト 再工ネ活用水素製造システムの評価研究	アンモニア混焼火力発電技術の開発 浮体式洋上風力発電システム 次世代浮体式洋上風力発電システム ③個社で実施しているプロジェクト ・両エネ活用水素製造システムの評価研究 ・IOTプラットフォームによる住宅向けサービスの事業拡大(電力データ×AI活用の介護事業サポート) ・再生可能エネルギーを利用した分散型電源の大量普及に向けた対応技術
① 参加している国家プロジェクト ・ 「高効率な石油機製技術の基礎となる石油の構造分析・反応解析等に係る研究開発事業」を推進した。本事業は、革新的技術の開発を 企図し、2016~2020年度の5カ年事業として取り組んでいる。 関技術に基づいて、石油各社では石油のノーブル・ユースに向けた取組 み等を行っているほか、(一所) 石油エネルギー技術センター(JPEC: Japan Petroleum Energy Center)では以下の主要3テーマに ついてペトロリオミクス技術の活用・実証に取り組んでいる。 (a) 非在米型原油成分が技術開発 ・原油蒸留試験器ならびに反応評価装置にかかりる技術を確立し、17原油種の分析を終了した。 ・ 重賞/超重預測法(信制)と軽質測法(2種)と軽質測法(2種)と軽減法(2種)混合時のスラッジ発生について、実験と多成分凝集モデル(MCAM)による予測値とを照 合し、MCAM実用の可能性を見出した。 ・ (b) RDS/RFCC全機 優化区) 熱密設計技術の確立に向け、原因物質や低速方法が未だ明らかでなかった ・ 労組施験を破装置 (RDS) 熱密設計技術の確立に向け、原因物質や低速方法が未だ明らかでなかった ・ 労組施験を破装置 (RDS) 熱密設計技術の確立に向け、原因物質や低速方法が未だ明らかでなかった ・ 労組の関係が、「大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大	- 再生可能エネルギーを利用した分散型電源の大量普及に向けた対応技術 - 浮体式洋上風力発電技術 - 浮体式洋上風力発電技術 - 隠岐諸島における再エネ導入拡大に向けたハイブリッド蓄電池設置 - ハイブリッド蓄電池システムを活用し、電力を安定供給。 - 需約運用への需要家機器活用技術に関する研究 - 電動車用電池のリユース・リサイクル技術の開発	-		需要家側エネルギーリソースを活用したパーチャルパワープラントの構築 本場光発電と蓄電池を活用したエネルギーマネジメントに関する実証 火力発電所のターピン、ボイラ、発電機等に取付けたセンサ(IoT)や、運転・保守に関する各 データに基づく、機械学習やディープラーニング等のAI技術活用による運用効率向上に向けた	需要家側エネルギーリソースを活用したパーチャルパワープラントの構築 太陽光発電と蓄電池を活用したエネルギーマネジメントに関する実証 火力発電所のターピン、ボイラ、発電機等に取付けたセンサ (IoT) や、運転・保守に関する各種 データに基づく、機械学習やディープラーニング等のAI技術活用による運用効率向上に向けた検証		-	-	・再生可能エネルギーを利用した分散型電源の大量普及に向けた対応技術 ・浮体式洋上風力発電技術 ・隠岐諸島における再エネ導入拡大に向けたハイブリッド蓄電池設置 ・ハイブリッド蓄電池システムを活用し、電力を安定供給。 ・ ・ ・ ・	- 隠岐諸島における再工ネ導入拡大に向けたハイブリッド蓄電池設置 - CO2有効利用コンクリートの技術開発・普及拡大 - 無給運用への需要家機器活用技術に関する研究 - 電動車用電池のリユース・リサイクル技術の開発
・「高効率な石油精製技術の基礎となる石油の構造分析・反応解析等に係る研究開発事業」を推進した。本事業は、革新的技術の開発を企図し、2016~2020年度の55 年事業として取り組んでいる。 同技術に基づいて、石油各社では石油のノーブル・ユースに向けた取組 み等を行っているほか、(一般) 石油エネルギーシター(IPEC: Japan Petroleum Energy Center)では以下の主要3テーマについてペトロリオミクス技術の活用・実証に取り組んでいる。 (a) 非在来型原治成分分析技術開発 ・原油蒸配試験器ならびに反応評価装置にかかりる技術を確立し、17原治機の分析を終了した。 ・重質 超重質度治(6種)と軽質度治(2種)混合物のスラッシ発生について、実験と多成分凝集モデル(MCAM)による予測値と整理を提出した。 2020年度末までは「高効率な石油精製技術の基礎となる石油の構造分析・反応解 者一安世代格の資献、および我が国の製造が方象外に展開可能な国際競力を経費 合し、MCAM実用の可能性を思出した。 2020年度末までは「高効率な石油精製技術の基礎となる石油の構造分析・反応解		-	-	削減効果合計		-	-	-		
・残油流動接触分解装置(RFCC)の得率推定モデル構築に向け、生成油の分子組成を推定する反応モデルのプロトタイプを作成した。 なた、反応モデルで予測した生成油の分子組成を基に生成油得率を予測可能なモデルを作成した。 を適切に組み合わせることが出来るため、製油所装置群の非効率な操業を抑制し、CC また、反応モデルで予測した生成油の分子組成を基に生成油得率を予測可能なモデルを製油所の実機における偏流学動解析に適用し、基本モデルの課題を抽出した。 「RDSの反応塔内備流解析の基本モデルを製油所の実機における偏流学動解析に適用し、基本モデルの課題を抽出した。 「CC アスファルテン凝集制御技術開発 ・アスファルテンを発生があるため、機性フラクションに含まれる可能性のある官能基を集中的に解析し官能基候補の絞り込みを行った。また、新物性推算システムの導入により、残油水素化分解プロセスにおけるセジメント析出、及び残油溶剤配れき装置における抽出物予測精度を改善した。 「会社の分子組成を推定する反応モデルのプロトタイプを作成した。 「会達切に組み合わせることが出来るため、製油所装置群の非効率な操業を抑制し、CC 質は成分であるアスファルテンは、凝集状態を形成しプロセス内での汚れ・詰まりを必要を削減することで、反応温度を削減することで、反応温度、で関連するに必要があるアスファルテンは、凝集状態を形成しプロセス内での汚れ・詰まりをを削減するを削減することで、反応温度を削減する。 ・アスファルテンの代表分子構造を決めるため、機性フラクションに含まれる可能性のある官能基を集中的に解析し官能基候補の絞り込みを行った。また、新物性推算システムの導入により、残油水素化分解プロセスにおけるセジメント析出、及び残油溶剤配れき装置における抽出物予測精度を改善した。 「会社のような情報をデジタル技術(AI等)では、大きな、関連を格段に高めるための技術開発を検討中である。 ・2021年度以降については、膨大なペトロリオミクス情報をデジタル技術(AI等)では、及び残油溶剤配れき装置における抽出物予測精度を改善した。 「会社のような情報をデジタル技術(AI等)では、及び残油溶剤を対象が関連される場合にあることが出来るため、製油が含めている。 ・2021年度以降については、膨大なペトロリオミクス情報をデジタル技術(AI等)では、及び残油溶剤配れきを関する。 ・2021年度以降については、膨大なペトロリオミクス情報をデジタル技術(AI等)では、及び残油溶剤を対象を対象があるアステムの導入により、発油水素化分解プロセスにおけるセジメント析出、及び残油溶剤を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象と対象を対象を対象を対象を対象を対象を対象を対象に関すると対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対	・「高効率な石油構製技術の基礎となる石油の構造があ、反反解析等に係る研究開発事業」を推進した。本事業は、革新的技術の開発を全図し、2016~2020年度の5ヵ年事業として取り組んでいる。 同技術に基づいて、石油各社では石油のノーブル・ユースに向けた取組 み等を行っているほか、(中) 打ち返よ孔中一技術センター (PEC: Japan Petroleum Energy Center) では以下の主要3テーマについてベトロリオミクス技術の活用・実証に取り組んでいる。 (a) 非在東型原油成分が抗技術開発・原力 (2018) 混合時のスラッジ発生について、実験と多成分凝集モデル (MCAM) による予測値とを照		-		· · · · · · · · · · · · · ·	-	-	-	・「高効率な石油精製技術の基礎となる石油の構造分析・反応解析等に係る研究開発事業」を推進した。本事業は、革新的技術の開発を企図し、2016~2020年度の5ヵ年事業として取り組んでいる。同技術に基づいて、石油各土では石油のノーブル・ユースに向けた取組み等を行っているほか、(一財)石油エネルギー技術センター(JPEC: Japan Petroleum Energy Center)では以下の主要3テーマについてベトロリオミクス技術の活用・実証に取り組んでいる。 (a) 非在来型原油成分析技術開発 ・原油馬留試験器ならびに反応評価製置にかかわる技術を確立し、17原油種の分析を終了した。 ・重質超重質原法(6種)と質類原法(2種)混合時のスラッジ発生について、実験と多成分凝集モデル(MCAM)による予測値とを照合し、MCAM実用の可能性を見出した。 (b) RDS/RFCC全体最適化技術開発 ・煮油温散器を強信した。 ・選油取扱限機器 (RDS) 無複数計技術の確立に向け、原因物質や低減方法が未だ明らかでなかった 残留炭素分 (CCR)の低減に効く構造因子を見出すと共に、RDS触媒の反応特性制御に繋がる基礎的な触媒設計技術を得ることが出来た。 ・残油流動接触分解装置(RFCC)の得率推定モデル構築に向け、生成油の分子組成を推定する反応モデルのプロトタイプを作成した。また。反応モデルで予測した生成油の分子組成を基に生成油得率を予測可能なモデルを作成した。・RDSの反応塔内偏流解析の基本モデルを製油所の実機における偏流挙動解析に適用し、基本モデルの課題を抽出した。 (c) アスファルテンの従表分子構造を決めるため、健性フラクションに含まれる可能性のある官能基を集中的に解析し首能基候補の収り込みを行った。また、新物性推算システムの導入により、残油水素化分解プロセスにおけるセジメント析は、及び残油溶剤製れき装置における抽出も参測構度を改造した。 ・アスファルテンの凝集影動解析構度を高めため、これまでの平均構造解析結果に加えて、高極性を有するフラクション(分画物)に含まれる可能性のある分子構造を抽出した。 ② 業界レベルで実施しているプロジェクト・・「高効率な石油精製技術開発を係る研究開発支援事業」を推進している。上記①の実証事業を、以下の3テーマにおいて実施した。()内は実証対象の上記プロジェクトテーマ。 (a) 非在来型原油および残造的よび機能であるに性解析(非在来型原油成分分析技術開発) (b) RDS/RFCC全体最適化技術開発(RDS/RFCC全体最適化技術開発)(アスファルテン凝集系部技術開発) (c) 重質油原油が建たおける機器研塞機構剤的及び対策技術開発(アスファルテン凝集系部技術開発)	① 参加している国家プロジェクト ・2020年度末までは「高効率な石油精製技術の基礎となる石油の構造分析・反応解析等に係る研究開発事業を推進し、我が国のエネルギー安定供給への貢献、および我が国の製油所が海外に展開可能な国際競争力を確保できるよう技術的支柱となることを目的とし、主要課題『原油調達コスト低減を目指した「非在来型原油・超重質原油処理」に向けて、原油一単位あたりの高付加価値製品の得率向上を目指す「石油のノーブルユース」と製油所高稼働を支える「設備の稼働信頼性の向上」』に資する開発リスクの高い基盤的な技術を開発する。 ・3PECでは、前述の「(3) 2019年度の取相実構①」に記載の主要3テーマを通じてこれらの主要課題を達成すると共に、これらの技術の実用化を早めて低炭素化社会の構築に遇速する。 ・具体的には、ペトロリオミクス技術により重質原油あるいは超重質原油の成分と反応性を事前に評価することにより、二次装置の稼働を適切に組み合わせることが出来るため、製油所装置群の非効率な操業を抑制し、CO2の放出を削減する。また、原油に含まれる最も重質が成分であるアスファルテンは、凝集状態を形成しプロセス内での汚れ・詰まりを引き起こすため、ペトロリオミクス技術開発では、この基本技術をプロセスに適応して汚れや詰まりを減少・解消することで、反応温度の適正化、熱交換効率の維持を実現し、CO2の放出を削減する。 ・2021年度以降については、膨大なペトロリオミクス情報をデジタル技術(AI等)で処理し、製油所主要プラントの最適性を格役に高めるための技術開発を検討中である。 ② 業界レベルで実施しているプロジェクト ・2020年度末までは「「高効率な石油精製技術開発に係る研究開発支援事業」を推進し、上記国家プロジェクトと軌を一にして技術実証を進める。 ③ 個社で実施しているプロジェクト

	業種	革新的技術	技術の概要・革新的技術とされる根拠	2020年度 削減見込量	2030年度 削減見込量	2019年度取組実績	2020年度以降実施予定取組
		コージェネレーション、燃料電池の低コスト 化、高効率化	コージェネレーション、燃料電池は、発電とともに廃熱を利用することでCO2削減に貢献するほか、分散型電源として、出力が不安定な再工本電源のパックアップ機能を有しており、長期エネルギー無給見通しでは、2030年時点で燃料電池を含むコージェネレーションの導入量は約1,190億kWhとされている。また、燃料電池は将来の高効率火力発電所と同等以上の発電効率、自立的に普及が進むコスト水準を目標に、更なる技術開発を推進している。	-	-	① 参加している国家プロジェクト	①参加している国家プロジェクト ・コージェネレーション用革新的高効率ガスエンジンの技術開発
		スマートエネルギーネットワーク	再生可能エネルギーとガスコージェネレーションを組み合わせ、ICT (情報通信技術) により最適に制御し、電気と熱を面的に利用して省エネルギーとCO2削減を実現するシステム。都市ガス事業者が参画しているプロジェクトでは、従来のエネルギー利用と比較して40~60%のCO2削減が見込まれている。	ı	-	・コージェネレーション用革新的高効率力スエンジンの技術開発 天然力スコージェネレーション用力スエンジンの発電効率を向上することを目的に、現行機仕様+1MPa程度(最大3MPa)の正味平均 有効圧力の向上を目指す。具体的には、カスエンジンの同内燃焼可視化技術や数値解析等を駆使した副室式力スエンジンの要素技術開 発、並びにこれらの実用化に向けた開発を学連携で推進する。(2017~2021年度NEDO事業) ・メタネーション(SOEC共電解技術) 都市力ス事業者が、産業技術総合研究所と共同でCO2と水蒸気を電気分解しメタンを合成する技術(SOEC共電解技術)の基礎研究に取 り組んでおり、将来の都市力ス原料の配炭素化を目指す。(2019~2020年度NEDO事業) ② 業界レベルで実施しているプロジェクト	天然力スコージェネレーション用力スエンジンの発電効率を向上することを目的に、現行機仕様+1MPa程度(最大3MPa)の正味平均有 効圧力の向上を目指す。具体的には、カスエンジンの間内燃焼可視化技術や数値解析等を駆使した副室式力スエンジンの要素技術開発、 並びにこれらの実用化に向けた開発を産学連携で推進する。 (2017~2021年度NEDO事業) ・メタネーション (SOEC共電解技術) 都市力ス事業者が、産業技術総合研究所と共同でCO2と水蒸気を電気分解しメタンを合成する技術 (SOEC共電解技術) の基礎研究に取 り組んでおり、将来の都市力ス原料の股炭素化を目指す。 (2019~2020年度NEDO事業) ・カスコージェネレーション、家庭用燃料電池等を活用したパーチャルパワープラント (仮想発電所) 都市カス事業者が保有するカスコージェネレーションや家庭用燃料電池等を連携して、電力の需給調整に活用する実証事業に参画。高度
3	日本ガス協会	LNGバンカリング供給手法の検討	船舶からの排力スに対する国際的な規制が強化される中、現在主流になっている重油に比ペクリーンな船舶燃料として、LNGの普及が見込まれることから、LNGパンカリング(船舶への燃料供給)拠点の早期整備により、港湾の国際競争力の強化が求められている。国際コンテナ戦略港湾である横浜港をモデルケースとしてLNGパンカリング拠点を形成するための検討を行っている。国交省「横浜港LNGパンカリング拠点整備方策検討会」に、LNG供給者として都市力ス事業者も参画し、供給手法の検討を行っているほか、苫小牧、中部、大阪、瀬戸内・九州 地区においてLNGパンカリング拠点の整備が検討されている。			・メタネーション (CCR研究会) メタネーションに関する技術の確立、社会的意義の周知、社会実装を促進するブラットフォームの構築等を目的とする産学連携組織であるCCR (Carbon Capture & Reuse) 研究会に加盟、エンジニアリング技術確立に向けたサポートや、環境性・経済性評価を実施。 ③ 個社で実施しているプロジェクト ・発電効率と設置性を高めた家庭用燃料電池 新型「エネファームtype S」の開発 新型「エネファームtype S」は、セルスタックの改良と発電ユニットの制御プログラムの改良により、世界最高の発電効率55%を達成、本体の大幅な小型化により設置性が向上するとともに、停電時発電継続機能もラインアップしている。従来の給湯暖房システムを使用する場合との比較で、年間のCO2排出量を約2.3トン削減できる。	なエネルギーマネジメント技術によりエネルギーリソースを連開・統合制御して、調整力市場の商品メニュー要件に基づいた制御を行うことで、当談技術の確立や、エネルギーリソースの拡大に繋がるアグリゲーションビジネスモデルの確立を目指す。(2020年度経済産業省補助事業) ②業界レベルで実施しているプロジェクト ・メタネーション(CCR研究会) メタネーションに関する技術の確立、社会的意義の周知、社会実装を促進するプラットフォームの構築等を目的とする産学連携組織であるCCR(Carbon Capture & Reuse)研究会に加盟、エンジニアリング技術確立に向けたサポートや、環境性・経済性評価を継続。
		水素製造装置の低コスト化	経済産業省「水業・燃料電池戦略ロードマップ」では、2020年度までに水素ステーション160か 所の整備、FCVの4万台普及等を目標としているが、都市力ス事業者は、水素ステーションへの水 素の供給等を通じてCO2別域に貢献しているほか、水素製造装置の低コスト化、高効率化に取り組 んでいる。	-	-	・スマートエネルギーネットワーク「みなとアクルス」 愛知環境賞「金賞」受賞 2018年10月より本格的運用を開始した名古屋市内のスマートエネルギーネットワーク「みなとアクルス」が、2020年2月 愛知環境賞 ※「金賞」を受賞。ガスコージェネレーションを中心に再生可能エネルギーを活用、CEMS (コミュニティ・エネルギー・マネジメント・システム) を構築し、多様なエネルギー歌の最適運転を行う一方で、エリア内のエネルギー需給状況を見える化し、需要抑制を図ることで、CO2別減率60% (1990年比) の遠成を目指す取組が評価された。 ※愛知環境賞: 愛知県が、2005年愛知万博の開催に合わせて創設。省資源や省エネルギー、リサ イクルなどに関する優れた技術や活動などに対する表彰	③倒社で実施しているプロジェクト ・高効率業務用燃料電池(SOFC)の実証試験 都市力ス事業者が、メーカーと共同で発電効率65%の5kW級業務用燃料電池(SOFC)の実証試験を2020年4月から1年間の予定で開始。 発電性能や耐久性・偏頼性の検証を行うとともに、本実証で得られた知 見の活用や課題の解決を進め、早期の商品化を目指す。 ・横浜港におけるShip to Ship方式によるLNGバンカリングの事業化 横浜港におけるLNGバンカリング事業では、2020年8月LNG燃料供給船が完成、2021年4月に都市力ス事業者のLNG基地を補給拠点と
		家庭用燃料電池を活用したパーチャルパワー プラント (仮想発電所)	バーチャルパワープラント(仮想発電所)は、小規模な電源や電力の需要抑制システムを一つの発電所のようにまとめて制御する手法で、経済的な電力システムの構築や再生可能エネルギーの導入拡大、系統安定化コストの低減などに効果が期待できるとして注目されている。都市力ス業界では、家庭用燃料電池をまとめて制御することによる、バーチャルプラントとしての可能性に関する調査研究を進めている。	-	-	・「豊洲水素ステーション」の関所 東京都は2020年に燃料電池パス100台以上の普及をめざしており、その需要に対応した水素ステーションとして、同年1月、日本初の燃料電池パスの大規模受入が可能なオンサイト方式「豊洲水素ステーション」が関所した。なお、同ステーションの整備にあたって、経産省「「燃料電池自動車の普及促進に向けた水素ステーション整備事業費補助金」を活用している。 ・名古屋港におけるLNGパンカリング実証試験 名古屋港において、都市ガス事業者のLNG基地からローリー車で輸送されたLNG燃料をタグボートへ補給(Truck to Ship方式)し、安全にLNGの供給が可能であることを確認、船舶用燃料からのCO2排出削減を目指す。	して事業開始を目指す。 ・東京オリパラ 晴海選手村地区における水素供給 東京オリパラ 晴海選手村地区において、水素ステーション、水素パイプライン、純水素型燃料電池を整備し、燃料電池パスなどの車両 への水素供給や、パイプラインを通じた街区への水素供給を実施する予定。 ・CCS関連 CO2貯蔵技術 B炭素技術としてCCS(Carbon Capture and Storage)が注目されているが、都市ガス利用時のCO2を分離回収し、地中に貯留することで、都市ガスの股炭素化やCO2フリー水素が製造できる。 都市ガスの股炭素化やCO2フリー水素が製造できる。 都市ガス多葉者が、CCSを安備に効率的に実現するため、CO2をマイクロパブル化(微細化)し、より多くのCO2を地中に貯留する技術
		メタネーション	メタネーションとは、水素とCO2から天然ガスの主成分であるメタンを合成する技術である。都市ガス業界では、需要サイドにおいて天然ガス高度利用を図ってきたことに加え、安価なカーボンフリー水素とCO2によるメタネーションにより、供給サイドの脱炭素化を目指している。合成されたメタンは、都市ガスパイプラインやガスシステム・機器等の既存インフラを継続して利用できるため、投資コスト等を抑制することができ、加えて将来の水素活用先としての可能性もある。	-	-		を地球環境産業技術研究機(RITE)と共同で研究している。
\vdash		削減効果合計		-	-		
		COURSE50	水栗による鉄鉱石の選元と高炉ガスからのCO2分離回収により、総合的に約30%のCO2削減を目指す (NEDOの委託事業)	-	総合的に約 30%のCO2 削減を目指 す	① 参加している国家プロジェクト ・実用化開発の第 1 段階である「フェーズIIステップ 1] (2018 年度~ 2022年度)の主要開発課題である高炉からの CO2 排出削減技術開発では、試験高炉と化学吸収設備を組合せた試験設備を活用し、スケールアップに向けた基盤技術開発を推進した。 ・高炉ガスからの CO2 分離回収技術開発では、引続き世界トップレベルを実現した吸収液性能の更なる改善を 検討し、 CO2 分離回収コスト 2,000 円 /tCO2 以下を可能とする技術確立に向け検討を進めた。	2030年頃までに1号機の実機化、高炉関連設備の更新タイミングを踏まえ、2050年頃までに普及を目指す。
4	日本鉄鋼連盟	フェロコークス	適常のコークスの一部を「フェロコークス(低品位炭と低品位鉄鉱石の混合成型・乾留により生成されるコークス代替還元剤)」に置き換えて使用することで、還元材比の大幅な低減が期待出来、CO2排出削減、省エネに寄与する。	-	高炉1基あた りの省エネ 効果量(原 油換算)約 3.9万kL/年	2012年度までに完了した「革新的製鉄プロセス技術開発プロジェクト」の成果を整理し、実機化に向けた基礎検討を実施。	フェロコークスについて、引き続き実機化に向けた基礎検討を進める。
\vdash		削減効果合計		-	-	THE THE PARTY OF T	
		二酸化炭素原科化基幹化学品製造プロセス技 術開発	太陽エネルギーによってCO2と水から基幹化学品を製造するプロセス開発	-		産学官で具体的に取り組まれている化学関連の技術開発プロジェクトである上表1~5の革新的技術について、NEDOプロジェクトとして取り組んでいる。 化学産業は、化石資源を燃料のみならず原料としても使用しており、低炭素社会の実現に向けて、原料・燃料両面での革新的技術開発が中長期的に重要な課題である。 このため、2020年以降を視野に入れて、開発すべき技術課題、障壁について、政府ともロードマップを共有・連携し、開発を推進する。また、このような技術開発についてもcLCA的な定量評価を実施することで、それらの環境面への貢献に関する情報を発信していく	
5		有機ケイ素機能性化学品製造プロセス技術開 発	砂から有機ケイ素原料を直接合成して高機能有機ケイ素部材を製造するプロセス開発	-		ことが重要である。 化学産業の主要な中長期的技術開発を次に示す。 ① 革新的プロセス開発 ・ 廃棄物、副生成物を削減できる革新的プロセスの開発 ・ 革新的ナフリタボブロセスの開発 ・ 精密分離膜による蒸焼の開発 ・ 精密分離膜による蒸焼を引着性がの開発	①参加している国家プロジェクト
	日本化学工業協会	非可食植物由来原料による高効率化学品製造 プロセス技術開発	非可食性パイオマス原料からエンジニアリングプラスチック等を製造するプロセス開発	-		 高性能多孔性材料による割生ガスの高効率分離・精製プロセスの開発 砂から有機ケイ素原料を直接合成し、同原料から有機ケイ素部材を製造する革新的プロセスの開発 微生物触媒による創電型廃水処理基盤技術の開発 化石資源を用いない化学品製造プロセスの開発 CO2を原料として用いた化学品製造プロセスの開発 セルロース系パイオマスエタノールからプロピレンを製造するプロセスの開発 LCAB)にGHG排出削減に貢献する次世代型高機能材の開発 	個別のプロジェクトの内容は把機していない。
		機能性化学品の連続精密生産プロセス技術の開発	機能性化学品をパッチ法からフロー法へ置き換える製造プロセスの開発	-		 高効率建築用断熱材 太陽電池用材料(高効率化合物半導体、有機系太陽電池他) 次世代自動車用材料 軽量化材料(エンジニアリングプラスチック等) 次世代二次電池部材(正確材、負極材、電解液、セパレータ他) 次世代照明材料(有機EL等) 	
		削減効果合計		-	632.8万kL		

				2020年度	2030年度		
	業種	革新的技術	技術の概要・革新的技術とされる根拠		削減見込量	2019年度取組実績	2020年度以降実施予定取組
6	日本製紙連合会	セルロースナノファイバー	植物繊維のセルロースをナノレベルまで細かく解きほぐしたもので、強度は鋼鉄の5倍、熱による変形が少なく、またガスパリア性が高い。植物由来であることから生産・廃棄に関する環境負荷が小さく、次世代の新菜材として自動車の軽量化などの用途で期待されている。一部、商業化されているが、さらなるコストの低減が課題である。 商用化可能なコスト競争力を持ったセルロース系パイオエタノールの大規模生産システムを、2020年までに確立することを目指した実証を行う。	-	-	・CNF安全性評価手法の開発(NEDO: 2017~2019年度) 天然由来の新たなナノ材料であるCNFの安全性を適切に評価・管理するため、CNFの生体への取り込みの把握に必要なレベルのCNFを検 出・定量するなどの有害性が終手法の開発を行った。確立された試験手法や評価手法は手順書として2020年3月に公開され、CNF製品の普及促進の 後押しを行うことになる。 当連合会からは、王子ホールディングス(株)、日本製紙(株)、大工製紙(株)が参加した。 ③ 個社で実施しているプロジェクト ・日本製紙・大人用紙おむつの抗菌・消臭シートを実用化し、国内最大級の年間500トン生産沿備を2017年4月に石巻工場内に稼働させ、別の事業所でも自動車や家電用途の樹脂強化剤や食品・化粧品の添加剤として生産すると共に、天然塗料の滲への配合の研究も進めている。 ・王子ホールディングス:2016年秋に年間生産能力40トンの生産設備が稼働。カーケミカル用品向けの増払剤としての販売や降水化粉末・パネルディングス:2016年秋に年間生産能力40トンの生産設備が稼働。カーケミカル用品向けの増払剤としての販売や降水化粉末・パネルディスプレイ用透明シートのサンブルを接の他に、根限との複合材開発に成功し、化粧品や自動車用窓への応用物発化も取り組んでいる。透明シートの整備がターンプリルを映るの他に、根限との複合材開発に成功し、化粧品や自動車用窓への応用物発化も取り組んでいる。透明シートの整備がよりた中のサンガルを提供・高強度で熱特性に優れる成形やの各種CNFを扱う。多凡質な人工骨建填材を開発し、コンクリート温和材としての実用化の研究開発を進める。繊維を含い本サンメートルまで機能はすることに成功し、化粧品・塗料・インキやフィルム・ディスプレイなどの光学条材料の透明ニーズを取り込む。自動車付CNFを扱う。多凡質な人工骨建填材を開発し、レンスで実走。自動車でのCNFの利用制御を外装金体と内装かドアミラーにも試定。・中級パルプエデスサンタートの子がドアミラーにも近た。・中級パルプエデスサンタードの子がドアミラーに表示ないまで、中級がルプエデスサンタードの子が下の子が下の子が下の子が下の子が下の子が下の子が下の子が下の子が下の手間がある。ボールンゴ・エピロファンの中間生成物から数まとして明持される。・レンゴ・エピロファンの中間生成物から数まと、サルバがCNFや 製紙用パルプラントを設置する。・実施製紙・ボクルの中性生成物から数まレストルで用途接来を開始した。2017年5月稼働を目指し、川之江工場内に年間生産能力50トンのパイロットブラントを設置する。・実施製紙・ボクルの用生成者が、クリールを生産する技術を開始した。その結果、最適組合せを選定し、表れた機能・ボクストに発達を作り、フィルター等への用途接来・を開始した。その結果、最適組合せを選定し、悪ない、発生が発生がある。パイオマスを原料とするパイフットが、手工の外が、単位と見が成るが、クリールを生産する技術を開始した。その結果、最適組合せを選定し、下のアリールを生産があるが、クリールを発展・アリールを発展・アリールを発達すると対している。 またい 日本の大学 では、日本の大学では、日本の大学では、日本の大学では、日本の大学がでは、日本の大学では、日本の大学がでは、日本の大学などがでは、日本の大学	(セルロースナノファイバー) ①参加している国家プロジェクト 前述のCNF安全性評価手法の開発 (NEDO) は2019年度で終了した。 NEDOは新たに、2020年度~2024年度の予定で「炭素循環社会に貢献するセルロースナノファイバー関連技術開発」に着手する。本事
Ш		削減効果合計		-	-		
7	セメント協会	革新的セメント製造プロセス	(1) [焼成温度低減による省エネ] 鉱化剤の使用によってクリンカの焼成温度を低下させることにより、クリンカ製造用熱エネルギー原単位の低減を図る。 (2) [省エネ型セメント] クリンカの鉱物の一つであるアルミン酸三カルシウム(3CaO Al2O3)量を増やし、現状より混合材の使用量を増やすことにより、セメント製造用エネルギー原単位の低減を図る。		約15万kl (原油換 算)	① 参加している国家プロジェクト:特になし ② 業界レベルで実施しているプロジェクト 革新的セメント製造プロセス基盤技術開発事業が終了し、開発・事業化自体は個社レベルとなっているが、フォローアップを主目的としたWGをセ協内に設置し、実用化の為の課題・問題点の再整理を行っている。 ③ 個社で実施しているプロジェクト ア) セメントキルン内高精度温度計割システムの開発 2016年度までにNEDO助成事業で進められた標記については、各革新的技術を評価するための基礎技術となるため、三菱マテリアル側)において2017年度から2019年度まで耐久性や精度の確認を含めたシステムの実機試験を継続した。なお、高精度温度計割システムは2020年度下期の商品化が計画されている。 イ) 次世代セメント材料共同研究 2017年度から2019年度までの予定で、東京工業大学、太平洋セメント側、デンカ側の三者により「次世代セメント材料に関する共同研究」を実施した。2019年度においては、ラポスケールで、普通ポルトランドセメントの少量混合成分を10mass%まで増加(CO2排出原単位を低減)させ、セメント中のアルミネート相も増加させることで、セメント・コンクリートの品質を現行品同等に特制しつつ、廃棄物原単位を現状よりも向上させられるセメントの品質設計案を提示した。同案においては、複数種類(石灰石微粉と高炉スラグ微粉、など)の少量混合成分を併用できる可能性についても示した。併せて水和解析により現象の裏づけも確認した。本結果はセメント技術大会にて報告した。	上記の共同研究を2021年度末まで継続して実施することを決定した。2020年度のセメント技術大会では、普通ポルトランドセメント中のアルミネート相および少量混合成分の増量が、水和生成物の種類及び組成に与える影響について詳細に報告した。今後はこれまでに提案したセメントの品質設計案に基づき、実機実証試験等の更なる技術検討を予定している。

	業種	革新的技術	技術の概要・革新的技術とされる根拠	2020年度 削減見込量	2030年度 削減見込量	2019年度取組実績	2020年度以降実施予定取組
8	電機・電子温暖化対策連 絡会	引減効果合計	-	-	-	○参加している国家プロジェクト ・太陽光発電開発戦略 (NEDO PV Challenges) 「高性能・高信報性太陽光発電の発電コスト低減技術開発」 (NEDO事業:平成27年度~平成31年度) 《概要》 「太陽光発電開発戦略」で掲げる発電コスト低減目標達成のため、2030年までに7円/kWhの実現に資する高性能と高信報性を両立した太陽電池の開発を実施。 ・低炭素社会を実現する次世代パワーエレクトロニクスプロジェクト (NEDO事業:平成26年度~平成31年度) 《概要》 ウエハ、デバイスの更なる高品質化等を図ると共に、自動車、民生機器などアプリケーション毎に要求されるスペックを、最適な材料 (Si. SiC. GaN等)、設計技術、実装技術等の組み合わせ、最適な応用システムの構築により実現することをめざす。 ・福島中での字体式洋上風力発電システム実証研究事業 (経済産業省資源エネルギー庁事業:平成 23年度~平成30年度) 《概要》 3基の風車 (2MW、5MW、7MW) と浮体式洋上電電所 (サブステーション) を順次設置し、すべての風車による実証を開始。世界初の複数基による字体式洋上風力発電システムの本格的な実証を行うことにより、安全性・信頼性・経済性を明らかにする。 〇個社/業界レベルで実施しているプロジェクト ・「横浜スマートシティプロジェクト」、「柏の葉スマートシティプロジェクト」、「Fujisawaサスティナブル・スマートタウンプロジェクト」などのスマートシティプロジェクト」、「柏の葉スマートシティプロジェクト」、「Fujisawaサスティナブル・スマートタウンプロジェクト」などのスマートシティプロジェクト」、「前の葉スマートジティプロジェクト」、「配りまなのスマートシティブロジェクト」、「前の葉スマートジティブロジェクト」、「前の葉スマートジティブロジェクト」、「前の葉スマートジティブロジェクト」、「前の葉スマートジティブロジェクト」、「前の葉スマートジティブロジェクト」、「前の葉スマートジティブロジェクト」、「前の葉スマートジティブロジェクト」、「記述を持定など)・一般化炭素回収・貯留技術(CCS)、水素エネルギー技術など	今後も、長期的な目標である地球規模での温室効果ガス排出量の半減を実現するために、エネルギー無給の両面で、電機・電子機器及び システムの革新的技術開発を推進する。
		電動ダイカストマシンの開発	・従来の油圧からパワーの小さい電動サーボモータを低圧プロセスで実用化 ・電動サーボモータの特徴を活かしたStop and go 作動(待機エネカット) ・エネルギー従来比▲80%	270 tCO2/y	-	-	-
9	日本自動車部品工業会	スマートバッテリーヒューズユニット	・自動車における電源系統は、CASEなどの変革による多様化が進んでおり、冗長性を持たせた 設計が重要課題となっている。これに対応するために、電源分配や電線保護製品をユニット化し、 車両スペースに搭載可能な製品開発が必要となった。そこで、電源分配と電線保護機能を一体化 し、ワイヤーハーネスの取り回しや接続形態に合わせた樹脂モールド構造にすることで、設置工法 を変更し、小型化及び製造時の電力量の削減を図った。 ・設置工法:「加線め(従来)」から「打ち込み(新規)」に変更 軽量・小型化 ⇒ 可溶体部の小型化: 48%減(従来品比)、溶着用すず量: 26.5%減(従来品 比) 省電力化・CO2排出量 ⇒ すず溶着時: 26.5%減(従来品比)。	從来品比 ▲26.5%	-	-	-
		ハイブリッド溶解保持炉の開発	・炉体の小型化、断熱性能向上による放熱低減や保持・昇温をガスから電気に変更することによる 排ガスレスによって、CO2排出量を従来比で50%削減した。	197(t- CO2/Y)	-	-	-
\vdash		削減効果合計			-		
		Wet on Wet塗装	希釈剤を蒸発させるために必要な多くのエネルギーを省くことができる。	-	-		
10	日本自動車工業会・日本	アルミ鋳造のホットメタル化	通常、アルミ合金メーカーで溶解・製錬したインゴット (鋳塊) を仕入れ、再度溶解し成型するが、2度の溶解によって消費するエネルギーを低減しCO2排出量を削減する。	-	-	各社の経営戦略に関わることなので業界団体で把握していない。	各社の経営戦略に関わることなので業界団体で把握していない。
	自動車車体工業会	ヒートポンプの活用	より少ないエネルギーかつ、未利用エネルギーを活用した高効率ヒートポンプを活用し、CO2排出量を削減する。	-	-		
		塗装設備の小型化	業装設備内は空調管理されており、低床化、薄型化、自動化等で工程の長さを短縮、設備の高さの低減、付帯設備の小型化をすることで、空調管理する容積を減らしCO2を削減する	-	-		
11			立年、脳白・精誠獲得の国際競争の悪化、資源国の資源ナショナリズムの台頭などにより調石・精 鉱の関連リスクが増大する中、非鉄金属の国内安定供給のために、低品位、不純物増加の鉱石・精 鉱仕様に合わせた製練プロセスの開発、自給率の向上に資するリサイクル原科の製練プロセスの開 発などが行われている。 各社は、製練の他にも材料など様々な事業を行っており、高品質化、高性能化、安定化、効率化の ための技術開発を進めている。その中で、製練および材料、いずれの開発においても地球温暖化対 策に資する革新的技術の開発を重要テーマとしているが、革新的技術の開発、商業化は非常に難し い。特に、製練プロセスにように長年の開発経緯を経て技術が蓄積されている大規模プロセスは、 革新的プロセスの開発、導入には相当な時間と莫大なコストを要する。 2019年度においては、経団連のイニシアティブ「チャレンジ・ゼロ」に参画している会員企業に おいて、股炭素化に向けた製練プロセスに係る革新的なイノペーションチャレンジが公表された。 以下に、製練プロセスに係る公表可能なの技術開発計画の事例を記載する。 a. 製練規場におけるリサイクル原料比率の拡大を通じたCO2排出量の低減(JX金属) 金属製練プロセスを利用したリサイクル事業を活用し、製練列座における原料比率を拡大すること を通じて、銅の製造におけるCO2排出量を低減することを目指すイノペーションである。 実現するためには、リサイクル原料を通じて製練プロセスに持ち込まれる不純物の把握、製練プロ セスへの影響の検証、その処理の技術的な課題の把握と確証を行う計画で、さらなる拡大計画の検 対を予定している。 2020-2023年度での実証化と課題の把握、2024-2050年度での段階的な増処理拡大を計画してい る	-	-	・特になし。	各社による開発を継続する。
12		削減効果合計 焼成炉排ガス中のCO2回収技術	-	-	-	・特になし。	・特になし。
12	日小祭紀上未五	削減効果合計		-	-		

	業種	革新的技術	技術の概要・革新的技術とされる根拠	2020年度 削減見込量	2030年度 削減見込量	2019年度取組実績	2020年度以降実施予定取組
	日本ゴム工業会	生産プロセス・設備の高効率化	調達・生産・使用・廃棄段階のサプライチェーン全体で低炭素化	-	-	今後も研究開発を進める取組として、以下を計画している。 〇生産プロセス・設備の高効率化、革新的な素材の研究等、調達・生産・使用・廃棄段階のサプライチェーン全体で低炭素化。 〇タイヤ(転がり抵抗の低減、ランフラットタイヤ、軽量化) 〇非タイヤ(省エネの高機能材料、次世代用自動車部品の開発) 〇リトレッドなど製品や廃棄物の再生技術。	
		革新的な素材の研究等	同上	-	-		l l
13		低燃費タイヤ	・転がり抵抗の低減/・ランフラットタイヤ性能向上/・更なる軽量化	-	-		
		非タイヤ製品の高技術化	・省エネの高機能材料/・次世代用自動車部品の開発	-	-		
		再生技術	・製品の再生技術(リトレッドなど)/・廃棄物の再生技術	-	-		
\vdash		削減効果合計		-	-		
	日本印刷産業連合会	デジタル印刷機の導入促進 (小ロット対応、ムダロス削減)	・小ロット、短納期に対応したデジタル印刷機への転換によりムダロスを削減する。	-	-	特になし ・特 業界レベルで実施しているプロジェクト ②業 印刷業界は材料や設備を外部から調達しており、自ら開発する技術・サービスはありません。 特 個社で実施しているプロジェクト ③個	①参加している国家プロジェクト ・特に予定していない ②業界レベルで実施しているプロジェクト 特情・予定していない ③倒社で実施しているプロジェクト ・特にありません
14		高効率印刷機の導入促進 (高効率機への転換、ムダロス削減)	・高効率印刷機への転換による、電力使用量削減並びに立ち上げロスの削減を進める。	-	-		
		乾燥工程の高効率化 (UV光源のLED化)	・乾燥装置として使われるUV光源をLED光源に変更し、省エネを図る。	-	-		
		削減効果合計		-	-		
	日本アルミニウム協会	水平リサイクルシステム開発	透過×線、蛍光×線やレーザーを利用した、高速自動個体選別装置を用いた、アルミニウムの水平 リサイクルシステムシステムを開発している。(アルミ缶からアルミ缶、PS印刷版からPS印刷版、サッシからサッシ、自動車から自動車等) サッシのリサイクルでは既に実用化がされており、現在は国家プロジェクトなどを活用しながら、自動車及び鉄道車両のリサイクルでの実用化に向け産学官で連携して取り組めるよう進めた。 2019年度は新幹線車両のリサイクルを実用化した。	-	-	国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の「高度な資源循環システムの構築」において「動静脈一件車両リサイクルシステムの実現による省エネ実証事業(2016-18年度)」が採 Rされたことを受けて、アルミ協会内に検討の場として、「アルミ車両の水平リサイクル推進委員会」を設置した。委員会には、鉄道事業者・車両メーカー、アルミ圧延メーカー、リサイクル事業者など合計15社が参加、さらに自動車メーカーがオブザーパー参加している。委員会では車両リサイクルの新たなリサイクルシステムの普及に向けて、必要な規格(LIBSソーティングによる両生材アルミ規格、プロセス認証規格)を取り決めた(2019年10月日本アルミニウム協会規格)。 そして、JR東海が2020年7月から運行を開始した「N700S」では、約20年等の運行を終えた700系、N700系新幹線車両から取り出された廃アルミ材が、業材としてリサイクルされ、荷棚などの内装部品に使用されていることが公表された(2020年6月)。このリサイクルには上記LIBSソーティングよるリサイクルシステムが採用されており、今後2022年までに、40編成(640両)に使用される予定である。 新幹線車両の廃アルミ材は、従来、スクラップとして売却されていたが(売却後は鋳造材等としてリサイクル)、高速鉄道として世界で初めて「新幹線から新幹線へ」、「展伸材から展伸材へ」の水平リサイクルが実現した。	水平リサイクルシステム開発については、引き続き、自動車及び鉄道車両の高度なアルミリサイクルの実現に向け、③項の「アルミニウ ム素材の高度資源循環システム構築」として、産学官で連携して取り組んでいく。
15		革新的熱交換 - 熱制御技術開発	アルミ、鉄、樹脂等を含め、産官学で熱交換技術を集中的に革新させる。将来的に、ここで開発 した熱交換技術を使用した製品を実用化・量産化し、温室効果ガスの削減に貢献する。具体的に は、アルミ材の表面の構造機能化による熱交換器・熱制御技術の開発成果を、家庭用・業務用ヒートポンプ、給湯器、空調、燃料電池、自動車用熱交換器、産業用熱回収装置などへ適用することが 想定される。	-	-	NEDOの「平成30年度エネルギー・環境新技術先導研究プログラム」で、「エクセルギー損失削減のための熱交換・熱制御技術」が、2018年5月に採択された。本研究開発には、東京大学、早稲田大学、九州大学、横浜国立大学、産業技術総合研究所、日本カノマックス側、側UACJ、日本アルミニウム協会が参画し、2018年5月から2020年5月までの2年間取り組んだ。自動車分野で大きな成功を収めているアルミ熱交換器技術を対象に、産業および民生部門への適用に向けて、数値シミュレーション技術、相変化制御技術、計測技術、材料技術といった多くの課題の解決に対して、大学や企業、研究所等の英知を結集し先導的な研究を実施した。	2020年度以降は、社会実装のための研究をさらに進めて、2030年度以降の高性能熱交換器の実用化を目指す。
		アルミニウム素材の高度資源循環システム構 集		-	-	NEDOの2019年度「エネルギー・環境新技術先導研究プログラム」に、「アルミニウム素材の高度資源循環システム構築」が、2019年 7月に採択され、アルミのリサイクル比率を向上させるための革新的な技術について研究開発を行っている。本件には、産業技術総合研究所、東京工業大学、千葉工業大学、九州工業大学、奈良先端科学技術大学院大学、側UACJ、側神戸製鋼所、三菱アルミニウム側、昭和電工側、日本アルミニウム協会が参画して取り組んでいる。	発を継続している。今後はラボスケールでの基盤基礎研究成果を基にして、スケールアップした開発研究に移行するとともに、パイロッ
		削減効果合計		-	-		
16	板磷子協会	全酸素燃燒技術	燃料燃焼時に空気の代わりに酸素を使用し、空気中の燃焼に寄与せずNOxの原因となる窒素(空気中の約8割を占める)を燃焼温度まで上昇させるための顕熱をカットすることで、大幅にCO2排出量を削減する技術。比較的大きなガラス熔解情窯に適した特殊な構造のパーナー等の燃焼技術が必要とされる。	_	-	 参加している国家プロジェクト 参加していない。 業界レベルで実施しているプロジェクト 業界として実施していない。 	 参加している国家プロジェクト 参加を予定していない。 業界レベルで実施しているプロジェクト 業界として実施する予定はない。
		気中溶解技術	気中溶解技術は、最高で10,000℃にも達するプラズマ燃焼炎や酸素燃焼炎を使って、顆粒状のガラス原料を空気中で溶解する技術。溶解プロセスを瞬時に完了させ、また溶解槽のサイズも大幅に縮小することができる。		-	③ 個社で実施しているプロジェクト ・気中溶解技術 (詳細は非公開)	③ 個社で実施しているプロジェクト ・気中溶解技術 (詳細は非公開)
\perp		削減効果合計		-	-		
17	日本染色協会	特になし 削減効果合計		-	-		<u>- </u>
	日本電線工業会	高温起電神ケーブル	高温超電導ケーブルは、送電ロスの低減のみならず、大容量の送電が期待されている。分散する発電所から集中化する都市へのエネルギーロスの無い送電技術、電圧の降下なしに鉄道輸送力を高める送電技術。今後は、線材・ケーブルの長尺化、大容量化、低コスト化を進めるための開発を行っており、早期実用化を目指している。 高温超電導実用化促進技術開発:NEDO	, I		・高温超電導ケーブル: 「次世代送電システムの安全性・信頼性に係る実証研究」 (H26年度〜H27年度) において実際の電力系統へ 導入するため、地絡・短絡などの事故時の安全性評価と対応策の構築。	・高温超電導ケーブル: 「次世代送電システムの安全性・信頼性に係る実証研究」 (H26年度〜H27年度) において実際の電力系統へ 導入するため、地絡・短絡などの事故時の安全性評価と対応策の構築、
18						プレイトン冷凍機の耐久性評価を進めている。運輸分野への高温超電導適用基盤技術開発、営業線での超電導送電による列車走行実験に成功しており、2018年にはJR中央本線のき電系統に超電導き電システムを接続し、国内外で初めて電気抵抗削減による電圧降下の抑制を実証しており、実用化に向けた基礎技術開発が開始された段階にある。 (NEDOウェブサイト2019.8.1)	l l
		超軽量カーボンナノチューブ	超軽量カーポンナノチューブ(CNT)は、網の1/5 の軽さで鋼鉄の20倍の強度、金属的な導電性という優れた特性を持ち、超軽量電線などの応用製品の早期実用化を目指している。 超先端材料超高速開発基盤技術プロジェクト: NEDO	-	-	-	・超軽量カーボンナノチューブ: 試作などに時間がかかる材料開発の抜本的なスピードアップを図るために、計算科学や人工知能を活用した材料開発手法の構築を進め、製品中の材料の複雑な挙動と機能を推測するマルチスケールシミュレーションなど、革新的な材料開発手法を構築し、超軽量カーボンナノチューブを応用した軽量電線など応用製品の早期実用化を目指す。(NEDOウェブサイト2017.5 29)
		削減効果合計		-	-		

	業種	革新的技術	技術の概要・革新的技術とされる根拠	2020年度 削減見込量	2030年度 削減見込量	2019年度取組実績	2020年度以降実施予定取組
		予熱酸素燃燒技術	世界的な酸素供給メーカであるエアリキード社が研究中の予熱酸素燃焼技術では、現状の空気燃焼 に比べて、燃料使用量および燃料由来のCO2排出量を最大で50%削減を見込める。ただし、日本 での導入に際しては、酸素発生に要する電気コストが障壁となっている。削減見込量は2030年 CO2排出量目標価から原料由来分を差し引いた債645(万七CO2)のうち、溶解工程でのエネルギー 使用量はおよそ60%で、その50%減の19.4(万七CO2)となるが、酸素発生に要する電気使用によ るCO2発生量が増加するで、実質的には64.5(万七CO2)の10%程度と推定。詳細な試算は今後の 課題とする。		6.5 万t-CO2		
		全電気容融技術	EU諸国でのカラス溶融炉でのCO2削減策として、全電気溶融技術の導入を検討している。化石燃料を使用しないので、CO2は排出しない。今後、EU諸国での動向を注視していく。削減見込量は2030年CO2排出量目標値から原料由来分を差し引いた値64.5(万ト-CO2)のうち、溶解工程でのエネルギー使用量はおよそ60%で、溶解効率が化石燃料の2倍と推定し溶解工程で発生する量の50%減と推定した。従って64.5×0 6÷2≒19.4(万ト-CO2)となる。詳細な試算は今後の課題とする。	-		 参加している国家プロジェクト なし 業界レベルで実施しているプロジェクト 	① 参加している国家プロジェクト なし ② 業界レベルで実施しているプロジェクト
19	日本ガラスびん協会	CO2排出しない燃焼技術(アンモニア燃焼、水素燃焼)	2014年に、産業技術総合研究所、東北大学との共同研究において、世界で初めて、アンモニアを燃料としたガスターピン発電の実証に成功している。アンモニア燃焼では、燃焼時にCO2を発生しない。2017年11月第13回ガラス技術シンボジウムにて、講演会が行われた。今後、ガラス溶酸炉での化石燃料に替わる可能性を秘めている。2019年も情報収集を継続する中で、8月に型球環境と産業化研究会(SGEIS)第2回「脱酸素と省エネピジネス」勉強会が大阪大学で、12月に第15回 SICシンボジウムで「水素燃焼」「未利用熱エネルギー」「炉材トピックス」「溶鉱炉のマネジメントシステム」の講演があり当協会から多数参加した。その他として、スロペニアでは太陽光発電の電気で水薬を発生させ天然ガスと混合燃焼を行うガラス溶解のパイロットプラントが稼働する情報もあることから海外の情報も旺盛に入手していく。削減見込量は2030年CO2排出量目標値から原料由来分を差し引いた値64 5(万トCO2)のうち溶解工程でのエネルギー使用量はおよそ60%で、カーボンフリーを前提として90%(10%は機器の稼働エネルギー)が削減されると推定した。従って64.5×0.6×0.9=34 8(万トCO2)となる。詳細な試算は今後の課題とする。ただし、上記3項目は、同時に実施できないので、いずれの技術の選択となる。	-		マップ3項目について情報収集の段階である。関連する講演会等に加盟側社毎に参加。	ロードマップ3項目について情報収集の継続を実施。 3 個社で実施しているプロジェクト
		削減効果合計		-	60.7 万t-CO:		
20	日本ペアリング工業会	定ができる。既存の変速機への適用による車 両燃費改善や、今後増加が期待される2速変	「磁歪式トルクセンサ」に関する技術開発の概要 自動車の駆動系に適用するために、軸と非接触で軸のトルクを測定する磁歪式トルクセンサを開発 した。強磁性体に歪を与えると材料の磁気特性(透磁率)が変化する逆磁歪効果を利用して、軸トル クの測定を行う。センサを軸受機に配置する事でギャップ管理が容易となり、センサ性能の安定化	-	-	 ② 参加している国家プロジェクト 特になし ② 業界レベルで実施しているプロジェクト 特になし ③ 個社で実施しているプロジェクト 会員企業では、常にユーザー業界と連携して技術開発を進めているが、民間企業向けのプロジェクトは守秘義務があり内容を公表することは難しい。 	③参加している国家プロジェクト 特になし ②業界レベルで実施しているプロジェクト 特になし ③個社で実施しているプロジェクト 会員企業では、常にユーザー業界と連携して技術開発を進めているが、民間企業向けのプロジェクトは守秘義務があり内容を公表することは難しい。
		削減効果合計		-			
21	日本産業機械工業会			-	-	① 参加している国家プロジェクト ◆ CO2を有効利用するメタン合成試験設備を完成、本格稼働に向けて試運転開始 一カーボンリサイクル技術の一つであるメタネーション技術の確立を目指す NEDOは、CO2有効利用技術開発事業に取り組んでおり、国際石油開発帝石(株)、日立造船(株)と共に、二酸化炭素(CO2)と水素からメタンを含成する試験設備を国際石油開発帝石(株)、民四鉱場(新潟県長岡市)の越鉛原プラント製地内に完成させました。越路原プラントで未成力え生産時に付随して出されるCO2と、水の電気分解によって製造された水素を合成することによりメタンを製造します。今後、各種試験および連接運転を造して、メタン合成プロセスの最適化などの技術課題の評価・検討を実施し、カーボンリサイクル技術の一つであるメタネーション技術の確立を目指します。(NEDOWebサイトより引用) ◆ 実海域における1年以上の長期実証試験に向け実証機「かいりゅう」が出港 ー8月に実証海域へ設置し、今秋からの運転開始を目指する。 NEDOと(株)IHIで開発を進めている水中浮遊式海流発電システムの100kW級実証機「かいりゅう」が、1年以上の長期実証試験の実施に向け、8月初旬に旧は横浜事業所(神奈川県横浜市)から鹿児島県十島村口之島沖の実証海域に向け出港します。8月中旬に口之島沖での設置工事を開始し、試運転などを行った上で、今秋からの運転開始を目指します。(NEDOWebサイトより引用) ◆ CO2分離・回収型酸素吹石炭ガス化複合発電の実証試験を開始 一商用発電プラントでCO2を90%回収、送電端効率40%造成を目指する。 ・CO2分離・回収型酸素吹石炭ガス化複合発電の実証試験を開始 一商用発電プラントでCO2を90%回収、送電端効率40%造成を目指する。 ・アステムのクールジェン(株)は、石炭ガス化燃料電池接合発電(IGFC)とCO2分離・回収型酸素吹石炭ガス化複合発電(CO2分離・回収型酸素吹 IGCC)の実証試験を12月25日に開始しました。(NEDOWebサイトより引用) ② 業界レベルで実施しているプロジェクト・高効率な省エネルギー環境合物品、環境省に平心に認証製品等の普及促進に取り組む。・非常産業者エネルギー環境の管域に成功・水素の大量輸送方法、環境自衛の少ない製造方法等に関する調査研究に取り組む。・非環接置・技術による環境負荷低減効果に関する調査研究を行う。 ③ 個社で実施しているプロジェクト・高効率な省エネルギーや、生産性向上を実現)・水のプロジェクト・高効率なインアクトランによる熱伝達率の向上(熱伝達率を向上させる海状規維技術で、蒸気使用量削減による省エネルギーや、生産性向上を実現)・ボイラ連転に伴い生じるCO2の削減効果が高い水処理業品の導入・バイオマスポイラによる低コスト汚泥減量化技術実証研究・水素を総科としたポイラの開発	①参加している国家プロジェクト ●フェロコークス製造のための中規模設備の実証試験を開始 一製銃プロセスのCO2排出量とエネルギー消費量約10%削減技術の確立を目指す NEODとJFEスチール (株) は、(株) 神戸製鋼所、日本製鉄(株) と共同で実施中の「環境鋼和型プロセス技術の開発/フェロコークス技術の開発」において、JFEスチール (株) 西日本製鉄所 (福山地区) に建設していた日産300トンの中規模フェロコークス製造設備を完成させ、10月0日より実証対験を開始しました。

	業種	革新的技術	技術の概要・革新的技術とされる根拠	2020年度 削減見込量	2030年度 削減見込量	2019年度取組実績	2020年度以降実施予定取組
22	日本建設機械工業会	バッテリ建機の商品化	・パッテリ建機はミニショベルがほとんどではあるが、各社ともにプロト機開発段階。 (メリット) メンテナンスが容易、大幅な低騒音化、低CO2、排力スの排出が少ない等 (デメリット) 少量のためパッテリのコスト高、充電インフラが整っていない、長時間稼働できない等	-	-	-	-
\vdash		削減効果合計		-	-	① 参加している国家プロジェクト	①参加している国家プロジェクト
		ヘテロナノ構造を用いた材料の高強度化	-	-	-	なし ② 業界レベルで実施しているプロジェクト	②要界レベルで実施しているプロジェクト 平成30年度NEDO戦略的省エネルギー技術革新プログラム
23	日本伸網協会	省エネルギー戦略に寄与する"ヘテロナノ"超 高強度網合金材の開発	-	-	-		新規技術開発検討会(停網協会内委員会) ③個社で実施しているプロジェクト 個社の情報は開示されていない
\vdash		削減効果合計		-	-		
24	日本工作機械工業会	CFRP (炭素繊維強化プラスチック) 製 5 軸M C 設計開発		従来機より 20%の消費 エネルギー 削減、2020 年以降	-		-
		削減効果合計		-	-		
25	石灰石鉱業協会	日本の鉱山で導入出来る革新的技術の探索	-	-	-	c) 研究奨励金制度 大学や公的研究機関に奨励金を拠出し開発のサポートをしている。昨年度は、省エネに応用できる研究テーマはなかった。	①参加している国家プロジェクト なし ②業界レベルで実施しているプロジェクト 技術の探索、紹介、支援を継続する。 ③個社で実施しているプロジェクト 不明
		削減効果合計		-	-		
26	3本レストルーム工業会	-	高効率焼成窯(廃熱利用)、超高効率変圧器、設備の間欠運転化、トップランナーモーターなど高 効率機 器 自働化の無人搬送装置、設備のインパータ化、コンプレッサーのインパータ化、台数 制御化、高効率工アコン、照明のLED化、通路等の感知式照明化などを想定しているが、見込量試 算は未実施。	_	-	③ 個社で実施しているプロジェクト・ハイドロテクトは光触媒効果を利用し、光や水で地球も暮らしもきれいにする環境浄化技術。建物などをきれいに保ち続けるセルフクリーニング(汚防)効果や工場や車などから排出される窒素酸化物(NOX)を分解する空気浄化効果などを発揮。このハイドロテクトの卓越した空気浄化機能をグローバリに広く展開することで、深刻化する大気汚染問題に貢献。・オフィスや商業施設などパブリックスペースのトイレ手洗いにおいて、必要な量を必要な温度で"瞬間的に加温"する「加温自動水栓」を開発。従来の電気温水器と比べて92%の省エネを実現。 湖水事故など水回りのトラブルを考慮した、遠隔新御装置を開発。スマートフォンのアプリとセットで使用することで、異常を感知すると直ちに通知が届き、水道の供給を止めることができる。	-
		削減効果合計		-	-		

	業種	革新的技術	技術の概要・革新的技術とされる根拠		2030年度 削減見込量	2019年度取組実績	2020年度以降実施予定取組	
2	7 石油鉱業連盟	CO 2 地中貯留(CCS)技術	CO2地中貯留 (CCS) 技術は、石油・天然ガス開発技術を応用して大幅な温室効果ガス排出削減を実現できる可能性がある。当連盟会員企業は、2008年5月に設立された日本CCS調査株式会社に参画し、CCSの促進及び本格実証試験の実施に積極的に取り組んでいる。今後は、実用化に向けての取組等を推進していく必要があり、当連盟会員企業の保有する技術を生かしてCCSによるCO2大規模削減の実現を目指す。	-	-	 参加している国家プロジェクト 人工光合成プロジェクトとCO2有効利用技術開発事業への参加 超臨界地熱発電技術研究開発 C C C U S 研究開発・実証関連事業 ② 業界レベルで実施しているプロジェクト C C 2 地中貯留 (CCS) 技術 ③ 個社で実施しているプロジェクト 特になし。 	②参加している国家プロジェクト 引き続きNEDO(新エネルギー・産業技術総合開発機構)のプロジェクトに積極的に参加。 ②業界レベルで実施しているプロジェクト 引き続き日本CCS調査会社の活動に積極的に参加。 ③個社で実施しているプロジェクト 特になし	
L		削減効果合計		-	- FEMS導入前			
		FEMS導入等による工場生産におけるエネル ギー使用の効率化	工場の建替え・新設等にあわせ随時	-	比 28%削減 (会員会社 工場による 実績値。 FEMSのみの 効果)	-		
2		生産工場等への再生可能エネルギー由来の電力の積極導入	現在導入推進中				今後も生産工場の工程の見直し、工場建替え・新設時のFEMSの導入等を積極的に検討する。 また、スコープ3算定社数の増加に努め、関連する業界との連携を検討するとともに、住宅として最もCO2を排出する製品の使用(居住)段階のCO2を削減するZEH等の普及に努める。	
		サプライチェーンと一体となったCO2排出量 削減	2020年までに全社SCOPE3算定を実施。 その後サプライチェーンとの連携方法を検討、推進。	-	-	-		
		ZEH、LCCM住宅等、高度な省工ネ性能・低炭素性能を有する戸建住宅および低層集合住宅の普及推進	I I	-	2020年 新築戸建注 文住宅の 70%をZEH とする			
L		削減効果合計		-	-			
2	日本産業事両協会	【低炭素製品】 燃料電池式産業車両のラインナップ 拡大	2019年5月に小型燃料電池フォークリフトを発売 2020年2月に燃料電池トーイングトラクター(構内けん引車)の実証を開始	-	-	① 参加している国家プロジェクト 業界全体として参加しているプロジェクト 以下の公的な活動に参加し、燃料電池式産業車両の普及促進に向けた環境整備に貢献 ・ IEC/TC105 (燃料電池) / WG6 (移動体推進用燃料電池システム) 及び同3WG6 (国内審議委員会) において、産業車両用燃料電池システムのφ準化に協力	①参加している国家プロジェクト 業界全体としては特になし ②業界レベルで実施しているプロジェクト 産業車両用燃料電池システムのIEC、JIS作成審議に、日本電機工業会と共に参画 ③個社で実施しているプロジェクト 燃料電池式産業車両の実証事業の継続実施	
L		削減効果合計		-	-			
		省エネ型照明 (LED等) の導入 省エネ型空調設備の導入	高効率照明の導入による消費電力の削減効果については、環境省が実施している「あかり未来計画」より抜粋しています。(参考URL: http://ondankataisaku env.go.jp/coolchoice/akari/build/index.html)	-	-	省工ネ型照明 (LED等) の導入 省工ネ型空調設備の導入 省工ネ型冷蔵・冷凍設備 (自然冷媒、扉付き等) の導入		
3	日本チェーンストア協会	省エネ型冷蔵・冷凍設備 (自然冷媒、扉付き等) の導入	-	-	-	効率的な親御機器 (BEMS、スマートメーター等) の導入 「II. 国内の企業活動における削減実績(5)実施した対策、投資額と削減効果の考察」にて記載したとおりです。 再工ネ発電設備(太陽光発電、風力発電等)の導入 *太陽光パネルを壁面に設置し、発電された電気を店内の照明等に使用(食料品スーパー、3店舗)	今後も引き続き上記の取組を継続していきます。	
		効率的な制御機器 (BEMS、スマートメーター等) の導入	-	-	-	 本陽光パネルをリースにて設置(総合スーパー、13店舗) その他 オール電化店舗の推進(食料品スーパー、累計81店舗) *CO2排出係数を意識しつつ新電力会社から電力を購入。毎年、購入先の見直しを実施(総合スーパー) 		
		再エネ発電設備 (太陽光発電、風力発電等) の導入	-	-	-			
	 	削減効果合計 次世代型店舗の研究・開発	-	-	-			
3	日本フランチャイズ チェーン協会	省エネに貢献し温暖化係数も低い自然冷媒等 の利用	-	-	-	-	SEJ 2030年度までに、店舗運営に伴うCO2排出量を2013年度対比にて30%削減する。	
		削減効果合計						

	業種	革新的技術	技術の概要・革新的技術とされる根拠		2030年度 削減見込量	2019年度取組実績	2020年度以降実施予定取組
32	日本ショッピングセ ター協会		独自に技術開発を行っている業界ではないが、様々な企業と連携・協力し、高効率照明・空調、地域冷暖房、コージエネレーションシステム等の技術導入も進められている。	-	-	-	-
Щ		削減効果合計		-	-		
33	日本百貨店協会	該当なし 削減効果合計	-	-	-	-	-
34 E	本チェーンドラック	な -	-	-	-	•	-
-	トア協会	削減効果合計	 年間を通じて外気や水の気化熱を活用した冷却方式により、省エネルギー性能を飛躍的に高める方	-	-		
		るデータセンター用空調システム	式。 様々な外気条件に適合することで、データセンターの空調エネルギコストを60%削減できる。	-	-		-
35	情報サービス産業協	自然エネルギーの利用	参照元 (NTTファシリティーズ Munters DCIE) http://www.ntt-f.co ip/service/data center/munters dcie/ ・雪と外気を活用したハイブリッド冷房システムを採用。 ・フリークーリング、高温冷水、太陽光発電、地熱を利用した熱源システム。				
		様々な水冷技術	・サーバ内のCPU クーラーに内蔵したポンプで冷却水を循環させ、CPUとメモリを冷却し、サー バ筺体の空冷ファンの回転数を抑えることでサーバ全体の冷却ファン消費電力を削減。 ・サーバ、ストレージ、ネットワークなどのIT機器をまるごと液体の冷媒に浸し、冷媒を循環させ ることで冷却する液浸冷却技術。				
		その他	ICT機器設置エリアと設備機器設置エリアの効率的な配置。				
Щ		削減効果合計		-	-		
36	大手家電流通協会	- 削減効果合計	-	-	-	•	
37	日本DIY協会	-	-	-	-	-	
		削減効果合計 -	-	-	-		•
38	日本貿易会	削減効果合計		-	-		
		renewable LPG	パイオディーゼルの副産物として生成されるパイオLPGを含むrenewable LPGは環境負荷の低い ガス体燃料であり、低・脱炭素の実現に向けた新技術の一つとして注目されている。未だ世界的に 派通量少なく、長期的な取り組みが必要となるが、世界各国の動向を注視しながら、将来的な事業 化の検証を実施して行く予定である。	-	-	-	-
39	日本LPガス協会	合成LPガス製造(プロパネーション・ブタ ネーション)	LPガスの合成は、2016年に北九州大学により、一酸化炭素と水素をフィッシャートルプシュ反応でメタノールを合成し、炭化水素を発生する方法と、一酸化炭素のるいは二酸化炭素と水素の反応により得られるメタノールを受に水素化することで炭化水素を製造する方法について特許が出願されており、パイオ原科からLPガスを製造する背景技術は確立している。都市ガス産業は、「メタネーション(合成メタン製造)」技術を軸にした、長期的な環境対応を打ち出している。 LPガス産業も更なる技術革新を進め、人口光合成、パイオ原科からのLPガス合成或いはCO2フリー水素と二酸化炭素からLPガスを製造する「プロパネーション」「プタネーション」(合成LPガス製造)技術開発も視野に入れ、研究機関や大学を含めた産学官連携の強化を図りつつ、対応を目指すこととする。			② 業界レベルで実施しているプロジェクト 当協会は、(1)-2合成LPガス製造(プロパネーション・ブタネーション)について記載した「LPガスが果たす環境・レジリエンス等 の長期貢献について」冊子を発行するための検討を行った。	②業界レベルで実施しているプロジェクト 2020年6月に当協会は、(1) - 2合成LPガス製造(プロパネーション・ブタネーション)について記載した「LPガスが果たす環境・レミリエンス等の長期貢献について」冊子を発行した。今後は記載した技術の実現に向け各方面での取り組みを行っていく。 ③個社で実施しているプロジェクト ②(1)- 1. renewable LPGについては、会員企業による回答である。
		削減効果合計		-	-		
40	リース事業協会	-	-	-	-	•	-
1		削減効果合計	-	-	-	-	
41	炭素協会	削減効果合計		-	-		
環境省	所管3業種						
1 4	国産業資源循環連	産業廃棄物処理企業が、自ら革新的技術の開発等を行うことは困難な現状であると考えているため、本項の記入はしていない。しかし、当連合会では、会員企業に広く普及が見込め、現場で活かせるような対策技術(経済的に利用可能な最高の技術/Technologies)や、産業廃棄物の適正処理を担保しつつ、地球温暖化対策に資する運用方法(Practice)も対策技術と合わせ、BAT(Best Available Technologies)リストとして整理すること検討しており、各社が保有する運転管理やノウハウも含めて会員企業に広く普及・導入されることを目指している。	-	-	-	-	-
2	日本新聞協会	技術開発は基本的に個別各社が取り組んで、 新聞協会としてのBATの開発はしていない。 個別各社の成功事例は、当協会の各種顕彰活 動で表彰し、機関誌などを通じて情報共有を 進め、各社での検討を促している。 削減効果合計	_	-	-	② 業界レベルで実施しているプロジェクト 技術開発は各社が取り組んでおり、新聞協会としてBATの開発は行っていないが、各社の成功事例は機関誌で共有し、顕彰活動も実施し ている。 最近の新聞協会賞(技術部門)授賞作で環境負荷低減にもつながるとされているものに、2015年度の新聞用完全無処理CTPプレートの 開発と実用化、2017年度のローラ再生装置の開発がある。詳しくは過去の新聞協会賞授賞作品を掲載した下記の新聞協会ホームページ を参照。 https://www.pressnet.or.jp/about/commendation/kyoukai/works.html ③ 個社で実施しているプロジェクト 製版過程で自動現像機が不要になったため廃液を一切排出せず、環境負荷低減が可能な完全無処理CTPプレート(無処理版)は、業界内 で導入が進みつつある。 また、新社屋建設や輪転機をはじめとした印刷工場機器の更新の際には、各社で省エネ効果のあるものを導入するよう努めている。	ている。 また、各社の技術部門の責任者、実務担当者の会合等でも先進社の導入事例の共有、見学会なども企画・実施している。個別各社の技術開発の一助となるよう情報共有の場を積極的に設けている。 ③個社で実施しているプロジェクト
3	全国ペット協会			-	-	•	
3	全国ペット協会	削減効果合計		-	-	-	-

16. 情報発信等の取組

	業種		主な取組内容
経済	全業省所管41業種		
1	電気事業低炭素社会協議会	業界団体	協議会のホームページを通じて、協議会の活動内容や規約等を広く紹介するとともに入会窓口を常時設けることにより、カバー率の向上に努めている。 関連各所から様々な情報、知見を収集できるよう、関係省庁等を招聘した講演会や勉強会等を開催し、加入事業者の協議会活動への支援強化に努めている。
	·····································	個社	地球温暖化対策をはじめ、環境問題に関する取組方針・計画の実施・進捗状況等について、プレスリリース・環境関連報告書等、各社ホームページや冊子を通じて、毎年公表を行っている。
2	石油連盟	業界団体	ホームページを利用した情報公開,冊子「今日の石油産業」での情報公開
	Linuxem	個社	CSRレポート等に低炭素社会実行計画への参画を記載
		業界団体	日本ガス協会WEBサイトでの環境情報の公開, 都市ガス業界の海外における温室効果ガス削減貢献量算定ガイドライン, 各種セミナー・イベントの主催・協賛・後援(業界内限定), 各種セミナー・イベントの主催・協賛・後援(一般公開)
3	日本ガス協会	個社	環境報告書等の策定
		学術的貢献	
		業界団体	日本鉄鋼連盟HP内に、鉄鋼業界の地球温暖化対策への取組等を紹介,個社単位で省エネに努めるとともに、COURSE50等の技術開発においては、高炉各社を中心に業界団体として取り組んでいる。
4	日本鉄鋼連盟	個社	個社で環境報告書をとりまとめ、HPおよび冊子等にて地球温暖化対策の取組を紹介している。
		学術的貢献	日本エネルギー経済研究所論文「LCA的視点からみた鉄鋼製品の社会における省エネルギー貢献に係る調査」
5	日本化学工業協会	業界団体	低炭素社会実行計画の進捗状況を日化協Webサイトに掲載 https://www.nikkakyo.org/upload_html_pages2/kankyo_02.html 関係データを日化協アニュアルレポートに掲載 関係データを日化協ニュースレターに掲載
			低炭素社会実行計画での活動を個社Webサイトで公開, 低炭素社会実行計画の取り組みを社内で展開, CSRレポート等に低炭素社会実行計画への参画を掲載 経済産業省は、2018年3月に、「温室効果ガス削減貢献定量化ガイドライン」を発行した。幣協会のCO2排出削減貢献量算定のガイドラインは、参考文献として引用されており、その発行に貢献できた。
6	日本製紙連合会	業界団体	日本製紙連合会での「低炭素社会実行計画フォローアップ調査」の実施・報告書のホームページでの公開(毎年)等 紙パルプ技術協会主催の省エネルギーセミナーでの「低炭素社会実行計画フォローアップ調査および地球温暖化対策関連情報」の講演(毎年) 日本エネルギー学会機関紙「えねるみくす」9月号に、エネルギー需給に関する業界の動向として「紙・ パルプ」を寄稿(毎年)
		個社	CSR活動報告書の発行、各社ホームページでの温暖化対策・環境に関する情報公開

セメント業界はわが国が目指す「持続可能な社会」の実現に向け、「低炭素社会」だけでなく「循環型社会」の構築にも大きく貢献している。セメント協会では、ホームページやセメントハンドブックなどを通じ、セメント業界の循環型 社会への貢献について情報発信を行なっており、ここに紹介する。また、2019年度は次のような活動により一般消費者への理解促進にも努めた。 ・新聞・雑誌等に関連広告を掲載した。 ・ホームページによる情報提供を充実させるため、操作性の改善を図り、併せて小学生向けのクイズを継続実施した。 ・小・中学生を対象に、セメント・コンクリートへの理解・促進を図るため、工場見学を実施した。 ・大学生向けに、廃棄物・副産物の有効活用等、セメント産業の環境貢献を中心とした「出前授業、工場見学会」を実施した。 1. 廃棄物・副産物の使用による天然資源並びに温室効果ガスの削減効果 セメント業界は他産業などより排出される廃棄物や副産物を多量に受け入れ、セメント生産に活用している。特に、クリンカ製造には原料系廃棄物やエネルギー代替廃棄物を多量に用いており、天然資源を節約するとともに、廃棄物処理 に伴う環境負荷の低減に貢献している。 (1) 廃棄物・副産物使用量の推移 (2) クリンカ原料としての廃棄物の利用 セメントの中間製品であるクリンカは、乾燥・粉砕・調合された原料を1450度の高温で焼成した鉱物で、大きく4つの成分「酸化カルシウム(CaO)、二酸化けい素(SiO2)、酸化アルミニウム(Al2O3)、酸化第二鉄(Fe2O3)」で構

業界団体 | 酸化アルミニウム (Al2O3) 源は、かつては天然の粘土が多く使用されていたが、現在はほとんどが、石炭灰や汚泥などの廃棄物に置き換わっている。

|クリンカ原料として石炭灰や汚泥などの廃棄物の使用が進んだことにより、ポルトランドセメント製造に使用された天然粘土の使用原単位は大幅に減少し、天然粘土の採掘・使用に伴う環境負荷の低減に貢献している。

また、燃え殻、鉱さい、ばいじんなどのクリンカ原料用の廃棄物にはCaO及びMgOが含まれている。これらの廃棄物はクリンカ生産の段階でCO₂を排出していないことから、クリンカ生産過程でCO₂を排出する炭酸塩起源である石灰石の 使用量とその使用に伴うCO2排出量の削減となっている。(2019年度CO2削減量:848 千t-CO2)

クリンカ原料として炭酸塩以外のCaO、MgO含有廃棄物の使用に伴う排出係数については、日本国温室効果ガス排出インベントリ報告書に反映されている。

(URL: http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_J_GIOweb.pdf)

(3) エネルギーとしての廃棄物の利用

「木くず」や「廃プラスチック」などのエネルギー代替廃棄物を利用することで化石エネルギーの使用量を削減しており、化石エネルギー資源の採掘や使用に伴う環境負荷の低減に貢献している。エネルギー自給率の低いわが国では廃棄 物のエネルギー利用も重要である。

カーボン・ニュートラルの木くずの使用は低炭素社会の実現にもつながっている。

エネルギー代替廃棄物の使用実績 (2019年度: 1,011 千kl (重油換算))

(4) フロン類破壊による温室効果ガス排出量の削減

会員企業において、フロン排出抑制法に基づき、フロン類破壊業の許可を受けている社がある。2019年度のフロン類破壊による温室効果ガス排出削減貢献量は以下のとおり。

【トクヤマ社】

「森林ボランティア」への参加

山口県周南農林水産事務所主催の「まちと森と水の交流会」における周南市有林「ふれあいの森」の下草刈り、間伐の作業等に、社内関係者が毎年参加している。2019年度も参加予定であったが、台風接近により中止となった。

「周南きさらぎ文化祭」への参加

|全国有数の竹林面積を有している周南市において、竹の持つ優れた機能性と多様な用途を文化と環境の観点から広く発信するイベント「徳山駅前 真・竹取物語」を主催した。

・事業所近隣の大学などにおいて環境に関する講義を実施

ノーカーデー実施

(6月 周南市ノーマイカーデー、10月 山口県内一斉ノーマイカーデーに参加)

・ライトダウンキャンペーンへの参加(6~7月)

・周南市クリーンネットワーク推進事業に参加 (毎月会社周辺の清掃を実施30分/月)

・不使用箇所の消灯、軽装での執務(5~10月)、空調温度管理の徹底等

・社員を対象に、住宅用樹脂サッシについて導入費の一部を補助 (2019年度利用件数:4件)

*詳細、その他取組については、「CSR報告書」に記載

https://www.tokuyama.co.jp/csr/pdf/2020csr report j.pdf

【太平洋社】

〈環境影響評価〉

鉱山の開発にあたっては地域の生態系保全に配慮し、地方行政、地域社会、学識者との意見交換を踏まえつつ、環境影響を最小化できるよう保全対策を検討、実施している。

採掘過程で形成される階段状の岩盤の斜面部分「残壁」については、形成した段階において可能な限り緑化する努力を続けている。掘削した表土等の堆積場についても、すぐに形状を変えることのない場所については植栽をしている。ま た、植栽する植物はその山にもともと自生している植物を基本としている。

<その他>

2020年3月30日2050年を展望した温室効果ガス排出削減に係る長期ビジョンの具体的な施策を策定

セメント協会

学術的貢献	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	・北九州SDGsクラブへ入会し、SDGsに資する取り組みの実施(敷地周辺の美化活動など)。 【住友大阪社】 ・希少野生動物「ツシマヤマネコ」の保護を目的とした森づくりのため長崎県対馬市舟志地区に所有する森林16haを無償提供。植樹イベントなど通じ森林保護育成。
	https://www.denka.co.jp/pdf/sustainability/report/denka_2019_full.pdf 【日鉄高炉社】 ・北九州市下水汚泥燃料化事業へ参画し、市内で発生した下水汚泥を有効利用。
	・クリーンエネルギーの取り組みとして、水力発電設備、太陽光発電設備を有している。 ・現在2箇所の新規水力発電所の建設を進めている。 ・詳細、その他取組については、「デンカレポート(統合報告書)」に記載
	*詳細、その他取組については、「CSRデータブック」に記載 https://s3-ap-northeast-1.amazonaws.com/sustainability-cms-mmc-s3/report/pdf/csr2019.pdf 【デンカ社】
	【三菱社】 ・青森県緑化推進委員会主催の「緑の募金」への協力 ・2015年には北海道内の9山林について、SGECの新基準による森林認証を一括取得した。
	*詳細、その他取組については、「統合報告書」に記載 https://www.ube-ind.co.jp/ube/jp/ir/ir_library/integrated_report/pdf/integrated_2020_jp.pdf
	・石灰石鉱山残採掘後の鉱山緑化等生物多様性活動 ・GHG排出量削減・利用に資する研究開発・実証試験の推進 ・環境貢献型技術・製品の開発と拡大
	【宇部社】 UBEグループではGHG排出削減を大きな課題の一つと捉え、継続的に削減対策を実施している。環境型製品・技術の拡大および物流の効率化を図ることにより、サプライチェーン全体でのGHGの削減貢献に取り組んでいる。 ・河川流域の森林保護への取り組み(間伐や竹林伐採などの森林整備)
	 ・官民連携の廃棄物処理によるリサイクル水素製造プロジェクトへの参加 *詳細、その他取組については「環境報告書」に記載 http://www.tsuruga-cement.co.jp/csr/bookdata/html5.html#page=1
	・昼休み不要照明の消灯 ・自転車通勤の推奨 ・キルン排ガス処理設備更新による、排ガス中ダスト濃度の低減
個社	・工場近辺の海岸、道路清掃の実施・クールビズの実施・グリーンカーテンの設置
	https://www.tosoh.co.jp/csr/report/data/report2019.pdf 【敦賀社】 ・鉱山採掘跡地の種子撒きによる緑化
	・エコ通勤(通勤時の自動車利用を控え、公共交通機関や徒歩に切り替え)(月1回実施) ・夜間のプラント照明の消灯(月1回実施) *詳細、その他取組については、「東ソーレポート」に記載
	https://www.taiheiyo-cement.co.jp/csr/pdf/data/2019/2019_rep_0912.pdf 【東ソー社】

		学術的貢献	「自主行動計画の総括的な評価に係る検討会」のとりまとめ報告書(2014年4月)において、当業界の活動が先進的な行動事例として評価され、取り上げられた。それらの事例は、2014年9月2日開催の「自主的取組に関する国際シンポ ジウム」のプレゼンテーションの中で、国内外に紹介されている。
9	日本自動車部品工業会	1	省エネ事例集の発行 省エネ関連説明会の開催(WEB形式での実施) 環境情報誌の発行
		個社	省工ネ事例発表会の開催, 地球温暖化防止月間、省工ネルギー月間での啓発活動
10	日本自動車工業会・ 日本自動車車体工業会	業界団体	①やってみよう♪エコドライブ ②エコドライブ10のすすめ ③エコドライブe-ラーニングコンテンツ(クイズ&ゲーム) ④地球温暖化対策長期ビジョン
		個社	環境レポート, ホームページ
		業界団体	ロ本鉱業協会の会員会、部会の開催 セミナー・講演会の開催
11	日本鉱業協会	個社	低炭素社会実行計画での活動を企業HP で公開 低炭素社会実行計画の取組を社内で展開 CSR/統合報告書等に低炭素社会実行計画への参画を記載 長期ビジョン、ありたい姿、長期戦略/検討状況の公表 チャレンジ・ゼロ賛同と取組み SDGs/ESGに係る取り組みの公表 CDP/SRI調査対応の公表 SBT設定/見通しの公表 TCFD宣言採択の公表
		学術的貢献	当協会としては、毎年6月に全国鉱山・製錬所現場担当者会議(公開)を開催し、各現場での取り組みが発表されている。この会議では必ずしも地球温暖化対策、CO2排出削減に関する発表だけではないが、省エネルギーおよび地球温暖化対策については各社の関心が高く、数多くの発表が行われている。この会議には大学や研究機関の教授や専門家を招いており、良好な参考事例の発表を通して学術的な観点からも情報を提供している。これまでの取組みを大学や研究機関と独自に評価することを通して、資源・素材学会と共同した学会発表案件の選定などを進め、学術的にも価値のある成果共有を図っている。 2019年度では、資源部門・製錬部門・新素材部門・工務部門エネルギー分野を含む)の各5部門に対して、資源素材学会から有識者に聴講いただき、資源素材学会誌に聴講記を寄稿いただき、一般にも公開された。(季刊資源と素材 第4巻第4号(2019)) 個社の取り組みとしては、各社個別事案について、大学・国研との産学官連携により、課題解決や将来技術に関して共創の取り組みを進めている。東京大学・京都大学および東北大学には、各社の産学連携講座を持ち、製錬関連技術のボトムアップや人材育成など、会員企業での独自でも取り組みが推進されており、非鉄金属製錬業界および会員企業の将来のありたい姿実現に向けた貢献価値を創出しており、成果は、研究報告会や冊子、プレス発表などを通じて公開されており、情報共有や情報発信もなされている。
		業界団体	石灰工業技術大会において低炭素社会実行計画の取組み状況を発表,省エネルギー・省資源対策推進会議省庁連絡会議で決定した,「夏季の省エネルギー対策について」を会員各社に配信,低炭素社会実行計画の目標達成度、CO2排出量、 目標達成への取組み等をホームページで公表していく
12	石灰製造工業会	個社	児童及び学生を含めた地域住民へ工場や鉱山の見学会を開催し、環境への取組み等を説明, 県や地域で開催される産業展等で環境への取組み等PR, 環境報告書、ホームページ等でCO2排出量の公表、環境への取組みをアピール
		学術的貢献	石灰製品の二酸化炭素吸収に関する研究データの蓄積を目的に、以下の研究について2年間大学へ研究依頼を行った。 テーマ:石灰を用いた地盤改良での二酸化炭素吸収に関する研究

1			
13	日本ゴム工業会	一 苯双切体	会員および会員外への情報提供(H P 等) 低炭素社会実行計画の進捗状況を業界団体 H P で公開
	LATAL KA	個社	・ISO14001、ISO50001取得 (国内、海外拠点) ・環境報告書、CSR報告書、自社HP、自治体HP等の中で「CO2排出量」、「環境経営の取組」を公表
		業界団体	低炭素社会実行計画のフォローアップ内容を当連合会ホームページに掲載 印刷環境基準であるグリーンプリンティング認定基準に、 本計画への参加による優位性を記し、加点対象とした。 印刷産業環境優良工場表彰の基準に、本計画への参加を記載 社会責任報告書の作成・配布
14	日本印刷産業連合会	個社	ホームページ、環境報告書、CSR報告書への記載 社員への環境教育の実施 工場見学会、オープンファクトリー、インターンシップ SBT認定取得、RE100の実践 該当事項記載なし
15	日本アルミニウム協会	業界団体	・省工ネ事例集の作成・省工ネ委員会の開催(情報交換、異業種への工場見学等)・省工ネ情報交換会の開催
	ロ本アルニープム励会	個社	・CSR報告書の作成と公表・アルミ缶リサイクル活動と収益金の社会福祉・地域社会への寄付
		業界団体	エコガラスS、エコガラスの普及活動を実施 低炭素社会実行計画の進捗状況を板硝子協会 H P に公開
16	板硝子協会	<u> </u>	低炭素社会実行計画の取り組みを社内で展開 各社のHPにCSR情報を公開
		学術的貢献	・学術発表等はおこなっていない。
		業界団体	毎年の自主行動計画書をすべての会員企業へ配布している。毎年の自主行動計画書を協会のHPに公開している。
17	日本染色協会	個社	CSR報告書の発行
		学術的貢献	特になし。

		1	I
1 1			環境活動発表会(対象:会員会社)
1 1		 業界団体	当会ウェブページでの環境専門委員会の活動内容、取組状況の公開 https://www.jcma2.jp/chosa/kankyou/index.html
18	日本電線工業会	*/ILLIF	当会ウェブページでの省工ネ事例集の掲載 https://www.jcma2.jp/chosa/kankyou/2019/index.html
			メタルワンダーアベニュー 社会貢献・エコロジー http://www.metal-wonder-avenue.jp/electricwire_cable/ecology.html
		個社	会員社のCSR報告書
\Box			日本ガラスびん協会の取り組み
1 1			カレット利用、省工ネ、物流、技術に関する各委員会活動を定期的に開催し、CO2排出削減につながる活動を行っている。低炭素社会実行計画の進捗状況を団体ホームページに公開。
1 1			(URL: http://glassbottle.org/quality/plan/)
			ガラスびん3R促進協議会、中身メーカー(ボトラー)などと協力しながら3R(リデュース、リユース、リサイクル)を推進し、環境負荷の低減を図る取り組みを継続的に推進している。
			(URL: http://glassbottle.org/ecology/) 「第16回ガラスびんアワード」開催。
			「ガラスびんは優れた保存容器である」という視点から、時代の潮流、消費者のライフスタイルの変化を捉え、世の中のトレンドをガラスびんを通じて表現する"場"や"機会"として開催しており、社会的意義も大きい取組みと考えてい
			る。297エントリー403本となった。一般審査員制度も導入され、彼らを通じてガラスびんの良さが発信されることも期待したい。
			(URL: http://glassbottle.org/award)
			2012年より複数年に渡って、「ビンのビジンなところを知ってもらう」をテーマにした『びんむすめ』プロジェクトを開始している。 日本全国に散らばった、それぞれの地域のガラスびんと、びんにふれあいながら働く地元の看板娘
			「びんむすめ」を通して、ビンのビジンなところを知ってもらうプロジェクトです。2018年は季節を通じてガラスびんの魅力に触れる場所を提供するため「びんむすめPOP UP LOUNGE」を夏、秋、冬の3シーズンで展開する。2019年
			は、ガラスびんは地球にやさしい素材である事を消費者に知って頂くためにガラスびんテージハウスを展開します。ガラスびんの温故知新を見て頂き、ガラスびんに触れて頂き使って頂く事でガラスびんを見直すきっかけになればと考え
			ています。
			(URL: http://glassbottle.org/glassbottlenews/2061)
			ガラスびんに入った、地サイダー&地ラムネを飲んでいただくことで、街の銭湯、地域(ご当地飲料)、医療従事者(1本につき5円の寄付が医療従事者へ)、それぞれの応援につながり、社会をより良く循環させていく一助になればとい
		*** BD4	う考えから「ガラスびん 地サイダー&地ラムネ 銭湯エールプロジェクト」を開催しています。
		業界団体	青森・東京・神奈川・岐阜・愛知・三重・石川・滋賀・大阪・京都・兵庫の全国11エリア91銭湯での同時開催となった。
			(http://glassbottle.org/glassbottlenews/1632)
			昨今、地球温暖化と海洋汚染の影響が顕著となる一方で環境配慮や地域活性化など、エシカルな社会を推奨する動きが注目されています。全国各地のガラスびんに詰まった良いモノを楽しみながら、地球環境のことを考え、「容器で選
			ぶ」というエシカルな視点のキッカケになればという考えのもと、「びん詰め中村屋 Supported by binkyo」をスタートさせました。
(http://tokyo.binzume.club/)	(http://tokyo.binzume.club/)		
1 1			くガラスびんコミックについて>
			ガラスびんコミックは人気漫画家とタイアップし、ガラスびんの持つ優位性や環境特性をストーリー仕立てのコミック展開により説明する広報ツールです。若年層を中心とした様々な世代の方々にガラスびんのことを理解いただくための
19	日本ガラスびん協会		ツールとして活用し、SNSでの配信や単行本の発刊を行ってまいります。
			<sdgs>の取り組み</sdgs>
			2019年3月20日 当協会 業務推進委員会がびんリユース推進全国協議会主催ステークホルダー会議に参加した。
			また、WGを立ち上げて検討を開始している。
			ガラスびん3 R促進協議会の取り組み
			(URL: http://www.glass-3r.jp/)
			ガラスびんの3R(リデュース、リユース、リサイクル)を一層効率的に推進するために必要な事業を広範に行うことにより、資源循環型社会の構築に寄与することを目的として活動。
			ガラスびん工場への積極的な見学の受入実施。学校、地域、行政、リサイクル関係、メディアなど、多数受入実績あり。工場見学を通じて、ガラスびんの良さやリサイクルについてPR。地域行政、学校などとタイアップして、環境への取り組
			みを伝えるため、地球にやさしいガラスびんについての学習会、フォーラムの開催、展示会への出展を実施している。
			http://www.yamamura.co.jp/csr/social_actibity.html
			http://www.toyo-glass.co.jp/environment/case_study.html
			http://www.ishizuka.co.jp/csr環境報告書等にて、ガラスびん製造企業としての取り組みやその成果について定期的に情報公開を行っている。
			http://www.yamamura.co.jp/csr/report.html
			https://ssl.tskg-hd.com/csr/pdf/2018csr_web.pdf
		個社	http://www.ishizuka.co.jp/csr/report.html2019年 6月/11月 尼崎21 世紀の森づくり協議会が実施している「尼崎21世紀の森づくり」活動に参画
			2019年1月/6月 NPO 法人こども環境活動支援協会(LEAF)の活動で、西宮市の小学校に環境教育出前授業を実施
			2019年10月 播磨町主催イベントにて環境教育実施 :播磨町おもしろ教室
			2019年10月尼崎市主催イベントにて環境教育実施 : グリーンフェスタ、11月: エコキッズメッセ
			2019年9月 名古屋市「環境デーなごや」出展 ガラスびんの3R啓蒙
			2019年10月 : 名古屋市「メッセナゴヤ」出展 ガラスびんの3R啓蒙
			2019年11月 : 江南市「環境フェスタ江南」出展 ガラスびんの3R啓蒙
1			2019年11月 岩倉市「岩倉ふれ愛まつり」出展 ガラスびんの3R啓蒙
		個社	http://www.ishizuka.co.jp/csr環境報告書等にて、ガラスびん製造企業としての取り組みやその成果について定期的に情報公開を行っている。 http://www.yamamura.co.jp/csr/report.html https://ssl.tskg-hd.com/csr/pdf/2018csr_web.pdf https://ssl.tskg-hd.com/csr/pdf/2018csr_web.pdf http://www.ishizuka.co.jp/csr/report.html2019年 6月/11月 尼崎21 世紀の森づくり協議会が実施している「尼崎21世紀の森づくり」活動に参画 2019年1月/6月 NPO 法人こども環境活動支援協会(LEAF)の活動で、西宮市の小学校に環境教育出前授業を実施 2019年10月 播磨町主催イベントにて環境教育実施 : 播磨町おもしろ教室 2019年10月尼崎市主催イベントにて環境教育実施 : グリーンフェスタ、11月:エコキッズメッセ 2019年9月 名古屋市「環境デーなごや」出展 ガラスびんの3R啓蒙 2019年10月 : 名古屋市「メッセナゴヤ」出展 ガラスびんの3R啓蒙 2019年11月 : 江南市「環境フェスタ江南」出展 ガラスびんの3R啓蒙

		学術的貢献	・特になし
		業界団体	参加企業の取組みをとりまとめ、「省工ネ・廃棄物削減・包装材の改善事例集」を作成して会員各社への配布,「ベアリングのCO2排出削減貢献レポート」を作成し、当工業会ホームページで公開している。
20	日本ベアリング工業会	個社	会員企業の中には、対外的にCSRレポート(環境報告書)や環境関連を含むアニュアルレポートの発行、インターネット上でのホームページによる環境方針や環境会計の公表等を行っている。
		学術的貢献	特になし
21	日本産業機械工業会	業界団体	優秀環境装置表彰事業の実施 https://www.jsim.or.jp/commendation/ 環境活動報告書の発行(書籍・webサイト) https://www.jsim.or.jp/publication/ 環境装置の検索サイトの設置 https://www.jsim-kankyo.jp/ CSR報告書等の発行(書籍・webサイト)
		学術的貢献	
			低炭素社会実行計画の会員企業への周知,電子・電機・産業機械等WGへのフォローアップ状況の報告
22	日本建設機械工業会	個社	会員個社における自主行動計画の策定と取組
		学術的貢献	特になし
		業界団体	エネルギー・環境対策委員会を定期的に開催し、各社の省エネ活動、省エネ事例について共有・展開,低炭素社会実行計画での活動結果を会員専用HPで公開
23	日本伸銅協会	個社	省工ネ活動状況を企業ホームページで公開
		学術的貢献	各社のCSRレポート等に、省エネに関する取り組み状況が記載されている
24	日本工作機械工業会	業界団体	環境活動マニュアルのデータベース化, 環境活動状況問診票の実施, 環境・安全活動の実地啓発
		個社	ホームページにおける環境活動の公開, 環境活動報告書の作成

25	石灰石鉱業協会	業界団体	地球温暖化に対する取組みを協会HPで紹介 低炭素社会実行計画フォローアップについて業界誌に掲載 業界内の一年間の省エネ事例を会員に紹介 セミナーや他業種見学会の開催
		個社	低炭素社会実行計画の取組を鉱山or社内で展開,低炭素社会実行計画での活動を鉱山の地元(地域住民)との会合で報告,低炭素社会実行計画での活動を企業HPで公開,CSRレポート等に低炭素社会実行計画への参画を記載
		業界団体	低炭素社会実行計画のFU調査結果の報告内容をHPにおいて掲載、情報発信を行っている。
26	日本レストルーム工業会	個社	各社、環境貢献への取り組みをHPなどに掲載し、情報発信をおこなっている。
		学術的貢献	特になし
		業界団体	経団連 低炭素社会実行計画 回答票IIを石油鉱業連盟のHPにて公開
27	石油鉱業連盟	個社	環境イベントへの参加,社内環境セミナー実施,サステナビリティ・レポート・CSRレポートの配布
		学術的貢献	企業グループであるいは単独で、寄付講座開設や共同研究、講師派遣を行った。
28	プレハブ建築協会	業界団体	エコアクション2020の進捗状況についてプレスリリース、ホームページへの掲載 環境シンポジウム(エコアクション2020進捗状況報告、CO2排出量削減をはじめとした各社の取組みの紹介)の開催 ※1回/年
20	プレハク娃采励云	有対え十	ホームページを活用した情報発信 環境報告書、CSRレポートによる情報発信
		学術的貢献	
		業界団体	会報誌への掲載やホームページへの記載
29	日本産業車両協会	個任	環境報告書等への記載 経済産業省、日本経済団体連合会や NEDO の連携による脱炭素化社会の実現に向けたイノベーションに挑戦する企業リスト「ゼロエミ・チャレンジ」に本計画参加2社が登録
		学術的貢献	特になし
		業界団体	協会公式ホームページによる取組状況の公開(https://www.jcsa.gr.jp/topics/environment/approach.html) フォローアップの結果の会員への伝達
30	日本チェーンストア協会	個任	CSR報告書の発行やホームページでCO2削減の取組について発信 評価機関や中長期投資家との直接対話・情報提供、及びシンポジウムでの講演を通じて、ESGへの取り組みについて発信
		学術的貢献	特になし

31	日本フランチャイズ	業界団体	* J F Aホームページにて取組内容を公開 U R L: https://www.jfa-fc.or.jp/particle/496.html *環境省「COOL CHOICE」に参加 *環境省「クールビズ」、「ウォームビズ」の実施 * 「レジ袋有料化実施に伴う J F A統一方針(ガイドライン)」を策定
31	チェーン協会	個社	【SEJ】 ホームページの公開、CSRの冊子を配布 【F M】 サステナビリティ報告書発行 【LAW】 ホームページ、統合報告書、社会・環境小冊子、社内報等にて取組みを社内外に告知
32	日本ショッピング センター協会	業界団体	SC協会の公共政策・環境委員会における環境問題への各種取り組み 環境問題に関する官公庁関連の情報提供(HP・会員への直接的な周知等) 協会発行専門誌での環境問題に関する情報提供(特集・事例) 環境問題に関するセミナー(セミナー内の単元含む)の開催 クールシェア・ウォームシェアへの参加 協会発行「SC白書」にてエネルギー量実態調査の概要・結果報告 環境対策・省エネ(節電)に関する各種ガイドライン等の策定・配布 環境問題に関するアンケート実施・結果報告
		業界団体	クールピズ クールシェア ウォームピズ ウォームシェア スマート・ラッピング サプライチェーン排出量(スコープ1・2・3)の算定

			・ (株) そこつ・四山
			株式会社そごう・西武 CSR活動ホームページ
			(http://www.sogo-seibu.co.jp/csr.html)
		1	随時、活動実績報告・活動トピックス更新 100mm 100m
		1	環境・社会貢献の取り組みリーフレット(年1回発行)
		1	e-ラーニングによる全従業員への環境教育(年1回実施)
33	日本百貨店協会	1	グループ共通e-ラーニングによる全従業員への環境教育
		1	(年1回実施)
			環境デーでの環境朝礼
			週1回実施(毎月、環境デーテーマと各店での活動トピックスを掲載した環境ニュースを全店配信)
			株式会社セブン&アイ・ホールディングス CSRホームページ(http://www.7andi.com/csr/acction.html)
		個社	随時、各店で実施したCSRアクションを紹介
			株式会社セブン&アイ・ホールディングス
			CSRレポート、及び統合レポートに掲載(年1回発行)
			各店での環境イベント等の告知
			(店頭POP、ポスター、チラシ、HP、SNS等) 随時、実施
			・(株)三越伊勢丹ホールディングス
			ホームページ・統合レポート
			グループポータルサイトを利用した情報発信と共有
			・(株)高島屋
			CDP 気候変動レポートへの回答
			 株)
			 エイチ・ツー・オー リテイリング像)像井筒屋 ㈱鶴屋百貨店 ㈱山形屋 等
	日本チェーンドラッグ	業界団体	-
34	ストア協会	個社	-
		学術的貢献	
			省工ネに成功している企業の取り組み事例(22事例)を業界各社に紹介し、産業全体での節電への取り組みに努めた。なお、本事例集は、協会ホームページに公開している。
35	情報サービス産業協会	業界団体	http://www.jisa.or.jp/publication/tabid/272/pdid/25-J006/Default.aspx)
55	IRTRO C八座来伽云		企業のCSR活動の補助となるように、本活動に参加していることが一目で分かるマークを制定した。
		L	-
		111111111111111111111111111111111111111	
			フォローアップ調査を第三者機関に依頼し公平に具体的に実施
		 業界団体	調査の説明・結果等を含め会員各社に情報共有
36	エエラ語がほかへ	*//E/M	国民運動COOL CHOICEへの会員への協力推進
36	大手家電流通協会		COOL CHOICE 5 つ星家電買換えキャンペーンへの参画
		/⊞ 7∔	COOL CHOICEの宅配便再配達防止プロジェクトへの賛同
		学術的貢献	特段ありません。

			T
37	日本DIY協会	業界団体	【環境資源に関する商品展示や情報提供を適じたPR活動】 ①商品見本市でのPR活動 当協会では、毎年、環境資源に関する商品展示や情報提供を適じたPR活動】 当協会では、毎年、環境資源に関する電業界内の意識向上を図るため、「環境・資源商品」に該当する商品を募集し、「省資源・省エネルギーに配慮した商品(結替え商品は対象外)」をはじめとする5項目に分けて、「JAPAN DIY HOMECENTER SHOW」(当協会主催の見本市)にて展示し、積極的な普及啓発に努めている。 ②環境資源に関する情報提供 当協会会員各社向けに、環境関連の情報提供等を行い、業界内の業務効率化への寄与や業界関係者の意識向上を目指している。 【会員各社にけいる環境関連活動・取り組みの対外的な周知】 当協会小売会員(ホームセンター)各社における環境関連活動・取り組みの把握を行い、各社の活動や取り組み事例を、協会ホームページから各社ホームページへの接続を適じて、対外的に幅広い周知が出来るよう取り組んでいる。 【流通システム標準化普及と物流の効率化の運動】・取り組みの把握を行い、各社の活動や取り組み事例を、協会ホームページから各社ホームページへの接続を適じて、対外的に幅広い周知が出来るよう取り組んでいる。 【流通システム標準化音及と物流の効率化の運動】・取り組みの連手を関いては、流過システムの標準化及び情報化(EDIの利用による商取引業務の効率化等)に向けた普及啓発に努めており、このシステムと商品の共同配送等を結びつけ、物流の効率化を目指している。将来的には、効率的な配送車両の連行や渋滞要因の改善等を図り、環境対策(CO2削減)への視点にもつながることが期待される。 【外部機関からの依頼案件への対応等を通じた協力(連携)体制の構築】 行政機関や関係団体等の外部機関からの情報提供、催事開催業内、調査協力依頼等に対する各種依頼案件への対応を通じた業界内外との協力体制により連携を図っている。 統合報告書にて記載しており、自社ホームページに情報公開している。 自社ホームページに低端素社会実行計画への取り組み事例を掲載している。
		学術的貢献	特になし。
		業界団体	環境セミナー開催(6月) 会員各社の環境活動を機関紙(月報)で紹介
38	日本貿易会	個社	小学生を主な対象とした環境教室開催 取引先やユーザーを対象に環境セミナーを実施 水素エネルギーフォーラム開催
39	日本LPガス協会	I	日本LPガス協会のホームページに「環境」ページを公開 http://www.j-lpgas.gr.jp/genzai/environment.html 当協会内にて設置している「環境保安部会」にて情報の共有化 「LPガスが果たす環境・レジリエンス等の長期貢献について」冊子の発行検討
		11111千十	環境報告書の作成、公開 各社ホームページ内に「環境」コンテンツを設置
		業界団体	低炭素社会実行計画の進捗状況を協会ホームページ及び「月刊リース」で公表
40	リース事業協会	個社	統合報告書、CSR報告書、ホームページで取り組みを公表
41	炭素協会	業界団体	月次発鋼の機関紙にて、関連会議記録を掲載。 WG資料、議事録などURLを案内

環境	省所管3業種		
1	全国産業資源循環連合会	業界団体	C 0 2 マイナスプロジェクト C S R 2 プロジェクト
2	日本新聞協会	業界団体	環境対策実務担当者を対象とした研修会を年1回開催。自主行動計画の進捗状況について報告し、理解を深めてもらうほか、行政やエネルギーの専門家等の講演を設けて啓発している。 ウェブサイトに「新聞界における環境への取り組み」というページを設け、環境省への報告を含む自主行動計画関連の文書を掲載しているほか、会員新聞社の環境関連ウェブサイトを紹介している。 https://www.pressnet.or.jp/about/environment/ 環境報告書を社内配布、コーポレートサイトで公開
		個在	環境対策会議、社内イントラネット、社内報で告知、啓発 環境対策委員会の内容を社内報で周知 取り組みの社内HP掲載、行政ポスターの掲示
3	全国ペット協会	業界団体	会報誌による情報発信 店頭で取り組み店ステッカーを使った情報発信

17. 各業種の低炭素社会実行計画カバー率

			企業数				売上規	模			
	業種	業界全体	業界団体	計画	参加	業界全体	業界団体	計画参		カバー率向上のための取組	備考
400 344-0					(対業界団体)				(対業界団体)		
経済	産業省所管41業種 					1				I	
1	電気事業低炭素社会協議会	1288社	47社	47社	100%	8360億kWh	7764億kWh	7764億kWh	100%	2019年度 協議会の運営(ホームページの活用、説明会) 会員事業者への支援強化(講演会、勉強会等) 未加入事業者に対する協議会の紹介(事業者ホームページの問い合わせ欄への書き込み、メールやTEL)等 2020年度以降 協議会の運営(ホームページの活用、説明会) 会員事業者への支援強化(講演会、勉強会等) 未加入事業者に対する協議会の紹介(事業者ホームページの問い合わせ欄への書き込み、メールやTEL)等	
2	石油連盟	12社	11社	10社	91%	19.2兆円	18.9兆円	17.5兆円	93%	特になし。	石油連盟には加盟していないが、低炭素社会実 行計画に参加している企業が1社あり
3	日本ガス協会	196社	196社	196社	100%	2.8兆円	2.8兆円	2.8兆円	100%	2019年度 業界アンケートの継続と必要に応じた内容見直しの実施 2020年度以降 業界アンケートの継続と必要に応じた内容見直しの実施	
4	日本鉄鋼連盟	-	74社	75社	101%	0.9843億ton	-	0.9487億ton	96%	2019年度 当連盟大会企業に対しても、引き続きの参加協力の参加協力呼び掛けを実施。 2020年度以降 引き続き上記取組を実施し、カバー率の維持に努める。	鉄連会員外の企業を含む
5	日本化学工業協会	3414	180社 +80団体		_	26.8兆円	-	20.0兆円	75%	2020年度以降 日本化学工業協会Webサイトでの参加企業の公表 取組み状況の共有(日化協Webサイト、ニュースレター等)	(参考) 温室効果ガス排出量 算定・報告・公表制度に 基づく平成28年 2016年度エネルギー起源CO2 排出量は、化学工業で6,484万 t ((2)業種別 排出量 E 製造業 ②特定事業所)に対し、参加 企業全体の2016年度の調整後排出係数を用いた 排出量は5,978万 t であり、カバー率は 92%である。
6	日本製紙連合会	247社	30社	28社	93%	2500万ton	2211万ton	2181万ton		2019年度 参加していない残りの1社にも、引き続き参加を要請。	

			企業数	数			売上規模	Į.			
	業種	業界全体	業界団体	計画		業界全体	業界団体	計画参		カバー率向上のための取組	備考
7	セメント協会	17社	17社	17社	(対業界団体)	0.57兆円	0.57兆円	0.57兆円	(対業界団体)		
8	電機・電子温暖化対策連絡会	715社						21.8兆円	70%	2019年度 ・参加呼びかけ(文書での依頼、ポータルサイト、団体機関紙での呼びかけ) ・取組状況の共有、情報発信(ポータルサイトの更新、業界ポジションペーパー(パンフレット)の改訂等による業界内/対外アピール) ・参加企業限定イベント(省エネ工場見学会)、オンライン業界説明会(進捗・取組状況、政策動向の情報共有等)の開催 2020年度	(参考) 温対法公表制度(温室効果ガス排出量 算定・報告・公表制度)に基づくエネルギー起源CO2排出量の集計結果(2016年度)より、電機・電子温暖化対策連絡会運営4団体に加盟する企業の排出量952万t-CO2のうち、実行計画参加企業分は814万t-CO2で、カバー率は86%である。
9	日本自動車部品工業会	6612社	426社	100社	23%	36.1兆円	19.7兆円	10.9兆円	55%	2019年度 省工ネに関する勉強会・先進企業見学会の開催 HPを通じた会員各社の省工ネ取組み事例紹介 中小企業の実績報告向上を図るため詳細報告様式から簡易様式に変更 調査票配信・回収作業の機械化、見える化 2020年度以降 本部・支部の両面から有益な改善事例展開を図り、実績報告を拡充 調査票配信・回収システムの全面導入	
10	日本自動車工業会・日本自動 車車体工業会	320社	214社	56社	26%	26.2兆円	21.5兆円	21.2兆円	99%		
11	日本鉱業協会	16社	16社	16社	100%	1.4兆円	1.4兆円	1.4兆円	100%	2019年度 エネルギー政策、地球温暖化対策などに関する情報共有・意見交換(エネルギー委員会、省エネルギー部会、工務部会、電気委員会など) 低炭素社会実行計画の取り組み状況の共有(同上) 鉱山・製錬所現場担当者会議での好事例などの情報共有 省エネ対策、地球温暖化対策などに関する業界勉強会(講演会含む)の開催 2020年度以降 エネルギー政策、地球温暖化対策などに関する情報共有・意見交換(エネルギー委員会、省エネルギー部会、工務部会、電気委員会など) 低炭素社会実行計画の取り組み状況の共有(同上) 鉱山・製錬所現場担当者会議での好事例などの情報共有 省エネ対策、地球温暖化対策などに関する業界勉強会(講演会含む)の開催	
12	石灰製造工業会	_	91社	86社	95%	_	_	-	_	2019年度 電話及びメール等で参加呼びかけを行い、状況確認 2020年度以降 電話及びメール等で参加呼びかけを行い、状況確認	

			企業数				売上規格	· · · · · · · · · · · · · · · · · · ·			
	業種	業界全体	業界団体	計画	参加	業界全体	業界団体	計画参	力口	カバー率向上のための取組	備考
		201211	жида		(対業界団体)	2021	жлып		(対業界団体)		
13	日本ゴム工業会	2190社	101社	27社	27%	129.6万ton	120.8万ton	113.1万ton	94%	2020年度以降 取組状況の共有・中小企業への情報提供(HP等)	
14	日本印刷産業連合会	22210社	7183社	135社	2%	5.2兆円	4.9兆円	3.2兆円	66%	2019年度 会員10団体へのアナウンスと「印刷産業環境優良工場表彰」「GP認定工場」に参加している企業を中心とした参加 依頼並びに会員10団体からの推薦を受けた企業 ホームページでの参加企業名の公表 ホームページでの取組結果の開示 2020年度以降 同上 参加企業のメリットのアピール	
15	日本アルミニウム協会	38社	33社	10社	30%	145万ton	142万ton	121万ton	85%	2019年度 省工ネ情報交換会の開催等を通じて、未参加の団体加盟企業への参加の呼びかけを行う。	
16	板硝子協会	3社	3社	3社	100%	0.40兆円	0.40兆円	0.40兆円	100%	カバー率100%の為、特になし。	
17	日本染色協会	167社	57社	14社	25%	0.17兆円	0.13兆円	0.08兆円	61%	2019年度 毎年の自主行動計画書を、会員企業に配布し、活動状況を報告して、未参加企業に対して参加を要請している。 毎年、当協会のホームページに自主行動計画書を掲載して、当協会の取り組み状況を一般にも公表している。 当協会内の技術委員会において、参加を働きかけている。 2020年度以降 毎年の自主行動計画書を、会員企業に配布し、活動状況を報告して、未参加企業に対して参加を要請する。 毎年、当協会のホームページに自主行動計画書を掲載して、当協会の取り組み状況を一般にも公表している。 技術委員会以外の委員会においても、参加を呼びかける。	
18	日本電線工業会	347社	117社	115社	98%	1.8兆円	1.3兆円	1.2兆円	95%	2019年度 会員各社の省エネ改善事例の収集・公開をして、業界全体で省エネ技術を共有、対策の深堀、徹底の努力を行ってい る。 2020年度以降	
19	日本ガラスびん協会	-	13社	6社	46%	0.12兆円	0.12兆円	0.11兆円	92%	2019年度 参加呼びかけ(総会・例会など) 取り組み状況の共有(HP掲載、メールマガジン配信)	
20	日本ベアリング工業会	_	32社	12社	38%	_	0.84兆円	0.80兆円	95%	2019年度 参加企業の取組みをとりまとめ、「省工ネ・廃棄物削減・包装材の改善事例集」を作成して会員各社への配布会議でCO2削減努力の必要性について説明 2020年度以降 参加企業の取組みをとりまとめ、「省工ネ・廃棄物削減・包装材の改善事例集」を作成して会員各社への配布予定会議でCO2削減努力の必要性について説明予定	

			企業数	X			売上規模	莫			
	業種	業界全体	業界団体	計画	i参加	業界全体	業界団体	計画参	т	カバー率向上のための取組	備考
		2,2,1,2,1,	2021		(対業界団体)	2021	жлып		(対業界団体)		
21	日本産業機械工業会	-	138社	70社	51%	_	2.4兆円	2.0兆円	82%	2019年度 会員企業の環境担当者にアンケートの督促を実施 調査項目の見直し 2020年度以降 同上	
22	日本建設機械工業会	103社	64社	64社	100%	2.5兆円	2.4兆円	2.4兆円	100%	カバー率は既に97%に到達しており、これ以上のカバーは難しい。	
23	日本伸銅協会	60社	41社	6社	15%	73.7万ton	非公表	33.9万ton	46%	2019年度 各社エネルギー使用量調査アンケートの実施 2020年度以降 各社エネルギー使用量調査アンケートの実施	業界全体比
24	日本工作機械工業会	不明	108社	86社	80%	不明	1.5兆円	1.4兆円	93%	2019年度 調査票提出の呼びかけ・督促 委員会でのフォローアップ結果報告 2020年度以降 同ト	
25	石灰石鉱業協会	220鉱山	75鉱山	20鉱山	27%	1.38億ton	1.28億ton	1.05億ton	82%	2019年度 会員鉱山へのPR活動実施他 フォローアップ対象外鉱山の一部にアンケートを実施。	
26	日本レストルーム工業会	3社	3社	3社	100%	0.68兆円	0.68兆円	0.68兆円	100%	カバー率100%のため特になし	
27	石油鉱業連盟	N.A.	17社	4社	24%	N.A.	N.A.	1.6兆円		対象となる全会員企業はすでに参加している。	
28	プレハブ建築協会	20社					131千戸		94%	2019年度 ①計画の内容および進捗状況に関するマスコミへのリリースや記者発表、協会ホームページでの報告等、団体内外に 積極的に公開 ②計画の進捗状況の報告をはじめ、参加企業の取組を広く紹介する「プレハブ建築協会環境シンポジウム」を年1回 開催 2020年度以降 上記①に取り組む	
29	日本産業車両協会	30社	20社	4社	20%	0.26兆円	0.2484兆円	0.2296兆円	92%	中小企業会員企業への参加呼びかけ	
30	日本チェーンストア協会	78690事業所	55社	55社	100%	143.5兆円	13.0兆円	13.0兆円	100%	低炭素社会実行計画の目的及びフォローアップ結果に関する会員企業への発信、フォローアップへの協力依頼	
31	日本フランチャイズチェーン 協会	17チェーン	362チェーン	17チェーン	100%	11.3兆円	16.2兆円	11.3兆円		フランチャイズ形式のコンピニエンスストアについては100.0%カバーしている。	団体の規模は、(一社)日本フランチャイズ チェーン協会会員企業の外食、小売・サービ ス、コンビニエンスストアの会員社。
32	日本ショッピングセンター協 会	1306社	313社	105社	34%	32.0兆円	データ非保持	データ非保持	_	会員企業に対する個別・複数回の調査依頼 本調査を含む環境問題全般の協会出版物・HP・説明会等での情報発信 調査方法の負担軽減 (時期調整、回答方法の見直し等)	
33	日本百貨店協会	213事業所	208店	187店	90%	6.3兆円	5.8兆円	_	_		業界団体における力バー率は100%。

			企業数	女			売上規	莫			
	業種	業界全体	業界団体	計画	(対業界団体)	業界全体	業界団体	計画参	(対業界団体)	カバー率向上のための取組	備考
34	日本チェーンドラッグストア協会	401社	112社	59社	53%	7.7兆円	6.7兆円	6.3兆円	93%	・省工ネ法 特定事業の定期報告書による代替提出 ・会員企業への事務連絡の繰り返し、個別の電話等による提出協力のお願い	
35	情報サービス産業協会	34700社	489社	74社	15%	24.1兆円	10.2兆円	4.4兆円	44%	2019年度 省エネに成功している企業の取り組み事例等を業界各社へ紹介するなど、業界の省エネ化促進に向けて、取組みの P R等により参画企業の増大を目指す。 (平成26年4月「情報サービス産業オフィス部門省エネルギー対策事例集 第2 版」を公表) 協会が発行している四季報(会員を中心に3,000部発刊)に、低炭素化社会実行計画の取組を紹介。 本活動に参加している企業が使用できるロゴマークを制定し活動参加のモチベーション向上を図った。 (昨年度より) 協会が発行している四季報(会員を中心に3,000部発刊)に、低炭素化社会実行計画の取組を紹介。 ト記四季報とは別に、会員企業毎に活動趣旨と調査票をまとめた書類を郵送し活動知名度の向上を図った (昨年度より)	
36	大手家電流通協会	35593事業所	6社	6社	100%	8.8兆円	5.0兆円	5.0兆円	100%	フォローアップ調査を第三者機関に依頼し、公平に具体的に実施 調査の説明・結果等を含め会員各社に情報共有	業界全体の事業所数、市場規模については、経済産業省平成28年経済センサス-活動調査(第1表産業分類細分類別、年次別の事業所数(法人・個人別)、従業者数、年間商品販売額及び売場面積)による。なお、企業数については趣旨に合致する統計調査が存在しないため事業所数で代替している。
37	日本DIY協会	_	52社	13社	25%	3.9兆円	-	1.1兆円	30%	2019年度 取り組み状況(フォローアップ調査結果)等の情報共有 参加呼びかけ(各社社長級の会合等) 調査開始の時期やタイミングの考慮 協会事務局からの働きかけ(電話等による直接依頼) 2020年度以降 取り組み状況(フォローアップ調査結果)等の情報共有 調査開始の時期やタイミングの考慮 協会事務局からの働きかけ(電話等による直接依頼)	・業界団体は協会会員のうち小売業の会員数
38	日本貿易会	_	42社	32社	76%	224兆円	59兆円	58兆円	98%	未報告企業を含めた全社への文書での依頼 日本貿易会月報での調査結果フィードバック	
39	日本LPガス協会	11社	11社	7社	64%	1369万ton	1350万ton	1321万ton	98%	実質的な力パー率は100%に達しているため、特段の取り組みを実施していない。	
40	リース事業協会	235社	235社	186社	79%	5.3兆円	5.3兆円	4.8兆円	91%	低炭素社会実行計画の会員向けPR活動の実施 低炭素社会実行計画非参加会員の参加勧奨活動の実施	
41	炭素協会	-	22社	14社	64%	_	0.2兆円	0.2兆円	98%	2019年度 2005年以来、会員に対しCO2 排出量調査への協力を要請し継続実施、カバー率の向上を図った。 2020年度以降 上記活動を継続する。	当協会に加盟する企業は29社であるが、販売会社、原料メーカーを含むため、製造会社22社を団体加盟企業数とした。

			企業数	数			売上規	莫			
	業種	業界全体	業界団体	計画	参加	業界全体	業界団体	計画参	ታበ	カバー率向上のための取組	備考
		**/1	K T		(対業界団体)	X/1±11	жлып		(対業界団体)		
環境	省所管3業種										
1	全国産業資源循環連合会	12万社	47協会 (14379 社)		100%	3.91億 t	0.9兆円	-	-	2019年度 温室効果ガス排出量等実態調査 (廃プラスチック類の受入や処理等の動向に関するアンケート様式を追加)を実施している。 引き続き、BATリストの作成、原単位目標の設定を検討している。 全産連と正会員との連携を強化するため、会員企業のカテゴリー分けを正会員の協力を得て行った。 2020年度以降 温室効果ガス排出量等実態調査 (2020年4月、5月実績の調査項目を追加)を実施している。 引き続き、BATリストの作成を検討している。	
2	日本新聞協会	_	107社	107社	100%	-	-	184,904.2kl (原油換算)	_	参加呼びかけ(各社社長級の会合等) 取り組み状況の共有(団体ニュースレター・HP等) セミナーの開催 中小企業への情報提供	回答社のうち3社については、回答内容に不備 があったため、集計から除外している。
3	全国ペット協会	21069事業所	3700会員	228事業所	1%	0.1兆円	-	_	. –	会報を通じて取組の広報を行う 取組の参加事業所に参加店ステッカーを配布	企業数は業界全体に対する比率

18. 各業種の電力排出係数

	業種	電力排出係数	kg-CO2/kWh	備考
1	電気事業低炭素社会協議会	-		
2	石油連盟	調整後		
3	日本ガス協会	業界固定	0.37	
4	日本鉄鋼連盟	業界固定	0.423	
5	日本化学工業協会	業界固定	0.423	
6	日本製紙連合会	基礎		
7	セメント協会	調整後		
8	電機・電子温暖化対策連絡会	調整後		
9	日本自動車部品工業会	基礎		
10	日本自動車工業会・日本自動車車体工業会	業界固定	0.453	
11	日本鉱業協会	業界固定	0.4913	2030年目標は0.567kg-CO2/kWh
12	石灰製造工業会	調整後		
13	日本ゴム工業会	業界固定	0.423	
14	日本印刷産業連合会	業界固定	0.316	
15	日本アルミニウム協会	基礎		
16	板硝子協会	基礎		
17	日本染色協会	調整後		
18	日本電線工業会	業界固定	0.496	
19	日本ガラスびん協会	調整後		
20	日本ベアリング工業会	業界固定	0.305	
21	日本産業機械工業会	基礎		
22	日本建設機械工業会	調整後		
23	日本伸銅協会	調整後		
24	日本工作機械工業会	調整後		
25	石灰石鉱業協会	業界固定	0.33	
26	日本レストルーム工業会	調整後		
27	石油鉱業連盟	調整後		
28	プレハブ建築協会	業界固定	0.35	
29	日本産業車両協会	業界固定	0.567	
30	日本チェーンストア協会	調整後		
31	日本フランチャイズチェーン協会	調整後		
32	日本ショッピングセンター協会	調整後		
33	日本百貨店協会	調整後		
34	日本チェーンドラッグストア協会	基礎		
35	情報サービス産業協会	調整後		
36	大手家電流通協会	調整後		
37	日本DIY協会	基礎		
38	日本貿易会	基礎		
39	日本LPガス協会	基礎		
40	リース事業協会	調整後		
41	炭素協会	業界固定	0.555	

VI. 来年度に向けたフォローアップの改善案の検討

2020 年度に開催された産構審地球環境小委員会の業種別 WG において、各業界団体から報告された調査票・データシートや、WG 委員による事前質問、各業種における回答状況、及び WG での議論等に基づき、来年度のフォローアップに向けた調査票の改善案について検討した。

各業種から報告された「調査票」及び「データシート」に対する評価、検証を通じて得られた課題を以下に示す。

- ・ 2014 年度に公表された自主行動計画総括評価結果を踏まえ、これまで各業種から報告される実績や進捗状況の透明性の向上を図るため、調査票・データシートの改善を進めてきた。これによって、WG 委員から取組状況が分かりやすい資料になったと評価されている業界団体もある。一方で、調査票への記載状況は業種ごとに濃淡があり、評価事例を整理し、参考となるように各業界に対して案内してきた。
- ・ 調査票とデータシートの結果を一致させるように求めたが、依然として一致していない業界団体がある。業界独自の発熱量、排出係数を用いている、全店舗の平均値としているためデータシートでは対応できないといった課題があるが、引き続き各業界団体の進捗状況を正確に把握するために、わかりやすい調査票、記載要領の充実が必要。
- ・ 各業種による調査票の表現には、難解な専門用語が含まれている場合がある。広く一 般国民にもわかりやすい平易な言葉での資料作成が求められる。

加えて、全ての WG 開催後に行った座長懇談会において、今後のフォローアップについて以下のような意見があった。

- ・ CO2 排出削減率の統一化が必要ではないか。各業界の事情で BAU 目標は有効だが、 各業種の基準年が異なるので外からの評価が難しい。経済界の貢献を見える化する ためにも統一的な見せ方を検討してほしい。
- ・ 各業種の取組を評価するためにも生産活動量の見通しを調査票に記載すべき。特に 原単位目標の場合には必要になる。
- ・ 海外の削減貢献に関する見せ方や方法論のルール化を進めてほしい。また、計算シートや事例集を配布することで底上げを図れるのではないか。

これまで、各業界団体が自らの温暖化対策への取組について、工夫を凝らして WG に報告してきたことはWG委員から概ね高評価を得ており、その点では年々改善が進んでいるといえる。しかし、業界団体によっては調査票への取組状況や実績値に関する背景や説明といった記載が少なく、空欄となっている場合もある。これらの点について、WG 委員から空欄とした理由を説明することを求める意見もあった。また、調査票への記載内容についても、

さらに追加での説明や説明の工夫を求める意見もあった。このため、各業界団体の調査票を 再度精査し、優れた記載内容や取組を水平展開していくことが必要となる。

また、調査票・データシートへの対応について、ガイダンスや作成の手引きを作成することで、記入しやすさの改善を進めてきた。しかし、進捗率や実績値に関する確認を要することが多く、これを改善していく必要がある。そのために、提出前に確認するポイントを列挙した提出前チェックリストの作成を検討すべきである。

今後の課題として、調査票の記載事例集、記載例、記載ガイダンスの見直しを進めるとともに、データシートの手引についても見直しも必要である。これまでは、各業種から報告された調査票の記載内容、WGでの委員指摘事項等を踏まえて更新を続けてきたが、改めて有識者等の第三者の視点を踏まえつつ、今後のカーボンニュートラルに向けた調査票やデータシートの全体的な構成を含めて見直すことによって、各業界団体に求める記載内容を具体化でき、フォローアップでの議論をより明確化することができるだろう。

来年度は 2020 年度実績の報告となり、低炭素社会実行計画の第 1 フェーズ最終年となる。2020 年初頭から新型コロナウイルスの蔓延によって経済・社会にこれまでとは大きく異なる影響があったことを踏まえ、業界団体の自主的な努力が評価されるように慎重なフォローアップが必要である。また、2020 年 10 月に菅総理から 2050 年カーボンニュートラル宣言があったことを踏まえ、2030 年以降の長期的な業界としてのビジョンや見通しについても聴取するとともに、2030 年の目標水準の見直し議論できるような調査票・データシートとすることが重要である。

そこで、以下のような要素を調査票・データシートに組み込み、来年度以降のフォローアップWGでの議論に資することが期待される。

- 1. 2013年から2020年実績の振り返り
 - (ア)計画と実績の乖離
 - (イ) 期間中の目標見直し
 - (ウ) 新型コロナウイルスによる影響
- 2. 2021年以降の目標見直し予定・検討状況
 - (ア)検討状況、検討方針
 - (イ) 見直し条件
 - (ウ) 今後の生産活動量の見通し(特に原単位目標の業種)
- 3. カーボンニュートラルに向けた業界としてのビジョンや見通しの策定状況、検討状況
 - (ア) ビジョンの策定、見直し状況
 - (イ) カーボンニュートラル宣言を踏まえた業界としての今後の見通しと課題
- 4. 他部門貢献や海外貢献等の定量化の課題
 - (ア) 先行事例を踏まえた定量化の検討状況と課題
 - (イ) 定量化に係るデータ収集状況

5. 革新的技術の検討状況・課題

(ア) カーボンニュートラルに向けた技術的な代替可能性の検討状況

Ⅷ. 地球温暖化対策計画にかかるフォローアップ

自主的取組に関する地球温暖化対策計画フォローアップに際し、当該フォローアップに使用する調査票の修正及び政府がフォローアップを行う115業種についての自主的取組に関するデータ等の整理等を行った。その結果を次ページ以降に示す。

(体的な対策 名主体の対策 頭の施薬 門別(産業・民生・運輸等)の対策・施策 A. 産業部門 (製造事業者等) の取組 (a) 産業界における自主的取組の推進)低原素社会実行計画の着実な実施と評価・検証(序章部門の業種) 反素社会実行計画の電実な実施と評価・株証 (後 薬加で)の ・ 般性加点人は経済性 (非点な 高泉館: ・ 化尿素に表 アメル・ ・ 水原素を取りてあった。 一 大田 () に いいのはまかり ・ 大田 () に いいかい ・ 大田

1% A 0% A % 9% A 20% A 30% A 37% A 36%

▲ .3%

▲ 2 % ▲ 30% ▲ 22%

▲ 6.0%

A 276 A 276 A 276 A 276 A 376 A 376 A 5076
▲ 17%

▲ 5.3%

▲ 3% ▲ 2%

▲ 20%

 CO-所出版
 2005年度
 A 5%
 1 %
 A 2%
 A 3%
 A 5%
 A 5%
 CO-所出版

 CO-所出版報告
 2010年度
 A 10.0%
 A 2%
 A 6%
 A 3%
 2 %
 5%
 7%
 CO-所出版報告

 CO-所出版
 2005年度
 A 27.5%
 A 1%
 A 1%
 A %
 A 3%
 A 3%
 A %
 A 52%
 CO-所出版

A 16%

A 1%

A 8%

エネルギー消費原単位

▲ %

▲ 10.8% CO₂所出原準位

エネルギー消費原単位

CO2标出闡

CO2标出圖

エネルギー消費原単化

BAU 2013年度

BAU

2010年度

<2030年度日標の進捗状況の評価>

への30年では10日の20日で日本が東京を上日る 日本の30日で日本大学を上日る 日本の30日で日本大学を大学では、 日本の30日では10日では、10日では大学には2030年2日標大学には全っていない C2018年度実績が基準年度比のAU比で増加しており 2030年度日標大学には至っていない D.データ未集計 (新規第定・日標水準変更・集計方法の見直し等)

0.0

26.0

32.9

5.1 1.0

26.6 19.6

 25.
 22.1
 21.5
 21.1
 20.3
 23.1

 16.3
 13.8
 13.8
 13.8
 13.
 12.3

 8
 7
 .
 3
 2
 .

38.2 35.7 25.6 19.8

21.2 11.7 3.7

※全量機とも 表も側の2018年度のCO-所出業は各年度の調整機能出係数で発出しているため 2020年 2030年それぞれの信息に対する実績 (%) で使用しているCO-所出業とは必ずしも一致しない。

								※BAU口標を設定してい	る単種については 2018	年度の実績とBAUから%	を算出しているため 口標剤	M減量の進修率とは一致し	GLI.															
財務省所管景權																												
				[2020年度目標]	[2020年度目標]	[2020年度四億]	[2020年度四億]	[2020年度四億]	[2020年度日標]	[2020年度目標]				[2030年度四標]	[2030年度四標]	[2030年度口標]	[20 0年度目標]	[20 0年度日標]	[2030年度四億]	[2030年度四株]	2013年度COs明出業	no. comes muse	DOLESTING MINE	nousember man	november with	204057800 111118	201057800 11118	
	[四株粉件]	【基準午度/BAU】	[2020年度目標水準]	2013年摩実績	201 年度実績	2015年復実機	2016年度実績	2017年度実績	2018年度実績	2019年度実績	[口標指標]	【簡単年度/BAU】	[2030年度目標水準]	2013年度実績	201 年度実績	2015年復実績	2016年摩実績	2017年度実績	2018年度実績	2019年度実績	2013年間COs排出量 (7it-CO ₂)	201 年度CO:排出量 (7%-CO ₂)	2015年度CO2标出量 (75b-CO2)	2016年度COs所出版 (万t-COs)	2017年度CO:併出量 (75t-CO ₂)	2018年度COs排出量 (万t-COs)	2019年度CO:原出版 (万t-CO:)	2030年度日標の進 状況の評価
				(簡準年度比/BAUIL)	(簡單年度比/BAUII)	(簡準年度比/BAUIL)	(差準年度は/BAUIL)	(是享年度は/BAUIL)	(是享年度は/BALEL)	(差率年度)t/BAU(t)				(基準年度比/BAUIL)	(簡準年度比/BAUIL)	(簡準年度比/BAUIL)	(簡単年度比/BAUIL)	(簡単年度It/BAUIt)	(要學年度は/BAUIL)	(基準年度は/BAUIL)	(/)6-C03/	(/)6-C03/	(/)6-CO3)	(/)6-CO3)	(/)(-C03)	(/)6-C03/	(/)6-003)	40.00.094M
ビール酒造組合	COsHH出屋	BAU	▲5. 7jt-CO₂	▲ 13%	▲ 15%	▲ 16%	▲ 18%	▲ 18%	▲ 20%	▲ 22%	CO2所出版	2013年度	▲26%	▲ 1 %	▲ 16%	▲ 17%	▲ 18%	▲ 19%	▲ 21%	▲ 23%	5 .6	52.8	51.2	9.9	8.8	6.6	5.0	A
日本たばこ産業株式会社	COslik出屋	2009年度	▲20%	▲ 9%	▲ 11%	▲ 16%	▲ 18%	▲ 21%	▲ 21%	▲ 17%	COs标出闡	2015年度	▲32%			▲ 13%	▲ 15%	▲ 18%	▲ 19%	A1%	95.0	92.0	85.0	80.0	75.0	73.0	72.2	В
厚生労働省所管量種	•		·		•		•				•					•												
				[2020年度日標]	[2020年本日標]	[2020年本日標]	[2020年度四億]	[2020年度四億]	[2020年度日標]	[2020年度日標]				[2030年度日標]	[2030年本日標]	[2030年本日標]	[20 0年本日標]	[20 0年本日標]	[2030年度四億]	[2030年度日標]	T .							
	[13888]	【簡準年度/BAU】	[2020年度目標水準]		201 年度実績	2015年度実績	2016年度実績	2017年度実績	2018年度実績	2019年度実績	[口標指標]	【簡単年度/BAU】	[2030年度目標水準]	2013年高実績	201 年度実績	2015年度実績	2016年度実績	2017年度実績	2018年度実績	2019年度実績	2013年度COs併出量 (75t-COs)	201 年度CO:排出量 (75t-CO ₂)	2015年度CO:标出量 (75t-CO ₂)	2016年度COs耕出量 (万t-COs)	2017年度CO:排出量 (万t-CO ₂)	2018年度COs排出量 (7it-COs)	2019年度CO:标出量 (75t-COs)	2030年度目標の進 状況の評価
				(差準年度比/BAUII;)	(是準年度比/BAUIt;)	(簡準年度比/BAUIL)	(差準年度は/BAUは)	(要準年度は/BAULL)	(差準年度は/BAULL)	(要準年度は/BAUは)				(簡単年度は/BAUは)	(簡準年度It/BAUIt)	(差準午度比/BAU比)	(基準年度比/BAUII;)	(簡単年度は/BAUIL)	(要準年度は/BAULL)	(是享年度は/BAUIL)	(/)6-C03/	(/)6-C03/	(/)6-CU1)	(/)6-CO3)	(/)[-(03)	(/)6-C03/	(7)6-003)	00700009488
日本製業団体連合会	CO:MH出庫	2005年度	▲23%	▲ 17%	▲ 20%	▲ 20%	▲ 18%	▲ 19%	▲ 22%	▲ 21%	COa标出闡	2013年度	▲ 25%	0%	▲ 3%	▲ 3%	A 1%	▲ 3%	▲ 5%	▲ 5%	262.3	252.6	2 6.7	2 8.2	239.6	22 .3	218.7	В
農林水產省所管量權	•																											
			T	[2020年度目標]	[2020年度日標]	[2020年度日標]	[2020年度四億]	[2020年度四億]	[2020年度日標]	[2020年度四億]			T	[2030年度日標]	[2030年度四標]	[2030年度口標]	[20 0年度日標]	[20 0年度四億]	[2030年度四億]	[2030年度四億]			I	2016年第00-68米量		I		
	[四根形標]	【基準午度/BAU】	[2020年度目標水準]		201 年度実績	2015年復実績	2016年度実績	2017年度実績	2018年度実績	2019年度実績	[口標指標]	【基準午度/BAU】	[2030年度目標水準]	2013年度実績	201 年度実績	2015年復実績	2016年度実績	2017年度実績	2018年度実績	2019年度実績	2013年度COs排出量 (75t-COs)	201 年度CO:排出量 (75t-CO ₂)	2015年度CO:标出量 (75t-CO ₂)	2016年度COs所出版 (万t-COs)	2017年度CO:标出圖 (万t-CO ₂)	2018年度COs排出量 (75t-COs)	(75t-CO ₂)	2030年度口標の後 状況の評価
				(無準年度比/BAUIL)	(簡單年度比/BAU比)	(簡準年度比/BAULL)	(差準年度は/BAUtt)	(是準年度は/BAUIL)	(差準年度は/BAUIL)	(差準年度は/BAUIL)				(簡単年度計/BAUIT)	(簡準年度比/BAUIL)	(簡單年度比/BAU比)	(基準年度比/BAUIL)	(簡単年度It/BAUIt)	(基準年度は/BAUIL)	(基準年度は/BAUIt)	Ojocos	(////	(//////////////////////////////////////	(//0-003)	(//0-002)	Ojecos	(//0-00/)	900009798
日本スターチ・糖化工業会	COsff社開催位	2005年度	▲3.0%	▲ 3%	9%	1 %	3%	2%	▲ 1 %	▲ 1%	CO2所出來學位	2005年度	▲5.0%	▲ 3%	9%	1 %	3%	2%	A 1%	▲ 1%	105.1	118.0	125.5	113.9	112.2	111.	106.8	C
日本乳糜協会	エネルギー消費原単位	2013年度	年率▲1%	0%	▲ 2%	0%	A 1%	2%	2%	%	CO2無出闡	2013年度	▲15%	0%	▲ 3%	▲ 3%	▲ 7%	▲ 13%	▲ 18%	▲ 20%	119.5	115.	115.9	111.7	103.6	98.	95.8	В
全国清凉飲料連合会	CO2排出原制位	1990年度	▲1 0.0%	▲ 1%	▲ 5%	▲ 9%	▲ 12%	▲ 17%	▲ 15%	▲ 21%	CO2所出原単位	2012年度	▲18.0%	2%	▲ 3%	▲ 7%	▲ 10%	▲ 15%	▲ 12%	▲ 19%	122.0	115.6	115.0	11 .0	110.6	117.8	116.1	В
日本バン工業会	COs标出原单位	2013年度	年率▲1%	0%	▲ 6%	A 8%	▲ 11%	▲ 15%	▲ 16%	▲ 18%	CO2标出原单位	2013年度	年享▲1%	0%	▲ 6%	▲ 8%	▲ 11%	▲ 15%	▲ 16%	▲ 18%	108.5	109.1	107.0	10 .7	102.0	99.5	97.9	A
日本缶箱びん箱レトルト食品協会	エネルギー消費原単位	2009年度	年早均▲1%	▲ 5%	▲ 15%	▲ 9%	▲ 13%	▲ 7%	▲ 29%	▲ 26%	エネルギー消費原単位	2009年度	年甲均▲1%	▲ 5%	▲ 15%	▲ 9%	▲ 13%	▲ 7%	▲ 29%	▲ 26%	75.5	67.9	63.	78.8	106.2	61.6	62.8	A
日本ビート糖業協会	エネルギー消費原単位	2010年度	▲1 5.0%	▲ 15%	▲ 19%	▲ 21%	▲ 12%	▲ 17%	▲ 25%	▲ 17%	エネルギー消費原単位	2010年度	▲15.0%	▲ 15%	▲ 19%	▲ 21%	▲ 12%	▲ 17%	▲ 25%	▲ 17%	63.8	65.3	70.	60.1	66.1	6 .8	69.2	A
CAMBOURG	COs标出原单位	2013年度	▲ 6.5%	0%	%	9%	3%	%	▲ 0%	▲ 5%	CO:(REDP WH)	2013年度	▲ 6.5%	0%	%	9%	3%	%	▲ 0%	▲ 5%		ra.c		1	60.3	1		
日本植物油協会	COsHHEIM	2013年度	▲ 6.5%	0%	5%	10%	6%	8%	%	0%	COMMEN	2013年度	A6.5%	0%	5%	10%	6%	8%	%	0%	55.7	58.6	61.5	59.3	60.2	58.0	55.8	1 ^
	COs排出圖	2013年度	▲ 7.0%	0%	▲ 0%	A 1%	▲ 6%	▲ 3%	▲ 11%	▲ 15%	CO-#RES	2013年度	▲17.0%	0%	▲ 0%	▲ 1%	▲ 6%	▲ 3%	A 11%	▲ 15%	1		T					T
全日本菓子協会	COMBINIDAMO	2013年度	▲ 7.0%	0%	▲ 7%	▲ 18%	▲ 25%	▲ 25%	▲ 32%	▲ 35%	COMPARAMENT	2013年度	▲17.0%	0%	▲ 7%	A 18%	▲ 25%	▲ 25%	▲ 32%	▲ 35%	97.	97.3	96.0	91.6	9.3	86.3	83.0	A .
精糖工業会	COsHHEIM	1990年度	▲ 33.0%	▲ 33%	A 35%	▲ 37%	A 8%	A 0%	A %	A 8%	CO ₂ (NA)	1990年度	▲ 33.0%	▲ 33%	▲ 35%	▲ 37%	▲ 38%	A 0%	A %	A 8%	39.0	37.6	36.5	35.8	3 .5	32.	30.3	Α
日本冷凍食品協会	エネルギー消費原単位	2013年度	▲ 6.8%	0%	▲ 3%	A 5%	▲ 6%	▲ 9%	A 8%	A %	エネルギー消費原単位	2013年度	▲ 15.7%	0%	▲ 3%	▲ 5%	▲ 6%	▲ 9%	▲ 8%	A %	3.7	0.3	1.9	51.	9.9	52.8	67.8	
日本ハム・ソーセージ工業協同組合	エネルギー消費原単位	2011年度	▲9.0%	A 6%	A %	A 6%	▲ 6%	▲ 8%	A %	▲ 3%	エネルギー消費原単位	2011年度	▲17.0%	▲ 6%	A %	▲ 6%	▲ 6%	▲ 8%	A %	A 3%	56.9	56.9	56.1	55.0	5 .7	51.	51.1	В
製料協会	CONTRIBUTE	1990年度	A16.5%	39%	38%	28%	2 %	20%	10%	5%	CO-MRESS WHY	2013年度	▲32.1%	0%	A 1%	▲ 7%	A 11%	A1 %	A 21%	A 2 %	30.5	30.3	28.6	27.5	26.8	2 .2	23.2	
全日本コーヒー協会	COSHEERMO	2005年度	▲15.0%	± 33%	A 38%	A 1%	A %	A 9%	▲ 50%	▲ 50%	CO-SFEEDWHY	2005年度	▲32.1% ▲25.0%	A 33%	▲ 38%	A 1%	A 11%	A 9%	▲ 50%	▲ 2 % ▲ 50%	11.8	11.6	12.0	13.6	12.6	12.0	11.9	A
日本職連協会					<u>. </u>							1990年度	▲23.0%	<u> </u>	<u> </u>			<u> </u>	<u> </u>				17.			<u>.</u>	15.	<u>^</u>
日本原南会区工業協会	COs标出圖	1990年度	▲18.0%	A 5%	▲ 12%	▲ 16%	▲ 18%	▲ 20%	▲ 22%	▲ 25%	CO-(NA)			▲ 5%	▲ 12%	A 16%	▲ 18%	▲ 20%	▲ 22%	▲ 25%	19.8	18.2		17.0	16.6	16.1		
日本ルバーグ・ハンバーガー協会	COs标出原单位	1990年度	▲30.0%	▲ 21%	▲ 2 %	▲ 25%	▲ 27%	▲ 18%	A 2 %	▲ 23%	CO-新出際単位	1990年度	▲ 21.0%	▲ 21%	A 2 %	▲ 25%	▲ 27%	▲ 18%	▲ 2 %	▲ 23%	23.	23.6	2 .0	23.1	26.9	25.0	25.9	Α
日本プロバーダ・プロバーガー協会	エネルギー消費原単位	2013年度	▲ 5.0%	0%	1%	7%	3%	6%	8%	9%	エネルギー消費原単位	2013年度	年平均▲1%	0%	1%	7%	3%	6%	8%	9%	11.0	10.6	10.5	10.5	10.2	9.9	9.	
全国マヨネーズ・ドレッシング類協会	COs#HEIM	2012年度	▲8.7%	1%	▲ 1%	A 6%	▲ 7%	A 11%	A 1 %	▲ 19%	CO ₂ 64,E/M	2012年度	▲21.7%	1%	A 1%	A 6%	▲ 7%	A 11%	A 1 %	▲ 19%	6.2	6.0	5.8	5.7	5.5	5.3	5.0	В
	COstilication	2012年度	▲ .8%	A 1%	▲ 3%	▲ 9%	A 11%	A 15%	▲ 18%	A 2 %	COstillation with	2012年度	▲17.9%	A 1%	▲ 3%	▲ 9%	▲ 11%	A 15%	▲ 18%	▲ 2 %								ļ
日本精米工業会	エネルギー消費原単位	2005年度	▲10.0%	▲ 3%	▲ 7%	▲ 3%	▲ 10%	▲ 9%	▲ 6%	▲ 12%	エネルギー消費原単位	2005年度	▲12.0%	▲ 3%	▲ 7%	▲ 3%	▲ 10%	▲ 9%	▲ 6%	▲ 12%	7.0	7.0	7.0	8.6	8.7	7.7	7.1	В
经济産業省所管業權																												
				[2020年度目標]	[2020年度日標]	[2020年度目標]	[2020年度日標]	[2020年度四標]	[2020年度四標]	[2020年度四標]				[2030年度日標]	[2030年度目標]	[2030年度口標]	[2030年度目標]	[20 0年度口標]	[2030年度四標]	[2030年度四標]	2013年度COs标出量	201 年度CO:肝出層	2015年度CO:标出蘭	2016年度CO。标出量	2017年200-1888	2018年度COs排出量	2019年#CO-#E##	2030年度目標の連修
	[四株粉株]	【基準年度/BAU】	[2020年度日標水準]	2013年度実績 (軽度年度比/BAUIII)	201 年度実績 (毎度年度比/BAUIT)	2015年度実績 (是準年度比/BAUIt.)	2016年度実績 (毎度年度比/RAUIT)	2017年度実績 (基準年度計/BAUIT)	2018年度実績 (等項矢宮世/BAUH)	2019年度実績 (無導年度社/BAUIL)	(口標指標)	【簡単年度/BAU】	[2030年度日標水準]	2013年度実績 (新漢年度計/BAUIT)	201 年度実績 (基準年度性/BAUH)	2015年度実績 (毎度年度比/BAUIL)	2016年度実績 (基準年度社/RAUH)	2017年度実績 (基準年度比/BAUtt)	2018年度実績 (毎度年度は/RAUIT)	2019年度実績 (新漢年度計/BAUH)	(7)t-CO ₂)	(7)t-CO ₂)	(75t-CO2)	(75t-CO ₂)	(75t-CO ₂)	(7)t-CO ₂)	(75t-CO2)	状形の評価
			▲5007it-CO₂	(無事牛高田/BAUIL)	(無事牛進江/BAUIL)	(無事件案式/BAUIT)	(無事牛薬II/BAUII)	(無事中級IT/BAUIT)	(無準件運圧/BAUIC)	(無事年度IE/BAUIE)	_			(無事牛選(II/BAUII)	(無事中區II/BAUII)	(要享年高江/BAUIC)	(無事牛薬II/BAUII)	(無事牛英IE/BAUIE)	(無事中區II/BAUII)	(無準牛藻IE/BAUIE)	_							-
日本飲鋼連盟	COMMENT	BAU	(▲3007;6-CO₂ MEZ	0.3%	0.6%	A 1.0%	▲ 1.3%	A 1.3%	A 1. %	A 1.9%	COsMiliti	BAU	▲90075t-CO₂	0.3%	0.6%	A 1.0%	A 1.3%	A 1.3%	A1. %	A 1.9%	19 0.8	19180.3	18 08.5	1826 .3	18120.0	17738.5	17261.3	В
			ラ実績分)						1	1																		
											CO2标出闡	BAU	▲65079t-COs	0%	1%	▲ 1%	▲ 2 %	▲ 5%	▲ 5%	▲ 5%								1
日本化学工業協会	COMMEM	BAU	▲1507jt-CO₂	▲ 2%	A 1%	A %	▲ 5%	▲ 7%	A 8%	▲ 7%	COs标出版	2013年度	▲67975t-CO2 (▲	096	▲ 2%	A %	▲ 6%	▲ 5%	▲ 8%	▲ 9%	6378.5	6280.6	61 1.2	5978.1	6033.9	5870.2	578 .0	8
					ļ								10.7%)	<u> </u>	ļ			ļ	<u> </u>	<u> </u>			ļ	ļ				ļ
日本製紙連合会	CO-WHE	BAU	▲1397jt-CO₂	▲1 %	▲ 16%	▲ 17%	▲ 16%	▲ 17%	▲ 18%	▲ 19%	CO2标出量	BAU	▲ 66750-CO₂	▲ 1 %	▲ 16%	▲ 17%	▲ 16%	▲ 17%	▲ 18%	▲ 19%	1880.0	1813.5	1790.6	180 .5	1790.6	17 2.1	1657.5	В
セメント協会	エネルギー消費原単位	2010年度	▲1.1%	▲ 0.8%	▲ 1.2%	▲ 2.0%	▲ 3.2%	▲ 2.5%	▲ 3.8%	▲ .8%	エネルギー消費原単位	2010年度	▲3.6%	▲ 0.8%	▲ 1.2%	▲ 2.0%	▲ 3.2%	▲ 2.5%	▲ 3.8%	▲ .8%	1806.5	177 .	1717.7	1695.6	1731.8	1691.2	1613.8	A
電機・電子温暖化対策連絡会	エネルギー原単位改善率	2012年度	▲7.7%	▲ 7.0%	▲ 10.6%	▲ 11.0%	▲13.2%	▲ 20. %	▲2 .7%	▲23.20%	エネルギー原単位改善率	2012年度	▲ 33.3%	▲ 7.0%	▲ 10.6%	▲ 11.0%	▲13.2%	▲ 20. %	▲ 2 .7%	▲23.20%	1301.8	12 7.1	1306.7	1381.9	1328.	1 53.	1698.5	A
日本自動車部母工業会	COs标出原单位	2007年度	▲13 %	▲ 13%	▲ 13%	▲ 15%	▲ 12%	▲ 13%	▲ 15%	▲ 1 %	COMP出際単位	2007年度	▲20%	▲ 13%	▲ 13%	▲ 15%	▲ 12%	▲ 13 %	▲ 15%	A1 %	768.1	7 1.	683.7	695.	698.6	652.7	618.8	В
日本自動車工業会・日本自動車車外工業会	COsHH出版	1990年度	▲ 35.0%	▲ 25%	▲ 28%	▲ 33%	▲ 32%	▲ 33%	▲ 36%	A 1%	CO ₂ (REIM	1990年度	▲38%	▲ 25%	▲ 28%	▲ 33%	▲ 32%	▲ 33%	▲ 37%	A 1%	7 7.3	715.0	663.3	669.	660.6	62 .2	582.7	В
日本新業協会	COs排出原单位	1990年度	▲1 5%	▲ 13%	▲ 16%	▲ 18%	▲ 23%	▲ 23%	▲ 25%	▲ 25%	COSRESPRES	1990年度	▲26%	▲ 13%	▲ 16%	▲ 18%	▲ 23%	▲ 23%	▲ 25%	▲ 25%	8.9	0.7	0.0	368.	361.	3 1.0	330.6	В
石灰製造工業会	CO»####	BAU	▲157jt-CO₂	▲ 7. %	▲ 7.5%	▲ 6.2%	▲ 9.5%	▲ 10. %	▲ 12.9%	▲ 9.5%	COMMENT	BAU	▲12750-CO₂	▲ 7. %	▲ 7.5%	▲ 6.2%	▲ 9.5%	▲ 10. %	▲ 12.9%	▲ 9.5%	2 6.3	2 6.0	222.6	22 .6	226.7	223.0	210.0	A
日本ゴム工業会	CO2NGERWHY	2005年度	▲15%	▲ 10%	▲ 9%	▲ 7%	▲ 7%	▲ 10%	A 1 %	▲ 18%	CO2NUBRANC	2005年度	▲ 21%	▲ 10%	▲ 9%	▲ 7%	▲ 7%	▲ 10%	A1%	▲ 18%	210.6	203.6	190.2	181.9	17 .1	161.8	1 7.1	В
日本染色混合	COMMENT	1990年度	▲ 78.0%	▲ 69%	A 69%	▲ 70%	A 71%	▲ 72%	A 7 %	▲ 77%	COARRE	1990年度	▲ 81%	A 69%	A 69%	▲ 70%	▲ 71%	▲ 72%	A 7 %	▲ 77%	116.5	115.	112.3	109.7	103.9	98.2	87.9	Δ
日本アルミニウム協会	T2.Lボーツ音を単位	PAU PAU	▲1.0 GJ	A %	▲ 7%	▲ 7%	A 5%	A %	A %	A 5%	エネルボーツ書を単位	RAU	▲1.2G3	A %	A 7%	A 7%	▲ 5%	A %	A %	▲ 5%	1 6.2	1 9.0	1 .2	1 .9	1 1.7	13 .5	126.0	
日本日明産業連合会					+	· ·	-+											 	<u> </u>	 			÷			<u> </u>		В В
	COs标出屋	2010年度	▲2 .0%	▲ 9%	▲ 12%	▲ 11%	▲ 12%	▲ 17%	▲ 21%	A 2 %	CO:#REIM	2010年度	▲ 31%	▲ 9%	▲ 12%	▲ 11%	▲ 12%	▲ 17%	▲ 21%	▲ 2 %	1 8.	1 2.0	137.0	133.1	121.1	111.	10 .1	
根睛子協会	COsffi 出版	2005年度	▲25.5%	▲ 13%	A 18%	▲ 21%	▲ 21%	▲ 19%	A 18%	▲ 17%	CO ₂ (RE)	2005年度	▲32%	▲ 13%	▲ 18%	▲ 21%	▲ 21%	A 19%	▲ 18%	A 17%	117.1	110.2	106.3	106.0	108.7	110.0	111.	В
日本ガラスびん協会	CO»附出圖	2012年度	▲10.2%	%	▲ 2%	▲ 1%	▲ 3%	▲ 6%	▲ 11%	▲ 15%	CO-(RESE	2012年度	▲ 18. %	%	▲ 2%	▲ 1%	▲ 3%	▲ 6%	▲ 11%	▲ 15%	89.	8.8	85.2	83.8	80.9	76.8	73.1	В
	エネルギー消費量	2012年度	▲12.7%	▲ 1%	▲ 7%	▲ 6%	▲ 6%	▲ 8%	A 11%	▲ 13%	エネルギー消費量	2012年度	▲ 20.7%	▲ 1%	▲ 7%	▲ 6%	▲ 6%	▲ 8%	▲ 11%	▲ 13%			<u> </u>					1
日本電線工業会	エネルギー消費量	2005年度	20	▲ 17%	▲ 19%	▲ 20%	▲ 20%	▲ 20%	▲ 20%	▲ 2 %	エネルギー消費量	2005年度	▲ 23%	▲ 17%	▲ 19%	▲ 20%	▲ 20%	▲ 20%	▲ 20%	▲ 2 %	96.1	91.	88.1	85.3	82.5	78.6	71.7	В
日本ペアリング工業会	COs标出原单位	1997年度	▲23.0%	▲ 21%	▲ 25%	▲ 2 %	▲ 23%	▲ 28%	▲ 29%	▲ 26%	COMP出際単位	1997年度	▲28%	▲ 21%	▲ 25%	▲ 2 %	▲ 23%	▲ 28%	▲ 29%	▲ 26%	8 .6	83.6	78.8	78.1	78.	7.	67.7	A
日本産業機械工業会	エネルギー消費原単位	2008~2012年度5力年早	▲ 7.7%	▲ 6%	▲ 5%	▲ 15%	▲ 7%	▲ 10%	▲ 16%	A1%	COz标出量	2013年度	▲ 10.0%	0%	5%	▲ 1%	▲ 2%	▲ %	▲ 9%	▲ 12%	55.1	57.6	5 .5	5 .1	53.1	50.	8.5	A
日本舜領協会	エネルギー消費度単位	F)	A %	0%	A 3%	A 2%	1%	▲ 096	A %	946	エネルギー消費物単位	RAU	A6%	0%	▲ 3%	A 2%	1%	A 0%	A %	9%	7.6	5.7	2.3	5.1	0.0	37.7	38.2	

2013年度CO-M中級 2015年度CO-M中級 2015年度CO-M中級 2015年度CO-M中級 2017年度CO-M中級 2017年度CO-M中級 2019年度CO-M中級 2019年度CO-MPM 201 [四横指横] [是译午度/BAU] [2020年度四横水准] (口標系標) [基準年度/BAU] [2030年度日標水準] 日本造船工業会・日本中小型造船工業会 COa标出版 2013年度 17% 27% 26% 38% 33% 26 A 1 % A 30% A 30% A 32% A 33% A 33% A 33% A 33% A 33% e.5 8.0 8.3 7.0 6.6 2.5 2.5 2.6 2.9 3.6 3. 3. 3. 3.5 3.2 31.3 22.7 11.9 29.1 日本利用工業会
 次月千一月開開時費
 1990年度
 A 27%
 A 30%
 A 29%
 A 27%
 A 23%
 A 33%
 A 37%
 A 33%

 COMRUM
 2010年度
 年度A1%
 A 19%
 A 17%
 A 17%
 A 17%
 A 29%
 A 30%
 A 10%

 COMRUM
 1900年度
 A 33%
 A 22%
 A 22%
 A 26%
 1990年度 A CO-MH-ELIM CO-MH-ELIM 2010年度 A1 % A 10% A 17% A 17% A 17% A 17% A 37% A 30% 日本外省市和丁里会 日本建設業連合会 ▲25% ▲18% ▲18% COs耕出原単位 連設投稿のCOs耕出業 1990年度 ▲ 18% ▲52% ▲ 18% ▲55% ▲ 19% ▲56% ▲ 22% ▲63% COa肝出際単位 1990年度 **▲** 19% **▲** 19% ▲ 21% 11.3 260(22 183) 2 0(20 891) 239(19 9 3) 2 1(19 965) 228(20 790) 211(20 756)

▲55%

▲16.5%

▲5%

▲5.0%

0s ▲ 1% ▲ 1% ▲ 8% ▲ 53%

▲ 16%

▲ 13%

A %

 A 6%
 O%
 A 2%
 A 2%
 1%
 A 0%
 A %
 9%

 A 17%
 O%
 A 9%
 A 12%
 A 5%
 A 16%
 A 25%
 A 22%

▲ 1% ▲ 60%

▲ 20%

▲ 15%

2010FR A10% A2% A5% A3% A3% A3% 3% 5% 2% 2005FR A1.0% A3% A3% A5% A3% A5% A3% A5% A52%

▲ 2%

▲ 17%

▲ 5.3%

7.6 50.3

▲ 3%

▲ %

▲ 22%

▲ 17%

▲ 10.8%

A 3%

▲ 20% ▲ 9%

▲ 60% ▲ 60% ▲ 59% ▲ 60%

▲ .3% ▲ 6.0%

2.3 0.3

部門別(産業・民生・運輸等)の対策・施館 B. 業務その他部門の取組

日本課股機械工業会

石灰石鉱業協会

日本工作機械工業会

石油低量速度

プレハブ建築協会 日本産業重直協会 2010年度

▲ .0%

COMH出版

COMH出版

COs特出原単位

●各集権:・計画を策定していない機器の新規策定・PDCAサイクルの推進に

(a) 産

業界における自主的取組の推進																												
金融于所管業權																												
	[四株島株]	[基準年度/BAU]	[2020年度四標水準]	[2020年度日標] 2013年度実績 (簡単年度比/BAU比)	[2020年度四標] 201 年度実績 (簡準年度比/BAUIL)	[2020年度四標] 2015年度実績 (基準年度比/BAUIL)	[2020年度四棟] 2016年度実績 (是準年度比/BAU比)	[2020年度四棟] 2017年度実績 (要享年度比/BAU比)	[2020年度日標] 2018年度実績 (差準年度は/BAULL)	[2020年度四榜] 2019年度実績 (簡享年度比/BAU比)	[口传系传]	[歷季午復/BAU]	[2030年度四根水準]	[2030年度日標] 2013年度実績 (簡単年度比/BAU比)	[2030年度日標] 201 年度実績 (簡単年度比/BAU比)	[2030年度四標] 2015年度実績 (簡単年度比/BAUIL)	[20 0年度四標] 2016年度実績 (簡単年度比/BAUIL)	[20 0年度四標] 2017年度実績 (是準年度比/BAU比)	[2030年復四榜] 2018年復実績 (簡単年度比/BAULL)	[2030年度四榜] 2019年度実績 (簡享年度比/BAU比)	2013年度COs拼出量 (7jt-COs)	201 年度CO:排出量 (万t-CO ₂)	2015年度CD3所出量 (万t-CO2)	2016年度CO:新出量 (75t-CO ₂)	2017年度CO:排出量 (万t-CO ₂)	2018年度CO:耕出屋 (万t-CO ₂)	2019年度CO:排出量 (75t-CO ₂)	2030年度四標の進修 状況の評価
全国銀行協会	エネルギー消費原単位	2009年度	▲10.5%	▲ 17%	▲ 18%	▲ 20%	▲ 22%	▲ 2 %	▲ 26%	▲ 29%	エネルギー消費原単位	2009年度	▲ 19%	▲ 17%	▲ 18%	▲ 20%	▲ 22%	▲ 2 %	▲ 26%	▲ 29%	139.0	13 .0	127.0	120.0	112.0	100.0	92.0	A
生命保険協会	エネルギー消費原単位	2009年度	▲10.5%	▲ 13%	▲ 15%	▲ 17%	▲ 18%	▲ 19%	▲ 20%	▲ 23%	COs新出席単位	2013年度	▲ 0%	▲ 3%	▲ 6%	▲ 7%	▲ 9%	▲ 1 0%	▲ 11%	▲ 1 %	110.7	101.9	95.6	85.1	79.6	72.7	66.7	A
日本推善保険協会	エネルギー消費原単位	2009年度	▲10.5%	▲ 1 5%	▲ 13%	▲ 16%	▲ 16%	▲ 18%	▲ 17%	▲ 27%	エネルギー消費原単位	2009年度	▲1 .8%	▲ 15%	▲ 13%	▲ 16%	▲ 16%	▲ 18%	▲ 17%	▲ 27%	27.0	25.7	23.5	22.3	20.0	18.8	17.0	A
全国信用金庫協会	エネルギー消費量	2009年度	▲10.5%	▲ 11%	A 1 %	▲ 17%	▲ 17%	▲ 18%	▲ 21%	▲ 2 %	エネルギー消費量	2009年度	▲19.0%	▲ 11%	▲ 1 %	▲ 17%	▲ 17%	▲ 18%	▲ 21%	▲ 2 %	32.1	30.2	28.1	27.2	25.8	23.2	21.6	A
全国使用組合中央協会	エネルギー消費量	2006年度	▲10%	▲ 11%	▲ 15%	▲ 15%	▲ 20%	▲ 19%	▲ 22%	▲ 22%	エネルギー消費量	2009年度	▲ 18%	▲ 9%	▲ 13%	▲ 13%	▲ 18%	▲ 18%	▲ 21%	▲ 21%		-	-	-	-		-	A
日本証券業協会	エネルギー消費原単位	2009年度	▲10%	▲ 22%	▲ 23%	▲ 26%	▲ 28%	▲ 0%	▲ 32%	▲3%	エネルギー消費原単位	2009年度	▲20%	▲ 22%	▲ 23%	▲ 26%	▲ 28%	▲ 30%	▲ 32%	▲3 %	19.	18.0	16.8	16.0	1 .7	13.5	12.1	A
総務省所質量權																												
総務省所管業權	[四根系統]	[是享年度/BAU]	[2020年度日標水準]	[2020年度四標] 2013年度実績 (簡単年度比/BAU比)	[2020年度日標] 201 年度実績 (是享年度比/BAU比)	[2020年度日標] 2015年度実績 (是享年度比/BAU比)	[2020年度四根] 2016年度実績 (簡享年度比/BAU比)	[2020年度四榜] 2017年度実績 (簡単年度比/BAULL)	[2020年度日標] 2018年度実績 (差享年度比/BAUIL)	[2020年度四棟] 2019年度東横 (長塚年度比/BAUIL)	(1185R)	[基準年度/BAU]	[2030年度四根水準]	[2030年度日標] 2013年度実績 (簡単年度比/BAUIL)	[2030年度日標] 201 年度実績 (簡単年度比/BAU比)	[2030年度日標] 2015年度実績 (是季年度比/BAU比)	[20 0年度日標] 2016年度実績 (是季年度比/BAUIL)	[20 0年度四標] 2017年度実績 (簡享年度比/BAUIL)	[2030年度四棟] 2018年度実績 (是季年度比/BAUIL)	[2030年度四棟] 2019年度実績 (要享年度比/BAUIL)	2013年度COs排出量 (万t-COs)	201 年度COalli出版 (万t-COa)	2015年度CO-排出量 (万t-CO ₂)	2016年度COs新出量 (万t-COs)	2017年度COs併出圖 (万t-COs)	2018年度COs評出量 (万t-COs)	2019年度COs所出版 (79t-COs)	2030年度日標の進移 状況の評価
総務省所質樂權 電災連信事業者協会	[四株粉株] エネルギー消費原単位	[基準年度/BAU]	[2020年度日標水準] ▲ 80%	2013年度実績	201 年度実績	2015年度実績	2016年度実績	2017年復実機	2018年度実績	2019年復実積	[口標系標] エネルギー消費原単位	[簡単年度/BAU] 2013年度	[2030年度四根水準] ▲ 90%	2013年度実績	201 年度実績	2015年度実績	2016年度実績	2017年度実績	2018年復実機	2019年度実績		and the second second				and a little and a little and		
				2013年度実績 (差享年度比/BAUIL)	201 年度実績 (簡享年度比/BAU比)	2015年度実績 (簡単年度比/BAUIL)	2016年度実績 (簡享年度比/BAUIL)	2017年復実績 (是享年度II/BAUII)	2018年度実績 (簡単年度は/BAUIL)	2019年度実績 (是享年度社/BAUIL)				2013年度実績 (簡単年度比/BAU比)	201 年度実績 (是享年度比/BAU比)	2015年度実績 (簡単年度比/BAUIL)	2016年度実績 (簡単年度比/BAU比)	2017年度実績 (簡享年度社/BAUIL)	2018年度実績 (簡単年度It/BAUIt)	2019年度実績 (簡享年度It/BAUIt)	(75t-CO2)	(75t-CO2)	(75t-CO2)	(75t-CO ₂)	(75t-CO2)	(75t-CO2)	(75t-CO2)	
電気運信事業者協会	エネルギー消費原単位	2013年度	▲ 80%	2013年度実績 (是季午度比/BAU比) 0%	201 年本実績 (是享年度比/BAU比) ▲ 2 %	2015年度実績 (聚學年度比/BAUIL) ▲ 8%	2016年度実績 (要享年度比/BAU比) ▲ 65%	2017年度実績 (簡単年度比/BAUIL) ▲ 70%	2018年度実績 (無事年度比/BAUIL) ▲ 76%	2019年度実績 (是享年度社/BAUIL)	エネルギー消費原単位	2013年度	▲ 90%	2013年度実績 (是事年度比/BAUIL) 0%	201 年度実績 (簡単年度は/BAJI比) ▲ 2 %	2015年本実績 (是享年高比/BAU比) ▲ 8%	2016年度実績 (無享年度比/BAUIL) ▲ 65%	2017年度実績 (簡単年度比/BAUIL) ▲ 70%	2018年度実績 (無季年度社/BAUIL) ▲ 76%	2019年度実績 (簡享年度社/BAU社) ▲ 79%	(7jt-CO ₂) 570.6	(75t-CO ₂) 565.2	(750-CO ₂) 552.0	(75t-CO ₂)	(75t-CO ₂) 501.0	(75t-CO ₂) 80.6	(75t-CO ₂) 63.0	
電気連信事業者協会 デレコムサービス協会	エネルギー消費原単位 エネルギー消費原単位	2013年度 2013年度	▲ 80% ▲ 1%	2013年度実績 (是享年度比/BAU比) 0% 0%	201 年度実績 (簡準年度比/BAU比) ▲ 2 % ▲ 3%	2015年度実績 (長季年度比/BAU比) ▲ 8% ▲ 6%	2016年度東續 (長事年度比/BAUIL) ▲ 65% ▲ %	2017年度実績 (是準年度比/BAULL) ▲ 70% ▲ 9%	2018年復実機 (豪寧年度比/BAU比) ▲ 76%	2019年高実機 (簡単年度比/BAU比) ▲ 79% ▲ 7%	エネルギー消費原単位 エネルギー消費原単位	2013年度 2013年度	▲ 90% ▲2%	2013年度実績 (競車年度比/BAU比) 0% 0%	201 年度実績 (是事年度比/BAU比) ▲ 2 % ▲ 3%	2015年度実績 (簡単年度比/BAU比) ▲ 8% ▲ 6%	2016年度実績 (簡単年度比/BAU比) ▲ 65% ▲ %	2017年度実績 (長季年度比/BAU比) ▲ 70%	2018年高東橋 (簡単年度比/BAUIL) ▲ 76% ▲ 9%	2019年高東橋 (簡単年度比/BAU比) ▲ 79% ▲ 7%	(75t-CO ₂) 570.6 102.1	(7)t-CO ₂) 565.2 96.3	(776-CO ₂) 552.0 89.5	(75t-CO ₂) 520. 89.	(7jt-CO2) 501.0 81.1	(7jt-C0») 80.6 77.2	(79t-CO ₂) 63.0 81.2	
電気連係事業者協会 デレコムサービス協会 日本民間依法連盟	エネルギー消費原単位 エネルギー消費原単位 COs所出原単位	2013年度 2013年度 2012年度	▲ 80% ▲1% ▲8%	2013年度実績 (簡単年度比/BAUIL) 0% 0% ▲ 6%	201 年產実績 (無準年度比/BAU比) ▲ 2 % ▲ 3% ▲ 6%	2015年度実績 (無準年度比/BAU比) ▲ 8% ▲ 6%	2016年度東續 (簡単年度比/BAULL) ▲ 65% ▲ %	2017年度実績 (是享年度比/BAUIL) ▲ 70% ▲ 9% ▲ 13%	2018年度実績 (無準年度比/BAU比) ▲ 76% ▲ 9% ▲ 19%	2019年高東橋 (標準年度比/BAUIL) ▲ 79% ▲ 7% ▲ 25%	エネルギー消費原単位 エネルギー消費原単位 CO:新出原単位	2013年度 2013年度 2012年度	▲ 90% ▲ 2% ▲ 10%	2013年享集機 (簡単年度比/BAUIL) 0% 0% ▲ 6%	201 年度集積 (簡単年度比/BAU比) ▲ 2 % ▲ 3% ▲ 6%	2015年產業績 (無準年度比/BAUIL) ▲ 8% ▲ 6%	2016年度実績 (無導年度比/BAU比) ▲ 65% ▲ % ▲ 7%	2017年度実績 (簡単年度比/BAUIL) ▲ 70% ▲ 9% ▲ 13%	2018年度東橋 (簡単年度比/BAUIL) ▲ 76% ▲ 9% ▲ 19%	2019年度東積 (簡単年度比/BAU比) ▲ 79% ▲ 25%	(75t-CO ₂) 570.6 102.1 2.5	(75t-CO2) 565.2 96.3 22.6	(776-CO2) 552.0 89.5 22.3	(75t-CO ₂) 520. 89. 22.2	(75t-CO ₂) 501.0 81.1 22.0	(7jt-CO ₂) 80.6 77.2 20.2	(75t-CO ₂) 63.0 81.2 21.5	
電気運送事業者協会 デレコムサービス協会 日本民間飲済事務 日本税が協会	エネルギー消費原単位 エネルギー消費原単位 CO-排出原単位 CO-排出原単位	2013年度 2013年度 2012年度 2011年度	A 80% A 1% A 8% A 8% A 15%	2013年度実績 (簡単年度比/BAUIL) 0% 0% ▲ 6%	201 年產実績 (無準年度比/BAU比) ▲ 2 % ▲ 3% ▲ 6%	2015年度実績 (無準年度比/BAU比) ▲ 8% ▲ 6%	2016年度実績 (新達年度社/BAU社) ▲ 65% ▲ 76 ▲ 16%	2017年度実績 (豪速年度社/BAUIt) ▲ 70% ▲ 9% ▲ 13% ▲ 21%	2018年高東續 (簡享年度比/BAUIL) ▲ 76% ▲ 9% ▲ 19% ▲ 23%	2019年度東續 (長季年度比/BAUIt) ▲ 79% ▲ 7% ▲ 25% ▲ 2 %	エネルギー消費原単位 エネルギー消費原単位 CO-新出原単位 CO-新出原単位	2013年度 2013年度 2012年度 2011年度	▲ 90% ▲ 2% ▲ 10% ▲ 115%	2013年享集機 (簡単年度比/BAUIL) 0% 0% ▲ 6%	201 年度実績 (無事年度比/BAU比) ▲ 2 % ▲ 3% ▲ 6% ▲ 13%	2015年產業績 (無準年度比/BAUIL) ▲ 8% ▲ 6%	2016年高東續 (是季年度比/BAU比) ▲ 65% ▲ 76 ▲ 16%	2017年度実績 (簡単年度比/BAUIL) ▲ 70% ▲ 9% ▲ 13%	2018年度東橋 (簡単年度比/BAUIL) ▲ 76% ▲ 9% ▲ 19%	2019年度東積 (簡単年度比/BAU比) ▲ 79% ▲ 25%	(75t-CO ₂) 570.6 102.1 2.5	(75t-CO2) 565.2 96.3 22.6	(776-CO2) 552.0 89.5 22.3	(75t-COs) 520. 89. 22.2 18.5	(75t-CO ₂) 501.0 81.1 22.0 17.1	(7jt-CO ₂) 80.6 77.2 20.2 15.9	(75t-CO ₂) 63.0 81.2 21.5	
電気運化需要数に会 デレコムサービス協会 日本式間の返達器 日本校派協会 日本ケーブルテレビ機関	エネルギー消費原単位 エネルギー消費原単位 CO-排出原単位 エネルギー原単位	2013年度 2013年度 2012年度 2011年度 2016年度	A 80% A1% A5% A5% A15% A15%	2013年本実績 (新雄年在比/BAU比) 0% 0% ▲ 6%	201 年度実績 (簡準年度批/BAU比) ▲ 2 % ▲ 3% ▲ 6% ▲ 12%	2015年度実績 (長季年度比/BAU比) ▲ 8% ▲ 6% ▲ 6% ▲ 16%	2016年度東橋 (新導年度比/BAU比) ▲ 65% ▲ 96 ▲ 7% ▲ 16% ▲ 0%	2017年復東機 (泰康年度社/BAUIt) ▲ 70% ▲ 9% ▲ 13% ▲ 21%	2018年度東續 (新導年度比/BAUIt) ▲ 76% ▲ 9% ▲ 19% ▲ 23% ▲ 1%	2019年書東續 (新達年達社/BAUIL) ▲ 79% ▲ 7% ▲ 25% ▲ 2 %	エネルギー消費原単位 エネルギー消費原単位 CO:原出原単位 CO:原出原単位 エネルギー消費原単位	2013年度 2013年度 2012年度 2011年度 2020年度	A 90% A2% A10% A15% A1%ULE	2013年高東橋 (新事年進北/BAUIL) 0% 0% ▲ 6% ▲ 8%	201 年度資績 (無事年度以/BAUIL) ▲ 2 % ▲ 3% ▲ 6% ▲ 13%	2015年漢東橋 (新導年潔社/BAU社) ▲ 8% ▲ 6% ▲ 6%	2016年書東續 (簡単年書社/BAUIL) ▲ 65% ▲ % ▲ 7% ▲ 16%	2017年本東續 (無學年度比/BAU比) ▲ 70% ▲ 9% ▲ 13% ▲ 21%	2018年高東橋 (原導年高比/SAU比) ▲ 76% ▲ 9% ▲ 19% ▲ 23%	2019年高東橋 (原連年度社/BAU社) ▲ 79% ▲ 25% ▲ 2 %	(75t-CO ₂) 570.6 102.1 2.5	(75t-CO ₂) 565.2 96.3 22.6 19.9	(776-CO2) 552.0 89.5 22.3	(778-CO2) 520. 89. 22.2 18.5	(75t-CO ₂) 501.0 81.1 22.0 17.1	(7jt-CO ₂) 80.6 77.2 20.2 15.9	(75t-CO ₂) 63.0 81.2 21.5	

(学省所管皇權																												
17 M// ESACE			,	[2020年度日標]	[2020年度日標]	[2020年度四標]	[2020年度日標]	[2020年度四億]	[2020年度四根]	[2020年度四億]				[2030年度日標]	[2030年度日標]	[2030年度日標]	[20 0年度日標]	[20 0年度日標]	[2030年度日標]	[2030年度日標]								\neg
	[2009]	【基準年度/BAU】	[2020年度四標水準]	2013年度実績	201 年度実績	2015年復実機	2016年度実績	2017年復実績	2018年度実績	2019年度実績	[口根指標]	[基準年度/BAU]	[2030年度四根水準]	2013年度実績	201 年度実績	2015年度実績	2016年度実績	2017年度実績	2018年度実績	2019年度実績	2013年度COs排出量 (79t-COs)	201 年度CO:排出量 (7ft-CO ₂)	2015年度CO2併出量 (750-CO2)	2016年度COs耕出量 (75t-COs)	2017年度COs排出量 (万t-COs)	2018年度COs排出量 (7it-COs)	2019年度CO:拼法 (万t-CO ₂)	(出版 2
				(簡準年度比/BAUIt)	(是車年度は/BAUは)	(簡準年度は/BAULL)	(要享年度は/BAUIL)	(要享年度は/BAUは)	(要享年度は/BAULL)	(要享年度は/BAUIL)				(是事年度比/BAUIL)	(簡単年度比/BAUIL)	(是車车度比/BAUIL)	(簡単年度比/BAU比)	(簡単年度比/BAUIL)	(要享年度は/BAUII)	(要享年度は/BAULL)	(),(-2.03)	(//0-003/	(//////////////////////////////////////	(//0-003)	(/)(-C03)	Ojecos	(//0-003)	_
全私学連合	COallellillill	2015年度	年率▲1%			0%	5%	▲ 0%																				
衡省所管梁權																												_
	(D#6#)	【基準年度/BAU】	[2020年度日標水準]	[2020年度日標] 2013年度実績	[2020年度日標] 201 年度実績	[2020年度四標] 2015年度実施	(2020年度四標) 2016年度末編	[2020年度四標] 2017年度実施	[2020年度四標] 2018年度主編	(2020年度四標) 2019年度事績	(0#6#)	【基準年度/BAU】	[2030年度日標水準]	(2030年度日標) 2013年度実績	[2030年度四標] 201 年度実績	[2030年度日標] 2015年度末編	[20 0年度日標] 2016年度実績	[20 0年度四標] 2017年度実績	(2030年度四根) 2018年度実施	(2030年度日標) 2019年度末編	2013年度CO:排出量	201 年度CO:排出量	2015年度CO:排出量	2016年度CO:併出量	2017年度CO:排出量	2018年度CO:排出量	2019年度CO:解注	22
	D-strategy	(STATISTICAL)	[2020年編刊標本準]	(基準年度比/BAUIL)	(是準年度は/BAUtt)	(基準午室比/BAUIT)	(是享年度社/BAUIT)	(是享年度は/BAUtt)	(基準年度It/BAUIT)	(要享年度は/BAUIL)	(1-10)0001	(EST-10/DAU)	[2030年編刊信仰事]	(基準年度比/BAUIL)	(基準年度比/BAUIL)	(是學年度比/BAUIL)	(簡単年度比/BAUIL)	(簡単年度性/BAUIL)	(要享年度社/BAUIT)	(要享年度は/BAUIT)	(75t-CO ₂)	(75t-CO ₂)	(75t-CO ₂)	(75t-CO ₂)	(75t-CO ₂)	(75t-CO ₂)	(75t-CO ₂)	
日本医師会 · 病院団体協議会											CO26NEURWH2	2006年度	▲ 25%	▲ 18%	▲ 21%	▲ 22%	▲ 21%	▲ 20%	▲ 23%		917.0	877.6	851.5	870.5	863.8	812.9		_
日本生活協同組合連合会	CO ₂ 66-Hill	2005年度	A15%	▲ 9%	▲ 12%	A 12%	A 18%	A 19%	▲ 19%	▲ 18%	COMMENT	2013年度	A 0%														·	
学省所管量權																												-
			1	[2020年度日標]	[2020年度日標]	[2020年度日標]	[2020年度日標]	[2020年度四億]	[2020年度四根]	[2020年度四標]				[2030年度日標]	[2030年度日標]	[2030年度日標]	[20 0年本日標]	[20 0年本口標]	[2030年度日標]	[2030年度日標]								_
	[四根形件]	【簡準年度/BAU】	[2020年度口標水準]	2013年度実績	201 年度実績	2015年度実績	2016年度実績	2017年書実績	2018年度実績	2019年度実績	[口信息信]	【無事年度/BAU】	[2030年度口標水準]	2013年度実績	201 年度実績	2015年海実績	2016年度実績	2017年度実績	2018年度実績	2019年度実績	2013年度COs标出量 (7it-COs)	201 年度CO:标出量 (万t-CO ₂)	2015年度CO:标出量 (75t-CO ₂)	2016年度COs耕出量 (万t-COs)	2017年度CO:拆出量 (万t-CO ₂)	2018年度COs排出量 (7it-COs)	2019年度COs解注 (万t-COs)	
				(簡準年度批/BAUIL)	(基準年度比/BAUtt)	(基準午度比/BAUIt)	(差季午度It/BAUIt)	(差享年度It/BAUIt)	(基準年度は/BAUIL)	(要享年度社/BAUIL)				(基準年度比/BAUIL)	(簡単年度比/BAUIL)	(簡單年度比/BAUI比)	(簡単年度比/BAUIL)	(簡単年度比/BAUIL)	(基準年度は/BAUIt)	(基準年度性/BAUIL)	(/jt-C0s)	(/jt-CUs)	(7)6-COs)	(/jt-LOs)	(/jt-LUs)	(/jt-C0s)	(/5t-C0s)	
日本加工食品即協会	エネルギー消費原単位	2011年度	▲ 5%	2%	▲ 2%	▲ 9%	▲ 5%	▲ 7%	▲ 8%	▲ 16%	エネルギー消費原単位	2011年度	▲ 5%	2%	▲ 2%	▲ 9%	▲ 5%	▲ 7%	▲ 8%	▲ 16%	29.1	32.6	32.2	28.9	27.2	28.7	27.7	_
日本フードサービス協会	エネルギー消費原単位	2013年度	▲ 6.8%	0%	A %	▲ 5%	▲ 8%	▲ 10%	▲ 13%	▲ 15%	エネルギー消費原単位	2013年度	▲ 15.7%	0%	▲ %	▲ 5%	▲ 8%	▲ 10%	▲ 1 %	▲ 15%	720.9	682.	679.	672.2	6 7.2	605.7	590.2	
省所管業權																												1
				[2020年度目標]	[2020年度目標]	[2020年度目標]	[2020年度四標]	[2020年度四標]	[2020年度四標]	[2020年度四標]				[2030年度目標]	[2030年度目標]	[2030年度目標]	[20 0年度目標]	[20 0年度四億]	[2030年度四標]	[2030年度四株]	2013年度COs排出量	201 年度CO:排出量	2015年度CO:排出量	2016年度CO:排出量	2017年度CO:排出量	2018年度COs标出量	2019年度CO:無法	d
	[四根指標]	【基準年度/BAU】	[2020年度日標水準]	2013年度実績 (基準年度比/BAUIL)	201 年度実績 (簡単年度比/BAU比)	2015年度実績 (基準年度比/BAULL)	2016年度実績 (((((((((((((2017年度実績 (要享年度は/BAULL)	2018年度実績 (要享年度は/BAUtt)	2019年度実績 (要享年書社/BAU社)	[口德指德]	[基準年度/BAU]	[2030年度四根水準]	2013年度実績 (簡単年度比/BAUIL)	201 年度実績 (基準年度比/BAU比)	2015年度実績 (簡単年度比/BAUIL)	2016年度実績 (簡単年度比/BAUIL)	2017年度実績 (基準年度計/BAUtt)	2018年度実績 (基準年度比/BAUIL)	2019年度実績 (要享年度社/BAULL)	(75t-CO ₂)	(75t-CO ₂)	(75t-CO ₂)	(75t-CO ₂)	(75t-CO2)	(75t-CO ₂)	(75t-CO ₂)	
日本チェーンストア協会	エネルギー消費原単位	1996年度	A2 .0%	A 2 %	▲ 23%	▲ 32%	▲ 33%	A 3 %	A 2 %	▲ 25%	エネルギー消費原単位	1996年度	A2 %	A 2 %	▲ 23%	▲ 32%	A 33%	A 3 %	A 2 %	± 25%	5 0.0	95.0	392.9	283.2	219.8	209.	206.0	,
日本フランチャイズチェーン協会	エネルギー消費を受け	2013年度	▲7.0%	0%	1%	A 2%	A 3%	A 5%	A 7%	A 10%	エネルギー消費祭単位	2013年度	A16%	0%	1%	A 2%	A 3%	A 5%	A 7%	▲ 10%	7.9	57.8	8.8	7.2	30.1	01.	375.6	
日本ショッピングセンター協会	エネルギー消費原単位	2005年度	▲13.0%	▲ 30%	▲ 32%	A 3 %	A 35%	A 7%	▲ 37%	▲ 37%	エネルギー消費原単位	2005年度	▲23.0%	▲ 30%	▲ 32%	A 3 %	▲ 35%	▲ 37%	▲ 37%	▲ 37%	331.7	275.5	268.8	258.5	255.	230.8	220.7	
日本直責店協会	エネルギー消費原単位	2013年度	▲7.0%	0%	▲ 6%	A 11%	A 12%	A1 %	▲ 17%	▲ 19%	エネルギー消費原単位	2013年度	▲15.7%	0%	A 6%	▲ 11%	▲ 12%	A1%	▲ 17%	▲ 19%	190.5	172.6	159.	151.3	133.9	119.6	113.2	٠
大手家電流道協会	エネルギー消費原単位	2006年度	▲ 8.3%	A 1%	A 3%	A 5%	A 6%	A 8%	A 9%	▲ 50%	エネルギー消費原単位	2006年度	▲ 9.1%	A 1%	A 3%	A 5%	A 6%	A 8%	A 9%	▲ 50%	81.1	77.7	71.3	70.	67.1	60.5	60.3	ľ
日本DIY協会	エネルギー消費原単位	200 年度	▲ 15.0%	▲ 52%	A 5 %	▲ 52%	▲ 53%	▲ 51%	▲ 56%	▲ 50%	エネルギー消費原単位	2013年度	▲ 17%	▲ 12%	▲ 16%	▲ 13%	A 1 %	A 11%	▲ 21%	▲ 10%	8.7	6.3	6.3	6.6	3 .9	28.2	33.3	•
	(オフィス)				-						(オフィス)	2006年度									20.6	16.6	13.	11.5	10.5	9.6	9.0	
情報サービス産業協会	エネルギー消費原単位	2006年度	▲2%	▲ 1196	▲ 27%	▲3 %	▲ 33%	▲ 35%	▲ 37%	▲ 38%	エネルギー消費原単位	2006年度	▲37.7%	▲ 11%	▲ 27%	▲3 %	▲ 33%	▲ 35%	▲ 37%	▲ 38%	20.6	16.6	13.	11.5	10.5	9.6	9.0	
	(データセンター) エネルギー消費度単位	2006年度	▲ 5.5%	▲ 8%	▲ 7%	▲ 7%	▲ 7%	▲ 7%	▲ 10%	▲ 11 %	(データセンター)	2006年度	▲7.8%	A 8%	▲ 7%	▲ 7%	▲ 7%	▲ 7%	▲ 10%	▲ 11%	6.3	61.7	55.3	52.2	.0	0.8	7.7	
日本チェーンドラッグストア協会	エネルギー消費原単位	2013年度	▲19.0%	▲ 0%	▲ 7%	▲ 16%	▲ 19%	A 21%	▲ 22%	▲ 27%	エネルギー消費原単位 エネルギー消費原単位	2013年度	▲ 26%	▲ 0%	▲ 7%	▲ 16%	▲ 19%	▲ 21%	▲ 22%	▲ 27%	132.5	150.2	155.1	159.0	168.9	167.6	155.1	
日本質量会	エネルギー消費原単位	2013年度	▲6.8%	0%	A 3%	A 6%	▲ 10%	A 11%	▲ 13%	▲ 13%	エネルギー消費原単位	2013年度	A15.7%	0%	▲ 3%	▲ 10% ▲ 6%	▲ 10%	A 11%	▲ 13%	▲ 13%	5.	5.1	.5	.1	3.7	3	3.2	
日本LPガス協会	エネルギー海療量	2010年度	▲ 5.0%	A 5%	A 7%	A 8%	▲ 7%	A 696	A 7%	▲ 7%	エネルギー消費量	2010年度	A996	A 5%	▲ 7%	A 8%	▲ 7%	A 6%	▲ 7%	▲ 7%	3.1	3.0	2.8	2.8	2.7	2.5		
リース事業協会	エネルギー消費原単位	2013年度	▲ 5%	0%	8%	3%	A %	A %	A 5%	A 5%	エネルギー消費を単位	2013年度	A5%	0%	8%	3%	A %	A %	A .5%	A 5%	0.9	1.8	1.7	1.6	1.5	1.	1	
公所質量權	21701 790040	2023-100				1 2"				200	2197 290040	2023-7-00	25.0						- 3.		0.5	1.0				-		i
MF / 15 (M-18)	1 :		1	[2020年度日標]	[2020年度日標]	[2020年度日標]	[2020年度日標]	[2020年度日標]	[2020年度日標]	[2020年度日標]			1	[2030年度日標]	[2030年度日標]	[2030年本日標]	[20 0年本日#1	[20 0年本日標]	[2030年度13年]	[2030年度日標]						1		,
	[四件条件]	[基準年度/BAU]	[2020年度日標水準]	2013年度実績	201 年度実績	2015年度実績	2016年度実績	2017年書家編	2018年度実績	2019年書書稿	(clese)	[基準年度/BAU]	[2030年度日標水準]	2013年度実績	201 年度実績	2015年庫実績	2016年度実績	2017年度実績	2018年度実施	2019年度実績	2013年度CO:排出量	201 年度CO:排出量	2015年度CO:排出量	2016年度CO:排出量	2017年度CO:拆出量			
				(基準年度It/BAUIt)	(簡準年度比/BAUIt)	(簡準年度比/BAULL)	(是享年度は/BAULL)	(要享年度は/BAUIL)	(要享年度は/BAUIL)	(要享年度社/BAUIL)				(基準年度比/BAU比)	(是享年度は/BAUIL)	(簡單年度比/BAUIL)	(簡單年度比/BAU比)	(是享年度は/BAUIL)	(簡準年度比/BAUIL)	(基準年度性/BAUIL)	(75t-CO ₂)	(75t-CO2)	(75t-CO2)	(75t-CO2)	(75t-CO ₂)	(75t-CO ₂)	(75t-CO ₂)	
日本倉庫協会	エネルギー消費原単位	1990年度	▲ 16%	▲ 15%	▲ 18%	▲ 19%	▲ 19%	▲ 19%	▲ 20%	▲ 22%	エネルギー消費原単位	1990年度	▲20%	▲ 15%	▲ 18%	▲ 19%	▲ 19%	▲ 19%	▲ 20%	▲ 22%	119.0	106.0	121.0	122.0	129.0	125.0	125.0	
日本冷蔵倉庫協会	エネルギー原単位	1990年度	▲ 15%	▲ 12%	A 13%	▲ 15%	A 15%	▲ 16%	▲ 17%	▲ 16%	エネルギー原単位	1990年度	▲ 20%	▲ 12%	▲ 13%	▲ 15%	▲ 15%	▲ 16%	▲ 17%	▲ 16%	106.	103.1	97.6	95.6	90.1	85.5	82.7	
日本ホテル協会	エネルギー原単位	2010年度	▲10%	▲ 9%	▲ 12%	▲ 1 %	▲ 15%	▲ 15%	▲ 17%	▲ 16%	エネルギー原単位	2010年度	▲ 15%	▲ 9%	▲ 12%	▲ 1 %	▲ 15%	▲ 15%	▲ 17%	▲ 16%	61.8	59.3	55.9	53.5	52.2	9.3	5.8	
日本経費協会	エネルギー消費原単位	2016年度	▲ 0%	-		-	0%	▲ 10%	▲ 10%	▲ 7%	エネルギー消費原単位	2016年度	▲ 10%	-	-		0%	▲ 10%	▲ 9.8%	▲ 7%		-	-	5.0	5.7	2.	7.18	
日本自動車整備振興会連合会	COa标出圖	2007年度	▲10%	▲ 8%	▲ 8%	▲ 7%	▲ 7%	A 9%	▲ 8%	▲ 12%	COs解出版	2007年度	▲ 15%	▲ 8%	▲ 8%	▲ 7%	▲ 7%	▲ 9%	▲ 8%	▲ 12%	15.5	16.5	18.5	19.1	13.3	16.1	399.9	
不動産協会	エネルギー消費原単位	2005年度	▲25%	▲ 21%	▲ 2 %	▲ 25%	▲ 26%	▲ 2 %	▲ 27%	▲ 30%	エネルギー消費原単位	2005年度	▲30%	▲ 21%	▲ 2 %	▲ 25%	▲ 26%	▲ 2 %	▲ 27%	▲ 30%	-	-	-	-	-	-		ĺ
日本ビルチング協会連合会	エネルギー消費原単位	2009年度	▲1 5%	▲ 9%	▲1 %	▲ 15%	▲ 13%	▲ 15%	▲ 15%	▲ 16%	エネルギー消費原単位	2009年度	▲20%	▲ 9%	▲ 1 %	▲ 15%	▲ 13%	▲ 15%	▲ 15%	▲ 16%		-	-	-			-	
全種																												l
				[2020年度目標]	[2020年度目標]	[2020年度目標]	[2020年度四標]	[2020年度四根]	[2020年度四標]	[2020年度四億]				[2030年度目標]	[2030年度目標]	[2030年度目標]	[2030年度目標]	[20 0年度目標]	[20 0年度四億]	[2030年度四株]	2013年度CO:排出量	201 年度CO:标出量	2015年度CO:排出量	2016年度CO:标出量	201797800-4548	2018年度COs排出量	2019年度CO2年	
	[四根指標]	【簡準年度/BAU】	[2020年度目標水準]	2013年度実績 (基準年度比/BAUIL)	201 年度実績 (簡単年度IL/BAUIL)	2015年度実績 (基準年度比/BAUIL)	2016年度実績 (簡準年度比/BAULL)	2017年度実績 (要享年度は/BAULL)	2018年度実績 (要享年度は/BAUtt)	2019年度実績 (要享年書社/BAU社)	[口標指標]	【基準年度/BAU】	[2030年度目標水準]	2013年度実績 (簡単年度計/BAUIT)	201 年度実績 (基準年度計/BAU計)	2015年度実績 (簡単年度比/BAUIL)	2016年度実績 (簡単年度比/BAUIL)	2017年度実績 (基準年度比/BAUIL)	2018年度実績 (基準年度比/BAUIL)	2019年度実績 (要享年度社/BAULL)	(75t-CO ₂)	(75t-CO2)	(75t-CO ₂)	(75t-COs)	(75t-CO ₂)	(75t-CO ₂)	(79t-CO ₂)	
全国產業者等時間連合会	-																											
200000000000000000000000000000000000000	COs标出圖	2010年度	▲0%	5%	8%	9%	12%	13%	17%	13%	COs無出疆	2010年度	▲ 10%	5%	8%	9%	12%	13%	17%	13%	99.7	51 .1	516.7	531.2	536.0	559.0	539.3	
日本新聞協会	エネルギー消費量	2005年度	▲13%	▲ 5%	A 8%	▲ 9%	A 12%	▲ 17%			エネルギー消費原単位	2013年度	年平均▲1%		年甲均▲5.8%	年早均▲5.0%	年平均▲ . %	年平均▲ . %	年平均▲ . %	年甲均▲ .6%	53.7	50.0	6.7	5.3	2.0	7.	3 .9	
全国ベット協会	COs排出原单位	2012年度	▲0%	28%	35%	%	▲ 18%	0.3%	▲ .0%	▲ 6. %	CO-研出原単位	2012年度	▲0%	28%	35%	%	▲ 18%	0%	▲ %	▲ 6%	0.5	0.55	0.56	0.52	0.52	0.51	0.50	,
1.果種																												į
	(Dese)	[基準年度/BAU]	[2020年度日標水準]	[2020年度日標] 2013年度実績	[2020年度四標] 201 年度実績	[2020年度四標] 2015年度実績	[2020年度四標] 2016年度実施	[2020年度四標] 2017年度実績	[2020年度四標] 2018年度末編	(2020年度四標) 2019年度実績	[D#6#]	【展集年度/BAU】	[2030年度日標水源]	(2030年度四標) 2013年度実績	[2030年度四標] 201 年度実績	[2030年度四標] 2015年度実績	(2030年度四標) 2016年度実績	[20 0年度四標] 2017年度実績	[20 0年度四標] 2018年度実績	[2030年度四標] 2019年度実施	2013年度CO2标出量	201 年度COs排出屋	2015年度CO:排出量	2016年度CO:标出量	2017年度CO:採出量	2018年度CO:排出量	2019年度COs解決	Æ
		L標準中高/BAU】	[2020年度日標水準]								(116986)	(原本中等/BAU)	[2030年高日標水準]								(75t-CO ₂)	(75t-CO ₂)	(75t-CO ₂)	(75t-COs)	(75t-CO ₂)	(75t-CO2)	(75t-CO ₂)	
	LI-MODING.			(基準年度比/BAU比)	(基準年度比/BAUIL)	(基準年度比/BAULL)	(基準年度比/BAULL)	(基準年度は/BAUtt.)	(基準年度は/BAUIL)	(基準年度It/BAUIT)				(基準年度は/BAUIL)	(基準年度計/BAUIT)	(基準年度比/BAUIL)	(基準年度It/BAUIt)	(基準年度比/BAUIL)	(基準年度比/BAULL)	(基準年度は/BAUは)		0,1-1-1	0,10 001,	0,11 201,	0.00			
全日本遊技事業協同組合連合会	COs标出圖	2007年度	▲ 18%	(簡準年度比/BAUIL) ▲ 15%	(差享午度比/BAUIt) ▲ 22%	(簡準年度は/BAUはt) ▲ 23%	(基準年度比/BAU比) ▲ 25%	(要準年度は/BAULL) ▲ 26%	(長準年度は/BAUは) ▲ 32%	(無事中海IE/BAUEE) ▲ 33%	CO ₂ SKE(III)	2007年度	▲ 22%	(簡単年度比/BAUIL) ▲ 15%	(基準年度比/BAU比) ▲ 22%	(基準年度比/BAU比) ▲ 23%	(簡準年度比/BAUIL) ▲ 25%	(簡単年度比/BAUIL) ▲ 26%	(簡単年駆性/BAUII) ▲ 32%	(要享年度比/BAUIL) ▲ 33%	502.0	7.0	26.0	01.0	383.0	329.0	311.0	-

部門別 (産業・民生・運輸等) の対策・施策 D. 運輸部門の取組 (a) 産業界における自主的取組の推進

○低炭素社会実行計画の着実な実施と評価・検証

社会実行計画の看実な実施と評価・検証(連輪的	門の業種																											
国土交通省所管景權																												
	[四株島株]	【簡準午復/BAU】	[2020年度日標水準]	[2020年度日標] 2013年度実績 (簡準年度比/BAU比)	[2020年度日標] 201 年度実績 (延享年度比/BAU比)	[2020年度四榜] 2015年度実績 (簡単年度比/BAU比)	[2020年度四標] 2016年度実績 (簡享年度比/BAU比)	[2020年度四棟] 2017年度実績 (差享年度比/BAU比)	[2020年度四榜] 2018年度実績 (差享年度比/BAULL)	[2020年度四榜] 2019年度実績 (董事年度比/BAU比)	[四株船株]	[簡単午復/BAU]	[2030年度四根水準]	[2030年度四榜] 2013年度実績 (簡単年度比/BAU比)	[2030年度日標] 201 年度実績 (簡単年度比/BAU比)	[2030年度日標] 2015年度実績 (簡単年度比/BAU比)	[20 0年度四榜] 2016年度実績 (簡享年度比/BAU比)	[20 0年度四標] 2017年度実績 (簡享年度比/BAUIL)	[2030年度四棟] 2018年度実績 (要享年度比/BAUIL)	[2030年度日標] 2019年度実績 (簡単年度比/BAU比)	2013年度COs排出量 (万t-COs)	201 年度CO:排出量 (万t-CO ₂)	2015年度CO2県出疆 (77b-CO2)	2016年度COs耕出鹽 (75t-COs)	2017年度CO:排出量 (万t-CO ₂)	2018年度CO:排出量 (75t-CO ₂)	2019年度CO:耕出鹽 (万t-CO ₂)	2030年度目標の進修 状況の評価
日本船主協会	COa耕出原単位	1990年度	▲20%	▲ 38. %	▲ 3.2%	▲ 0.7%	▲ 38.6%	▲ 8.0%	▲ 36.7%	▲ 30.6%	COs耕出原単位	1990年度	▲30%	▲ 38. %	▲ 3.2%	▲ 0.7%	▲ 8.6%	▲ 8.0%	▲ 36.7%	▲ 30.6%	5538.8	5 17.2	521 .5	5258.2	5 02.5	3266.2	563.5	A
全日本トラック協会	CO2斯田原聯位	2005年度	▲ 22%	▲ 8.7%	▲ 6.6%	A .1%	▲ 7.0%	▲ 7. %	▲ 7.0%	▲ 10.3%	CO2所出原聯位	2005年度	▲ 31%	▲ 8.7%	▲ 6.6%	A .1%	▲ 7.0%	▲ 7. %	▲ 7.0%	▲ 10.3%	079.0	100.0	091.0	068.0	087.0	10 .0	00	В
定用航空協会	COa标出原单位	2005年度	▲21%	▲ 1 .6%	▲ 18.8%	▲ 18.1%	▲ 20.7%	▲ 23.3%	▲ 17.8%	▲ 15.3%	COSESSEMIX	2012年度	▲16%	▲ 3.9%	▲ 8.6%	▲ 7.8%	▲ 10.8%	▲ 13.7%	▲ 7.5%	▲ .7%	1978.5	2085.8	2218.3	2305.2	2387.7	2 .7	2508.0	В
日本内航海運搬合総連合会	COs排出圖	1990年度	▲31%	▲ 15.9%	▲ 15.5%	▲ 18.0%	▲ 17.0%	▲ 18.2%	▲ 17.7%	▲ 18.5%	CO2無出闡	1990年度	▲3 %	▲ 15.9%	▲ 15.5%	▲ 18.0%	▲ 17.0%	▲ 18.2%	▲ 17.7%	▲ 18.5%	722.1	725.7	703.9	713.1	702.6	706.7	699.9	В
日本旅客船協会	COslit出原単位	1990年度	▲ 6%	▲ 0.9%	▲ 1.9%	▲ 5.2%	▲ 5. %	▲ 9.0%	▲ 8.7%	▲ 10.5%	COSESSEMUS	2012年度	▲3.6%	▲ 1. %	▲ 2. %	▲ 5.7%	▲ 5.9%	▲ 9.5%	▲ 9.2%	▲ 10.9%	361.3	365.6	350.9	3 7.9	3 2.	335.6	337.7	A
全国ハイヤー・タクシー連合会	COa标出圖	2010年度	▲20.0%	▲ 11.6%	▲1 .9%	▲ 19.0%	▲ 25.2%	▲ 28.7%	▲ 33.9%	▲ 0.7%	CO ₂ SRES II	2010年度	▲25.0%	▲ 11.6%	▲1.9%	▲ 19.0%	▲ 25.2%	▲ 28.7%	▲ 33.9%	▲ 0.7%	3 8.3	325.	310.0	286.1	272.9	252.7	227.0	A
日本バス協会	COs标出原单位	2010年度	▲ 6%	1.8%	2.7%	3. %	3.1%	▲ 0.5%	3.0%	3.0%	COs耕出原単位	2015年度	▲ 6%	-	-	0.0%	▲ 0.3%	▲ 3.8%	▲ 0. %	▲0. %	375.7	373.2	366.	359.	3 8.0	3 1.0	36 .0	В
日本民業鉄道協会	エネルギー消費原単位	2010年度	▲ 5.7%	▲ .2%	▲ 5.9%	▲ 6.8%	▲ 6.2%	▲ 6.7%	▲ 7.8%	▲ 9. %	エネルギー消費原単位	2010年度	▲ 5.7%	▲ .2%	▲ 5.9%	▲ 6.8%	▲ 6.2%	▲ 6.7%	▲ 7.8%	▲ 9. %	286.0	27 .0	261.0	256.0	2 6.0	228.0	216.0	A
JR東日本	エネルギー消費量	2013年度	▲ 6.2%	0.0%	▲ 1.2%	▲ 1.7%	▲ 2.9%	▲ 2.1%	▲ .3%	▲ 7.2%	エネルギー消費量	2013年度	▲ 0%	0.0%	▲ 1.2%	▲ 1.7%	▲ 2.9%	▲ 2.1%	▲ .3%	▲ 7.2%	215.0	223.0	216.0	218.0	212.0	206.0	199.0	В
JR西日本	エネルギー消費量	2010年度	▲3.0%	▲ 2.7%	▲ 2.3%	▲ 1.5%	▲ 1.7%	▲ 2.1%	▲ .6%	▲ 3. %	エネルギー消費量	2010年度	▲2.0%	▲ 2.7%	▲ 2.3%	▲ 1.5%	▲ 1.7%	▲ 2.1%	▲ .6%	▲ 3. %	185.	181.3	176.1	171.1	16 .3	1 9.8	1 5.7	A
3 R東海	エネルギー消費原単位	1995年度	▲25.0%	▲ 25.6%	▲ 26.7%	▲ 27.3%	▲ 27.8%	▲ 28.1%	▲ 28. %	▲ 27.7%	エネルギー消費原単位	1995年度	▲ 25.0%	▲ 25.6%	▲ 26.7%	▲ 27.3%	▲ 27.8%	▲ 28.1%	▲ 28. %	▲ 27.7%			-	-	-	-	-	A
日本港連協会	COa耕出原単位	2005年度	▲12.0%	▲ 10.1%	▲ 10.8%	▲ 10.0%	▲ 10.6%	▲ 13.6%	▲ 15. %	▲ 17.2%	COal所出原聯位	2005年度	▲20.0%	▲ 10.1%	▲ 10.8%	▲ 10.0%	▲ 10.6%	▲ 13.6%	▲ 15. %	▲ 17.2%	39.0	8.	37.7	37.8	37.7	7.3	36.5	В
3 R資物	エネルギー消費原単位	2013年度	▲7.0%	0.0%	▲ 1.8%	▲ .3%	▲ 7.2%	▲ 8.2%	▲ 10.6%	▲ .3%	エネルギー消費原単位	2013年度	▲15.0%	0.0%	▲ 1.8%	▲ .3%	▲ 7.2%	▲ 8.2%	▲ 10.6%	▲ .3%	6 .9	62.3	60.1	56.3	55.1	5.5	9.0	В
3 R/LM	エネルギー消費原単位	2011年度	▲2.5%	▲ 0.8%	▲ 0.6%	▲ 0.3%	1.1%	0.2%	▲ 0.8%	▲ 1.9%	エネルギー消費原単位	2011年度	▲ 2.5%	▲ 0.8%	▲ 0.6%	▲ 0.3%	1.1%	0.2%	▲ 0.8%	▲ 1.9%	7.1	7.0	-	38.8	35.	32.1	2 .	A
J R北海道	エネルギー消費原単位	1995年度	▲1 .0%	▲ 13.9%	▲1 .3%	▲1.6%	▲ 17.0%	▲ 19.0%	▲ 19.0%	▲ 20.1%	エネルギー消費原単位	2013年度	▲7.0%	0.0%	▲ 0. %	▲ 0.8%	▲ 3.6%	▲ 5.9%	▲ 5.9%	▲ 7.1%	32.1	1.	30.5	30.8	30.5	1.0	32.1	В
全型道道連盟	CO25N出版	2009年度	▲11%	▲ 3.0%	▲ 3.0%	▲ .5%	▲ 6.0%	▲ 7.5%	▲ 7.7%	▲ 9.5%	CO2排出量	2009年度	▲ 20%	▲ 3.0%	▲ 3.0%	▲ .5%	▲ 6.0%	▲ 7.5%	▲ 7.7%	▲ 9.5%	12.9	12.9	12.7	12.5	12.3	12.3	12.0	В
J RAME	エネルギー消費量	2010年度	▲8.0%	▲ 5. %	▲ 7.8%	▲ 7.0%	▲ 5.7%	▲ 6.5%	▲ 10.9%	▲ 9.5%	エネルギー消費量	2010年度	▲8.0%	▲ 5. %	▲ 7.8%	▲ 7.0%	▲ 5.7%	▲ 6.5%	▲ 10.9%	▲ 9.5%	8.0	7.7	7.7	7.6	7.	6.9	6.9	A
産業・民生・運輸等)の対策・施策																												

3 R R 図 エネルギー共興第 田門別 (産業・民生・運輸等) の対策・施策 E、エネルギー転換部門の取組 (a) 産業界における自主的取組の推進 ○低炽素社会実行計画の高英な実施と評価・検証(エネルギー転換部門の取組)

	科洛伊里拉尔艾里																											
		[四株粉株]	[是準午章/BAU]	[2020年度四標水準]	[2020年度目標] 2013年度実績 (簡単年度比/BAU比)	[2020年度四冊] 201 年度実績 (簡準年度比/BAUIL)	[2020年復日標] 2015年復実績 (是準年度比/BAU比)	[2020年度四標] 2016年度実績 (簡単年度比/BAU比)	[2020年度四標] 2017年度実績 (簡単年度比/BAUIL)	[2020年度四標] 2018年度実績 (簡単年度は/BAULL)	[2020年度四標] 2019年度実績 (是準年度は/BAUは)	[四根指標]	【簡集年復/BAU】	[2030年度四根水準]	[2030年度四榜] 2013年度実績 (差季年度比/BAU比)	[2030年度四榜] 201 年度実績 (簡単年度比/BAUIL)	[2030年度四標] 2015年度実績 (簡単年度比/BAU比)	[2030年度日標] 2016年度実績 (是準年度比/BAU比)	[20 0年度目標] 2017年度実績 (是準年度比/BAU比)	[20 0年度四榜] 2018年度実績 (簡単年度比/BAUIL)	[2030年度四根] 2019年度実績 (簡単年度は/BAUIL)	2013年度CO2排出量 (75t-CO2)	201 年度CO:排出量 (万t-CO ₂)	2015年度CO:排出量 (75t-CO ₂)	2016年度COs耕出疆 (75t-COs)	2017年度CO2排出量 (万t-CO2)	2018年度CO3排出量 (万t-CO3) 2019年度C	12标出量 2030年度目標の推移 3a) 状況の評価
	電気事業但炭素社会協議会	COs标出量	BAU	▲70075t-CO₂		▲ 60%	▲ 6 %	▲ 89%	▲ 96%	▲ 121%	▲ 133%	CO-MHE III	BAU	▲110075t-CO₂	-	▲ 38%	▲ 1%	▲ 56%	▲ 61%	▲ 77%	▲ 85%	9 00.0	6900.0	100.0	3000.0	1100.0	37200.0 3 50	
		-		-			-	-	-	-	-	COalstateを対象	-	0.37kg-CO2/kWh程度	53%	9%	%	39%	3 %	25%	20%			100.0	33333	1100.0	37200.0	· ·
	石油連盟	エネルギー所減量	BAU	▲537jKL	56%	71%	90%	101%	120%	126%	130%	エネルギー削減量	BAU	▲10075KL	30%	38%	8%	53%	6 %	67%	69%	033.0	3823.0	3833.0	38 .0	3808.0	682.0 3 (a B
	日本ガス協会	COs排出原単位	1990年度	▲89%	▲ 91%	▲ 90%	▲ 91%	▲ 91%	▲ 91%	▲ 90%	▲ 90%	COs時出際単位	1990年度	▲88%	▲ 91%	▲ 90%	▲ 91%	▲ 91%	▲ 91%	▲ 90%	▲ 90%	5.6	7.6	5	5.9	5	2.6 39.	
		エネルギー消費原単位	1990年度	▲86%	▲ 89%	▲ 88%	▲ 89%	▲ 89%	▲ 88%	▲ 88%	▲ 88%	エネルギー消費原単位	1990年度	▲8 %	▲ 89%	▲ 88%	▲ 89%	▲ 89%	▲ 88%	▲ 88%	▲ 88%	3.0				<i>z.</i>		1 ^ /

135

Ⅷ. 情報発信内容の拡充

2019 年度事業においてパンフレットやホームページの立ち上げを行った。今年度は、これらのコンテンツの更新や拡充について検討を行った。

≪検討案≫

- ① 現在、自主的取組ホームページ¹では、これまでのクロノロジーや取組状況の概要が掲載されているが、今後は各業界の取組へのリンクを形成し、情報発信の一助とすることが可能である。例えば、電機電子温暖化対策連絡会は、自らの取組状況や進捗状況をホームページ²で発信するとともに、他部門貢献等の定量化のための方法論を公開している。こうした先進的な取組へのリンクを形成することで、自主的取組ホームページを通じたアクセスし易さに貢献できる。
- ② 加えて、各フォローアップ WG で作成される業界ごとの進捗状況一覧表についても、 2013 年以降の実績値を経年的に一覧表の形で示すことで、低炭素社会実行計画の取 組状況を一覧することが可能となる。

	【目標指標】	【基準年度 /BAU】	【2020年度目標水準】	2013	2014	2015	2016	2017	2018	2019
日本鉄鋼連盟	CO₂排出量	BAU	▲500万t-CO ₂ (▲300万t-CO ₂ +廃プラ実績	0.3%	0.6%	-1.0%	-1.3%	-1.3%	-1.4%	-1.9%
日本化学工業協会	CO₂排出量	BAU	▲150万t-CO₂	-2.4%	-1.4%	-4.0%	-4.7%	-7.2%	-7.7%	-7.5%
日本製紙連合会	CO₂排出量	BAU	▲139万t-CO₂	-13.6%	-15.8%	-16.5%	-16.2%	-17.4%	-18.1%	-18.7%
セメント協会	エネルギー消費	2010年度	-1.1%	-0.8%	-1.2%	-2.0%	-3.2%	-2.5%	-3.8%	-4.8%
電機・電子温暖化対策	エネルギー原単	2012年度	▲7.7%	-7.0%	-10.6%	-11.0%	-13.2%	-20.4%	-24.7%	-23.2%
日本自動車部品工業会	CO₂排出原単位	2007年度	▲13%	-13.2%	-12.5%	-14.6%	-12.5%	-13.2%	-15.4%	-13.8%
日本自動車工業会・日 本自動車車体工業会	CO₂排出量	1990年度	-35%	-24.5%	-27.7%	-32.8%	-31.7%	-32.7%	-36.3%	-41.1%
日本鉱業協会	CO₂排出原単位	1990年度	▲ 15%	-12.9%	-16.1%	-18.5%	-23.5%	-22.8%	-25.5%	-24.6%
石灰製造工業会	CO₂排出量	BAU	▲15万t-CO₂	-7.4%	-7.5%	-6.2%	-9.5%	-10.4%	-12.9%	-9.5%
日本ゴム工業会	CO2排出原単位	2005年度	▲ 15%	-10.0%	-9.1%	-6.7%	-7.4%	-9.9%	-13.8%	-18.0%
日本染色協会	CO₂排出量	1990年度	-78%	-69.1%	-69.4%	-70.2%	-70.9%	-72.5%	-74.0%	-76.7%
日本アルミニウム協会	エネルギー消費	BAU	▲1.0 GJ	-3.9%	-6.9%	-7.3%	-4.9%	-4.4%	-3.8%	-4.9%
日本印刷産業連合会	CO₂排出量	2010年度	-24%	-9.4%	-11.7%	-11.2%	-12.0%	-17.4%	-20.9%	-24.1%

表 1 2013 年以降の実績一覧表

③ パンフレットについては、2020 年の実績進捗を評価した上で、低炭素社会実行計画による排出削減効果を追加することが可能である。来年度の実績を踏まえ、これを整理してパンフレットを更新することで、対外的にも産業界の自主的な取組の成果が評

136

¹ https://www.meti.go.jp/policy/energy_environment/kankyou_keizai/va/index.html

² http://www.denki-denshi.jp/

価されることに資する。

≪実施したこと≫

今年度事業の中で低炭素社会実行計画における取組事例集を作成したところであり、これについても随時内容を更新しつつ、産業界の自主的ホームページに追加することが情報を発信することが、各業種の取組を促すことが期待できる。

取組事例集では、以下の業界での特徴的、先進的な取組について 3 つのカテゴリーに分けて整理した。また、業界団体に取り組み内容に関してメール等でヒアリングを実施し、内容の充実に努めた。

- 1. HP を使った訴求:23 団体で実施
 - (1) 明快でリッチな情報発信(電機・電子温暖化対策連絡会)
 - (2) 海外に向けた情報発信(日本鉄鋼連盟)
- 2. 長期ビジョンの提示:8団体で実施
 - (1) 2050 年までの CO₂排出量シナリオ(日本アルミニウム協会)
 - (2) 2100 年までの CO₂排出量シナリオ(日本鉄鋼連盟)
 - (3) 長期的なイノベーションへの取組(日本化学工業協会)
 - (4) 将来の業界の絵姿の提示 (電気事業低炭素社会協議会)
- 3. 業界内での情報共有、活用
 - (1) 業界団体によるベストプラクティスの共有・展開(日本鉱業協会)
 - (2) SDGs 事例集による個社の取組の発信(日本化学工業協会)
 - (3) パンフレットによる効果的な情報発信(電機・電子温暖化対策連絡会)
 - (4) 環境報告書等による業界の取組の発信(日本産業機械工業会、日本印刷産業連合会)
 - (5) 省エネ事例集の作成と展開(日本自動車部品工業会、日本建設機械工業会、日本電 線工業会)
 - (6) 参加企業の環境意識啓発のためのフィードバック(日本工作機械工業会)
 - (7) ベンチマークデータの提供(日本情報サービス産業協会)
 - (8) 認定制度やロゴマークの作成(日本印刷産業連合会、情報サービス産業協会)
 - (9) PDCA サイクルを明示 (電気事業低炭素社会協議会、日本鉱業協会)

今後、こうした取組を行っている業界団体によるワークショップ等を通じた水平展開を行い、取組が途上にある業種の底上げを図っていくことが必要である。

区. 将来の排出削減効果の試算

過年度事業で構築された将来の排出削減効果を試算するための方法論を用いて、2020年、2030年の自主的取組による排出削減の効果を試算した。

低炭素社会実行計画における数値目標を策定済の 115 業種 (2020 年度)、及び低炭素社会実行計画フェーズ 2 における数値目標を策定済みの 105 業種 (2030 年度)を対象として試算を行った。ただし、試算に用いるデータが不足している等の理由により、試算の対象とできたのは 2020 年目標が 104 業種、2030 年目標が 105 業種である。また、実績データを精査し、過年度に提出されたデータ訂正されている場合には実績値を修正した。また、桁や小数点以下の調整等を軽微な修正作業を行った。

これらの作業を踏まえ、産業界の自主的取組による削減効果を図 1 に示す。なお、試算に当たっては、2005 年度と 2013 年度を基準年度として、電力排出係数のシナリオとして以下を想定した。

- ① 電力排出係数を 2005 年度実績(0.423kg-CO₂/kWh)で固定
- ② 2015年7月に公表された長期需給見通しに基づき2030年度に0.37kg-CO₂/kWhを 想定、2020年度は2013年度実績値(0.57kg-CO₂/kWh)から0.37kg-CO₂/kWhへ線 形補完した係数(0.488kg-CO₂/kWh)
- ③ 電力排出係数を 2013 年度実績(0.57 kg-CO2/kWh)で固定

また、目標排出量は全ての計画策定業種が目標を達成した場合の排出量、BAU は計画を策定せずに対策を実施しなかった場合を表し、削減貢献量はBAU と目標排出量の差分としてあらわしている。なお、2005年度の CO_2 排出実績は5億 4235万 t- CO_2 、2013年度は5億 2241万 t- CO_2 である。

まず、2005 年度を基準年度とし、電力排出係数を 2005 年度実績で固定したケースの試算結果を示す(図 1 の係数パターン①参照)。目標排出量が 2020 年度に 5 億 1142 万 t-CO $_2$ (2005 年度比 6.05%減)、2030 年度に 5 億 1242 万 t-CO $_2$ (同 7.37%減)と推計された。削減貢献量は 2020 年度に 4952 万 t-CO $_2$ 、2030 年度に 8673 万 t-CO $_2$ となった。また、電力排出係数を線形補完したケース((図 1 の係数パターン②参照))では、目標排出量は、2020年度に 5 億 2998 万 t-CO $_2$ (2005 年度比 2.34%減)、2030 年度に 4 億 9668 万 t-CO $_2$ (同 10.78%減)と推計された。削減貢献量は 2020 年度に 5244 万 t-CO $_2$ 、2030 年度に 8275 万 t-CO $_2$ となった。

次に、2013 年度を基準年度とし、電力排出係数を線形補完したケース((図 1 の係数パターン②参照)では、目標排出量が 2020 年度に 5 億 2998 万 $\rm t$ - $\rm CO_2$ (2013 年度比 1.43%増)、2030 年度に 4 億 9776 万 $\rm t$ - $\rm CO_2$ (同 6.34%減)と推計された。削減貢献量は 2020 年度に 3072 万 $\rm t$ - $\rm CO_2$ 、2030 年度に 5825 万 $\rm t$ - $\rm CO_2$ となった。また、電力排出係数を 2013 年度実績で固定したケース(図 1 の係数パターン③参照)では、目標排出量が 2020 年度に 5 億 5338 万

 $t-CO_2$ (2013 年度比 5.60%増)、2030 年度に 5 億 5665 万 $t-CO_2$ (同 4.91%増)と推計された。削減貢献量は、2020 年度に 3197 万 $t-CO_2$ 、2030 年度に 6569 万 $t-CO_2$ となった。

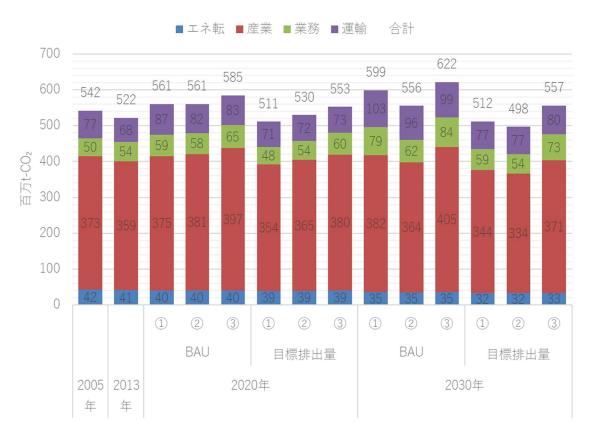


図 1 低炭素社会実行計画による削減効果の試算結果

図注:図の中の①から③は以下の想定を示す。

①電力排出係数を 2005 年度実績で固定したケース

②2013年度を基準年度とし、電力排出係数を線形補完したケース

③電力排出係数を 2013 年度実績で固定したケース