令和4年度 経済産業省委託事業

令和 4 年度産業保安等技術基準策定研究開発等事業 (火薬類爆発影響低減化技術基準検討事業) 報告書

令和5年2月

公益社団法人 全国火薬類保安協会

目 次

第Ⅰ部	部の概要	-
第1:	章 実施報告	
1.1	事業目的	
1.2	2 事業内容	
1.3	実施内容	
第 2 :	章 委員会	
2.1	火薬類爆発影響低減化技術基準検討委	· 三員会 本委員会
2.2	2 火薬類爆発影響低減化技術基準検討委	· 員会 小委員会
2.3	3 委員会開催実績	
第 3 :	章 検討結果の総括	
第 II	部 爆発影響低減化実験	,
第 4 :	章 爆発影響低減化実験(野外実験)	:
総	品	
3	実験の目的	
3	実験項目および概要	9
	実験期日および日程	
	実験場所	
	気象状況	
4.1		
	4.1.1 目的	
2	4.1.2 実験方法 4.1.2.1 供試火薬類	
	4.1.2.2 試験体	22
	4.1.2.3 計測項目	30
2	4.1.3 実験結果	
	4.1.3.1 爆発後の爆点の様子	4
	4.1.3.2 爆風圧計測結果	58
	4.1.3.3 飛散物計測結果	62
	4.1.3.4 地盤振動計測結果	72
	4.1.3.5 高速度カメラ撮影結果	8
	4.1.3.6 騒音測定結果	84
4	4.1.4 まとめ	9
4.2		
	4.2.1 目的	
2	4.2.2 実験方法	
	4.2.2.1 供試火薬類	92
	4.2.2.2 計測項目	90
2	4.2.3 実験結果	90
	4.2.3.1 爆発後の爆点の様子	99
	4.2.3.2 爆風圧計測結果	i 100

	4.2.3.3 飛散	牧物計測結果		104
	4.2.3.4 地盤	E振動計測結果		107
	4.2.3.5 高速	夏度カメラ撮影結果		112
	4.2.3.6 騒音	f測定結果		114
4.	2.4 まとめ			118
4.3	総合考察			119
第 5 章	基金影響 (氐減化実験(室内実験)		121
5.1	概要			121
5.2	実験方法			122
5.3	実験結果			133
5.4	検討1-爆	虱パラメータと換算距離		147
5.5	検討2-最大	大過圧と角度		157
5.6	検討3-正原	E相インパルスと角度		188
5.7	まとめ			219
第6章	t 地中式一組	吸火薬庫の保安距離策定に関	するシミュレーション	220
6.1	背景		•••••	220
6.2	目的			221
6.3	数值解析項	目および概要		222
6.4	結果			224
6.5	まとめ			246
付録				256
2.4	1(付録 1)	委員会議事録		257
4. <i>A</i>	1 (付録 2)	実験関連事項		269
4. <i>A</i>	2(付録 3)	野外実験記録写真		271
4. <i>A</i>	3(付録 4)	高速度カメラ撮影画像		289
4. <i>A</i>	4(付録 5)	爆風波形		302
4. <i>A</i>	A.5 (付録 6)	飛散物回収結果		305
4.A	1.6(付録 7)	使用器材一覧		311
4.A	7(付録 8)	土堤構築材料試験結果		314
5.A	1.1 (付録 9)	室内実験参考資料		350
6 A	(1 (付録 10)	シミュレーション参考資料	화	406

第Ⅰ部

概要

第1章 実施報告

1.1 事業目的

火薬類(火薬、爆薬、火工品)は、その有する爆発・燃焼という危険性から、火薬類取締法(以下「法」 という。)において、製造、販売、貯蔵、運搬、消費その他の取扱いについて規制されている。

本事業では、火薬類に係る保安技術の進展に伴う保安技術基準の策定・改正、火薬類による事故原因の解析・再発防止対策の検討等の際に必要となる科学的データの取得等の事業を実施し、火薬類による 災害を防止し、公共の安全確保に資することを目的とする。

1.2 事業内容

火薬庫等の火薬類を取り扱う施設には、万一爆発した際の周囲への影響を低減させるため、土堤(貯蔵する火薬類が爆発した際に、飛散物を防ぎ衝撃波を緩和させるためのもの)の設置が求められているものがある。火薬類関連施設周辺の市街地化が進むにつれ、土堤の設置に必要な用地確保が困難になってきており、新たな火薬庫の建設が難しくなっている。

このため、土堤の設置に必要となる用地を縮減できる「火薬庫側を垂直とする土堤」に関し、土堤の火薬庫側の構造要件並びに当該土堤に用いる資材や当該土堤の傾斜等の必要な条件について、必要に応じてシミュレーション等を活用しつつ、爆発実証実験を行い、「火薬庫側を垂直とする土堤」の構造基準の策定に向けた検討を行う。

1.3 実施内容

(1) 土堤の爆発影響低減化に資する爆発実証実験計画の検討等

火薬庫には、貯蔵する火薬類が爆発した際に飛散物を防ぎ衝撃波を緩和させるため、「土堤」の設置が 求められているが、現行の基準(両側の傾斜が 45 度)による「土堤」は、その占有面積が大きいことか ら、火薬庫の新設や再配置において、用地確保が課題となっている。また、令和 3 年 4 月の技術基準改 正により一部の主要な火薬、爆薬の貯蔵可能量の上限が引き上げられたが、用地不足により火薬庫の建 替を断念する事例もある。

これまでに、土堤の占有面積の縮減を目的とした「火薬庫側を垂直とする土堤」の爆発影響低減効果の有効性について確認してきたところであるが、土堤の火薬庫側の構造要件、当該土堤に用いる資材や 当該土堤の傾斜については、貯蔵する火薬類が爆発した際に、飛散物をより少なくしたり、衝撃波をより緩和させたりするために、更なる検証が求められている。

そこで、「火薬庫側を垂直とする土堤」の構造に関して、土堤の火薬庫側の構造、用いる資材や傾斜等の必要な条件について検討し、具体的な条件に関するデータを取得するための爆発実証実験を行った。また、爆発実証実験で取得したデータを基に、技術的知見をとりまとめ、「火薬庫側を垂直とする土堤」の構造基準のあり方について提案した。

具体的には、平成 24~27 年度までの実証実験により、ジオグリッド又はソイルセメントを用いて補強する場合及び土堤の内面 1/2 をコンクリート擁壁で補強する場合には、土堤の火薬庫側を垂直とできる可能性が示された。今年度の実験では、ソイルセメントで補強する場合のソイルセメントの組成及び土堤の内面 1/2 をコンクリート擁壁で補強する場合の土堤の傾斜等の条件について検討を行った。

(2) 爆発実証実験の実施

爆発実証実験は、1/7.9 スケールの種々の構造の土堤を設置して3回、また、基準爆風圧を計測するため1回、合計4回の爆発実験を行い、爆風圧、飛散物、地盤振動等のデータを取得して、爆発影響低減化に係る効果を検証した。

なお、爆発実証実験では、爆発現象を捉えるため、換算距離に対応した爆風圧と地盤振動、飛散物の 飛散状況、漏斗孔の大きさ、騒音、並びに高速度及び常速度カメラによる土堤の破壊状況及び爆発状況 の映像のデータを取得した。

(3) シミュレーションを活用した地中式一級火薬庫の保安距離策定に必要なデータの取得

令和3年度には、地中式一級火薬庫の前室入口方向に対する角度に応じた保安距離策定に資するデータを得るため、地中式火薬庫の小規模室内実験等の結果も踏まえつつ、シミュレーションを行い、以下のような保安距離の考え方を得た。

- ・ 地中式一級火薬庫の保安距離は、爆風に対するトンネル入口からの保安距離と、地盤振動及び飛散物 に対する火薬庫(薬室)外壁からの保安距離の両者を満足する必要がある
- ・ 爆風に対するトンネル入口からの保安距離は、トンネル入口前方のある距離の地点を中心としたある半径の円で表され、その距離及び半径を求める係数は、それぞれトンネル断面積の火薬庫断面積に対する比と火薬庫及びトンネル全長の火薬庫径に対する比により指定可能
- ・ 地盤振動及び飛散物に対する火薬庫 (薬室) 外壁からの保安距離は、最小値を 50m として、第一種、 第二種、第三種及び第四種保安物件について、それぞれ換算距離 8.3、5.5、4.4、3.6m/kg^{1/3}で指定可能

保安距離の検討にあたっては、爆風に対する保安距離を表す円の中心と半径を求める係数について、トンネル断面積の火薬庫断面積に対する比と火薬庫及びトンネル全長の火薬庫径に対する比の両者が極端に大きい場合や小さい場合についても考慮する必要があることから、今年度はこれらの課題について検討を行い、技術的知見を取りまとめた。

第2章 委員会

爆発衝撃等に関する学識経験者、土木、材料及び火薬特に煙火に関する専門家等を含む 19 名の委員から構成する火薬類爆発影響低減化技術基準検討委員会 本委員会を設置し、3 回開催した。また、本委員会の下に学識経験者等 15 名の委員で構成する小委員会を設置し、1 回開催した。

委員会では、爆発実証実験の計画の検討を行うとともに、実証実験の結果を踏まえ、爆発影響低減化 に資する新土堤の構造、用いる資材及び傾斜の影響等について審議した。

2.1 火薬類爆発影響低減化技術基準検討委員会 本委員会

(敬称略、五十音順)

新井 充 東京大学 名誉教授

大野 友則 大野防衛工学研究所

● 小川 輝繁 公益財団法人 総合安全工学研究所

奥永 一郎 株式会社ダイセル セイフティ SBU 特機事業部 事業推進部

海沼 敏恭 防衛省 陸上自衛隊 陸上幕僚監部 装備計画部 武器·化学課 弾薬班

久保田 士郎 国立研究開発法人 産業技術総合研究所 安全科学研究部門

後藤 浩司 日本火薬工業会 技術部

須山 恭三 一般社団法人 日本建設業連合会 安全環境部

多田 達士 中国化薬株式会社 営業本部 化薬営業部

遠山 貴郎 防衛省 防衛装備庁 プロジェクト管理部 事業監理官付 宇宙・地上装備担当

吐合 育輝 防衛省 陸上自衛隊 陸上幕僚監部 装備計画部 武器·化学課 化学室

畑中 修二 公益社団法人 日本煙火協会 技術部

福田 光寿 日本カーリット株式会社 生産本部 赤城工場

藤原 和彦 日油株式会社 化薬事業部 企画室

水書 稔治 東海大学 湘南校舎 工学部 航空宇宙学科

三宅 淳巳 横浜国立大学 理事·副学長

山田 隆宏 日本工機株式会社 白河製造所 研究開発部

山本 和彦 カヤク・ジャパン株式会社 環境安全品質保証本部 環境安全部

若林 邦彦 国立研究開発法人産業技術総合研究所 安全科学研究部門

●:委員長

2.2 火薬類爆発影響低減化技術基準検討委員会 小委員会

(敬称略、五十音順)

大野 友則 大野防衛工学研究所

奥永 一郎 株式会社ダイセル セイフティ SBU 特機事業部 事業推進部

海沼 敏恭 防衛省 陸上自衛隊 陸上幕僚監部 装備計画部 武器・化学課 弾薬班

久保田 士郎 国立研究開発法人産業技術総合研究所 安全科学研究部門

後藤 浩司 日本火薬工業会 技術部

須山 恭三 一般社団法人 日本建設業連合会 安全環境部

多田 達士 中国化薬株式会社 営業本部 化薬営業部

遠山 貴郎 防衛省 防衛装備庁 プロジェクト管理部 事業監理官付 宇宙・地上装備担当

吐合 育輝 防衛省 陸上自衛隊 陸上幕僚監部 装備計画部 武器・化学課 化学室

畑中 修二 公益社団法人 日本煙火協会 技術部

福田 光寿 日本カーリット株式会社 生産本部 赤城工場

藤原 和彦 日油株式会社 化薬事業部 企画室

山田 隆宏 日本工機株式会社 白河製造所 研究開発部

山本 和彦 カヤク・ジャパン株式会社 環境安全品質保証本部 環境安全部

● 若林 邦彦 国立研究開発法人産業技術総合研究所 安全科学研究部門

●:委員長

2.3 委員会開催実績

令和 4 年 8 月 22 日 火薬類爆発影響低減化技術基準検討委員会 第 1 回本委員会 令和 4 年 9 月 26 日 火薬類爆発影響低減化技術基準検討委員会 第 2 回本委員会 令和 5 年 1 月 11 日 火薬類爆発影響低減化技術基準検討委員会 第 1 回小委員会 令和 5 年 1 月 30 日 火薬類爆発影響低減化技術基準検討委員会 第 3 回本委員会

第3章 検討結果の総括

地上式火薬庫に設置される土堤について、ソイルセメントで補強する場合のソイルセメントの組成及び土堤の内面 1/2 をコンクリート垂直擁壁で補強する場合の土堤の傾斜等の条件について検討するため 1/7.9 スケールの爆発実証実験を行った。

火薬庫側を垂直とする土堤については、平成 24~27 年度の実証実験により、ジオグリッド又はソイルセメントを用いて補強する場合には、土堤の火薬庫側を垂直にすることができる可能性が示された。しかし、このとき用いたソイルセメントのセメント配合量よりもセメント割合の多いソイルセメントが一般に用いられることが判明したため、本年度はセメント配合量を 150 kg/m³ から 200 kg/m³ に増やして内面垂直ソイルセメント土堤を構築し、その安全性を検証した。その結果、ソイルセメント土堤の場合の爆風圧や地盤振動は従来の土を用いた 45 度土堤の場合と同等であり、飛散物についても実験で使用したソイルセメントのセメント配合量の範囲では、ソイルセメント土堤は爆発による衝撃で粉々に粉砕され軽量飛散物となることが確かめられ、従来の土を用いた 45 度土堤の場合と同等に安全であることが確認された。

また、平成 24~27 年度の実証実験により、内面垂直土堤の内面 1/2 をコンクリート擁壁で補強しても安全性に問題のないことが確認されたが、土堤の傾斜角についての技術基準は、45 度と 90 度の二者とするよりも 45 度以上 90 度以下とするのが合理的である。その場合、土堤内面の傾斜角が 90 度よりも緩い傾斜のときに内面 1/2 をコンクリート垂直擁壁で補強した場合の安全性の検証が必要である。そのため、土堤内面の傾斜角を 60 度、45 度とし、内面 1/2 をコンクリート垂直擁壁で補強した模擬土堤を構築して実証実験を行った。その結果、これらの土堤の場合、爆風や地盤振動は内面 90 度の場合と同等であり、コンクリート擁壁破片の飛散も内面 90 度の場合と同等に抑制されることが判明し、安全であることが確認された。

本年度は、昨年度と同様に、爆発実証実験の他に、地中式火薬庫の保安距離策定に必要なデータを取得するため、地中式火薬内で爆薬が爆発した場合の爆風シミュレーションを実施した。火薬庫全長/火薬庫径及びトンネル直径/火薬庫直径が極端に大きい場合や小さい場合のシミュレーションを実施し、昨年度より精度を高めた地中式火薬庫の保安距離案を提案した。

以上、本年度の爆発実証実験及び爆風シミュレーションにより、貴重なデータを取得でき、技術基準 策定のための資料を作成することができた。最後に、本実験に際しての、爆発影響低減化委員各位、関 係団体からのご協力、ご指導に深く感謝し、御礼申し上げる次第である。

第 II 部 爆発影響低減化実験

第4章 爆発影響低減化実験(野外実験)

総論

実験の目的

通商産業省(現経済産業省)は、火薬類の製造、貯蔵、消費等の保安技術基準を確立するための基礎 資料を得るため、昭和 36 年以降、全国各地の陸上自衛隊演習場を借用して大規模な実験を実施してき た。本実験により得られた成果は、火薬類取締法に反映され、省令や告示の改正、保安行政上の指導の ための資料として広く活用されている。また、実験の実施は、火薬類取扱者の保安意識の向上及び保安 教育の実地体験としても大きな役割を果たしてきた。

平成 14 年度からは、社団法人全国火薬類保安協会(現公益社団法人全国火薬類保安協会)への委託事業として、火薬庫の保安距離見直し等に資する爆発影響低減化の研究を行っている。平成 16 年度から平成 18 年度までは、隔壁付き火薬庫の技術基準に関する実験、平成 19 年度から平成 22 年度までは、地下式火薬庫の技術基準、防爆壁の補強改良技術、爆発飛散物の影響評価に関する実験を行った。平成 23 年度から平成 27 年度までは、既存の土堤の性能評価及び土堤改良の検討、垂直土堤の防護性能等に関する実験、さらには地震による土堤損傷の有無で爆発影響低減化効果を比較検討してきた。また、平成 27 年度から平成 28 年度までは、火薬類の爆発威力定量化に関する実験を行った。

近年、火薬類の貯蔵施設である火薬庫は、立地後の周辺環境の変化に伴い、保安距離や施設の能力の 見直しが求められている。これを受けて、平成28年度から平成30年度までは、地中式火薬庫の保安距 離に関する技術基準の検討を行った。令和元年度から令和3年度までは、煙火製造工場の火薬関連施設 を対象とした爆発実証実験を実施し、周辺環境が変化した場合に応じて保安距離が確保できる新型防爆 壁の位置及び構造等の技術基準を作成する上で必要となる爆発影響低減化に資するデータを取得した。 本年度は、地上式火薬庫に設置される土堤について、内面を垂直とする土堤の材料及び内面が垂直よ

実験項目および概要

実験 No.1 地上式火薬庫の土堤に関する実験 3ショット

地上式火薬庫の土堤に関して、ソイルセメントを用いて内面を垂直とした土堤、並びに、45 度及び 60 度の傾斜とした土堤内面の下半分をコンクリート擁壁で覆った土堤について 3 回の爆発実証実験を実施し、土堤の新技術基準の検討を行う。飛散物、爆風圧、地盤振動、騒音、衝撃波伝播状況等を、電気的・光学的手法により計測する。1 回の実験で含水爆薬 80 kg を使用する。

実験 No.2 基準爆風圧実験 1ショット

実験 No.1 で使用する爆薬と同じ爆薬を、土堤を除いて実験 No.1 と同じ条件で爆発させ、基準となる 爆風圧を計測する。含水爆薬 80 kg を使用する。

実験期日および日程(実績)

実験期間 令和4年11月15日(火)~11月25日(金)

月日	実験 No.	爆点	点火時刻	実験項目名	薬種・薬量	
11月15日 (火)				<移動日>		
11月16日(水)				準備(計測設備·爆点決定)		
11月17日(木)				準備(計測設備・ソイルセメント土場	·構築)	
11月18日(金)				準備(計測設備)/実験会議		
11 H 10 H (L)	1-1	U	10:49	内面垂直ソイルセメント土堤	EMX2 80 kg	
11月19日(土)			•	破片回収/土堤構築		
11 8 20 8 (8)	1-3	U	10:17	内面 45 度+1/2 擁壁土堤	EMX2 80 kg	
11月20日(日)			•	破片回収/土堤構築		
11月21日(月)				予備日		
11 日 22 日 (水)	1-2	U	10:22	内面 60 度+1/2 擁壁土堤	EMX2 80 kg	
11月22日(火)				破片回収/爆点整地		
11 日 22 日 (录)	2	U	10:06	基準爆風圧	EMX2 80 kg	
11月23日(水)	破片回収/清掃・撤収					
11月24日 (木)	撤収					
11月25日(金)	<移動日>					

注) U:上爆点(今年度は上爆点のみ)

EMX2:含水爆薬 (カヤクジャパン(株砂川工場製アルテックス)

実験場所

陸上自衛隊矢臼別演習場(北海道野付郡別海町)の一部で実験を行った。 実験場広域図を図 4.0-1 に示す。

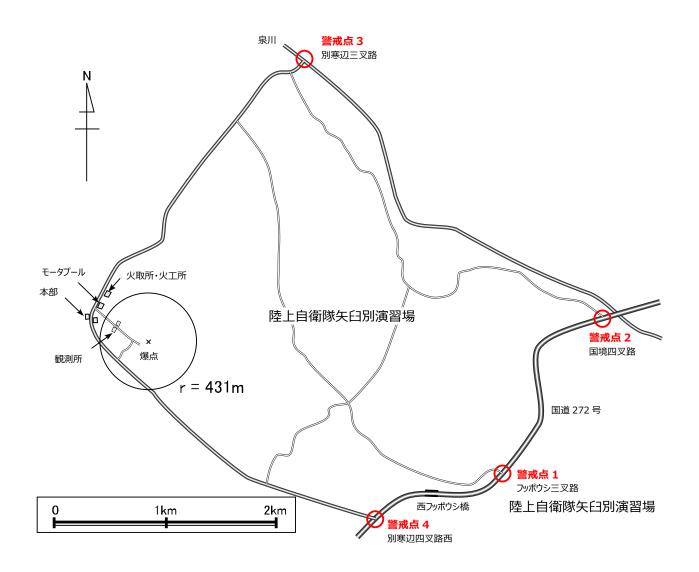


図 4.0-1 実験場広域図

保安距離

図 4.0-1 に保安距離を示す。原則として、保安距離は次式により算出した距離とする。

$r = KW^{1/3}$

ここに、r: 保安距離 (m)、W: 同一実験において 1 回に爆発する火薬・爆薬の最大薬量 (kg)、K: 係数 (K=100 とする)である。本実験の最大薬量は上爆点で W=80 (kg) なので、上爆点からの保安距離は 431 m となる。図 4.0.-1 に示された爆点を中心とする半径 r=431 (m) の円よりも内側を危険区域とする。

本部、観測所

図 4.0-1 に本部、観測所を示す。図 4.0-4 に本部、図 4.0-5 に観測所の写真を示す。本部、観測所はプレハブ (既製品レンタル) である。

火薬類取扱所 (火取所)、火工所

図 4.0-1 に火薬類取扱所 (火取所)、火工所を示す。図 4.0-6 にその写真を示す。

モータプール

図 4.0-1 にモータプールを示す。必要に応じて車両はそこへ退避しておく。

観測所の防護措置

観測所プレハブ (2 棟) は危険区域の内側であるため、観測所プレハブの前面にはそれぞれ防護壁を設置した。防護壁は、図 4.0-2 に示すように、爆点からプレハブを見たときにプレハブが完全に隠れる位置及び大きさとした。今年度は、観測所においてピーク過圧 2 kPa 程度の爆風が予想されるため、プレハブ出入り口のドアのガラスにも防護措置を施した。

なお、観測所1の天井には鉄板を敷き、高速度・常速度カメラ、風向風速計、放送設備等を設置した。

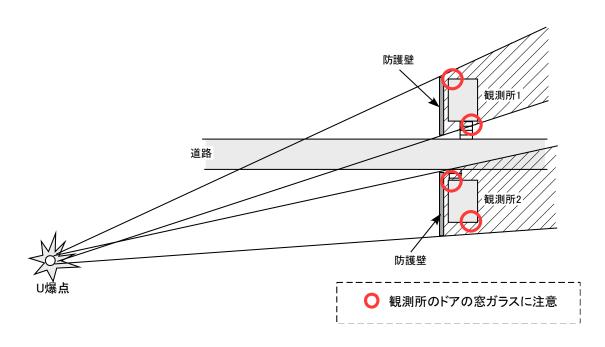


図 4.0-2 観測所の防護措置

実験レイアウト (全体)

図 4.0-3 に実験レイアウト(全体)を示す。観測所、爆点および計測系の位置の概要を示す。

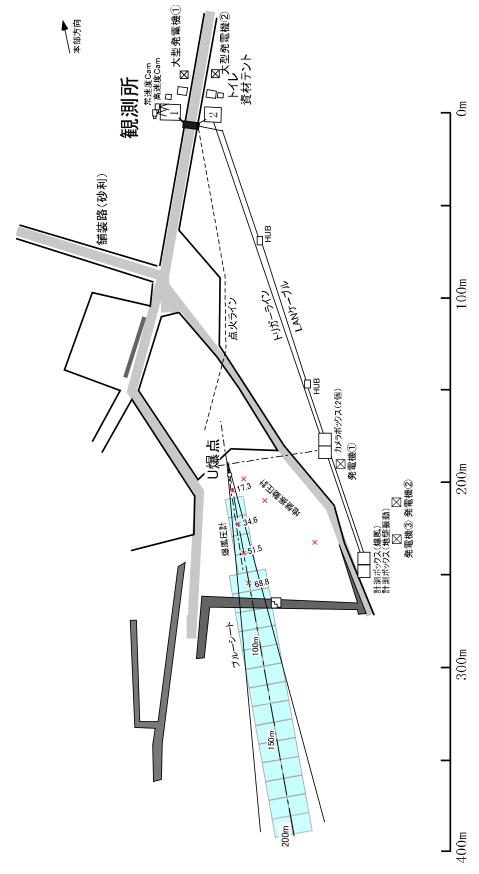


図 4.0-3 実験レイアウト (全体)

図 4.0-4 本部

図 4.0-5 観測所(左:第一観測所、右:第二観測所)

図 4.0-6 火薬類取扱所 (火取所)、火工所

気象状況

中胚	☆₩ □	.E.J. nE. ±1	天候	気温	湿度	気圧	風向·風速
実験 	夫 肔口	実施日 点火時刻		°C	%	hPa	m/s
No.1-1 内側垂直ソイルセメント土堤	11/19	10:49	雨	5.8	74.6	1016	東南東·1.0
No.1-2 内側 60 度+1/2 擁壁土堤	11/22	10:22	晴	6.3	73.9	1003	西北西·0.7
No.1-3 内側 45 度+1/2 擁壁土堤	11/20	10:17	晴	7.0	79.6	1018	東·1.8
No.2 基準爆風圧	11/23	10:06	晴	1.5	85.3	1013	0.0

4.1 地上式火薬庫の土堤に関する実験

4.1.1 目的

地上式火薬庫などに使用される土堤の新技術基準を作成するために必要なデータを収集する。地上式 火薬庫(最大貯蔵量爆薬 40 トンを想定)に対して、約 1/7.9 のスケールの模擬火薬庫により実験を実施 し、爆風圧、飛散物、地盤振動、騒音、衝撃波伝播状況などを、電気的・光学的手法により計測する。 火薬庫屋頂の高さは、実スケールで 4 m を想定する。

実験 No.1-1 では、新材料としてソイルセメントを用いて内面を垂直とした土堤を構築し、重量飛散物が発生するかどうか、発生した場合にどこまで飛散するか検討を行った。なお、平成 26 年度の爆発実験で用いたソイルセメントに比べ、セメントの配合割合を多くしたソイルセメントを用いた。

実験 No.1-2 および No.1-3 では、土堤内面の角度を変えて実験を行い、土堤内面の下半分をコンクリート擁壁で覆った場合のコンクリート破片の飛散状況を計測した。なお、飛散状況の評価は、平成 26 年度の爆発実験で行った内面が垂直の土堤の下半分をコンクリート擁壁で覆った場合のコンクリート破片の飛散状況との比較により行う。

4.1.2 実験方法

4.1.2.1 供試火薬類

表 4.1.2.1-1 に供試火薬類を示す。図 4.1.2.1-1 に爆薬の形状を示す。使用爆薬は含水爆薬で、平成 26 年度の爆発実験と同様に、チューブ入りの既製品(ϕ 50 mm×230 mm、500 g)を 160 本東ねて、装薬全体(80 kg)の形状を円柱形とした。円柱形の中心部にある 1 本の薬包には予め二重導爆線を巻きつけておき、反対側の端に固定した線爆発型の電気雷管 2 個で起爆した。図 4.1.2.1-2 に導爆線(二重導爆線)と雷管の固定方法を、図 4.1.2.1-3 に爆薬と土堤の位置関係を示す。図 4.1.2.1-4~4.1.2.1-6 に実際の装薬・爆装状況を示す。

実験	薬種	薬量	二重導爆線 電気雷管 (個)	爆薬の形状:円	柱形(計画値)			
No.		(kg)				直径φ×高さ	密度	
					(mm)	(kg/m^3)		
1-1	EMX2	80	4 m (2 m×2 本)	2	φ 690×230	1190		
1-2	EMX2	80	4 m (2 m×2 本)	2	φ 690×230	1190		
1-3	EMX2	80	4 m (2 m×2 本)	2	φ 690×230	1190		
合計		240	12 m (2 m×6 本)	6				

表 4.1.2.1-1 供試火薬類

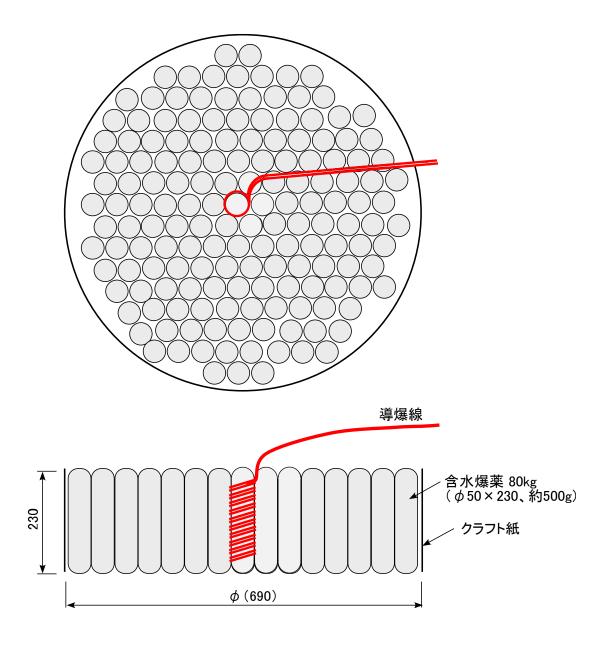


図 4.1.2.1-1 爆薬 (EMX2) の形状

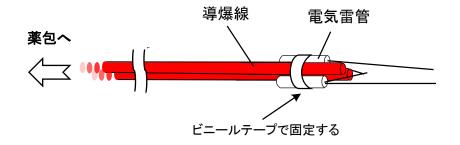


図 4.1.2.1-2 導爆線と雷管の固定方法

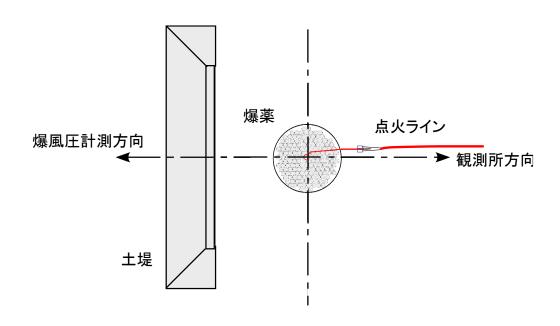


図 4.1.2.1-3 爆薬、土堤の設置方向

図 4.1.2.1-4 実験 No.1-1 の装薬状況(EMX2 80 kg 令和 4 年 11 月 19 日)

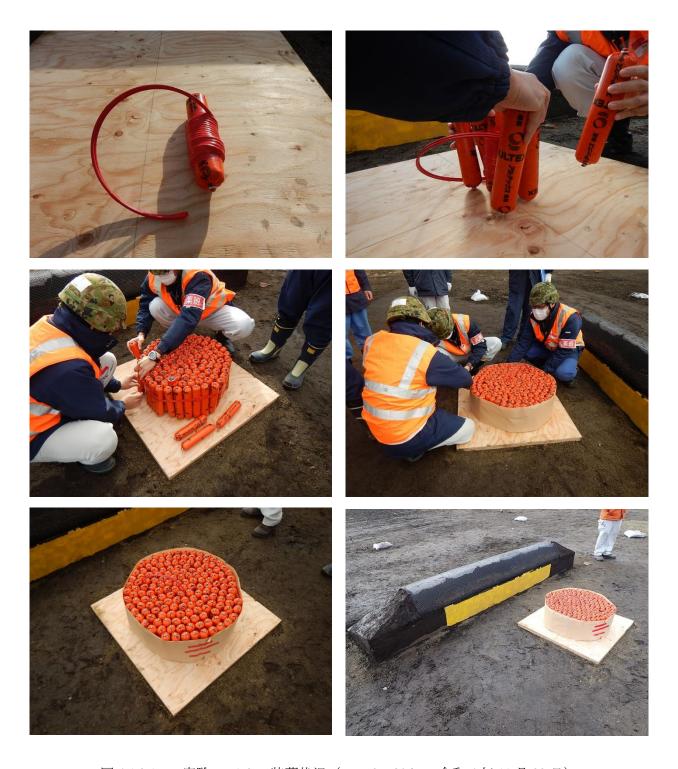


図 4.1.2.1-5 実験 No.1-2 の装薬状況(EMX2 80 kg 令和 4 年 11 月 22 日)

図 4.1.2.1-6 実験 No.1-3 の装薬状況(EMX2 80 kg 令和 4 年 11 月 20 日)

4.1.2.2 試験体

①土堤、コンクリート擁壁の大きさと爆薬との位置関係

試験体は約 1/7.9 スケール [$(80 \text{ kg}/40,000 \text{ kg})^{1/3} = (1/500)^{1/3} = 1/7.937$] である。試験体は火薬庫と土堤で構成される。火薬庫の床面を木製コンパネで模擬することとし、火薬庫の壁と天井は設置しない構造とした。

表 4.1.2.2-1、4.1.2.2-2 に土堤の種類と概要を示す。図 4.1.2.2-1~4.1.2.2-3 に土堤設置状況を示す。図中の数値は目標値だが実測値もほぼ同じであった。

土堤は1面だけを設置する。土堤高さは火薬庫高さと同じ $504\,\mathrm{mm}$ (実寸 $4\,\mathrm{m}$)とする。コンクリート擁壁は、飛散物計測をしやすくするために、実験 $No.1-2\,\mathrm{o}$ が避はコンクリート自体にも色を付け、また、実験 $No.1-2\,\mathrm{b}$ No.1-3 ともに擁壁の表面に色を付けた。

表 4.1.2.2-1 基準とするパラメータ

実験 No.	スケール	薬種 薬量 (kg)	土堤高さ (mm)	土堤の足ま での距離 (mm)	土堤頂部厚さ (mm)	土堤の面数
1-1~1-3	1/7.937	EMX2 80	504	473	126	1面

表 4.1.2.2-2 土堤の形状、種類

実験 No.	土堤の形状	擁壁の有無 擁壁高さ、厚さ	土堤の種類				
1-1	内側 90 度、外側 45 度	なし	ソイルセメント				
1-2	内側 60 度、外側 45 度	下 1/2 擁壁、50t	補強土+普通土				
1-3	内側 45 度、外側 45 度	下 1/2 擁壁、50t	普通土				

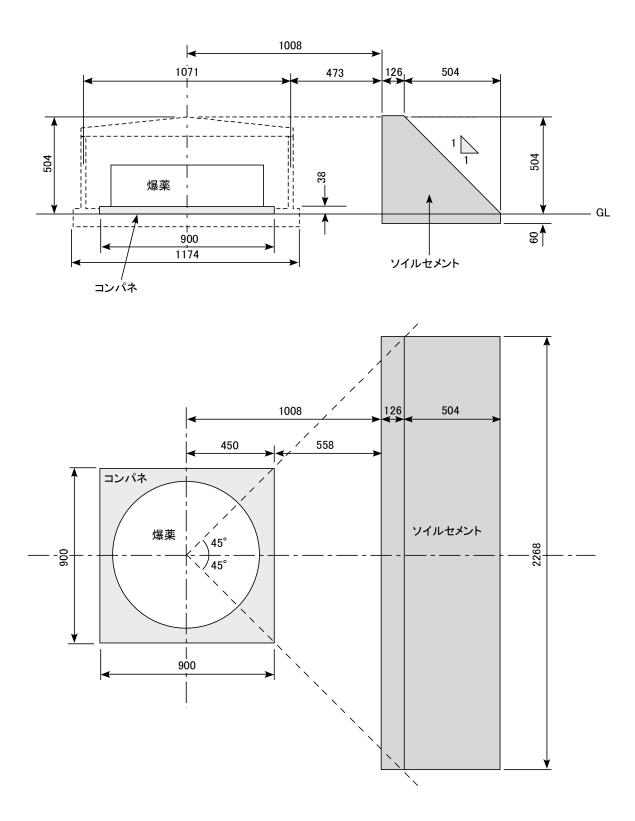


図 4.1.2.2-1 実験 No.1-1 内側垂直ソイルセメント土堤(擁壁無し) 1/7.9 スケール

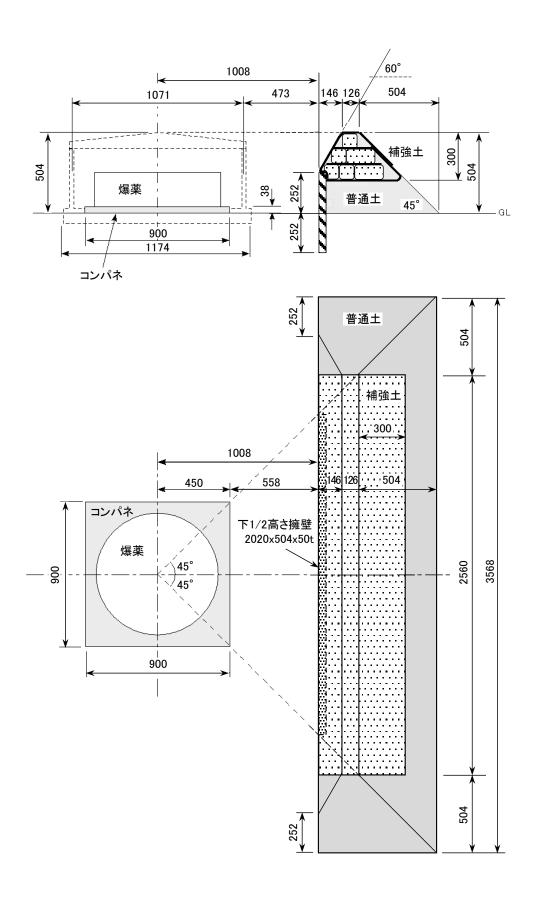
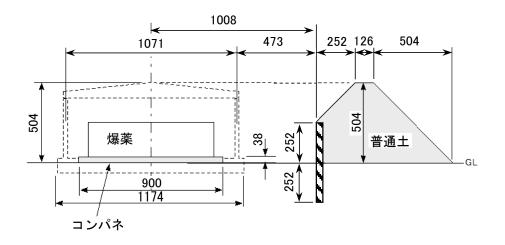



図 4.1.2.2-2 実験 No.1-2 内側 60 度+1/2 擁壁土堤 1/7.9 スケール

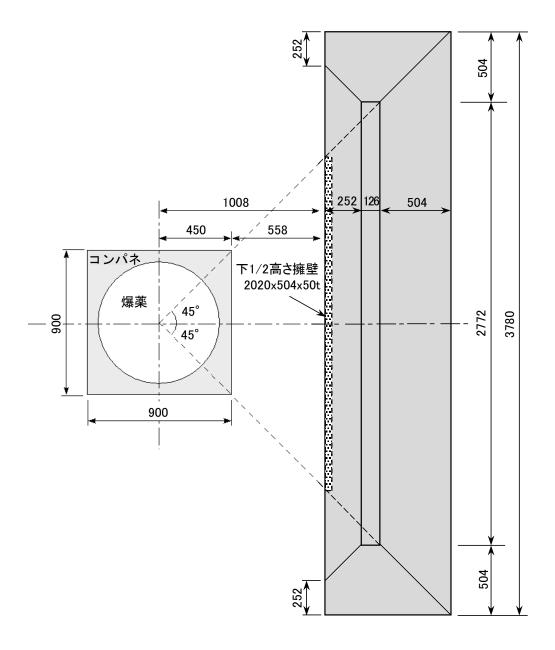


図 4.1.2.2-3 実験 No.1-3 内側 45 度+1/2 擁壁土堤 1/7.9 スケール

②ソイルセメント土堤の施工方法

1. ソイルセメント土堤の諸元

表 4.1.2.2-1 にソイルセメント土堤の諸元を示す。

表 4.1.2.2-1 ソイルセメント土堤の諸元

実験No.	土堤の種類	縮尺(寸法:高さ×幅 mm)	体積 (m³)*	爆薬量(kg)
1-1	ソイルセメント	1/7.9 (564 × 2268)	0.518	80

*土堤の天端幅と根入れ深さ:12.6cm、6cm

2. ソイルセメント

- 1) 土または砂の含水比:10~15%
- 2) 含水比試験: (水の質量 mw/土砂の質量 ms) ×100(%)
 - ・自然状態の土砂の質量: mw + ms
 - ・炉乾燥後: $(m_W + m_S) m_W = m_S$
- 3) セメント
 - 早強ポルトランドセメント
 - ・土または砂 1 m³ に 200 kg の割合で加えて良く混練
- 4) 転圧による締固め
- 5)整形
- 6) 使用した土砂の粒度分布

3. 土堤作成に必要なセメント量(試験体分と削り取る部分を含む)

4. ソイルセメント土堤の構築

図 4.1.2.2-1~4.1.2.2-3 にソイルセメント土堤の構築方法を示す。

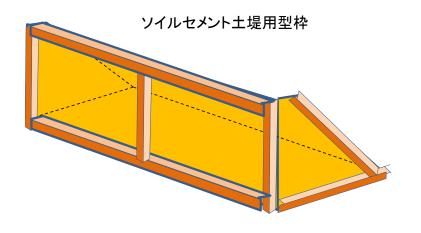


図 4.1.2.2-1 構築用型枠

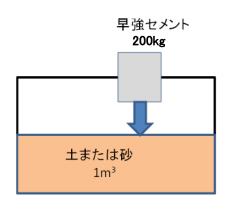


図 4.1.2.2-2 砂とセメントの混練

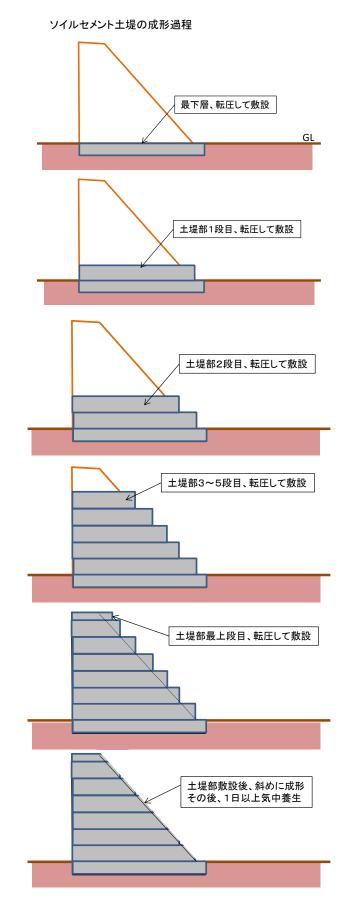
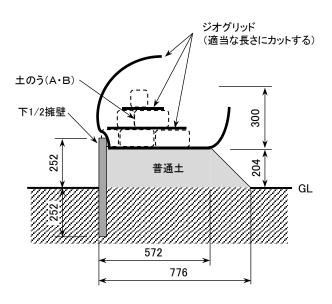



図 4.1.2.2-3 ソイルセメント土堤の構築過程

④補強土土堤の作成方法

図 4.1.2.2-4 に補強土を用いた土堤の作成概要を示す。補強土は大きさの異なる土のうAとBを組み合わせて既定の大きさに積み上げ、最後にジオグリッドを巻きつけて作成する。ジオグリッドには、平成26 年度実験と同じ網目ピッチ 10 mm×10 mm の樹脂メッシュを使用する。図 4.1.2.2-5 に土のうA、土のうBの作成方法を示す。

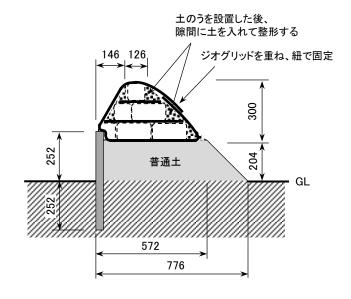


図 4.1.2.2-4 補強土土堤の作成方法

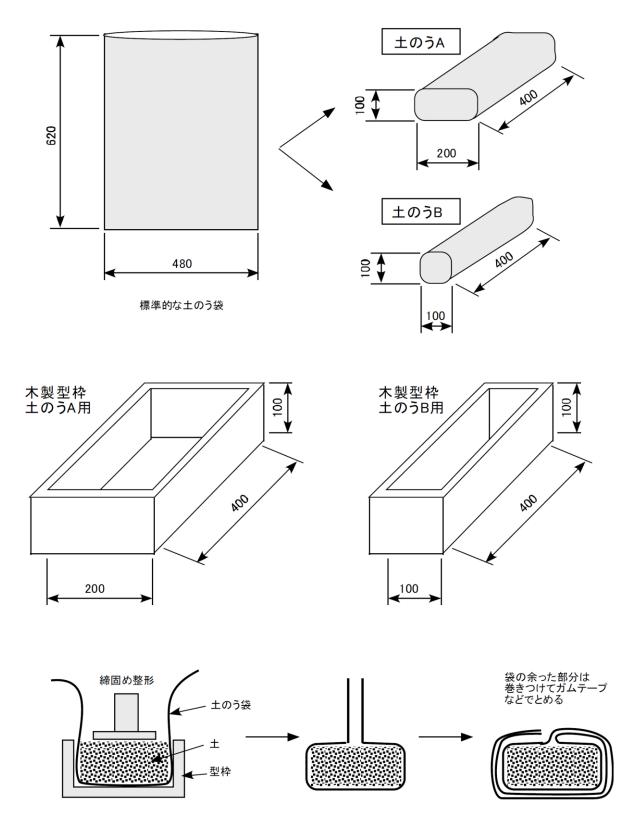


図 4.1.2.2-5 補強土用土のうの作成方法

⑤コンクリート擁壁の製作、配筋の加工

図 4.1.2.2-6 に配筋の概要図を示す。図 4.1.2.2-7 に配筋の切り出し図面を示す。図 4.1.2.2-8 に溶接金網の加工上の留意点を示す。

擁壁の配筋として ϕ 5-50×50の溶接金網(大きさ 2000×1000 mm)を切り出して用いた。擁壁の幅は 2020 mm で溶接金網の幅は 2000 mm であるため、左右の幅のかぶり(コンクリート表面から鉄筋までの厚さ)はそれぞれ 10 mm となる。それ以外の面(上面、底面、爆薬側の面とその裏面)のかぶりはそれぞれ 5 mm とした。

爆薬側の配筋は上側を曲げ、コンクリート擁壁も爆薬側の角を取った。また、溶接金網は両側とも縦筋が爆薬側になるように配置した。

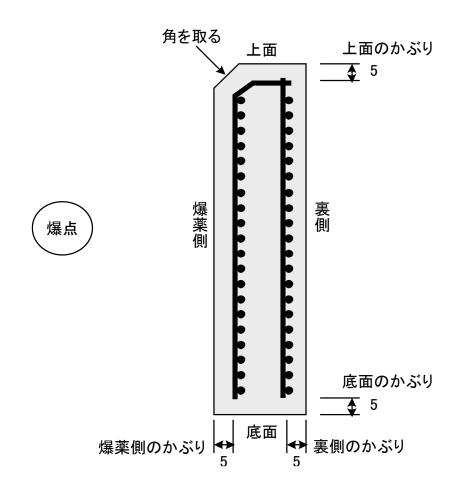
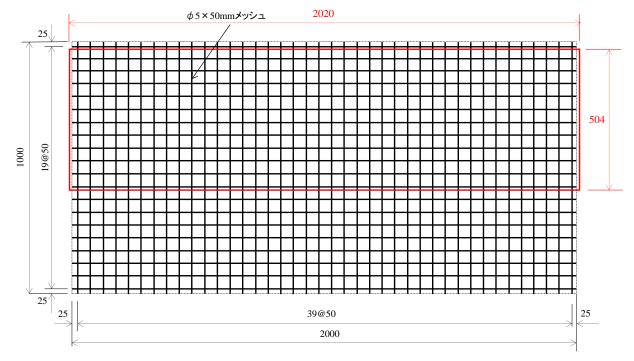
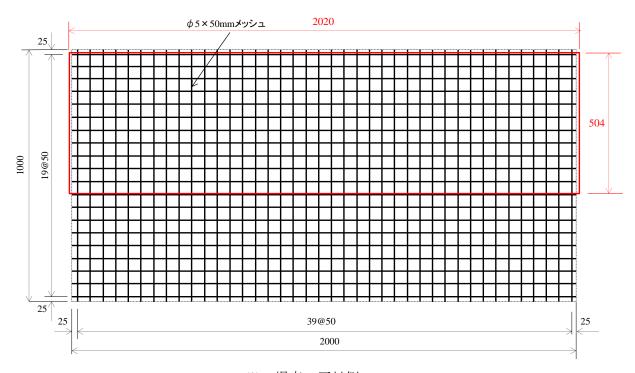




図 4.1.2.2-6 配筋の概要図

(1) 爆点側

(2) 爆点の反対側

図 4.1.2.2-7 擁壁配筋 切り出し図面 図中の赤枠はコンクリート壁の大きさを表している。

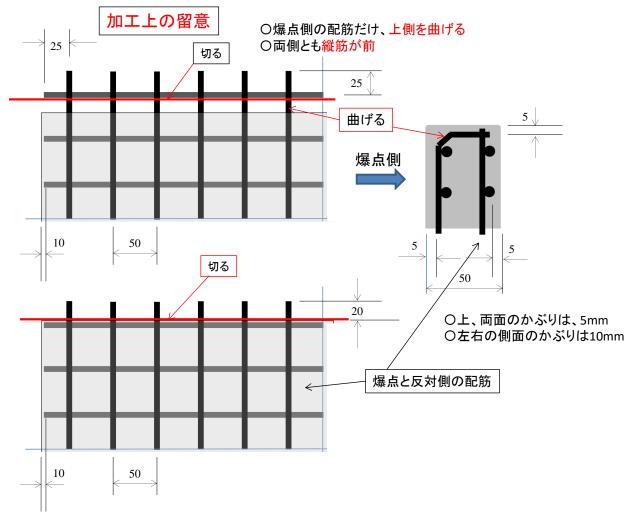


図 4.1.2.2-8 溶接金網の加工上の留意 コンクリート(図中で灰色)と金網の位置関係を示す。

⑥擁壁の着色

表 4.1.2.2-2 にコンクリート擁壁の着色一覧を示す。実験 No.1-2 の擁壁はコンクリート自体に色を付け、また、実験 No.1-2 と No.1-3 の擁壁はともに全面を表面塗装した。

実験 No.	大きさ (mm)	内部着色	表面着色
1-2	$2020\times504\times50$	赤	黄
1-3	$2020\times504\times50$	_	青

表 4.1.2.2-2 擁壁の着色一覧

なお、コンクリート擁壁については、擁壁作製時に同時に試験サンプルを作製し、圧縮強度試験他の材料試験を実施した。その材料試験結果と使用したコンクリートの配合組成を付録8に示す。

ソイルセメントについては、実験場での土堤構築時に使用した土の試験サンプルを採取し、また同時にソイルセメント試験サンプルを作製し、これらの土質試験、圧縮試験他の材料試験を実施した。 その結果を付録8に示す。

⑦試験体の設置状況

図 4.1.2.2-9~4.1.2.2-11 に各実験の試験体設置状況を示す。

実験 No.1-1 片側垂直土堤(ソイルセメント)の作成状況

図 4.1.2.2-9 試験体設置状況 (作製・養生 11 月 17 日~、装薬・実験 11 月 19 日)

実験 No.1-2 内側 60 度+1/2 擁壁土堤の作成状況

図 4.1.2.2-10 試験体設置状況 (作製 11 月 20 日、装薬・実験 11 月 22 日)

実験 No.1-3 内側 45 度+1/2 擁壁土堤の作成状況

図 4.1.2.2-11 試験体設置状況 (作製 11 月 19 日、装薬・実験 11 月 20 日)

4.1.2.3 計測項目

爆風圧、飛散物、地盤振動計測、常速度・高速度ビデオカメラ撮影、および騒音計測を行った。図 4.0-3 に計測レイアウトを示す。

(1) 爆風圧計測

表 4.1.2.3-1 に爆風圧計の各 ch の距離を示す。図 4.1.2.3-1、4.1.2.3-2 に爆風圧計の設置状況と設置位置を示す。また、爆風圧計の設置状況写真を図 4.1.2.3-3 に示す。爆薬中心から防爆壁のある方向(0 度方向)に換算距離 4、8、12、16 m/kg $^{1/3}$ の位置に爆風圧計を設置した。計測高さは 0.15 m で、爆風圧計は専用のホルダー(整流板)で側圧を測定するように設置した。飛散物の直撃から爆風圧計を防護するために、爆点から 11 m の位置に ϕ 50 mm、高さ 500 mm の鋼管を立てた。

ピエゾ圧力素子には、PCB 102M256(>250kHz、200mV/psi)を使用した。ピエゾ圧力素子の出力はライン・ドライバー (H-TECH Triple mode 30222) で増幅し、low noise ケーブルを通して波形記憶装置 (Tasler LTT184/8) に入力・記録した。

	五 1.1.2.3			μ.	
ch	距離(m)	高さ(m)	換算距離	記録	機器
CII	匹內比(III)	同 C (III)	$(m/kg^{1/3})$	Tasler	HIOKI
ch1	17.23	0.15	4	\circ	
ch2	34.47	0.15	8	0	
ch3	51.71	0.15	12	0	
ch4	68.94	0.15	16	0	

表 4.1.2.3-1 爆風圧計の各 ch の距離

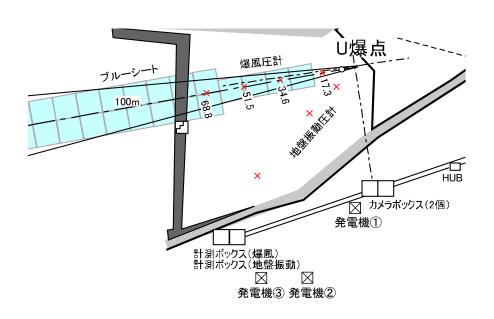


図 4.1.2.3-1 爆風圧計の設置位置

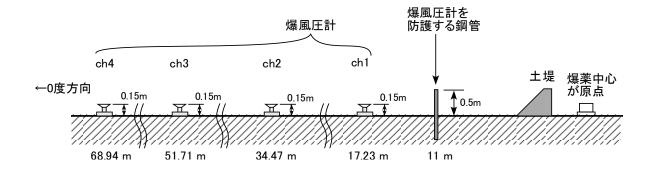


図 4.1.2.3-2 爆風圧計設置位置

図 4.1.2.3-3 爆風圧計設置状況写真 (左:chlのセンサー、右:ch2からch4のセンサー)

(2) 飛散物計測

実験 No.1-1~1-3 において、飛散物(コンクリート破片やソイルセメントの破片)の状況を計測した。 図 4.1.2.3-4 に飛散物の回収領域を示す。回収を確実にするため、ブルーシート($10\,\mathrm{m}\times10\,\mathrm{m}$)を敷設した。 図 4.1.2.3-4 で番号付きの正方形はブルーシートを示す。また、回収領域を実験場の地図と重ねて描いたものが図 4.1.2.3-5 である。

回収領域は、ブルーシート上の爆点から 0° 方向(+X 方向)を中心に開き角 10° (片側 5°)以内、距離 $20\,\mathrm{m}$ から $200\,\mathrm{m}$ までの範囲($60\,\mathrm{m}$ までは $10\,\mathrm{m}$ 幅、 $60\,\mathrm{m}$ 以遠は $20\,\mathrm{m}$ 幅)とした。質量 $5\,\mathrm{g}$ 以上の飛散物を回収し、その位置(+X 方向及び+Y 方向の距離)と質量を計測した。

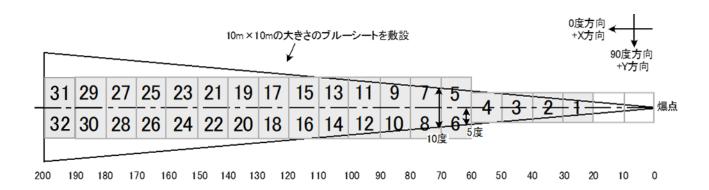


図 4.1.2.3-4 飛散物の回収領域

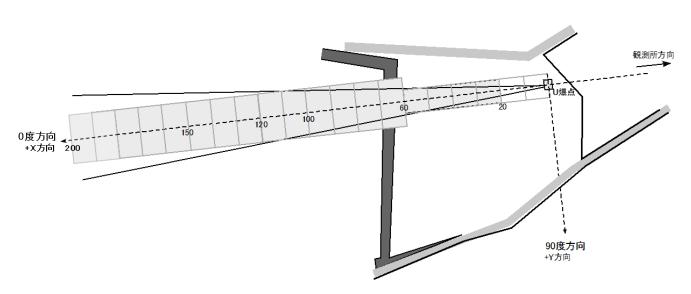
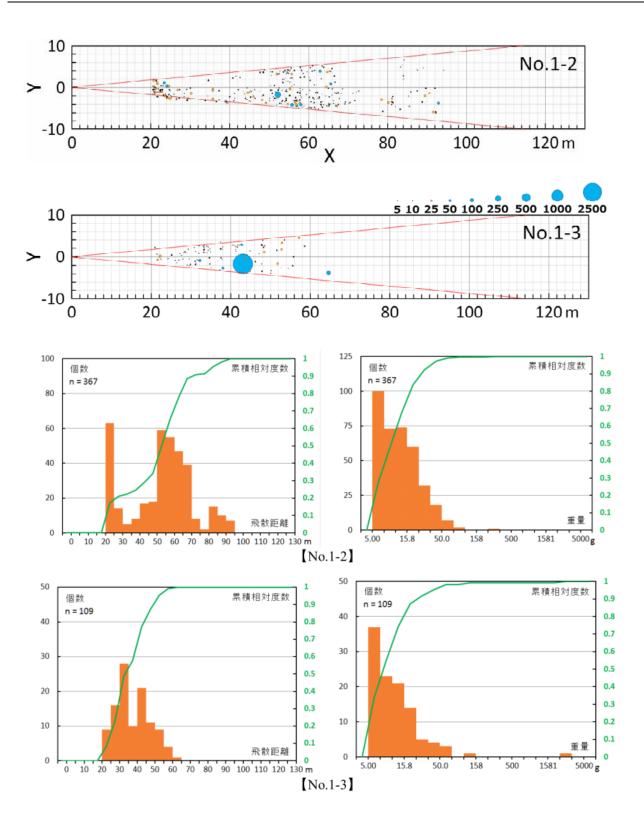



図 4.1.2.3-5 ブルーシートの設置位置

【参考】 平成 26 年度実験の飛散物計測結果

実験番号	実験内容	爆薬	飛散物 の個数	最大飛散距離の飛散物 距離 (質量)	最大質量の飛散物 質量 (距離)
No.1-2	垂直(ソイルセメント)	EMX2 80kg	367	94.3 m (6.0 g)	300 g (52.2 m)
No.1-3	垂直(1/2 擁壁)	EMX2 80kg	109	64.7 m (136.8 g)	3,380 g (43.0 m)

他の実験による飛散物が混在しないよう、実験のたびにブルーシート上を箒で掃きとった。点火前には、回収すべき大きさの破片や石がシートに乗っていないことを確認した。また、垂直土堤を構成する 擁壁に由来する飛散物を識別しやすくするため、擁壁の表面にはペンキで塗装を施した。着色は表 4.1-5 に示した。

点火後、地表にある 5g 以上の飛散物を対象に、位置座標 X,Y (m) および重量 m (g) を記録した。 ブルーシート上の飛散物に対しては、あらかじめ 0° 線上で飛散物に最も近い位置 T'を定め、位置 T' における巻尺の目盛を読み X とした。また、別の巻尺で、位置 T'と飛散物との距離を測り Y とした。対象となる飛散物の数が多く、効率的に作業を進める必要があるため、位置 T'の決定は目視に依った。読み取り位置の誤差は ± 20 cm 程度と推定されるが、飛散距離 (20 m 以上の数値となる) に対する誤差は1%以下となり精度は十分確保される。また、質量 m は飛散物の傍らに持参した上皿秤で計測した。秤の読み取り精度は 0.1 g であるが、使用時は屋外で水平がとれないことや、風が吹いているなどの環境であったため、測定値に含まれる誤差は ± 0.5 g 程度と思われる。

飛散物の位置座標は上記の手法による記録値をそのまま用いており、他の補正は加えていない。すなわち、着地後の跳ね滑りや、地上に設置した機器等との衝突による落下位置のずれ、地表面の高低差を考慮していない。

飛散距離Dおよび方位角はこれらの値から算出した。現地で収集した記録データには、実験間の比較の際に不適切なものが含まれるため、以下のア、 \sim エ、に該当するデータは除外した。

ア. 爆点からの距離が 20 m 未満のもの

爆点近傍の特に数キログラムを超える重量飛散物の計測は別に行った。

<u>イ. 質量が 5 g</u>未満であるもの

記録時に対象としていないため除いた。

ウ. 方位角が 0 度方向から±5 度を越える方向に飛散したもの

イ.と同様の理由による。

工. 重量飛散物

鉄筋のついたコンクリート擁壁は飛散物ではあるが、飛散に影響する要素や生成過程がコンクリート破片や飛石とは大きく異なるため、検討は別の節で扱う(4.1.3.1(2)を参照)。

(3) 地盤振動計測

爆薬量 80 kg の爆発による地盤振動(加速度)を計測した。表 4.1.2.3-2 に地盤振動計の距離および換算 距離を、図 4.1.2.3-6 に地盤振動計の設置位置を、図 4.1.2.3-7 に計測軸方向を示す。

加速度センサーは圧電型の 3 軸加速度計 TEAC 612ZS(電荷出力型, 感度 0.16 pC/m/s2, 周波数応答 fc -20 kHz)を用いた。加速度センサーの地盤への固定は、一本杭に平面皿を取付けた設置台としてアルミ製の治具(直径 20 mm、長さ 200 mm の杭)を地盤にハンマーで打ち込み、そこにセンサーを接着固定した(図 4.1.2.3-8)。センサーからの出力はローノイズケーブル TEAC CL-601 (1.5 m)で圧電型加速度計センサー用アンプ TEAC SA-611(最大振動数範囲 0.2~30 kHz, 最大入力 100 kpC, ± 10 V)(図 4.1.2.3-9)に接続し、増幅した上で同軸ケーブルにより信号を観測 BOX まで伝送し、観測 BOX に設置した高速データロガーMR8847-51(16 チャンネル、サンプリング 1 MHz に設定)で電圧情報として記録した。

•	J 2 PUIII. 1/12	(7) I (7) KE	
		爆薬「	中心から
		距離	換算距離
		(m)	$(m/kg^{1/3})$
	Ac1	17.2	4
	Ac2	34.4	8
	Ac3	68.8	16

表 4.1.2.3-2 地盤振動計 (加速度計) の各 ch の距離

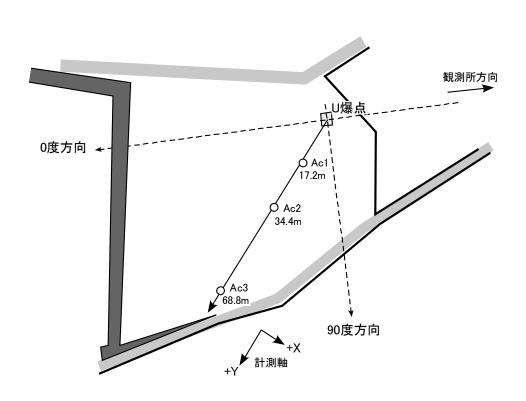


図 4.1.2.3-6 地盤振動計の設置位置

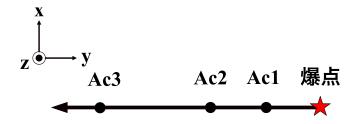
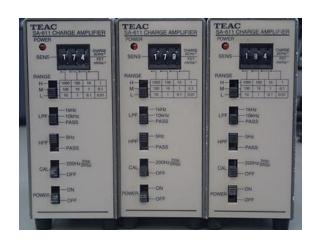



図 4.1.2.3-7 地盤振動計の設置距離と計測軸方向

(4) 常速度・高速度ビデオカメラ撮影

爆発によって発生した衝撃波の伝播状況や飛散物の飛散状況等を観察するために、高速度カメラによる撮影を行った。観測所 1 の屋上に Vision Research 社製高速度カメラ Phantom V640 カラーモデルを設置し、爆発状況の全景を撮影した。また、90 度方向のカメラボックス①にはナックイメージテクノロジー社製高速度カメラ MEMRECAM fx-K4 カラーモデルを、同じく 90 度方向のカメラボックス②には Vision Research 社製高速度カメラ Phantom V1210 カラーモデルを設置した。カメラボックスから撮影する際には 20 mm 厚さのアクリル製窓を使用し、カメラボックス前面に土嚢を設置するなど飛散物の衝突からカメラを防護した。撮影タイミングの制御には観測所 1 に設置したデジタル遅延パルス発生装置 (Berkeley Nucleonics 社製、BNC model 575-8ch.) を使用し、雷管起爆信号と同期した電気信号をトリガーパルスとして使用した。また、観測所 1 の屋上、カメラボックス①及び②に常速度カメラを設置し、爆発状況の撮影を実施した

図 4.1.2.3-10 に観測所 1 の屋上に設置した高速度カメラの写真を示す。図 4.1.2.3-11、4.1.2.3-12 には、2 つのカメラボックスに設置した高速度カメラの写真を示す。

図 4.1.2.3-10 観測所 1 の屋上に設置した高速度カメラ

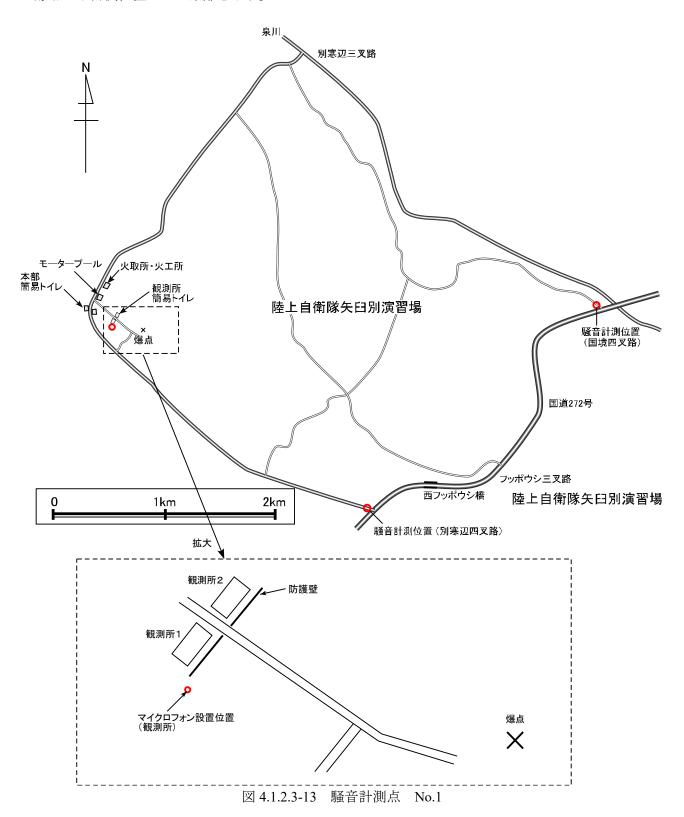

図 4.1.2.3-11 カメラボックス①内の 高速度カメラ

図 4.1.2.3-12 カメラボックス②内の 高速度カメラ

(5) 騒音計測

マイクロフォンと騒音計を用いて爆発時の騒音を測定した。図 4.1.2.3-13 に測定位置を示す。観測所付近にマイクロフォンを、遠方の2点(別寒辺四叉路、国境四叉路)に騒音計を設置した。表 4.1.2.3-3 に爆点から計測位置までの距離を示す。

観測所 1 の脇にマイクロフォン (PCB 社 377C01) を設置した。図 4.1.2.3-14 に使用したマイクロフォンの写真を示す。三脚の頭部に 200 mm ほどの棒をビニールテープで固定し、その先端にマイクロフォンをビニールテープで固定した。マイクロフォンは図 4.1.2.3-15 に示すように爆点の方向へ向けて設置した。マイクロフォンの出力信号は観測所 1 内に設置したリアルタイムアナライザ OROS を介してパソコンと接続し、記録した。

別寒辺四叉路、国境四叉路では、騒音計 BK2250(図 4.1.2.3-16)と騒音計 NL-31(図 4.1.2.3-17)をそれぞれ 1 台ずつ設置し、爆発前後の約 $1\sim2$ 分間の騒音を測定した。

五	.1.2.3 3 DC/11/DXTILIA	0 & O / / / / / / &		
計測場所	使用機器	機器型番	距離	換算距離
			m	m/kg ^{1/3}
観測所付近	マイクロフォン	377C01	192	45
別寒辺四叉路	騒音計	BK2250	2730	634
		NL-31	2730	634
国境四叉路	騒音計	BK2250	4170	968
		NL-31	4170	968

表 4.1.2.3-3 使用機器および爆点までの距離

図 4.1.2.3-14 PCB 社製マイクロフォン

図 4.1.2.3-15 マイクロフォン設置状況

図 4.1.2.3-16 騒音計 BK2250

図 4.1.2.3-17 騒音計 NL-31

4.1.3 実験結果

4.1.3.1 爆発後の爆点の様子(破壊状況計測)

(1) 漏斗孔の大きさ

実験 No.1-1 は内側垂直ソイルセメントの土堤を設置した。実験 No.1-2 は内側 60 度でそのうち下半分が擁壁の土堤を設置した。実験 No.1-3 は内側 45 度でそのうち下半分が擁壁の土堤を設置した。

表 4.1.3.1-1 に実験ごとの漏斗孔の大きさを示す。漏斗孔の直径は 0 度方向と 180 度方向のライン、90 度と 270 度方向のラインを巻尺で GL (地盤面レベル) =0 の直径を測定した。漏斗孔の深さは漏斗孔の最深部 (=爆点中心)と GL=0 で張った巻尺の距離 (深さ)を測定した。参考として実験 No.2 の結果を示した。同じ爆点で同じ薬量であるが、漏斗孔の大きさや深さにばらつきがでた。特に実験 1 回目がそれ以降の実験より漏斗孔の深さが一番深くなったのは、昨年までの同種の実験における 2 回目以降の実験のほうが漏斗孔が深くなる傾向とは異なっている。今回そうならなかったのは 1 回目の実験後からの降雨で埋め戻した地面が粘土質状になっていた影響と考えられる。

表 4.1.3.1-2 に同じテーマ、同じ薬量で行った平成 26 年度の実験結果を参考として示す。

図 4.1.3.1-1~図 4.1.3.1-3 に実験 No.1-1~No.1-3 の漏斗孔の写真を示す。

漏斗孔の形状と直径(mm) 実験 No. 漏斗孔の深さ(mm) 実験順番 (0-180 度方向×90-270 度方向) U 爆点 1 回目 1-1 3100×3500 1120 1-2 3400×3500 840 U 爆点 3 回目 U 爆点 2 回目 1-3 3200×3600 850 (参考) 2 4250×4100 1090 U 爆点 4 回目

表 4.1.3.1-1 漏斗孔の大きさ

表 4.1.3.1-2	(参考)	漏斗孔の大きさ	平成 26 年度実験結果

実験 No.	漏斗孔の形状と直径 (mm) (0-180 度方向×90-270 度方向)	漏斗孔の深さ(mm)	実験順番
1-2	3025×3750	1010	U 爆点 1 回目
1-3	3600×3500	815	L 爆点 3 回目
1-4	3700×4000	1170	U 爆点 4 回目

図 4.1.3.1-1 漏斗孔の写真 実験 No.1-1

図 4.1.3.1-2 漏斗孔の写真 実験 No.1-2

図 4.1.3.1-3 漏斗孔の写真 実験 No.1-3

爆発後、爆点には漏斗孔が形成された。図 4.1.3.1-4 に実験 No.1-1 の漏斗孔の形状を示す。図中の赤い破線は爆発前の土堤の設置位置である(以降、同じ)。0 度方向に設置したソイルセメント土堤はすべて飛散しており、爆点には残っていない。ただし、0 度方向には地面を転圧した形跡が残っており、他の方向より少しだけ漏斗孔の径が小さくなっている。

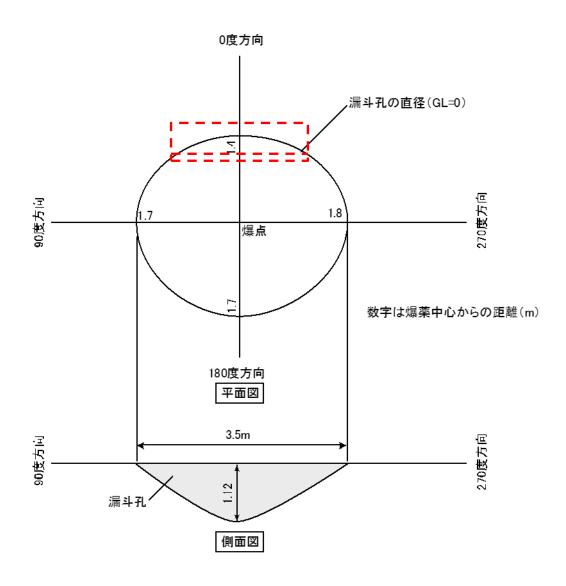


図 4.1.3.1-4 漏斗孔の形状 実験 No.1-1

爆発後、爆点には漏斗孔が形成された。図 4.1.3.1-5 に実験 No.1-2 の漏斗孔の形状を示す。0 度方向にコンクリート擁壁の半分(地面に埋めていた分)だけ残っていた。残りの上半分は 14.3 m 地点に飛散していた。擁壁以外の土堤はすべて飛散しており、爆点には残っていなかった。

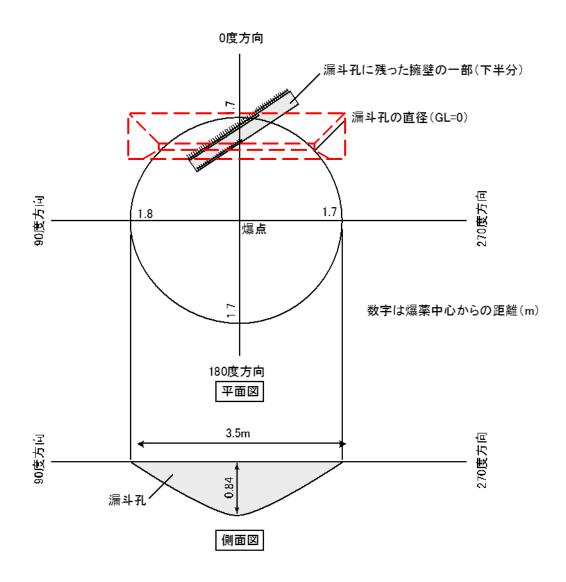


図 4.1.3.1-5 漏斗孔の形状 実験 No.1-2

爆発後、爆点には漏斗孔が形成された。図 4.1.3.1-6 に実験 No.1-3 の漏斗孔の形状を示す。爆点にコンクリート擁壁が残っておらず、0 度方向 8.6 m 地点に擁壁の全体が飛散していた。擁壁以外の土堤はすべて飛散しており、爆点には残っていなかった。

図 4.1.3.1-6 漏斗孔の形状 実験 No.1-3

(2) 爆発後の様子

実験 No.1-1

実験後、細かい土砂が遠くまで飛散した。大きな塊の飛散物はでなかった。図 4.1.3.1-7、4.1.3.1-8 に実験後のブルーシートを撮影した写真を示す。なお、飛散物の詳細な計測結果は 4.1.3.3 飛散物計測結果に示す。

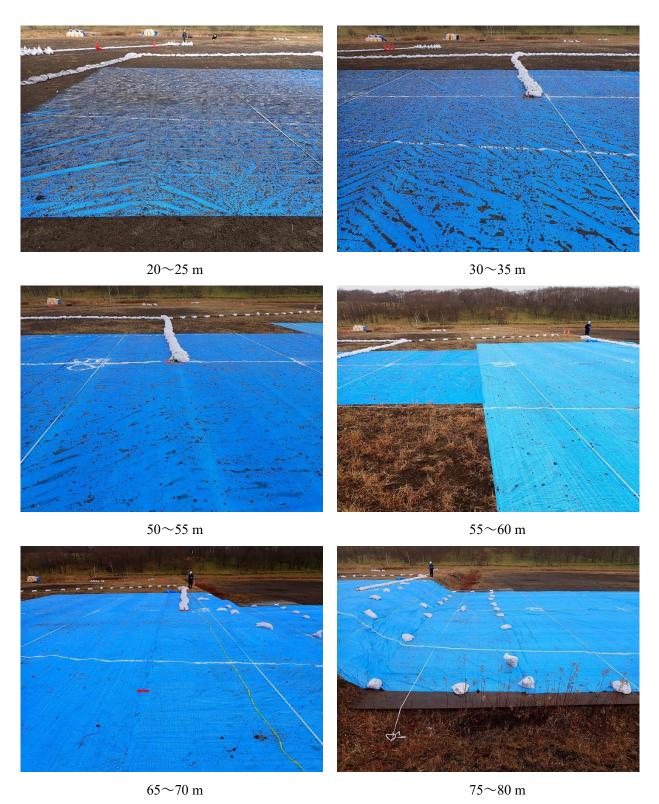


図 4.1.3.1-7 爆発後の様子 実験 No.1-1

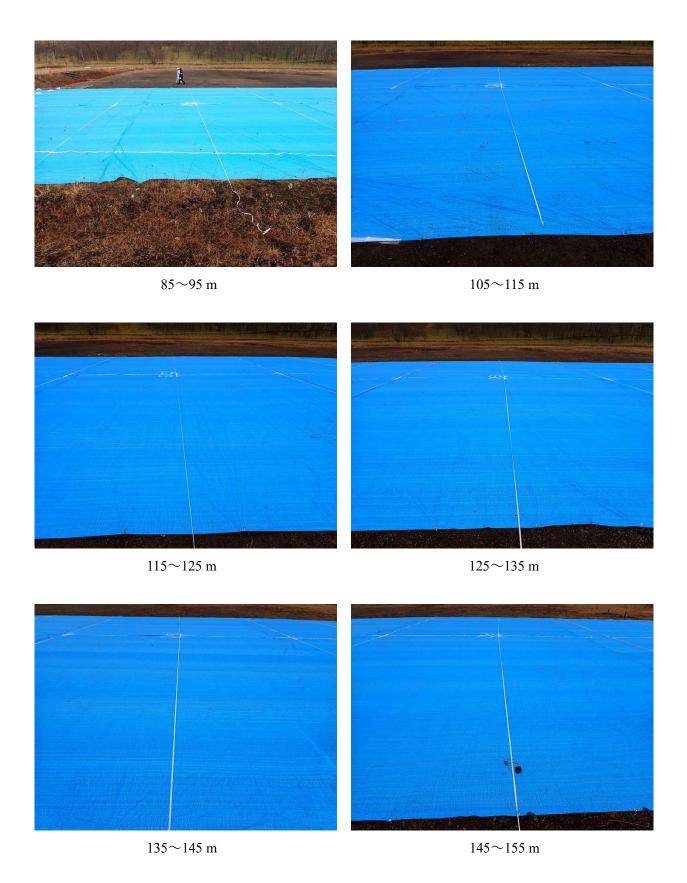


図 4.1.3.1-8 爆発後の様子 実験 No.1-1

図 4.1.3.1-9、4.1.3.1-10 にコンクリート擁壁の飛散状況と写真を示す。擁壁は地面に埋まっていた下半分は漏斗孔に残った。上半分は 14.3 m 地点に飛散していた。この飛散距離であれば、実スケール(40 トン庫)であっても数十 m 程度の飛散であると考えられ、コンクリート擁壁は保安物件まで飛散するような危険な重量飛散物にはならないことが確かめられた。擁壁以外の土堤は細かくなって飛散しており、補強土のジオグリッドや土のう袋の破片が散らばっていた。図 4.1.3.1-11 に実験後のブルーシートを撮影した写真を示す。

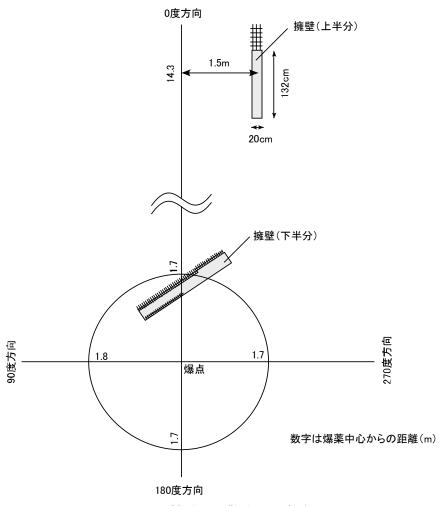


図 4.1.3.1-9 擁壁の飛散状況 実験 No.1-2

図 4.1.3.1-10 爆発後の擁壁の写真 実験 No.1-2

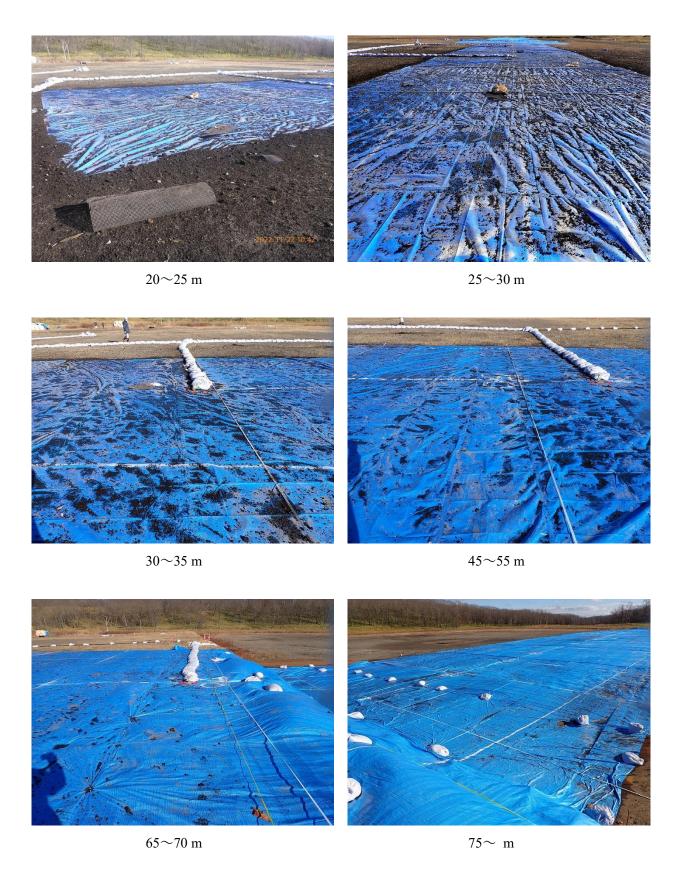


図 4.1.3.1-11 爆発後の様子 実験 No.1-2

図 4.1.3.1-12、4.1.3.1-13 にコンクリート擁壁の飛散状況と写真を示す。擁壁は一体のまま 8.6 m 地点まで飛散していた。大きく損傷を受けて上半分と下半分に分かれそうなほどであったが、両端では金網が残っていたため一体を保っていた。この飛散距離であれば、実スケール(40 トン庫)であっても数十m程度の飛散であると考えられ、コンクリート擁壁は保安物件まで飛散するような危険な重量飛散物にはならないことが確かめられた。擁壁以外の土堤は細かくなって飛散していた。図 4.1.3.1-14 に実験後のブルーシートを撮影した写真を示す。

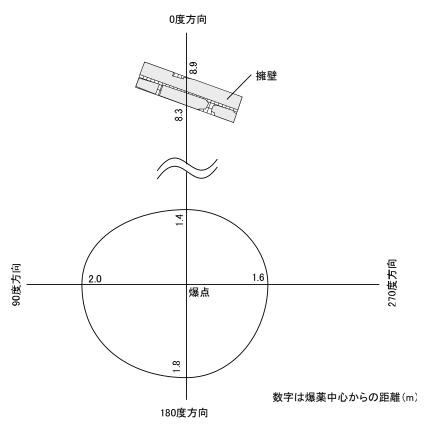


図 4.1.3.1-12 擁壁の飛散状況 実験 No.1-3

図 4.1.3.1-13 爆発後の擁壁の写真 実験 No.1-3

15∼20 m 30∼20 m

35~40 m 45~50 m

70~80 m 80~90 m

図 4.1.3.1-14 飛散物の写真 実験 No.1-3

爆発後の爆点の状況(破壊状況計測)まとめ

- ・爆発後、爆点には大きな漏斗孔が生じた。実験 No.1-1 は最初の実験であったが、漏斗孔は一番深くなった。実験 No.1-2 と No.1-3 の漏斗孔が実験 No.1-1 より小さかったのは、降雨の影響により埋め戻した土砂が粘土状になっており、その影響と考えられる。
- ・土堤や擁壁は爆発によってまっすぐ吹き飛ばされた。実験 No.1-1 では粉砕されたソイルセメントの破片が飛散した。実験 No.1-2 及び No.1-3 のコンクリート擁壁有りの土堤では、擁壁以外の土堤は細かくなって遠方まで飛散していた。擁壁は爆点のごく近傍に吹き飛ばされ、実験 No.1-2 では擁壁の上半分が 14.3 m 地点まで、実験 No.1-3 では擁壁全部が 8.6 m 地点まで飛散した。この飛散距離であれば、実スケールにおいても保安物件まで飛散するような危険な飛散物にはならないことが確認された。

4.1.3.2 爆風圧計測結果

(1) 爆風の時間履歴

図 4.1.3.2-1~4.1.3.2-3 に実験ごとの爆風波形を示す。実験 No.1-2 の Ch. 2(K 値 8.02)のみ $80\,\mathrm{ms}$ において 2 回目の衝撃波を観測した。

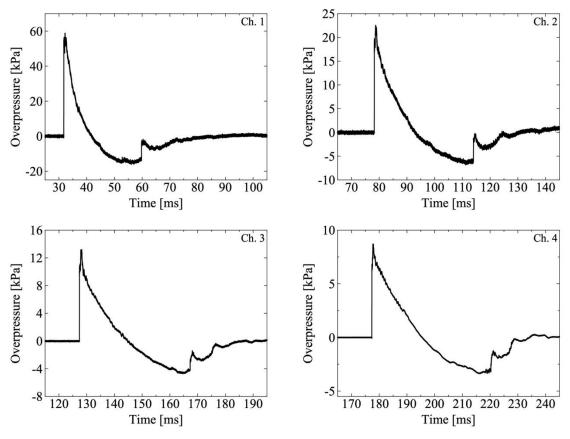


図 4.1.3.2-1 実験 No.1-1 爆風の時間履歴

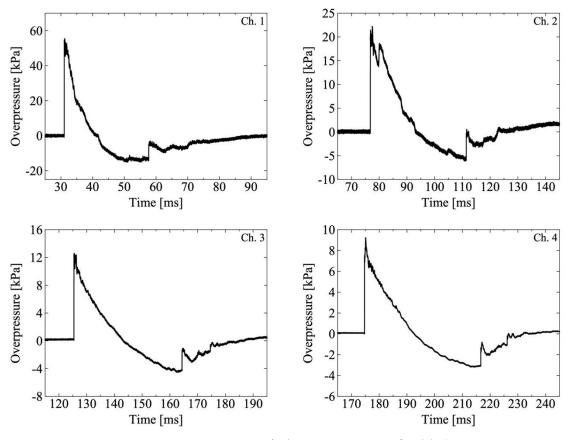


図 4.1.3.2-2 実験 No.1-2 爆風の時間履歴

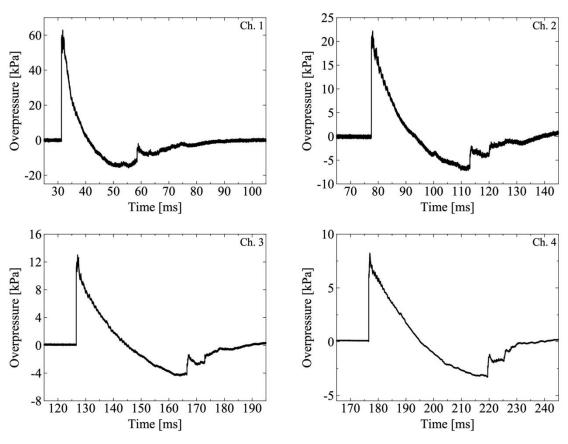


図 4.1.3.2-3 実験 No.1-3 爆風の時間履歴

(2) 爆風パラメータ

ピーク静水過圧、正圧相インパルス、到達時刻、および持続時間を算出した結果を表 4.1.3.2-1~4.1.3.2-3 に示す。なお、実験 No.2 との比較は 4.2.3.2 で行う。

表 4.1.3.2-1 実験 No1-1 の爆風パラメータ

	換算距離	ピーク静水過圧	正圧相インパルス	到達時刻	持続時間
	$(m/kg^{1/3})$	(kPa)	(Pa s)	(ms)	(ms)
Ch. 1	4.02	56.04	215.15	31.82	9.65
Ch. 2	8.02	21.98	121.29	78.38	14.10
Ch. 3	12.02	12.40	81.01	127.53	16.79
Ch. 4	16.01	8.64	63.13	177.48	17.63

表 4.1.3.2-2 実験 No1-2 の爆風パラメータ

	換算距離	ピーク静水過圧	正圧相インパルス	到達時刻	持続時間
	$(m/kg^{1/3})$	(kPa)	(Pa s)	(ms)	(ms)
Ch. 1	4.02	54.32	197.75	31.19	10.57
Ch. 2	8.02	22.05	162.44	76.76	16.62
Ch. 3	12.02	11.71	84.78	125.60	17.37
Ch. 4	16.01	9.12	63.72	174.75	17.46

表 4.1.3.2-3 実験 No1-3 の爆風パラメータ

	換算距離	ピーク静水過圧	正圧相インパルス	到達時刻	持続時間
	$(m/kg^{1/3})$	(kPa)	(Pa s)	(ms)	(ms)
Ch. 1	4.02	61.68	215.24	31.38	9.74
Ch. 2	8.02	20.92	122.47	77.71	15.78
Ch. 3	12.02	12.66	84.39	126.69	18.05
Ch. 4	16.01	8.05	62.60	176.76	18.47

(3) 爆風パラメータの距離減衰

図 4.1.3.2-4 に各爆風パラメータを換算距離に対して示す。実験 No.1-2 の Ch. 2 (K 値 8.02) のみ正圧 相にて2回目の衝撃波を観測した影響により、他の実験に比べると換算正圧相インパルスが高いが、そ の他の計測点については同等な値を示している。

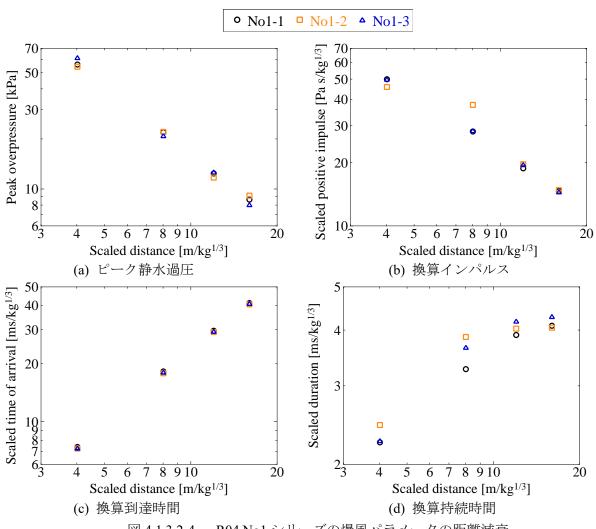


図 4.1.3.2-4 R04 No1 シリーズの爆風パラメータの距離減衰

爆風圧計測結果まとめ

土堤形状は爆風パラメータにほとんど影響を与えないことを確認した。

4.1.3.3 飛散物計測結果

飛散物分布の基礎情報を表 4.1.3.3-1 に示す。図 4.1.3.3-1 に各実験で得た飛散物の分布を示す。1つの点は1つの飛散物に対応し、その飛散物の質量を一定範囲ごとに区分して点の大きさとして示している。実験 No.1-2 では、ショット後の飛散物計測作業前の時点において、飛散物の飛散方向の全体的な傾向が回収領域の境界を示す-5°方向の境界線を超えていることが明らかであった。そのため、実験 No.1-2 においては、回収対象領域を-5°方向以内に限定せず計測作業を行なった。このことを検討するため、図 4.1.3.3-1 では各飛散物位置をもとにした幾何学的中心線(geometric center line)と中心点(centroid)、および各飛散物質量を重みとして考慮した重心線(center of gravity line)と重心点(barycenter)を主成分分析により算出したものを表示した。実験 No.1-2 および No.1-3 では、飛散方向の傾向がおおよそ基準線となる X 軸方向に沿っているのが分かる。一方 実験 No.1-2 では、明らかに飛散方向が X 軸方向からずれていることが確認された。飛散方向の大幅なずれの原因を探るため、記録班による測量データおよび記録写真をもとに爆薬の設置あるいは土堤の設置における施工上の影響がないか検討したが、飛散方向のずれの原因として判断されるようなものは見られなかった。

DDESB(米国国防省爆発物安全委員会)では、危険破片密度を 600 平方フィート($56.7 \, \mathrm{m}^2$)あたり 1 個になるものと定義している $^{1)}$ 。危険物とは、 $58 \, \mathrm{ft-lb}$ ($79 \, \mathrm{J}$)以上の衝撃エネルギーを持つ破片と定義されているが、ここで全ての飛散物が $79 \, \mathrm{J}$ のエネルギーを有すると仮定した場合(過剰評価)の飛散物の数密度分布を図 4.1.3.3-2 に示した。

破片の質量分布は、正規化した累積破片数 N(m)と正規化した累積破片質量 M(m)を用いて記述できる 2)。N(m)は質量が m より大きい破片の正規化累積数を表し、M(m)は個々の質量が m より大きい全ての破片の正規化累積質量を表す。図 4.1.3.3-3 には、距離に対する飛散物数分布と正規化累積破片数・破片質量の関係を示した。実験 No.1-1 の結果は、実験 No.1-2 や No.1-3 と比べて広範囲にまんべんなく飛散物が飛散していることがわかる。

表 4.1.3.3-1 飛散物分布の基礎情報

年度	実験番号		実験項目	総飛散	総質量	平均質量		最大重量			最大飛距離		幾何中心	٦. ا	質量中心	小小
		(kg)		物数	(g)	(g)	位置X(m)	位置Y(m)	質量(g)	位置X(m)	位置Y(m)	質量(g)	X(m)	Y(m)	X(m)	Y(m)
R04	No1-1	80	内側垂直ソイルセメント土堤	163	2204.1	13.52	150.05	8-8-	212.7	150.05	8.8-	212.7	74.69	-0.87	94.45	-2.77
	No1-2	80	内側60度土堤+1/2擁壁	78	1028.7	13.19	34.55	-7.01	90.4	43.9	8.8	26.7	30.07	-3.59	30.95	3.95
	No1-3	80	内側45度土堤+1/2擁壁	65	934.6	14.38	33.1	1.99	38.1	123.83	-9.46	7.2	35.71	-0.68	32.38	-0.59
	No2	80	基準爆風圧	27	352.9	13.07	46.1	2.14	58.5	67.95	0.4	18	44.13	0.12	44.63	0.04
H26	No1-1	10	片側垂直 (ソイルセメント)	62	1139.4	18.38	24.9	-0.2	123	76.3	-1.9	7.1	38.76	0.18	31.95	0.04
	No1-2	80	片側垂直 (ソイルセメント)	349	5467.5	15.67	52.2	1.7	300	94.2	4.14	9	53.00	-0.93	52.43	-1.05
	No1-3	80	片側垂直 (1/2高擁壁&盛土+1/2補強土)	107	4924.1	46.02	43	-1.7	3380	64.6	-3.8	136.8	37.97	0.41	42.44	-1.13
	No1-4	80	片側垂直 (3/4高擁壁&盛土+1/4補強土)	260	4844.1	18.63	35.3	2.5	200	38.4	2.9	5.6	28.11	06.0	29.11	0.88
	No2-1	80	45度基準土堤	10	171.1	17.11	100.3	4.6	40	106.3	-4.2	13.7	99.49	-1.25	101.11	-1.99
	No2-2	80	損壞土堤 両側45度													
	No2-3	80	損壊土堤 片側垂直土堤													
	No3-1	80	片側垂直(頂部厚1倍)擁壁厚50t	48	981.2	20.44	61.4	7.0	9.07	62.7	-2.3	5.2	51.55	-0.91	50.71	0.85
	No3-2	80	片側垂直(頂部厚2倍)擁壁厚50t	341	9812.9	28.78	22.9	-0.3	849	39.5	1.8	20.5	40.63	0.67	41.51	0.64
	No3-3	80	片側垂直(頂部厚4倍)擁壁厚50t	278	7480.2	26.91	21.1	0	181.5	22.4	0.1	53.7	25.91	0.12	25.23	0.08

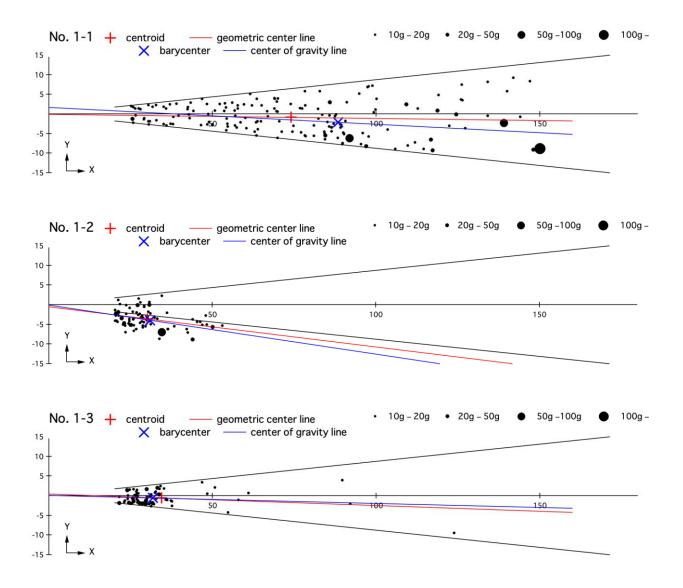


図 4.1.3.3-1 飛散物の分布状況

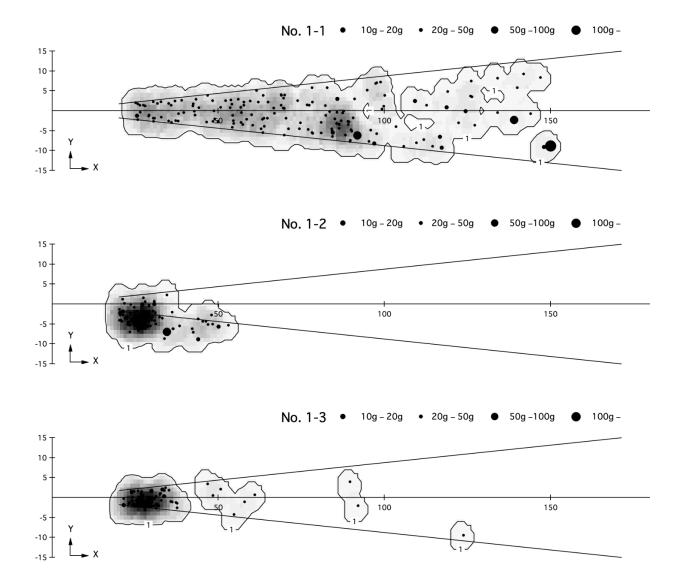


図 4.1.3.3-2 飛散物の数密度分布

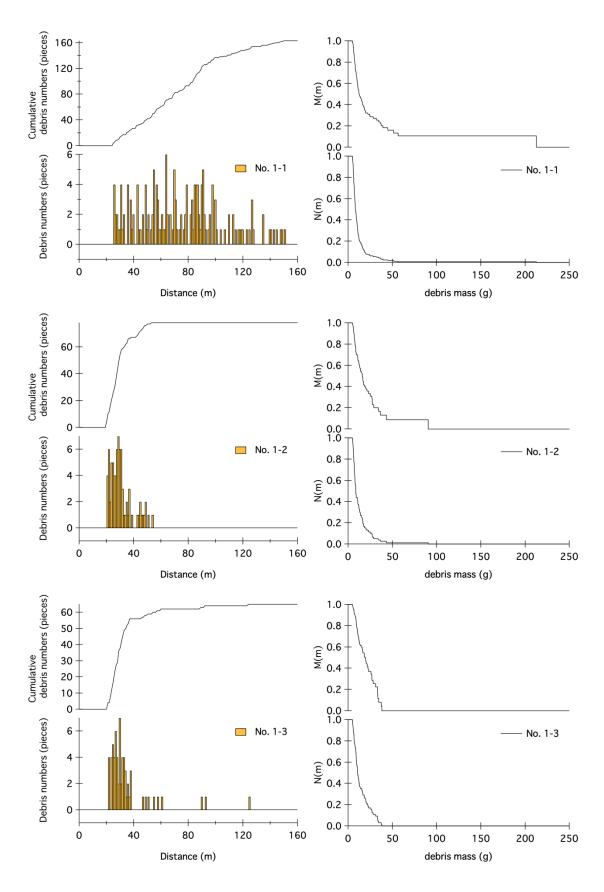


図 4.1.3.3-3 距離に対する飛散物数分布(左)と正規化累積破片数・破片質量(右)

危険飛散物の検討

図 4.1.3.3-2 は、回収した飛散物全てが DDESB で定義している危険物、つまり 58 ft-lb (79 J) 以上の衝撃エネルギーを持つ危険飛散物であると仮定した図であるが、ここで、実際に 79 J 以上の衝撃エネルギーを持つ破片の検討を行った。

物体が空気抵抗を受けながら放物運動する場合の運動方程式は以下の通り記述できる。

$$m\frac{dV}{dt} = -\frac{1}{2}\rho|V|VAC_D + mg$$

$$\frac{dV_x}{dt} = -\frac{1}{2m}\rho AC_D \sqrt{V_x^2 + V_y^2} \cdot V_x$$

$$\frac{dV_y}{dt} = -\frac{1}{2m}\rho AC_D \sqrt{V_x^2 + V_y^2} \cdot V_y - g$$

ここで、

ρ 大気密度 (kg/m³)A 飛翔体投影断面積 (m²)V 飛翔体速度 (m/s)

 C_D 抗力係数 (-) g 重力加速度 (m/s^2)

である。また、ここでの添字xは地表面水平方向、添字yは垂直方向を表す。

これらの式をもとに特に重要な飛散物として実験 No.1-1 で最大質量かつ最長飛散物となった 212.7 g の飛散物について弾道計算を行うことで地面着地時に飛散物が有するエネルギーを見積もった。

初期値として、飛散物の質量m、初期位置 X_0 、初速度ベクトル V_0 、投影断面積A、抗力係数 C_D が必要となる。ここでは物体は回転運動せず飛散方向に対して一定の投影断面積であると仮定した。飛散物の質量mは回収計測で得られた値 212.7 g、投影断面積Aは回収計測時に撮影した写真(図 4.1.3.3-4)の解析から寸法を割り出し、同等体積となる立方体の面積を適用した。初期位置 X_0 と初速度ベクトル V_0 は高速度撮影で取得した映像から当該飛散物と推定される物体の運動方向を映像解析し、その結果評価された解析基準位置 X_0 = (7.80 m, 5.78 m)、飛翔速さ V_0 = 74.33 m/s および飛翔角度 θ = 40.058°から決定した(図 4.1.3.3-5)。抗力係数 C_D は未知数となるが、 C_D を未知数として着地点X(x,y) = (150 m, 0 m)を満たす最適化問題を解くことで決定した。その結果 C_D 値は 1.008 と算出された。

その他すべての飛散物については、上述のようにして得られた C_D 値を固定する一方で、初速 V_0 を未知数として各飛散物の着地点X(x,y)=(飛散物回収位置,0m)となる初速 V_0 を、最適化問題を解くことで決定し、飛散物エネルギーを算出した。この場合の投影断面積Aは、上述のものと同様に回収計測した各飛散物の質量と密度から相当体積となる立方体の断面積として算出した。また飛翔方向は実験 No.1-1~No.1-3 の映像解析でもっとも低角となった実験 No.1-1 の飛翔角度を初期条件とした。

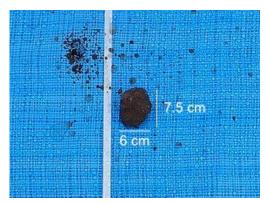
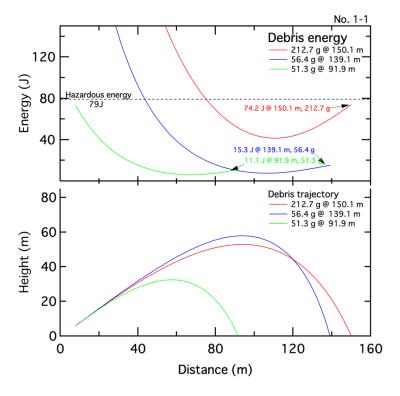


図 4.1.3.3-4 実験 No. 1-1 150 m 地点 212 g 飛散物 (左:概観写真、右:接近写真)

図 4.1.3.3-5 映像解析による飛散物初期位置 X_0 と初速度ベクトル V_0 の推定 (左:実験 No.1-1 高速度カメラ映像、右:拡大図)

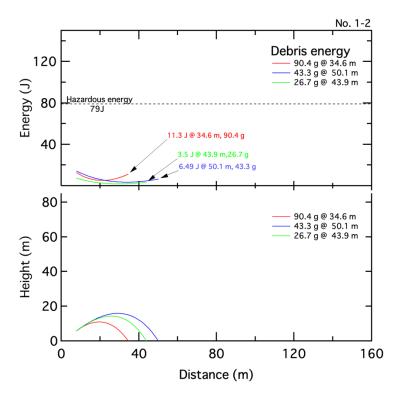
表 4.1.3.3-2 には、各実験 No ごとの代表的飛散物とそのエネルギーを高エネルギー順に示した。図 4.1.3.3-6(a), (b)には、各実験 No ごとの代表的飛散物の弾道計算による飛散軌跡とエネルギー推移に示した。実験 No.1-1 では、最大質量かつ最大飛散距離となった 212.7 g の飛散物が最も高いエネルギーで評価されたが、それでも危険飛散物のエネルギー79 J には達しなかった。その他の飛散物はより低いエネルギーで評価され危険飛散物となる飛散物は存在しなかった。

表 4.1.3.3-2 代表的飛散物(高エネルギー順) 実験 No.1-1


	飛散距離 (m)	重量 (g)	着地時速度 (m/s)	着地時エネルギー(J)
1	150.05	212.7	26.4	74.2
2	139.08	56.4	23.3	15.3
3	91.85	51.3	20.8	11.1
4	116.75	44.8	21.9	10.7
5	25.53	39.1	13.7	3.69

実験 No. 1-2

	飛散距離 (m)	重量 (g)	着地時速度 (m/s)	着地時エネルギー (J)
1	34.55	90.4	15.8	11.3
2	50.05	43.3	17.3	6.49
3	43.9	26.7	16.1	3.47
4	23	36.4	13.3	3.2
5	30.65	28.9	14.5	3.04


実験 No. 1-3

	飛散距離 (m)	重量 (g)	着地時速度 (m/s)	着地時エネルギー (J)
1	33.1	38.1	15.1	4.33
2	33.65	33.2	15	3.73
3	29.58	33.5	14.4	3.49
4	23.94	37.4	13.4	3.36
5	27.61	33.2	14.1	3.29

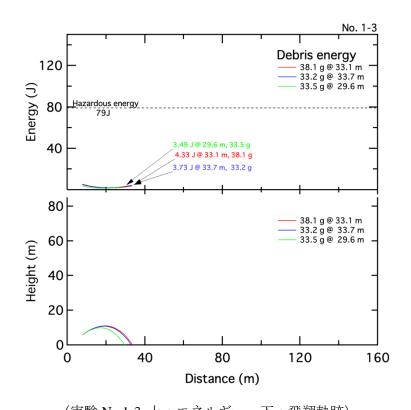

(実験 No.1-1 上:エネルギー、下:飛翔軌跡)

図 4.1.3.3-6(a) 高エネルギー順 3 番目までの飛散物の弾道計算結果例

(実験 No.1-2 上:エネルギー、下:飛翔軌跡)

図 4.1.3.3-6(b) 高エネルギー順 3 番目までの飛散物の弾道計算結果例

(実験 No.1-3 上:エネルギー、下:飛翔軌跡) 図 4.1.3.3-6(c) 高エネルギー順3番目までの飛散物の弾道計算結果例

飛散物計測結果まとめ

- ・実験 No.1-1~No.1-3 において、土堤からの飛散物(コンクリート破片やソイルセメントの破片)の状況を計測した。発生した飛散物を回収計測し、総飛散物数、総飛散物質量、最大重量飛散物、最大飛距離飛散物について取りまとめるとともに、飛散物分布の幾何学的・質量中心とともに飛散物の飛散方向を評価した。
- ・DDESB で定義される破片密度分布を評価し、さらに弾道計算により危険飛散物となる飛散物を評価した。その結果、実験 No.1-1~No.1-3 において、いずれの飛散物も危険飛散物には該当するものは存在しなかった。

文献

- Department of Defense Explosive Safety Board, Ammunition and Explosives Safety Standards, DoD 6055.09-STD, 2019
- 2) Department of Defense Explosives Safety Board, Fragment and Debris Hazards, TP-12, 1975.

4.1.3.4 地盤振動計測結果

実験 No.1-1 から No.1-3 における各計測点で計測した振動加速度の波形を図 4.1.3.4-1、図 4.1.3.4-2、図 4.1.3.4-3 にそれぞれ示す。また、計測した加速度波形について、ベースラインや定常的に重畳されるノイズなどの積分時の影響を取り除くためのローカットフィルタ付の積分を行い、速度成分に変換した速度波形を図 4.1.3.4-4、図 4.1.3.4-5、図 4.1.3.4-6 にそれぞれ示す。地盤振動による人体や建物等への影響は、その周波数特性から振動加速度よりも振動速度による評価が適しているとされているため、換算距離に対する各方向の最大変位速度(以下 PPV)を算出し3方向の各振動成分の最大値の二乗和平方根 (SRSS: Square root of sum squares)を算出した。

$$PPV_{SRSS} = \sqrt{PPV_x^2 + PPV_y^2 + PPV_z^2}$$

実験 No.1-1 から No.1-3 それぞれについて、 PPV_{SRSS} を算出し図 4.1.3.4-7 に示す。また、実験 No.1-1 から No.1-3 の PPV_{SRSS} の比較を図 4.1.3.4-8 に示す。これらの結果から分かるように土堤の種類にかかわらず、PPV やその減衰傾向に大きな差は認められない。本実験の範囲では土堤の形状は地盤振動に大きな影響を及ぼさないと考えられる。

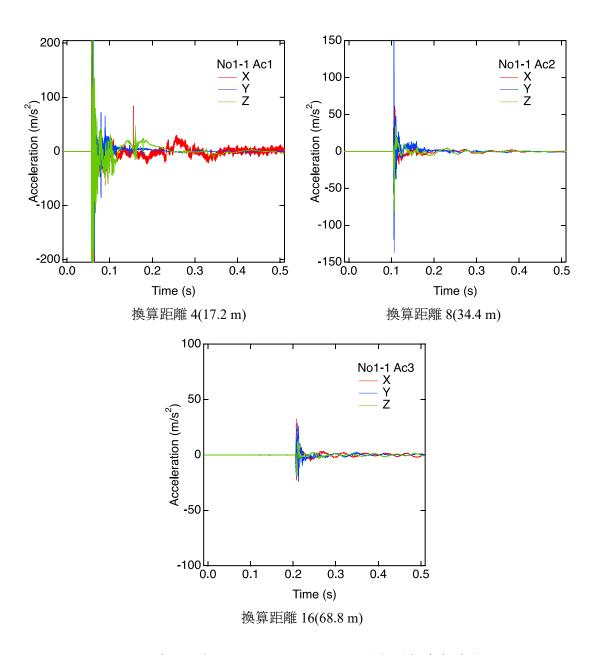


図 4.1.3.4-1 内側垂直ソイルセメント土堤 地盤振動加速度(実験 No.1-1)

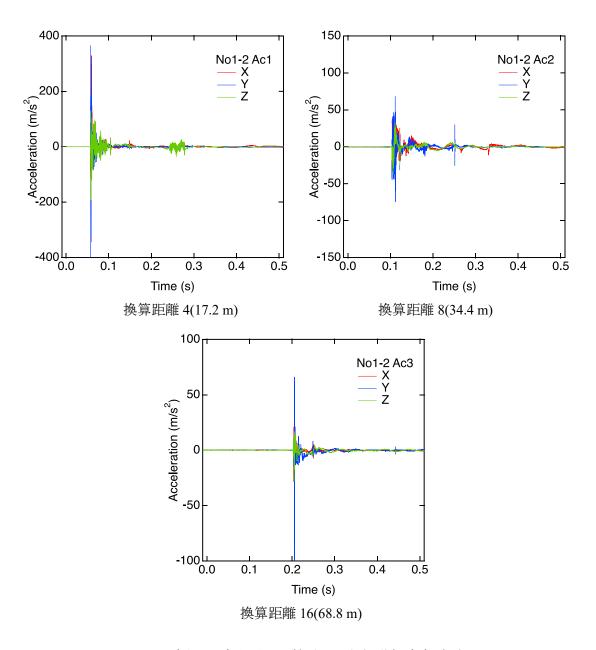


図 4.1.3.4-2 内側 45 度土堤+1/2 擁壁 地盤振動加速度(実験 No.1-2)

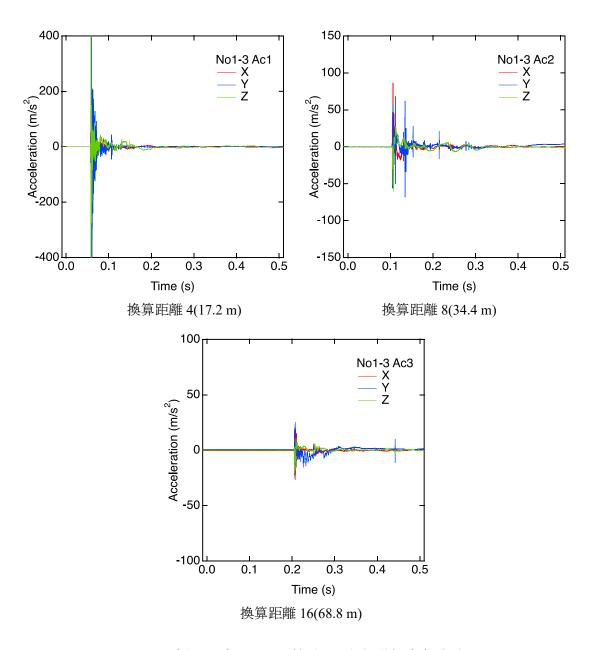


図 4.1.3.4-3 内側 60 度土堤+1/2 擁壁 地盤振動加速度(実験 No.1-3)

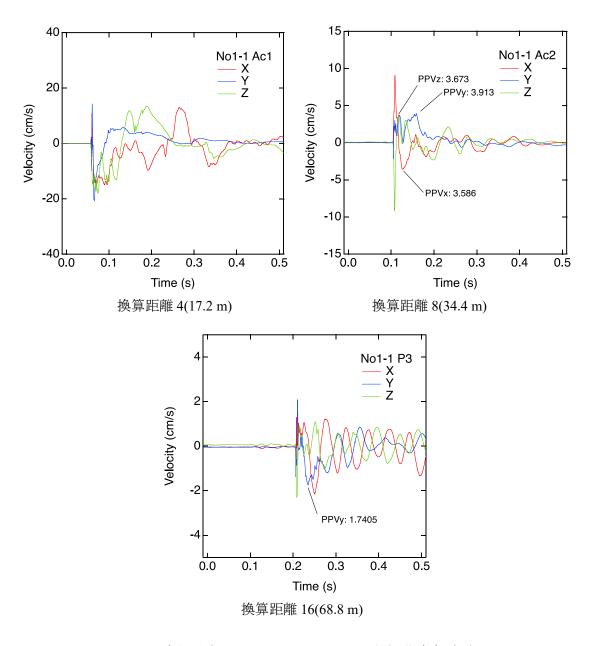


図 4.1.3.4-4 内側垂直ソイルセメント土堤 地盤振動速度(実験 No.1-1)

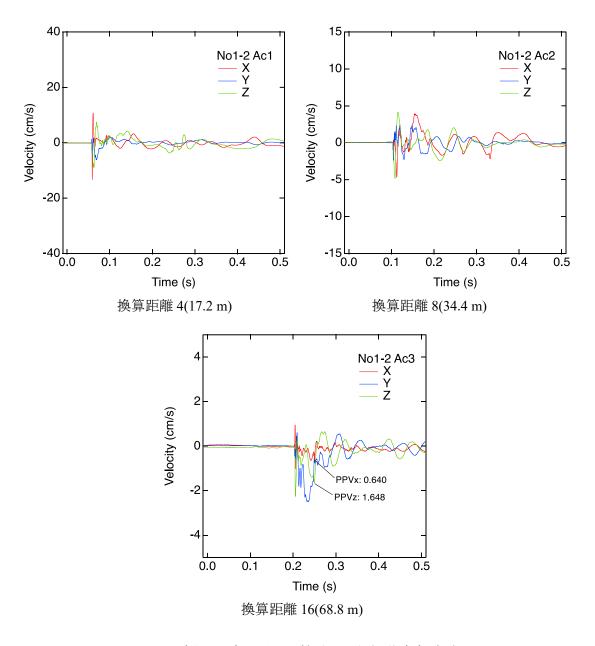


図 4.1.3.4-5 内側 45 度土堤+1/2 擁壁 地盤振動速度(実験 No.1-2)

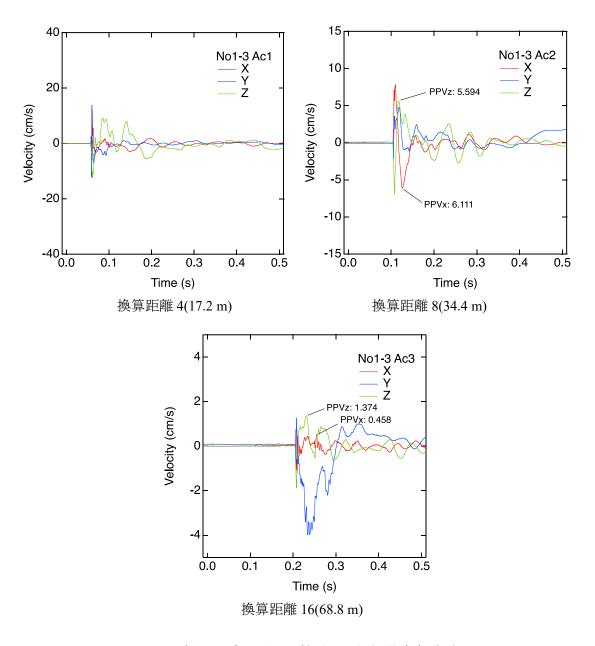


図 4.1.3.4-6 内側 60 度土堤+1/2 擁壁 地盤振動速度(実験 No.1-3)

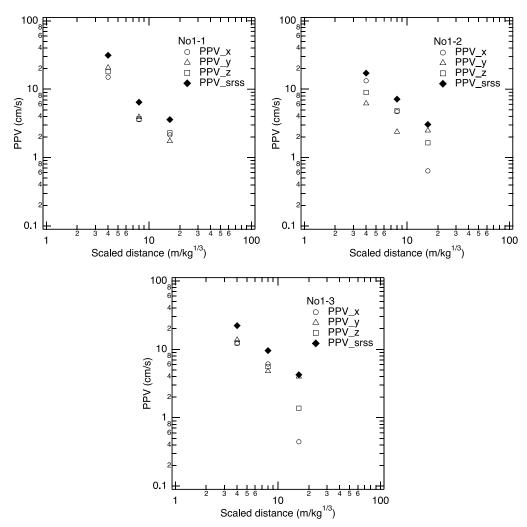


図 4.1.3.4-7 土堤 換算距離に対する最大変位速度 (実験 No.1-1~No.1-3)

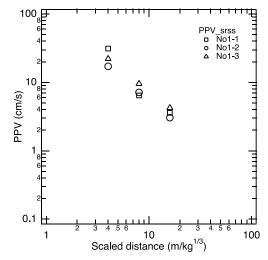


図 4.1.3.4-8 土堤 換算距離に対する最大変位速度(PPV_{SRSS})の比較 (実験 No.1-1~No.1-3)

地盤振動計測結果まとめ

爆点から換算距離 4、8、 $16 \text{ m/kg}^{1/3}$ となる位置において地盤振動計測を行った。今回の実験の範囲においては、土堤の違いにより PPV やその減衰傾向の大きな差は認められなかった。

4.1.3.5 高速度カメラ撮影結果

実験 No. 1 の各実験における高速度カメラによる代表的なコマ撮り画像を図 4.3.5-1~4.3.5-3 に示す。

図 4.1.3.5-1 実験 No. 1-1 内側垂直ソイルセメント(左:カメラボックス、右:観測所から撮影) 150 ms

図 4.1.3.5-2 実験 No. 1-2 内側 60 度補強土+1/2 擁壁(左:カメラボックス、右:観測所から撮影) 150 ms

図 4.1.3.5-3 実験 No. 1-3 内側 45 度普通土+1/2 擁壁(左:カメラボックス、右:観測所から撮影) 150 ms

爆発状況の概要

【実験 No. 1-1 内側垂直ソイルセメント EMX 80 kg】

爆発による発光のため起爆後 1.1 ms 程度までは爆点付近の様子は確認できなかった。カメラボックスから撮影した画像から、この時点における火炎は観測所方向に長く延びており、土堤方向への火炎の膨張が抑制されている様子が観測された。1.7 ms 程度経過すると地表面付近に白っぽい爆発生成気体が存在していることが確認できた。その後には次第に発光が弱まり、火炎全体が爆発生成気体に覆われていく様子が観測された。2.1 ms 後には爆発生成気体から衝撃波が分離していく様子が確認された。地表面方向に拡がる爆発生成気体は起爆後 20 ms 程度まで膨張していき、その後、一旦わずかに収縮するような挙動を示した。10 ms 後頃から地面由来の土砂が飛散する様子が観測された。20 ms 後頃から爆発生成気体内部から土堤由来と考えられる土砂が飛散する様子が確認されはじめ、土堤方向に飛散する様子が確認された。50 ms 後には土堤由来の土砂の先端部を判別できる程度に飛散した。飛散する土砂の大部分は一群となって飛散しているため詳細は不明であるが、多くは細かな土砂の様であった。約 158 ms 後からカメラボックスに設置した高速度カメラが揺れはじめた。

【実験 No. 1-2 内側 60 度補強土+1/2 擁壁 EMX 80 kg】

起爆直後の火炎や爆発生成気体の状況は、実験 No.1-1 と同様であった。10 ms 後頃から地面由来の土砂が飛散する様子が観測された。地面由来の土砂は、土堤方向の反対方向へ飛散する様子が顕著であった。50 ms 後頃から土堤由来の土砂が土堤方向に飛散する様子が観測された。100 ms 後には爆発生成気体や土砂の中から補強土部材のジオグリッドと考えられる物体が飛散する様子が観測された。コンクリート破片を判別することはできなかった。

【実験 No. 1-3 内側 45 度普通土+1/2 擁壁 EMX 80 kg】

起爆直後の火炎や爆発生成気体の状況は、実験 No.1-1 と同様であった。10 ms 後頃から地面由来の土砂が飛散する様子が観測された。地面由来の土砂は、土堤方向の反対方向へ飛散する様子が顕著であった。70 ms 後頃から土堤由来の土砂が土堤方向に飛散する様子が観測された。土堤由来の土砂は塊が一群となって飛散している様子が観測されたが、コンクリート破片を判別することはできなかった。

土堤由来と考えられる土砂の飛散に着目し、爆薬中心を原点として土堤方向に噴出する土砂の距離を撮影画像から読み取った結果を図 4.1.3.5-4、4.1.3.5-5 に示す。比較のため、図中には平成 26 年度に 実施した EMX2 爆薬 80 kg の実験結果(H26_No12 及び No13)も記載した。H26_No12 は片側垂直ソイルセメント土堤、H26 No13 は片側垂直土堤(下 1/2 擁壁、上 1/2 補強土)の実験である。

図 4.1.3.5-4 の黒線は今年度及び平成 26 年度のソイルセメント土堤実験の結果を示しており、ソイルセメントに含まれるセメント量に着目して比較した図である。セメント量が少ないソイルセメント (H26 年度) の方が飛散速度が遅いことが示された。図 4.1.3.5-5 は、土堤の内側角度に着目した結果である。垂直土堤と比較し、角度が緩やかになるに従い土砂の飛散速度が遅くなる傾向が認められた。

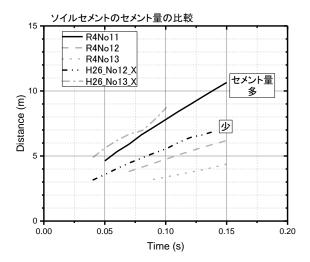


図 4.1.3.5-4 ソイルセメントのセメント量の比較

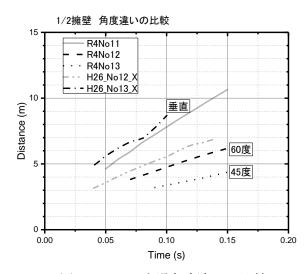


図 4.1.3.5-5 土堤角度違いの比較

高速度カメラ撮影結果まとめ

- ・異なる構造の土堤を有する火薬庫模型の爆発状況を高速度カメラで撮影した。
- ・ソイルセメント土堤のセメント量に着目した結果から、セメント量が少ない方が土堤由来の土砂の飛 散速度が遅いことが示された。
- ・土堤の内側角度に着目した結果から、上 1/2 の土堤角度が緩やかになるに従い、土砂の飛散速度が遅くなる傾向が認められた。

4.1.3.6 騒音計側結果

表 4.1.3.6-1 に観測所付近で計測した騒音計測結果を示す。参考として実験 No.2 の結果も併せて記した。

表 4.1.3.6-2 に遠方で測定した騒音計測結果の読み値を示す。得られた値をそのまま記載したが、記録中に付近を走る車の音、雨風の音など爆発音以外の音も拾っているため、爆発音以外の影響を受けた値になっていることを考慮しなければならない。昨年までの同一場所での測定結果と比較して、ほぼ妥当な測定結果が得られた。実験 No.1-1 の別寒辺四叉路 BK2250 のみ機器不良により計測できなかった。

図 4.1.3.6-1 に観測所付近のマイクロフォンで測定した音圧波形を示す。実験 No.1-1 だけ降雨のため、マイクロフォンにビニール袋をかぶせたまま測定を行った。測定結果はいずれも同じような波形形状、値となった。

図 4.1.3.6-2、4.1.3.6-3 に別寒辺四叉路警戒点の、図 4.1.3.6-4、4.1.3.6-5 に国境四叉路警戒点の、騒音計 BK2250 で測定した音圧波形を示す。爆発約 1 分前から爆発後まで記録した全体波形と、爆発音と思われる部分を切り抜いて圧力に変換した図を示す。横軸は時間(秒)で、全体波形では記録開始ボタンを押してからの時間であり、拡大表示の波形は任意に切り抜いた 1 秒間である。

波形を見ると、今年度の BK2250 による音圧波形計測は、ノイズも少なく良好な測定結果であった。

表 4.1.3.6-1 騒音計測結果 観測所脇

実験 No.	距離	薬種	薬量	換算薬量	到達時間	ピーク圧	音圧レベル*
	m		kg	$m/kg^{1/3}$	ms	Pa	dB
No.1-1	192	EMX2	80	45	536	1597	158.0
No.1-2	192	EMX2	80	45	536	1480	157.4
No.1-3	192	EMX2	80	45	532	1715	158.7
No.2	192	EMX2	80	45	539	1572	157.9

^{*:} 音圧レベルは計測したピーク圧 (Pa) を 20log(Pa/0.00002)で変換した値。

表 4.1.3.6-2 騒音計測結果 遠方での計測結果

別寒辺四叉路		2730	m	BK2250	BK2250		NL-31		
実験 No.	薬種	薬量	換算距離	LZpeak	LCeq	LAeq	LAE	LAmax	Lpk
		kg	m/kg ^{1/3}	dB	dB	dB	dB	dB	dB
No.1-1	EMX2	80	634	1	1	70.5	92.2	88.3	120.4
No.1-2	EMX2	80	634	128.9	85.7	66.4	84.6	86.4	126.8
No.1-3	EMX2	80	634	115.0	71.2	54.4	72.5	63.9	113.1
No.2	EMX2	80	634	123.5	79.4	53.0	71.1	68.8	121.7

国境四叉路	国境四叉路 4170 n		m	BK2250		NL-31			
実験 No.	薬種	薬量	換算距離	LZpeak	LCeq	LAeq	LAE	LAmax	Lpk
		kg	m/kg ^{1/3}	dB	dB	dB	dB	dB	dB
No.1-1	EMX2	80	968	119.2	72.8	47.6	66.1	61.6	114.2
No.1-2	EMX2	80	968	126.8	83.0	60.5	79.6	85.1	120.6
No.1-3	EMX2	80	968	113.3	66.9	42.3	60.6	52.9	107.7
No.2	EMX2	80	968	120.6	73.7	57.7	76.3	71.8	115.4

-:機器不良のため

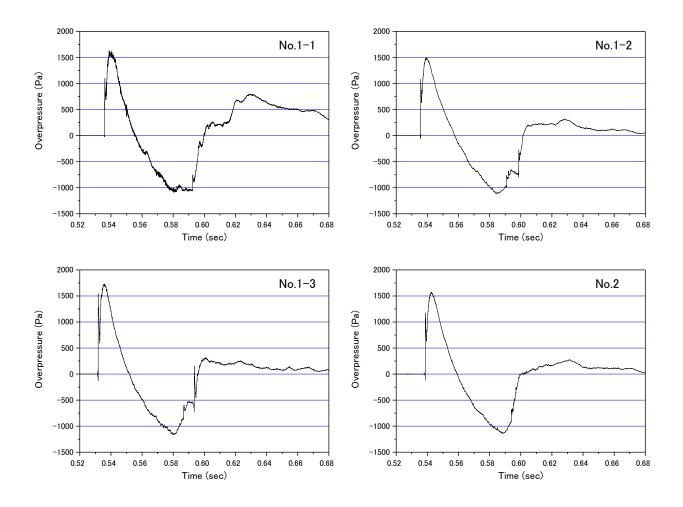


図 4.1.3.6-1 観測所で計測した音圧波形

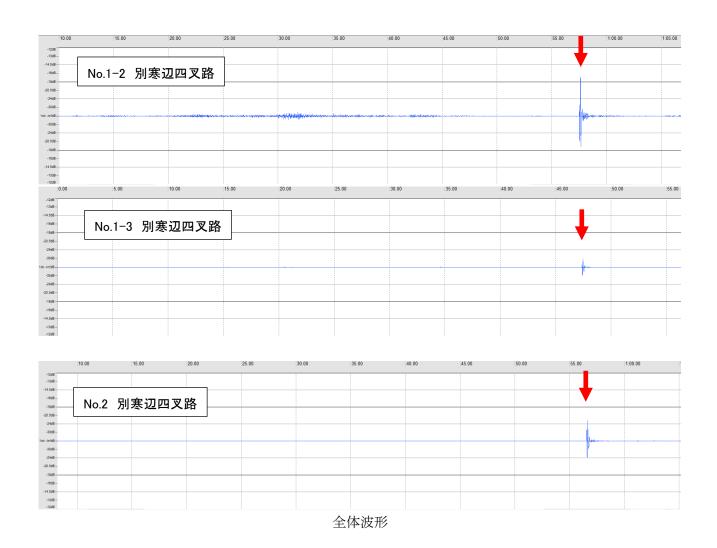
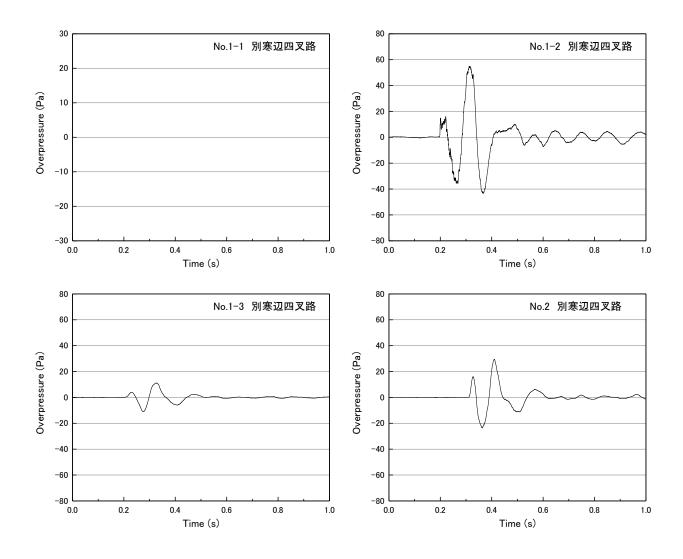
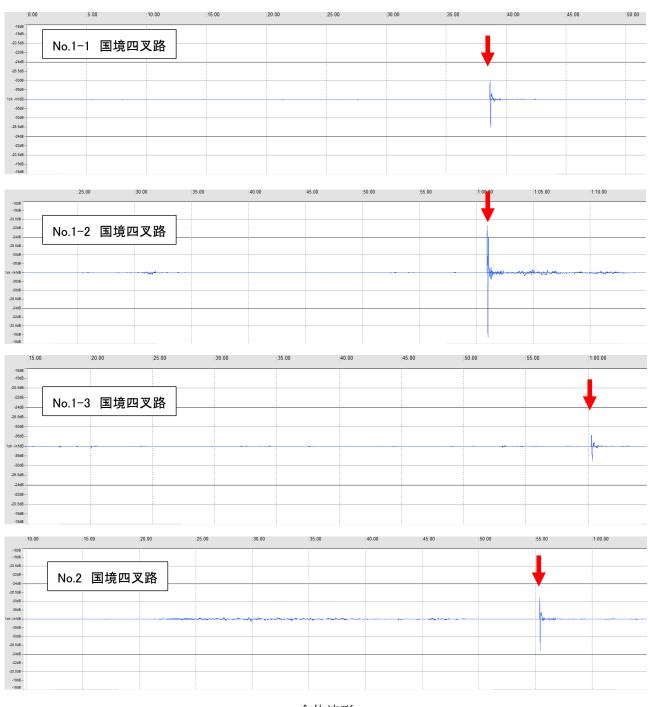



図 4.1.3.6-2 別寒辺四叉路の騒音計 BK2250 で計測した音圧波形


※No.1-1 は計測機器不調で未計測。

爆発音部分の拡大

図 4.1.3.6-3 別寒辺四叉路の騒音計 BK2250 で計測した音圧波形

※No.1-1 は計測機器不調で未計測。

全体波形

図 4.1.3.6-4 国境四叉路の騒音計 BK2250 で計測した音圧波形

89

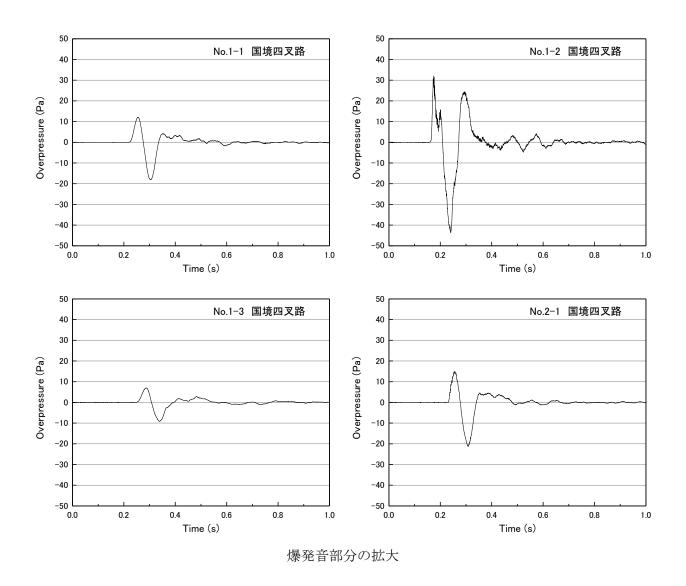


図 4.1.3.6-5 国境四叉路の騒音計 BK2250 で計測した音圧波形

騒音計測結果まとめ

- ・観測所脇(爆点から $192 \,\mathrm{m}$ 地点)でマイクロフォンにより爆発音の騒音計測を行った。実験 $\mathrm{No}.1$ - $1\sim \mathrm{No}.1$ -3 および実験 $\mathrm{No}.2$ の結果は、波形の形状も値もほぼ同じ結果であった。
- ・遠方の警戒点(爆点から 2.7 km 地点および 4.2 km 地点)では騒音計で測定した。測定した地点では 爆発音が耳でわずかに確認できる程度であり、また、計測結果も火薬学会が提唱している発破騒音の 許容値 100 dB(A 特性、表 4.1.3.6-2 では LAeq)と比較して、騒音的に問題ない値であることが確認 できた。

4.1.4 まとめ

爆発後の爆点の状況(破壊状況計測)まとめ

- ・爆発後、爆点には大きな漏斗孔が生じた。実験 No.1-1 は最初の実験であったが、漏斗孔は一番深くなった。実験 No.1-2 と No.1-3 は降雨の影響により埋め戻した土砂が粘土状になっており、その影響と考えられる。
- ・土堤や擁壁は爆発によってまっすぐ吹き飛ばされた。実験 No.1-1 では粉砕されたソイルセメントの破片が飛散した。実験 No.1-2 及び No.1-3 のコンクリート擁壁有りの土堤では、擁壁以外の土堤は細かくなって遠方まで飛散していた。擁壁は爆点のごく近傍に吹き飛ばされ、実験 No.1-2 では擁壁の上半分が 14.3 m 地点まで、実験 No.1-3 では擁壁全部が 8.6 m 地点まで飛散した。この飛散距離であれば、実スケールにおいても保安物件まで飛散するような危険な飛散物にはならないことが確認された。

爆風圧計測結果まとめ

土堤形状は爆風パラメータにほとんど影響を与えないことを確認した。

飛散物計測結果まとめ

- ・実験 No.1-1~No.1-3 において、土堤からの飛散物(コンクリート破片やソイルセメントの破片)の状況を計測した。発生した飛散物を回収計測し、総飛散物数、総飛散物質量、最大重量飛散物、最大飛距離飛散物について取りまとめるとともに、飛散物分布の幾何学的・質量中心とともに飛散物の飛散方向を評価した。
- ・DDESB で定義される破片密度分布を評価し、さらに弾道計算により危険飛散物となる飛散物を評価 した。その結果、実験 No.1-1~No.1-3 において、コンクリート擁壁の飛散物を除いて、いずれの飛散 物も危険飛散物には該当するものは存在しなかった。

地盤振動計測結果まとめ

爆点から換算距離 4、8、16 m/kg^{1/3}となる位置において地盤振動計測を行った。今回の実験の範囲においては、土堤の違いにより PPV やその減衰傾向の大きな差は認められなかった。

高速度カメラ撮影結果まとめ

- ・異なる構造の土堤を有する火薬庫模型の爆発状況を高速度カメラで撮影した。
- ・ソイルセメント土堤のセメント量に着目した結果から、セメント量が少ない方が土堤由来の土砂の飛 散速度が遅いことが示された。
- ・土堤の内側角度に着目した結果から、上 1/2 の土堤角度が緩やかになるに従い、土砂の飛散速度が遅くなる傾向が認められた。

騒音計測結果まとめ

- ・観測所脇(爆点から 192 m 地点)でマイクロフォンにより爆発音の騒音計測をおこなった。実験 No.1-1~No.1-3 および実験 No.2 の結果は、波形の形状も値もほぼ同じ結果であった。
- ・遠方の警戒点(爆点から 2.7 km 地点および 4.2 km 地点)では騒音計で測定した。測定した地点では 爆発音が耳でわずかに確認できる程度であり、また、計測結果も騒音的に問題ない値であることが確 認できた。

4.2 基準爆風圧実験

4.2.1 目的

実験 No.1 (No.1-1~No.1-3) で使用した爆薬と同じ爆薬を、土堤を除いて実験 No.1 と同じ条件で爆発させ、基準となる爆風圧等のデータを計測する。

4.2.2 実験方法

4.2.2.1 供試火薬類

表 4.2.2.1-1 に供試火薬類を示す。図 4.2.2.1-1 に爆薬の形状を示す。使用爆薬は含水爆薬で、平成 26 年度の爆発実験と同様に、チューブ入りの既製品(ϕ 50 mm×230 mm、500 g)を 160 本東ねて、装薬全体(80 kg)の形状を円柱形とした。円柱形の中心部にある 1 本の薬包には予め二重導爆線を巻きつけておき、反対側の端に固定した線爆発型の電気雷管 2 個で起爆した。図 4.2.2.1-2 に導爆線(二重導爆線)と雷管の固定方法を、図 4.1.2.1-3 に火薬の設置高さを示す。地面から爆薬中心までの高さは 153 mm (230 mm×1/2+38 mm)なので、換算爆発高さは 0.0355 m/kg $^{1/3}$ となる(平成 26 年度は 0.18 m/kg $^{1/3}$ で実施)。図 4.1.2.1-4 に実際の装薬・爆装状況を示す。

表 4.2.2.1-1 供試火薬類

実験		薬量	. ~ >4.10 /4	電気雷管*	爆薬の形状:円柱形(計画値)		
No.	薬種	(kg)	二重導爆線	(個)	直径 φ×高さ (mm)	密度 (kg/m³)	
2	EMX2	80	4 m (2 m×2 本)	2+2	φ 690×230	1190	
合計		80	4 m (2 m×2 本)	4			

^{*:+2} は予備

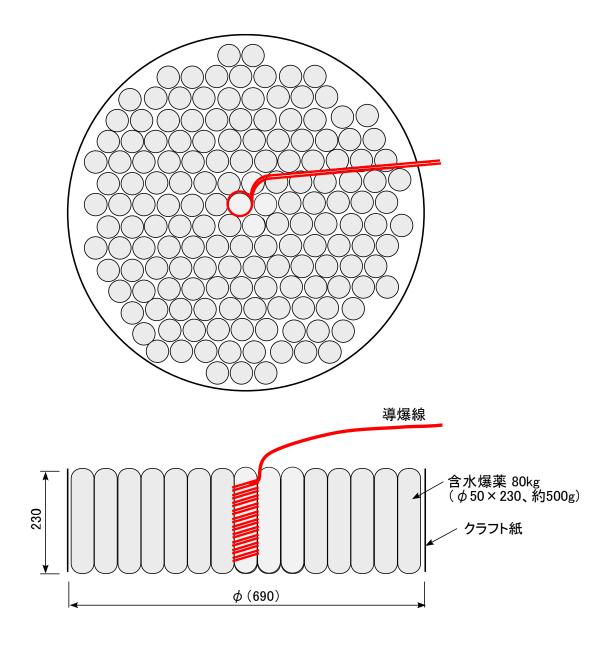


図 4.2.2.1-1 爆薬 (EMX2) の形状 (実験 No.1 と同じ)

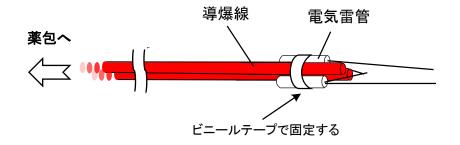


図 4.2.2.1-2 導爆線と雷管の固定方法(実験 No.1 と同じ)

図 4.2.2.1-3 火薬の設置高さ(実験 No.1 と同じ)

図 4.2.2.1-4 実験 No.2 の装薬状況(EMX2 80 kg 令和 4 年 11 月 23 日)

4.2.2.2 計測項目

爆風圧、飛散物、地盤振動計測、常速度・高速度ビデオカメラ撮影、および騒音計測を行った。図 4.0-3 に計測レイアウトを示す。

(1) 爆風圧計測

表 4.2.2.2-1 に爆風圧計の各 ch の距離を示す。使用機材および爆風圧計の設置位置は実験 No.1 と同一である。計測方法については 4.1.2.3 (1) 爆風圧計測 を参照されたい。

1.2.2.2 1 /x/2x/2-17 0 11 011 0 12 12 12 12								
ah	₽F卤佐(m)	高さ(m)	換算距離	記録	機器			
ch	n 距離(m) 高さ(n		$(m/kg^{1/3})$	Tasler	HIOKI			
ch1	17.23	0.15	4	0				
ch2	34.47	0.15	8	0				
ch3	51.71	0.15	12	0				
ch4	68.94	0.15	16	0				

表 4.2.2.2-1 爆風圧計の各 ch の距離

(2) 飛散物計測

爆発後の爆点や爆点周囲の様子を記録(写真撮影)し、飛散物についても計測した。図 4.2.2.2-1 に飛散物の回収領域を示す。飛散物の回収領域および計量手法は実験 No.1 と同一である。計測方法については 4.1.2.3 (2) 飛散物計測 を参照されたい。

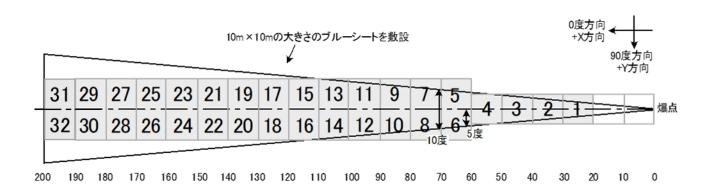


図 4.2.2.2-1 飛散物の回収領域

(3) 地盤振動計測

爆薬量 80 kg の爆発による地盤振動(加速度)を計測した。表 4.2.2.2-2 に地盤振動計の距離および換算 距離を示す。使用機材および加速度計の設置位置は実験 No.1 と同一で、計測方法については 4.1.2.3 (3) 地盤振動計測 を参照されたい。

表 4.2.2.2-2 地盤振動計 (加速度計) の各 ch の距離

	爆薬中心から				
	距離 換算距離				
	(m) (m/kg ^{1/3})				
Ac1	17.2	4			
Ac2	34.4	8			
Ac3	68.8	16			

(4) 常速度・高速度ビデオカメラ撮影

爆発によって発生した衝撃波の伝播状況や飛散物の飛散状況等を観察するために、高速度カメラによる撮影を行った。使用した機材および設置位置は実験 No.1 と同一で、計測方法については 4.1.2.3 (4) 常速度・高速度ビデオカメラ撮影 を参照されたい。

(5) 騒音計測

マイクロフォンと騒音計を用いて爆発時の騒音を測定した。観測所 1 付近にマイクロフォンを、遠方の 2 点(別寒辺四叉路、国境四叉路)に騒音計を設置した。表 4.2.2.2-3 に爆点から計測位置までの距離を示す。使用した機材および設置位置は実験 No.1 と同一である。計測方法については 4.1.2.3 (5) 騒音計測 を参照されたい。

表 4.2.2.3-3 使用機器および爆点までの距離

計測場所	使用機器	機器型番	距離	換算距離
			m	$m/kg^{1/3}$
観測所付近	マイクロフォン	377C01	192	45
別寒辺四叉路	騒音計	BK2250	2730	634
		NL-31	2730	634
国境四叉路	騒音計	BK2250	4170	968
		NL-31	4170	968

4.2.3 実験結果

4.2.3.1 爆発後の爆点の様子(破壊状況計測)

(1) 漏斗孔の大きさ

実験 No.2 は基準爆風圧実験で、地面に置いた装薬台の上で EMX80 kg を爆発させた。

実験 No.1-1 は内側垂直ソイルセメントの土堤を設置した。実験 No.1-2 は内側 60 度土堤でそのうち下半分が擁壁の土堤を設置した。実験 No.1-3 は内側 45 度土堤でそのうち下半分が擁壁の土堤を設置した。

表 4.2.3.1-1 に実験ごとの漏斗孔の大きさを示す。また、図 4.2.3.1-1 に漏斗孔の写真を示す。漏斗孔の直径は 0 度方向と 180 度方向のライン、90 度と 270 度方向のラインを巻尺で GL (地盤面レベル) = 0 の直径を測定した。漏斗孔の深さは漏斗孔の最深部 (=爆点中心)と GL=0 で張った巻尺の距離 (深さ)を測定した。参考として実験 No.1 の結果も示した。漏斗孔の径は、土堤を設置していない実験 No.2 基準爆風圧実験が一番大きくなった。

	SC 1121311 1 MB 11177 CC C							
実験 No.	漏斗孔の形状と直径 (mm) (0-180 度方向×90-270 度方向)	漏斗孔の深さ(mm)	実験順番					
(参考) 1-1	3100×3500	1120	U 爆点 1 回目					
(参考) 1-2	3400×3500	840	U 爆点 3 回目					
(参考) 1-3	3200×3600	850	U 爆点 2 回目					
2	4250×4100	1090	U 爆点 4 回目					

表 4.2.3.1-1 漏斗孔の大きさ

図 4.2.3.1-1 漏斗孔の写真 実験 No.2

実験 No.2

爆発後、爆点には漏斗孔が形成された。図 4.2.3.1-2 に漏斗孔の形状を示す。

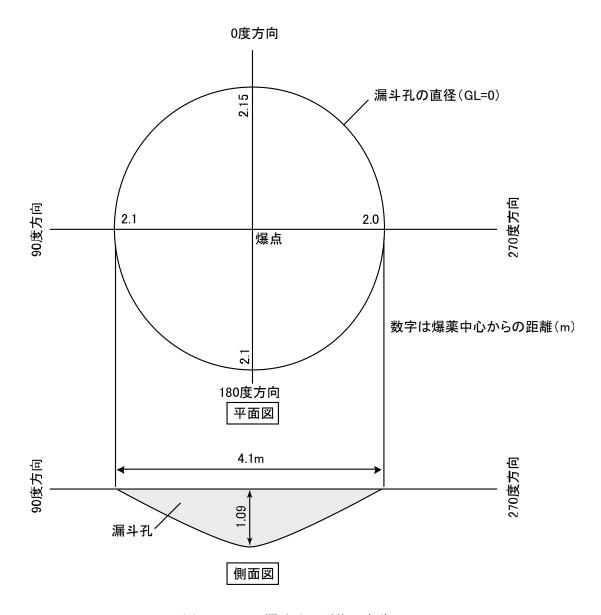
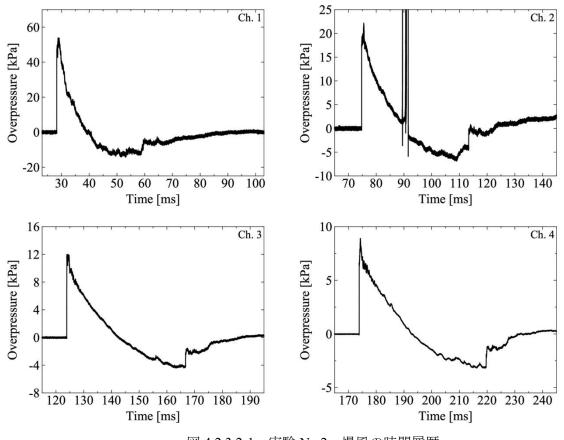


図 4.2.3.1-2 漏斗孔の形状 実験 No.2


爆発後の爆点の状況(破壊状況計測)まとめ

爆発後、爆点には大きな漏斗孔が生じた。漏斗孔の直径は実験 No.2 基準爆風圧実験が一番大きくなった。漏斗孔の深さも一番深い1回目の実験 No.1-1と同じぐらい深くなった。漏斗孔が大きくなったのは土堤が無いからであり、さらに同一爆点で 4回目の実験であるので深さも深くなると想定されたが、それでも一番深い結果にならなかったのは、2回目以降の実験が降雨の影響で地面が粘土状になっていたからと考えられる。

4.2.3.2 爆風圧計測結果

(1) 爆風の時間履歴

図 4.2.3.2-1 に実験 No.2 の爆風波形を示す。

図 4.2.3.2-1 実験 No.2 爆風の時間履歴

(2) 爆風パラメータ

ピーク静水過圧、正圧相インパルス、到達時刻、および持続時間を算出した結果を表 4.2.3.2-1 に示す。 Ch. 2 の圧力履歴にあるように、正圧相において飛散物が当たったと思われる振動を 90 ms 付近に観測 したため、正圧相インパルスは参考値として両かっこ付きとし、(3)以降の分析で使用しない。

	換算距離	ピーク静水過圧	正圧相インパルス	到達時刻	持続時間
	$(m/kg^{1/3})$	(kPa)	(Pa s)	(ms)	(ms)
Ch. 1	4.02	52.67	224.13	28.31	10.74
Ch. 2	8.02	21.25	(277.99)	74.80	16.61
Ch. 3	12.02	11.60	85.77	123.97	18.63
Ch. 4	16.01	8.72	64.06	173.98	18.63

表 4.2.3.2-1 No.2 の爆風パラメータ

(3) 爆風パラメータの距離減衰、実験 No.1 シリーズとの比較

図 4.2.3.2-2 に各爆風パラメータを換算距離に対して示し、土堤を設置した実験 No.1 シリーズと比較した。(a) ピーク静水過圧と(b) 換算正圧相インパルスに示す近似線は式(4)~(6)で定義する。ここでピーク静水過圧 P(kPa)、正圧相インパルス I(Pas)、薬量換算距離 $Z(m/kg^{1/3})$ であり、係数 $a\sim c$ 、 $l\sim m$ は表 4.2.3.2-2 に示す通りである。なお実験 No.1-2 の Ch. 2 は 2 回目の衝撃波によって過大な値が得られたため、近似線作成の際に参考にしなかった。

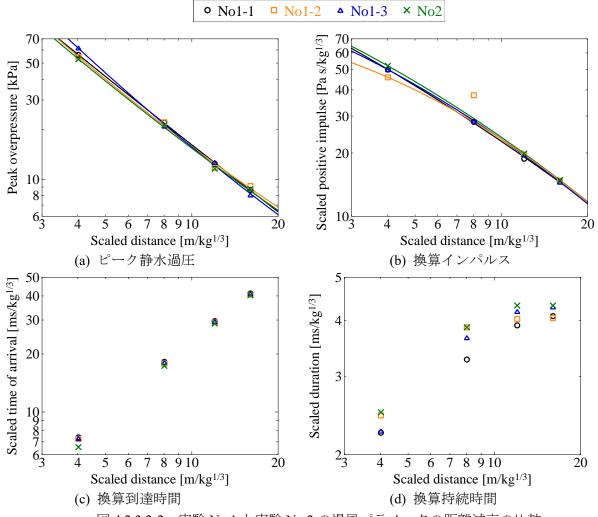


図 4.2.3.2-2 実験 No.1 と実験 No.2 の爆風パラメータの距離減衰の比較

表 4.2.3.2-2 距離減衰式の定数

	а	b	С	l	m	n
No.1-1	2.6029	-1.4395	0.044198	2.1337	-0.63027	-0.14657
No.1-2	2.7015	-1.7296	0.22522	1.8884	-0.15239	-0.36877
No.1-3	2.8214	-1.8381	0.21128	2.0425	-0.40805	-0.26735
No.2	2.6455	-1.6258	0.16728	2.0949	-0.48670	-0.23194

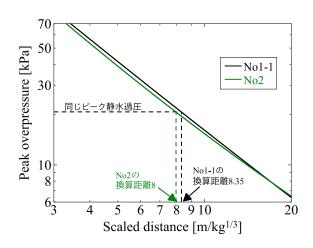


図 4.2.3.2-3 実験 No.2 の換算距離 8 のピーク静水過圧が得られる実験 No.1-1 における換算距離の算出例

爆風パラメータを用いて保安距離を決定する場合、基準実験と同等な爆風パラメータが得られる位置を把握する必要がある。ここでは基準を実験 No.2 とした場合について、土堤を設置した実験 No.1 シリーズの近似線を用いての保安距離の減少/増加を検討する。一例として図 4.2.3.2-3 に実験 No.2 の換算距離 8 のピーク静水過圧が得られる実験 No.1-1 における換算距離の算出例を示した。実験 No.2 と実験 No.1-1 の近似線を用いて、実験 No.2 の換算距離 8 のピーク静水過圧は実験 No.1-1 の換算距離 8.35 にて得られる(黒破線と黒実線の交点の位置)。

実験 No.2 の換算距離 4、8、12、16 と同等なピーク静水過圧と正圧相インパルスが得られる各実験の換算距離を表 4.2.3.2-3 と表 4.2.3.2-4 に示した。実験 No.1 シリーズにおいてピーク静水過圧と正圧相インパルスは実験 No.2 とほぼ同等であり、土堤を設置したとしても爆風圧計設置位置(換算距離 $4\sim16$ kg/m $^{1/3}$)における爆風パラメータにほとんど影響を与えないことを確認した。

表 4.2.3.2-3 実験 No.2 と同等のピーク静水過圧が得られる実験 No.1 シリーズの換算距離

No.2	No.1-1	No.1-2	No.1-3
4	4.17	4.09	4.39
8	8.35	8.13	8.26
12	12.31	12.26	11.96
16	16 16.09		15.57

表 4.2.3.2-4 実験 No.2 と同等の正圧相インパルスが得られる実験 No.1 シリーズの換算距離

No.2	No.1-1	No.1-2	No.1-3
4	3.81	3.19	3.78
8	7.57	7.64	7.79
12	11.52	11.85	11.76
16	15.62	15.92	15.69

爆風圧計測結果まとめ

土堤を設けない場合の基準となる爆風パラメータを取得した。実験 No.1 シリーズと比較した結果、土堤は爆風圧計設置位置(換算距離 $4\sim16\,\mathrm{kg/m^{1/3}}$)における爆風パラメータに影響を与えないことを確認した。

4.2.3.3 飛散物計測結果

基準爆風圧実験では、土堤からの飛散物の発生はないが、爆点にクレーターが形成されると同時に発生する土壌からの飛散物について計測を行った。飛散物分布の基礎情報は4.1.3.3 節において地上式火薬庫の土堤に関する実験結果と合わせて表4.1.3.3-1 に示した。

図 4.2.3.3-1 に実験で得た飛散物の分布を示す。各飛散物位置をもとにした幾何学的中心線(geometric center line)と中心点(centroid)、および各飛散物質量を重みとして考慮した重心線(center of gravity line)と重心点(barycenter)を主成分分析により算出したものをあわせて表示した。実験 No. 2 では、飛散方向の傾向がおおよそ基準線となる X 軸方向に沿っているのが分かる。

飛散物全てが 79 J のエネルギーを有する危険飛散物と仮定した場合(過剰評価)の飛散物の数密度分布を図 4.2.3.3-2 に示した。図 4.2.3.3-3 には、距離に対する飛散物数分布と正規化累積破片数・破片質量の関係 ²⁾を示した。

危険飛散物の検討

図 4.2.3.3-2 は、回収した飛散物全てが危険飛散物であると仮定した図であるが、ここで、DDESB で定義している危険物 1 、つまり 58 ft-lb (79 J) 以上の衝撃エネルギーを持つ破片について 4.1.3.3 節と同様の手順で評価を行った。弾道計算の初期条件のうち、実験 No.2 では土堤がないことより実験 No.1-1 の飛翔角度 θ = 40.058°よりも低い飛翔角度を有する飛散物が確認されたため、実験 No.2 においては飛翔角度 θ = 16.0°を初期条件とした。その他の初期条件、解析手順は同様にして行った。

表 4.2.3.3-1 には、実験 No.2 の代表的飛散物とそのエネルギーを高エネルギー順に示した。図 4.2.3.3-4 には、代表的飛散物の弾道計算による飛散軌跡とエネルギー推移に示した。結果として回収された全ての飛散物において危険飛散物となる飛散物は存在しなかった。

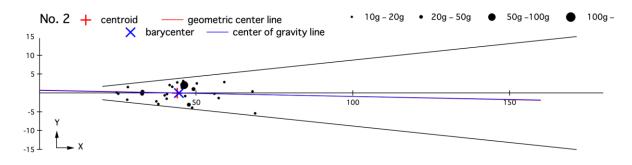


図 4.2.3.3-1 飛散物の分布状況

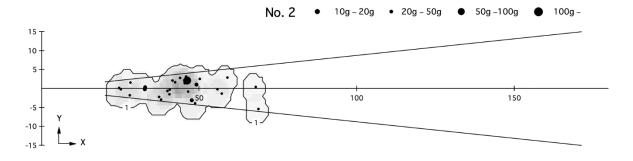


図 4.2.3.3-2 飛散物の数密度分布

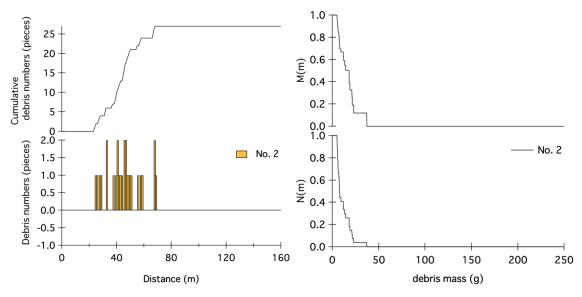
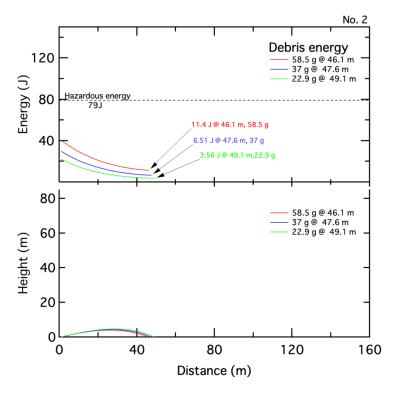



図 4.2.3.3-3 距離に対する飛散物数分布(左)と正規化累積破片数・破片質量(右)

表 4.2.3.3-1 代表的飛散物(高エネルギー順) 実験 No.2

	飛散距離 (m)	重量 (g)	着地時速度 (m/s)	着地時エネルギー (J)
1	46.1	58.5	19.7	11.4
2	47.61	37	18.8	6.51
3	49.07	22.9	17.6	3.56
4	32.85	21.5	16.7	2.98
5	32.68	21	16.6	2.88

(実験 No.2 上:エネルギー、下:飛翔軌跡)

図 4.2.3.3-4 高エネルギー順 3 番目までの飛散物の弾道計算結果例

飛散物計測結果まとめ

- ・実験 No.2 において、地表面から発生する飛散物の状況を計測した。発生した飛散物を回収計測し、総飛散物数、総飛散物質量、最大重量飛散物、最大飛距離飛散物について取りまとめるとともに、飛散物分布の幾何学的・質量中心とともに飛散物の飛散方向を評価した。
- ・DDESB で定義される破片密度分布を評価し、さらに弾道計算により危険飛散物となる飛散物を評価した。その結果、実験 No.2 において、いずれの飛散物も危険飛散物には該当するものは存在しなかった。

文献 (再掲)

- Department of Defense Explosive Safety Board, Ammunition and Explosives Safety Standards, DoD 6055.09-STD, 2019
- 2) Department of Defense Explosives Safety Board, Fragment and Debris Hazards, TP-12, 1975.

4.2.3.4 地盤振動計測結果

基準爆風圧実験として含水爆薬(EMX2) 80 kg を起爆後の地盤振動を計測した。実験 No.2 において各計測点で計測した振動加速度の波形を図 4.2.3.4-1 に示す。計測した加速度波形について、ベースラインや定常的に重畳されるノイズなどの積分時の影響を取り除くためのローカットフィルタ付の積分を行い、速度成分に変換した速度波形を図 4.2.3.4-2 に示す。換算距離に対する最大変位速度 (PPV) を図 4.2.3.4-3 に示した。また、図 4.2.3.4-4 に土堤実験と基準爆風圧実験における PPV_{SRSS} の比較を示す。その結果、土堤を設置した場合と比べ PPV_{SRSS} 及びその減衰傾向に有意な差は認められなかった。

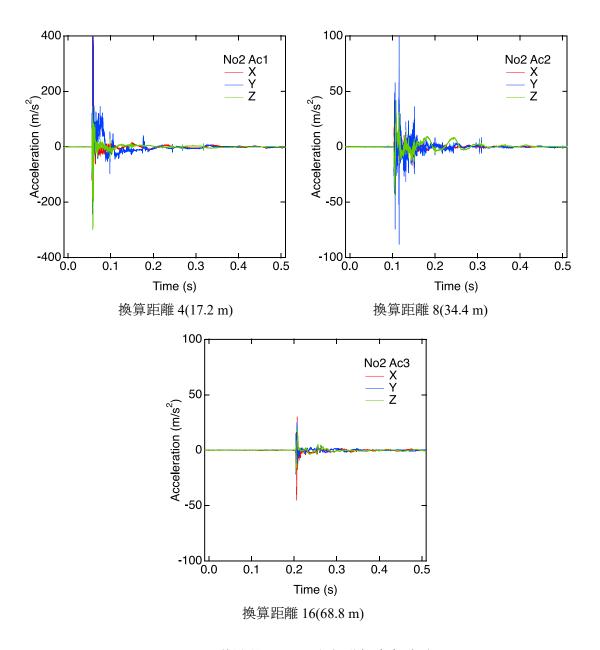


図 4.2.3.4-1 基準爆風圧 地盤振動加速度(実験 No.2)

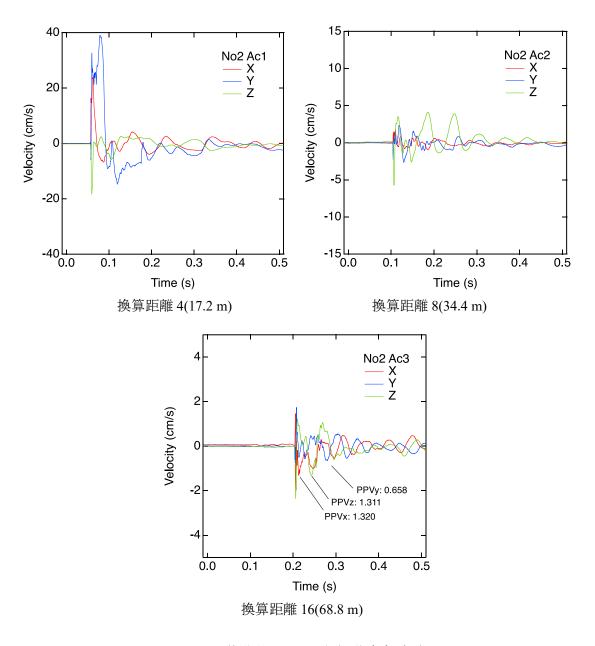


図 4.2.3.4-2 基準爆風圧 地盤振動速度(実験 No.2)

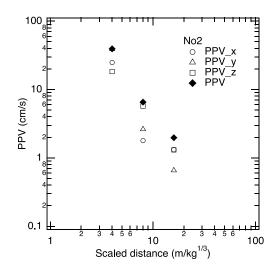


図 4.2.3.4-3 基準爆風圧 換算距離に対する最大変位速度(実験 No2)

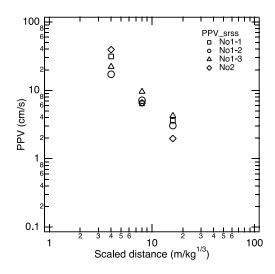


図 4.2.3.4-4 土堤/基準爆風圧 換算距離に対する最大変位速度(PPV_{SRSS})の比較

地盤振動計測まとめ

爆点から換算距離 4、8、 $16 \text{ m/kg}^{1/3}$ となる位置において地盤振動計測を行った。基準爆風圧実験における PPV やその減衰傾向は土堤を設置した場合と比べても有意な差は認められず、本実験の範囲においては土堤の有無は地盤振動に大きな影響を及ぼさないと考えられる。

4.2.3.5 高速度カメラ撮影結果

実験 No. 2 について、カメラボックスから撮影された代表的なコマ撮り画像を図 4.2.3.5-1 及び 4.2.3.5-2 に示す。

図 4.2.3.5-1 No. 2 (2 ms に撮影)

図 4.2.3.5-2 No. 2 (20 ms に撮影)

爆発状況の概要

【実験 No. 2 EMX2 爆薬 80 kg】

起爆直後は爆発による強い発光のため爆点付近の様子は不明であった。1.8 ms 後においても強い発光は認められるが、地表面に沿って爆発生成気体が膨張していく様子が認められた。この時点における爆発気体の形状は2段の鏡餅形状であり、爆発生成気体の形状はほぼ左右対称であった。2 ms 程度経過すると爆発生成気体の周囲に衝撃波面が観測され、周囲に伝播していく様子が撮影された。4 ms 程度経過するとほぼ火炎は確認できない状態となり、7 ms 後には地面の土砂が飛散する様子が観測された。爆発生成気体は、その後時間の経過に伴い緩やかに膨張し、20 ms 後頃にはほぼ定常となった後、若干収縮するような挙動を示した。約 160 ms 後にはカメラボックスに設置した高速度カメラが揺れ始めた。

爆発生成気体の半径と高さを撮影画像から読み取り、それらの時間変化を図 4.2.3.5-3 に示す。図 4.2.3.5-3 から、爆発生成気体は起爆後、単調に膨張し、 $20\,\mathrm{ms}$ 程度で定常値に達することが分かった。その大きさは半径 $9.5\,\mathrm{m}$ 、高さ $12\,\mathrm{m}$ に達することが分かった。地表面における反射の影響で、高さ方向の膨張長さが長くなったものと考えられる。

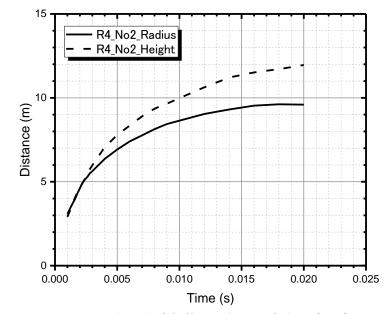


図 4.2.3.5-3 爆発生成気体の半径及び高さの時間変化

高速度カメラ撮影結果まとめ

- ・EMX2 爆薬 80 kg を厚さ 36 mm の合板の上で爆発させ、爆発状況を高速度カメラで撮影した。
- ・爆発生成気体の膨張は半径より高さ方向が長かった。この結果は、地表面における反射の影響と考えられる。

4.2.3.6 騒音計測結果

表 4.2.3.6-1 に観測所付近で計測した騒音計測結果を示す。参考として実験 No.1-1 から No.1-3 の結果も併せて記した。

表 4.2.3.6-2 に遠方で測定した騒音計測結果の読み値を示す。得られた値をそのまま記載したが、記録中に付近を走る車の音、雨風の音など爆発音以外の音も拾っているため、爆発音以外の影響を受けた値になっている。昨年までの同一場所での測定結果と比較して、ほぼ妥当な測定結果が得られた。実験No.1-1 の別寒辺四叉路 BK2250 のみ機器不良により計測できなかった。

図 4.2.3.6-1 に観測所付近のマイクロフォンで測定した音圧波形を示す。

図 4.2.3.6-2 に別寒辺四叉路警戒点の、図 4.2.3.6-3 に国境四叉路警戒点の、騒音計 BK2250 で測定した音圧波形を示す。爆発約 1 分前から爆発後まで記録した全体波形と、爆発音と思われる部分を切り抜いて圧力に変換した図を示す。横軸は時間(秒)で、全体波形では記録開始ボタンを押してからの時間であり、拡大表示の波形は任意に切り抜いた 1 秒間である。

波形を見ると、今年度のBK2250による音圧波形計測は、ノイズも少なく良好な測定結果であった。

表 4.2.3.6-1 騒音計測結果 観測所脇

実験 No.	距離	薬種	薬量	換算薬量	到達時間	ピーク圧	音圧レベル*
	m		kg	$m/kg^{1/3}$	ms	Pa	dB
No.1-1	192	EMX2	80	45	536	1597	158.0
No.1-2	192	EMX2	80	45	536	1480	157.4
No.1-3	192	EMX2	80	45	532	1715	158.7
No.2	192	EMX2	80	45	539	1572	157.9

*: 音圧レベルは計測したピーク圧 (Pa) を 20log(Pa/0.00002)で変換した値。

表 4.2.3.6-2 騒音計測結果 遠方での計測結果

別寒辺四叉	.路	2730	m	BK2250		NL-31			
実験 No.	薬種	薬量	換算距離	LZpeak	LCeq	LAeq	LAE	LAmax	Lpk
		kg	m/kg ^{1/3}	dB	dB	dB	dB	dB	dB
No.1-1	EMX2	80	634	1	1	70.5	92.2	88.3	120.4
No.1-2	EMX2	80	634	128.9	85.7	66.4	84.6	86.4	126.8
No.1-3	EMX2	80	634	115.0	71.2	54.4	72.5	63.9	113.1
No.2	EMX2	80	634	123.5	79.4	53.0	71.1	68.8	121.7

国境四叉路	;	4170	m	BK2250		NL-31				
実験 No.	薬種	薬量	換算距離	LZpeak	LCeq	LAeq	LAE	LAmax	Lpk	
		kg	m/kg ^{1/3}	dB	dB	dB	dB	dB	dB	
No.1-1	EMX2	80	968	119.2	72.8	47.6	66.1	61.6	114.2	
No.1-2	EMX2	80	968	126.8	83.0	60.5	79.6	85.1	120.6	
No.1-3	EMX2	80	968	113.3	66.9	42.3	60.6	52.9	107.7	
No.2	EMX2	80	968	120.6	73.7	57.7	76.3	71.8	115.4	

-:機器不良のため

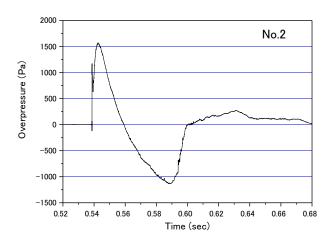


図 4.2.3.6-1 観測所で計測した音圧波形

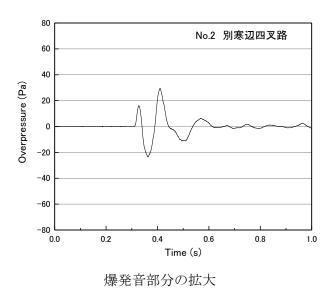
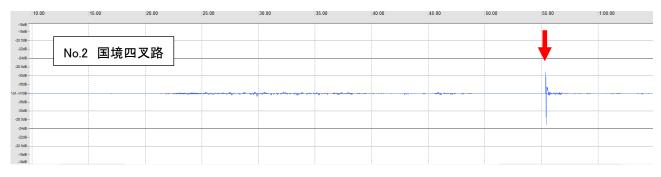



図 4.2.3.6-2 別寒辺四叉路の騒音計 BK2250 で計測した音圧波形

全体波形

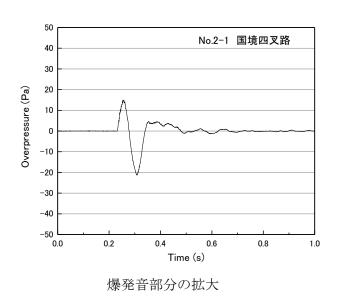


図 4.2.3.6-3 国境四叉路の騒音計 BK2250 で計測した音圧波形

騒音計測結果まとめ

- ・観測所脇(爆点から $192 \,\mathrm{m}$ 地点)でマイクロフォンにより爆発音の騒音計測を行った。実験 $\mathrm{No}.1$ -1~ $\mathrm{No}.1$ -3 および実験 $\mathrm{No}.2$ の結果は、波形の形状も値もほぼ同じ結果であった。
- ・遠方の警戒点(爆点から 2.7 km 地点および 4.2 km 地点)では騒音計で測定した。測定した地点では 爆発音が耳でわずかに確認できる程度であり、また、計測結果も火薬学会が提唱している発破騒音の 許容値 100 dB(A 特性、表 4.2.3.6-2 では LAeq)と比較して、騒音的に問題ない値であることが確認 できた。

4.2.4 まとめ

爆発後の爆点の状況(破壊状況計測)まとめ

爆発後、爆点には大きな漏斗孔が生じた。漏斗孔の直径は実験 No.2 基準爆風圧実験が一番大きくなった。漏斗孔の深さも一番深い1回目の実験 No.1-1と同じぐらい深くなった。漏斗孔が大きくなったのは土堤が無いからであり、さらに同一爆点で4回目の実験であるので深さも深くなると想定されたが、それでも一番深い結果にならなかったのは、2回目以降の実験が降雨の影響で地面が粘土状になっていたからと考えられる。

爆風圧計測結果まとめ

土堤を設けない場合の基準となる爆風パラメータを取得した。実験 No.1 シリーズと比較した結果、 土堤は爆風圧計設置位置(換算距離 $4\sim16\ kg/m^{1/3}$)における爆風パラメータに影響を与えないことを確認した。

飛散物計測結果まとめ

実験 No.2 において、地表面から発生する飛散物の状況を計測した。発生した飛散物を回収計測し、総飛散物数、総飛散物質量、最大重量飛散物、最大飛距離飛散物について取りまとめるとともに、飛散物分布の幾何学的・質量中心とともに飛散物の飛散方向を評価した。

DDESBで定義される破片密度分布を評価し、さらに弾道計算により危険飛散物となる飛散物を評価した。その結果、実験 No.2 において、いずれの飛散物も危険飛散物には該当するものは存在しなかった。

地盤振動計測まとめ

爆点から換算距離 4、8、16 m/kg^{1/3}となる位置において地盤振動計測を行った。基準爆風圧実験における PPV やその減衰傾向は土堤を設置した場合と比べても有意な差は認められず、本実験の範囲においては土堤の有無は地盤振動に大きな影響を及ぼさないと考えられる。

高速度カメラ撮影結果まとめ

- ・EMX2 爆薬 80 kg を厚さ 36 mm の合板の上で爆発させ、爆発状況を高速度カメラで撮影した。
- ・爆発生成気体の膨張は半径より高さ方向が長かった。この結果は、地表面における反射の影響と考えられる。

騒音計測結果まとめ

- ・観測所脇(爆点から 192 m 地点)でマイクロフォンにより爆発音の騒音計測を行った。実験 No.1-1~No.1-3 および実験 No.2 の結果は、波形の形状も値もほぼ同じ結果であった。
- ・遠方の警戒点(爆点から 2.7 km 地点および 4.2 km 地点)では騒音計で測定した。測定した地点では 爆発音が耳でわずかに確認できる程度であり、また、計測結果も騒音的に問題ない値であることが確 認できた。

4.3 総合考察

実験 No.1 地上式火薬庫の土堤に関する実験

地上式火薬庫などに使用される土堤の新技術基準を作成するために、次の3種類の土堤、すなわち、

- ・内面が垂直で平成26年度よりもセメント含有量の多いソイルセメントで構築した土堤
- ・内面が60度で上半分を補強土で構築し下半分をコンクリート擁壁で覆った土堤
- ・内面が 45 度で全体を普通土で構築し下半分をコンクリート擁壁で覆った土堤

を設置した場合の爆発影響低減効果を確認する目的で、約1/7.9 スケールの試験体と含水爆薬80kgを用いて全3回の実験を行い、爆発影響データを取得した。

なお、平成 26 年度に実施した同じ薬種・薬量・スケールの実験からは、内面が垂直なソイルセメント 土堤は爆発で粉砕され重量飛散物の発生が抑制されること、内面が垂直で下半分をコンクリート擁壁で 覆った土堤は擁壁破片の遠方への飛散が抑制されること、また、爆風圧や地盤振動のデータについては 従来の 45 度土堤と同等で材質や工法による影響がないこと、等の知見が得られている。

爆発後の爆点の状況計測の結果からは、コンクリート擁壁は周辺部は細かく破壊されて遠くまで飛散するが、大きく残った本体は爆点のごく近傍に飛散するのみで、保安物件まで飛散するような危険な重量飛散物にはならないことが確認された。

爆風圧計測の結果からは、平成 26 年度と同様、ピーク静水過圧や換算正相圧インパルスなどの爆風 パラメータが、土堤の形状によらず同等であることを確認した。

地盤振動計測の結果からは、換算距離 4、8、 $16 \, \text{m/kg}^{13}$ における最大振動速度(PPV)は平成 $26 \,$ 年度 と同程度であった。また、土堤の有無や土堤の構造が違っても PPV やその減衰傾向に大きな差は認められなかった。

高速度撮影の結果からは、平成 26 年度の結果との比較において、ソイルセメントのセメント含有量の少ない方が、土堤由来の土砂の飛散速度が遅くなることが示された。また、土堤の内面角度に着目すると、上 1/2 の土堤角度が緩やかになるに従い、土砂の飛散速度が遅くなる傾向が認められた。

飛散物計測の結果からは、回収された飛散物について弾道計算を実施して危険な飛散物に該当するか 否かを評価した。以下の知見が得られた。

・内側垂直ソイルセメント土堤(実験 No.1-1) について:

ソイルセメントで構成された土堤は爆発による衝撃で粉々に粉砕され軽量飛散物となることが確認された。よって本実験で計測された飛散物の質量は、実スケールにおいてもほぼ同等であると考えられる。質量 213 g の飛散物が爆源から 150 m の位置に確認されたが、これは実スケールにおいてもほぼ同程度と考えられることから重量飛散物には該当しない。ただし、当該飛散物は、土堤の施工時に混入した石にソイルセメントが付着して構成されたものと予測される。このことは、土堤の施工時に大型の石等が入らない工夫が必要であることを示唆する。

・内側 60 度土堤+1/2 擁壁(実験 No.1-2)および内側 45 度土堤+1/2 擁壁(実験 No.1-3)について:いずれの場合も、遠方まで飛散する重量飛散物は確認されなかった。内側 45 度土堤では距離 100 m を超えるものも 1 個確認されたが質量 7.2 g で、これは実スケールにおいても同程度になると考えられることから重量飛散物には該当しない。距離 50 m~100 m に飛散した 5 個も同様であった。それ以外は内側 60 度土堤ならびに内側 45 度土堤ともに、土堤なしの基準爆風圧実験(実験 No.2)の結果と同等であった。

以上のことから、今年度検討した内側垂直ソイルセメント土堤、内側 60 度土堤+1/2 擁壁および内側 45 度土堤+1/2 擁壁については、従来の土堤と同等の安全性を有することが確認されたと思われる。今後、地上式火薬庫などの土堤に関する新たな技術基準案を検討する際に、本実験で得られた技術データ や知見が有効活用されることを期待する。

実験 No.2 基準爆風圧実験

実験 No.1 と同じ計測系を用いて爆薬の周囲に土堤等を設置しない状態で 1 回、含水爆薬 80 kg を爆発 させる実験を行い、爆発影響データを取得した。実験 No.1 と同じ換算爆発高さ 0.0355 m/kg $^{1/3}$ (平成 26 年度は 0.18 m/kg $^{1/3}$) で実施した。

爆風圧計測の結果からは、平成 26 年度および従来の基準爆風圧実験と同等の結果が得られたこと、また、実験 No.1 シリーズの結果との比較により、土堤の有無は、計測した換算距離 $4\sim16~kg/m^{1/3}$ の範囲で爆風パラメータに影響を与えないことが確認された。

地盤振動計測の結果からは、実験 No.1 シリーズの 3 回の実験結果との比較により、基準爆風圧実験 における PPV やその減衰傾向は土堤を設置した場合と比べても有意な差は認められず、本実験の範囲 においては土堤の有無は地盤振動に大きな影響を及ぼさないことが示された。

高速度カメラ撮影の結果からは、爆発生成気体の膨張は半径より高さ方向が長くなった。この結果は、地表面における反射の影響と考えられる。

飛散物計測の結果からは、回収された飛散物について実験 No.1 と同様の弾道計算を実施して危険な 飛散物に該当するか否かを評価し、危険飛散物に該当する飛散物が存在しないことを確認した。

以上のことから、今年度の基準爆風圧実験は、従来と同程度の威力であることが確認された。したがって、今年度の土堤実験の結果は、平成 26 年度の実験結果と直接的に比較できると考えられる。また、平成 26 年度の基準爆風圧実験データとの比較から、本実験で使用した薬量においては、爆風圧と地盤振動については、爆薬設置高さによる有意な差はないことが示された。引き続き、基準爆風圧に関する実験を実施する際には、薬種・薬量に加えて爆薬設置高さの影響も丁寧に評価しつつ、データの蓄積をすることが望ましいと考える。

第5章 爆発影響低減化実験(室内実験)

5.1 概要

5.1.1 目的

野外実験の条件を補完するため、従来よりも内面の傾斜角の大きな土堤が爆風の威力と指向性に与える影響を調査する。

5.1.2 実験の概要

地上式火薬庫の四方を囲む土堤について、土堤内側の傾斜角および垂直擁壁が爆風低減に与える影響を検討した。縮小スケールは 400 分の 1 とした。爆点から土堤の堤脚までの距離 $L=20.0~\mathrm{mm}$ 、土堤の高さ $H=10.0~\mathrm{mm}$ 、土堤の外側の傾斜角は 45 度とした。

土堤内側の傾斜角を 45,60,90 度としたもの、45,60 度土堤に垂直擁壁を設けたもの、45 度と 90 度土 堤を組み合わせたもの、45 度土堤で爆薬を中心から偏心させて設置したもの、について、PETN/Cペレット 0.50 g の爆発で生じた爆風の圧力履歴の波形を取得した。土堤の載った回転盤を回転させて爆発実験を行うことで、爆風の方位角依存性を 10°刻みで測定し、爆風の指向性に関するデータを取得した。

実験は総数 56 ショットで、すべて産総研つくば第五事業所内 5-2C 棟(大ピット)で実施した。

5.2 実験方法

5.2.1 想定する施設と供試火薬、保安距離の考え方

地上式火薬庫に爆薬が 40 トン保管されており、全量が一度に爆発したケースを想定する。火薬庫は高さ 4.0~m の土堤で四方を囲まれているものとする(火薬庫中心から土堤までの距離:8~m、土堤内の領域: $16.0~m \times 16.0~m$)。当該火薬庫の第四種,第三種,第二種,第一種保安物件に対する K 値はそれぞれ 5,8,14,16 である。

煙火薬や、基準爆薬である TNT は数グラム程度の量では完爆しないため、室内実験では PETN/C ペレットを使用した。過去の実験から、エマルション爆薬の PETN/C 換算は 0.60 (Sugiyama et al., Sci. Tech. Energetic Materials, 79 (1), 2018)、エマルション爆薬の TNT 換算は 0.80 であることが確認されており、ここから PETN/C の TNT 換算は 1.33 (= 0.80/0.60) となる。0.50 g の PETN/C ペレット 1 個を使用するとき、TNT 換算薬量は 0.665 g であり、これは 392 分の 1 スケールに相当する。

産総研が現在所有している実験台(図 5-4a)では、爆点から $0.267 \sim 1.600 \,\mathrm{m}$ の範囲で爆風圧が計測可能である。TNT 換算薬量 $0.67 \,\mathrm{g}$ では、この範囲は換算距離 $Z = 3.06 \sim 18.33 \,\mathrm{m/kg^{1/3}}$ に相当し、想定火薬庫の第一種~第四種保安物件を範囲内に収める。

ペレットは昭和金属工業株式会社製であり、構成は PETN: C=95:5、形状は外径 7.64 mm、高さ 7.55 mm の円柱、密度は 1.44 g/cm^3 、1 つあたりの重量は $0.50\pm0.00 \text{ g}$ であった。図 5-1 に示すように、ペレット 1 個と小型電気雷管 2 型(昭和金属工業株式会社製)をエポキシ樹脂で接着することで使用した。

5.2.2 実験項目

実施した実験項目を表 5-1 に示す。基準爆風の測定(実験 No.0: 爆薬のみで土堤がない状態での爆風の測定)と、土堤内側の角度を変えた場合(実験 No.1,2,3)、45 度土堤と90 度土堤を組み合わせた場合(実験 No.4)、擁壁がある場合(実験 No.5,6)、爆薬を偏心して設置した場合(実験 No.7,8)を実施した。

測定する角度 θ は、土堤の位置を基準とする水平方向の相対角である。座標系の原点をある方向の土堤の中心にとり、爆点から見て防爆壁と垂直をなす方向を θ =0°、左向きを正の角度として表した。実験では 30° ずつ回転盤を動かし、爆風の圧力履歴波形を 10° 刻みで取得した。再現性を確認するため測定はすべて 2 回以上実施し、明瞭な波形データが得られなかった場合は、必要に応じて追加の測定を行った。ただし、実験 No. 5 は供試体が破壊されたため、0° 方向を 1 回のみ実施した。

基準爆発(実験 No. 0)では土堤のない平らな実験台の上に、実験 No. $1\sim6$ では土堤内の中央に、実験 No. 7,8 では土堤内の中央から x または xy 方向に 1:3 偏心させた位置に装薬した。いずれもペレットと雷管は重ねたアルミホイルをハンマーで叩いて作った底上げ板の上に設置した。底上げ板の高さは 0.5 mm とした。雷管は実験台に対し垂直下向きとし脚線で自立させ、紙の接着テープで軽く固定した。

表5-1 実験項目

実験 番号	Shot数	土堤内側の 傾斜角/擁壁	爆薬の偏心	計測系	測定した角度	野外実験 との対応
No. 0	2	基準	_	野外用(-10°) 室内用(0°, 10°)	-10°, 0°, 10°	No.2
No. 1	4	45度	_	室内用	-10°, 0°, 10°, 20°, 30°, 40°	
No. 2	4	60度	_	室内用	-10°, 0°, 10°, 20°, 30°, 40°	_
No. 3	4	90度	_	室内用	-10°, 0°, 10°, 20°, 30°, 40°	No.1-1
No. 4	8	45度 + 90度	_	室内用	-10°, 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°	-
No. 5	1	45度 + 擁壁	_	室内用	-10°, 0°, 10°, 20°, 30°, 40°	No.1-3
No. 6	4	60度 + 擁壁	_	室内用	-10°, 0°, 10°, 20°, 30°, 40°	No.1-2
No. 7	14	45度	x 1:3	室内用	-10°, 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°, 140°, 150°, 160°, 170°, 180°, 190°	_
No. 8	14	45度	xy 1:3	室内用	40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°, 140°, 150°, 160°, 170°, 180°, 190°, 200°, 210°, 220°, 230°, 240°	_
合計	56					

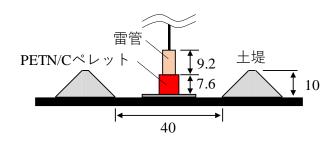
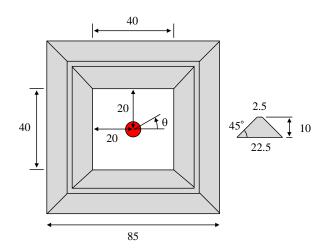
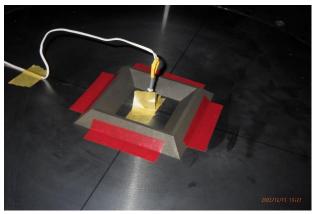
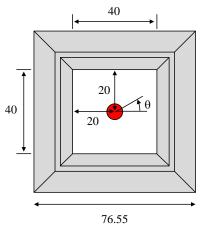
5.2.3 供試体の構造

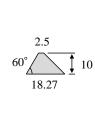
鉄製の土堤を実験台上の回転盤の上に設置し、ビニールテープで固定した。図 5-1 に爆薬の寸法と実験 No. 1 の土堤の断面を示す。図 5-2a ~ c に実験 No. 1 ~ 8 の土堤の上面図および実験時の写真を示す。 爆点から見たとき、防爆壁が直角をなす方向を 0° とした。

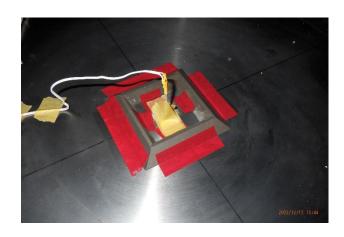
爆点から防爆壁までの距離は 8.0~m / 400 = 20.0~mm、土堤の高さは 4.0~m / 400 = 10.0~mm、土堤頂部の幅は 1.0~m / 400 = 2.5~mm とした。土堤外側の傾斜角は 45~度 とした。

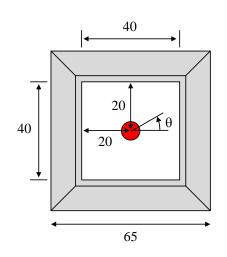
土堤内側の傾斜角が 45 度 (実験 No. 1)、60 度 (実験 No. 2)、90 度 (実験 No. 3) のものを比較した。また、45 度土堤と 90 度土堤を組み合わせたもの (実験 No. 4)、45 度土堤や 60 度土堤に垂直の擁壁部分を設けたもの (実験 No. 5,6) を実験に用いた。これらの実験では、爆薬は土堤内部の中心に設置した。

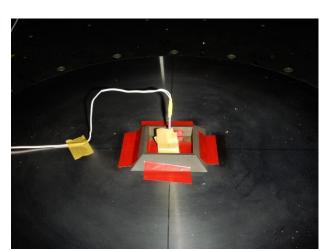
45 度土堤において、爆薬を x 方向、xy 方向に 1:3 の割合で偏心して設置した場合について、検討を行った。

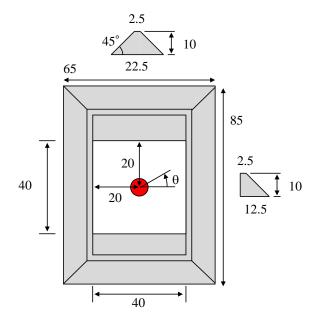

図5-1 爆薬の寸法

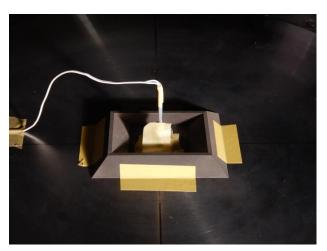



実験No.1 (45度土堤)



実験No.2 (60度土堤)





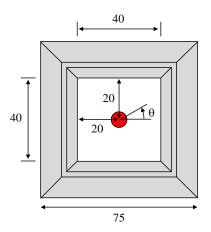
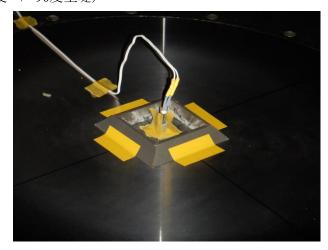
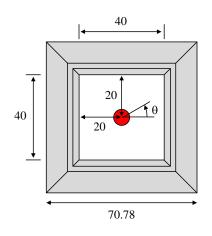
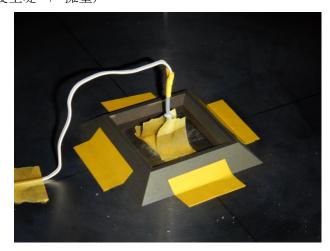

実験No.3(90度土堤)

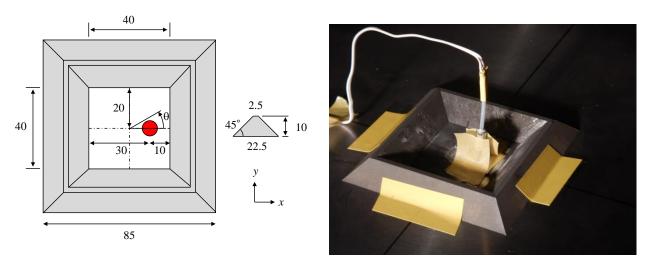
図5-2a 土堤と爆薬設置状況

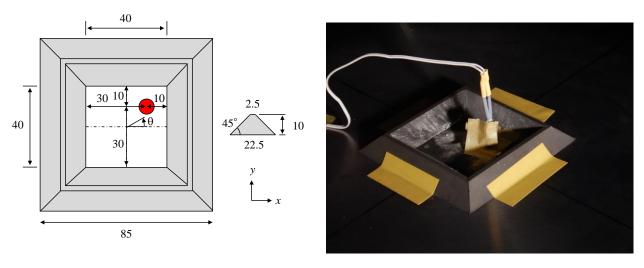



実験No. 4(45度 + 90度土堤)



実験No.5 (45度土堤 + 擁壁)





実験No. 6 (60度土堤 + 擁壁)

図5-2b 土堤と爆薬設置状況

実験No.7(45度土堤、x偏心1:3)

実験No. 8(45度土堤、xy偏心1:3) 図5-2c 土堤と爆薬設置状況

5.2.4 実験台の配置

厚さ $10~\rm mm$ の鋼板で作られた実験台を地表面とみなし、爆風の伝播状況は地表面における過圧をもとに評価した。図 5-3a に実験台の平面図を示す。回転盤の中心を原点とし、原点に爆薬を設置するように設計した。原点から距離 $R=0.267,0.400,0.800,1.200,1.600~\rm m$ で 10° 刻みの $3~\rm f$ 向に計 $15~\rm f$ 個の圧力センサーを配置した。この距離は TNT 薬量 $0.665~\rm g$ で換算すると換算距離 $Z=3.06,4.58,9.17,14.75,18.33~\rm m/kg^{1/3}$ となり、以降はこの換算距離で表記する。

実験台では 3 方向を同時に測定できるため、図 5-3b に示すように回転盤を反時計回りに 30°ずつ動かし、-10°から 190°まで 10°刻みのデータを取得した。この回転方向では 0°から時計回りの 180°について計測することになるため、角度について鏡像反転させ、図 5-3 で定義する θ について解析する。

測定の対称性から、 -10° 方向は 10° 方向と、 190° 方向は 170° 方向と同等とみなした。なお、実験 No. $1\sim3,5,6$ は 45° で、実験 No. 4 は 90° で、実験 No. 7 は 180° で、実験 No. 7 は 180° で、実験 No. 8 は 225° で対称であることから、それぞれ $0^\circ\sim40^\circ$ 、 $0^\circ\sim90^\circ$ 、 $0^\circ\sim180^\circ$ 、 $40^\circ\sim220^\circ$ の範囲で測定を行った。

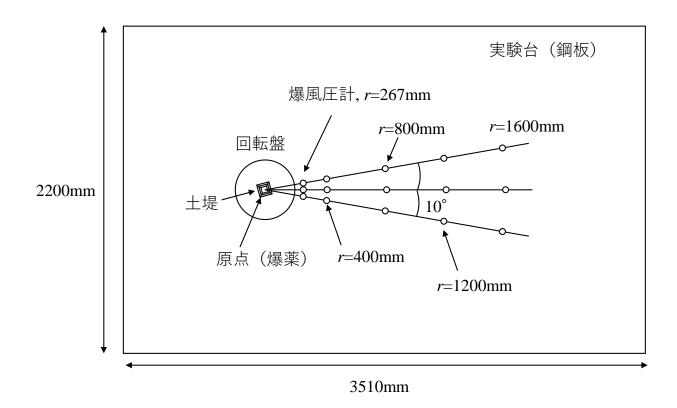


図5-3a 実験台の配置 (○印:圧力センサの位置)

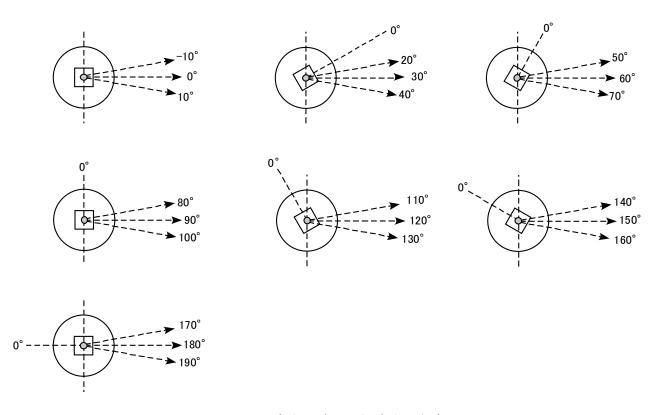


図5-3b 回転盤の方向と測定する角度 (実験台は図5-3aと同じ向きとして、回転盤付近を描いたもの)

5.2.5 圧力センサー

最大過圧を適切に測定するため、圧電素子を利用した PCB 社製のピエゾ式圧力トランスデューサ 113B28型 (共振周波数 ≥ 500 kHz, 100 mV/psi) をセンサーとして選択した。サンプリングは 0.50 μ s 毎 に行い、出力信号はシグナルコンディショナ (PCB Piezotronics, Inc、482C05) を通して波形記憶装置 (HIOKI, MR8845-52) に入力し記録した。

圧力センサーは図 5-4 のように、周囲にタイカジェルテック GT-5 (換算距離 $4.58 \sim 18.33 \text{ m/kg}^{1/3}$ の場合) またはビニールテープ (換算距離 $3.06 \text{ m/kg}^{1/3}$ の場合) を巻き付け、厚さ 10 mm の実験台の窪みに固定した。受圧面が実験台の表面と同じ位置に来るよう調整したのち、表面にシリコングリースを塗布して受圧面を保護した。

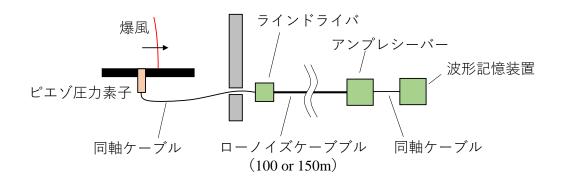
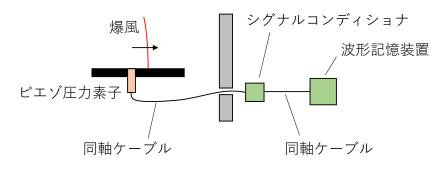


図5-4 実験台に固定した圧力センサー(換算距離 $4.58 \sim 18.33 \text{ m/kg}^{1/3}$ の場合)


5.2.6 計測機器

従来、室内実験では、野外実験で使用する機器を用いて爆風圧力の計測を行ってきた(図 5-5a)。昨年度までは、ピエゾ圧力素子で得た電気信号をラインドライバーH-TECH Triple mode 30622、アンプレシーバーを介して波形記憶装置で記録した。ラインドライバーとアンプレシーバーは、野外実験用のローノイズケーブル(100 または 150 m)で接続した。

今年度は、ピエゾ圧力素子で得た電気信号を PCB 社製のシグナルコンディショナ 482C05 型を介して 波形記憶装置で記録した (図 5-5b)。ピエゾ圧力素子・シグナルコンディショナ・波形記憶装置は同軸ケーブルで接続した。シグナルコンディショナは産総研が所有するものを使用した。

(a) 昨年度まで(野外実験用の機器)

(b) 今年度(室内実験用の機器)

図5-5 計測機器の配置

5.2.7 爆風パラメータの算出

爆風圧は、過剰圧力(大気圧からの超過分)の時間履歴を示す波形データとして取得した。波形から読み取れる爆風パラメータの概要を図 5-6 に示す。測定された爆風圧波形のそれぞれに対し、3 次の自然スプライン関数を用いた補間を行い、各々の角度 θ における爆風パラメータを算出した。爆風パラメータは、最大過圧、正圧相インパルス、到達時間、持続時間の 4 種であり、定義は以下の通りである。

・最大過圧:過圧の最大値。

・到達時刻:過圧の立ち上がりの時刻。

・持続時間:過圧が初めてゼロに戻った時刻と、到達時刻との時間差。

・正圧相インパルス:過圧を持続時間にわたって時間積分した値。

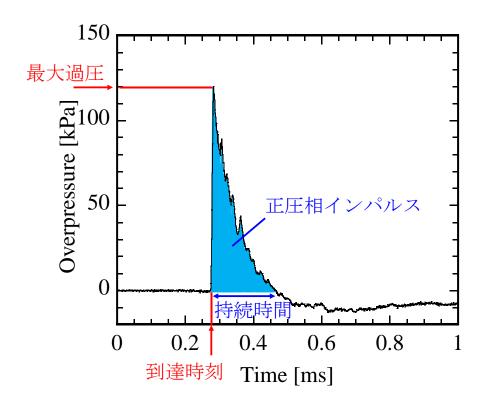


図5-6 爆風パラメータの読み取り

(実験No. 0 (1回目) 0°方向、換算距離3.06 m/kg^{1/3}地点での波形)

5.3 実験結果

5.3.1 基準爆風の過圧履歴

基準爆風の実験は実験No.0-1, 0-2の2回実施した。設計上1回の実験で3方向の波形を同時測定するが、 基準爆風は等方的に拡がり、方向による差異は生じないことが想定される。そのため2回の各換算距離 につき、同一の条件とみなせる過圧履歴波形が最大で6得られる(波形は付録を参照)。ただし、基準爆 風の実験では、-10°方向は野外実験用の計測機器、0°,10°方向は室内実験用の計測機器を用いて、比較を 行った。

取得した波形を3次の自然スプライン関数で補間処理し、各々から爆風パラメータを読み取った。読み取った値の平均を表5-2a,bに示す。表5-2aは室内実験用の計測機器で測定した平均値、表5-2bは野外実験用の計測機器で測定した平均値、表5-2cは全体の平均値である。換算インパルスの算出には、TNT換算薬量0.665gを用いた(以降、同様)。この値をもとに基準圧力および基準インパルスを定め、安全区画の検討に利用した。なお示した値はすべて、2回の測定結果の平均値である。

図5-7に、実験No.0とH28年度野外実験No.2-3 (TNT 160 kg) およびH27年度野外実験No.2-1 (TNT 40 kg) について、最大過圧と換算インパルスの比較を示す。室内用計測機器、野外用計測機器、過去の野外実験の結果はおおむね一致した。表5-2cの爆風パラメータを解析の基準とし、これを用いた2次の近似線を「基準爆発」と定義する。換算距離Zとしたとき、最大過圧の式はeq.2、正圧相インパルスの式はeq.3と表される。

$$X = \log_{10}(Z)$$
 eq. 1

$$\log_{10}(P) = 3.393 - 3.122 \cdot X + 0.87591 \cdot X^{2}$$
 eq. 2

$$\log_{10}(I/W^{1/3}) = 2.4714 - 1.1207 \cdot X - 0.059086 \cdot X^{2}$$
 eq. 3

表5-2a 実験No.0の爆風パラメータ(室内実験用の計測機器で測定)

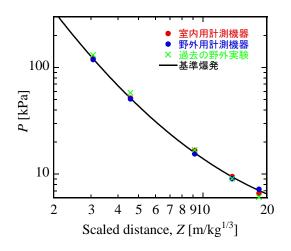

換算距離	最大過圧	正圧相インパルス	換算インパルス	到達時刻	持続時間
$[m/kg^{1/3}]$	[kPa]	[Pa·s]	$[Pa\cdot s/kg^{1/3}]$	[ms]	[ms]
3.06	122.6	7.85	89.98	0.279	0.190
4.58	51.67	4.80	54.94	0.585	0.258
9.17	16.65	2.41	27.58	1.644	0.356
13.75	9.50	1.60	18.34	2.769	0.401
18.33	6.59	1.19	13.58	3.909	0.443

表5-2b 実験No.0の爆風パラメータ (野外実験用の計測機器で測定)

換算距離	最大過圧	正圧相インパルス	換算インパルス	到達時刻	持続時間
$[m/kg^{1/3}]$	[kPa]	[Pa·s]	[Pa·s/kg ^{1/3}]	[ms]	[ms]
3.06	118.45	7.18	82.24	0.275	0.200
4.58	50.67	5.29	60.57	0.583	0.280
9.17	15.51	2.63	30.10	1.656	0.364
13.75	9.09	1.69	19.34	2.777	0.402
18.33	7.22	1.28	14.66	3.917	0.426

表5-2c 実験No.0の爆風パラメータ(基準爆発)

換算距離	最大過圧	正圧相インパルス	換算インパルス	到達時刻	持続時間
$[m/kg^{1/3}]$	[kPa]	[Pa·s]	$[Pa\cdot s/kg^{1/3}]$	[ms]	[ms]
3.06	121.26	7.63	87.40	0.277	0.193
4.58	51.34	4.96	56.82	0.584	0.265
9.17	16.27	2.48	28.42	1.648	0.359
13.75	9.36	1.63	18.67	2.771	0.402
18.33	6.80	1.22	13.94	3.911	0.437

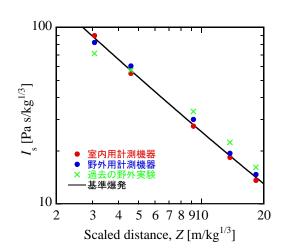


図5-7 実験No.0と過去の野外実験の比較

5.3.2 爆風の過圧履歴

実験で得られた過圧履歴を方向ごとに整理した(波形は付録を参照)。読み取った最大過圧を表 5-3a d に、正圧相インパルスを表 5-4a d に、到達時間を表 5-5a d に、持続時間を表 5-6a d に示す。なお示した値はすべて、2 回の測定結果の平均値である。

表5-3a 角度と最大過圧 [kPa] (実験No. 1, No. 2)

			実験No. 1						実験No. 2					
			45度土堤						(60度土場	1			
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33	3	.06	4.58	9.17	13.75	18.33		
	0	128.24	57.33	18.34	10.39	7.79	11	2.74	51.76	17.78	10.13	7.59		
角度	10	136.48	59.40	18.43	10.48	7.06	12	0.50	53.93	17.56	9.94	7.00		
	20	129.94	55.02	18.83	11.15	6.85	12	0.51	52.60	16.95	9.50	6.83		
$ heta[^{\circ}]$	30	123.25	52.48	17.03	9.78	7.40	10	2.92	49.19	16.72	9.98	7.47		
	40	121.93	54.67	16.33	9.09	6.74	10	7.53	51.07	16.55	9.62	6.96		

表5-3b 角度と最大過圧 [kPa] (実験No. 3, No. 4)

			7	実験No	3			実験No. 4					
			90度土堤						45度 +90度土堤				
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33		3.06	4.58	9.17	13.75	18.33	
	0	86.43	43.91	16.99	11.11	7.66		124.38	57.45	17.55	9.40	7.45	
	10	92.05	45.97	17.58	10.36	7.24		137.07	58.08	17.41	10.05	6.61	
	20	106.68	47.38	17.32	10.08	7.01		129.06	49.77	16.72	9.62	6.24	
	30	98.46	48.72	17.63	11.66	8.15		111.68	49.63	16.52	9.20	7.49	
角度	40	121.72	53.48	18.32	10.65	7.87		108.82	54.65	16.96	10.38	7.14	
$ heta[^{\circ}]$	50							110.38	46.83	16.72	10.12	7.05	
	60							90.47	48.05	17.41	9.84	8.01	
	70							90.26	51.06	17.21	10.99	7.51	
	80							96.33	47.58	17.93	11.00	7.26	
	90							88.60	45.30	17.69	10.41	8.49	

表5-3c 角度と最大過圧 [kPa] (実験No. 5, No. 6)

			7	実験No.	5			実験No. 6				
			45度土堤 + 擁壁					60度土堤 + 擁壁				
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33	3.06	4.58	9.17	13.75	18.33	
	0	102.05	48.73	16.81	11.37	7.58	97.54	47.23	17.51	10.63	7.87	
角度	10	109.47	51.18	18.10	10.27	7.17	117.04	49.14	17.66	10.42	7.50	
	20						114.69	48.22	18.16	10.26	6.82	
$ heta[^{\circ}]$	30						101.44	47.83	15.81	12.03	7.78	
	40						110.83	49.72	16.89	9.92	7.78	

表5-3d 角度と最大過圧 [kPa] (実験No. 7)

	衣3-30 角皮	と取入近	1) T. [KI		(110. /)	
			97	実験No.	7	
			45度土	堤、偏	ட்x 1:3	
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33
	0	127.00	56.66	17.92	10.05	8.10
	10	142.49	59.29	19.10	10.58	7.50
	20	135.48	54.82	17.95	10.74	7.06
	30	120.97	53.29	17.13	9.55	7.08
	40	146.24	57.41	16.36	9.83	7.00
	50	143.32	52.57	16.63	9.75	6.69
	60	127.41	53.41	16.77	9.58	7.21
	70	162.24	58.96	17.00	9.70	7.07
左曲	80	144.84	59.04	18.22	11.15	6.91
角度	90	132.57	59.77	17.24	10.04	7.67
$ heta[^{\circ}]$	100	164.58	61.54	18.13	10.55	7.49
	110	153.48	57.81	17.72	9.94	6.91
	120	126.67	55.53	16.80	9.66	7.51
	130	138.41	55.46	16.76	10.04	7.34
	140	126.33	50.69	17.41	10.40	7.00
	150	108.26	53.47	17.34	9.52	7.63
	160	139.18	54.51	16.35	9.87	7.20
	170	148.35	55.06	17.27	10.48	6.93
	180	125.37	55.07	16.85	9.46	7.34

表5-3e 角度と最大過圧 [kPa] (実験No. 8)

		実験No. 8								
			45度土	堤、偏心	Exy 1:3					
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33				
	50	136.07	56.60	17.14	9.62	6.98				
	60	113.84	59.66	17.78	10.15	7.37				
	70	140.94	56.43	17.97	10.72	7.03				
	80	125.33	60.10	18.22	10.30	7.91				
	90	117.81	63.56	18.68	11.35	7.77				
	100	135.52	55.63	18.49	10.42	7.32				
	110	122.14	57.58	17.68	9.85	7.81				
	120	118.75	58.17	17.13	10.37	7.18				
角度	130	139.10	51.41	16.91	10.29	7.08				
$\theta [^{\circ}]$	140	115.46	49.46	16.54	9.59	7.61				
	150	109.80	54.81	17.14	10.11	7.29				
	160	131.40	52.24	16.93	9.96	6.58				
	170	125.51	54.30	16.40	9.73	7.31				
	180	113.38	57.65	17.23	10.15	7.10				
	190	138.80	54.18	17.51	10.07	6.45				
	200	117.80	53.13	17.03	9.66	7.96				
	210	110.78	57.69	18.05	10.77	7.57				
	220	115.85	50.15	17.58	10.65	7.71				

表5-4a 角度と正圧相インパルス [Pas] (実験No. 1, No. 2)

			実験No. 1					実験No. 2					
			45度土堤					60度土堤					
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33	-	3.06	4.58	9.17	13.75	18.33	
	0	7.83	5.02	2.40	1.56	1.15		7.23	4.77	2.35	1.54	1.14	
角度	10	8.32	5.20	2.50	1.63	1.20		7.66	4.99	2.45	1.60	1.18	
	20	8.07	4.80	2.48	1.65	1.21		7.60	4.69	2.36	1.62	1.22	
$ heta[^{\circ}]$	30	7.14	4.60	2.38	1.59	1.19		6.94	4.55	2.36	1.59	1.18	
	40	7.31	4.93	2.53	1.68	1.25		7.18	4.95	2.49	1.66	1.24	

表5-4b 角度と正圧相インパルス [Pas] (実験No. 3, No. 4)

		実験No. 3					実験No. 4						
			90度土堤					45度 + 90度土堤					
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33	•	3.06	4.58	9.17	13.75	18.33	
	0	6.56	4.48	2.36	1.56	1.21		7.47	4.79	2.22	1.48	1.09	
	10	6.99	4.74	2.43	1.67	1.29		7.96	4.94	2.30	1.53	1.19	
	20	7.55	4.76	2.46	1.66	1.23		7.63	4.57	2.23	1.49	1.12	
	30	6.89	4.83	2.46	1.62	1.22		6.79	4.48	2.25	1.52	1.12	
角度	40	7.73	5.27	2.58	1.75	1.42		7.06	4.87	2.40	1.63	1.33	
θ [°]	50							7.06	4.87	2.40	1.63	1.33	
	60							6.79	4.48	2.25	1.52	1.12	
	70							7.63	4.57	2.23	1.49	1.12	
	80							7.96	4.94	2.30	1.53	1.19	
	90							7.47	4.79	2.22	1.48	1.09	

表5-4c 角度と正圧相インパルス [Pas] (実験No. 5, No. 6)

							実験No. 6						
							60度土堤 + 擁壁						
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33	3.06	4.58	9.17	13.75	18.33		
	0	7.03	4.67	2.33	1.52	1.14	6.85	4.68	2.38	1.58	1.17		
角度	10	7.51	4.89	2.40	1.61	1.24	7.58	4.91	2.44	1.66	1.33		
	20						7.34	4.58	2.43	1.64	1.19		
$ heta[^{\circ}]$	30						6.58	4.44	2.36	1.54	1.18		
	40						7.12	4.87	2.43	1.68	1.43		

表5-4d 角度と正圧相インパルス [Pas] (実験No.7)

	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	実験No. 7								
	•		45度土	-堤、偏	心x 1:3					
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33				
	0	7.55	5.19	2.52	1.62	1.22				
	10	8.43	5.31	2.59	1.73	1.34				
	20	8.30	4.92	2.43	1.65	1.21				
	30	7.16	4.74	2.33	1.57	1.17				
	40	7.74	4.92	2.36	1.63	1.37				
	50	7.78	4.50	2.34	1.60	1.21				
	60	7.11	4.67	2.32	1.57	1.16				
	70	8.48	5.11	2.48	1.66	1.40				
名由	80	8.66	4.93	2.43	1.65	1.20				
角度	90	7.85	5.08	2.39	1.60	1.18				
$ heta[^{\circ}]$	100	8.58	5.45	2.47	1.68	1.39				
	110	8.70	4.98	2.47	1.66	1.23				
	120	7.33	4.86	2.43	1.64	1.23				
	130	7.80	5.12	2.55	1.75	1.46				
	140	7.81	4.83	2.50	1.71	1.28				
	150	7.05	4.73	2.42	1.64	1.23				
	160	7.38	4.98	2.60	1.70	1.45				
	170	8.14	4.91	2.37	1.63	1.27				
	180	7.44	4.75	2.30	1.55	1.16				

表5-4e 角度と正圧相インパルス [Pas] (実験No. 8)

実験No. 8									
			45度土	堤、偏山	∴xy 1:3				
	換算距離	3.06	4.58	9.17	13.75	18.33			
	$[m/kg^{1/3}]$	3.00	1.50	7.17	13.75	10.55			
	50	7.72	4.66	2.22	1.52	1.14			
	60	6.93	5.11	2.55	1.61	1.37			
	70	8.63	5.07	2.40	1.64	1.22			
	80	7.92	5.20	2.47	1.65	1.21			
	90	7.55	5.63	2.88	1.76	1.46			
	100	8.18	5.01	2.48	1.65	1.23			
	110	7.50	4.91	2.41	1.62	1.20			
	120	7.41	5.11	2.50	1.70	1.38			
角度	130	7.94	4.77	2.43	1.66	1.25			
$\theta [^{\circ}]$	140	7.02	4.70	2.37	1.60	1.20			
	150	6.93	5.02	2.58	1.67	1.42			
	160	7.85	4.61	2.35	1.61	1.21			
	170	7.21	4.64	2.31	1.56	1.17			
	180	7.06	5.02	2.66	1.65	1.40			
	190	8.32	4.87	2.45	1.66	1.25			
	200	7.31	4.89	2.47	1.67	1.24			
	210	7.36	5.36	2.74	1.78	1.47			
	220	7.57	5.01	2.56	1.73	1.29			

表5-5a 角度と到達時刻 [ms] (実験No. 1, No. 2)

			実験No. 1					実験No. 2					
			45度土堤					60度土堤					
	換算距離 [m/kg ^{1/3}]	3 06 4 58 9 17 13 75 18 33						3.06	4.58	9.17	13.75	18.33	
	0	0.344	0.644	1.690	2.810	3.946		0.361	0.668	1.719	2.841	3.976	
角度	10	0.342	0.642	1.696	2.812	3.951		0.360	0.666	1.725	2.841	3.981	
	20	0.338	0.643	1.701	2.821	3.959		0.361	0.670	1.730	2.850	3.989	
$ heta[^{\circ}]$	30	0.336	0.643	1.698	2.822	3.959		0.362	0.673	1.729	2.853	3.989	
	40	0.335	0.639	1.703	2.821	3.962		0.360	0.671	1.737	2.852	3.992	

表5-5b 角度と到達時刻 [ms] (実験No. 3, No. 4)

			実験No. 3						7	実験No.	4	
			Ģ	90度土場	=			45度 +90度土堤				
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33		3.06	4.58	9.17	13.75	18.33
	0	0.384	0.706	1.768	2.894	4.029		0.336	0.640	1.694	2.823	3.962
	10	0.384	0.704	1.771	2.891	4.032		0.334	0.639	1.701	2.821	3.967
	20	0.375	0.691	1.755	2.873	4.015		0.344	0.654	1.724	2.845	3.994
	30	0.379	0.694	1.750	2.875	4.007		0.357	0.669	1.731	2.862	4.002
角度	40	0.383	0.692	1.750	2.866	4.006		0.369	0.680	1.747	2.871	4.015
$ heta[^{\circ}]$	50							0.375	0.692	1.762	2.883	4.029
	60							0.387	0.705	1.768	2.897	4.037
	70							0.393	0.710	1.780	2.902	4.045
	80							0.393	0.713	1.783	2.901	4.044
	90							0.396	0.718	1.783	2.908	4.044

表5-5c 角度と到達時刻 [ms] (実験No. 5, No. 6)

			実験No. 5					実験No. 6					
			45度土堤 + 擁壁					60度土堤 + 擁壁					
	換算距離 [m/kg ^{1/3}] 3.06 4.58 9.17 13.75 18.33					3.06	4.58	9.17	13.75	18.33			
	0	0.363	0.675	1.731	2.858	3.994	0.372	0.685	1.743	2.867	4.003		
角度	10	0.362	0.673	1.736	2.857	3.998	0.371	0.683	1.746	2.866	4.007		
	20						0.365	0.678	1.743	2.864	4.004		
$ heta[^{\circ}]$	30						0.367	0.680	1.739	2.869	4.002		
	40						0.366	0.679	1.744	2.863	4.004		

表5-5d 角度と到達時刻 [ms] (実験No. 7)

	43 5 u 77X	実験No. 7								
			45度土	堤、偏	ட்x 1:3					
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33				
	0	0.344	0.647	1.694	2.816	3.948				
	10	0.342	0.644	1.696	2.812	3.951				
	20	0.339	0.643	1.697	2.816	3.958				
	30	0.334	0.639	1.692	2.818	3.955				
	40	0.329	0.631	1.692	2.814	3.958				
	50	0.326	0.631	1.695	2.816	3.963				
	60	0.329	0.633	1.692	2.820	3.956				
	70	0.335	0.634	1.693	2.812	3.956				
4 由	80	0.337	0.638	1.694	2.817	3.957				
角度	90	0.341	0.641	1.689	2.816	3.951				
$ heta[^{\circ}]$	100	0.342	0.640	1.695	2.813	3.955				
	110	0.340	0.639	1.691	2.807	3.951				
	120	0.342	0.643	1.695	2.820	3.955				
	130	0.340	0.644	1.704	2.823	3.965				
	140	0.349	0.660	1.723	2.840	3.985				
	150	0.351	0.661	1.718	2.845	3.981				
	160	0.352	0.657	1.719	2.839	3.982				
	170	0.350	0.652	1.713	2.835	3.977				
	180	0.351	0.654	1.708	2.836	3.973				

表5-5e 角度と到達時刻 [ms] (実験No. 8)

	45 5C 71/2	実験No. 8							
			45度土	堤、偏心	🗅 xy 1:3				
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33			
	50	0.325	0.627	1.682	2.806	3.948			
	60	0.329	0.632	1.690	2.807	3.950			
	70	0.328	0.630	1.682	2.796	3.939			
	80	0.337	0.637	1.681	2.803	3.937			
	90	0.339	0.637	1.689	2.802	3.941			
	100	0.348	0.652	1.705	2.824	3.965			
	110	0.348	0.653	1.704	2.830	3.967			
	120	0.342	0.647	1.710	2.830	3.974			
角度	130	0.329	0.635	1.699	2.816	3.961			
$\theta [^{\circ}]$	140	0.329	0.638	1.697	2.826	3.961			
	150	0.330	0.638	1.701	2.820	3.962			
	160	0.339	0.646	1.709	2.828	3.973			
	170	0.344	0.648	1.705	2.833	3.968			
	180	0.346	0.648	1.708	2.827	3.969			
	190	0.348	0.655	1.718	2.836	3.982			
	200	0.354	0.661	1.717	2.847	3.985			
	210	0.353	0.660	1.721	2.838	3.980			
	220	0.356	0.665	1.721	2.840	3.978			

表5-6a 角度と持続時間 [ms] (実験No. 1, No. 2)

			実験No. 1					実験No. 2					
			45度土堤					60度土堤					
	換算距離 [m/kg ^{1/3}] 3.06 4.58 9.17 13.75 18.33						3.06	4.58	9.17	13.75	18.33		
	0	0.176	0.236	0.323	0.377	0.421		0.186	0.243	0.339	0.385	0.415	
角度	10	0.170	0.236	0.331	0.385	0.413		0.183	0.250	0.335	0.373	0.426	
	20	0.168	0.244	0.348	0.393	0.423		0.181	0.241	0.335	0.406	0.440	
θ [°]	30	0.185	0.240	0.364	0.410	0.438		0.183	0.247	0.358	0.396	0.437	
	40	0.186	0.269	0.372	0.416	0.434		0.202	0.257	0.353	0.396	0.429	

表5-6b 角度と持続時間 [ms] (実験No. 3, No. 4)

			実験No. 3					実験No. 4					
			Ģ	90度土堤	<u> </u>		45度 + 90度土堤						
	換算距離 [m/kg ^{1/3}]		4.58	9.17	13.75	18.33	3.06	4.58	9.17	13.75	18.33		
	0	0.231	0.284	0.351	0.388	0.454	0.172	0.232	0.345	0.401	0.424		
	10	0.218	0.266	0.358	0.419	0.460	0.171	0.242	0.345	0.384	0.433		
	20	0.213	0.273	0.357	0.399	0.424	0.187	0.260	0.331	0.395	0.431		
	30	0.202	0.261	0.341	0.382	0.433	0.183	0.241	0.360	0.386	0.423		
角度	40	0.204	0.260	0.349	0.377	0.441	0.191	0.262	0.357	0.388	0.443		
$\theta [^{\circ}]$	50						0.210	0.266	0.334	0.400	0.410		
	60						0.195	0.256	0.345	0.387	0.422		
	70						0.197	0.251	0.359	0.405	0.464		
	80						0.209	0.274	0.352	0.398	0.456		
	90						0.246	0.267	0.330	0.388	0.435		

表5-6c 角度と持続時間 [ms] (実験No. 5, No. 6)

			1	実験No.	5		実験No. 6						
			45度土堤 + 擁壁					60度土堤 + 擁壁					
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33	3.06	4.58	9.17	13.75	18.33		
	0	0.202	0.259	0.345	0.380	0.415	0.216	0.264	0.344	0.383	0.408		
角度	10	0.208	0.260	0.335	0.379	0.424	0.218	0.266	0.340	0.393	0.446		
	20						0.188	0.256	0.345	0.411	0.428		
$ heta[^{\circ}]$	30						0.185	0.268	0.344	0.391	0.437		
	40						0.199	0.269	0.352	0.386	0.468		

表5-6d 角度と持続時間 [ms] (実験No.7)

	双J-00 円及	円及こ刊が時間 [IIIS] (夫級NO. //								
			7	実験No.	7					
			45度土	堤、偏	ட்x 1:3					
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33				
	0	0.185	0.249	0.332	0.385	0.411				
	10	0.180	0.242	0.334	0.383	0.421				
	20	0.175	0.246	0.332	0.393	0.412				
	30	0.177	0.242	0.353	0.396	0.431				
	40	0.171	0.247	0.369	0.401	0.477				
	50	0.158	0.241	0.354	0.406	0.429				
	60	0.163	0.243	0.344	0.393	0.433				
	70	0.165	0.228	0.351	0.399	0.462				
4 庄	80	0.161	0.227	0.343	0.390	0.429				
角度	90	0.173	0.235	0.349	0.395	0.419				
$ heta[^{\circ}]$	100	0.170	0.238	0.341	0.385	0.456				
	110	0.158	0.236	0.347	0.391	0.415				
	120	0.165	0.250	0.340	0.396	0.449				
	130	0.185	0.259	0.384	0.405	0.481				
	140	0.202	0.265	0.369	0.407	0.430				
	150	0.176	0.268	0.376	0.408	0.452				
	160	0.174	0.251	0.363	0.419	0.494				
	170	0.176	0.238	0.348	0.397	0.456				
	180	0.172	0.238	0.366	0.395	0.438				

表5-6e 角度と持続時間 [ms] (実験No. 8)

		実験No. 8								
			45度土	堤、偏心	🗅 xy 1:3					
	換算距離 [m/kg ^{1/3}]	3.06	4.58	9.17	13.75	18.33				
	50	0.162	0.222	0.350	0.411	0.428				
	60	0.172	0.236	0.356	0.404	0.467				
	70	0.183	0.230	0.343	0.408	0.424				
	80	0.173	0.236	0.330	0.377	0.429				
	90	0.180	0.245	0.345	0.377	0.439				
	100	0.169	0.238	0.339	0.379	0.416				
	110	0.173	0.232	0.344	0.390	0.430				
	120	0.181	0.251	0.374	0.402	0.455				
角度	130	0.189	0.262	0.358	0.423	0.420				
θ [°]	140	0.191	0.272	0.351	0.406	0.458				
	150	0.188	0.253	0.383	0.408	0.489				
	160	0.177	0.236	0.360	0.406	0.447				
	170	0.166	0.249	0.357	0.400	0.435				
	180	0.170	0.241	0.356	0.395	0.471				
	190	0.177	0.252	0.363	0.412	0.434				
	200	0.191	0.249	0.378	0.408	0.435				
	210	0.191	0.260	0.373	0.401	0.463				
	220	0.194	0.267	0.355	0.394	0.433				

5.4 検討1 - 爆風パラメータと換算距離

5.4.1 最大過圧と換算距離

両対数グラフ上では、換算距離 Z が $3.06\sim18.33~\mathrm{m/kg^{1/3}}$ の範囲において最大過剰圧力 P は直線とみな せる。いずれの角度についても、最大過圧が換算距離の1次式

$$\log_{10} P = a_0 + a_1 \log_{10} Z$$

eq. 4

で表されるとし、5 つの測定点(換算距離 3.06, 4.58, 9.17, 13.75, 18.33 m/kg^{1/3})から補間直線を作成した (図 5-8a~c)。図 5-8a~cの最大過圧は表 5-3a~eから抽出し、係数 a₀, a₁の値は表 5-7a~cに整理し た。なお Z < 3.06 m/kg^{1/3}, 18.33 m/kg^{1/3} < Z の範囲は外挿である。

	表5-7a	補間直線 eq.6の係数
実験No. 1		実験No. 2

A 庄	実験	No. 1	実験]	No. 2	実験]	No. 3
角度	45度	土堤	60度	土堤	90度	土堤
θ [°]	a_1	a_0	a_1	a_0	a_1	a_0
0	-1.57523	2.82847	-1.51228	2.74451	-1.33403	2.55125
10	-1.64497	2.89253	-1.58666	2.81114	-1.40843	2.61979
20	-1.59948	2.84525	-1.60266	2.81434	-1.49901	2.71045
30	-1.57465	2.80069	-1.47380	2.68947	-1.37851	2.62454
40	-1.63519	2.83986	-1.53767	2.74396	-1.52578	2.77626

表5-7b 補間直線 eq.6の係数

左	実験No. 4		実験No. 5		実験	実験No. 6	
角度	45度 + 9	0度土堤	45度土堤	+ 擁壁	60度土堤	+ 擁壁	
θ [°]	a_1	a_0	a_1	a_0	a_1	a_0	
0	-1.60616	2.83756	-1.43052	2.66187	-1.40296	2.63138	
10	-1.67918	2.90757	-1.51324	2.73971	-1.51328	2.74501	
20	-1.64992	2.85015			-1.53714	2.75599	
30	-1.53032	2.74047			-1.40326	2.63709	
40	-1.52989	2.75485			-1.49404	2.71894	
50	-1.50975	2.71988					
60	-1.38765	2.60685					
70	-1.39941	2.62556					
80	-1.41989	2.64416					
90	-1.32770	2.55718					

表5-7c 補間直線 eq.6の係数

左	実験1	No. 7
角度	45度土堤、	偏心x 1:3
$ heta[^\circ]$	a_1	a_0
0	-1.56276	2.81396
10	-1.63588	2.89711
20	-1.61723	2.85983
30	-1.59217	2.81086
40	-1.69233	2.92166
50	-1.67962	2.89757
60	-1.60854	2.83038
70	-1.74081	2.97971
80	-1.66237	2.91546
90	-1.61778	2.86368
100	-1.71146	2.97613
110	-1.71169	2.95072
120	-1.59883	2.82879
130	-1.63568	2.87086
140	-1.58054	2.80770
150	-1.51746	2.74141
160	-1.64657	2.87434
170	-1.67254	2.91088
180	-1.60567	2.82983

表5-7d 補間直線 eq.6の係数

	宝驗	No. 8
角度		偏心xy 1:3
$ heta[^\circ]$	$\frac{13\sqrt{2}\pm\sqrt{2}}{a_1}$	a_0
50	-1.66106	2.88793
60	-1.56221	2.80034
70	-1.64366	2.88909
80	-1.57377	2.82933
90	-1.54284	2.80987
100	-1.61331	2.86063
110	-1.56931	2.81181
120	-1.58074	2.81494
130	-1.62583	2.85556
140	-1.52820	2.74615
150	-1.53302	2.75900
160	-1.64065	2.85628
170	-1.59927	2.82261
180	-1.56761	2.79594
190	-1.67561	2.89795
200	-1.53409	2.76655
210	-1.51680	2.76286
220	-1.49853	2.73650

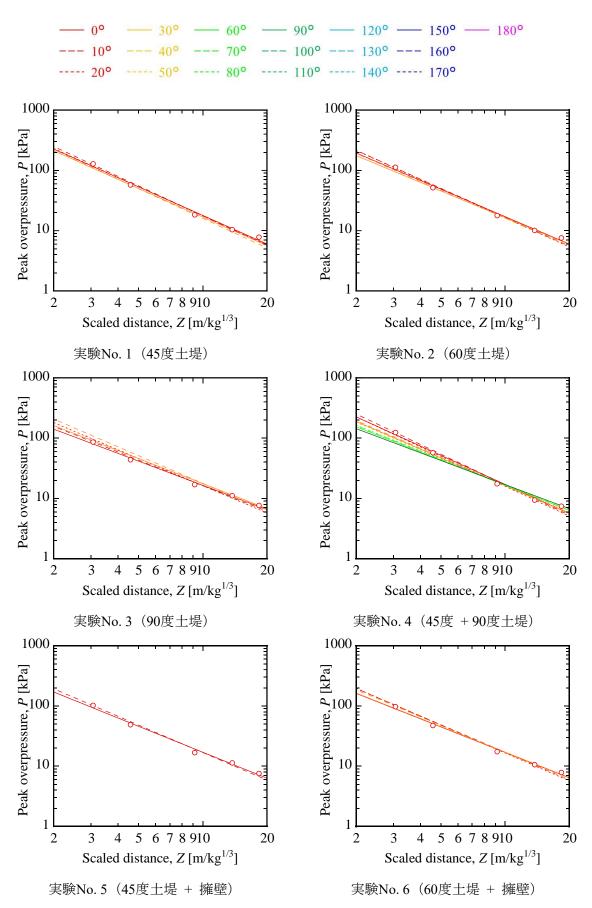
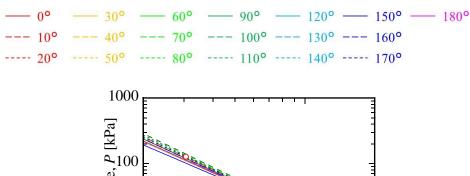
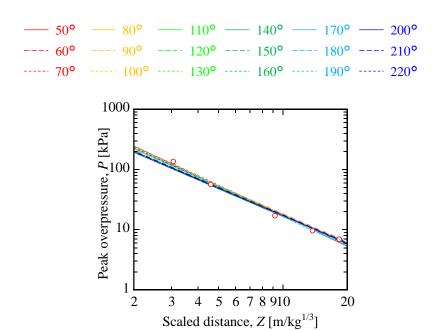




図5-8a 最大過圧と換算距離(補間直線 $Z < 3.06 \text{ m/kg}^{1/3}$, $18.33 \text{ m/kg}^{1/3} < Z$ の範囲は外挿) ※ 0° 方向のみ測定値を白抜きの丸印で示した。

実験No.7(45度土堤、x偏心1:3)

図5-8b 最大過圧と換算距離(補間直線 $Z < 3.06 \text{ m/kg}^{1/3}$, $18.33 \text{ m/kg}^{1/3} < Z$ の範囲は外挿) ※ 0° 方向のみ測定値を白抜きの丸印で示した。

実験No. 8 (45度土堤、偏心xy 1:3)

図5-8c 最大過圧と換算距離(補間直線 Z < 3.06 m/kg^{1/3}, 18.33 m/kg^{1/3} < Zの範囲は外挿) ※ 0°方向のみ測定値を白抜きの丸印で示した。

5.4.2 正圧相インパルスと換算距離

最大過圧と同様、両対数グラフ上では、換算距離 Z が $3.06 \sim 18.33 \text{ m/kg}^{1/3}$ の範囲において正圧相インパルス I も直線とみなせる。いずれの角度についても、正圧相インパルスが換算距離の 1 次式

$$\log_{10} I = a_0 + a_1 \log_{10} Z$$
 eq. 5

で表されるとし、5 つの測定点(換算距離 3.06, 4.58, 9.17, 13.75, 18.33 m/kg^{1/3})から補間直線を作成した(図 5-9a~c)。図 5-9a~c の正圧相インパルスは表 5-4a~e から抽出した。係数 a_0 , a_1 の値は表 5-8a~d に整理した。なお Z < 3.06 m/kg^{1/3}, 18.33 m/kg^{1/3} < Z の範囲は外挿である。

			衣3-8a	們則旦称 eq.	のの常数			
Ħ	角度	実験No. 1		実験	実験No. 2		実験No. 3	
		45度	土堤	60度	60度土堤		土堤	
0	·[°]	a_1	a_0	a_1	a_0	a_1	a_0	
	0	-1.06932	1.41030	-1.03057	1.36005	-0.94910	1.27906	
1	10	-1.07596	1.43570	-1.03991	1.38792	-0.94471	1.30038	
2	20	-1.03878	1.39300	-1.00928	1.35463	-0.99882	1.35259	
3	30	-0.99289	1.32915	-0.98034	1.31340	-0.97160	1.31841	
4	40	-0.98244	1.34290	-0.98264	1.33884	-0.96467	1.35350	

表5-8a 補間直線 eq.6の係数

表5-8b	補間直線	ea	6の係数

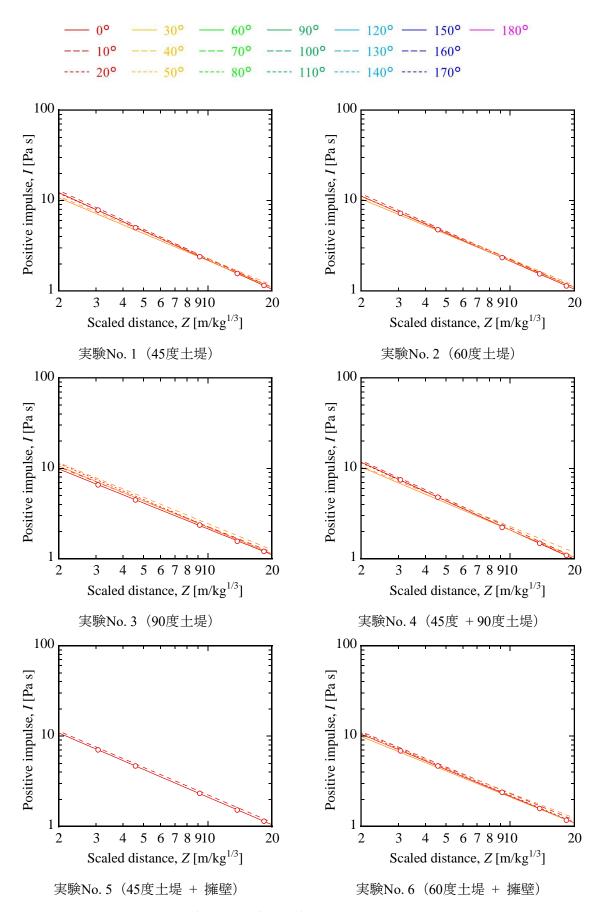
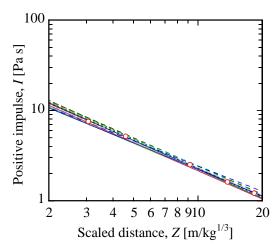
4 広	実験]	実験No. 4		実験No. 5		No. 6
角度	45度 + 9	0度土堤	45度土堤	+ 擁壁	60度土堤	+ 擁壁
θ[°]	a_1	a_0	a_1	a_0	a_1	a_0
0	-1.07463	1.39121	-1.01581	1.34083	-0.98432	1.31828
10	-1.06762	1.40634	-1.00997	1.36002	-0.98031	1.34439
20	-1.06175	1.37996			-0.99192	1.33578
30	-0.99847	1.31450			-0.95863	1.28437
40	-0.95345	1.31031			-0.92099	1.29175
50	-0.95345	1.31031				
60	-0.99847	1.31450				
70	-1.06175	1.37996				
80	-1.06762	1.40634				
90	-1.07463	1.39121				

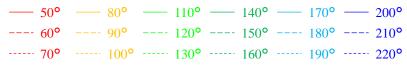
表5-8c 補間直線 eq.6の係数

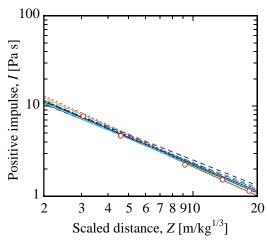
左	実験]	No. 7
角度	45度土堤、	偏心x 1:3
heta [°]	a_1	a_0
0	-1.02878	1.38562
10	-1.02999	1.41430
20	-1.05726	1.41290
30	-1.01176	1.34504
40	-0.98559	1.34937
50	-1.01739	1.35782
60	-1.00699	1.33779
70	-1.01937	1.39860
80	-1.07779	1.43489
90	-1.05930	1.40608
100	-1.03872	1.42317
110	-1.07206	1.43484
120	-0.99509	1.34616
130	-0.95208	1.34175
140	-0.99462	1.36000
150	-0.97201	1.31904
160	-0.92833	1.31217
170	-1.03396	1.39110
180	-1.03697	1.36777

表5-8d 補間直線 eq.6の係数

4 座	実験	No. 8
角度	45度土堤、	偏心xy 1:3
$ heta[^\circ]$	a_1	a_0
50	1.38339	1.38339
60	1.31286	1.31286
70	1.43777	1.43777
80	1.40902	1.40902
90	1.36001	1.36001
100	1.40837	1.40837
110	1.36740	1.36740
120	1.33433	1.33433
130	1.37252	1.37252
140	1.32447	1.32447
150	1.29285	1.29285
160	1.36610	1.36610
170	1.34141	1.34141
180	1.30934	1.30934
190	1.40238	1.40238
200	1.34260	1.34260
210	1.32813	1.32813
220	1.35366	1.35366


図5-9a 正圧相インパルスと換算距離(補間直線Z < 3.06 m/kg^{1/3}, 18.33 m/kg^{1/3} < Zの範囲は外挿) ※ 0°方向のみ測定値を白抜きの丸印で示した。



実験No. 7(45度土堤、偏心x 1:3)

図5-9b 正圧相インパルスと換算距離 (補間直線Z < 3.06 m/kg^{1/3}, 18.33 m/kg^{1/3} < Zの範囲は外挿) ※ 0°方向のみ測定値を白抜きの丸印で示した。

実験No. 8(45度土堤、偏心xy 1:3)

図5-9c 正圧相インパルスと換算距離 (補間直線Z < 3.06 m/kg^{1/3}, 18.33 m/kg^{1/3} < Zの範囲は外挿) ※ 0°方向のみ測定値を白抜きの丸印で示した。

5.5 検討2-最大過圧と角度

5.5.1 最大過圧

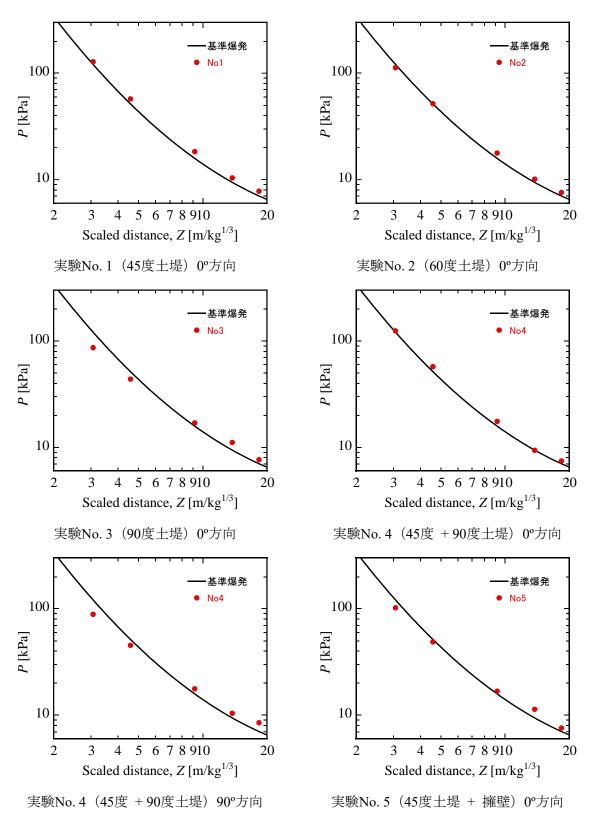
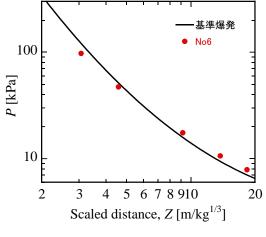
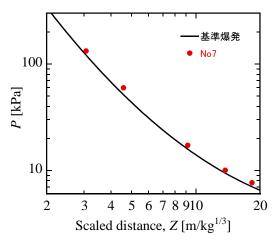
実験実験 No. $1\sim8$ の結果を、基準爆発や 45 度土堤の結果と比較することで、土堤内側の傾斜角や形状、爆薬の偏心の設置の影響について検討する。これらの実験で得られた最大過圧 P について、 0° 、 90° 、 180° 、 270° 方向の換算距離に対する分布を図 5-10a, b に示した。

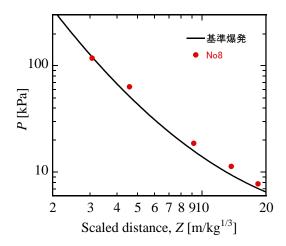
また、P を θ の関数とみて図 5-11a, b に整理した。図 5-12a, b に基準爆発の最大過圧の平均値 P_0 との比 (P/P_0) を θ の関数として示した。 0° 、 90° 、 180° 方向の P/P_0 を換算距離ごとに表 5-10a, b に整理し、図 5-13a, b に示した。P は表 5-3a ~ e から、 P_0 は表 5-2c から抽出して用いた。

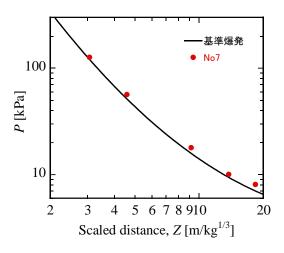
各実験における最大過圧の特徴を表 5-9 に述べる。

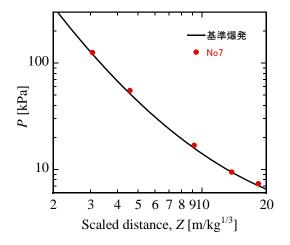
表5-9 最大過圧の特徴

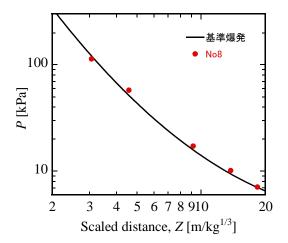
		双3-9 取八迴江·少付 数
実験	45度土堤	0°方向では爆点近傍から遠方まで全範囲で基準爆発を上回った。P/P ₀ は
No. 1		換算距離とともに増加する傾向であった。
No. 2	60度土堤	0°方向では換算距離3.06 m/kg ^{1/3} で基準爆発を下回り、それ以上では基準
		爆発を上回った。P/P ₀ は換算距離とともに増加する傾向であった。
No. 3	90度土堤	0°方向では換算距離4.58 m/kg ^{1/3} 以下で基準爆発を下回り、それ以上では
		基準爆発を上回った。P/P ₀ は換算距離とともに増加する傾向であった。
No. 4	45度+90度土堤	0°方向(傾斜角が45度の方向)では、爆点近傍から遠方まで全範囲で基
		準爆発と同等か上回った。P/P ₀ は換算距離とともに増加する傾向であっ
		た。換算距離3.06 m/kg ^{1/3} から4.58 m/kg ^{1/3} の間でP/P ₀ の増加が見られる
		が、 <i>P/P</i> 0と換算距離に相関は見いだせなかった。
		90°方向(傾斜角が90度の方向)では、換算距離4.58 m/kg ^{1/3} 以下の爆点
		近傍では基準爆発を下回り、それ以上では基準爆発を上回った。P/P ₀ は
		換算距離とともに増加する傾向であった。
No. 5	45度土堤+擁壁	0°方向では、爆点近傍では基準爆発を下回り、遠方では基準爆発を上回
		った。P/P ₀ は換算距離とともに増加する傾向であった。
No. 6	60度土堤+擁壁	0°方向では、爆点近傍では基準爆発を下回り、遠方では基準爆発を上回
		った。P/P ₀ は換算距離とともに増加する傾向であった。
No. 7	x偏心1:3	0°、90°、180°方向では、爆点近傍から遠方まで全範囲で基準爆発と同等
		か上回った。特に0°、90°方向が顕著であった。0°方向ではP/P ₀ は換算距
		離とともに増加する傾向、90°、180°方向ではP/P0と換算距離に相関は見
		いだせなかった。
No. 8	xy偏心1:3	90°、180°方向では、換算距離4.58 m/kg ^{1/3} 以上で基準爆発を上回った。特
		に90°方向が顕著であった。換算距離3.06 m/kg ^{1/3} から4.58 m/kg ^{1/3} の間で
		P/P_0 の大幅な増加が見られるが、 P/P_0 と換算距離に相関は見いだせなか
		った。


図5-10a 換算距離とP


実験No.6 (60度土堤 + 擁壁) 0°方向


実験No. 7(45度土堤、x偏心1:3)90°方向


実験No. 8(45度土堤、xy偏心1:3)90°方向

実験No.7(45度土堤、x偏心1:3)0°方向

実験No. 7(45度土堤、x偏心1:3)180°方向

実験No. 8(45度土堤、xy偏心1:3)180°方向

図5-10b 換算距離とP

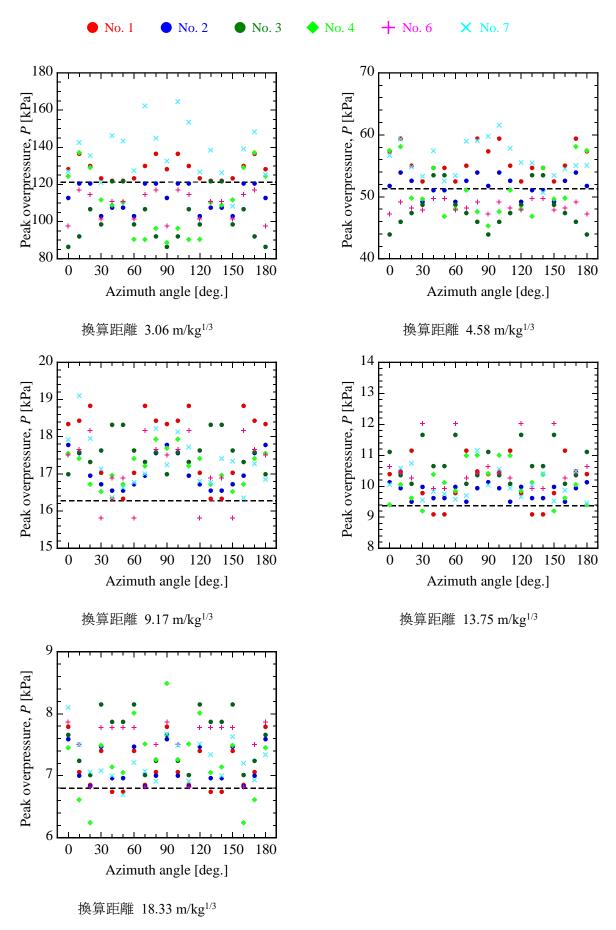


図5-11a Pの角度分布(実験No.8以外、破線は基準爆発)

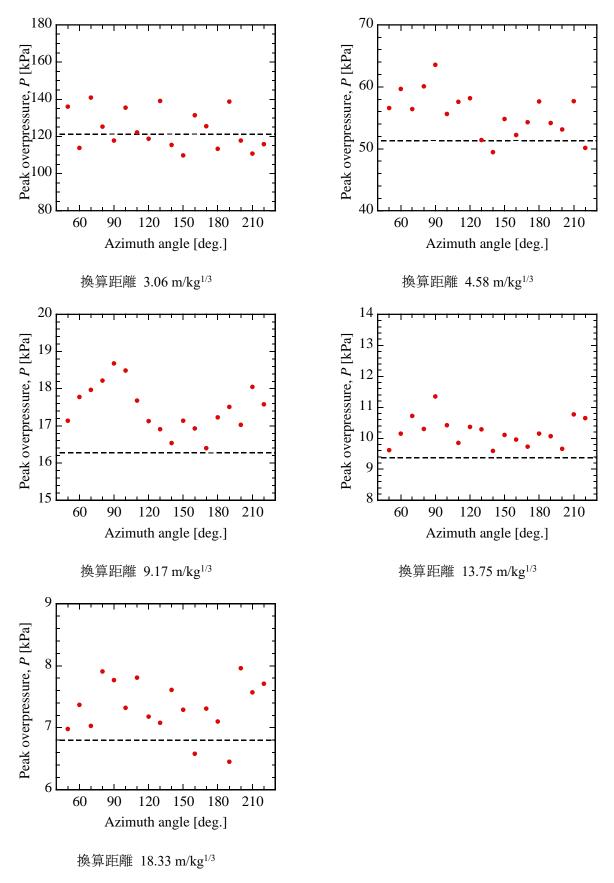


図5-11b Pの角度分布(実験No.8、破線は基準爆発)

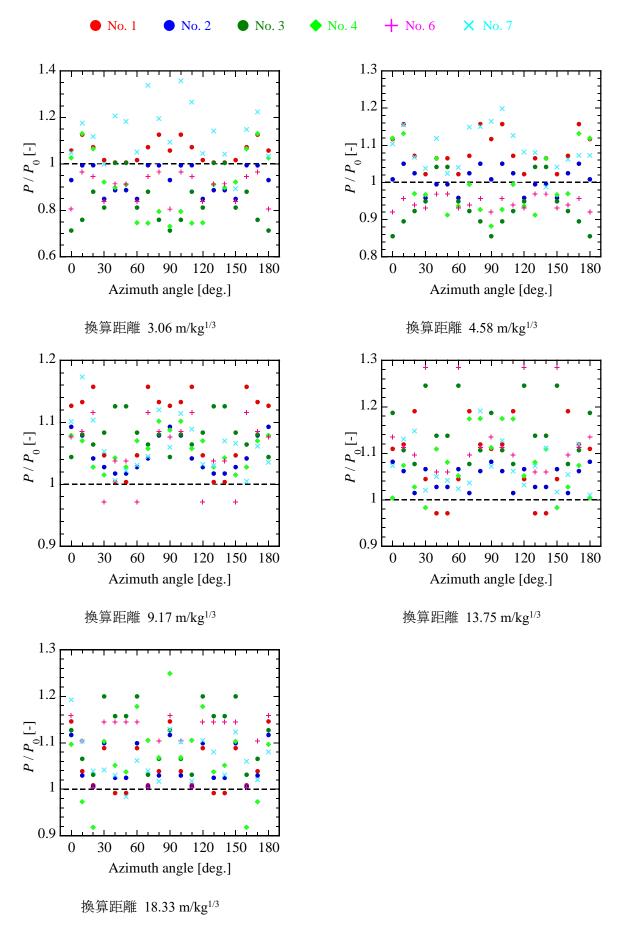


図5-12a P/P₀の角度分布(実験No. 8以外、破線は基準爆発)

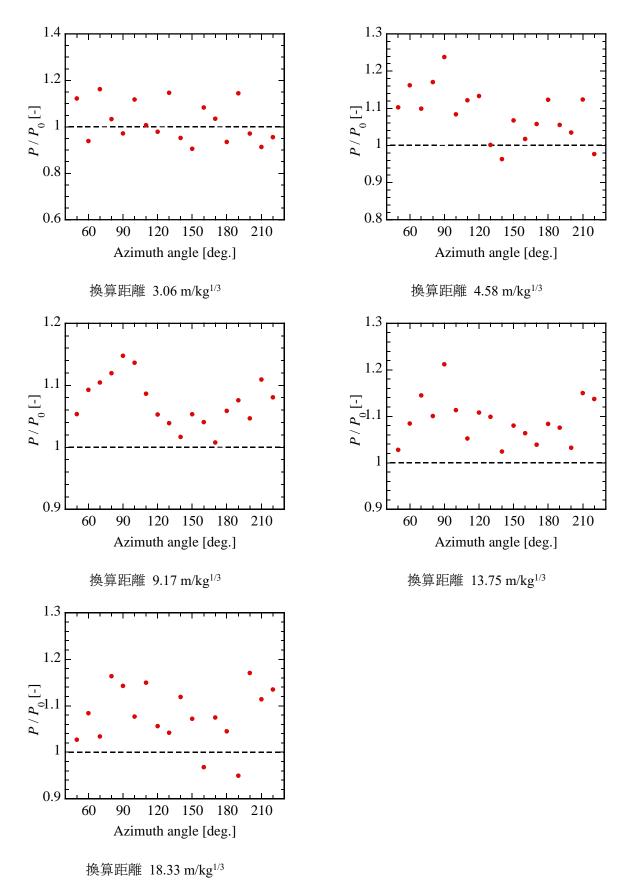


図5-12b P/Poの角度分布(実験No.8、破線は基準爆発)

表5-10a P/P₀

換算距離	実験No. 1	実験No. 2	実験No. 3	実験	No. 4
2 22 7 7 7 11	45度土堤	60度土堤	90度土堤	45度 + 9	00度土堤
$[m/kg^{1/3}]$	0°	0°	0°	0°	90°
3.06	1.0575	0.9298	0.7127	1.0257	0.7307
4.58	1.1168	1.0083	0.8552	1.1190	0.8824
9.17	1.1268	1.0928	1.0440	1.0787	1.0873
13.75	1.1095	1.0818	1.1870	1.0037	1.1119
18.33	1.1459	1.1166	1.1270	1.0964	1.2488

表5-10b P/P₀

	実験No. 5	実験No. 6		実験No.	7	実験	No. 8
換算距離	45度土堤	60度土堤		45度土場	Ē	45度	土堤
$[m/kg^{1/3}]$	+ 擁壁	+ 擁壁		x偏心1:3	3	xy偏	心1:3
	0°	0°	0°	90°	180°	90°	180°
3.06	0.8416	0.8044	1.0473	1.0933	1.0339	0.9716	0.9350
4.58	0.9492	0.9200	1.1036	1.1642	1.0727	1.2380	1.1230
9.17	1.0332	1.0762	1.1014	1.0597	1.0355	1.1477	1.0588
13.75	1.2141	1.1352	1.0735	1.0720	1.0101	1.2119	1.0836
18.33	1.1148	1.1581	1.1924	1.1283	1.0800	1.1428	1.0452

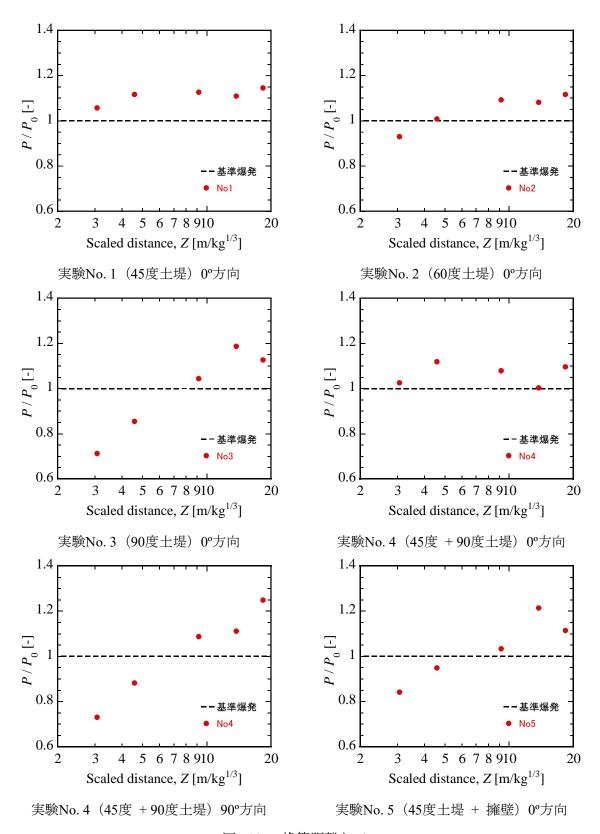
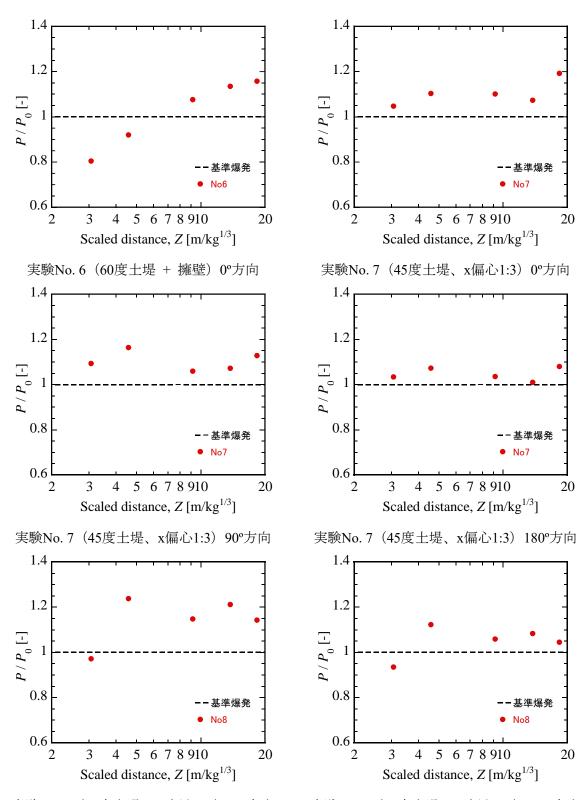



図5-13a 換算距離とP/P₀

実験No. 8(45度土堤、xy偏心1:3)90°方向 実験No. 8(45度土堤、xy偏心1:3)180°方向 図5-13b 換算距離と P/P_0

5.5.2 等圧線

eq.4を変形して得られる eq.6の関係から、最大過圧 Pに対応する換算距離 Zが求められる。

$$Z = 10^{\frac{\log_{10} P - a_0}{a_1}}$$
 eq. 6

表 5-2c に示す最大過圧を 5 種の基準圧力とし、各々の角度 θ について基準圧力と同等の最大過圧が生じる換算距離 Z を求め表 5-12a~e に整理した。等圧線は図 5-14a, b に示した。

測定点の間は、Z を θ の関数とみなし eq. 9 に示す 3 次の自然スプライン Z (θ)で補間した。スプラインの節点は、19 個の測定点に $\theta = -30^\circ, -20^\circ, -10^\circ, 190^\circ, 200^\circ$ の 6 点を加えた 25 点とした。

$$Z = a_0 + a_1\theta + \sum_{n=3}^{21} c_n(\theta + 10n)_+^3$$
 eq. 7

ただし、
$$\begin{cases} \theta^3 & (\theta \ge 0 \mathcal{O} \ge \mathbb{B}) \\ 0 & (\theta < 0 \mathcal{O} \ge \mathbb{B}) \end{cases}$$

ただし、実験 No. 8 の場合には、 $50^\circ \sim 220^\circ$ の 18 個の測定点に $\theta = 20^\circ$, 30° , 40° , 230° , 240° , 250° の 6 点を加えた 24 点とした。実験 No. 8 の 3 次の自然スプライン $Z(\theta)$ を eq. 10 に示す。

スプライン係数の一覧は表 5-13a~eに示した。

図 5-14a,b から等圧線を選別し、表面爆発と同等の最大過圧が生じる換算距離の角度依存性について、実験 No. 1 と比較したものが図 5-15a \sim g である。

各実験における換算距離毎の等圧線の特徴を表 5-11 に述べる。

表5-11 等圧線の特徴

実験	45度土堤	換算距離3.06 m/kg ^{1/3} では10°方向で最大過圧が増加するが、おおむね最
No. 1		大過圧が減少した。換算距離4.58, 9.17, 13.75 m/kg ^{1/3} では全角度で最大
		過圧が増加した。換算距離18.33 m/kg ^{1/3} では0°方向で最大過圧が増加し
		たが、他の角度では最大過圧が減少した。相対的に、0°方向で爆風が強
		化、45°方向で爆風が低減された。
No. 2	60度土堤	換算距離3.06 m/kg ^{1/3} では全角度で最大過圧が減少、換算距離4.58, 9.17,
		13.75 m/kg ^{1/3} では全角度で最大過圧が増加した。換算距離18.33 m/kg ^{1/3} で
		はおおむね最大過圧が減少した。爆点近傍では実験No. 1と概形が似て
		いるが、実験No.1よりも爆風が低減された。
No. 3	90度土堤	換算距離3.06 m/kg ^{1/3} では全角度で最大過圧が減少した。換算距離4.58
		m/kg ^{1/3} では0°方向で最大過圧が減少、45°方向で最大過圧が増加した。換
		算距離9.17, 13.75 m/kg ^{1/3} では全角度で最大過圧が増加した。換算距離
		18.33 m/kg ^{1/3} では20°方向で最大過圧が減少、他の角度では最大過圧が増
		加した。実験No.1とは強弱の生じる角度が反転した。
No. 4	45度+90度土堤	換算距離3.06 m/kg ^{1/3} では10°方向で最大過圧が増加したが、おおむね最
		大過圧は減少した。換算距離4.58 m/kg ^{1/3} では10°方向で最大過圧が増加、
		90°方向で最大過圧が減少した。換算距離9.17, 13.75 m/kg ^{1/3} では全角度
		で最大過圧が増加した。換算距離18.33 m/kg ^{1/3} では20°方向で最大過圧が
		減少、90°方向で最大過圧が増加した。爆点近傍では実験No.1とは強弱
		の生じる角度が反転し、実験No. 1よりも爆風が低減された。爆点遠方
		では実験No.1と概形が似ているが、0°方向で実験No.1よりも爆風が強
		化された。
No. 6	60度土堤+擁壁	換算距離3.06 m/kg ^{1/3} では全角度で最大過圧が減少した。換算距離4.58
		m/kg ^{1/3} ではおおむね最大過圧が増加、換算距離9.17,13.75 m/kg ^{1/3} では全
		角度で最大過圧が増加した。換算距離18.33 m/kg ^{1/3} では20°,45°方向で最
		大過圧が減少、他の角度では最大過圧が増加した。爆点近傍では実験
		No.1よりも爆風が低減されたが、爆点遠方ではおおむね実験No.1より
		も爆風が強化された。
No. 7	x偏心1:3	換算距離3.06 m/kg ^{1/3} では150°方向で最大過圧が減少した。換算距離4.58,
		9.17, 13.75 m/kg ^{1/3} では全角度で最大過圧が増加した。換算距離18.33
		m/kg ^{1/3} では0°方向で最大過圧が増加、他の角度では最大過圧が減少し
		た。爆点近傍では実験No.1よりも爆風が強化された。
No. 8	xy偏心1:3	換算距離3.06 m/kg ^{1/3} では140°方向で最大過圧が減少した。換算距離4.58,
		9.17, 13.75 m/kg ^{1/3} では全角度で最大過圧が増加した。換算距離18.33
		m/kg ^{1/3} では90°,210°方向で最大過圧が増加、他の角度では最大過圧が減
		少した。爆点遠方では90°,220°方向で実験No.1よりも爆風が強化、180°
		方向で実験No.1よりも爆風が低減された。

表5-12a 基準圧力を与える換算距離 (実験No. 1, No. 2)

	実験No. 1						実験No. 2				
角度	45度土堤						60度土堤				
θ [°]											
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa		121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa
0	2.97	5.13	10.63	15.10	18.50		2.73	4.83	10.32	14.88	18.38
10	3.10	5.23	10.52	14.72	17.88		2.87	4.94	10.19	14.44	17.67
20	2.99	5.12	10.51	14.84	18.13		2.86	4.88	10.00	14.12	17.25
30	2.85	4.92	10.22	14.51	17.79		2.58	4.62	10.07	14.65	18.20
40	2.90	4.91	9.91	13.89	16.89		2.69	4.70	9.92	14.22	17.51

表5-12b 基準圧力を与える換算距離 (実験No. 3, No. 4)

	実験No. 3					実験No. 4					
角度		90度土堤				45度 + 90度土堤					
$ heta[^{\circ}]$							—————————————————————————————————————				
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa	
0	2.24	4.27	10.10	15.29	19.43	2.95	5.03	10.29	14.52	17.72	
10	2.40	4.42	10.00	14.80	18.58	3.09	5.16	10.24	14.23	17.21	
20	2.62	4.65	10.00	14.46	17.90	2.91	4.91	9.84	13.76	16.71	
30	2.47	4.60	10.59	15.82	19.96	2.69	4.71	9.98	14.32	17.66	
40	2.84	4.99	10.61	15.24	18.80	2.75	4.82	10.21	14.65	18.06	
50						2.64	4.66	9.98	14.39	17.79	
60						2.38	4.43	10.13	15.09	19.00	
70						2.44	4.51	10.24	15.21	19.12	
80						2.48	4.55	10.21	15.07	18.88	
90						2.27	4.34	10.32	15.65	19.91	

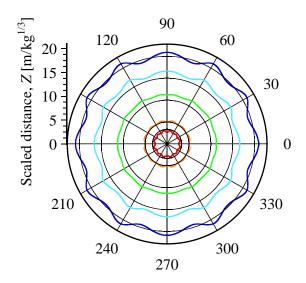
表5-12c 基準圧力を与える換算距離 (実験No. 5, No. 6)

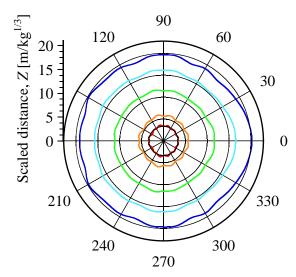
	実験No. 5						実験No. 6					
角度		45度土堤 + 擁壁						60度土堤 + 擁壁				
θ [°]												
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa		121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa	
0	2.54	4.62	10.33	15.20	19.01		2.46	4.53	10.28	15.25	19.16	
10	2.71	4.79	10.23	14.74	18.22		2.74	4.83	10.31	14.86	18.36	
20							2.74	4.79	10.11	14.49	17.84	
30							2.48	4.57	10.37	15.38	19.33	
40							2.66	4.73	10.21	14.78	18.31	

表5-12d 基準圧力を与える換算距離 (実験No. 7)

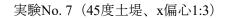
33-12d	生物は 7										
	実験No. 7										
角度		45度土堤、x偏心1:3									
θ [°]		換算距離 Z[m/kg ^{1/3}]									
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa						
0	2.93	5.08	10.60	15.10	18.54						
10	3.14	5.31	10.73	15.04	18.29						
20	3.02	5.14	10.45	14.71	17.94						
30	2.86	4.91	10.11	14.30	17.49						
40	3.13	5.20	10.25	14.20	17.16						
50	3.05	5.09	10.09	14.02	16.97						
60	2.91	4.97	10.15	14.31	17.47						
70	3.27	5.36	10.37	14.25	17.12						
80	3.16	5.31	10.59	14.77	17.91						
90	3.03	5.16	10.50	14.78	18.02						
100	3.32	5.49	10.74	14.84	17.89						
110	3.21	5.30	10.38	14.33	17.28						
120	2.92	5.01	10.27	14.51	17.73						
130	3.03	5.12	10.34	14.50	17.63						
140	2.87	4.95	10.23	14.52	17.78						
150	2.71	4.78	10.19	14.67	18.12						
160	3.02	5.09	10.23	14.31	17.39						
170	3.12	5.22	10.38	14.44	17.49						
180	2.92	4.98	10.18	14.37	17.54						

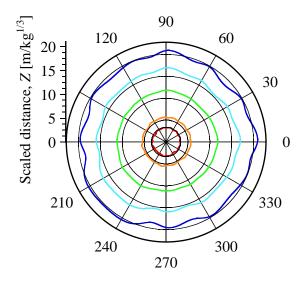
表5-12e 基準圧力を与える換算距離 (実験No. 8)

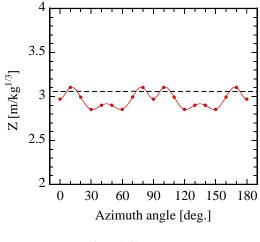

	実験No. 8									
角度		45度土堤、xy偏心1:3								
θ [°]		換算距離 Z[m/kg ^{1/3}]								
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa					
50	3.05	5.12	10.22	14.25	17.28					
60	2.88	4.98	10.40	14.82	18.19					
70	3.09	5.21	10.49	14.68	17.84					
80	2.98	5.14	10.67	15.16	18.58					
90	2.96	5.16	10.86	15.55	19.13					
100	3.03	5.16	10.53	14.83	18.08					
110	2.91	5.03	10.47	14.89	18.26					
120	2.90	5.00	10.34	14.66	17.96					
130	2.98	5.06	10.26	14.42	17.56					
140	2.71	4.76	10.10	14.50	17.88					
150	2.76	4.83	10.22	14.66	18.06					
160	2.96	4.99	10.06	14.09	17.13					
170	2.90	4.96	10.17	14.37	17.56					
180	2.85	4.93	10.25	14.59	17.89					
190	3.06	5.11	10.15	14.12	17.09					
200	2.79	4.88	10.32	14.80	18.23					
210	2.80	4.94	10.54	15.17	18.74					
220	2.73	4.84	10.42	15.06	18.65					

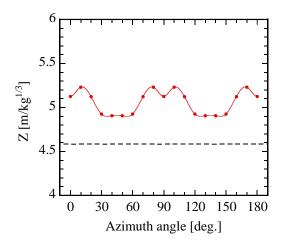

— 6.59 kPa(18.33 m/kg^{1/3}の基準圧力) 51.7 kPa (4.58 m/kg^{1/3}の基準圧力) – 16.7 kPa (9.17 m/kg^{1/3}の基準圧力) Scaled distance, Z [m/kg^{1/3}] Scaled distance, Z [m/kg^{1/3}] 20 -20 -実験No.1(45度土堤) 実験No. 2 (60度土堤) Scaled distance, $Z [m/kg^{1/3}]$ Scaled distance, $Z [m/kg^{1/3}]$ 20 = 20 -実験No.4 (45度 + 90度土堤) 実験No.3 (90度土堤)

— 122.7 kPa(3.06 m/kg^{1/3}の基準圧力) — 9.5 kPa (13.75 m/kg^{1/3}の基準圧力)

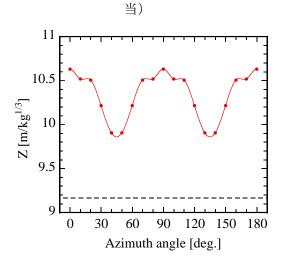

図5-14a 最大過圧の分布

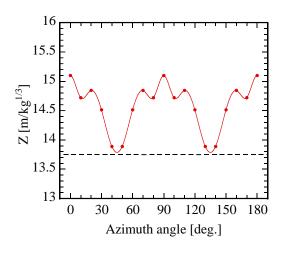

122.7 kPa (3.06 m/kg^{1/3}の基準圧力)
 51.7 kPa (4.58 m/kg^{1/3}の基準圧力)
 6.59 kPa (18.33 m/kg^{1/3}の基準圧力)
 16.7 kPa (9.17 m/kg^{1/3}の基準圧力)


実験No.6 (60度土堤 + 擁壁)

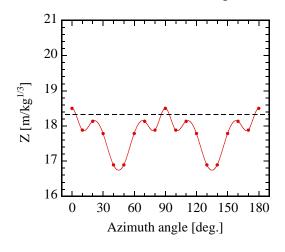


実験No. 8(45度土堤、xy偏心1:3)

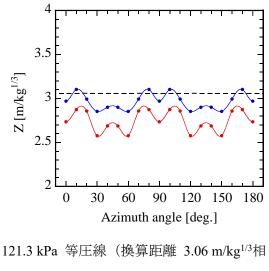

図5-14b 最大過圧の分布

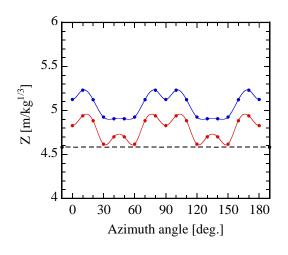


121.3 kPa 等圧線(換算距離 3.06 m/kg^{1/3}相

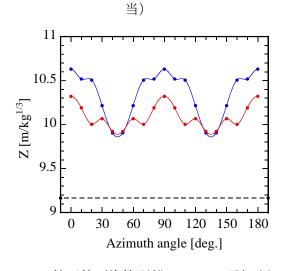

51.3 kPa 等圧線(換算距離 4.58 m/kg^{1/3}相当)

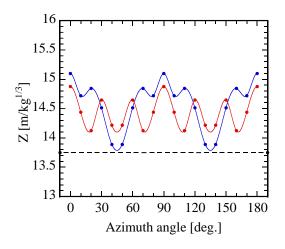
16.3 kPa 等圧線(換算距離 9.17 m/kg^{1/3}相当)

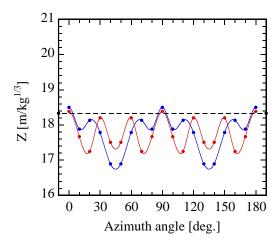

9.4 kPa 等圧線(換算距離 13.75 m/kg^{1/3}相当)



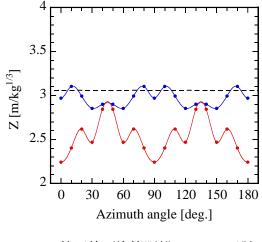
6.8 kPa 等圧線(換算距離 18.33 m/kg^{1/3}相当)

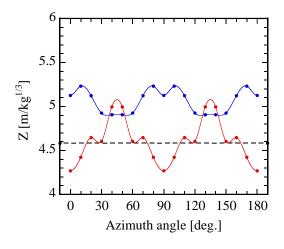

図5-15a 基準爆発と同等の最大過圧を得る換算距離


破線:基準爆発、赤点:実験No.1(45度土堤)


51.3 kPa 等圧線(換算距離 4.58 m/kg^{1/3}相当)

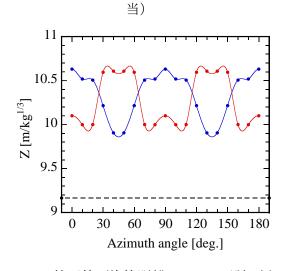
16.3 kPa 等圧線(換算距離 9.17 m/kg^{1/3}相当)

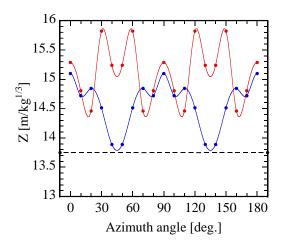

9.4 kPa 等圧線(換算距離 13.75 m/kg^{1/3}相当)



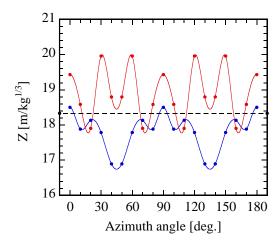
6.8 kPa 等圧線(換算距離 18.33 m/kg^{1/3}相当)

基準爆発と同等の最大過圧を得る換算距離

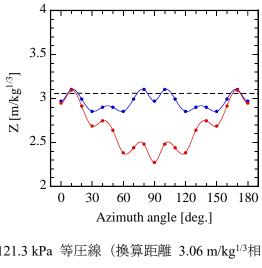

破線:基準爆発、赤点:実験No.2 (60度土堤)、青点:実験No.1 (45度土堤)

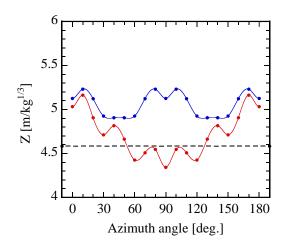


121.3 kPa 等圧線(換算距離 3.06 m/kg^{1/3}相


51.3 kPa 等圧線(換算距離 4.58 m/kg^{1/3}相当)

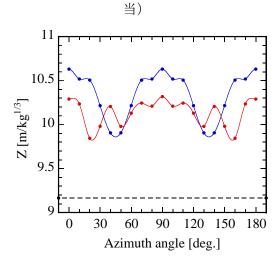
16.3 kPa 等圧線(換算距離 9.17 m/kg^{1/3}相当)

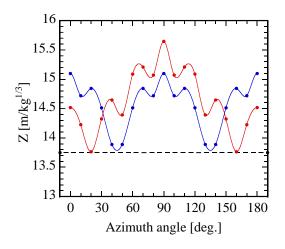

9.4 kPa 等圧線(換算距離 13.75 m/kg^{1/3}相当)



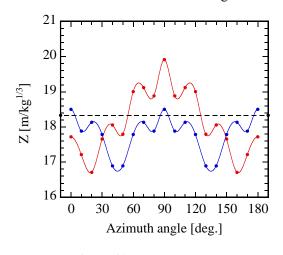
6.8 kPa 等圧線(換算距離 18.33 m/kg^{1/3}相当)

図5-15c 基準爆発と同等の最大過圧を得る換算距離

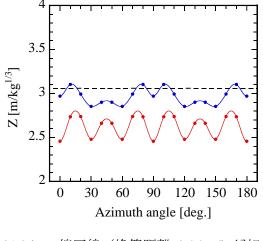

破線:基準爆発、赤点:実験No.3 (90度土堤)、青点:実験No.1 (45度土堤)

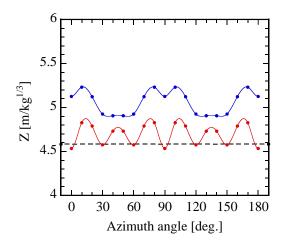


121.3 kPa 等圧線(換算距離 3.06 m/kg^{1/3}相


51.3 kPa 等圧線(換算距離 4.58 m/kg^{1/3}相当)

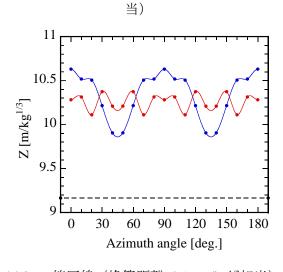
16.3 kPa 等圧線(換算距離 9.17 m/kg^{1/3}相当)

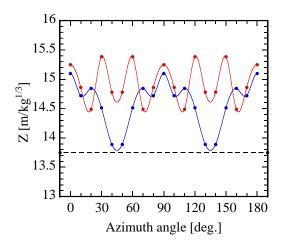

9.4 kPa 等圧線(換算距離 13.75 m/kg^{1/3}相当)



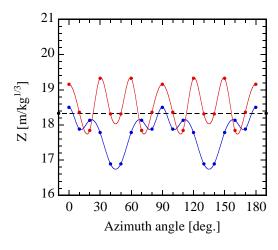
6.8 kPa 等圧線(換算距離 18.33 m/kg^{1/3}相当)

図5-15d 基準爆発と同等の最大過圧を得る換算距離

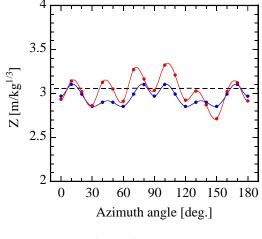

破線:基準爆発、赤点:実験No.4 (45度 +90度土堤)、青点:実験No.1 (45度土堤)

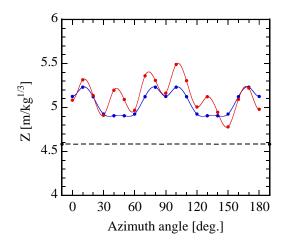


121.3 kPa 等圧線(換算距離 3.06 m/kg $^{1/3}$ 相


51.3 kPa 等圧線(換算距離 4.58 m/kg^{1/3}相当)

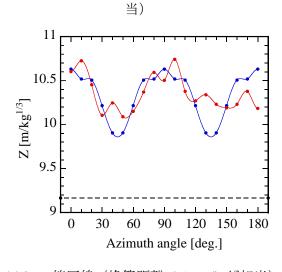
16.3 kPa 等圧線(換算距離 9.17 m/kg^{1/3}相当)

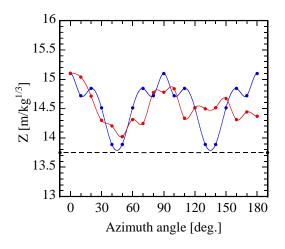

9.4 kPa 等圧線(換算距離 13.75 m/kg^{1/3}相当)



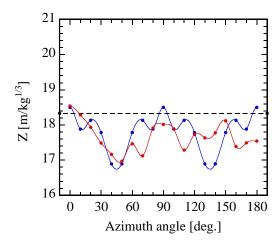
6.8 kPa 等圧線(換算距離 18.33 m/kg^{1/3}相当)

図5-15e 基準爆発と同等の最大過圧を得る換算距離

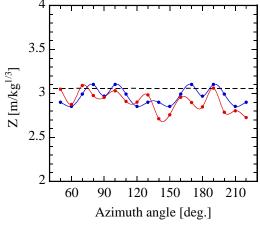

破線:基準爆発、赤点:実験No.6 (60度土堤 + 擁壁)、青点:実験No.1 (45度土堤)

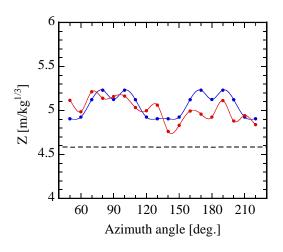


121.3 kPa 等圧線(換算距離 3.06 m/kg $^{1/3}$ 相


51.3 kPa 等圧線(換算距離 4.58 m/kg^{1/3}相当)

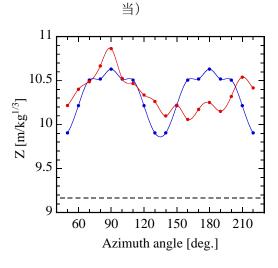
16.3 kPa 等圧線(換算距離 9.17 m/kg^{1/3}相当)

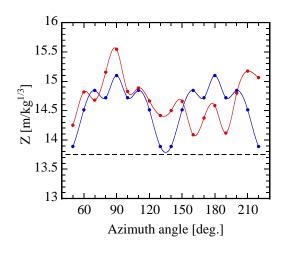

9.4 kPa 等圧線(換算距離 13.75 m/kg^{1/3}相当)



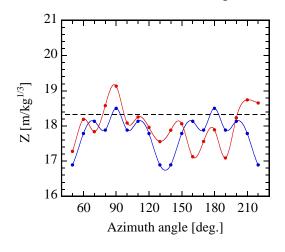
6.8 kPa 等圧線(換算距離 18.33 m/kg^{1/3}相当)

図5-15f 基準爆発と同等の最大過圧を得る換算距離


破線:基準爆発、赤点:実験No.7 (45度土堤、x偏心1:3)、青点:実験No.1 (45度土堤)



121.3 kPa 等圧線(換算距離 3.06 m/kg^{1/3}相


51.3 kPa 等圧線(換算距離 4.58 m/kg^{1/3}相当)

16.3 kPa 等圧線(換算距離 9.17 m/kg^{1/3}相当)

9.4 kPa 等圧線(換算距離 13.75 m/kg^{1/3}相当)

6.8 kPa 等圧線(換算距離 18.33 m/kg^{1/3}相当)

図5-15g 基準爆発と同等の最大過圧を得る換算距離

破線:基準爆発、赤点:実験No.8 (45度土堤、xy偏心1:3)、青点:実験No.1 (45度土堤)

表5-13a 等圧線の自然スプライン係数

			実験No. 1		
			45度土堤		
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa
a_0	3.22683E+00	5.52891E+00	1.13495E+01	1.60367E+01	1.95911E+01
a_1	1.24559E-02	2.01421E-02	3.77875E-02	5.08183E-02	6.02021E-02
C-3	1.53339E-05	-3.54579E-06	-8.70724E-05	-1.76189E-04	-2.52489E-04
C-2	-1.22626E-04	-6.79148E-05	2.43481E-04	6.00507E-04	9.13844E-04
c_{-1}	3.10410E-04	2.35869E-04	-3.16245E-04	-9.84970E-04	-1.58218E-03
\mathcal{C}_0	-4.02822E-04	-3.25448E-04	3.19767E-04	1.11679E-03	1.83283E-03
c_1	2.89925E-04	2.15652E-04	-3.16812E-04	-9.57855E-04	-1.52925E-03
<i>C</i> 2	-4.06848E-05	1.29551E-05	2.45752E-04	4.92047E-04	7.02136E-04
<i>C</i> 3	-1.20390E-04	-1.24413E-04	-2.84319E-05	1.15635E-04	2.52148E-04
C4	7.08474E-05	5.68393E-05	-6.04393E-05	-2.05951E-04	-3.37018E-04
C5	7.08860E-05	5.68775E-05	-6.04382E-05	-2.06002E-04	-3.37118E-04
<i>C</i> 6	-1.20506E-04	-1.24528E-04	-2.84351E-05	1.15788E-04	2.52447E-04
<i>C</i> 7	-4.02597E-05	1.33747E-05	2.45764E-04	4.91484E-04	7.01038E-04
C8	2.88340E-04	2.14088E-04	-3.16856E-04	-9.55758E-04	-1.52516E-03
C 9	-3.96908E-04	-3.19611E-04	3.19931E-04	1.10896E-03	1.81755E-03
c_{10}	2.88340E-04	2.14088E-04	-3.16856E-04	-9.55758E-04	-1.52516E-03
c_{11}	-4.02597E-05	1.33747E-05	2.45764E-04	4.91484E-04	7.01038E-04
C ₁₂	-1.20506E-04	-1.24528E-04	-2.84351E-05	1.15788E-04	2.52447E-04
c_{13}	7.08860E-05	5.68775E-05	-6.04382E-05	-2.06002E-04	-3.37118E-04
C ₁₄	7.08474E-05	5.68393E-05	-6.04393E-05	-2.05951E-04	-3.37018E-04
C ₁₅	-1.20390E-04	-1.24413E-04	-2.84319E-05	1.15635E-04	2.52148E-04
c ₁₆	-4.06848E-05	1.29551E-05	2.45752E-04	4.92047E-04	7.02136E-04
<i>c</i> ₁₇	2.89925E-04	2.15652E-04	-3.16812E-04	-9.57855E-04	-1.52925E-03
C ₁₈	-4.02822E-04	-3.25448E-04	3.19767E-04	1.11679E-03	1.83283E-03
C 19	3.10410E-04	2.35869E-04	-3.16245E-04	-9.84970E-04	-1.58218E-03
C20	-1.22626E-04	-6.79148E-05	2.43481E-04	6.00507E-04	9.13844E-04
c_{21}	1.53339E-05	-3.54579E-06	-8.70724E-05	-1.76189E-04	-2.52489E-04

表5-13b 等圧線の自然スプライン係数

			実験No. 2		
			60度土堤		
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa
a_0	3.57887E+00	5.54031E+00	9.67710E+00	1.24758E+01	1.43758E+01
a_1	3.34156E-02	3.08043E-02	-1.29707E-02	-7.23799E-02	-1.27544E-01
C-3	-5.37481E-05	-4.00944E-05	6.68923E-05	2.00003E-04	3.20558E-04
C-2	5.91056E-05	2.83692E-05	-1.50934E-04	-3.61213E-04	-5.48219E-04
C-1	1.34455E-04	1.43405E-04	4.58896E-05	-1.10007E-04	-2.60370E-04
C 0	-2.70799E-04	-2.55642E-04	7.06184E-05	5.19009E-04	9.36266E-04
c_1	8.15068E-05	9.70992E-05	8.00075E-05	3.05318E-05	-2.15984E-05
c_2	2.70897E-04	2.13593E-04	-2.87406E-04	-9.23366E-04	-1.50331E-03
<i>C</i> 3	-4.02515E-04	-3.42478E-04	3.05896E-04	1.15292E-03	1.93192E-03
<i>C</i> 4	1.81082E-04	1.55733E-04	-1.30953E-04	-5.07835E-04	-8.55180E-04
C 5	1.81182E-04	1.55820E-04	-1.31017E-04	-5.08100E-04	-8.55630E-04
<i>C</i> ₆	-4.02814E-04	-3.42740E-04	3.06089E-04	1.15372E-03	1.93328E-03
<i>C</i> 7	2.71996E-04	2.14554E-04	-2.88114E-04	-9.26283E-04	-1.50826E-03
<i>C</i> 8	7.74109E-05	9.35171E-05	8.26469E-05	4.14036E-05	-3.12733E-06
C 9	-2.55515E-04	-2.42275E-04	6.07693E-05	4.78439E-04	8.67337E-04
c_{10}	7.74109E-05	9.35171E-05	8.26469E-05	4.14036E-05	-3.12733E-06
C11	2.71996E-04	2.14554E-04	-2.88114E-04	-9.26283E-04	-1.50826E-03
c_{12}	-4.02814E-04	-3.42740E-04	3.06089E-04	1.15372E-03	1.93328E-03
C ₁₃	1.81182E-04	1.55820E-04	-1.31017E-04	-5.08100E-04	-8.55630E-04
C ₁₄	1.81082E-04	1.55733E-04	-1.30953E-04	-5.07835E-04	-8.55180E-04
C ₁₅	-4.02515E-04	-3.42478E-04	3.05896E-04	1.15292E-03	1.93192E-03
C ₁₆	2.70897E-04	2.13593E-04	-2.87406E-04	-9.23366E-04	-1.50331E-03
C ₁₇	8.15068E-05	9.70992E-05	8.00075E-05	3.05318E-05	-2.15984E-05
C ₁₈	-2.70799E-04	-2.55642E-04	7.06184E-05	5.19009E-04	9.36266E-04
C 19	1.34455E-04	1.43405E-04	4.58896E-05	-1.10007E-04	-2.60370E-04
C20	5.91056E-05	2.83692E-05	-1.50934E-04	-3.61213E-04	-5.48219E-04
C ₂₁	-5.37481E-05	-4.00944E-05	6.68923E-05	2.00003E-04	3.20558E-04

表5-13c 等圧線の自然スプライン係数

			実験No. 3		
			90度土堤		
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa
a_0	3.21230E+00	4.94621E+00	8.36558E+00	1.04409E+01	1.17138E+01
a_1	2.48133E-02	1.14174E-02	-7.43101E-02	-1.79353E-01	-2.74834E-01
C-3	-9.72413E-05	-7.15182E-05	1.48244E-04	4.31511E-04	6.92661E-04
C-2	2.16017E-04	1.62363E-04	-2.95953E-04	-8.82028E-04	-1.41951E-03
C-1	-7.38053E-05	-4.56833E-05	9.96104E-05	2.50197E-04	3.73220E-04
c_0	-7.67488E-05	-7.93099E-05	8.24465E-05	3.53587E-04	6.29077E-04
c_1	-1.52955E-04	-1.11766E-04	1.82115E-04	5.32511E-04	8.42260E-04
c_2	5.32617E-04	4.26695E-04	-6.25973E-04	-2.01128E-03	-3.29566E-03
<i>C</i> 3	-6.60501E-04	-5.57286E-04	6.54636E-04	2.28914E-03	3.81752E-03
<i>C</i> 4	3.12592E-04	2.76485E-04	-2.45100E-04	-9.63547E-04	-1.63942E-03
C 5	3.12742E-04	2.76609E-04	-2.45256E-04	-9.64080E-04	-1.64031E-03
C 6	-6.60949E-04	-5.57660E-04	6.55103E-04	2.29074E-03	3.82018E-03
<i>C</i> 7	5.34260E-04	4.28067E-04	-6.27685E-04	-2.01714E-03	-3.30540E-03
C 8	-1.59078E-04	-1.16878E-04	1.88498E-04	5.54351E-04	8.78544E-04
C 9	-5.38998E-05	-6.02331E-05	5.86290E-05	2.72089E-04	4.93675E-04
c_{10}	-1.59078E-04	-1.16878E-04	1.88498E-04	5.54351E-04	8.78544E-04
C11	5.34260E-04	4.28067E-04	-6.27685E-04	-2.01714E-03	-3.30540E-03
c_{12}	-6.60949E-04	-5.57660E-04	6.55103E-04	2.29074E-03	3.82018E-03
c_{13}	3.12742E-04	2.76609E-04	-2.45256E-04	-9.64080E-04	-1.64031E-03
C ₁₄	3.12592E-04	2.76485E-04	-2.45100E-04	-9.63547E-04	-1.63942E-03
C ₁₅	-6.60501E-04	-5.57286E-04	6.54636E-04	2.28914E-03	3.81752E-03
C ₁₆	5.32617E-04	4.26695E-04	-6.25973E-04	-2.01128E-03	-3.29566E-03
c_{17}	-1.52955E-04	-1.11766E-04	1.82115E-04	5.32511E-04	8.42260E-04
c_{18}	-7.67488E-05	-7.93099E-05	8.24465E-05	3.53587E-04	6.29077E-04
C 19	-7.38053E-05	-4.56833E-05	9.96104E-05	2.50197E-04	3.73220E-04
C20	2.16017E-04	1.62363E-04	-2.95953E-04	-8.82028E-04	-1.41951E-03
<i>c</i> ₂₁	-9.72413E-05	-7.15182E-05	1.48244E-04	4.31511E-04	6.92661E-04

表5-13d 等圧線の自然スプライン係数

			実験No. 4		
			45度 + 90度土堤		
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa
a_0	3.31580E+00	5.14430E+00	9.07707E+00	1.18109E+01	1.37073E+01
a_1	2.09818E-02	1.44562E-02	-3.01174E-02	-8.37337E-02	-1.31648E-01
C-3	1.81008E-05	5.12314E-05	1.65352E-04	2.77300E-04	3.70668E-04
C-2	-1.55990E-04	-2.46316E-04	-4.65836E-04	-6.41196E-04	-7.74855E-04
c_{-1}	3.90159E-04	4.75009E-04	4.75334E-04	3.49095E-04	2.04201E-04
\mathcal{C}_0	-4.98810E-04	-5.53939E-04	-3.48332E-04	2.41885E-05	3.88145E-04
c_1	3.55782E-04	4.39545E-04	4.67116E-04	3.81570E-04	2.75151E-04
<i>C</i> 2	-1.84802E-05	-1.04458E-04	-4.32963E-04	-7.71094E-04	-1.05865E-03
<i>C</i> 3	-2.28189E-04	-2.30980E-04	-3.40471E-05	2.51534E-04	5.19477E-04
C4	1.42011E-04	2.28830E-04	4.66223E-04	6.79526E-04	8.53938E-04
C5	1.32450E-04	5.07562E-05	-4.64729E-04	-1.09790E-03	-1.67495E-03
<i>C</i> 6	-2.27882E-04	-2.05856E-04	1.56883E-04	6.61670E-04	1.13773E-03
<i>C</i> 7	-9.74489E-06	9.51608E-06	1.31186E-04	2.88551E-04	4.36871E-04
C 8	3.56789E-04	3.31452E-04	-2.73900E-04	-1.15933E-03	-2.01299E-03
C 9	-5.12392E-04	-4.89583E-04	3.15423E-04	1.51217E-03	2.67053E-03
c_{10}	3.56789E-04	3.31452E-04	-2.73900E-04	-1.15933E-03	-2.01299E-03
c_{11}	-9.74489E-06	9.51608E-06	1.31186E-04	2.88551E-04	4.36871E-04
c_{12}	-2.27882E-04	-2.05856E-04	1.56883E-04	6.61670E-04	1.13773E-03
c_{13}	1.32450E-04	5.07562E-05	-4.64729E-04	-1.09790E-03	-1.67495E-03
C ₁₄	1.42011E-04	2.28830E-04	4.66223E-04	6.79526E-04	8.53938E-04
<i>c</i> ₁₅	-2.28189E-04	-2.30980E-04	-3.40471E-05	2.51534E-04	5.19477E-04
c ₁₆	-1.84802E-05	-1.04458E-04	-4.32963E-04	-7.71094E-04	-1.05865E-03
C ₁₇	3.55782E-04	4.39545E-04	4.67116E-04	3.81570E-04	2.75151E-04
C ₁₈	-4.98810E-04	-5.53939E-04	-3.48332E-04	2.41885E-05	3.88145E-04
C19	3.90159E-04	4.75009E-04	4.75334E-04	3.49095E-04	2.04201E-04
C20	-1.55990E-04	-2.46316E-04	-4.65836E-04	-6.41196E-04	-7.74855E-04
c_{21}	1.81008E-05	5.12314E-05	1.65352E-04	2.77300E-04	3.70668E-04

表5-13e 等圧線の自然スプライン係数

			実験No. 6		
			60度土堤 + 擁壁	•	
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa
a_0	3.36856E+00	5.24745E+00	9.15263E+00	1.17178E+01	1.34105E+01
a_1	2.96377E-02	2.24281E-02	-4.07234E-02	-1.22172E-01	-1.97194E-01
C-3	-3.83192E-05	-1.05472E-05	1.44449E-04	3.26349E-04	4.88821E-04
C-2	-3.04110E-05	-1.12046E-04	-4.01958E-04	-6.89340E-04	-9.29711E-04
C-1	3.66104E-04	4.67052E-04	4.45435E-04	2.33575E-04	-1.32133E-05
\mathcal{C}_0	-5.85027E-04	-6.81130E-04	-3.87267E-04	2.22145E-04	8.48076E-04
c_1	3.07780E-04	4.20331E-04	5.13916E-04	4.53707E-04	3.47567E-04
c_2	2.02886E-04	7.48397E-05	-6.75880E-04	-1.56987E-03	-2.37283E-03
<i>c</i> ₃	-4.34452E-04	-3.30065E-04	5.99688E-04	1.80429E-03	2.91610E-03
<i>C</i> 4	2.11421E-04	1.71552E-04	-2.38363E-04	-7.80782E-04	-1.28470E-03
C 5	2.11531E-04	1.71640E-04	-2.38492E-04	-7.81198E-04	-1.28538E-03
<i>c</i> ₆	-4.34783E-04	-3.30330E-04	6.00076E-04	1.80553E-03	2.91815E-03
c_7	2.04097E-04	7.58094E-05	-6.77301E-04	-1.57444E-03	-2.38032E-03
C 8	3.03268E-04	4.16716E-04	5.19213E-04	4.70737E-04	3.75476E-04
C 9	-5.68190E-04	-6.67643E-04	-4.07036E-04	1.58597E-04	7.43926E-04
c_{10}	3.03268E-04	4.16716E-04	5.19213E-04	4.70737E-04	3.75476E-04
C ₁₁	2.04097E-04	7.58094E-05	-6.77301E-04	-1.57444E-03	-2.38032E-03
c_{12}	-4.34783E-04	-3.30330E-04	6.00076E-04	1.80553E-03	2.91815E-03
c_{13}	2.11531E-04	1.71640E-04	-2.38492E-04	-7.81198E-04	-1.28538E-03
C ₁₄	2.11421E-04	1.71552E-04	-2.38363E-04	-7.80782E-04	-1.28470E-03
c_{15}	-4.34452E-04	-3.30065E-04	5.99688E-04	1.80429E-03	2.91610E-03
c ₁₆	2.02886E-04	7.48397E-05	-6.75880E-04	-1.56987E-03	-2.37283E-03
c_{17}	3.07780E-04	4.20331E-04	5.13916E-04	4.53707E-04	3.47567E-04
C ₁₈	-5.85027E-04	-6.81130E-04	-3.87267E-04	2.22145E-04	8.48076E-04
C19	3.66104E-04	4.67052E-04	4.45435E-04	2.33575E-04	-1.32133E-05
C20	-3.04110E-05	-1.12046E-04	-4.01958E-04	-6.89340E-04	-9.29711E-04
<i>c</i> ₂₁	-3.83192E-05	-1.05472E-05	1.44449E-04	3.26349E-04	4.88821E-04

表5-13f 等圧線の自然スプライン係数

	実験No. 7									
		4:	5度土堤、x偏心1	:3						
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa					
a_0	3.26088E+00	5.51000E+00	1.11071E+01	1.55604E+01	1.89161E+01					
a_1	1.32888E-02	1.99767E-02	3.33863E-02	4.20121E-02	4.76748E-02					
C-3	2.41995E-05	2.65969E-05	1.44059E-05	-6.66087E-06	-2.71595E-05					
C-2	-1.79469E-04	-2.09290E-04	-1.62472E-04	-4.90600E-05	6.75021E-05					
C-1	4.54271E-04	5.29346E-04	4.07125E-04	1.14888E-04	-1.85110E-04					
c_0	-5.88912E-04	-6.82197E-04	-5.07197E-04	-1.10780E-04	2.93257E-04					
c_1	3.99727E-04	4.62692E-04	3.41596E-04	6.95573E-05	-2.07449E-04					
c_2	3.87087E-05	5.73243E-05	9.96447E-05	1.32264E-04	1.56861E-04					
<i>c</i> ₃	-3.96194E-04	-4.87680E-04	-4.93748E-04	-3.61996E-04	-2.07811E-04					
<i>C</i> 4	3.27587E-04	4.27956E-04	5.23246E-04	5.03526E-04	4.50164E-04					
<i>C</i> 5	1.23961E-04	5.46359E-05	-2.97547E-04	-6.86465E-04	-1.02261E-03					
C 6	-5.35976E-04	-4.92492E-04	9.46307E-05	8.51453E-04	1.53653E-03					
<i>c</i> ₇	4.92021E-04	4.30292E-04	-1.79149E-04	-9.37696E-04	-1.61709E-03					
<i>C</i> 8	-2.54199E-05	7.74259E-05	4.58691E-04	8.34637E-04	1.14571E-03					
C 9	-3.91396E-04	-5.25434E-04	-6.90941E-04	-7.18642E-04	-6.97603E-04					
c_{10}	3.32764E-04	4.74656E-04	7.24719E-04	8.61086E-04	9.38963E-04					
C11	1.03493E-04	1.20952E-05	-4.13011E-04	-8.72901E-04	-1.26830E-03					
c_{12}	-4.08802E-04	-3.97007E-04	-1.21576E-05	5.12489E-04	9.95427E-04					
<i>c</i> ₁₃	3.16010E-04	3.42952E-04	1.86005E-04	-7.44856E-05	-3.24500E-04					
C ₁₄	5.71688E-05	3.43750E-05	-1.31358E-04	-3.39119E-04	-5.28965E-04					
C ₁₅	-3.37514E-04	-3.15350E-04	1.05229E-04	6.79187E-04	1.21237E-03					
C ₁₆	1.51861E-04	9.82707E-05	-2.73855E-04	-7.28827E-04	-1.13925E-03					
<i>c</i> ₁₇	3.00436E-04	3.95450E-04	5.16756E-04	5.47865E-04	5.46775E-04					
c_{18}	-5.25986E-04	-6.38054E-04	-6.20940E-04	-4.27396E-04	-2.10023E-04					
C 19	3.54052E-04	4.48342E-04	5.15045E-04	4.68404E-04	3.94378E-04					
C20	-6.26015E-05	-1.13297E-04	-2.67014E-04	-4.10986E-04	-5.29665E-04					
<i>c</i> ₂₁	-2.39892E-05	-1.16104E-05	6.22962E-05	1.49658E-04	2.27599E-04					

表5-13g 等圧線の自然スプライン係数

		双3-13g 寺江阁	<u>実験No. 8</u>		
		45	度土堤、xy偏心1	1:3	
	121.3 kPa	51.3 kPa	16.3 kPa	9.4 kPa	6.8 kPa
a_0	3.74071E+00	5.87010E+00	1.05893E+01	1.39792E+01	1.63847E+01
a_1	-3.25245E-02	-3.28562E-02	-5.07798E-03	3.50571E-02	7.26749E-02
C-3	1.10618E-04	1.00578E-04	-3.56022E-05	-2.13934E-04	-3.76893E-04
C-2	-2.75667E-04	-2.45115E-04	1.14925E-04	5.80076E-04	1.00354E-03
C-1	1.53167E-04	1.33375E-04	-7.72541E-05	-3.46363E-04	-5.90596E-04
\mathcal{C}_0	2.24461E-04	2.00344E-04	-8.96671E-05	-4.65041E-04	-8.06928E-04
c_1	-4.89549E-04	-4.46021E-04	1.52164E-04	9.36111E-04	1.65254E-03
<i>C</i> 2	4.56361E-04	4.35623E-04	-4.38228E-05	-6.93443E-04	-1.29212E-03
<i>C</i> 3	-2.00144E-04	-2.43578E-04	-2.41967E-04	-1.74696E-04	-9.80101E-05
<i>C</i> 4	-7.11158E-05	3.73520E-05	5.28736E-04	1.06367E-03	1.52699E-03
C 5	1.88061E-04	8.28030E-05	-4.98430E-04	-1.16590E-03	-1.75387E-03
C 6	-8.22909E-05	-2.00015E-05	2.96772E-04	6.52660E-04	9.63879E-04
c_7	-1.85342E-04	-2.26271E-04	-2.13830E-04	-1.31402E-04	-3.94802E-05
C8	3.98961E-04	4.52886E-04	2.90347E-04	-2.86502E-05	-3.47407E-04
C 9	-2.98755E-04	-3.83623E-04	-4.28733E-04	-3.57599E-04	-2.59501E-04
c_{10}	-3.02199E-05	7.06984E-05	4.79452E-04	9.04050E-04	1.26464E-03
C11	1.63083E-04	8.49603E-05	-3.59485E-04	-8.71588E-04	-1.32255E-03
c_{12}	6.20442E-05	7.86779E-05	8.79506E-05	7.54693E-05	5.80617E-05
c_{13}	-4.23437E-04	-3.76454E-04	1.75113E-04	8.87142E-04	1.53515E-03
C ₁₄	6.20143E-04	5.63778E-04	-1.95983E-04	-1.18958E-03	-2.09697E-03
C ₁₅	-5.20987E-04	-5.20920E-04	-6.06841E-05	5.94517E-04	1.20613E-03
C ₁₆	2.96721E-04	3.45957E-04	2.67013E-04	7.69392E-05	-1.18426E-04
C ₁₇	-1.08424E-04	-1.37403E-04	-1.48683E-04	-1.18836E-04	-8.03121E-05
C ₁₈	-3.45445E-05	-6.32772E-05	-1.38667E-04	-2.00435E-04	-2.47495E-04
C 19	7.50833E-05	1.23579E-04	2.36963E-04	3.21738E-04	3.83121E-04
C20	-2.82256E-05	-4.79470E-05	-9.66270E-05	-1.34903E-04	-1.63490E-04

5.6 検討3 - 正圧相インパルスと角度

5.6.1 正圧相インパルス

最大過圧と同様に、実験 No. $1\sim8$ の結果を、基準爆発や 45 度土堤の結果と比較することで、土堤内側の傾斜角や形状、爆薬の偏心の設置の影響について検討する。これらの実験で得られた正圧相インパルス I について、 0° 、 90° 、 180° 、 270° 方向の換算距離に対する分布を図 5-16a, b に示した。

また、Iを θ の関数とみて図 5-17a, b に整理した。図 5-18a, b に基準爆発の正圧相インパルスの平均値 I_0 との比(I/I_0)を θ の関数として示した。 0° 、 90° 、 180° 方向の P/P_0 を換算距離ごとに表 5-15a, b に整理し、図 5-19a, b に示した。I は表 5-4a ~ e から、 I_0 は表 5-2c から抽出して用いた。

各実験における正圧相インパルスの特徴を表 5-14 に述べる。

表5-14 最大過圧の特徴

実験	45度土堤	0°方向では換算距離4.58 m/kg ^{1/3} 以下で基準爆発を上回り、それ以上では
No. 1		基準爆発を下回った。I/I ₀ は換算距離とともに減少する傾向であった。
No. 2	60度土堤	0°方向では爆点近傍から遠方まで全範囲で基準爆発を下回った。I/I₀は
		換算距離によらずほぼ変化しなかった。
No. 3	90度土堤	0°方向では爆点近傍から遠方まで全範囲で基準爆発を下回った。I/I₀は
		換算距離とともに増加する傾向であった。
No. 4	45度+90度土堤	0°方向(傾斜角が45度の方向)では爆点近傍から遠方まで全範囲で基準
		爆発を下回った。 I/I_0 は換算距離とともに減少する傾向であった。 90° 方
		向(傾斜角が90度の方向)では、換算距離9.17 m/kg ^{1/3} 以下で基準爆発を
		下回り、それ以上では基準爆発を上回った。I/I₀は換算距離とともに増
		加する傾向であった。
No. 5	45度土堤+擁壁	0°方向では爆点近傍から遠方まで全範囲で基準爆発を下回った。I/I₀は
		換算距離によらずほぼ変化しなかった。
No. 6	60度土堤+擁壁	0°方向では爆点近傍から遠方まで全範囲で基準爆発を下回った。I/I₀は
		換算距離とともに増加する傾向であった。
No. 7	x偏心1:3	0°方向では換算距離4.58, 9.17 m/kg ^{1/3} で基準爆発を上回り、それ以上で
		は基準爆発と同等程度だった。90°方向では換算距離4.58 m/kg ^{1/3} 以下で
		基準爆発を上回り、それ以上では基準爆発を下回った。I/I ₀ は換算距離
		とともに減少する傾向であった。180°方向では爆点近傍から遠方まで全
		範囲で基準爆発を下回った。I/I ₀ は換算距離とともに減少する傾向であ
		った。
No. 8	xy偏心1:3	90°、180°方向では、換算距離4.58 m/kg ^{1/3} 以上で基準爆発を上回った。換
		算距離 $13.75 \text{ m/kg}^{1/3}$ で I/I_0 の落ち込みが見られるが、 I/I_0 は換算距離とと
		もに増加する傾向であった。

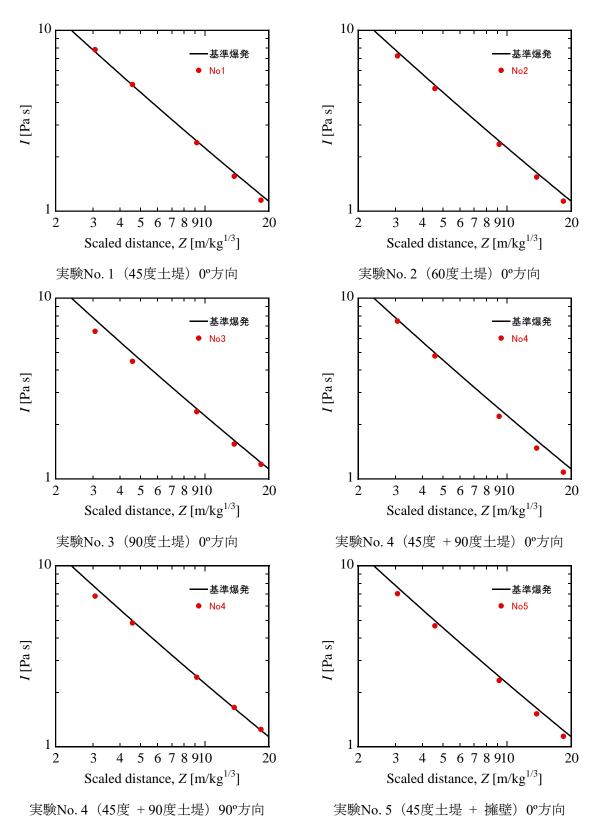
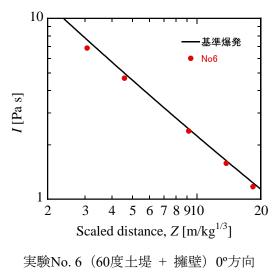
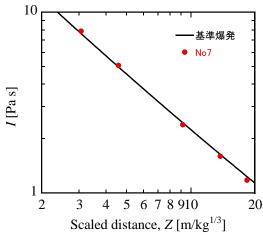
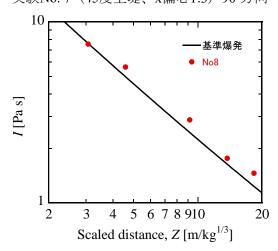
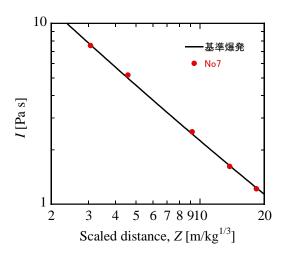
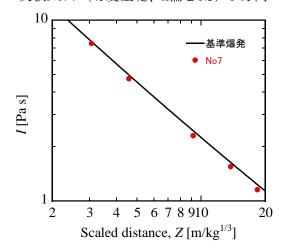
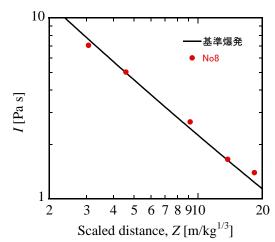





図5-16a 換算距離とI




実験No. 7(45度土堤、x偏心1:3)90°方向


実験No. 8(45度土堤、xy偏心1:3)90°方向

実験No.7(45度土堤、x偏心1:3)0°方向

実験No. 7(45度土堤、x偏心1:3)180°方向

実験No. 8(45度土堤、xy偏心1:3)180°方向

図5-16b 換算距離とI

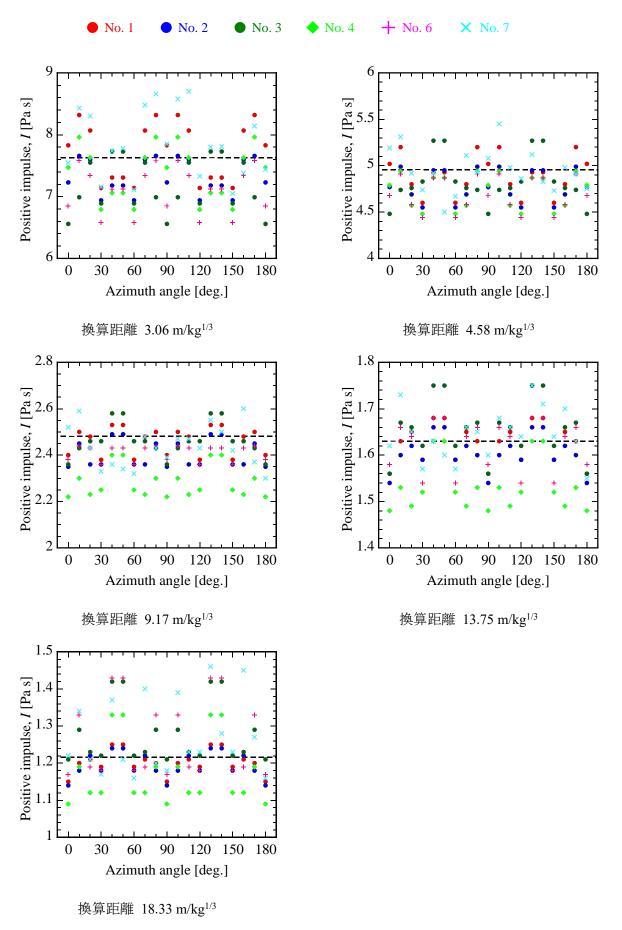


図5-17a Iの角度分布 (実験No.8以外、破線は基準爆発)

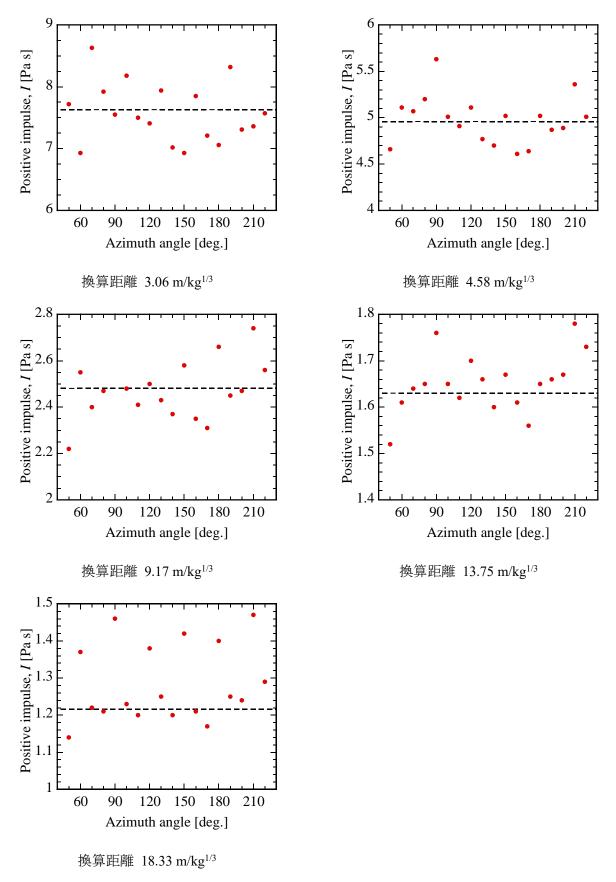


図5-17b Iの角度分布(実験No.8、破線は基準爆発)

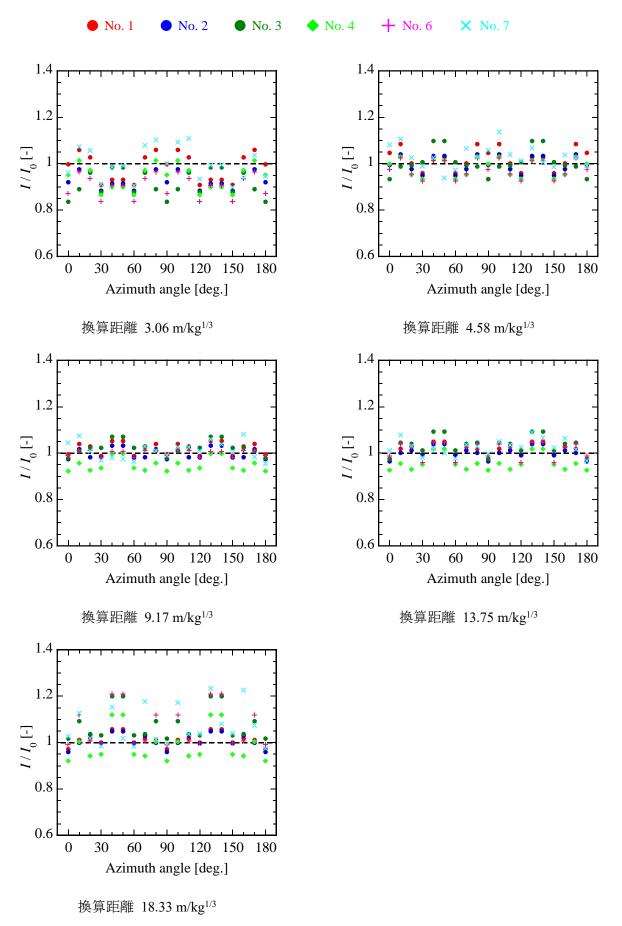


図5-18a I/I₀の角度分布(実験No.8以外、破線は基準爆発)

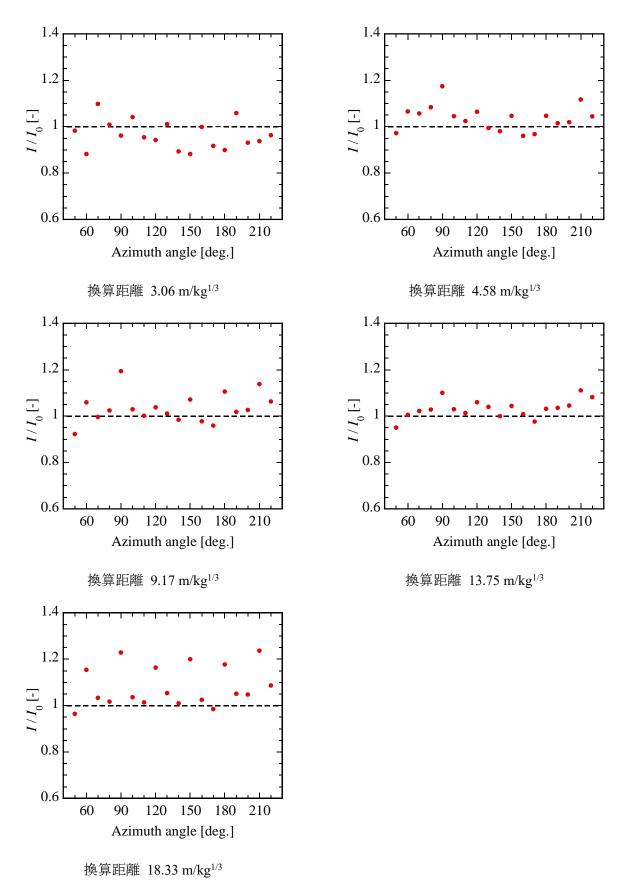


図5-18b I/I₀の角度分布(実験No.8、破線は基準爆発)

表5-15a I/I₀

換算距離	実験No. 1	実験No. 2	実験No. 3	実験	No. 4
2 32 7 7 7 7 7	45度土堤	60度土堤	90度土堤	45度 + 9	00度土堤
$[m/kg^{1/3}]$	0°	0°	0°	0°	90°
3.06	1.0267	0.9474	0.8604	0.9791	0.8931
4.58	1.0121	0.9615	0.9026	0.9663	0.9752
9.17	0.9656	0.9453	0.9500	0.8950	0.9785
13.75	0.9581	0.9475	0.9569	0.9098	1.0127
18.33	0.9462	0.9349	0.9911	0.8969	1.0245

表5-15b I/I₀

				実験No. 7			実験No. 8	
換算距離	45度土堤	60度土堤		45度土場	Ē	45度	45度土堤	
$[m/kg^{1/3}]$	+ 擁壁	+ 擁壁		x偏心1:3	3	xy偏	xy偏心1:3	
	0°	0°	0°	90°	180°	90°	180°	
3.06	0.9212	0.8983	0.9891	1.0294	0.9751	0.9902	0.9260	
4.58	0.9413	0.9431	1.0460	1.0234	0.9581	1.1359	1.0121	
9.17	0.9379	0.9614	1.0140	0.9616	0.9260	1.1590	1.0736	
13.75	0.9331	0.9694	0.9935	0.9800	0.9496	1.0811	1.0132	
18.33	0.9391	0.9656	1.0007	0.9685	0.9497	1.1976	1.1469	

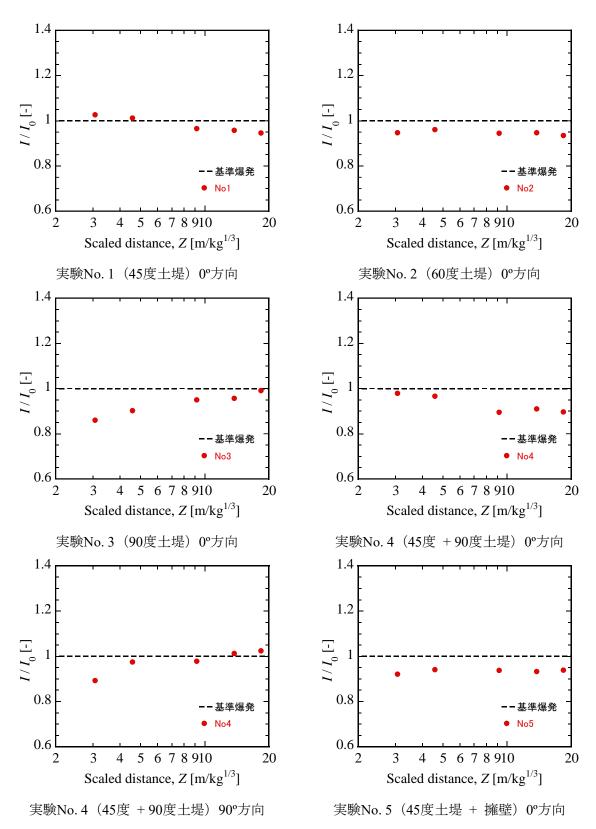


図5-19a 換算距離とI/I₀

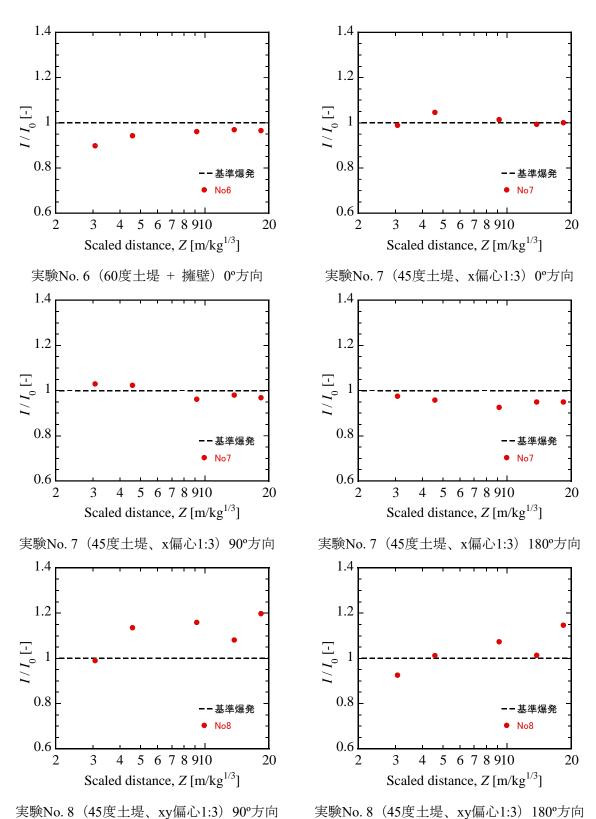


図5-19b 換算距離と I/I_0

5.6.2 等インパルス線

eq.5 を変形して得られる eq.9 の関係から、正圧相インパルス I に対応する換算距離 Z が求められる。

$$Z = 10^{\frac{\log_{10}I - a_0}{a_1}}$$
 eq. 9

表 5-2c に示す正圧相インパルスを 5 種の基準インパルスとし、各々の角度 θ について基準インパルスと同等の正圧相インパルスが生じる換算距離 Z を求め表 5-17a ~ e に整理した。等インパルス線は図 5-20a, b に示した。

測定点の間は、Z を θ の関数とみなし eq. 9 に示す 3 次の自然スプライン Z (θ)で補間した。スプラインの節点は、19 個の測定点に $\theta = -30^\circ$, -20° , -10° , 190° , 200° の 6 点を加えた 25 点とした。

$$Z = a_0 + a_1\theta + \sum_{n=3}^{21} c_n(\theta + 10n)_+^3$$
 eq. 10
ただし、
$$\begin{cases} \theta^3 & (\theta \ge 0 \mathcal{O} \ge \mathbb{B}) \\ 0 & (\theta < 0 \mathcal{O} \ge \mathbb{B}) \end{cases}$$

ただし、実験 No. 8 の場合には、 $50^\circ \sim 220^\circ$ の 18 個の測定点に $\theta = 20^\circ$, 30° , 40° , 230° , 240° , 250° の 6 点を加えた 24 点とした。実験 No. 8 の 3 次の自然スプライン $Z(\theta)$ を eq. 11 に示す。

$$Z = a_0 + a_1\theta + \sum_{n=3}^{20} c_n(\theta + 10n)_+^3$$
 eq. 11
ただし、
$$\begin{cases} \theta^3 & (\theta \ge 0 \mathcal{O} \ge \mathbb{B}) \\ 0 & (\theta < 0 \mathcal{O} \ge \mathbb{B}) \end{cases}$$

スプライン係数の一覧は表 5-18a~e に示した。

図 5-20a, b から等インパルス線を選別し、表面爆発と同等の正圧相インパルスが生じる換算距離の角度依存性について、実験 No. 1 と比較したものが図 5-21a~g である。

各実験における換算距離毎の等インパルス線の特徴を表 5-16 に述べる。

表5-16 等インパルス線の特徴

	1	
実験	45度土堤	換算距離4.58 m/kg ^{1/3} 以下では10°方向で正圧相インパルスが増加し、30°
No. 1		方向で正圧相インパルスが減少した。 換算距離13.75 m/kg ^{1/3} 以上では45°
		方向で正圧相インパルスが増加したが、他の角度では正圧相インパル
		スが減少した。相対的に、爆点近傍では10°方向で、遠方では45°方向で
		爆風が強化された。
No. 2	60度土堤	換算距離3.06 m/kg ^{1/3} では全角度で正圧相インパルスが減少した。換算
		距離13.75, 18.33 m/kg ^{1/3} では45°方向で正圧相インパルスが増加したが、
		他の角度では正圧相インパルスが減少した。実験No. 1と概形が似てい
		るが、実験No.1よりも爆風が低減された。
No. 3	90度土堤	換算距離9.17 m/kg ^{1/3} 以下では45°方向で正圧相インパルスが増加した
		が、他の角度では正圧相インパルスが減少した。換算距離13.75, 18.33
		m/kg ^{1/3} ではほぼ全角度で正圧相インパルスが増加した。実験No. 1とは
		強弱の生じる角度が反転した。
No. 4	45度+90度土堤	換算距離4.58 m/kg ^{1/3} 以下では10°方向で正圧相インパルスが増加した
		が、おおむね正圧相インパルスは減少した。 換算距離9.17 m/kg ^{1/3} 以上で
		は45°方向で正圧相インパルスが増加したが、おおむね正圧相インパル
		スは減少した。実験No.1と概形が似ているが、遠方の45°方向で実験No.
		1よりも爆風が強化、他は爆風低減された。
No. 6	60度土堤+擁壁	換算距離4.58 m/kg ^{1/3} 以下ではおおむね正圧相インパルスは減少した。
		換算距離9.17 m/kg ^{1/3} 以上では10°, 45°方向で正圧相インパルスが増加し
		た。爆点近傍では実験No. 1よりも爆風が低減されたが、爆点遠方では
		おおむね実験No.1よりも爆風が強化された。
No. 7	x偏心1:3	換算距離4.58 m/kg ^{1/3} 以下ではおおむね実験No. 1と同等程度であった。
		換算距離9.17 m/kg ^{1/3} 以上では、実験No. 1で正圧相インパルスが強まる
		角度でその程度が増幅され、10°, 70°, 100°, 130°, 160°方向で正圧相イン
		パルスが増加した。爆点遠方で実験No.1よりも爆風が強化された。
No. 8	xy偏心1:3	換算距離9.17 m/kg ^{1/3} 以上では60°, 90°, 120°, 150°, 180°, 210°方向で正圧相
		インパルスが増加した。換算距離9.17 m/kg ^{1/3} 以上で実験No. 1よりも爆
		風が低減された。

表5-17a 基準インパルスを与える換算距離 (実験No. 1, No. 2)

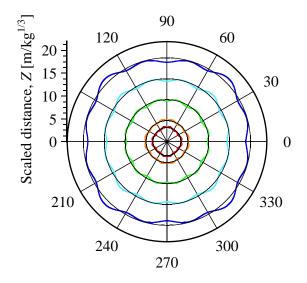
			実験No.	1				実験No. 2	2	
角度			45度土場	<u>.</u>				60度土堤	<u> </u>	
$ heta[^{\circ}]$		換算距	巨離 Z[n	n/kg ^{1/3}]			換算距	巨離 Z[n	n/kg ^{1/3}]	
	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	1.63 Pa·s	1.22 Pa·s	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	s 1.63 Pa∙s	1.22 Pa·s
0	3.12	4.66	8.91	13.20	17.35	2.91	4.41	8.65	13.00	17.26
10	3.27	4.88	9.28	13.71	18.00	3.06	4.63	9.02	13.51	17.90
20	3.10	4.69	9.14	13.70	18.16	2.94	4.50	8.94	13.55	18.11
30	2.82	4.35	8.74	13.33	17.90	2.75	4.27	8.66	13.28	17.90
40	2.94	4.56	9.23	14.16	19.07	2.91	4.52	9.14	14.01	18.87

表5-17b 基準インパルスを与える換算距離 (実験No. 3, No. 4)

		実験No. 3						実験No. 4				
角度			90度土堤	1		45度 + 90度土堤						
$ heta[^{\circ}]$							—————————————————————————————————————					
	7.63 Pa·s	7.63 Pa·s 4.96 Pa·s 2.48 Pa·s 1.63 Pa·s 1.22 Pa·s				7.63 Pa·s 4.96 Pa·s 2.48 Pa·s 1.63 Pa·s 1.22 Pa·s						
0	2.62	4.12	8.55	13.31	18.11	2.97	4.44	8.46	12.51	16.42		
10	2.77	4.37	9.10	14.19	19.34	3.10	4.63	8.87	13.14	17.28		
20	2.96	4.55	9.10	13.86	18.58	2.94	4.41	8.47	12.59	16.58		
30	2.81	4.38	8.93	13.76	18.59	2.71	4.17	8.34	12.71	17.03		
40	3.08	4.81	9.86	15.25	20.65	2.81	4.41	9.13	14.18	19.28		
50						2.81	4.41	9.13	14.18	19.28		
60						2.71	4.17	8.34	12.71	17.03		
70						2.94	4.41	8.47	12.59	16.58		
80						3.10	4.63	8.87	13.14	17.28		
90						2.97	4.44	8.46	12.51	16.42		

表5-17c 基準インパルスを与える換算距離 (実験No. 5, No. 6)

	実験No. 5					実験No. 6				
角度		45度土堤 + 擁壁					60度土堤 + 擁壁			
$ heta[^\circ]$						換算距離 Z[m/kg ^{1/3}]				
	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	1.63 Pa·s	1.22 Pa·s	7.63 Pa·s	4.96 Pa∙s	2.48 Pa·s 1	.63 Pa·s	s 1.22 Pa·s
0	2.83	4.32	8.54	12.92	17.23	2.77	4.29	8.68	13.30	17.90
10	2.97	4.55	9.04	13.69	18.30	2.96	4.59	9.31	14.29	19.26
20						2.86	4.42	8.89	13.58	18.23
30						2.63	4.12	8.48	13.14	17.83
40						2.78	4.44	9.42	14.87	20.42


表5-17d 基準圧力を与える換算距離 (実験No. 7)

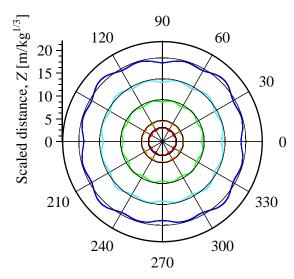
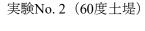
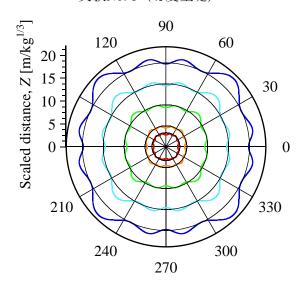
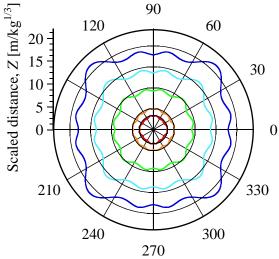

1×3-1/u	至毕压刀	C 17C-2	大开山的	正 (天吻八)	10. 7)				
	実験No. 7								
角度		45度土堤、x偏心1:3							
$ heta[^{\circ}]$		換算距離 Z[m/kg ^{1/3}]							
	7.63 Pa·s 4.96 Pa·s 2.48 Pa·s 1.63 Pa·s 1.22 Pa·s								
0	3.08	4.69	9.19	13.82	18.37				
10	3.28	4.99	9.77	14.69	19.52				
20	3.17	4.77	9.19	13.67	18.03				
30	2.87	4.39	8.70	13.17	17.59				
40	2.98	4.61	9.31	14.25	19.18				
50	2.93	4.48	8.85	13.37	17.82				
60	2.83	4.34	8.64	13.12	17.54				
70	3.21	4.90	9.66	14.58	19.43				
80	3.25	4.85	9.23	13.63	17.88				
90	3.12	4.69	9.01	13.40	17.66				
100	3.32	5.02	9.78	14.65	19.42				
110	3.28	4.89	9.34	13.82	18.16				
120	2.92	4.51	9.04	13.79	18.50				
130	3.04	4.77	9.88	15.36	20.89				
140	3.02	4.66	9.35	14.26	19.13				
150	2.81	4.38	8.94	13.76	18.60				
160	2.90	4.62	9.74	15.31	20.98				
170	3.10	4.71	9.20	13.81	18.33				
180	2.94	4.45	8.68	13.01	17.26				

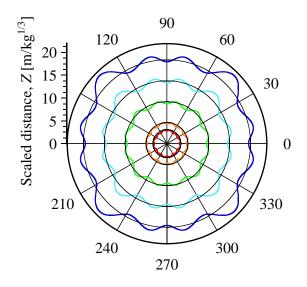
表5-17e 基準圧力を与える換算距離 (実験No. 8)

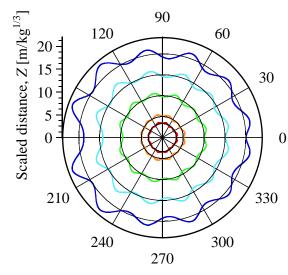

20 170	五十/五/3	実験No. 8							
角度		45度土堤、xy偏心1:3							
θ [°]									
0[]	7 63 Pa·s	7.63 Pa·s 4.96 Pa·s 2.48 Pa·s 1.63 Pa·s 1.22 Pa·s							
50	2.97	4.47	8.60	12.78	16.85				
60	2.85	4.50	9.35	14.59	19.87				
70	3.27	4.88	9.27	13.68	17.94				
80	3.17	4.77	9.23	13.76	18.18				
90	3.17	4.97	10.28	15.76	21.69				
100	3.17	4.79	9.27	13.84	18.29				
110	2.99	4.79	9.27	13.59	18.10				
120	2.99	4.63	9.54	14.78	20.05				
130	3.04	4.64	9.34	13.89	18.53				
140	2.81	4.35	8.78	13.44	18.08				
150	2.80	4.48	9.54	15.09	20.76				
160	2.97	4.53	8.93	13.47	17.94				
170	2.85	4.36	8.65	13.11	17.51				
180	2.87	4.55	9.56	14.99	20.50				
190	3.15	4.77	9.27	13.87	18.37				
200	2.93	4.53	9.14	14.00	18.83				
210	3.02	4.80	10.11	15.89	21.77				
220	3.02	4.68	9.46	14.50	19.53				


7.63 Pa·s (3.06 m/kg^{1/3}の基準インパルス)
 4.96 Pa·s (4.58 m/kg^{1/3}の基準インパルス)
 2.48 Pa·s (9.17 m/kg^{1/3}の基準インパルス)
 1.63 Pa·s (13.75 m/kg^{1/3}の基準インパルス)
 1.22 Pa·s (18.33 m/kg^{1/3}の基準インパルス)

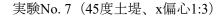


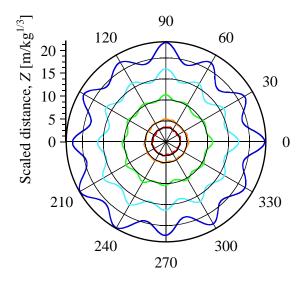
実験No.1 (45度土堤)




実験No. 3 (90度土堤)

実験No.4(45度 +90度土堤)


図5-20a 正圧相インパルスの分布


```
    7.63 Pa·s (3.06 m/kg<sup>1/3</sup>の基準インパルス)
    4.96 Pa·s (4.58 m/kg<sup>1/3</sup>の基準インパルス)
    2.48 Pa·s (9.17 m/kg<sup>1/3</sup>の基準インパルス)
    1.63 Pa·s (13.75 m/kg<sup>1/3</sup>の基準インパルス)
    1.22 Pa·s (18.33 m/kg<sup>1/3</sup>の基準インパルス)
```


実験No.6 (60度土堤 + 擁壁)

実験No. 8(45度土堤、xy偏心1:3)

図5-20b 正圧相インパルスの分布

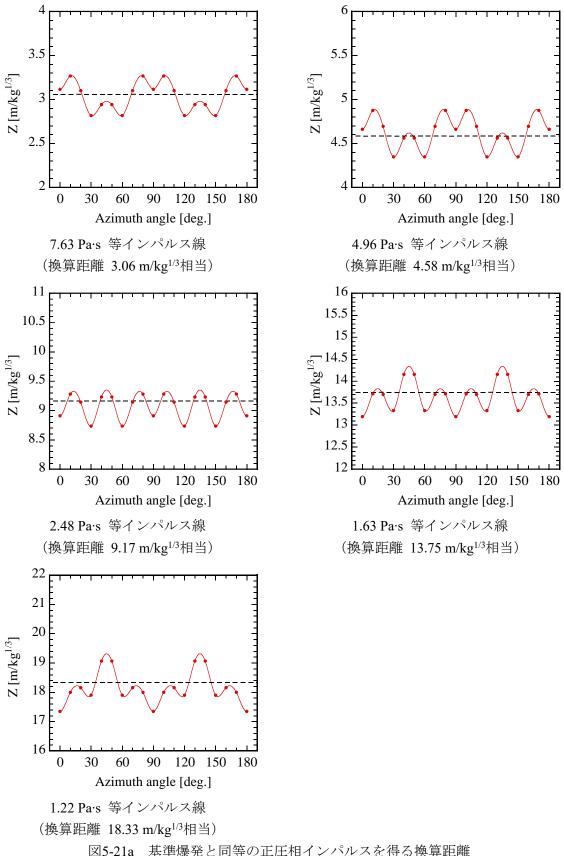


図5-21a 基準爆発と同等の正圧相インパルスを得る換算距離 破線:基準爆発、赤点:実験No.1 (45度土堤)

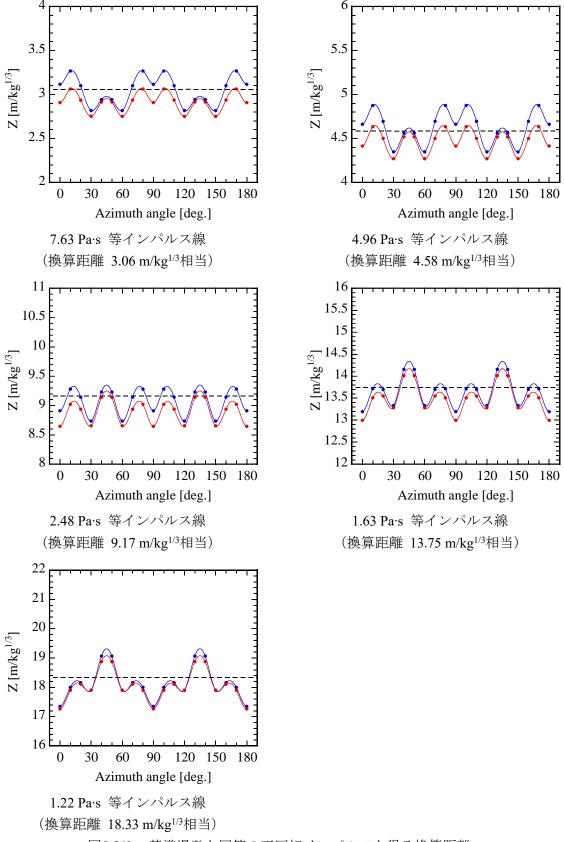
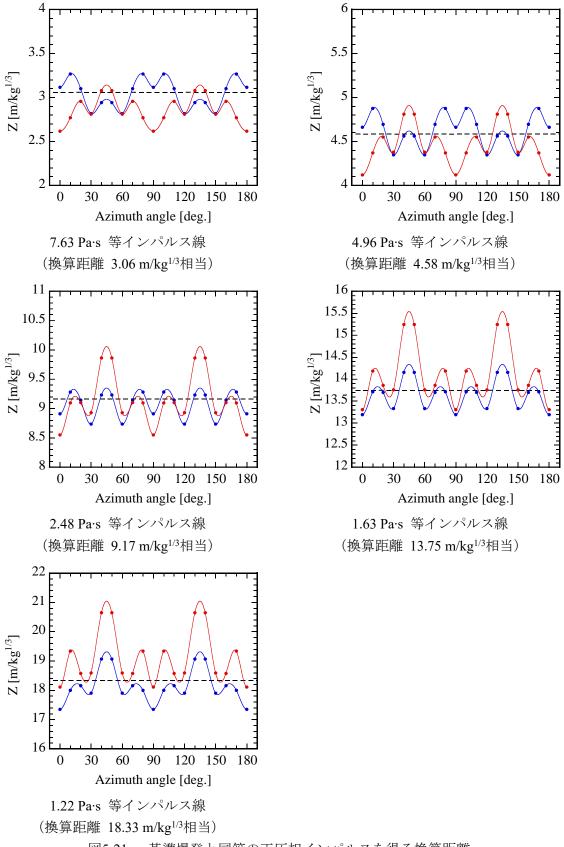
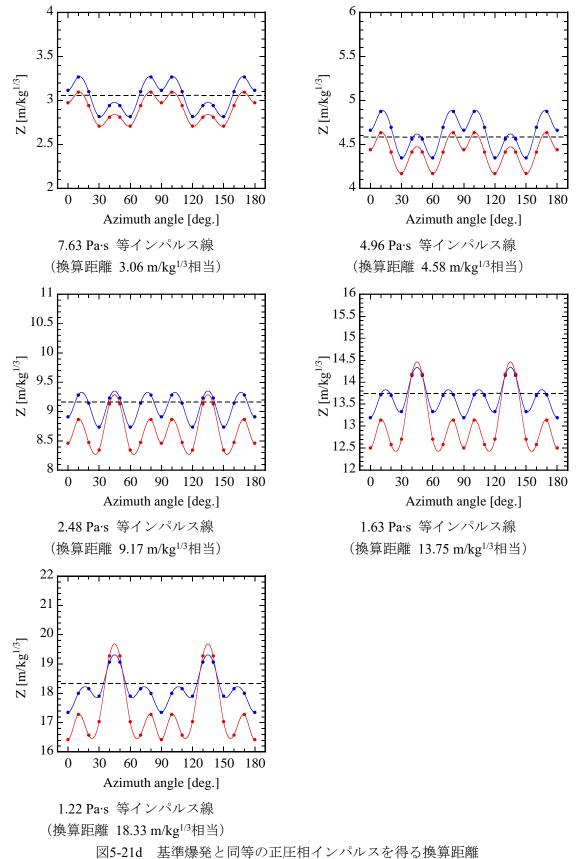
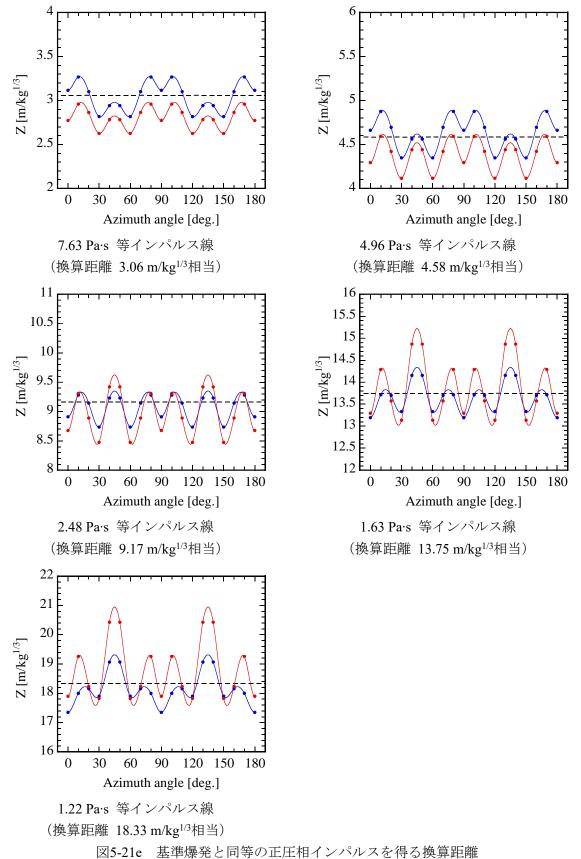
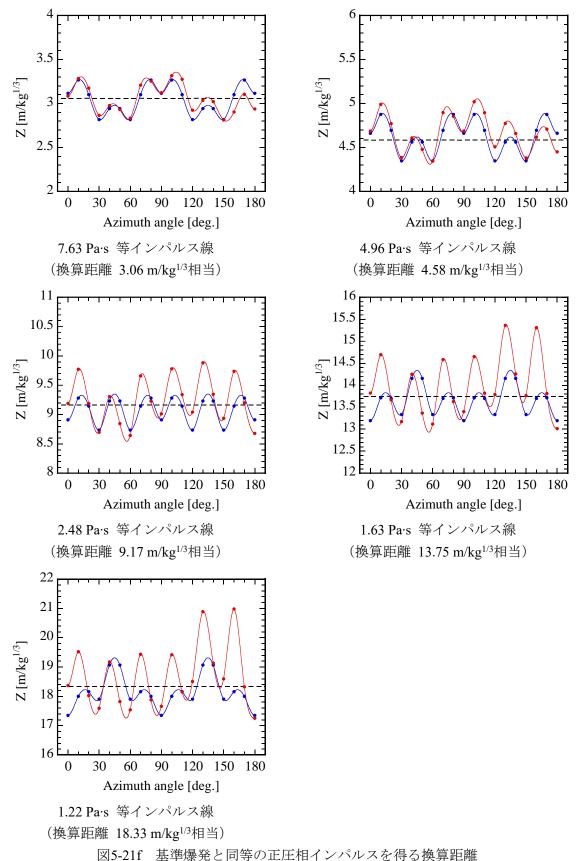
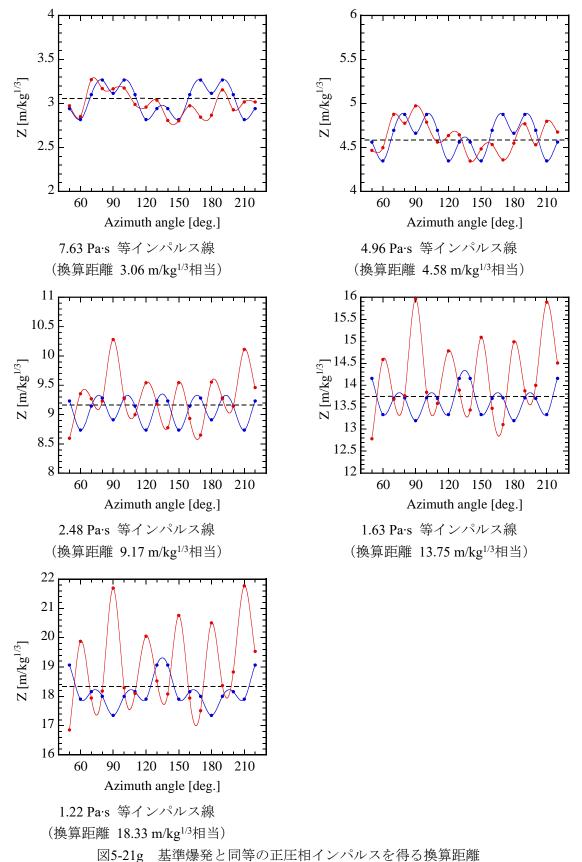


図5-21b 基準爆発と同等の正圧相インパルスを得る換算距離 破線:基準爆発、赤点:実験No.2 (60度土堤)、青点:実験No.1 (45度土堤)


図5-21c 基準爆発と同等の正圧相インパルスを得る換算距離 破線:基準爆発、赤点:実験No.3 (90度土堤)、青点:実験No.1 (45度土堤)


破線:基準爆発、赤点:実験No. 4 (45度 + 90度土堤)、青点:実験No. 1 (45度土堤)

破線:基準爆発、赤点:実験No. 6 (60度土堤 + 擁壁)、青点:実験No. 1 (45度土堤)

破線:基準爆発、赤点:実験No. 7 (45度土堤、x偏心1:3)、青点:実験No. 1 (45度土堤)

破線: 基準爆発、赤点: 実験No. 8 (45度土堤、xy偏心1:3)、青点: 実験No. 1 (45度土堤)

表5-18a 等インパルス線の自然スプライン係数

			45度土堤		
	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	1.63 Pa·s	1.22 Pa·s
a_0	3.67119E+00	5.40400E+00	1.00234E+01	1.45384E+01	1.88130E+01
a_1	2.84530E-02	3.52032E-02	4.29336E-02	4.01247E-02	3.02913E-02
C-3	-1.36900E-06	-5.90216E-06	-2.01571E-05	-3.50488E-05	-4.91363E-05
C-2	-1.08558E-04	-1.29195E-04	-1.50989E-04	-1.43216E-04	-1.18177E-04
C-1	3.50344E-04	4.50643E-04	6.39035E-04	7.50193E-04	8.08623E-04
\mathcal{C}_0	-4.72648E-04	-6.19624E-04	-9.16435E-04	-1.11769E-03	-1.25058E-03
c_1	3.01219E-04	3.81836E-04	5.22983E-04	5.93172E-04	6.16385E-04
c_2	8.79420E-05	1.46032E-04	3.13218E-04	4.84865E-04	6.50778E-04
<i>C</i> 3	-3.29205E-04	-4.72833E-04	-8.35102E-04	-1.16763E-03	-1.46713E-03
<i>C</i> 4	1.72258E-04	2.49021E-04	4.47411E-04	6.35298E-04	8.09178E-04
C 5	1.72351E-04	2.49151E-04	4.47630E-04	6.35594E-04	8.09541E-04
C 6	-3.29483E-04	-4.73222E-04	-8.35759E-04	-1.16852E-03	-1.46822E-03
<i>C</i> 7	8.89616E-05	1.47460E-04	3.15627E-04	4.88124E-04	6.54768E-04
C 8	2.97419E-04	3.76513E-04	5.14005E-04	5.81025E-04	6.01513E-04
C 9	-4.58466E-04	-5.99761E-04	-8.82933E-04	-1.07236E-03	-1.19509E-03
c_{10}	2.97419E-04	3.76513E-04	5.14005E-04	5.81025E-04	6.01513E-04
C11	8.89616E-05	1.47460E-04	3.15627E-04	4.88124E-04	6.54768E-04
C ₁₂	-3.29483E-04	-4.73222E-04	-8.35759E-04	-1.16852E-03	-1.46822E-03
c_{13}	1.72351E-04	2.49151E-04	4.47630E-04	6.35594E-04	8.09541E-04
C ₁₄	1.72258E-04	2.49021E-04	4.47411E-04	6.35298E-04	8.09178E-04
C ₁₅	-3.29205E-04	-4.72833E-04	-8.35102E-04	-1.16763E-03	-1.46713E-03
C ₁₆	8.79420E-05	1.46032E-04	3.13218E-04	4.84865E-04	6.50778E-04
c_{17}	3.01219E-04	3.81836E-04	5.22983E-04	5.93172E-04	6.16385E-04
c_{18}	-4.72648E-04	-6.19624E-04	-9.16435E-04	-1.11769E-03	-1.25058E-03
C 19	3.50344E-04	4.50643E-04	6.39035E-04	7.50193E-04	8.08623E-04
C20	-1.08558E-04	-1.29195E-04	-1.50989E-04	-1.43216E-04	-1.18177E-04
<i>C</i> ₂₁	-1.36900E-06	-5.90216E-06	-2.01571E-05	-3.50488E-05	-4.91363E-05

表5-18b 等インパルス線の自然スプライン係数

			実験No. 2		
			60度土堤		
	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	1.63 Pa·s	1.22 Pa·s
a_0	3.27140E+00	4.93025E+00	9.51858E+00	1.41671E+01	1.86793E+01
a_1	1.73295E-02	2.20223E-02	2.87858E-02	2.94465E-02	2.58689E-02
C-3	1.16173E-05	9.66827E-06	-4.77384E-06	-2.74612E-05	-5.44422E-05
C-2	-1.28702E-04	-1.53574E-04	-1.71811E-04	-1.43549E-04	-8.62657E-05
C-1	3.51332E-04	4.52251E-04	6.31521E-04	7.19509E-04	7.44332E-04
\mathcal{C}_0	-4.61554E-04	-6.06945E-04	-8.93451E-04	-1.07489E-03	-1.18036E-03
c_1	3.09693E-04	3.93781E-04	5.33001E-04	5.86891E-04	5.83031E-04
<i>C</i> 2	3.78539E-05	8.03041E-05	2.22267E-04	3.86922E-04	5.58941E-04
<i>C</i> 3	-2.77574E-04	-4.00268E-04	-7.09372E-04	-9.91430E-04	-1.24348E-03
<i>C</i> 4	1.57321E-04	2.24764E-04	3.92589E-04	5.43970E-04	6.78203E-04
C5	1.57400E-04	2.24874E-04	3.92775E-04	5.44221E-04	6.78507E-04
C 6	-2.77810E-04	-4.00599E-04	-7.09930E-04	-9.92181E-04	-1.24440E-03
<i>C</i> 7	3.87181E-05	8.15176E-05	2.24311E-04	3.89674E-04	5.62289E-04
C8	3.06472E-04	3.89258E-04	5.25380E-04	5.76632E-04	5.70552E-04
C 9	-4.49534E-04	-5.90066E-04	-8.65010E-04	-1.03661E-03	-1.13380E-03
c_{10}	3.06472E-04	3.89258E-04	5.25380E-04	5.76632E-04	5.70552E-04
c_{11}	3.87181E-05	8.15176E-05	2.24311E-04	3.89674E-04	5.62289E-04
c_{12}	-2.77810E-04	-4.00599E-04	-7.09930E-04	-9.92181E-04	-1.24440E-03
c_{13}	1.57400E-04	2.24874E-04	3.92775E-04	5.44221E-04	6.78507E-04
C ₁₄	1.57321E-04	2.24764E-04	3.92589E-04	5.43970E-04	6.78203E-04
<i>c</i> ₁₅	-2.77574E-04	-4.00268E-04	-7.09372E-04	-9.91430E-04	-1.24348E-03
C ₁₆	3.78539E-05	8.03041E-05	2.22267E-04	3.86922E-04	5.58941E-04
C ₁₇	3.09693E-04	3.93781E-04	5.33001E-04	5.86891E-04	5.83031E-04
C ₁₈	-4.61554E-04	-6.06945E-04	-8.93451E-04	-1.07489E-03	-1.18036E-03
C19	3.51332E-04	4.52251E-04	6.31521E-04	7.19509E-04	7.44332E-04
C20	-1.28702E-04	-1.53574E-04	-1.71811E-04	-1.43549E-04	-8.62657E-05
C ₂₁	1.16173E-05	9.66827E-06	-4.77384E-06	-2.74612E-05	-5.44422E-05

表5-18c 等インパルス線の自然スプライン係数

			実験No. 3		
			90度土堤		
	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	1.63 Pa·s	1.22 Pa·s
a_0	3.50747E+00	5.13517E+00	9.40696E+00	1.35042E+01	1.73233E+01
a_1	2.32537E-02	2.52600E-02	1.58945E-02	-8.49013E-03	-4.23384E-02
C-3	-8.65574E-05	-8.04758E-05	1.36161E-05	1.86543E-04	4.07671E-04
C-2	1.86788E-04	1.30136E-04	-2.61402E-04	-8.94221E-04	-1.67076E-03
C-1	-4.73894E-05	1.17110E-04	8.66056E-04	1.92095E-03	3.14873E-03
<i>C</i> 0	-9.52216E-05	-3.18968E-04	-1.21240E-03	-2.39451E-03	-3.73278E-03
c_1	-1.10149E-04	2.96775E-05	7.21194E-04	1.72868E-03	2.91778E-03
c_2	4.37826E-04	4.79865E-04	3.18049E-04	-1.25125E-04	-7.46969E-04
<i>C</i> 3	-5.27211E-04	-7.06257E-04	-1.06647E-03	-1.29636E-03	-1.42707E-03
<i>C</i> 4	2.41895E-04	3.48884E-04	6.21314E-04	8.73972E-04	1.10333E-03
C 5	2.42014E-04	3.49049E-04	6.21587E-04	8.74335E-04	1.10377E-03
C 6	-5.27566E-04	-7.06752E-04	-1.06729E-03	-1.29745E-03	-1.42838E-03
<i>C</i> 7	4.39128E-04	4.81680E-04	3.21055E-04	-1.21134E-04	-7.42176E-04
C 8	-1.15004E-04	2.29138E-05	7.09987E-04	1.71381E-03	2.89991E-03
C 9	-7.71043E-05	-2.93728E-04	-1.17058E-03	-2.33900E-03	-3.66611E-03
c_{10}	-1.15004E-04	2.29138E-05	7.09987E-04	1.71381E-03	2.89991E-03
C11	4.39128E-04	4.81680E-04	3.21055E-04	-1.21134E-04	-7.42176E-04
C ₁₂	-5.27566E-04	-7.06752E-04	-1.06729E-03	-1.29745E-03	-1.42838E-03
c_{13}	2.42014E-04	3.49049E-04	6.21587E-04	8.74335E-04	1.10377E-03
C ₁₄	2.41895E-04	3.48884E-04	6.21314E-04	8.73972E-04	1.10333E-03
C ₁₅	-5.27211E-04	-7.06257E-04	-1.06647E-03	-1.29636E-03	-1.42707E-03
C ₁₆	4.37826E-04	4.79865E-04	3.18049E-04	-1.25125E-04	-7.46969E-04
c_{17}	-1.10149E-04	2.96775E-05	7.21194E-04	1.72868E-03	2.91778E-03
c_{18}	-9.52216E-05	-3.18968E-04	-1.21240E-03	-2.39451E-03	-3.73278E-03
C 19	-4.73894E-05	1.17110E-04	8.66056E-04	1.92095E-03	3.14873E-03
C20	1.86788E-04	1.30136E-04	-2.61402E-04	-8.94221E-04	-1.67076E-03
<i>c</i> ₂₁	-8.65574E-05	-8.04758E-05	1.36161E-05	1.86543E-04	4.07671E-04

表5-18d 等インパルス線の自然スプライン係数

			実験No. 4		
			45度 + 90度土堤		
	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	1.63 Pa·s	1.22 Pa·s
a_0	3.39461E+00	4.80261E+00	8.29408E+00	1.14540E+01	1.42774E+01
a_1	2.28773E-02	2.11168E-02	-1.65082E-03	-4.17512E-02	-9.18469E-02
C-3	4.30313E-06	3.26859E-05	1.46761E-04	2.96355E-04	4.63970E-04
C-2	-1.05064E-04	-2.19508E-04	-6.19299E-04	-1.10405E-03	-1.62714E-03
C-1	3.04168E-04	5.11877E-04	1.15894E-03	1.88392E-03	2.63341E-03
\mathcal{C}_0	-4.00192E-04	-6.40561E-04	-1.35531E-03	-2.12691E-03	-2.90703E-03
c_1	2.64437E-04	4.54587E-04	1.05403E-03	1.73069E-03	2.43266E-03
c_2	5.38588E-05	9.65202E-06	-1.99664E-04	-4.91130E-04	-8.24111E-04
<i>C</i> 3	-2.61065E-04	-3.69748E-04	-6.57371E-04	-9.43731E-04	-1.22266E-03
C4	1.39542E-04	2.20997E-04	4.71888E-04	7.54809E-04	1.05084E-03
C5	1.39617E-04	2.21106E-04	4.72086E-04	7.55098E-04	1.05122E-03
<i>C</i> 6	-2.61290E-04	-3.70072E-04	-6.57965E-04	-9.44598E-04	-1.22380E-03
<i>C</i> 7	5.46834E-05	1.08411E-05	-1.97487E-04	-4.87949E-04	-8.19944E-04
C 8	2.61364E-04	4.50155E-04	1.04591E-03	1.71884E-03	2.41713E-03
C 9	-3.88723E-04	-6.24023E-04	-1.32503E-03	-2.08268E-03	-2.84907E-03
c_{10}	2.61364E-04	4.50155E-04	1.04591E-03	1.71884E-03	2.41713E-03
c_{11}	5.46834E-05	1.08411E-05	-1.97487E-04	-4.87949E-04	-8.19944E-04
C ₁₂	-2.61290E-04	-3.70072E-04	-6.57965E-04	-9.44598E-04	-1.22380E-03
c_{13}	1.39617E-04	2.21106E-04	4.72086E-04	7.55098E-04	1.05122E-03
C ₁₄	1.39542E-04	2.20997E-04	4.71888E-04	7.54809E-04	1.05084E-03
C ₁₅	-2.61065E-04	-3.69748E-04	-6.57371E-04	-9.43731E-04	-1.22266E-03
C ₁₆	5.38588E-05	9.65202E-06	-1.99664E-04	-4.91130E-04	-8.24111E-04
C ₁₇	2.64437E-04	4.54587E-04	1.05403E-03	1.73069E-03	2.43266E-03
C ₁₈	-4.00192E-04	-6.40561E-04	-1.35531E-03	-2.12691E-03	-2.90703E-03
C19	3.04168E-04	5.11877E-04	1.15894E-03	1.88392E-03	2.63341E-03
C20	-1.05064E-04	-2.19508E-04	-6.19299E-04	-1.10405E-03	-1.62714E-03
c_{21}	4.30313E-06	3.26859E-05	1.46761E-04	2.96355E-04	4.63970E-04

表5-18e 等インパルス線の自然スプライン係数

			実験No. 6		
			60度土堤 + 擁壁	•	
	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	1.63 Pa·s	1.22 Pa·s
a_0	3.37032E+00	5.00244E+00	9.39695E+00	1.37282E+01	1.78489E+01
a_1	2.48201E-02	2.95769E-02	3.06810E-02	1.97172E-02	7.93943E-04
C-3	-9.74689E-06	1.07483E-05	1.06290E-04	2.41910E-04	4.00088E-04
C-2	-8.47647E-05	-2.00465E-04	-6.31271E-04	-1.17831E-03	-1.78481E-03
C-1	3.42676E-04	6.04376E-04	1.46167E-03	2.46318E-03	3.52598E-03
\mathcal{C}_0	-4.88104E-04	-8.16358E-04	-1.84618E-03	-3.01069E-03	-4.22350E-03
c_1	2.93326E-04	5.26611E-04	1.29848E-03	2.20595E-03	3.17195E-03
<i>C</i> 2	1.12636E-04	1.10597E-04	2.14826E-05	-1.49403E-04	-3.68707E-04
<i>C</i> 3	-3.45359E-04	-5.33995E-04	-1.08914E-03	-1.69014E-03	-2.30294E-03
<i>C</i> 4	1.79320E-04	2.98461E-04	6.78620E-04	1.11742E-03	1.58183E-03
C 5	1.79414E-04	2.98608E-04	6.78928E-04	1.11790E-03	1.58250E-03
<i>C</i> 6	-3.45638E-04	-5.34435E-04	-1.09007E-03	-1.69159E-03	-2.30494E-03
<i>C</i> 7	1.13661E-04	1.12211E-04	2.48695E-05	-1.44065E-04	-3.61359E-04
C8	2.89508E-04	5.20595E-04	1.28586E-03	2.18605E-03	3.14456E-03
C 9	-4.73858E-04	-7.93908E-04	-1.79907E-03	-2.93643E-03	-4.12130E-03
c_{10}	2.89508E-04	5.20595E-04	1.28586E-03	2.18605E-03	3.14456E-03
C11	1.13661E-04	1.12211E-04	2.48695E-05	-1.44065E-04	-3.61359E-04
c_{12}	-3.45638E-04	-5.34435E-04	-1.09007E-03	-1.69159E-03	-2.30494E-03
c_{13}	1.79414E-04	2.98608E-04	6.78928E-04	1.11790E-03	1.58250E-03
C ₁₄	1.79320E-04	2.98461E-04	6.78620E-04	1.11742E-03	1.58183E-03
<i>c</i> ₁₅	-3.45359E-04	-5.33995E-04	-1.08914E-03	-1.69014E-03	-2.30294E-03
C ₁₆	1.12636E-04	1.10597E-04	2.14826E-05	-1.49403E-04	-3.68707E-04
C ₁₇	2.93326E-04	5.26611E-04	1.29848E-03	2.20595E-03	3.17195E-03
C ₁₈	-4.88104E-04	-8.16358E-04	-1.84618E-03	-3.01069E-03	-4.22350E-03
C19	3.42676E-04	6.04376E-04	1.46167E-03	2.46318E-03	3.52598E-03
C20	-8.47647E-05	-2.00465E-04	-6.31271E-04	-1.17831E-03	-1.78481E-03
<i>C</i> ₂₁	-9.74689E-06	1.07483E-05	1.06290E-04	2.41910E-04	4.00088E-04

表5-18f 等インパルス線の自然スプライン係数

			実験No. 7		
		4:	5度土堤、x偏心1	:3	
	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	1.63 Pa·s	1.22 Pa·s
a_0	3.86138E+00	5.52375E+00	9.75149E+00	1.36918E+01	1.72971E+01
a_1	3.31990E-02	3.79235E-02	3.51123E-02	1.72786E-02	-9.78808E-03
C-3	-2.26951E-05	5.97779E-06	1.38061E-04	3.21728E-04	5.32490E-04
C-2	-6.42474E-05	-2.03922E-04	-7.31290E-04	-1.39895E-03	-2.13401E-03
C-1	3.49074E-04	6.33296E-04	1.56162E-03	2.63696E-03	3.76892E-03
c_0	-5.15215E-04	-8.57634E-04	-1.91307E-03	-3.08534E-03	-4.29074E-03
c_1	2.94784E-04	5.54871E-04	1.41935E-03	2.43219E-03	3.50457E-03
<i>C</i> ₂	1.52914E-04	1.09780E-04	-1.62234E-04	-5.79892E-04	-1.07662E-03
<i>C</i> ₃	-3.93860E-04	-5.69166E-04	-1.03688E-03	-1.50009E-03	-1.94601E-03
<i>C</i> 4	2.25730E-04	4.32414E-04	1.14578E-03	2.01002E-03	2.94554E-03
<i>C</i> 5	1.66419E-04	1.46972E-04	-5.99732E-05	-4.20515E-04	-8.72353E-04
C 6	-4.59066E-04	-6.79655E-04	-1.26385E-03	-1.82765E-03	-2.35462E-03
<i>C</i> 7	3.31879E-04	6.04264E-04	1.48627E-03	2.49856E-03	3.55697E-03
<i>C</i> 8	8.72007E-05	9.00410E-06	-3.59859E-04	-8.74908E-04	-1.46541E-03
C 9	-3.21640E-04	-4.83364E-04	-9.32619E-04	-1.39085E-03	-1.83836E-03
c_{10}	1.27510E-04	3.43243E-04	1.13376E-03	2.11602E-03	3.18666E-03
C11	2.98644E-04	2.61241E-04	-7.22954E-05	-6.20683E-04	-1.28614E-03
c_{12}	-4.71194E-04	-6.67283E-04	-1.19262E-03	-1.72408E-03	-2.24842E-03
<i>c</i> ₁₃	2.18970E-04	4.57336E-04	1.33389E-03	2.44671E-03	3.68480E-03
C ₁₄	1.24284E-04	9.45349E-05	-1.31064E-04	-5.03017E-04	-9.62096E-04
C ₁₅	-1.62431E-04	-3.83628E-04	-1.21897E-03	-2.29361E-03	-3.49582E-03
C ₁₆	-1.52499E-04	1.08985E-04	1.36358E-03	3.17176E-03	5.29782E-03
C ₁₇	4.82309E-04	4.01710E-04	-3.26138E-04	-1.57205E-03	-3.13147E-03
c_{18}	-5.98860E-04	-6.47913E-04	-3.89926E-04	2.67275E-04	1.17732E-03
C 19	5.13020E-04	4.61462E-04	-1.63942E-04	-1.28332E-03	-2.70397E-03
C20	-2.75346E-04	-1.30023E-04	7.14791E-04	2.01682E-03	3.58783E-03
c_{21}	6.43147E-05	-2.50325E-06	-3.42369E-04	-8.43082E-04	-1.43689E-03

表5-18g 等インパルス線の自然スプライン係数

		J	実験No. 8		
		45	度土堤、xy偏心	1:3	
	7.63 Pa·s	4.96 Pa·s	2.48 Pa·s	1.63 Pa·s	1.22 Pa·s
a_0	4.40690E+00	5.81607E+00	8.57065E+00	1.02574E+01	1.11608E+01
a_1	-5.67741E-02	-4.69638E-02	3.48929E-02	1.71126E-01	3.39046E-01
C-3	1.48039E-04	8.97385E-05	-2.62441E-04	-8.05848E-04	-1.45858E-03
C-2	-3.46464E-04	-1.87975E-04	7.29775E-04	2.12843E-03	3.80100E-03
C-1	1.80258E-04	8.04305E-05	-4.70973E-04	-1.29918E-03	-2.28435E-03
\mathcal{C}_0	2.89262E-04	1.87266E-04	-4.49136E-04	-1.43959E-03	-2.63275E-03
c_1	-6.73476E-04	-5.08482E-04	6.64264E-04	2.54966E-03	4.84622E-03
<i>C</i> ₂	6.77259E-04	6.93160E-04	2.87664E-04	-5.56024E-04	-1.66201E-03
<i>C</i> 3	-3.51241E-04	-6.49192E-04	-1.66600E-03	-2.89133E-03	-4.21543E-03
<i>C</i> 4	1.92920E-05	4.37019E-04	2.18826E-03	4.54835E-03	7.23434E-03
C 5	1.57373E-04	-7.18590E-05	-1.14538E-03	-2.66107E-03	-4.41878E-03
C 6	-9.83186E-05	-1.52613E-04	-3.24090E-04	-5.23865E-04	-7.38188E-04
<i>C</i> 7	-1.51883E-04	-2.13162E-05	6.50999E-04	1.64066E-03	2.81075E-03
C 8	3.26024E-04	3.61124E-04	2.80468E-04	2.93666E-05	-3.25363E-04
C 9	-1.95451E-04	-4.43559E-04	-1.39067E-03	-2.62427E-03	-4.01693E-03
C ₁₀	-1.28121E-04	1.53601E-04	1.49606E-03	3.43297E-03	5.71570E-03
<i>c</i> ₁₁	2.79486E-04	2.08893E-04	-3.28770E-04	-1.22339E-03	-2.33561E-03
c_{12}	-6.21122E-05	-2.54778E-04	-1.02890E-03	-2.05244E-03	-3.20850E-03
c_{13}	-3.65750E-04	-1.20225E-04	1.20609E-03	3.19335E-03	5.56054E-03
C ₁₄	6.28758E-04	5.83477E-04	-6.94694E-05	-1.24866E-03	-2.74178E-03
<i>c</i> ₁₅	-5.37618E-04	-7.60856E-04	-1.34147E-03	-1.90701E-03	-2.44850E-03
C ₁₆	2.82254E-04	6.02553E-04	1.79269E-03	3.31530E-03	5.01730E-03
<i>c</i> ₁₇	-9.05181E-05	-2.45587E-04	-8.55848E-04	-1.66102E-03	-2.57365E-03
C ₁₈	-1.28350E-05	-1.30508E-04	-6.34579E-04	-1.32729E-03	-2.12619E-03
C 19	4.92051E-05	2.57313E-04	1.12888E-03	2.31409E-03	3.67493E-03
C20	-2.34228E-05	-1.07626E-04	-4.57422E-04	-9.31185E-04	-1.47416E-03

5.7 まとめ

地上式火薬庫の四方を囲む土堤について、土堤内側の傾斜角および垂直擁壁が爆風低減に与える影響を検討した。爆点から土堤の堤脚までの距離 20.0 mm、土堤の高さ 10.0 mm、土堤頂部の幅 2.5 mm、土堤の外側の傾斜角は 45 度とした。PETN/C ペレット 0.50 g の爆発で生じた爆風の圧力履歴の波形を取得し、以下の場合について爆風の威力と角度分布を測定した。

- ・実験 No. 1: 土堤内側の傾斜角 45 度 (45 度土堤)
- ・実験 No. 2: 土堤内側の傾斜角 60 度 (60 度土堤)
- ・実験 No. 3: 土堤内側の傾斜角 90 度 (90 度土堤)
- ・実験 No. 4:0°, 180° 方向に 45 度土堤、90°, 270° 方向に 90 度土堤を組み合わせた場合
- ・実験 No. 5:45 度土堤に垂直擁壁部分がある場合
- ・実験 No.6:60 度土堤に垂直擁壁部分がある場合
- ・実験 No. 1:45 度土堤に爆薬を x 方向に 1:3 で偏心して設置した場合
- ・実験 No. 1:45 度土堤に爆薬を xy 方向に 1:3 で偏心して設置した場合

最大過圧の結果から、以下の点についてまとめる。

土堤内側の傾斜角について

傾斜角が増大すると爆点近傍では爆風低減し、遠方では爆風強化した。

45 度土堤と 90 度土堤の組み合わせについて

45 度土堤単体の場合より爆点近傍で爆風低減し、遠方では爆風強化した。

擁壁について

遠方で爆風強化され、90度土堤の角度依存性に近くなった。

爆薬の偏心について

爆薬の偏心により土堤に近づいた方向の爆風は強弱に大きな変化はなかったが、土堤から遠ざかった 方向およびその側面方向の爆風が強化された。

第6章 地中式一級火薬庫の保安距離策定に関するシミュレーション

6.1 背景

平成 27 年度から平成 30 年度まで、地中式一級火薬庫の前室入口方向に対する角度に応じた保安距離 策定に資するデータを得るため、地中式火薬庫の小規模室内実験[1-4]および大規模野外実験[2-4](表 6-1) を行い、以下のような結果を得た。各文字の説明は図 6-1 の通りである。

- ・爆風圧は前室入口前方が強くなり入口方向に対する角度依存性がある。
- ・前室の断面積 (S_1) と火薬庫 (薬室) の断面積 (S_2) の比 (S_1/S_2) が小さくなると爆風圧は小さくなる。 $(S_1/S_2=1$ の場合を基準とすると、 $S_1/S_2=0.068$ で爆風圧は約 70%減少する。)
- ・火薬庫全長 $(L=L_1+L_2)$ と薬室径 (D_2) の比 (L/D_2) が大きくなると爆風圧が小さくなる。 $(L/D_2=3$ の場合を基準とすると、 $L/D_2=21$ で爆風圧は約 24%減少する。)
- ・前室長 (L_1) と薬室長 (L_2) の比 (L_1/L_2) は爆風圧にほとんど影響を与えない。 $(L_1/L_2=0.125$ の場合を基準とすると、 $L_1/L_2=2$ で爆風圧は約 8%減少する。)

			20.	10 1 1 4 7 4 7 1		1 2 4 3 4 2 4	J	C-0/C		
年度		野外実験						室内実	験	
干及	薬種	薬量	L/D_2	S_1/S_2	土堤	薬種	薬量	L/D_2	S_1/S_2	土堤
H27						PETN	1g	3	1	有無
H28	EMX2	5kg	3	1	有無	PETN	1g	9, 21	1	有無
H29	EMX2	5kg	9	1	有	PETN	1g	9	0.26	有
H30	EMX2	5kg	8.6	0.24	有	PETN	1g	9	0.58, 0.068	有

表 6-1 地中式火薬庫の野外実験及び室内実験

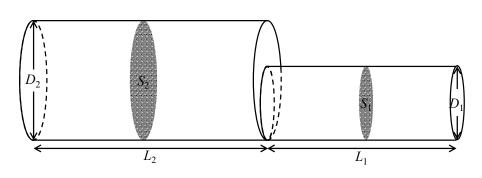


図 6-1 断面積変化を伴う地中式火薬庫モデルの模式図

また、令和3年度には任意形状の地中式火薬庫の保安距離を検討するため表6-2に示す野外実験スケールの数値解析を行い、爆風圧の角度指向性を詳細に取得した。

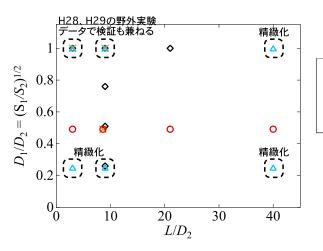

薬室の断面積*** 薬量 薬室長 前室長 全長 前室の断面積**** L/D_2 備考 m [kg] L_2 [m] L_1 [m] L[m] $S_2 [m^2]$ $S_1 [m^2]$ 3 1.367 2.034 8.6^{*} 5.829 検証を兼ねる 5.162 5.318** 0.361^{*} 0.0873^{*} 0.667^* 21 13.571 14.238 27.120 40 26.453

表 6-2 令和 3年度の計算条件

- * 平成 30 年度爆発影響低減化技術基準検討報告書[4]の野外実験の条件
- ** 平成 30 年度火薬類保安技術実験^[4]では、伝爆薬の導爆線(芯薬: PETN、10.6 g/m)18 m を使用した。EMX2 の PETN 薬量換算比 $0.60^{[5]}$ より、導爆線 18 m の EMX2 相当薬量は 0.318 kg となり、主爆薬の薬量を加えた 5.318 kg とした。
- *** 直径 0.678 m の円
- **** 直径 0.3334 m の円

6.2 目的

保安距離の検討にあたっては、爆風圧に与える影響が一番大きい S_1/S_2 比を変数として用いたが、任意形状の地中式火薬庫の保安距離を検討するためには L/D_2 も考慮に入れる必要がある。そのため、令和 2 年度に実施した「火薬類爆発影響低減化技術基準検討におけるシミュレーション活用に係る調査」事業の結果を踏まえ、保安距離の検討に適切な L/D_2 を 6 つ抽出しシミュレーションを行い、 L/D_2 を組み入れた保安距離について技術的知見を取りまとめる。

- ◆ H27-H30 室内実験 (PETN 1g)^[1-4]
- × H28-H30 野外実験 (EMX2 5 kg)^[2-4]
- O R03 数值解析 (EMX2 5 kg)^[6]
- △ R04 数值解析 (EMX2 5 kg)

図 6-2 過去の野外実験と数値解析の条件および今年度実施の条件

図 6-2 は過去の野外実験と数値解析の条件および今年度実施の条件である。R03 数値解析 (o) では $D_1/D_2=0.491$ として L/D_2 をパラメータとした[0]。今年度 (R04) は、保安距離に対する D_1/D_2 および L/D_2 依存性の精度を高めるために図 6-2 の Δ で示す条件 (L/D_2 が極端な条件) を解析する。具体的には $D_1/D_2=1$ および $D_1/D_2=0.25$ において $L/D_2=3$ 、9、40 を実施する。

6.3 数値解析項目および概要

6.3.1 計算手法

過去^[6-9]に室内実験を模擬する数値解析によって爆風圧を検討している。ここでもその際に使用した 計算手法を用いる。詳細は下記の通りである。

支配方程式:多種媒体を考慮した三次元圧縮性 Euler 方程式[10]

$$\frac{\partial \mathbf{Q}}{\partial t} + \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{F}}{\partial y} + \frac{\partial \mathbf{G}}{\partial z} = 0, \tag{1}$$

$$\mathbf{Q} = \begin{bmatrix} \alpha_{1}\rho_{1} \\ \alpha_{2}\rho_{2} \\ \rho u \\ \rho v \\ \rho e \end{bmatrix}, \mathbf{E} = \begin{bmatrix} \alpha_{1}\rho_{1}u \\ \alpha_{2}\rho_{2}u \\ \rho u^{2} + p \\ \rho v u \\ \rho w u \\ (\rho e + p)u \end{bmatrix}, \mathbf{F} = \begin{bmatrix} \alpha_{1}\rho_{1}v \\ \alpha_{2}\rho_{2}v \\ \rho uv \\ \rho vv \\ \rho wv \\ (\rho e + p)v \end{bmatrix}, \mathbf{G} = \begin{bmatrix} \alpha_{1}\rho_{1}w \\ \alpha_{2}\rho_{2}w \\ \rho uw \\ \rho vw \\ \rho wv \\ (\rho e + p)w \end{bmatrix},$$
(2)

$$\frac{\partial \alpha_1}{\partial t} + u \frac{\partial \alpha_1}{\partial x} + v \frac{\partial \alpha_1}{\partial y} + w \frac{\partial \alpha_1}{\partial z} = 0. \tag{3}$$

流体:周囲空気(下添字1)と爆発生成ガス(下添字2)

状態方程式:理想気体の状態方程式(比熱比;周囲空気 y1=1.4、爆発生成ガス y2=1.4)

$$p_1 = (\gamma_1 - 1)\rho_1 \varepsilon_1 \tag{4}$$

$$p_2 = (\gamma_2 - 1)\rho_2 \varepsilon_2 \tag{5}$$

$$\begin{cases} \alpha_{1} + \alpha_{2} = 1\\ \alpha_{1}\rho_{1} + \alpha_{2}\rho_{2} = \rho\\ \rho_{i}e_{i} = \rho_{i}\varepsilon_{i} + \frac{1}{2}\rho_{i}(u^{2} + v^{2} + w^{2}) & (i = 1, 2)\\ \alpha_{1}\rho_{1}e_{1} + \alpha_{2}\rho_{2}e_{2} = \rho e\\ p_{1} = p_{2} \end{cases}$$

$$(6)$$

$$\rho\xi c^2 = \sum_i \rho_i \alpha_i \xi_i c_i^2 \text{ , where, } \xi_i = \left(\frac{\partial \rho_i \varepsilon_i}{\partial p}\right)_{\rho_i}, \xi = \sum_i \alpha_i \xi_i \text{ , } c_i^2 = \left(\frac{\partial p_i}{\partial \rho_i}\right)_{\varepsilon_i} + \frac{p_i}{\rho_i^2} \left(\frac{\partial p_i}{\partial \varepsilon_i}\right)_{\rho_i} \tag{7}$$

対流項の離散化: Harten-Lax-van Leer for Contact (HLLC) Scheme^[11] + linear scaling limiter^[12] 時間積分法: 3 段階 Total Variation Diminishing (TVD) Runge-Kutta 法^[13] 火薬庫、地形、土堤モデル: 剛体壁

6.3.2 地中式火薬庫

平成 30 年度火薬類保安技術実験[4]で実施した室内実験の地形モデルを採用し、野外実験スケールに変更した図 6-3 を使用する。 L/D_2 比を考慮した保安距離を検討するために、表 6-3 に示す 6 ケースについて解析を行う。ここでは前室長 L_1 一定(0.667 m)の条件において薬室長 L_2 を変化させ、爆風圧に対する全長 L($=L_1+L_2$)と薬室径(D_2)の比(L/D_2)を検討する。EMX2 の薬量 5.318 kg の爆発生成ガス相当の高エネルギー部を火薬庫内に用意する。なお、頂部長さ T は薬室長 L_2 に応じて変化する。本数値解析は R03 同様、爆発後に火薬庫などが変形しない剛体モデルを採用した。

表 6-3 計算条件

L/D_2	薬量 m [kg]	薬室長 <i>L</i> ₂ [m]	前室長 <i>L</i> ₁ [m]	全長 <i>L</i> [m]	薬室の断面積 S ₂ [m ²]	前室の断面積 S ₁ [m²]	備考	
3	. 03	1 267		2.024		0.361*	検証を兼ねる***	
3		1.367		2.034		0.0226**		
9	5.318	5.435	$0.667^{[6]}$	C 102	6.102	0.361***	0.361*	検証を兼ねる****
9	3.316	3.433	0.007[8]	0.102	0.301	0.0226**		
40		26.453		27.120		0.361*		
40		20.433		27.120		0.0226**		

- * 直径 0.678 m の円
- ** 直径 0.170 m の円
- *** 平成 28 年度爆発影響低減化技術基準検討報告書[2]の野外実験の条件と同等
- **** 平成 29 年度爆発影響低減化技術基準検討報告書[3]の野外実験の条件と同等

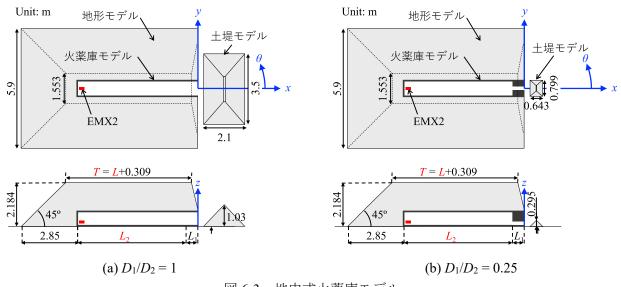


図 6-3 地中式火薬庫モデル

図 6-4 は D_1/D_2 = 1 で使用した計算格子に火薬庫モデルを重ねた図である。計算格子は 50 点おきに表示しており、 $x=-16\,\mathrm{m/kg^{1/3}}$ 面上、 $y=0\,\mathrm{m/kg^{1/3}}$ 面上、 $z=0\,\mathrm{m/kg^{1/3}}$ 面上の格子をそれぞれ黒、赤、青で示した。地中式火薬庫モデルは左右対称のため 1/2 系を計算領域全体とした。本解析では薬量 5.318 kg であるから 1 $\mathrm{m/kg^{1/3}}$ は 1.75 m に相当し、そこに配置する格子点を約 70 点以上かつ前室直径に 8 点以上とするため、 $D_1/D_2=1$ では格子幅 $0.025\,\mathrm{m}$ 、 $D_1/D_2=0.25$ では格子幅 $0.02\,\mathrm{m}$ として解析を行った。具体的には、地表面近傍で保安距離の検討で重要な地表面付近 $-16 \le x\,\mathrm{[m/kg^{1/3}]} \le 25$ 、 $0 \le y\,\mathrm{[m/kg^{1/3}]} \le 16$ 、 $0 \le z\,\mathrm{[m/kg^{1/3}]} \le 2.5$ は等間隔直交格子とし、それよりも外側は格子幅を大きくして計算コストを削減した。図 6-4(b)に示すように+x 軸(出口方向)を 0° として方位角 θ を定義する。野外実験と同様に $1\,\mathrm{m}$ 高さにおいて最大過圧分布を評価する。なお、格子幅から丸め誤差が存在し、表 6-3 の数字を厳密に再現できず、最大で格子幅の半分の誤差がある。

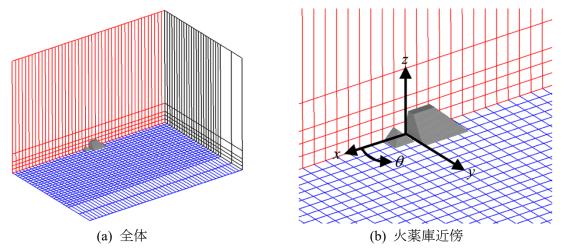


図 6-4 $D_1/D_2=1$ で使用した計算格子(50 点おきに表示、x 軸方向 3101 点、y 軸方向 1201 点、z 軸方向 235 点)

6.4 結果

6.4.1 野外実験(平成 30 年度火薬類保安技術実験($L/D_2=3$ 、 $D_1/D_2=1$)と平成 30 年度 火薬類保安技術実験($L/D_2=9$ 、 $D_1/D_2=1$)との比較

野外実験と数値解析の違いは火薬庫破壊の有無と地形形状であり、剛体壁を使用する数値解析において野外実験で得られた爆風圧を再現できるか検討する。図 6-5 に本数値解析 (CFD) と野外実験の比較として 0°、60°、90°、120°、180° 方向の最大過圧分布を示した。図 6-5 の 180° 方向は線の左端まで地形モデルが配置されており、それ以降のデータを示した。

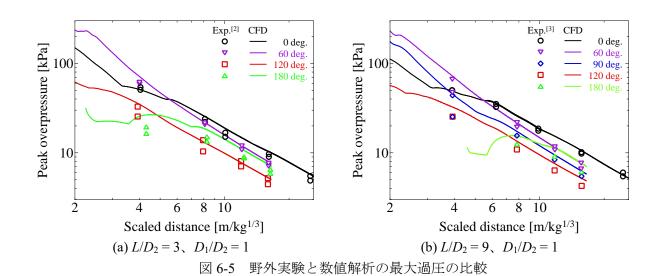
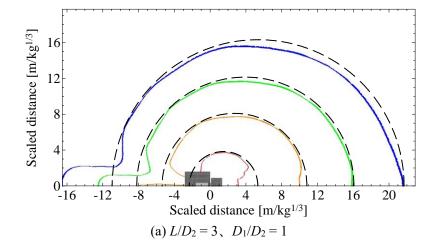



図 6-5 は野外実験と数値解析の最大過圧の比較であり、プロットが実験、実線が数値解析結果である。 図 6-5a の 0°、60°、120°、図 6-5b の 0°、60°、90° についてはプロットと同等な爆風圧が広範囲、全ての角度において得られていることが確認できた。実験では地中式火薬庫を模擬した金属鋼管や大型土のうで作成した地形モデルが破壊された影響か、数値計算では火薬庫から見て後方、特に図 6-5a の 180° と図 6-5b の 120° と 180° の結果が若干過大評価となった。爆風圧が過大評価する点においては、より安全側に保安距離を検討することになるため、対象の地中式火薬庫については数値解析によって適切に爆風圧を評価できると考える。

破線:数値解析から得られる円

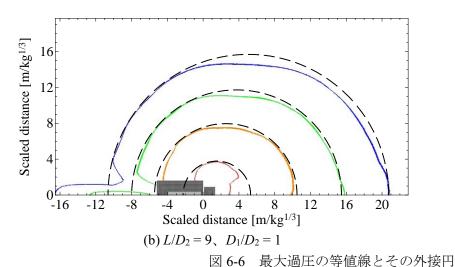


図 6-6 は 4 つの最大過圧の等値線とその外接円である。値として EMX2 の基準爆風圧の数値解析において薬量換算距離 K=4、8、12、16 で得られた最大過圧 $60.81\,\mathrm{kPa}$ 、18.83 kPa 、10.47 kPa 、7.06 $\mathrm{kPa}^{[6]}$ を採用し、それぞれ赤、橙、緑、青実線で示した。なお外接円の描写の際には 180° における爆風の集合に伴う最大過圧上昇によって形成される飛び地の等値線の影響は無視した。

数値解析や実験で詳細に爆風の角度指向性を取得したとしても火薬類取締法に保安距離として規定する際にはできる限り単純化することが望ましい。そこで、過去の報告書 $^{[4,6]}$ と同様に、最大過圧の等値線を中心が移動する円と仮定し、等値線の外接円を黒破線で示した。その中心 C と半径 R を表 6-4 にまとめ、図 6-7 に図示した。これより中心 C と半径 R は基準爆風圧の換算距離 K に対して原点を通る直線として近似できることを確認した。

表 6-4 最大過圧の等値線の半径 R と中心 C (単位は $m/kg^{1/3}$)

基準爆風圧の 換算距離 K	L/D_2 D_1/D	,	$L/D_2 = 9,$ $D_1/D_2 = 1$		
投异 μ μ Λ	R	C	R	C	
4	3.83	1.50	3.78	1.53	
8	8.09	2.72	7.96	2.53	
12	12.14	3.93	11.73	3.74	
16	16.31	5.36	15.69	5.06	

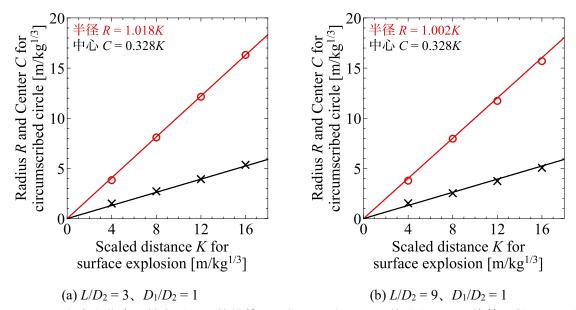
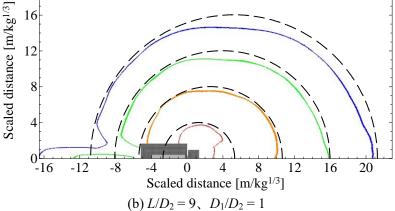


図 6-7 地中式火薬庫の最大過圧の等値線の半径 R と中心 C と基準爆風圧の換算距離 K の関係

16



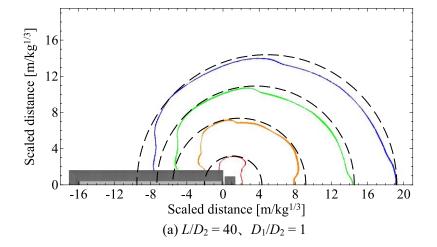

図 6-8 最大過圧の等値線と近似線から得られる円

表 6-4 の半径 R と中心 C は数値解析から得られた外接円の値であるが、さらなる単純化のために図 6-7 の近似線を用いる。それによって外接円を書き換えると図 6-8 の円となり、数値解析の等値線の外側に描写され、保安距離の過小評価がなく適切に描写できた。次の項ではその他の計算条件に対して以下の検討を行う。

- ・数値解析結果から等値線の外接円の半径 R と中心 C を求める。
- ・外接円の半径 R と中心 C に対して直線近似を行う。
- ・近似線から得られた外接円の半径 R と中心 C に対して、初期条件依存性(L/D_2 と D_1/D_2)を検討し任意形状の地中式火薬庫の保安距離を表現する円を取得する。

6.4.2 最大過圧の等値線分布

図 6-9 は(a) $L/D_2 = 40$ 、 $D_1/D_2 = 1$ 、(b) $L/D_2 = 3$ 、 $D_1/D_2 = 0.25$ 、(c) $L/D_2 = 9$ 、 $D_1/D_2 = 0.25$ 、 $L/D_2 = 40$ 、 $D_1/D_2 = 0.25$ における等値線とその外接円である。値については図 6-8 と同様に EMX2 の基準爆風圧の数値解析 $^{[6]}$ において薬量換算距離 K=4、8、12、16 で得られた最大過圧 60.81 kPa、18.83 kPa、10.47 kPa、7.06 kPa を採用し、それぞれ赤、橙、緑、青実線で示した。等値線を中心が移動する円と仮定し、等値線の外接円を黒破線で示した。その半径 R と中心 C を表 6-5 にまとめ、図 6-10 に示した。図 6-10 の近似線によって外接円を書き換えると図 6-11 の円となり、数値解析の等値線の外側に描写され、保安距離の過小評価がなく適切に描写できた。

基準爆風圧	薬量換算距離
60.81 kPa	4
18.83 kPa	8
10.47 kPa	12
7.06 k Pa	16

破線:数値解析から得られる円

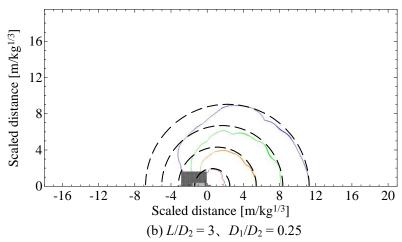
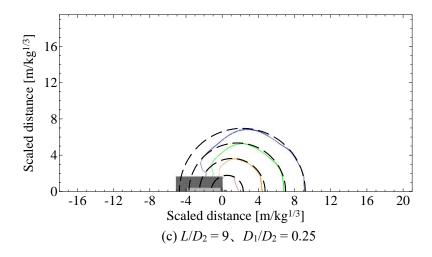



図 6-9 最大過圧の等値線とその外接円

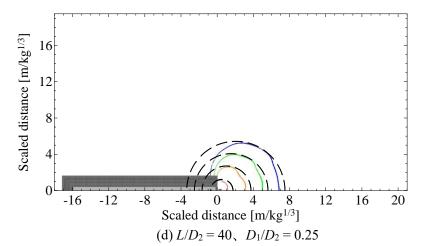


図 6-9 最大過圧の等値線とその外接円(つづき)

表 6-5 最大過圧の等値線の半径 R と中心 C (単位は $m/kg^{1/3}$)

基準爆風圧の 換算距離 K	$L/D_2 = D_1/D_2$,	$L/D_2 = D_1/D_2$	= 3, = 0.25	$L/D_2 = D_1/D_2$,	$L/D_2 = D_1/D_2$	= 40, = 0.25
投异此雁Λ	R	C	R	C	R	C	R	C
4	3.18	1.12	1.94	0.58	1.77	0.56	1.24	0.52
8	7.36	1.80	4.31	1.11	3.63	1.11	2.70	1.03
12	10.92	3.61	6.69	1.67	5.34	1.67	4.06	1.55
16	14.38	4.85	9.04	2.23	6.96	2.23	5.43	2.06

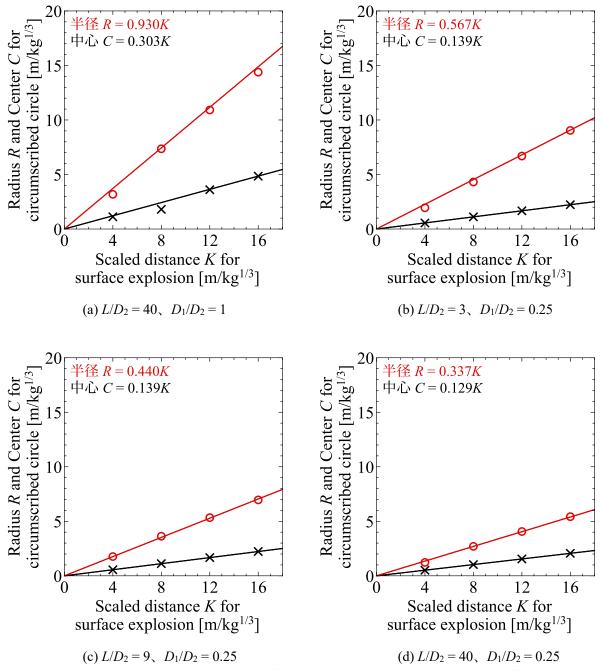
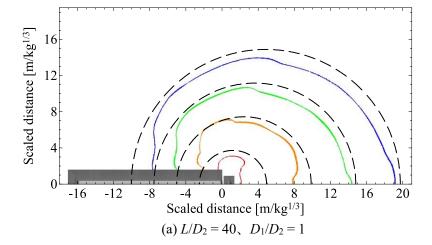
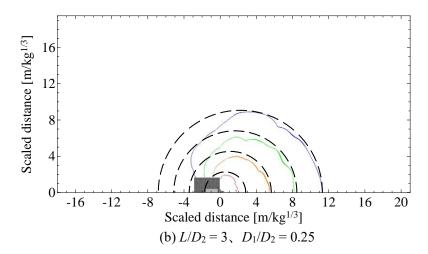




図 6-10 地中式火薬庫の最大過圧の等値線の半径 R と中心 C と基準爆風圧の換算距離 K の関係

基準爆風圧	薬量換算距離
60.81 kPa	4
18.83 kPa	8
10.47 kPa	12
7.06 kPa	16

破線:近似線から得られる円

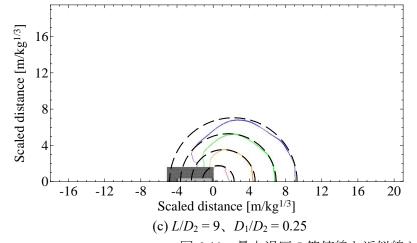


図 6-11 最大過圧の等値線と近似線から得られる円

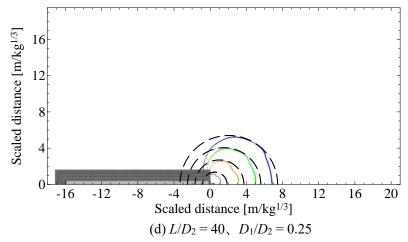


図 6-11 最大過圧の等値線と近似線から得られる円(つづき)

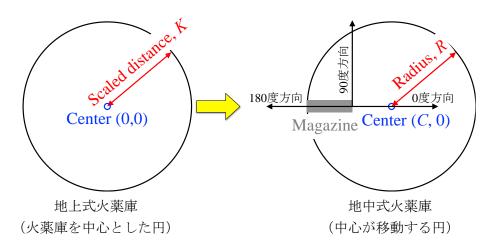


図 6-12 地上式火薬庫の薬量換算距離 K を用いた保安距離の地中式火薬庫への置き換え

6.4.3 L/D_2 と D_1/D_2 を考慮した保安距離

図 6-8 や図 6-11 に示すように、地中式火薬庫の保安距離として中心 C が移動する半径 R の円として表現することができる。図 6-7 と図 6-10 から中心 C と半径 R の近似線は直線で評価することができ、その勾配 $F_{\rm C}$ 、 $F_{\rm R}$ を用いて式(9)、式(10)のように書くことができる。

$$C(L/D_2, D_1/D_2) = F_C(L/D_2, D_1/D_2) \times K$$

$$R(L/D_2, D_1/D_2) = F_R(L/D_2, D_1/D_2) \times K$$
(9)

図 6-12 のように地上式火薬庫の薬量換算距離 K を用いた第一種、第二種、第三種、第四種保安物件までの保安距離 K=16、14、8、5 を式(9)、式(10)に代入することで保安距離を示す円の中心 C と半径 R を求めることができる。ここでは勾配 F_C 、 F_R に対する L/D_2 と D_1/D_2 の依存性を評価する。

6.4.3.1 中心 C の近似直線の勾配 Fc

最大過圧の等値線を近似する円の中心 C の近似直線の勾配 F_C に対する L/D_2 と D_1/D_2 の依存性を検討するため、 $D_1/D_2 = 0.491$ [6] と図 6-7 と図 6-10 の中心 C の近似線の勾配 F_C を図 6-13 に整理した。

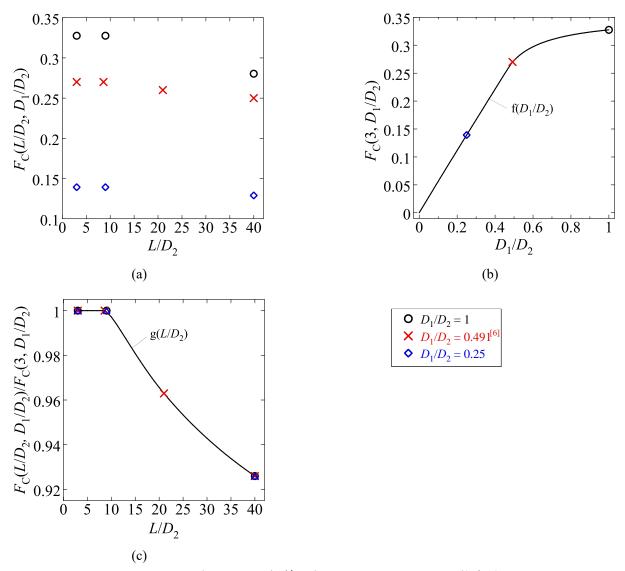


図 6-13 中心 C の近似線の勾配 F_C の L/D_2 と D_1/D_2 依存性

図 6-13a に D_1/D_2 =0.491^[6]、図 6-7、図 6-10、の中心 C の近似線の勾配 $F_C(L/D_2,D_1/D_2)$ を整理した。図 6-13b は L/D_2 = 3 における中心 C の近似直線の勾配 $F_C(3,D_1/D_2)$ であり、 D_1/D_2 の減少に伴って小さくなり、 D_1/D_2 =0 では爆風は火薬庫から外に放出されない(理想的には保安距離は零になる)と仮定した際の近似線 $f(D_1/D_2)$ を示した。また図 6-13c は無次元勾配 $F_C(L/D_2,D_1/D_2)/F_C(3,D_1/D_2)$ であり、 D_1/D_2 =0.491の近似線 $g(L/D_2)$ 上にその他の D_1/D_2 条件の値がプロットされる。表 6-6、表 6-7 に $g(D_1/D_2)$ と $f(L/D_2)$ の具体的な値を示す。

表 6-6 f(D1/D2)分布

D_1/D_2	$f(D_1/D_2)$
1	0.32756
0.99	0.32721
0.98	0.32686
0.97	0.32650
0.96	0.32612
0.95	0.32574
0.94	0.32534
0.93	0.32493
0.92	0.32451
0.91	0.32408
0.9	0.32363
0.89	0.32316
0.88	0.32269
0.87	0.32219
0.86	0.32168
0.85	0.32115
0.84	0.32060
0.83	0.32003
0.82	0.31944
0.81	0.31883
0.8	0.31820
0.79	0.31754
0.78	0.31686
0.77	0.31614
0.76	0.31540
0.75	0.31463

衣 6-6	$I(D_1/D_2)$ 万个
D_1/D_2	$f(D_1/D_2)$
0.74	0.31382
0.73	0.31298
0.72	0.31210
0.71	0.31118
0.7	0.31022
0.69	0.30921
0.68	0.30814
0.67	0.30703
0.66	0.30586
0.65	0.30462
0.64	0.30332
0.63	0.30195
0.62	0.30049
0.61	0.29895
0.6	0.29731
0.59	0.29557
0.58	0.29372
0.57	0.29173
0.56	0.28961
0.55	0.28734
0.54	0.28489
0.53	0.28225
0.52	0.27940
0.51	0.27630
0.5	0.27292
0.49	0.26920

D_1/D_2	$f(D_1/D_2)$
0.48	0.26446
0.47	0.25930
0.46	0.25399
0.45	0.24861
0.44	0.24320
0.43	0.23777
0.42	0.23232
0.41	0.22687
0.4	0.22141
0.39	0.21594
0.38	0.21047
0.37	0.20500
0.36	0.19952
0.35	0.19405
0.34	0.18857
0.33	0.18309
0.32	0.17761
0.31	0.17213
0.3	0.16665
0.29	0.16116
0.28	0.15568
0.27	0.15020
0.26	0.14471
0.25	0.13923

表 6-7 g(L/D2)分布

L/D_2	$g(L/D_2)$
3	1.0000
4	1.0000
5	1.0000
6	1.0000
7	1.0000
8	1.0000
9	1.0000
10	0.99845
11	0.99552
12	0.99211
13	0.98856
14	0.98499
15	0.98148

$g(L/D_2)$
0.97806
0.97476
0.97159
0.96857
0.96569
0.96296
0.96037
0.95786
0.95545
0.95312
0.95087
0.94870
0.94660

L/D_2	$g(L/D_2)$
29	0.94456
30	0.94260
31	0.94069
32	0.93885
33	0.93706
34	0.93532
35	0.93364
36	0.93201
37	0.93042
38	0.92888
39	0.92738
40	0.92593

図 6-13b と図 6-13c の関係から、広範な L/D_2 、 D_1/D_2 における中心 C の近似直線の勾配 F_C は式(11)によって整理できる。

$$F_{C}(L/D_{2}, D_{1}/D_{2}) = f(D_{1}/D_{2}) \times g(L/D_{2})$$
(11)

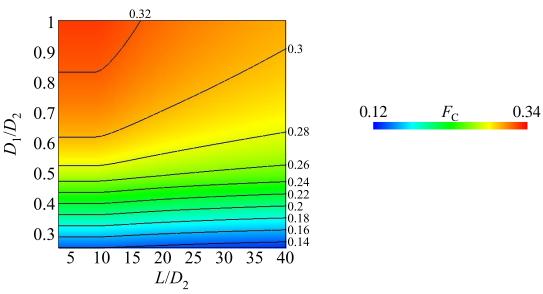


図 6-14 式(11)から求めた中心 C の近似直線の勾配 $F_{\rm C}$ 分布(枠外に等値線の値)

図 6-14 に表 6-6、表 6-7、式(11)から求めた中心 C の近似直線の勾配 $F_{\rm C}$ の等値線図で示した。図 6-16 の数値データを表 6-8 にまとめた。 D_1/D_2 が小さいほど、 L/D_2 が大きいほど $F_{\rm C}$ が小さくなることがわかる。 $F_{\rm C}$ に対して地上式火薬庫の薬量換算距離 K=16、14、8、5 を乗ずれば、広範な L/D_2 、 D_1/D_2 に対する地中式火薬庫の第一種、第二種、第三種、第四種保安物件の保安距離を描写する円の中心 C を算出できる。

表 6-8 図 6-14 の Fc(L/D2, D1/D2)の数値

D /D			<u> </u>		$\frac{4 \vee FC(L)}{L}$	$\overline{D_2}$				
D_1/D_2	3	4	5	6	7	8	9	10	11	12
1	0.32756	0.32756	0.32756	0.32756	0.32756	0.32756	0.32756	0.32705	0.32609	0.32498
0.99	0.32721	0.32721	0.32721	0.32721	0.32721	0.32721	0.32721	0.32670	0.32574	0.32463
0.98	0.32686	0.32686	0.32686	0.32686	0.32686	0.32686	0.32686	0.32635	0.32540	0.32428
0.97	0.32650	0.32650	0.32650	0.32650	0.32650	0.32650	0.32650	0.32599	0.32504	0.32392
0.96	0.32612	0.32612	0.32612	0.32612	0.32612	0.32612	0.32612	0.32561	0.32466	0.32355
0.95	0.32574	0.32574	0.32574	0.32574	0.32574	0.32574	0.32574	0.32524	0.32428	0.32317
0.94	0.32534	0.32534	0.32534	0.32534	0.32534	0.32534	0.32534	0.32484	0.32388	0.32277
0.93	0.32493	0.32493	0.32493	0.32493	0.32493	0.32493	0.32493	0.32443	0.32347	0.32237
0.92	0.32451	0.32451	0.32451	0.32451	0.32451	0.32451	0.32451	0.32401	0.32306	0.32195
0.91	0.32408	0.32408	0.32408	0.32408	0.32408	0.32408	0.32408	0.32358	0.32263	0.32152
0.90	0.32363	0.32363	0.32363	0.32363	0.32363	0.32363	0.32363	0.32313	0.32218	0.32108
0.89	0.32316	0.32316	0.32316	0.32316	0.32316	0.32316	0.32316	0.32266	0.32171	0.32061
0.88	0.32269	0.32269	0.32269	0.32269	0.32269	0.32269	0.32269	0.32219	0.32124	0.32014
0.87	0.32219	0.32219	0.32219	0.32219	0.32219	0.32219	0.32219	0.32169	0.32075	0.31965
0.86	0.32168	0.32168	0.32168	0.32168	0.32168	0.32168	0.32168	0.32118	0.32024	0.31914
0.85	0.32115	0.32115	0.32115	0.32115	0.32115	0.32115	0.32115	0.32065	0.31971	0.31862
0.84	0.32060	0.32060	0.32060	0.32060	0.32060	0.32060	0.32060	0.32010	0.31916	0.31807
0.83	0.32003	0.32003	0.32003	0.32003	0.32003	0.32003	0.32003	0.31953	0.31860	0.31750
0.82	0.31944	0.31944	0.31944	0.31944	0.31944	0.31944	0.31944	0.31894	0.31801	0.31692
0.81	0.31883	0.31883	0.31883	0.31883	0.31883	0.31883	0.31883	0.31834	0.31740	0.31631
0.80	0.31820	0.31820	0.31820	0.31820	0.31820	0.31820	0.31820	0.31771	0.31677	0.31569
0.79	0.31754	0.31754	0.31754	0.31754	0.31754	0.31754	0.31754	0.31705	0.31612	0.31503
0.78	0.31686	0.31686	0.31686	0.31686	0.31686	0.31686	0.31686	0.31637	0.31544	0.31436
0.77	0.31614	0.31614	0.31614	0.31614	0.31614	0.31614	0.31614	0.31565	0.31472	0.31365
0.76	0.31540	0.31540	0.31540	0.31540	0.31540	0.31540	0.31540	0.31491	0.31399	0.31291
0.75	0.31463	0.31463	0.31463	0.31463	0.31463	0.31463	0.31463	0.31414	0.31322	0.31215
0.74	0.31382	0.31382	0.31382	0.31382	0.31382	0.31382	0.31382	0.31333	0.31241	0.31134
0.73	0.31298	0.31298	0.31298	0.31298	0.31298	0.31298	0.31298	0.31249	0.31158	0.31051
0.72	0.31210	0.31210	0.31210	0.31210	0.31210	0.31210	0.31210	0.31162	0.31070	0.30964
0.71	0.31118	0.31118	0.31118	0.31118	0.31118	0.31118	0.31118	0.31070	0.30979	0.30872
0.70	0.31022	0.31022	0.31022	0.31022	0.31022	0.31022	0.31022	0.30974	0.30883	0.30777
0.69	0.30921	0.30921	0.30921	0.30921	0.30921	0.30921	0.30921	0.30873	0.30782	0.30677
0.68	0.30814	0.30814	0.30814	0.30814	0.30814	0.30814	0.30814	0.30766	0.30676	0.30571
0.67	0.30703	0.30703	0.30703	0.30703	0.30703	0.30703	0.30703	0.30655	0.30565	0.30461
0.66	0.30586	0.30586	0.30586	0.30586	0.30586	0.30586	0.30586	0.30539	0.30449	0.30345
0.65	0.30462	0.30462	0.30462	0.30462	0.30462	0.30462	0.30462	0.30415	0.30326	0.30222
0.64	0.30332	0.30332	0.30332	0.30332	0.30332	0.30332	0.30332	0.30285	0.30196	0.30093
0.63	0.30195	0.30195	0.30195	0.30195	0.30195	0.30195	0.30195	0.30148	0.30060	0.29957

表 6-8 図 6-14 の $F_{\mathbb{C}}(L/D_2, D_1/D_2)$ の数値(つづき)

D /D			≪ 0-0 区	• •	$\frac{\mathbf{L}}{\mathbf{L}}$		1 (')')	,		
D_1/D_2	3	4	5	6	7	8	9	10	11	12
0.62	0.30049	0.30049	0.30049	0.30049	0.30049	0.30049	0.30049	0.30002	0.29914	0.29812
0.61	0.29895	0.29895	0.29895	0.29895	0.29895	0.29895	0.29895	0.29849	0.29761	0.29659
0.60	0.29731	0.29731	0.29731	0.29731	0.29731	0.29731	0.29731	0.29685	0.29598	0.29496
0.59	0.29557	0.29557	0.29557	0.29557	0.29557	0.29557	0.29557	0.29511	0.29425	0.29324
0.58	0.29372	0.29372	0.29372	0.29372	0.29372	0.29372	0.29372	0.29326	0.29240	0.29140
0.57	0.29173	0.29173	0.29173	0.29173	0.29173	0.29173	0.29173	0.29128	0.29042	0.28943
0.56	0.28961	0.28961	0.28961	0.28961	0.28961	0.28961	0.28961	0.28916	0.28831	0.28732
0.55	0.28734	0.28734	0.28734	0.28734	0.28734	0.28734	0.28734	0.28689	0.28605	0.28507
0.54	0.28489	0.28489	0.28489	0.28489	0.28489	0.28489	0.28489	0.28445	0.28361	0.28264
0.53	0.28225	0.28225	0.28225	0.28225	0.28225	0.28225	0.28225	0.28181	0.28099	0.28002
0.52	0.27940	0.27940	0.27940	0.27940	0.27940	0.27940	0.27940	0.27897	0.27815	0.27720
0.51	0.27630	0.27630	0.27630	0.27630	0.27630	0.27630	0.27630	0.27587	0.27506	0.27412
0.50	0.27292	0.27292	0.27292	0.27292	0.27292	0.27292	0.27292	0.27250	0.27170	0.27077
0.49	0.26920	0.26920	0.26920	0.26920	0.26920	0.26920	0.26920	0.26878	0.26799	0.26708
0.48	0.26446	0.26446	0.26446	0.26446	0.26446	0.26446	0.26446	0.26405	0.26328	0.26237
0.47	0.25930	0.25930	0.25930	0.25930	0.25930	0.25930	0.25930	0.25890	0.25814	0.25725
0.46	0.25399	0.25399	0.25399	0.25399	0.25399	0.25399	0.25399	0.25360	0.25285	0.25199
0.45	0.24861	0.24861	0.24861	0.24861	0.24861	0.24861	0.24861	0.24822	0.24750	0.24665
0.44	0.24320	0.24320	0.24320	0.24320	0.24320	0.24320	0.24320	0.24282	0.24211	0.24128
0.43	0.23777	0.23777	0.23777	0.23777	0.23777	0.23777	0.23777	0.23740	0.23670	0.23589
0.42	0.23232	0.23232	0.23232	0.23232	0.23232	0.23232	0.23232	0.23196	0.23128	0.23049
0.41	0.22687	0.22687	0.22687	0.22687	0.22687	0.22687	0.22687	0.22652	0.22585	0.22508
0.40	0.22141	0.22141	0.22141	0.22141	0.22141	0.22141	0.22141	0.22107	0.22042	0.21966
0.39	0.21594	0.21594	0.21594	0.21594	0.21594	0.21594	0.21594	0.21561	0.21497	0.21424
0.38	0.21047	0.21047	0.21047	0.21047	0.21047	0.21047	0.21047	0.21014	0.20953	0.20881
0.37	0.20500	0.20500	0.20500	0.20500	0.20500	0.20500	0.20500	0.20468	0.20408	0.20338
0.36	0.19952	0.19952	0.19952	0.19952	0.19952	0.19952	0.19952	0.19921	0.19863	0.19795
0.35	0.19405	0.19405	0.19405	0.19405	0.19405	0.19405	0.19405	0.19375	0.19318	0.19252
0.34	0.18857	0.18857	0.18857	0.18857	0.18857	0.18857	0.18857	0.18828	0.18773	0.18708
0.33	0.18309	0.18309	0.18309	0.18309	0.18309	0.18309	0.18309	0.18281	0.18227	0.18165
0.32	0.17761	0.17761	0.17761	0.17761	0.17761	0.17761	0.17761	0.17733	0.17681	0.17621
0.31	0.17213	0.17213	0.17213	0.17213	0.17213	0.17213	0.17213	0.17186	0.17136	0.17077
0.30	0.16665	0.16665	0.16665	0.16665	0.16665	0.16665	0.16665	0.16639	0.16590	0.16534
0.29	0.16116	0.16116	0.16116	0.16116	0.16116	0.16116	0.16116	0.16091	0.16044	0.15989
0.28	0.15568	0.15568	0.15568	0.15568	0.15568	0.15568	0.15568	0.15544	0.15498	0.15445
0.27	0.15020	0.15020	0.15020	0.15020	0.15020	0.15020	0.15020	0.14997	0.14953	0.14901
0.26	0.14471	0.14471	0.14471	0.14471	0.14471	0.14471	0.14471	0.14449	0.14406	0.14357
0.25	0.13923	0.13923	0.13923	0.13923	0.13923	0.13923	0.13923	0.13901	0.13861	0.13813

表 6-8 図 6-14 の $F_{\mathbb{C}}(L/D_2, D_1/D_2)$ の数値(つづき)

			<u> </u>	-	L/L		1 (1)100	<u></u>		
D_1/D_2	13	14	15	16	17	18	19	20	21	22
1	0.32381	0.32264	0.32149	0.32037	0.31929	0.31825	0.31726	0.31632	0.31543	0.31458
0.99	0.32347	0.32230	0.32115	0.32003	0.31895	0.31791	0.31693	0.31598	0.31509	0.31424
0.98	0.32312	0.32195	0.32081	0.31969	0.31861	0.31757	0.31659	0.31565	0.31475	0.31391
0.97	0.32276	0.32160	0.32045	0.31934	0.31826	0.31722	0.31624	0.31530	0.31441	0.31356
0.96	0.32239	0.32122	0.32008	0.31896	0.31789	0.31685	0.31587	0.31493	0.31404	0.31320
0.95	0.32201	0.32085	0.31971	0.31859	0.31752	0.31649	0.31550	0.31456	0.31367	0.31283
0.94	0.32162	0.32046	0.31931	0.31820	0.31713	0.31610	0.31511	0.31418	0.31329	0.31245
0.93	0.32121	0.32005	0.31891	0.31780	0.31673	0.31570	0.31472	0.31378	0.31289	0.31205
0.92	0.32080	0.31964	0.31850	0.31739	0.31632	0.31529	0.31431	0.31338	0.31249	0.31165
0.91	0.32037	0.31922	0.31808	0.31697	0.31590	0.31487	0.31389	0.31296	0.31208	0.31124
0.90	0.31993	0.31877	0.31764	0.31653	0.31546	0.31444	0.31346	0.31253	0.31164	0.31080
0.89	0.31946	0.31831	0.31718	0.31607	0.31500	0.31398	0.31300	0.31207	0.31119	0.31035
0.88	0.31900	0.31785	0.31671	0.31561	0.31455	0.31352	0.31255	0.31162	0.31074	0.30990
0.87	0.31850	0.31735	0.31622	0.31512	0.31406	0.31304	0.31206	0.31114	0.31026	0.30942
0.86	0.31800	0.31685	0.31572	0.31462	0.31356	0.31254	0.31157	0.31064	0.30976	0.30893
0.85	0.31748	0.31633	0.31520	0.31410	0.31304	0.31203	0.31106	0.31013	0.30925	0.30842
0.84	0.31693	0.31579	0.31466	0.31357	0.31251	0.31149	0.31052	0.30960	0.30872	0.30789
0.83	0.31637	0.31523	0.31410	0.31301	0.31195	0.31094	0.30997	0.30905	0.30818	0.30735
0.82	0.31579	0.31465	0.31352	0.31243	0.31138	0.31036	0.30940	0.30848	0.30761	0.30678
0.81	0.31518	0.31404	0.31293	0.31183	0.31078	0.30977	0.30881	0.30789	0.30702	0.30619
0.80	0.31456	0.31342	0.31231	0.31122	0.31017	0.30916	0.30820	0.30728	0.30641	0.30559
0.79	0.31391	0.31277	0.31166	0.31057	0.30953	0.30852	0.30756	0.30665	0.30578	0.30496
0.78	0.31324	0.31210	0.31099	0.30991	0.30886	0.30786	0.30690	0.30599	0.30512	0.30430
0.77	0.31252	0.31139	0.31029	0.30920	0.30816	0.30716	0.30620	0.30529	0.30443	0.30361
0.76	0.31179	0.31067	0.30956	0.30848	0.30744	0.30644	0.30549	0.30458	0.30372	0.30290
0.75	0.31103	0.30991	0.30880	0.30773	0.30669	0.30569	0.30474	0.30384	0.30298	0.30216
0.74	0.31023	0.30911	0.30801	0.30693	0.30590	0.30490	0.30396	0.30305	0.30220	0.30138
0.73	0.30940	0.30828	0.30718	0.30611	0.30508	0.30409	0.30314	0.30224	0.30139	0.30058
0.72	0.30853	0.30742	0.30632	0.30525	0.30422	0.30323	0.30229	0.30139	0.30054	0.29973
0.71	0.30762	0.30651	0.30542	0.30435	0.30333	0.30234	0.30140	0.30050	0.29965	0.29885
0.70	0.30667	0.30556	0.30447	0.30341	0.30239	0.30141	0.30047	0.29958	0.29873	0.29793
0.69	0.30567	0.30457	0.30348	0.30243	0.30141	0.30043	0.29949	0.29860	0.29776	0.29696
0.68	0.30461	0.30351	0.30243	0.30138	0.30036	0.29939	0.29846	0.29757	0.29673	0.29593
0.67	0.30352	0.30242	0.30134	0.30029	0.29928	0.29831	0.29738	0.29650	0.29566	0.29486
0.66	0.30236	0.30127	0.30020	0.29915	0.29814	0.29717	0.29625	0.29537	0.29453	0.29374
0.65	0.30114	0.30005	0.29898	0.29794	0.29693	0.29597	0.29505	0.29417	0.29334	0.29255
0.64	0.29985	0.29877	0.29770	0.29667	0.29566	0.29470	0.29379	0.29291	0.29209	0.29130
0.63	0.29850	0.29742	0.29636	0.29533	0.29433	0.29337	0.29246	0.29159	0.29077	0.28998

表 6-8 図 6-14 の $F_{\mathbb{C}}(L/D_2, D_1/D_2)$ の数値(つづき)

D /D			≪ 0-0 区	• •	$\frac{\mathbf{L}}{\mathbf{L}}$	D_2) $orall$ D_2		,		
D_1/D_2	13	14	15	16	17	18	19	20	21	22
0.62	0.29705	0.29598	0.29492	0.29390	0.29291	0.29195	0.29105	0.29018	0.28936	0.28858
0.61	0.29553	0.29446	0.29341	0.29239	0.29140	0.29046	0.28955	0.28869	0.28788	0.28710
0.60	0.29391	0.29285	0.29180	0.29079	0.28981	0.28886	0.28797	0.28711	0.28630	0.28553
0.59	0.29219	0.29113	0.29010	0.28909	0.28811	0.28717	0.28628	0.28543	0.28462	0.28386
0.58	0.29036	0.28931	0.28828	0.28728	0.28631	0.28538	0.28449	0.28364	0.28284	0.28208
0.57	0.28839	0.28735	0.28633	0.28533	0.28437	0.28344	0.28256	0.28172	0.28092	0.28017
0.56	0.28630	0.28526	0.28425	0.28326	0.28230	0.28138	0.28051	0.27967	0.27888	0.27813
0.55	0.28405	0.28303	0.28202	0.28104	0.28009	0.27918	0.27831	0.27748	0.27670	0.27595
0.54	0.28163	0.28061	0.27961	0.27864	0.27770	0.27680	0.27594	0.27512	0.27434	0.27360
0.53	0.27902	0.27801	0.27702	0.27606	0.27513	0.27423	0.27338	0.27257	0.27180	0.27106
0.52	0.27620	0.27521	0.27423	0.27327	0.27235	0.27146	0.27062	0.26981	0.26905	0.26833
0.51	0.27314	0.27215	0.27118	0.27024	0.26933	0.26845	0.26762	0.26682	0.26607	0.26535
0.50	0.26980	0.26882	0.26787	0.26693	0.26603	0.26517	0.26434	0.26356	0.26281	0.26210
0.49	0.26612	0.26516	0.26421	0.26329	0.26241	0.26155	0.26074	0.25996	0.25923	0.25853
0.48	0.26143	0.26049	0.25956	0.25866	0.25779	0.25695	0.25615	0.25539	0.25466	0.25398
0.47	0.25633	0.25541	0.25450	0.25361	0.25276	0.25193	0.25115	0.25040	0.24970	0.24902
0.46	0.25108	0.25018	0.24929	0.24842	0.24758	0.24677	0.24601	0.24528	0.24458	0.24392
0.45	0.24577	0.24488	0.24401	0.24316	0.24234	0.24155	0.24080	0.24008	0.23940	0.23876
0.44	0.24042	0.23955	0.23870	0.23786	0.23706	0.23629	0.23556	0.23486	0.23419	0.23356
0.43	0.23505	0.23420	0.23337	0.23255	0.23177	0.23101	0.23030	0.22961	0.22896	0.22835
0.42	0.22966	0.22883	0.22802	0.22722	0.22646	0.22572	0.22502	0.22435	0.22371	0.22311
0.41	0.22427	0.22346	0.22267	0.22189	0.22114	0.22042	0.21974	0.21909	0.21847	0.21788
0.40	0.21888	0.21809	0.21731	0.21655	0.21582	0.21512	0.21445	0.21381	0.21321	0.21264
0.39	0.21347	0.21270	0.21194	0.21120	0.21049	0.20981	0.20915	0.20853	0.20794	0.20738
0.38	0.20806	0.20731	0.20657	0.20585	0.20516	0.20449	0.20385	0.20325	0.20267	0.20213
0.37	0.20265	0.20192	0.20120	0.20050	0.19983	0.19918	0.19856	0.19797	0.19741	0.19688
0.36	0.19724	0.19653	0.19582	0.19514	0.19448	0.19385	0.19325	0.19267	0.19213	0.19161
0.35	0.19183	0.19114	0.19046	0.18979	0.18915	0.18854	0.18795	0.18739	0.18686	0.18636
0.34	0.18641	0.18574	0.18508	0.18443	0.18381	0.18321	0.18264	0.18210	0.18159	0.18110
0.33	0.18100	0.18034	0.17970	0.17907	0.17847	0.17789	0.17734	0.17681	0.17631	0.17583
0.32	0.17558	0.17494	0.17432	0.17371	0.17313	0.17256	0.17203	0.17152	0.17103	0.17057
0.31	0.17016	0.16955	0.16894	0.16835	0.16779	0.16724	0.16672	0.16622	0.16575	0.16531
0.30	0.16474	0.16415	0.16356	0.16299	0.16244	0.16192	0.16141	0.16093	0.16048	0.16005
0.29	0.15932	0.15874	0.15818	0.15762	0.15709	0.15658	0.15609	0.15563	0.15519	0.15477
0.28	0.15390	0.15334	0.15280	0.15226	0.15175	0.15126	0.15079	0.15034	0.14991	0.14951
0.27	0.14848	0.14795	0.14742	0.14690	0.14641	0.14593	0.14548	0.14505	0.14464	0.14425
0.26	0.14305	0.14254	0.14203	0.14154	0.14106	0.14060	0.14016	0.13974	0.13935	0.13898
0.25	0.13764	0.13714	0.13665	0.13618	0.13572	0.13527	0.13485	0.13445	0.13407	0.13371

表 6-8 図 6-14 の $F_{\mathbb{C}}(L/D_2, D_1/D_2)$ の数値(つづき)

			<u> </u>		L/L	/ <i>D</i> 2)♥ノ安久ル D 2		/		
D_1/D_2	23	24	25	26	27	28	29	30	31	32
1	0.31376	0.31297	0.31220	0.31147	0.31076	0.31007	0.30940	0.30876	0.30813	0.30753
0.99	0.31342	0.31263	0.31187	0.31113	0.31042	0.30974	0.30907	0.30843	0.30780	0.30720
0.98	0.31309	0.31230	0.31154	0.31080	0.31009	0.30941	0.30874	0.30810	0.30747	0.30687
0.97	0.31274	0.31195	0.31119	0.31046	0.30975	0.30906	0.30840	0.30776	0.30714	0.30653
0.96	0.31238	0.31159	0.31083	0.31010	0.30939	0.30871	0.30804	0.30740	0.30678	0.30618
0.95	0.31201	0.31123	0.31047	0.30974	0.30903	0.30835	0.30768	0.30704	0.30642	0.30582
0.94	0.31163	0.31085	0.31009	0.30936	0.30865	0.30797	0.30730	0.30667	0.30604	0.30545
0.93	0.31124	0.31045	0.30970	0.30897	0.30826	0.30758	0.30692	0.30628	0.30566	0.30506
0.92	0.31084	0.31005	0.30930	0.30857	0.30786	0.30718	0.30652	0.30588	0.30526	0.30467
0.91	0.31042	0.30964	0.30889	0.30816	0.30745	0.30677	0.30611	0.30548	0.30486	0.30426
0.90	0.30999	0.30921	0.30846	0.30773	0.30703	0.30635	0.30569	0.30505	0.30444	0.30384
0.89	0.30954	0.30876	0.30801	0.30728	0.30658	0.30590	0.30524	0.30461	0.30399	0.30340
0.88	0.30909	0.30831	0.30756	0.30684	0.30614	0.30546	0.30480	0.30417	0.30355	0.30296
0.87	0.30861	0.30784	0.30709	0.30636	0.30566	0.30499	0.30433	0.30370	0.30308	0.30249
0.86	0.30812	0.30735	0.30660	0.30588	0.30518	0.30450	0.30385	0.30322	0.30260	0.30201
0.85	0.30762	0.30684	0.30609	0.30537	0.30468	0.30400	0.30335	0.30272	0.30210	0.30151
0.84	0.30709	0.30632	0.30557	0.30485	0.30415	0.30348	0.30283	0.30220	0.30159	0.30100
0.83	0.30654	0.30577	0.30503	0.30431	0.30361	0.30294	0.30229	0.30166	0.30105	0.30046
0.82	0.30598	0.30521	0.30446	0.30375	0.30305	0.30238	0.30173	0.30110	0.30049	0.29991
0.81	0.30539	0.30463	0.30388	0.30317	0.30247	0.30180	0.30115	0.30053	0.29992	0.29933
0.80	0.30479	0.30402	0.30328	0.30257	0.30188	0.30121	0.30056	0.29994	0.29933	0.29874
0.79	0.30416	0.30339	0.30265	0.30194	0.30125	0.30058	0.29994	0.29931	0.29871	0.29812
0.78	0.30351	0.30274	0.30201	0.30129	0.30061	0.29994	0.29929	0.29867	0.29807	0.29748
0.77	0.30282	0.30206	0.30132	0.30061	0.29992	0.29926	0.29861	0.29799	0.29739	0.29681
0.76	0.30211	0.30135	0.30061	0.29990	0.29922	0.29856	0.29791	0.29730	0.29669	0.29611
0.75	0.30137	0.30061	0.29988	0.29917	0.29849	0.29783	0.29719	0.29657	0.29597	0.29539
0.74	0.30060	0.29984	0.29911	0.29840	0.29772	0.29706	0.29642	0.29581	0.29521	0.29463
0.73	0.29979	0.29904	0.29831	0.29760	0.29692	0.29627	0.29563	0.29501	0.29442	0.29384
0.72	0.29895	0.29820	0.29747	0.29677	0.29609	0.29543	0.29480	0.29419	0.29359	0.29302
0.71	0.29807	0.29732	0.29659	0.29589	0.29522	0.29456	0.29393	0.29332	0.29272	0.29215
0.70	0.29715	0.29640	0.29568	0.29498	0.29431	0.29365	0.29302	0.29241	0.29182	0.29125
0.69	0.29618	0.29543	0.29471	0.29402	0.29335	0.29270	0.29207	0.29146	0.29087	0.29030
0.68	0.29515	0.29441	0.29369	0.29300	0.29233	0.29169	0.29106	0.29045	0.28986	0.28930
0.67	0.29409	0.29335	0.29264	0.29195	0.29128	0.29063	0.29001	0.28941	0.28882	0.28826
0.66	0.29297	0.29223	0.29152	0.29083	0.29017	0.28953	0.28890	0.28830	0.28772	0.28716
0.65	0.29178	0.29105	0.29034	0.28965	0.28899	0.28835	0.28773	0.28713	0.28655	0.28599
0.64	0.29054	0.28981	0.28910	0.28842	0.28776	0.28712	0.28650	0.28591	0.28533	0.28477
0.63	0.28923	0.28850	0.28779	0.28712	0.28646	0.28583	0.28521	0.28462	0.28404	0.28349

表 6-8 図 6-14 の $F_{\mathbb{C}}(L/D_2, D_1/D_2)$ の数値(つづき)

D /D			<u> </u>	• •	$\frac{\mathbf{L}}{\mathbf{L}}$	$\overline{D_2}$ $\sqrt{D_2}$,		
D_1/D_2	23	24	25	26	27	28	29	30	31	32
0.62	0.28783	0.28710	0.28640	0.28573	0.28507	0.28444	0.28383	0.28324	0.28267	0.28212
0.61	0.28635	0.28563	0.28494	0.28426	0.28361	0.28299	0.28238	0.28179	0.28122	0.28067
0.60	0.28478	0.28406	0.28337	0.28270	0.28206	0.28143	0.28083	0.28024	0.27968	0.27913
0.59	0.28311	0.28240	0.28171	0.28105	0.28041	0.27979	0.27918	0.27860	0.27804	0.27750
0.58	0.28134	0.28063	0.27995	0.27929	0.27865	0.27804	0.27744	0.27686	0.27630	0.27576
0.57	0.27944	0.27873	0.27805	0.27740	0.27676	0.27615	0.27556	0.27498	0.27443	0.27389
0.56	0.27741	0.27671	0.27603	0.27538	0.27475	0.27414	0.27355	0.27299	0.27243	0.27190
0.55	0.27523	0.27454	0.27387	0.27322	0.27260	0.27200	0.27141	0.27085	0.27030	0.26977
0.54	0.27288	0.27220	0.27153	0.27089	0.27028	0.26968	0.26910	0.26854	0.26799	0.26747
0.53	0.27036	0.26968	0.26902	0.26838	0.26777	0.26718	0.26660	0.26605	0.26551	0.26499
0.52	0.26763	0.26695	0.26630	0.26567	0.26507	0.26448	0.26391	0.26336	0.26283	0.26231
0.51	0.26466	0.26399	0.26335	0.26273	0.26213	0.26155	0.26098	0.26044	0.25991	0.25940
0.50	0.26142	0.26076	0.26013	0.25951	0.25892	0.25835	0.25779	0.25725	0.25673	0.25623
0.49	0.25786	0.25721	0.25658	0.25597	0.25539	0.25482	0.25428	0.25375	0.25323	0.25274
0.48	0.25332	0.25268	0.25206	0.25147	0.25089	0.25034	0.24980	0.24928	0.24877	0.24829
0.47	0.24837	0.24775	0.24714	0.24656	0.24600	0.24545	0.24492	0.24442	0.24392	0.24344
0.46	0.24329	0.24267	0.24208	0.24151	0.24096	0.24043	0.23991	0.23941	0.23893	0.23846
0.45	0.23813	0.23753	0.23696	0.23640	0.23586	0.23533	0.23483	0.23434	0.23386	0.23341
0.44	0.23295	0.23237	0.23180	0.23125	0.23072	0.23021	0.22972	0.22924	0.22878	0.22833
0.43	0.22775	0.22718	0.22662	0.22609	0.22557	0.22507	0.22459	0.22412	0.22367	0.22323
0.42	0.22253	0.22197	0.22143	0.22091	0.22040	0.21991	0.21944	0.21898	0.21854	0.21811
0.41	0.21731	0.21676	0.21623	0.21572	0.21523	0.21476	0.21429	0.21385	0.21341	0.21300
0.40	0.21208	0.21155	0.21103	0.21053	0.21005	0.20959	0.20914	0.20870	0.20828	0.20787
0.39	0.20684	0.20632	0.20582	0.20533	0.20486	0.20441	0.20397	0.20355	0.20313	0.20274
0.38	0.20160	0.20109	0.20060	0.20013	0.19967	0.19923	0.19880	0.19839	0.19799	0.19760
0.37	0.19636	0.19587	0.19539	0.19493	0.19448	0.19405	0.19363	0.19323	0.19284	0.19246
0.36	0.19111	0.19063	0.19017	0.18972	0.18928	0.18887	0.18846	0.18807	0.18769	0.18732
0.35	0.18587	0.18541	0.18495	0.18452	0.18410	0.18369	0.18329	0.18291	0.18254	0.18218
0.34	0.18062	0.18017	0.17973	0.17931	0.17890	0.17850	0.17812	0.17775	0.17739	0.17704
0.33	0.17537	0.17493	0.17451	0.17409	0.17370	0.17331	0.17294	0.17258	0.17223	0.17189
0.32	0.17013	0.16970	0.16928	0.16888	0.16850	0.16813	0.16776	0.16742	0.16708	0.16675
0.31	0.16488	0.16446	0.16406	0.16367	0.16330	0.16294	0.16259	0.16225	0.16192	0.16160
0.30	0.15963	0.15923	0.15884	0.15846	0.15810	0.15775	0.15741	0.15708	0.15677	0.15646
0.29	0.15437	0.15398	0.15360	0.15324	0.15289	0.15255	0.15223	0.15191	0.15160	0.15131
0.28	0.14912	0.14874	0.14838	0.14803	0.14769	0.14737	0.14705	0.14674	0.14645	0.14616
0.27	0.14387	0.14351	0.14316	0.14282	0.14249	0.14218	0.14187	0.14158	0.14129	0.14102
0.26	0.13861	0.13826	0.13793	0.13760	0.13729	0.13698	0.13669	0.13640	0.13613	0.13586
0.25	0.13336	0.13303	0.13270	0.13239	0.13209	0.13180	0.13151	0.13124	0.13097	0.13072

表 6-8 図 6-14 の $F_{\mathbb{C}}(L/D_2, D_1/D_2)$ の数値(つづき)

	表 0-8 図 0-14 の FC(L/D2, D1/D2)の数値 (*プラさ) L/D2									
D_1/D_2	33	34	35	36	37	38	39	40		
1	0.30694	0.30637	0.30582	0.30529	0.30477	0.30426	0.30377	0.30330		
0.99	0.30662	0.30605	0.30550	0.30496	0.30444	0.30394	0.30345	0.30297		
0.98	0.30629	0.30572	0.30517	0.30464	0.30412	0.30361	0.30312	0.30265		
0.97	0.30595	0.30538	0.30483	0.30430	0.30378	0.30328	0.30279	0.30232		
0.96	0.30559	0.30503	0.30448	0.30395	0.30343	0.30293	0.30244	0.30196		
0.95	0.30524	0.30467	0.30412	0.30359	0.30308	0.30257	0.30208	0.30161		
0.94	0.30486	0.30430	0.30375	0.30322	0.30270	0.30220	0.30171	0.30124		
0.93	0.30448	0.30391	0.30337	0.30284	0.30232	0.30182	0.30133	0.30086		
0.92	0.30409	0.30352	0.30298	0.30245	0.30193	0.30143	0.30094	0.30047		
0.91	0.30368	0.30312	0.30257	0.30205	0.30153	0.30103	0.30055	0.30008		
0.90	0.30326	0.30270	0.30215	0.30163	0.30111	0.30061	0.30013	0.29966		
0.89	0.30282	0.30226	0.30172	0.30119	0.30067	0.30018	0.29969	0.29922		
0.88	0.30238	0.30182	0.30128	0.30075	0.30024	0.29974	0.29926	0.29879		
0.87	0.30191	0.30135	0.30081	0.30028	0.29977	0.29928	0.29879	0.29833		
0.86	0.30143	0.30087	0.30033	0.29981	0.29930	0.29880	0.29832	0.29785		
0.85	0.30094	0.30038	0.29984	0.29932	0.29880	0.29831	0.29783	0.29736		
0.84	0.30042	0.29986	0.29932	0.29880	0.29829	0.29780	0.29732	0.29685		
0.83	0.29989	0.29933	0.29879	0.29827	0.29776	0.29727	0.29679	0.29633		
0.82	0.29933	0.29878	0.29824	0.29772	0.29721	0.29672	0.29624	0.29578		
0.81	0.29876	0.29821	0.29767	0.29715	0.29665	0.29615	0.29568	0.29521		
0.80	0.29817	0.29762	0.29708	0.29657	0.29606	0.29557	0.29509	0.29463		
0.79	0.29755	0.29700	0.29647	0.29595	0.29545	0.29496	0.29448	0.29402		
0.78	0.29692	0.29637	0.29583	0.29532	0.29481	0.29432	0.29385	0.29339		
0.77	0.29624	0.29569	0.29516	0.29465	0.29414	0.29366	0.29318	0.29272		
0.76	0.29555	0.29500	0.29447	0.29396	0.29345	0.29297	0.29250	0.29204		
0.75	0.29483	0.29428	0.29375	0.29324	0.29274	0.29225	0.29178	0.29133		
0.74	0.29407	0.29352	0.29299	0.29248	0.29198	0.29150	0.29103	0.29058		
0.73	0.29328	0.29274	0.29221	0.29170	0.29120	0.29072	0.29025	0.28980		
0.72	0.29246	0.29191	0.29139	0.29088	0.29038	0.28990	0.28944	0.28898		
0.71	0.29159	0.29105	0.29053	0.29002	0.28953	0.28905	0.28858	0.28813		
0.70	0.29069	0.29015	0.28963	0.28913	0.28863	0.28816	0.28769	0.28724		
0.69	0.28975	0.28921	0.28869	0.28819	0.28770	0.28722	0.28676	0.28631		
0.68	0.28875	0.28821	0.28769	0.28719	0.28670	0.28623	0.28576	0.28532		
0.67	0.28771	0.28717	0.28666	0.28616	0.28567	0.28519	0.28473	0.28429		
0.66	0.28661	0.28608	0.28556	0.28506	0.28458	0.28411	0.28365	0.28320		
0.65	0.28545	0.28492	0.28441	0.28391	0.28342	0.28296	0.28250	0.28206		
0.64	0.28423	0.28370	0.28319	0.28270	0.28221	0.28175	0.28129	0.28085		
0.63	0.28295	0.28242	0.28191	0.28142	0.28094	0.28048	0.28002	0.27958		

表 6-8 図 6-14 の $F_{\rm C}(L/D_2, D_1/D_2)$ の数値(つづき)

D (D	L/D_2								
D_1/D_2	33	34	35	36	37	38	39	40	
0.62	0.28158	0.28105	0.28055	0.28006	0.27958	0.27912	0.27867	0.27823	
0.61	0.28013	0.27961	0.27911	0.27862	0.27815	0.27769	0.27724	0.27681	
0.60	0.27860	0.27808	0.27758	0.27710	0.27662	0.27617	0.27572	0.27529	
0.59	0.27697	0.27645	0.27596	0.27547	0.27500	0.27455	0.27411	0.27368	
0.58	0.27523	0.27472	0.27423	0.27375	0.27328	0.27283	0.27239	0.27196	
0.57	0.27337	0.27286	0.27237	0.27190	0.27143	0.27098	0.27054	0.27012	
0.56	0.27138	0.27088	0.27039	0.26992	0.26946	0.26901	0.26858	0.26816	
0.55	0.26925	0.26875	0.26827	0.26780	0.26735	0.26690	0.26647	0.26606	
0.54	0.26696	0.26646	0.26598	0.26552	0.26507	0.26463	0.26420	0.26379	
0.53	0.26449	0.26399	0.26352	0.26306	0.26261	0.26218	0.26175	0.26134	
0.52	0.26181	0.26133	0.26086	0.26040	0.25996	0.25953	0.25911	0.25870	
0.51	0.25891	0.25843	0.25796	0.25751	0.25708	0.25665	0.25624	0.25583	
0.50	0.25574	0.25527	0.25481	0.25436	0.25393	0.25351	0.25310	0.25270	
0.49	0.25226	0.25179	0.25134	0.25090	0.25047	0.25005	0.24965	0.24926	
0.48	0.24781	0.24735	0.24691	0.24648	0.24606	0.24565	0.24525	0.24487	
0.47	0.24298	0.24253	0.24209	0.24167	0.24126	0.24086	0.24047	0.24009	
0.46	0.23800	0.23756	0.23714	0.23672	0.23632	0.23593	0.23555	0.23518	
0.45	0.23296	0.23253	0.23211	0.23171	0.23131	0.23093	0.23056	0.23020	
0.44	0.22789	0.22747	0.22706	0.22666	0.22628	0.22590	0.22554	0.22519	
0.43	0.22280	0.22239	0.22199	0.22160	0.22123	0.22086	0.22050	0.22016	
0.42	0.21770	0.21729	0.21690	0.21652	0.21616	0.21580	0.21545	0.21511	
0.41	0.21259	0.21220	0.21181	0.21145	0.21108	0.21074	0.21039	0.21007	
0.40	0.20747	0.20709	0.20672	0.20636	0.20600	0.20566	0.20533	0.20501	
0.39	0.20235	0.20197	0.20161	0.20126	0.20091	0.20058	0.20026	0.19995	
0.38	0.19722	0.19686	0.19650	0.19616	0.19583	0.19550	0.19519	0.19488	
0.37	0.19210	0.19174	0.19140	0.19106	0.19074	0.19042	0.19011	0.18982	
0.36	0.18696	0.18662	0.18628	0.18595	0.18564	0.18533	0.18503	0.18474	
0.35	0.18184	0.18150	0.18117	0.18086	0.18055	0.18025	0.17996	0.17968	
0.34	0.17670	0.17637	0.17606	0.17575	0.17545	0.17516	0.17488	0.17460	
0.33	0.17157	0.17125	0.17094	0.17064	0.17035	0.17007	0.16979	0.16953	
0.32	0.16643	0.16612	0.16582	0.16553	0.16525	0.16498	0.16471	0.16445	
0.31	0.16130	0.16100	0.16071	0.16043	0.16015	0.15989	0.15963	0.15938	
0.30	0.15616	0.15587	0.15559	0.15532	0.15505	0.15480	0.15455	0.15431	
0.29	0.15102	0.15074	0.15047	0.15020	0.14995	0.14970	0.14946	0.14922	
0.28	0.14588	0.14561	0.14535	0.14510	0.14485	0.14461	0.14437	0.14415	
0.27	0.14075	0.14049	0.14023	0.13999	0.13975	0.13952	0.13929	0.13907	
0.26	0.13560	0.13535	0.13511	0.13487	0.13464	0.13442	0.13420	0.13399	
0.25	0.13047	0.13022	0.12999	0.12976	0.12954	0.12933	0.12912	0.12892	

6.4.3.2 半径 R の近似直線の勾配 FR

最大過圧の等値線を近似する円の中心 R の近似直線の勾配 F_R に対する L/D_2 と D_1/D_2 の依存性を検討するため、 $D_1/D_2=0.491^{[6]}$ 、図 6-7、図 6-10 の半径 R の近似線の勾配 F_R を図 6-15a に整理した。図 6-15b は無次元勾配 $F_R(L/D_2, D_1/D_2)/F_R(3, D_1/D_2)$ を示しているが、図 6-13c に示す中心 C とは異なり式(11)のような単純化が難しい。そこで半径 R は図 6-15a に示す関数 $F_R(L/D_2, D_1/D_2)$ において $D_1/D_2=1$ 、0.491、0.25 の値を数値解析から表 6-9 に示す通りに取得し、0.491 $\leq D_1/D_2 \leq 1$ と 0.25 $\leq D_1/D_2 \leq 0$.491 の 2 領域に分けて内挿することで求める。

$$F_{\rm R}(L/D_2,D_1/D_2) = \begin{cases} \frac{D_1/D_2 - 0.491}{0.509} F_{\rm R}(L/D_2,1) + \frac{1 - D_1/D_2}{0.509} F_{\rm R}(L/D_2,0.491) & 0.491 \le D_1/D_2 \le 1 \\ \frac{D_1/D_2 - 0.25}{0.241} F_{\rm R}(L/D_2,0.491) + \frac{0.491 - D_1/D_2}{0.241} F_{\rm R}(L/D_2,0.25) & 0.25 \le D_1/D_2 \le 0.491 \end{cases}$$
(12)

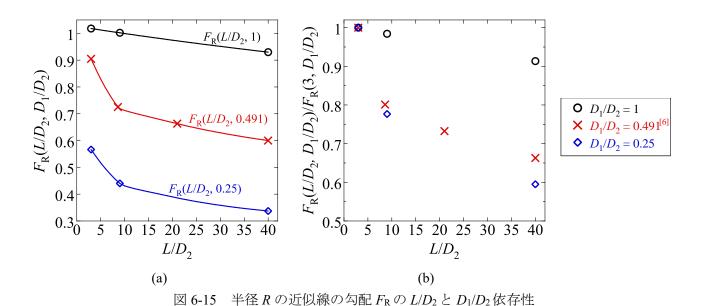


表 6-9 $F_R(L/D_2, D_1/D_2)$ 分布

			1× 0-9 I'R(
I/D		$F_{\rm R}(L/D_2, D_1/D_2)$	2)
L/D_2	$D_1/D_2=1$	$D_1/D_2 = 0.491$	$D_1/D_2 = 0.25$
3	1.0180	0.90500	0.56675
4	1.0153	0.86592	0.54104
5	1.0126	0.82985	0.51717
6	1.0099	0.79680	0.49515
7	1.0073	0.76677	0.47497
8	1.0046	0.73976	0.45664
9	1.0020	0.71914	0.44015
10	0.99940	0.71228	0.43094
11	0.99682	0.70721	0.42558
12	0.99426	0.70253	0.42107
13	0.99172	0.69800	0.41690
14	0.98920	0.69355	0.41288
15	0.98670	0.68914	0.40896
16	0.98422	0.68475	0.40509
17	0.98176	0.68038	0.40126
18	0.97932	0.67603	0.39746
19	0.97690	0.67168	0.39367
20	0.97449	0.66734	0.38990
21	0.97211	0.66300	0.38614

L/D_2	$F_{\mathrm{R}}(L/D_2,D_1/D_2)$							
L/D_2	$D_1/D_2=1$	$D_1/D_2 = 0.491$	$D_1/D_2 = 0.25$					
22	0.96974	0.65873	0.38247					
23	0.96739	0.65460	0.37897					
24	0.96506	0.65060	0.37563					
25	0.96274	0.64671	0.37243					
26	0.96044	0.64295	0.36938					
27	0.95816	0.63929	0.36645					
28	0.95590	0.63574	0.36364					
29	0.95365	0.63229	0.36094					
30	0.95142	0.62894	0.35835					
31	0.94921	0.62569	0.35587					
32	0.94701	0.62252	0.35347					
33	0.94483	0.61944	0.35117					
34	0.94267	0.61644	0.34895					
35	0.94052	0.61352	0.34681					
36	0.93838	0.61067	0.34474					
37	0.93627	0.60790	0.34275					
38	0.93416	0.60520	0.34083					
39	0.93207	0.60257	0.33897					
40	0.93000	0.60000	0.33717					

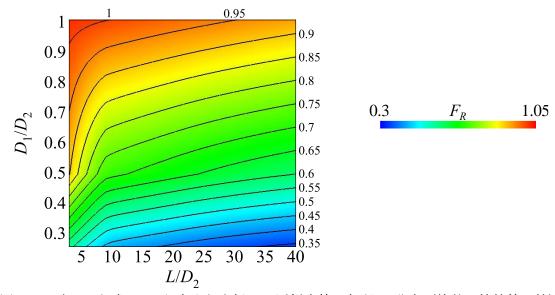


図 6-16 表 6-9 と式(12)から求めた半径 R の近似直線の勾配 F_R 分布(枠外に等値線の値)

図 6-16 に表 6-9 と式(12)から求めた半径 R の近似直線の勾配 F_R 分布を示した。図 6-16 の数値データを表 6-10 にまとめた。 D_1/D_2 が小さいほど、 L/D_2 が大きいほど F_R が小さくなることがわかる。この F_R に対して地上式火薬庫の薬量換算距離 16、14、8、5 を乗ずれば、広範な L/D_2 、 D_1/D_2 に対する地中式火薬庫の第一種、第二種、第四種保安物件の保安距離を描写する円の半径 R を算出できる。

6.5 まとめ

薬室と前室で断面積変化を有する地中式火薬庫の数値解析を行なった。ここでは L/D_2 と D_1/D_2 をパラメータとした検討を行い、最大過圧に与える影響を調査した。 L/D_2 増大および D_1/D_2 減少によって爆風が低減され最大過圧の等値線が小さくなった。等値線から簡単に保安距離を評価するため、中心が移動する円で近似して半径Rと中心Cの特徴を検討した結果、基準爆風圧の薬量換算距離Kと線形関係があった。

表 6-8 の $F_{\rm C}$ 、表 6-10 の $F_{\rm R}$ に対して地上式火薬庫の薬量換算距離 K=16、14、8、5 を乗ずれば、広範な L/D_2 、 D_1/D_2 に対する地中式火薬庫の第一種、第二種、第三種、第四種保安物件までの保安距離を描写する円の中心 C と半径 R を算出できる。

以上、数値解析結果を基に地中式火薬庫の保安距離の一案を提示したが、保安距離を表す円の中心 C と半径 R を求めるパラメータ F_C と F_R について、昨年度求めたパラメータと比べると想定以上の差が観測されたことから、新規保安距離案の策定にあたっては、 F_C と F_R の近似方法の再検討及び解析点を増やすこと等により、より正確なパラメータを算出し適用することが望ましい。

表 6-10 図 6-16 の F_R(L/D₂, D₁/D₂)の数値

- /-	L/D2									
D_1/D_2	3	4	5	6	7	8	9	10	11	12
1	1.0180	1.0153	1.0126	1.0099	1.0073	1.0046	1.0020	0.99940	0.99682	0.99426
0.99	1.0158	1.0124	1.0090	1.0057	1.0026	0.99940	0.99644	0.99376	0.99113	0.98853
0.98	1.0136	1.0094	1.0054	1.0015	0.99785	0.99419	0.99089	0.98812	0.98544	0.98280
0.97	1.0113	1.0065	1.0018	0.99734	0.99312	0.98899	0.98533	0.98248	0.97975	0.97707
0.96	1.0091	1.0036	0.99824	0.99315	0.98840	0.98379	0.97977	0.97684	0.97406	0.97133
0.95	1.0069	1.0006	0.99465	0.98897	0.98367	0.97858	0.97421	0.97120	0.96837	0.96560
0.94	1.0047	0.99769	0.99106	0.98478	0.97895	0.97338	0.96866	0.96555	0.96268	0.95987
0.93	1.0025	0.99476	0.98747	0.98059	0.97422	0.96818	0.96310	0.95991	0.95699	0.95414
0.92	1.0002	0.99182	0.98388	0.97641	0.96950	0.96297	0.95754	0.95427	0.95130	0.94841
0.91	0.99802	0.98889	0.98029	0.97222	0.96477	0.95777	0.95199	0.94863	0.94561	0.94268
0.90	0.99580	0.98595	0.97670	0.96803	0.96004	0.95257	0.94643	0.94299	0.93992	0.93695
0.89	0.99358	0.98302	0.97311	0.96385	0.95532	0.94737	0.94087	0.93735	0.93423	0.93121
0.88	0.99136	0.98008	0.96952	0.95966	0.95059	0.94216	0.93531	0.93171	0.92854	0.92548
0.87	0.98914	0.97715	0.96593	0.95547	0.94587	0.93696	0.92976	0.92607	0.92285	0.91975
0.86	0.98692	0.97421	0.96233	0.95129	0.94114	0.93176	0.92420	0.92043	0.91716	0.91402
0.85	0.98470	0.97128	0.95874	0.94710	0.93642	0.92655	0.91864	0.91479	0.91147	0.90829
0.84	0.98248	0.96834	0.95515	0.94291	0.93169	0.92135	0.91309	0.90915	0.90578	0.90256
0.83	0.98026	0.96541	0.95156	0.93873	0.92697	0.91615	0.90753	0.90351	0.90009	0.89683
0.82	0.97804	0.96247	0.94797	0.93454	0.92224	0.91094	0.90197	0.89786	0.89440	0.89109
0.81	0.97582	0.95954	0.94438	0.93035	0.91751	0.90574	0.89641	0.89222	0.88871	0.88536
0.80	0.97360	0.95660	0.94079	0.92617	0.91279	0.90054	0.89086	0.88658	0.88302	0.87963
0.79	0.97138	0.95367	0.93720	0.92198	0.90806	0.89533	0.88530	0.88094	0.87733	0.87390
0.78	0.96916	0.95073	0.93361	0.91779	0.90334	0.89013	0.87974	0.87530	0.87164	0.86817
0.77	0.96694	0.94780	0.93002	0.91361	0.89861	0.88493	0.87419	0.86966	0.86595	0.86244
0.76	0.96472	0.94487	0.92643	0.90942	0.89389	0.87972	0.86863	0.86402	0.86027	0.85671
0.75	0.96250	0.94193	0.92284	0.90523	0.88916	0.87452	0.86307	0.85838	0.85458	0.85097
0.74	0.96028	0.93900	0.91925	0.90105	0.88444	0.86932	0.85751	0.85274	0.84889	0.84524
0.73	0.95806	0.93606	0.91566	0.89686	0.87971	0.86412	0.85196	0.84710	0.84320	0.83951
0.72	0.95584	0.93313	0.91207	0.89267	0.87498	0.85891	0.84640	0.84146	0.83751	0.83378
0.71	0.95362	0.93019	0.90848	0.88849	0.87026	0.85371	0.84084	0.83581	0.83182	0.82805
0.70	0.95140	0.92726	0.90489	0.88430	0.86553	0.84851	0.83528	0.83017	0.82613	0.82232
0.69	0.94918	0.92432	0.90130	0.88011	0.86081	0.84330	0.82973	0.82453	0.82044	0.81659
0.68	0.94696	0.92139	0.89771	0.87593	0.85608	0.83810	0.82417	0.81889	0.81475	0.81085
0.67	0.94474	0.91845	0.89412	0.87174	0.85136	0.83290	0.81861	0.81325	0.80906	0.80512
0.66	0.94252	0.91552	0.89053	0.86755	0.84663	0.82769	0.81306	0.80761	0.80337	0.79939
0.65	0.94030	0.91258	0.88694	0.86337	0.84191	0.82249	0.80750	0.80197	0.79768	0.79366
0.64	0.93808	0.90965	0.88335	0.85918	0.83718	0.81729	0.80194	0.79633	0.79199	0.78793
0.63	0.93586	0.90671	0.87976	0.85499	0.83246	0.81208	0.79638	0.79069	0.78630	0.78220

表 6-10 図 6-16 の $F_R(L/D_2, D_1/D_2)$ の数値(つづき)

D /D		L/D_2								
D_1/D_2	3	4	5	6	7	8	9	10	11	12
0.62	0.93364	0.90378	0.87617	0.85081	0.82773	0.80688	0.79083	0.78505	0.78061	0.77647
0.61	0.93142	0.90084	0.87258	0.84662	0.82300	0.80168	0.78527	0.77941	0.77492	0.77073
0.60	0.92920	0.89791	0.86899	0.84243	0.81828	0.79647	0.77971	0.77377	0.76923	0.76500
0.59	0.92698	0.89497	0.86539	0.83825	0.81355	0.79127	0.77416	0.76812	0.76354	0.75927
0.58	0.92476	0.89204	0.86180	0.83406	0.80883	0.78607	0.76860	0.76248	0.75785	0.75354
0.57	0.92254	0.88910	0.85821	0.82987	0.80410	0.78086	0.76304	0.75684	0.75216	0.74781
0.56	0.92032	0.88617	0.85462	0.82569	0.79938	0.77566	0.75748	0.75120	0.74647	0.74208
0.55	0.91810	0.88324	0.85103	0.82150	0.79465	0.77046	0.75193	0.74556	0.74078	0.73635
0.54	0.91588	0.88030	0.84744	0.81731	0.78993	0.76526	0.74637	0.73992	0.73509	0.73061
0.53	0.91366	0.87737	0.84385	0.81313	0.78520	0.76005	0.74081	0.73428	0.72940	0.72488
0.52	0.91144	0.87443	0.84026	0.80894	0.78047	0.75485	0.73526	0.72864	0.72371	0.71915
0.51	0.90922	0.87150	0.83667	0.80475	0.77575	0.74965	0.72970	0.72300	0.71802	0.71342
0.50	0.90700	0.86856	0.83308	0.80057	0.77102	0.74444	0.72414	0.71736	0.71233	0.70769
0.49	0.90360	0.86457	0.82855	0.79555	0.76556	0.73859	0.71798	0.71111	0.70604	0.70136
0.48	0.88956	0.85109	0.81558	0.78303	0.75345	0.72684	0.70641	0.69944	0.69436	0.68968
0.47	0.87553	0.83761	0.80260	0.77052	0.74134	0.71509	0.69483	0.68776	0.68267	0.67800
0.46	0.86149	0.82413	0.78963	0.75800	0.72924	0.70334	0.68325	0.67609	0.67098	0.66633
0.45	0.84746	0.81065	0.77666	0.74548	0.71713	0.69159	0.67168	0.66442	0.65930	0.65465
0.44	0.83342	0.79717	0.76368	0.73297	0.70502	0.67985	0.66010	0.65274	0.64761	0.64297
0.43	0.81938	0.78369	0.75071	0.72045	0.69291	0.66810	0.64852	0.64107	0.63593	0.63129
0.42	0.80535	0.77021	0.73773	0.70793	0.68080	0.65635	0.63695	0.62940	0.62424	0.61961
0.41	0.79131	0.75673	0.72476	0.69542	0.66870	0.64460	0.62537	0.61772	0.61255	0.60793
0.40	0.77728	0.74325	0.71178	0.68290	0.65659	0.63286	0.61380	0.60605	0.60087	0.59625
0.39	0.76324	0.72977	0.69881	0.67038	0.64448	0.62111	0.60222	0.59437	0.58918	0.58457
0.38	0.74921	0.71629	0.68584	0.65787	0.63237	0.60936	0.59064	0.58270	0.57750	0.57289
0.37	0.73517	0.70281	0.67286	0.64535	0.62026	0.59761	0.57907	0.57103	0.56581	0.56122
0.36	0.72114	0.68933	0.65989	0.63283	0.60816	0.58586	0.56749	0.55935	0.55412	0.54954
0.35	0.70710	0.67584	0.64691	0.62032	0.59605	0.57412	0.55591	0.54768	0.54244	0.53786
0.34	0.69307	0.66236	0.63394	0.60780	0.58394	0.56237	0.54434	0.53600	0.53075	0.52618
0.33	0.67903	0.64888	0.62096	0.59528	0.57183	0.55062	0.53276	0.52433	0.51907	0.51450
0.32	0.66500	0.63540	0.60799	0.58277	0.55973	0.53887	0.52118	0.51266	0.50738	0.50282
0.31	0.65096	0.62192	0.59502	0.57025	0.54762	0.52713	0.50961	0.50098	0.49570	0.49114
0.30	0.63693	0.60844	0.58204	0.55773	0.53551	0.51538	0.49803	0.48931	0.48401	0.47946
0.29	0.62289	0.59496	0.56907	0.54522	0.52340	0.50363	0.48646	0.47764	0.47232	0.46779
0.28	0.60886	0.58148	0.55609	0.53270	0.51129	0.49188	0.47488	0.46596	0.46064	0.45611
0.27	0.59482	0.56800	0.54312	0.52018	0.49919	0.48014	0.46330	0.45429	0.44895	0.44443
0.26	0.58079	0.55452	0.53014	0.50767	0.48708	0.46839	0.45173	0.44261	0.43727	0.43275
0.25	0.56675	0.54104	0.51717	0.49515	0.47497	0.45664	0.44015	0.43094	0.42558	0.42107

表 6-10 図 6-16 の $F_R(L/D_2, D_1/D_2)$ の数値(つづき)

D /D		<u> </u>	公 0-10 区	-	<i>L</i> /.		_	<u>, </u>		
D_1/D_2	13	14	15	16	17	18	19	20	21	22
1	0.99172	0.98920	0.98670	0.98422	0.98176	0.97932	0.97690	0.97449	0.97211	0.96974
0.99	0.98595	0.98339	0.98085	0.97834	0.97584	0.97336	0.97090	0.96846	0.96604	0.96363
0.98	0.98018	0.97758	0.97501	0.97245	0.96992	0.96740	0.96491	0.96242	0.95996	0.95752
0.97	0.97441	0.97177	0.96916	0.96657	0.96400	0.96144	0.95891	0.95639	0.95389	0.95141
0.96	0.96864	0.96597	0.96332	0.96069	0.95808	0.95549	0.95291	0.95035	0.94782	0.94530
0.95	0.96287	0.96016	0.95747	0.95480	0.95215	0.94953	0.94692	0.94432	0.94175	0.93919
0.94	0.95710	0.95435	0.95162	0.94892	0.94623	0.94357	0.94092	0.93828	0.93567	0.93308
0.93	0.95133	0.94854	0.94578	0.94304	0.94031	0.93761	0.93492	0.93225	0.92960	0.92697
0.92	0.94556	0.94273	0.93993	0.93715	0.93439	0.93165	0.92893	0.92621	0.92353	0.92086
0.91	0.93979	0.93692	0.93409	0.93127	0.92847	0.92569	0.92293	0.92018	0.91745	0.91475
0.90	0.93401	0.93112	0.92824	0.92539	0.92255	0.91973	0.91694	0.91415	0.91138	0.90864
0.89	0.92824	0.92531	0.92239	0.91950	0.91663	0.91378	0.91094	0.90811	0.90531	0.90253
0.88	0.92247	0.91950	0.91655	0.91362	0.91071	0.90782	0.90494	0.90208	0.89924	0.89642
0.87	0.91670	0.91369	0.91070	0.90773	0.90479	0.90186	0.89895	0.89604	0.89316	0.89031
0.86	0.91093	0.90788	0.90486	0.90185	0.89887	0.89590	0.89295	0.89001	0.88709	0.88420
0.85	0.90516	0.90207	0.89901	0.89597	0.89294	0.88994	0.88695	0.88397	0.88102	0.87809
0.84	0.89939	0.89626	0.89316	0.89008	0.88702	0.88398	0.88096	0.87794	0.87494	0.87198
0.83	0.89362	0.89046	0.88732	0.88420	0.88110	0.87802	0.87496	0.87191	0.86887	0.86587
0.82	0.88785	0.88465	0.88147	0.87832	0.87518	0.87207	0.86896	0.86587	0.86280	0.85976
0.81	0.88208	0.87884	0.87563	0.87243	0.86926	0.86611	0.86297	0.85984	0.85673	0.85365
0.80	0.87631	0.87303	0.86978	0.86655	0.86334	0.86015	0.85697	0.85380	0.85065	0.84754
0.79	0.87054	0.86722	0.86393	0.86067	0.85742	0.85419	0.85097	0.84777	0.84458	0.84143
0.78	0.86477	0.86141	0.85809	0.85478	0.85150	0.84823	0.84498	0.84173	0.83851	0.83532
0.77	0.85900	0.85561	0.85224	0.84890	0.84558	0.84227	0.83898	0.83570	0.83243	0.82921
0.76	0.85323	0.84980	0.84640	0.84302	0.83966	0.83631	0.83298	0.82966	0.82636	0.82309
0.75	0.84746	0.84399	0.84055	0.83713	0.83373	0.83036	0.82699	0.82363	0.82029	0.81698
0.74	0.84169	0.83818	0.83470	0.83125	0.82781	0.82440	0.82099	0.81760	0.81421	0.81087
0.73	0.83592	0.83237	0.82886	0.82537	0.82189	0.81844	0.81500	0.81156	0.80814	0.80476
0.72	0.83015	0.82656	0.82301	0.81948	0.81597	0.81248	0.80900	0.80553	0.80207	0.79865
0.71	0.82437	0.82076	0.81717	0.81360	0.81005	0.80652	0.80300	0.79949	0.79600	0.79254
0.70	0.81860	0.81495	0.81132	0.80772	0.80413	0.80056	0.79701	0.79346	0.78992	0.78643
0.69	0.81283	0.80914	0.80547	0.80183	0.79821	0.79461	0.79101	0.78742	0.78385	0.78032
0.68	0.80706	0.80333	0.79963	0.79595	0.79229	0.78865	0.78501	0.78139	0.77778	0.77421
0.67	0.80129	0.79752	0.79378	0.79006	0.78637	0.78269	0.77902	0.77536	0.77170	0.76810
0.66	0.79552	0.79171	0.78794	0.78418	0.78045	0.77673	0.77302	0.76932	0.76563	0.76199
0.65	0.78975	0.78590	0.78209	0.77830	0.77452	0.77077	0.76702	0.76329	0.75956	0.75588
0.64	0.78398	0.78010	0.77624	0.77241	0.76860	0.76481	0.76103	0.75725	0.75349	0.74977
0.63	0.77821	0.77429	0.77040	0.76653	0.76268	0.75885	0.75503	0.75122	0.74741	0.74366

表 6-10 図 6-16 の $F_R(L/D_2, D_1/D_2)$ の数値(つづき)

D (D		L/D_2								
D_1/D_2	13	14	15	16	17	18	19	20	21	22
0.62	0.77244	0.76848	0.76455	0.76065	0.75676	0.75290	0.74903	0.74518	0.74134	0.73755
0.61	0.76667	0.76267	0.75871	0.75476	0.75084	0.74694	0.74304	0.73915	0.73527	0.73144
0.60	0.76090	0.75686	0.75286	0.74888	0.74492	0.74098	0.73704	0.73311	0.72919	0.72533
0.59	0.75513	0.75105	0.74702	0.74300	0.73900	0.73502	0.73104	0.72708	0.72312	0.71922
0.58	0.74936	0.74525	0.74117	0.73711	0.73308	0.72906	0.72505	0.72105	0.71705	0.71311
0.57	0.74359	0.73944	0.73532	0.73123	0.72716	0.72310	0.71905	0.71501	0.71098	0.70700
0.56	0.73782	0.73363	0.72948	0.72535	0.72124	0.71714	0.71306	0.70898	0.70490	0.70089
0.55	0.73205	0.72782	0.72363	0.71946	0.71531	0.71119	0.70706	0.70294	0.69883	0.69478
0.54	0.72628	0.72201	0.71779	0.71358	0.70939	0.70523	0.70106	0.69691	0.69276	0.68867
0.53	0.72051	0.71620	0.71194	0.70770	0.70347	0.69927	0.69507	0.69087	0.68668	0.68256
0.52	0.71473	0.71039	0.70609	0.70181	0.69755	0.69331	0.68907	0.68484	0.68061	0.67645
0.51	0.70896	0.70459	0.70025	0.69593	0.69163	0.68735	0.68307	0.67881	0.67454	0.67034
0.50	0.70319	0.69878	0.69440	0.69005	0.68571	0.68139	0.67708	0.67277	0.66847	0.66423
0.49	0.69683	0.69239	0.68798	0.68359	0.67922	0.67487	0.67053	0.66619	0.66185	0.65758
0.48	0.68517	0.68074	0.67635	0.67199	0.66764	0.66332	0.65899	0.65468	0.65036	0.64612
0.47	0.67351	0.66909	0.66473	0.66038	0.65606	0.65176	0.64746	0.64316	0.63888	0.63466
0.46	0.66184	0.65745	0.65310	0.64878	0.64448	0.64020	0.63592	0.63165	0.62739	0.62319
0.45	0.65018	0.64580	0.64147	0.63717	0.63289	0.62864	0.62438	0.62014	0.61590	0.61173
0.44	0.63851	0.63416	0.62985	0.62557	0.62131	0.61708	0.61285	0.60863	0.60441	0.60027
0.43	0.62685	0.62251	0.61822	0.61396	0.60973	0.60552	0.60131	0.59712	0.59292	0.58881
0.42	0.61519	0.61086	0.60660	0.60236	0.59815	0.59396	0.58978	0.58560	0.58144	0.57734
0.41	0.60352	0.59922	0.59497	0.59076	0.58657	0.58240	0.57824	0.57409	0.56995	0.56588
0.40	0.59186	0.58757	0.58335	0.57915	0.57499	0.57084	0.56671	0.56258	0.55846	0.55442
0.39	0.58019	0.57592	0.57172	0.56755	0.56340	0.55928	0.55517	0.55107	0.54697	0.54295
0.38	0.56853	0.56428	0.56009	0.55594	0.55182	0.54773	0.54363	0.53956	0.53548	0.53149
0.37	0.55687	0.55263	0.54847	0.54434	0.54024	0.53617	0.53210	0.52804	0.52400	0.52003
0.36	0.54520	0.54099	0.53684	0.53274	0.52866	0.52461	0.52056	0.51653	0.51251	0.50856
0.35	0.53354	0.52934	0.52522	0.52113	0.51708	0.51305	0.50903	0.50502	0.50102	0.49710
0.34	0.52188	0.51769	0.51359	0.50953	0.50550	0.50149	0.49749	0.49351	0.48953	0.48564
0.33	0.51021	0.50605	0.50197	0.49792	0.49391	0.48993	0.48596	0.48200	0.47804	0.47417
0.32	0.49855	0.49440	0.49034	0.48632	0.48233	0.47837	0.47442	0.47048	0.46656	0.46271
0.31	0.48688	0.48276	0.47871	0.47471	0.47075	0.46681	0.46288	0.45897	0.45507	0.45125
0.30	0.47522	0.47111	0.46709	0.46311	0.45917	0.45525	0.45135	0.44746	0.44358	0.43979
0.29	0.46356	0.45946	0.45546	0.45151	0.44759	0.44370	0.43981	0.43595	0.43209	0.42832
0.28	0.45189	0.44782	0.44384	0.43990	0.43601	0.43214	0.42828	0.42444	0.42060	0.41686
0.27	0.44023	0.43617	0.43221	0.42830	0.42442	0.42058	0.41674	0.41292	0.40912	0.40540
0.26	0.42856	0.42453	0.42059	0.41669	0.41284	0.40902	0.40521	0.40141	0.39763	0.39393
0.25	0.41690	0.41288	0.40896	0.40509	0.40126	0.39746	0.39367	0.38990	0.38614	0.38247

表 6-10 図 6-16 の $F_R(L/D_2, D_1/D_2)$ の数値(つづき)

D /D		<u> </u>	∝ 0-10 ≥	-	<i>L</i> /.		_	<u>, </u>		
D_1/D_2	23	24	25	26	27	28	29	30	31	32
1	0.96739	0.96506	0.96274	0.96044	0.95816	0.95590	0.95365	0.95142	0.94921	0.94701
0.99	0.96124	0.95888	0.95653	0.95420	0.95190	0.94961	0.94734	0.94508	0.94285	0.94063
0.98	0.95510	0.95270	0.95032	0.94796	0.94563	0.94332	0.94102	0.93875	0.93650	0.93426
0.97	0.94895	0.94653	0.94411	0.94173	0.93937	0.93703	0.93471	0.93241	0.93014	0.92788
0.96	0.94281	0.94035	0.93790	0.93549	0.93310	0.93074	0.92840	0.92608	0.92379	0.92151
0.95	0.93666	0.93417	0.93170	0.92925	0.92684	0.92445	0.92208	0.91974	0.91743	0.91513
0.94	0.93052	0.92799	0.92549	0.92301	0.92057	0.91816	0.91577	0.91341	0.91107	0.90876
0.93	0.92437	0.92181	0.91928	0.91678	0.91431	0.91187	0.90946	0.90707	0.90472	0.90238
0.92	0.91823	0.91564	0.91307	0.91054	0.90804	0.90558	0.90314	0.90074	0.89836	0.89601
0.91	0.91208	0.90946	0.90686	0.90430	0.90178	0.89929	0.89683	0.89440	0.89201	0.88963
0.90	0.90594	0.90328	0.90065	0.89806	0.89551	0.89300	0.89051	0.88806	0.88565	0.88326
0.89	0.89979	0.89710	0.89444	0.89183	0.88925	0.88671	0.88420	0.88173	0.87929	0.87688
0.88	0.89365	0.89092	0.88823	0.88559	0.88298	0.88042	0.87789	0.87539	0.87294	0.87051
0.87	0.88750	0.88475	0.88203	0.87935	0.87672	0.87413	0.87157	0.86906	0.86658	0.86413
0.86	0.88136	0.87857	0.87582	0.87311	0.87046	0.86784	0.86526	0.86272	0.86023	0.85776
0.85	0.87521	0.87239	0.86961	0.86688	0.86419	0.86155	0.85895	0.85639	0.85387	0.85138
0.84	0.86907	0.86621	0.86340	0.86064	0.85793	0.85526	0.85263	0.85005	0.84751	0.84501
0.83	0.86292	0.86003	0.85719	0.85440	0.85166	0.84897	0.84632	0.84372	0.84116	0.83863
0.82	0.85678	0.85386	0.85098	0.84816	0.84540	0.84268	0.84001	0.83738	0.83480	0.83226
0.81	0.85063	0.84768	0.84477	0.84193	0.83913	0.83639	0.83369	0.83104	0.82845	0.82588
0.80	0.84449	0.84150	0.83856	0.83569	0.83287	0.83010	0.82738	0.82471	0.82209	0.81951
0.79	0.83834	0.83532	0.83235	0.82945	0.82660	0.82381	0.82107	0.81837	0.81573	0.81313
0.78	0.83220	0.82914	0.82615	0.82321	0.82034	0.81752	0.81475	0.81204	0.80938	0.80676
0.77	0.82605	0.82297	0.81994	0.81698	0.81407	0.81123	0.80844	0.80570	0.80302	0.80038
0.76	0.81991	0.81679	0.81373	0.81074	0.80781	0.80494	0.80212	0.79937	0.79667	0.79401
0.75	0.81376	0.81061	0.80752	0.80450	0.80154	0.79865	0.79581	0.79303	0.79031	0.78763
0.74	0.80762	0.80443	0.80131	0.79826	0.79528	0.79236	0.78950	0.78670	0.78395	0.78126
0.73	0.80147	0.79825	0.79510	0.79203	0.78901	0.78607	0.78318	0.78036	0.77760	0.77488
0.72	0.79532	0.79208	0.78889	0.78579	0.78275	0.77978	0.77687	0.77402	0.77124	0.76851
0.71	0.78918	0.78590	0.78268	0.77955	0.77649	0.77349	0.77056	0.76769	0.76489	0.76213
0.70	0.78303	0.77972	0.77647	0.77331	0.77022	0.76720	0.76424	0.76135	0.75853	0.75576
0.69	0.77689	0.77354	0.77027	0.76708	0.76396	0.76091	0.75793	0.75502	0.75217	0.74938
0.68	0.77074	0.76736	0.76406	0.76084	0.75769	0.75462	0.75162	0.74868	0.74582	0.74301
0.67	0.76460	0.76119	0.75785	0.75460	0.75143	0.74833	0.74530	0.74235	0.73946	0.73663
0.66	0.75845	0.75501	0.75164	0.74836	0.74516	0.74204	0.73899	0.73601	0.73311	0.73026
0.65	0.75231	0.74883	0.74543	0.74213	0.73890	0.73575	0.73268	0.72968	0.72675	0.72388
0.64	0.74616	0.74265	0.73922	0.73589	0.73263	0.72946	0.72636	0.72334	0.72039	0.71751
0.63	0.74002	0.73647	0.73301	0.72965	0.72637	0.72317	0.72005	0.71700	0.71404	0.71113

表 6-10 図 6-16 の $F_R(L/D_2, D_1/D_2)$ の数値(つづき)

D /D			<u></u>		<i>L</i> /.		, ,	<u>, </u>		
D_1/D_2	23	24	25	26	27	28	29	30	31	32
0.62	0.73387	0.73030	0.72680	0.72341	0.72010	0.71688	0.71373	0.71067	0.70768	0.70476
0.61	0.72773	0.72412	0.72060	0.71718	0.71384	0.71059	0.70742	0.70433	0.70133	0.69838
0.60	0.72158	0.71794	0.71439	0.71094	0.70757	0.70430	0.70111	0.69800	0.69497	0.69201
0.59	0.71544	0.71176	0.70818	0.70470	0.70131	0.69801	0.69479	0.69166	0.68861	0.68563
0.58	0.70929	0.70558	0.70197	0.69846	0.69505	0.69172	0.68848	0.68533	0.68226	0.67926
0.57	0.70315	0.69941	0.69576	0.69223	0.68878	0.68543	0.68217	0.67899	0.67590	0.67288
0.56	0.69700	0.69323	0.68955	0.68599	0.68252	0.67914	0.67585	0.67266	0.66955	0.66651
0.55	0.69086	0.68705	0.68334	0.67975	0.67625	0.67285	0.66954	0.66632	0.66319	0.66013
0.54	0.68471	0.68087	0.67713	0.67351	0.66999	0.66656	0.66323	0.65998	0.65683	0.65376
0.53	0.67857	0.67469	0.67092	0.66728	0.66372	0.66027	0.65691	0.65365	0.65048	0.64738
0.52	0.67242	0.66852	0.66472	0.66104	0.65746	0.65398	0.65060	0.64731	0.64412	0.64101
0.51	0.66628	0.66234	0.65851	0.65480	0.65119	0.64769	0.64429	0.64098	0.63777	0.63463
0.50	0.66013	0.65616	0.65230	0.64856	0.64493	0.64140	0.63797	0.63464	0.63141	0.62826
0.49	0.65346	0.64946	0.64557	0.64181	0.63816	0.63461	0.63116	0.62782	0.62457	0.62140
0.48	0.64202	0.63805	0.63419	0.63046	0.62684	0.62332	0.61990	0.61659	0.61337	0.61024
0.47	0.63058	0.62664	0.62281	0.61911	0.61552	0.61203	0.60865	0.60536	0.60218	0.59908
0.46	0.61915	0.61523	0.61143	0.60776	0.60419	0.60074	0.59739	0.59413	0.59098	0.58791
0.45	0.60771	0.60382	0.60005	0.59641	0.59287	0.58945	0.58613	0.58291	0.57979	0.57675
0.44	0.59627	0.59241	0.58867	0.58506	0.58155	0.57816	0.57487	0.57168	0.56859	0.56558
0.43	0.58483	0.58100	0.57729	0.57371	0.57023	0.56687	0.56361	0.56045	0.55740	0.55442
0.42	0.57340	0.56959	0.56591	0.56235	0.55891	0.55558	0.55235	0.54922	0.54620	0.54326
0.41	0.56196	0.55818	0.55452	0.55100	0.54759	0.54429	0.54109	0.53799	0.53500	0.53209
0.40	0.55052	0.54677	0.54314	0.53965	0.53627	0.53300	0.52983	0.52677	0.52381	0.52093
0.39	0.53909	0.53536	0.53176	0.52830	0.52495	0.52171	0.51857	0.51554	0.51261	0.50976
0.38	0.52765	0.52395	0.52038	0.51695	0.51363	0.51042	0.50731	0.50431	0.50142	0.49860
0.37	0.51621	0.51254	0.50900	0.50560	0.50230	0.49913	0.49605	0.49308	0.49022	0.48744
0.36	0.50478	0.50113	0.49762	0.49425	0.49098	0.48784	0.48479	0.48186	0.47902	0.47627
0.35	0.49334	0.48973	0.48624	0.48289	0.47966	0.47654	0.47353	0.47063	0.46783	0.46511
0.34	0.48190	0.47832	0.47486	0.47154	0.46834	0.46525	0.46227	0.45940	0.45663	0.45395
0.33	0.47047	0.46691	0.46348	0.46019	0.45702	0.45396	0.45101	0.44817	0.44544	0.44278
0.32	0.45903	0.45550	0.45210	0.44884	0.44570	0.44267	0.43976	0.43694	0.43424	0.43162
0.31	0.44759	0.44409	0.44072	0.43749	0.43438	0.43138	0.42850	0.42572	0.42305	0.42045
0.30	0.43615	0.43268	0.42933	0.42614	0.42306	0.42009	0.41724	0.41449	0.41185	0.40929
0.29	0.42472	0.42127	0.41795	0.41479	0.41173	0.40880	0.40598	0.40326	0.40065	0.39813
0.28	0.41328	0.40986	0.40657	0.40343	0.40041	0.39751	0.39472	0.39203	0.38946	0.38696
0.27	0.40184	0.39845	0.39519	0.39208	0.38909	0.38622	0.38346	0.38081	0.37826	0.37580
0.26	0.39041	0.38704	0.38381	0.38073	0.37777	0.37493	0.37220	0.36958	0.36707	0.36463
0.25	0.37897	0.37563	0.37243	0.36938	0.36645	0.36364	0.36094	0.35835	0.35587	0.35347

表 6-10 図 6-16 の $F_R(L/D_2, D_1/D_2)$ の数値(つづき)

	衣 0-10 図 0-10 ジ FR(L/D2, D1/D2)ジが値(ブラさ) L/D ₂							
D_1/D_2	33	34	35	36	37	38	39	40
1	0.94483	0.94267	0.94052	0.93838	0.93627	0.93416	0.93207	0.93000
0.99	0.93844	0.93626	0.93410	0.93194	0.92982	0.92770	0.92560	0.92352
0.98	0.93204	0.92985	0.92767	0.92550	0.92337	0.92123	0.91912	0.91703
0.97	0.92565	0.92344	0.92125	0.91907	0.91692	0.91477	0.91265	0.91055
0.96	0.91926	0.91703	0.91482	0.91263	0.91046	0.90831	0.90618	0.90407
0.95	0.91287	0.91062	0.90840	0.90619	0.90401	0.90185	0.89970	0.89758
0.94	0.90647	0.90421	0.90197	0.89975	0.89756	0.89538	0.89323	0.89110
0.93	0.90008	0.89781	0.89555	0.89331	0.89111	0.88892	0.88676	0.88462
0.92	0.89369	0.89140	0.88913	0.88687	0.88466	0.88246	0.88028	0.87813
0.91	0.88730	0.88499	0.88270	0.88044	0.87821	0.87599	0.87381	0.87165
0.90	0.88090	0.87858	0.87628	0.87400	0.87176	0.86953	0.86734	0.86517
0.89	0.87451	0.87217	0.86985	0.86756	0.86531	0.86307	0.86086	0.85868
0.88	0.86812	0.86576	0.86343	0.86112	0.85885	0.85661	0.85439	0.85220
0.87	0.86172	0.85935	0.85700	0.85468	0.85240	0.85014	0.84791	0.84572
0.86	0.85533	0.85294	0.85058	0.84824	0.84595	0.84368	0.84144	0.83923
0.85	0.84894	0.84653	0.84415	0.84181	0.83950	0.83722	0.83497	0.83275
0.84	0.84255	0.84012	0.83773	0.83537	0.83305	0.83075	0.82849	0.82627
0.83	0.83615	0.83371	0.83131	0.82893	0.82660	0.82429	0.82202	0.81978
0.82	0.82976	0.82730	0.82488	0.82249	0.82015	0.81783	0.81555	0.81330
0.81	0.82337	0.82089	0.81846	0.81605	0.81370	0.81137	0.80907	0.80682
0.80	0.81698	0.81449	0.81203	0.80961	0.80724	0.80490	0.80260	0.80033
0.79	0.81058	0.80808	0.80561	0.80318	0.80079	0.79844	0.79613	0.79385
0.78	0.80419	0.80167	0.79918	0.79674	0.79434	0.79198	0.78965	0.78737
0.77	0.79780	0.79526	0.79276	0.79030	0.78789	0.78551	0.78318	0.78088
0.76	0.79140	0.78885	0.78634	0.78386	0.78144	0.77905	0.77671	0.77440
0.75	0.78501	0.78244	0.77991	0.77742	0.77499	0.77259	0.77023	0.76792
0.74	0.77862	0.77603	0.77349	0.77098	0.76854	0.76613	0.76376	0.76143
0.73	0.77223	0.76962	0.76706	0.76455	0.76209	0.75966	0.75729	0.75495
0.72	0.76583	0.76321	0.76064	0.75811	0.75563	0.75320	0.75081	0.74847
0.71	0.75944	0.75680	0.75421	0.75167	0.74918	0.74674	0.74434	0.74198
0.70	0.75305	0.75039	0.74779	0.74523	0.74273	0.74027	0.73787	0.73550
0.69	0.74666	0.74398	0.74136	0.73879	0.73628	0.73381	0.73139	0.72902
0.68	0.74026	0.73757	0.73494	0.73235	0.72983	0.72735	0.72492	0.72253
0.67	0.73387	0.73117	0.72852	0.72592	0.72338	0.72089	0.71845	0.71605
0.66	0.72748	0.72476	0.72209	0.71948	0.71693	0.71442	0.71197	0.70957
0.65	0.72108	0.71835	0.71567	0.71304	0.71048	0.70796	0.70550	0.70308
0.64	0.71469	0.71194	0.70924	0.70660	0.70402	0.70150	0.69902	0.69660
0.63	0.70830	0.70553	0.70282	0.70016	0.69757	0.69503	0.69255	0.69012

表 6-10 図 6-16 の $F_R(L/D_2, D_1/D_2)$ の数値(つづき)

	表 6-10 凶 6-16 の F _R (L/D ₂ , D ₁ /D ₂)の欽恒(つつさ) L/D₂							
D_1/D_2	22	24	25			20	20	40
0.62	33	34	35	36	37	38	39	40
0.62	0.70191	0.69912	0.69639	0.69372	0.69112	0.68857	0.68608	0.68363
0.61	0.69551	0.69271	0.68997	0.68729	0.68467	0.68211	0.67960	0.67715
0.60	0.68912	0.68630	0.68355	0.68085	0.67822	0.67565	0.67313	0.67067
0.59	0.68273	0.67989	0.67712	0.67441	0.67177	0.66918	0.66666	0.66418
0.58	0.67634	0.67348	0.67070	0.66797	0.66532	0.66272	0.66018	0.65770
0.57	0.66994	0.66707	0.66427	0.66153	0.65887	0.65626	0.65371	0.65122
0.56	0.66355	0.66066	0.65785	0.65509	0.65241	0.64979	0.64724	0.64473
0.55	0.65716	0.65425	0.65142	0.64866	0.64596	0.64333	0.64076	0.63825
0.54	0.65076	0.64785	0.64500	0.64222	0.63951	0.63687	0.63429	0.63177
0.53	0.64437	0.64144	0.63858	0.63578	0.63306	0.63041	0.62782	0.62528
0.52	0.63798	0.63503	0.63215	0.62934	0.62661	0.62394	0.62134	0.61880
0.51	0.63159	0.62862	0.62573	0.62290	0.62016	0.61748	0.61487	0.61232
0.50	0.62519	0.62221	0.61930	0.61646	0.61371	0.61102	0.60840	0.60583
0.49	0.61833	0.61533	0.61241	0.60957	0.60680	0.60410	0.60148	0.59891
0.48	0.60720	0.60423	0.60135	0.59853	0.59580	0.59313	0.59054	0.58800
0.47	0.59606	0.59313	0.59028	0.58750	0.58480	0.58216	0.57960	0.57710
0.46	0.58493	0.58203	0.57921	0.57646	0.57379	0.57119	0.56866	0.56619
0.45	0.57380	0.57093	0.56815	0.56543	0.56279	0.56022	0.55773	0.55529
0.44	0.56267	0.55983	0.55708	0.55439	0.55179	0.54925	0.54679	0.54438
0.43	0.55154	0.54874	0.54601	0.54336	0.54079	0.53828	0.53585	0.53347
0.42	0.54041	0.53764	0.53495	0.53233	0.52979	0.52732	0.52491	0.52257
0.41	0.52927	0.52654	0.52388	0.52129	0.51878	0.51635	0.51397	0.51166
0.40	0.51814	0.51544	0.51281	0.51026	0.50778	0.50538	0.50304	0.50076
0.39	0.50701	0.50434	0.50175	0.49922	0.49678	0.49441	0.49210	0.48985
0.38	0.49588	0.49324	0.49068	0.48819	0.48578	0.48344	0.48116	0.47895
0.37	0.48475	0.48214	0.47961	0.47715	0.47477	0.47247	0.47022	0.46804
0.36	0.47362	0.47104	0.46854	0.46612	0.46377	0.46150	0.45929	0.45713
0.35	0.46249	0.45994	0.45748	0.45508	0.45277	0.45053	0.44835	0.44623
0.34	0.45135	0.44884	0.44641	0.44405	0.44177	0.43956	0.43741	0.43532
0.33	0.44022	0.43774	0.43534	0.43302	0.43077	0.42859	0.42647	0.42442
0.32	0.42909	0.42664	0.42428	0.42198	0.41976	0.41762	0.41553	0.41351
0.31	0.41796	0.41555	0.41321	0.41095	0.40876	0.40665	0.40460	0.40260
0.30	0.40683	0.40445	0.40214	0.39991	0.39776	0.39568	0.39366	0.39170
0.29	0.39570	0.39335	0.39108	0.38888	0.38676	0.38471	0.38272	0.38079
0.28	0.38456	0.38225	0.38001	0.37784	0.37576	0.37374	0.37178	0.36989
0.27	0.37343	0.37115	0.36894	0.36681	0.36475	0.36277	0.36085	0.35898
0.26	0.36230	0.36005	0.35788	0.35577	0.35375	0.35180	0.34991	0.34808
0.25	0.35117	0.34895	0.34681	0.34474	0.34275	0.34083	0.33897	0.33717

参考文献

- [1] 平成27年度爆発影響低減化技術基準検討報告書
- [2] 平成 28 年度爆発影響低減化技術基準検討報告書
- [3] 平成 29 年度爆発影響低減化技術基準検討報告書
- [4] 平成 30 年度爆発影響低減化技術基準検討報告書
- [5] Y. Sugiyama, K. Wakabayashi, T. Matsumura, and Y. Nakayama, On the azimuth angle characteristics of the blast wave from an underground magazine model (IV) -Large-scale field experiments-, Sci. Tech. Energ. Mater. 78 (2017), 49-54.
- [6] 令和3年產業保安等技術基準策定研究開発等(火薬類爆発影響低減化技術基準検討事業)報告書
- [7] Y. Sugiyama, K. Wakabayashi, T. Matsumura, and Y. Nakayama, On the azimuth angle characteristics of the blast wave from an underground magazine model (II) -Numerical simulation of a magazine with a small internal length-to-diameter ratio, Sci. Tech. Energ. Mater. 78 (2017), 49-54.
- [8] Y. Sugiyama, K. Wakabayashi, T. Matsumura, and Y. Nakayama, Numerical study of the effect of high-explosive storage facility shape on the azimuthal distribution of blast-wave pressures, Euro. J. Mech./B Fluids 79 (2020), 153-164.
- [9] Y. Sugiyama, K. Wakabayashi, T. Matsumura, and Y. Nakayama, Numerical study of the blast mitigation effect of the shape of a partially confined geometry and scaling of the blast wave strength, J. Eng. Mech. 147 (2021), 04021032.
- [10] G. Allaire, Clerc S., and Kokh S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys. 181 (2002), 577-616.
- [11] E.F. Toro, M. Spruce, and W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves 4 (1994), 25-34.
- [12] X. Zhang and C.-W. Shu, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proc. R. Soc. A 467 (2011), 2752-2776.
- [13] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988), 439-471.

付録

2.A.1 (付録 1) 委員会議事録

開催されたすべての委員会議事録を記す。

令和4年8月22日 火薬類爆発影響低減化技術基準検討委員会 第1回本委員会 令和4年9月26日 火薬類爆発影響低減化技術基準検討委員会 第2回本委員会 令和5年1月11日 火薬類爆発影響低減化技術基準検討委員会 第1回小委員会 令和5年1月30日 火薬類爆発影響低減化技術基準検討委員会 第3回本委員会

2.A.1.1 令和 4 年度 爆発影響低減化技術基準検討委員会(第 1 回本委員会) 議事録

爆発影響低減化技術基準検討委員会(第1回本委員会) 議事録

日 時:令和4年8月22日(月)13:30~15:15

場 所:中央区八丁堀区民館6号室

出席者:対面参加8名、書面参加5名、リモート参加21名、計34名(敬称略、順不同)

委員:小川輝繁**、新井充**、三宅淳巳**、水書稔治**、大野友則*、海沼敏恭*、 吐合育輝*、遠山貴郎、若林邦彦**、久保田士郎**、須山恭三、後藤浩司**、

畑中修二**、福田光寿*、山田隆宏*、多田達士**、山本和彦**、藤原和彦**、奥永一郎 オブザーバ(経済産業省): 松下一徳**、川邊真理**

(産総研):松村知治**、杉山勇太**、丹波高裕**、佐分利 偵**、高橋良尭**、 蓮葉 州**

事務局(全火協):川﨑勝樹、遠藤秀雄、飯田光明、中塚漢二**、吉本章一**、柳田一也、 廣崎義一

(注) *:書面参加(事前送付した資料に対する意見、質問等の提出)

**:リモート参加(テレビ会議システムによる参加)

【配付資料】

資料 1-1 委員会 委員名簿

資料 1-2 令和 4 年度爆発影響低減化技術基準検討事業 実施計画書

資料 1-3 実験計画書(案)

資料 1-4 室内実験について

資料 1-5 シミュレーションを活用した地中式一級火薬庫の保安距離策定に必要なデータの取得(案)

1. 開会

配布資料の確認後、事務局より当委員会の開会がなされた。

2. 挨拶

全火協 川崎専務理事より、「一昨年、昨年よりも実験が約 1 ヶ月遅くなった。昨年までの煙火火薬庫に関する実験とは異なる実験内容になる。委員会で十分審議いただきたい。」旨の挨拶があった。

3. ご挨拶

経済産業省商務流通保安グループ 鉱山・火薬類監理官付 松下火薬類保安対策官より、「事業に参画いただいた委員の方々に感謝する。本年度の事業の一つは垂直土堤についての実験、もう一つは地中式火薬庫に関するものである。委員の方から様々な意見を伺い少しでも成果をよくしたい。」旨の挨拶があった。

4. 令和 4 年度委員紹介、委員長選出

リモート参加および対面参加の委員、オブザーバ、事務局からそれぞれ自己紹介があった。

小川委員が本委員会委員長として事務局から推薦され、全会一致で承認、選任された。小川委員長から挨拶がなされた。以後の司会進行は事務局から小川委員長に移された。

- 5. 爆発実験小委員会の設置及び委員長選出 爆発実験小委員会が設置された場合、産総研の若林委員を委員長とすることが承認された。
- 6. 実施計画書(仕様書)について 資料 1-2 に基づいて事務局から事業概要が説明された。
- 7. 野外実験計画(案)等について

資料 1-3 に基づいて産総研から野外実験の案が説明され、以下のような質疑があった。

- 大野委員から事前に提出された質問に対しては以下のように考えており、これらを議事録に 記載することで回答としたい。(事務局)
- ・ ① 試験体のスケールの問題。含水爆薬の威力は TNT の 77%なのでスケールが違ってくるのではないか (1/8.621)。→ ごもっともな指摘。今回の実験の目的は平成 26 年度との比較にある。当時どのような理由からか、このスケール (1/7.937) を使って実験が行われた。不合理な設定ではあるが、平成 26 年度との比較の意味で、今回はこのままの条件でやりたいと考えている。(事務局)
- ・ ② 配筋の問題。厚さ 50 mm のコンクリート擁壁の製作において、 $\phi 5 \text{ mm}$ の鉄筋を用いるよりも径が細い $\phi 3.2 \text{ mm}$ の溶接金網(メッシュ筋)を用いたほうが加工は楽ではないか。 \rightarrow 配筋が難しいのは覚悟している。平成 26 年度 との比較なのでこのまま行いたい。(事務局)
- ・ ③ ソイルセメントのセメント配合量や含水比などに対する土質試験が必要ではないか。→ 事前の確認はやっておきたい。(事務局)
- ・ ④ 地中式火薬庫の保安距離策定におけるシミュレーションの目的は何か。→ 地中式火薬庫の保安距離に関する改正案は出したが、保安距離を決める円の中心の位置と円の半径を決定する係数をもう少し正確にしたい。そのためにシミュレーションを増やしたい。(事務局)
- ・ ⑤ 改正はいつごろを目途に行われるのか。→ 改正がいつなされるのかはわからない。早くで1年後か2年後くらいかと思われる。(事務局)

実験計画書に対する修正が事務局より次のように提案された。

- 実験が行われるのは 11 月後半で寒くなると思われる。気象庁のデータによれば中標津の 12 月の気温は 1.1/-9.6℃で、11 月後半はこれに近づく。従来は実験を 8 時~16 時で行っていたが、朝の暖機運転も必要になる。そこで、実験開始:8 時半~9 時、実験終了:15 時(日没)としたい。実験の時間が短くなる。
- ・ 1日1ショットとし、11時過ぎに点火、午後に飛散物回収および翌日の土堤構築作業、としたい。
- ・ 今年の実験の目的は、平成 26 年度の実験におけるソイルセメント (ポルトランドセメント 150 kg/±1m³) では安定な垂直土堤を構築できないのではないか、セメント量を増やすと 重量飛散物が出るのではないか、それらの疑問に答えるための実験である。
- ・ 平成 24~27 年に垂直土堤の実験を行ったが、昨年、規則化を考える際に、垂直土堤だけはなく、内側の傾斜角 45 度~90 度の土堤とすることとなった。過去の実験で垂直土堤の 1/2 コンクリート擁壁までは飛散物が飛ばないことは確認されているが、傾斜角を緩くすると飛散物が飛ぶのではないか、その疑問に答えるための実験が No.1-2、No.1-3 である。

を伺いたい。 $\rightarrow 1/2$ 擁壁の例でみれば、垂直が適っている。土堤から火薬庫外壁までの距離はその方が短くなる。(火薬工業会)

- 経産省の意見を伺いたい。(事務局)→ 火薬庫の占有面積を小さくする実験と認識している。
 事業者の意向(ニーズ)を優先すべきと考えるので、垂直擁壁でよいのではないか。(経産省)
- ・ 産総研の意見を伺いたい。(事務局) → 事業者にとって得な方(垂直擁壁)でよいのではないか。(産総研)
- ・ 計画を変更する場合、コンクリート擁壁の幅は平成 26 年度と同じ幅とする。(事務局) 以上の議論をもって実験計画案の修正が確認された。

8. 室内実験計画について

室内実験計画について資料 1-4 に基づき産総研から説明がなされた。なお、配布資料における条件であった PETN/C ペレット $1.0\,\mathrm{g}\,\epsilon\,0.5\,\mathrm{g}\,\mathrm{c}$ (TNT 換算薬量 $1.27\,\mathrm{g}\,\epsilon\,0.64\,\mathrm{g}\,\mathrm{c}$) 変更した修正版 (8.22version) での説明であった。以下のような質疑がなされた。

- ・ 圧力変換器からの信号の検証は、これまで疑問が出るような結果があったからか。(委員) → 念のための検証である。(産総研)
- ・ 実際の大規模実験では 100 m 以上の長いケーブルが必要である。野外実験でケーブルが健全であるか検証するのに大きな労力がかかっている。将来的に無線でデータ送信することを想定して、室内実験において無線で送信することは考えていないのか。(委員) → 雷管を用いるので電波を発する機器の使用は厳禁と考えている。(産総研)
- ・ 実験条件で爆点の位置を偏心させる(No.5, No.6)が、実際の条件を反映したものか、単に位置による違いを見たいのか。(委員)→ 偏心を条件に加えてもらったのは事務局からの要望である。①爆薬の中心と土堤との距離によって爆風の減衰が違ってくるのではないか、その確認をするための偏心である。②一般的な火薬庫では中央に爆薬中心がある場合のほうが珍しい。通常は中央ではなく壁面(土堤)近くに置いている。(事務局)
- ・ 土堤は金属製で壊れることはないはず。過去の実験データと比較して、壊れるときと壊れないときの差はあとから定量的に検証できると考えてよいか。(委員) → 野外実験のスケール そのままに室内実験を設定しているので、計測で差が生じた場合にそれが土堤の損壊の効果であるかどうか、引き算で検証できるのではないか。(産総研)

以上の議論をもって実験計画案が承認された。

- 9. シミュレーションを活用した地中式一級火薬庫の保安距離策定計画について 資料 1-5 に基づいて産総研より説明がなされ、以下のような質疑があった。
 - ・ 本実験計画を本日了承いただけると明日から計算を開始できる。次回委員会まで待つと1ヶ 月以上ロスする。(契約時期が遅く、期間が短い。)(産総研)→ 開始して結構。(委員長)
 - ・ 図2のマップを埋めるという理解でよいか。L/Dが大きい、トンネルみたいな長い火薬庫も あると聞いているので、このシミュレーションが有効になることを期待している。(委員)

10. その他

- (1) 野外実験における新型コロナウイルス感染症対策は、次回委員会で提案する。(事務局)
- (2) 実験計画は固まっていないが、調達品の納期等を踏まえて発注を進めたい旨が事務局より提案され、同意された。
- (3) 第2回本委員会は9月26日(月)に開催を予定する。

2.A.1.2 令和 4 年度 爆発影響低減化技術基準検討委員会(第 2 回本委員会) 議事録

爆発影響低減化技術基準檢討委員会(第2回本委員会) 議事録

日 時:令和4年9月26日(月)13:30~14:45

場 所:中央区八丁堀区民館6号室

出席者:対面参加10名、書面参加5名、リモート参加17名、計32名(敬称略、順不同)

委員:小川輝繁、新井充、三宅淳巳**、水書稔治**、大野友則*、海沼敏恭*、吐合育輝*、遠山貴郎*、若林邦彦**、久保田士郎**、須山恭三、後藤浩司**、福田光寿**、山田隆宏*、多田達士、山本和彦**、奥永一郎**

オブザーバ (経済産業省): 松下一徳**、川邊真理、現地建設会社

(産総研): 松村知治**、杉山勇太**、丹波高裕**、高橋良尭**、薄葉 州**

事務局(全火協):川﨑勝樹、遠藤秀雄**、飯田光明、中塚漢二**、山口潤仁**、吉本章一**、 柳田一也、廣崎義一

(注) *:書面参加(事前送付した資料に対する意見、質問等の提出)

**:リモート参加(テレビ会議システムによる参加)

【配付資料】

資料 2-1-1 火薬類保安技術実験計画書(案)

資料 2-1-2 室内実験計画書(案)

資料 2-2 点火技術基準(案)

資料 2-3 危害予防規程(案)

資料 2-4 班別作業マニュアル (案)

資料 2-5 緊急連絡網(案)

資料 2-6 実験組織 (案)

資料 2-7 新型コロナウイルス感染症対策について(案)

1. 開会

リモート参加者および対面参加者の出席確認がなされたのち、事務局より当委員会の開会がなされた。

2. 挨拶

全火協 川﨑専務理事より、「令和 4 年度の第 2 回の委員会であるが、通常であればこの委員会を経て資料の「案」が取れ、野外実験の準備を進めることになる。審議をよろしくお願いしたい。」旨の挨拶があった。

3. 実験計画書(案)の変更案の説明および検討

資料 2-1-1 に基づいて産総研から計画書の変更箇所が説明された。主な変更箇所は次のとおり。

- 実験組織図を危害予防規程に合わせた。
- 表 1-3 実験 No.1-2 の土堤の種類 「普通土」から「補強土+普通土」に変更した。
- ・ 実験 No.1-2 の土堤の図において、下 1/2 高さの擁壁を垂直に。また、第 1 回委員会ののち、上 部 300mm を補強土に変更した。
- ・ 実験 No.1-3 の土堤の図において、下 1/2 高さの擁壁を垂直に変更した。
- ・ 補強土土堤の作成方法を追記した。

続いて事務局から以下のような補足説明があった。

- ・ 地面に敷くコンパネは、計画書では厚さ 38mm となっているが、入手できないので実験では 36mm を用いる。
- ・ 補強土にジオグリッドを用いるが、平成 26 年度の実験との比較のため、当時と同じグリッド

を使う。26 年度の報告書にある写真を確認すると「トリカル N24」とある。正式名称は「タキロンシーアイビル(株)トリカルネット N-24」である。本来のジオグリッドはペラペラで扱いやすいが、平成 26 年当時は実験のスケールに合わせたグリッドのものを採用したと考えられるため、当時と同じプラスチックのメッシュを使うことにする。

特に質疑はなく、委員長から「実験計画書は承認いただいた」とまとめがなされた。 ※6. その他における審議を経て、追加で実験日程の修正が行われた。

4. 室内実験計画書(案)の変更案の説明および検討

資料 2-1-2 に基づいて産総研から変更点の説明がなされた。主な変更箇所は次のとおり。

- · 土堤と火薬のスケールを、1/316 から 1/400 に変更する。
- ・ 前回は1gのPETNペレットで計画したが、納期が長く間に合わないので、従来用いてきた 0.5gのペレットを用い、1/400スケールとする。それに伴い土堤のスケールも1/400とする。
- ・ 「基準土堤、擁壁あり」と「60度土堤、擁壁あり」の2つを追加し、全部で8パターンについて実験する。

続いて以下のような質疑があった。

- ・ 予備的な実験をいくつか始めているのか。(委員長) → まだ開始していない。計画書が承認されたならば始める。(産総研)
- ・ 計測系を入れ替えるようだが、これまでと同じ爆風圧が得られるかどうか確認するのか。(事務局) →爆風圧の実験を新旧の計測系で2回ずつ行い、妥当性を確認する予定である。(産総研)以上の議論をもって、委員長から「室内実験計画は承認いただいた」とまとめがなされた。
- 5. 点火技術基準、危害予防規程等の確認

資料 2-2~資料 2-6 に基づき、点火技術基準、危害予防規程、班別作業マニュアル、緊急連絡網、実験組織について、昨年度からの変更点が産総研および事務局より説明された。主な変更点は次のとおり。

点火技術基準 とくに変更なし。

危害予防規程 爆薬量が 80 kg になったことに伴い、保安距離が 431 m と長くなった。 班別作業マニュアル 「火薬類を取扱う必要のある者」として、火薬班として初めて参加する 4 名が新たに記載される。

緊急連絡網 支援隊長が未定であるが、とくに変更なし。

実験組織 支援隊長が未定のほか、火薬班の副班長には、昨年度も参加した経験を有する日本カーリットの河原氏を充てる。

班別作業マニュアルの表紙において、全火協の表記に脱字があるとの指摘が経産省からあった。 委員長から「諸資料を確認いただいた」とまとめがなされた。

6. その他

(1) 新型コロナウイルス感染症対策

資料 2-7 に基づき、宿舎での対策に若干の変更(食事場所)がある旨が事務局より説明された。

(2) 実験参加申し込み

参加申込フォームに記入のうえ、宿泊を伴う参加者は 10/7(金)までに、日帰りの参加者は 10/14(金)までに、メールまたは FAX 等で事務局まで送付していただきたい。申込フォームは近日中に送付する。(事務局)

(3) 宿舎へのアクセス(航空チケット)

羽田ー中標津直行便だけではなく、羽田ー新千歳ー中標津の乗継便もある。フライトの出発

時刻等も考慮のうえ、搭乗便を検討していただきたい。(事務局) 実験参加依頼文書には予備日 (11/25) を含む日程が示されている。帰りの便のチケット購入は 11/24 でよいのか。(委員) → それでかまわない。(事務局)

(4) 実験日程の確認

実験 No.1-2 (内側 60 度土堤+1/2 擁壁、補強土) は 2 日目の実験で計画され、硬い樹脂ネットを用いるので手間取った場合が懸念される。翌日は予備日である。No.1-2 と No.1-3 (内側 45 度土堤+1/2 擁壁、普通土) を入れ替えたほうがやりやすいと思われる。産総研はどう思うか。(事務局) \rightarrow 入れ替える案に賛成である。(産総研) \rightarrow 変更として認める。(委員長)

(5) 実験計画に関する確認

- ・ ソイルセメントは養生が必要ではないか。(産総研) → 通常は 20 日間とかの養生が必要だが、平成 26 年度と同様に現場で作成して養生として 2 日間とる。(事務局)
- ・ 垂直土堤の両脇は普通土で垂直になる。大丈夫か。(産総研) → 現地建設会社の経験では、1日くらいはもつ見込み。(事務局)
- ・上爆点と下爆点の間の溝に足場を組んで合板を被せてその上にブルーシートを敷くという 産総研の計画であったが、代わりに鉄板を14枚溝に被せてその上にブルーシートを敷く ように変更した。(事務局) → 問題ない。(産総研)
- ・ ブルーシートはすべて # 1000 か。(産総研) → そのとおり。薄いシート 40 枚 (32 枚 + 予備)を計画している。(事務局) → 産総研でも厚めのシートを少し準備しておく。(産総研)
- ・ 産総研が計画していた一部のブルーシート $20 \text{ m} \times 20 \text{ m}$ は $10 \text{ m} \times 10 \text{ m}$ にするがそれでよいか。(事務局) → それでよい。念のため、 $20 \text{ m} \times 20 \text{ m}$ のシートを何枚か産総研で準備する。(産総研)

2.A.1.3 令和 4 年度 爆発影響低減化技術基準検討委員会(第 1 回小委員会) 議事録

爆発影響低減化委員会(第1回小委員会) 議事録

日 時:令和5年1月11日(水)13:30~15:50

場 所:全国火薬類保安協会会議室

出席者:対面参加4名、書面参加2名、リモート参加25名、計31名(敬称略、順不同)

委員:小川輝繁**、新井充、水書稔治**、海沼敏恭*、遠山貴郎*、若林邦彦**、 久保田士郎**、須山恭三、後藤浩司**、畑中修二**、福田光寿**、山田隆宏**、 多田達士**、山本和彦**、藤原和彦**、奥永一郎**

オブザーバ (経済産業省):松下一徳**、川邊真理**

(産総研): 松村知治**、杉山勇太**、高橋良尭**、佐分利 禎**、薄葉 州**

事務局(全火協):遠藤秀雄**、飯田光明、中塚漢二**、山口潤仁**、吉本章一**、柳田一也、 廣崎義一**、尾田博幸**

(注) *:書面参加(事前送付した資料に対する意見、質問等の提出)

**:リモート参加(テレビ会議システムによる参加)

【配付資料】

資料 1 令和 4 年度火薬類保安技術実験結果報告(速報)

資料 2 地中式火薬庫の保安距離策定に関するシミュレーション

資料3 今年度実験を踏まえた課題

1. 開会

リモート参加者および対面参加者の出席確認がなされたのち、事務局より当委員会の開会がなされ、以後、若林委員長の司会で進行された。

2. 令和 4 年度火薬類保安技術実験結果報告(速報)

資料1に基づいて産総研から説明がなされた。25ページまで(実験後の爆点状況、高速度撮影結果)の主な質疑応答は次のとおり。

- ・ No.1-2 (内側 60 度+1/2 擁壁土堤) や No.1-3 (内側 45 度+1/2 擁壁土堤) は、No.2 (基準爆風圧) に比べてクレータの深さが浅い。土砂の飛散が土堤で抑えられている、すなわち、土堤の効果で上方に飛ばされた土砂がクレータに落ちてきて埋め戻されたと解釈してよいか。(委員) → カメラによる観察では、一部は上方に飛び、埋め戻したと考えられるが、それがどの程度かカメラから判断するのは難しい。(産総研)
- ・ 11 ページ (概要 土堤の種類) の図は、できれば実験計画書の図面を横に並べて示したほうがわかりやすい。また、 $13\sim15$ ページの土堤の図に、土堤がもともとどこにあったのか点線で書き込めないか。(事務局) \rightarrow 了解。(産総研)
- ・ 1/2 擁壁の実験では、いずれも擁壁の残骸が飛んでいた。No.1-2 (60 度) では 14.3m、No.1-3 (45 度) では 8.6m とある。平成 26 年度の実験ではどの程度であったのか、No.1-3 の後にでも記載しておいてほしい。(事務局) \rightarrow 了解。(産総研)
- ・23 ページの図で、土堤の角度が浅い方が飛散速度が遅くなるのは、土堤本体と爆薬の距離が遠くなるからではないのか。(事務局) → そういう効果はあると思う。土堤の上をすり抜けたというイメージ。(産総研) → 本委員会までに結論が出れば追記してほしい。(事務局) → 了解。(産総研)
- ・ No.1-3 のクレータは左側に偏向している。台座の中心に爆薬をセットしたはずだが、なぜずれているのかよくわからない。合板の端からの距離を測っていたと思うが。(委員) → 爆薬をセットした時の写真(11ページの No.1-3)がある。記録班が真上から写真を撮っているはずで、その写真を追加できないか。(事務局) → 了解。(産総研)

・基準爆風圧の実験は、年度ごとの基準と違いがないか見るための、コントロールの役割を示すと認識しているが、従来と比べて違いがあるのか。また、爆発生成気体の広がり具合が違うと爆風の威力や形状に影響するのか。(経産省) → 後者についてはそのとおり。前者については装薬台の高さの違いがある。H26 のときは 546mm の高さの木製装薬台の上に 80kg のエマルション爆薬を置いて、換算高さ $0.18m/kg^{1/3}$ とした。R4 は地表面上の 36mm 合板の上に爆薬を置いた。(産総研) → 本年度の実験を H26 年度の実験と比べるわけではなく、それぞれの年度における基準爆風圧と土堤ありの場合の爆風圧を比較するので今年度実験の結果の考察には影響ないとの理解でよいか。(経産省) → そのとおり。(産総研)

資料 1 のうち爆風圧計測($26\sim32$ ページ)について産総研から説明がなされたが、特に質疑はなかった。

資料1のうち振動計測(33~38ページ)について産総研から説明がなされたが、特に質疑はなかった。

資料 1 のうち飛散物計測($39\sim50$ ページ)について産総研から説明がなされた。主な質疑応答は次のとおり。

- ・実験結果は現場での印象と違う。150m まで飛んだのはソイルセメントで間違いないか。(事務局) → 有効数字 4 桁あるので質量 212g は間違いない。土堤の構成物であるかどうかはわからない。(産総研) → 150m 飛んでいたら、この 1 個でソイルセメントはダメになるのではないか。(事務局) → ソイルセメントに限らず、1 個や 2 個飛ぶことはありえる。ほかにほとんど飛散物はないことは明らかで、たまたま 1 個が飛んでいたということではないか。(産総研) → これ以外にも 50g 以上で 120-130m まで飛んだ飛散物が多くある。(事務局) → ソイルセメントを直接飛ばしているので、破片が飛ぶのは仕方ない。ただし、サイズは小さくなっているはず。79J 以上の衝撃エネルギーを持つ破片は、50g で 200km/h くらいになる。それくらいにならないと致命傷のような損傷を与えない。ソイルセメントは小さな破片になることが被害度を落とす狙いである。100g の場合 40m/s (約 150km/h) である。(産総研) → 今回は 1/8 スケールの実験で、40 トンになった場合どうなるか。(事務局) → 40 トンになってもサイズは変わらないと考える。むしろ飛散距離が短くなっていくはず。(産総研) → 今回は速報であるので、ソイルセメントは OK とまで書かれていない。本委員会でどのように結論づけるか検討する必要がある。(事務局)
- ・ 1/2 擁壁の実験では飛散物は問題ないと思っていたが、No.1-3 では 124m 飛んでいる。飛散物の写真はないのか。(事務局) → 確認は取れていない。(産総研)
- ・飛散物の質量が 100g として、100km/h で飛んできたとしても転がって何バウンドかして止まるはず。10m も 20m も転がるか。(産総研) → 入射角度による。40 度とか 50 度で飛んできたとしても落下時には空気抵抗で 50 度とか 60 度であろうからあまり転がらないのではないか。(事務局) → スピードも落ちているはず。(産総研) → No.1-2(60 度土堤)は飛散距離が近くで収まっている。(事務局) → No.1-3(45 度土堤)のように 1,2 個は飛んでいるかもしれない。飛散物ゼロとはならないのではないか。(産総研)
- ・42 ページの一覧表で、H26 年度の 45 度基準土堤 No.2-1 では 40g の破片(威力なし)が 100m 飛んでいる。ソイルセメントにすると 120g (H26) や 200g (R4) が飛んだ。ソイルセメント 土堤の飛散物について、次回の本委員会までに考察しておいてほしい。(事務局) \rightarrow ソイルセメントの場合、コンクリート量がここまでならば OK というのもあるか。(産総研) \rightarrow そのと おり。(事務局) \rightarrow 考える必要がある。(産総研)
- ・ ソイルセメントと 1/2 擁壁を認めてよいかどうか、その考察も本委員会で固めたい。報告書に どのように記載するかを決めておきたい。(事務局) → コンクリート量が多いソイルセメント

はダメかという印象。H26 はソイルセメント量が少ない実験であったが、123g の破片が 25m 程度飛散した程度。ただし薬量 10kg。(産総研) \rightarrow H26 の実験では、薬量 80kg で 300g の破片が 50m 飛んでいた。本当に大丈夫かということがあって R4 の実験を行った。(事務局)

- ・ 本件については、産総研と事務局(全火協)とで議論し、本委員会で結論を出す。
- 3. 地中式火薬庫の保安距離策定に関するシミュレーション 資料2に基づいて産総研から説明がなされた。主な質疑応答、補足説明は次のとおり。
 - ・ 昨年は前室/薬室の断面積比 (S_1/S_2) をパラメータとして用いたが、今回は前室/薬室の(等価)直径比 (D_1/D_2) を用い、断面積比にしなかった。(産総研)
 - 昨年の検討結果と比べてどうか。(事務局)→シミュレーション例を増やした結果、寸胴な 地中式火薬庫ほど昨年と違う結果となった。(産総研)
- 4. 今年度を含む過去の実験を踏まえた課題

資料3に基づき、以下のように事務局から説明及び委員からコメントがなされた。

- 3-2 (粉状爆薬の爆薬換算量の見直し)の検討は、特定硝安油剤爆薬等と同様に換算量の見直し がなされることが期待されるのではないか。
- 2-1 (少量の爆薬の爆発によるコンポジット推進薬の殉爆試験) は、JAXA が実験対象になると 考えられるが、対象が JAXA だけなら、規則改正ではなく、特則でできるのではないか。
- ・ 2-2 (高性能爆薬を溶填した火工品の殉爆に関する実験) は、一般の火工品の保安距離・保安間 隔が短くなるのであればメーカにもメリットがあるのではないか。
- 2-4 (爆風圧の減衰に及ぼす地形の影響) も興味深いし、2-3 (土堤からの飛散物に関するスケール則等の検討) も検討すべきではないか。
- 2-3 は飛散物に特化するのであれば検討の価値があるのではないか。飛散物のサイズや落下スピードを確かめることも重要。
- 2-5 (新規爆薬類の性能評価(発破技術の安全性)) は Heavy ANFO に関する実験になるが、伝 爆性実験を行うのであれば、薬径を大きくすれば伝爆性がよくなるので、室内実験でもできる のではないか。

3.A.1.4 令和 4 年度 爆発影響低減化技術基準検討委員会(第 3 回本委員会) 議事録

爆発影響低減化委員会(第3回本委員会) 議事録

日 時:令和5年1月30日(月)13:30~15:50

場 所:中央区八丁堀区民館6号室

出席者:対面参加10名、書面参加3名、リモート参加22名、計35名(敬称略、順不同)

委員:小川輝繁、新井充、三宅淳巳**、水書稔治**、大野友則、海沼敏恭*、遠山貴郎*、 若林邦彦**、久保田士郎**、須山恭三、後藤浩司、畑中修二**、福田光寿**、

山田隆宏**、多田達士**、山本和彦**、藤原和彦*、奥永一郎**

オブザーバ (経済産業省):小池勝則、松下一徳**、川邊真理**

(産総研): 松村知治**、杉山勇太**、丹波高裕**、佐分利 禎**、高橋良尭**

事務局(全火協):川﨑勝樹**、遠藤秀雄、飯田光明、中塚漢二**、山口潤仁**、吉本章一**、 尾田博幸**、柳田一也、廣崎義一

(注) *:書面参加(事前送付した資料に対する意見、質問等の提出)

**:リモート参加(テレビ会議システムによる参加)

【配付資料】

資料-3-1 令和 4 年度火薬類保安技術実験結果報告

資料-3-2 室内実験の結果

資料-3-3 シミュレーションを活用した地中式一級火薬庫の保安距離策定に必要なデータの取得

資料-3-4 地中式火薬庫の保安距離改正案

資料-3-5 今年度実験を踏まえた課題

資料-3-6 実験関連事項(事業報告書用添付資料案)

1. 開会

リモート参加者および対面参加者の出席確認がなされたのち、事務局より当委員会の開会がなされた。

2. 挨拶

全火協 川崎専務理事より、「令和 4 年度の実験結果等の報告がなされるが、今年度結果を踏まえた来年度以降の課題についても議論いただきたい。」旨の挨拶があった。

3. 令和 4 年度火薬類保安技術実験結果報告

以後の議事は、小川委員長の司会によって進行された。

資料 3-1 に基づいて、実験結果が産総研から説明された。27 ページまで(高速度撮影)に対する 主な質疑は次のとおり。

・ 27 ページの図において、気体の膨張の長さは画像からの読み取りか。(委員) → そのとおり。 (産総研) → 高さはわかるが、半径方向の動きはいくつかの方向から見て総合的に解析したのか。(委員) → 円筒対称の形状であるので、1 枚の画像から読み取っている。(産総研) → 対称であるとの仮定のうえであることを了解した。(委員)

28~34ページ(爆風圧計測)については特に質疑はなかった。

35~40ページ(地盤振動)についての主な質疑は次のとおり。

・ 地盤振動については、有意な差はないとみてよいか。(委員) → クレータが形成されてそれを埋め戻すので、地面方向に条件のばらつきが生じる。特に爆点近く、K=4までのところはばらつきが大きい。(産総研) → どのくらいあれば有意な差か。(委員) → log スケールであるので、10倍くらいないと有意ではない。(産総研) → 了解。(委員)

41~58ページ(飛散物)についての主な質疑は次のとおり。

- ・ No.1-2 (内側 60 度土堤+1/2 擁壁) の飛散物の飛翔方向が爆点から土堤へ垂直に引いた線からずれている。小委員会において、爆薬の写真を確認したうえで検討するとされていたが、写真を見て分かったことはあるか。(事務局) → 明確な原因を明らかにすることはできなかった。(産総研)
- ・ これまでの実験で同様なこと(飛散物の飛翔方向が5度くらいずれたこと)はあったか。(委員)
 - → 重心線は H26 も作成しているが、重心線が±5 度を超えてずれたことはなかった。(産総研)
 - → 了解。(委員)

以上の審議をもって、委員長から「野外実験の結果報告が了承された。」とまとめがなされた。

4. 令和 4 年度産総研室内実験結果報告

資料 3-2 に基づいて産総研から説明がなされた。主な質疑は次のとおり。

・ 爆薬の偏心についての結果のまとめにおいては、火薬庫と土堤の距離が長くなった場合に土堤の 減衰効果がどうなるかを見ることが目的である。つまり、火薬庫(爆薬)と土堤との距離が短い 場合よりも、火薬庫(爆薬)と土堤の距離を長くした場合の方が遠方の爆風圧は弱くなる。その ようなまとめ方にした方がよい。(事務局)→ 了解。(産総研)

以上の議論をもって、委員長から「室内実験の結果報告が了承された。」とまとめがなされた。

- 5. 地中式火薬庫の爆風シミュレーション結果報告 資料 3-3 に基づいて産総研から説明がなされた。主な質疑は次のとおり。
- ・ 10 ページの表において、 L_1/L_2 とあるのは L/D_2 ではないのか。(委員) →指摘のとおり。修正する。(産総研)
- ・ 12 ページ、外接円の半径の勾配 $F_R(L/D_2,D_1/D_2)$ を、 D_1/D_2 =0.491 と 1 それぞれの近似線の内挿、0.25 と 0.491 それぞれの近似線の内挿で評価しているが、0.491 で切らずに 0.25 と 1 の間で連続的に内挿できないのか。(委員) → 12 ページ右の図で赤(D_1/D_2 =0.491)と青(D_1/D_2 =0.25)の間はこのような分布になるが、黒(D_1/D_2 =1)と赤(D_1/D_2 =0.491)の間は異なる傾向にある。したがって、0.49 以下と 0.49 以上で別々に分けるのが適切。1 と 0.25 とを用いて 0.491 を計算するとずっと下にずれる。(産総研) → 了解。(委員)

以上の議論をもって、委員長から「シミュレーション結果報告が了承された。」とまとめがなされた。

6. 地中式火薬庫の保安距離改正案の検討

地中式火薬庫の保安距離改正案について、事務局より説明がなされた。主な質疑は次のとおり。

- 爆風、地盤振動、飛散物に対して保安距離が提案されているが、現状の地中式火薬庫の保安距離 と比べてどのようになるのか。(委員)→ 極端に言えば、火薬庫の前方は保安距離が長く、側方 と後方は短くなる。地盤振動は、イメージ的だがおそらくほぼそれに収まる。(事務局)
- ・ 昨年(令和 3 年度)の結果からどのように変わるのか。(委員) → 昨年に比べて今年の方が火薬庫前方の保安距離が若干長くなった。(事務局) → パラメータとして断面をとるか長さをとるかで違ってきたのか。(委員) → どちらも同じである。同じだが、考える点を増やした。昨年は D_1/D_2 =0.491 の値と野外実験の値をもとに計算した。0.25 と 1 のところを傾きが同じとして計算したが、今年は 0.25 と 1 のところを詳細にシミュレーションし、半径の係数と中心までの距離の係数の結果を得て全体を書き直した。(事務局) → 精度を向上させたということか。(委員) → そのとおり。精密な計算をした結果、保安距離が長くなった。(事務局)
- ・ 地中式火薬庫の改正案はいつごろになりそうか。(委員) → 本事業において検討結果が妥当と 判断されれば、火薬小委員会で議論することになる。さらに検討が必要であるならば、その検討 結果を待ってからになる。(経産省) → 内挿の部分が問題(検討課題がある)か。(委員) → そ のとおり。検討してみる。検討結果を報告書に盛り込む。(事務局)

- 既存の火薬庫に対して、典型的な具体例で計算してみてはどうか。大丈夫な例と特別にずれている例を検討して、内挿の見直しが必要かどうかわかるのではないか。(委員)→ 現実に理想的なものを検討にかけると問題が出る。(委員)→ 誰が見ても納得できる妥協点を見出していく必要がある。防衛省のデータがあるのであれば、それも勘案しながら懸念をなくしていく必要がある。(経産省)
- さらに意見があれば事務局に出してほしい。(委員長) → 内挿の問題が解決できたら報告書に入れる。実例の図も報告書に入れる。(事務局)
- 7. 今年度実験結果を踏まえた来年度以降の課題 来年度以降の課題について、小委員会での意見が資料 3-5 をもとに事務局から報告された。 来年度以降の課題への対応については、事務局の意見も聞きながら省内で検討していく旨の説明 が経産省よりなされた。
- 6. 最終報告書の提出について

今後のスケジュールを含め、事務局より次のような説明がなされた。

- ・ 成果物である報告書を2月28日までに経産省に提出する。
- ・ 今年度の野外実験において、大事に至りかねない放送設備のトラブルがあったが、来年度以降 の対策として確実にできるよう、報告書にも残しておく。

経産省 小池火薬専門職から、委員に対し、1年間の協力への感謝が述べられた。 委員長から、「実験結果の報告については了承された。報告書の作成について協力をお願いして今年度の委員会を終了する。」とのまとめがなされた。

4.A.1 (付録 2) 実験関連事項

4.A.1.1 実験宿舎

「ホテル マルエー温泉」

住所: 〒086-1121 北海道標津郡中標津町西1条北3丁目3番地

電話:0153-73-3815 FAX:0153-72-5088

4.A.1.2 実験要員の輸送

宿舎と実験場間の実験要員の輸送には、全火協調達の大型バス及びレンタカーを使用した。

4.A.1.3 実験資材等の調達

構造の異なる土提の設計は産総研、使用した資材は、主に全火協が調達した。 主な資材調達および実験支援等の契約相手方を次に示す。

島影建設株式会社	模擬土提(片側垂直ソイルセメント、60度土提+1/2 擁壁、45度土提+1/2 擁壁)の施工、放送設備等のレンタル(設置および概ま会な)、数式、公路工具の形塊、カノラボ、クス、状態
	び撤去含む)、警戒・総務要員の派遣、カメラボックス、装薬 台、掲示板等の製作・設置・撤去、各種機材のレンタルと盛土
	材、土嚢袋等消耗品の調達
共成レンテム株式会社	プレハブ棟、トイレのレンタル (設置および撤去含む)
中国化薬株式会社	電気雷管(EBW RP-501)
カヤク・ジャパン株式会社	含水爆薬(アルテックス)、導爆線
ダイナテック株式会社	試験試料(含水爆薬、導爆線、雷管等火薬類)の一時貯蔵、運搬
	及び火工所、火薬類取扱所のレンタル(設置および撤去含む)
株式会社レントシーバー	通信機器のレンタル(GDR3500 セット)
株式会社共和電業	風向風速計のレンタル
千代田測器株式会社	測量計(トータルステーション等)のレンタル
有限会社アルファ商事	各種燃料 (重機、発電機、暖房及び車両燃料等)
株式会社旭観光バス	送迎用バスの貸し切り
株式会社日産カーレンタルソ	移動用車両(ワゴン車)のレンタル
リューション	

※実験資材に関するトラブル発生と今後の課題

本部と観測所にレンタルで設置した放送設備が、点火工程に入ったときに放送が聞こえなくなるトラブルが発生した。危うく、秒読み無しで、突然、爆薬が爆発する事態を引き起こしかねない状況であった。

トラブルが発生したのは、実験3日目のことで、点火工程に入って、本部において観測所からの 点火3分前の放送が聞こえなかったことに総括責任者が気づき、副総括責任者が観測所に秒読みの ストップを指示。秒読みストップ後、放送設備をチェック、リセットしても本部で放送は聞こえな いため、副総括責任者が、観測所と時計を合わせトランシーバを用いて観測所と併行してカウント ダウンを行うこととし、再度、点火5分前から点火工程を再開し、無事に点火できた。

今後、放送設備のレンタルに際しては、今回のトラブルを教訓に、レンタル業者の設置時のテストを入念に行い、トラブル時の対処マニュアルを準備してもらう等の措置を講ずる必要がある。

4.A.1.4 火薬類

実験に使用した火薬類は、次により調達、貯蔵及び運搬を行った。

(1) 電気雷管

電気雷管は中国化薬(株)より調達し、中国化薬(株)吉井工場(群馬県)よりダイナテック(株)釧路支店の火薬庫に一時貯蔵され、実験当日に使用する量がダイナテック(株)により実験場に搬入された。

(2) 含水爆薬、導爆線

含水爆薬(アルテックス)、導爆線は、カヤク・ジャパン(株)砂川工場から調達し、ダイナテック(株) 釧路支店の火薬庫に一時貯蔵され、実験当日使用する量がダイナテック(株)により実験場に搬入された。

4.A.1.5 協力

(1) 陸上自衛隊北部方面総監部

陸上自衛隊北部方面総監部と経済産業省北海道産業保安監督部との間で締結された「令和 4 年度経済産業省火薬類保安技術実験の協力に関する現地協定」に基づき、人員・機材の輸送、給電・給水、警戒及び消防、実験本部等の設営、実験環境の整備、実験装置の設営等の協力に対して支援部隊が編成され、積極的な支援が得られた。

(2) 地元官公庁等

地元役場等による住民への広報、各町のホームページ掲載等の協力が得られた。

(3) 火薬関係団体及び企業

火薬関係団体及び火薬類製造会社等の積極的な協力、また、地元企業等の協力が得られ、その結果、 実験に必要な供試火薬類、試験体、プレハブ関係、放送設備、各種機材、重機、用役等の手配等が計画 どおりになされた。

4.A.1.6 実験打ち合せ会議等

保安技術実験に際し、火薬類爆発影響低減化委員会等を開催し、データ収集のための実験を安全かつ円滑に遂行するための詳細な検討がなされた。また、9月28日から9月30日にかけて、陸上自衛隊北部方面総監部をはじめ地元関係自治体等に対し、保安技術実験実施に係る挨拶及び事前説明を行った。

また、実験時の作業内容の調整のため、9月14日に陸上自衛隊北部方面総監部装備部装備課を通して別海駐屯地業務隊管理科を訪問し、担当者に支援内容の説明・調整等を行った。

4.A.1.7 実験参加者数

11月16日~25日の実験参加者は、延べ約280名(支援部隊、準備期間中の地元業者は除く。)であった。

4.A.2 (付録 3) 野外実験記録写真

実験場

本部

観測所

観測所1

観測所2

風向風速計

温湿度計 • 風向風速指示器

爆風計測架台

爆風センサー受圧面

爆風計測ボックス

計測ボックス内の爆風計測機器

カメラボックス(90度方向)外観

カメラボックス内の高速度カメラ (2台)

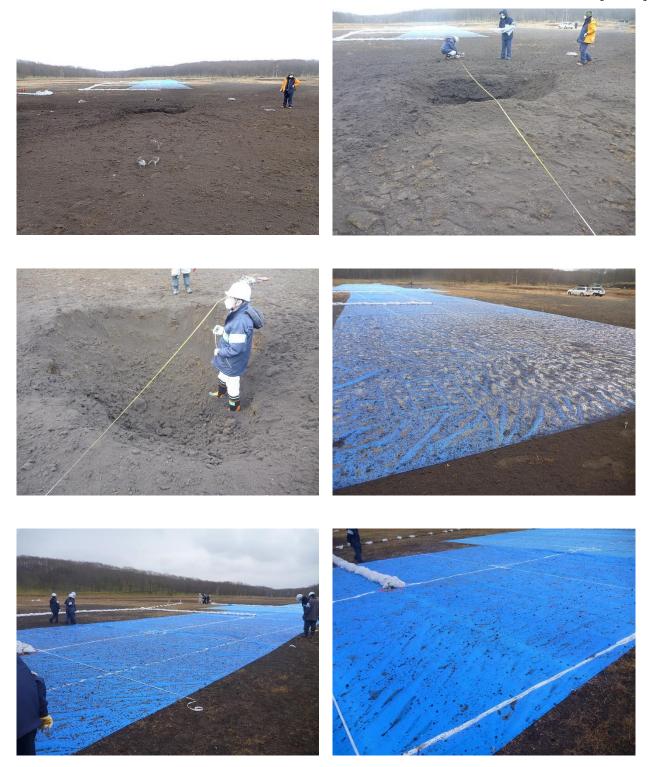
観測所1の屋上(270度方向)に設置した高速度カメラ

地盤振動計とアンプボックス

計測ボックス内の地盤振動計測機器

騒音計測マイクロフォン

実験 No.1-1 試験体設置状況(1)



実験 No.1-1 試験体設置状況 (2)

実験 No.1-1 装薬・爆装状況

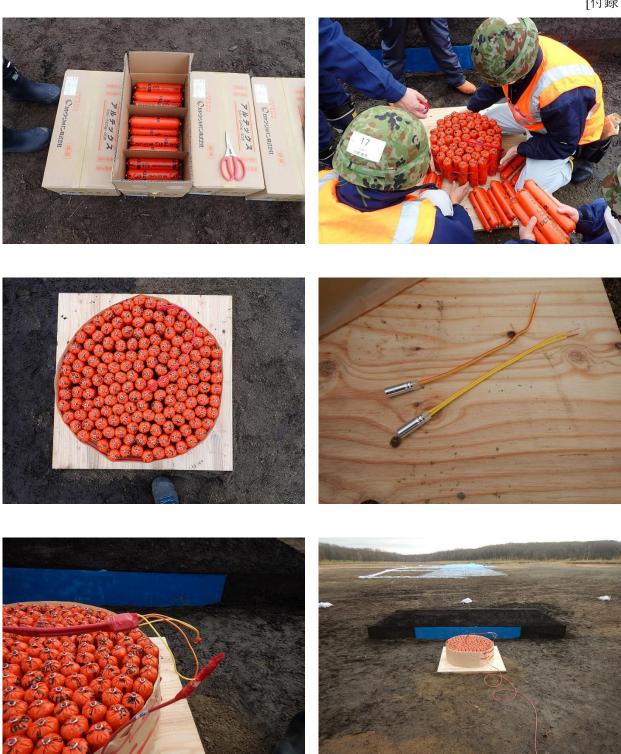
実験 No.1-1 点火後の様子

実験 No.1-2 試験体設置状況

[付録 3]

実験 No.1-2 装薬・爆装状況

実験 No.1-2 点火後の様子

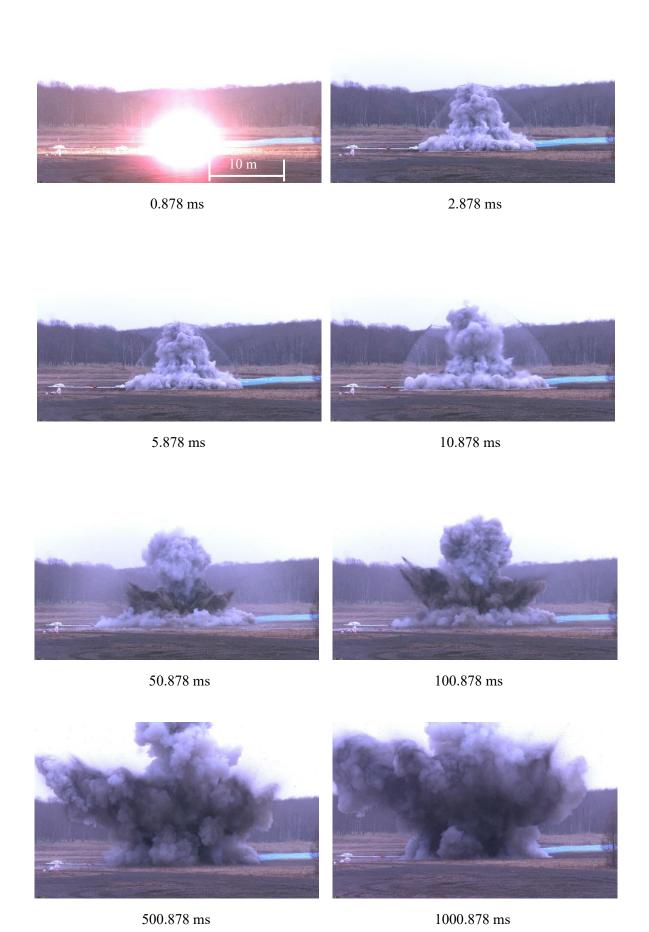


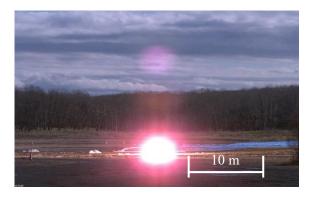
実験 No.1-3 試験体設置状況

実験 No.1-3 装薬・爆装状況

実験 No.1-3 点火後の様子

実験 No.2 装薬・爆装状況




実験 No.2 点火後の様子

4.A.3 (付録 4) 高速度カメラ撮影画像

【資料集】

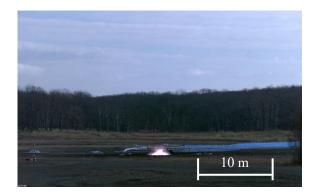
令和 4 年度 矢臼別野外実験 高速度撮影画像

0.457 ms

5.457 ms

10.457 ms

50.457 ms

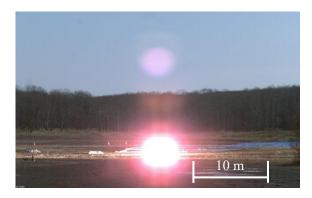

100.457 ms

500.457 ms

1000.457 ms

0.108 ms 2.108 ms

5.108 ms 10.108 ms

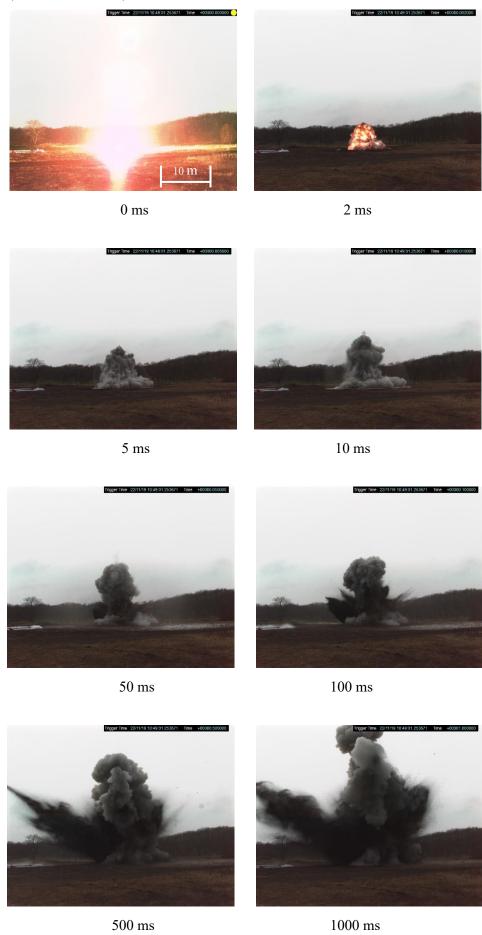


50.108 ms 100.108 ms

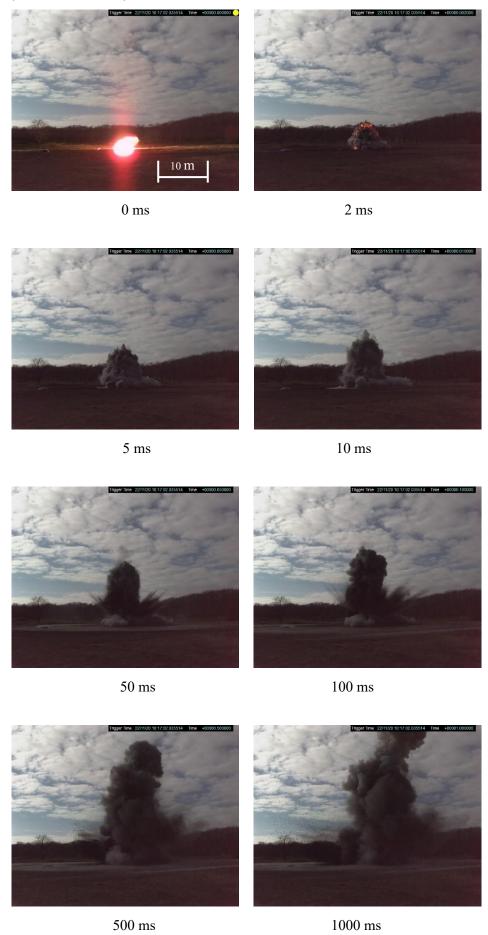
500.108 ms 1000.108 ms

0.342 ms 2.342 ms

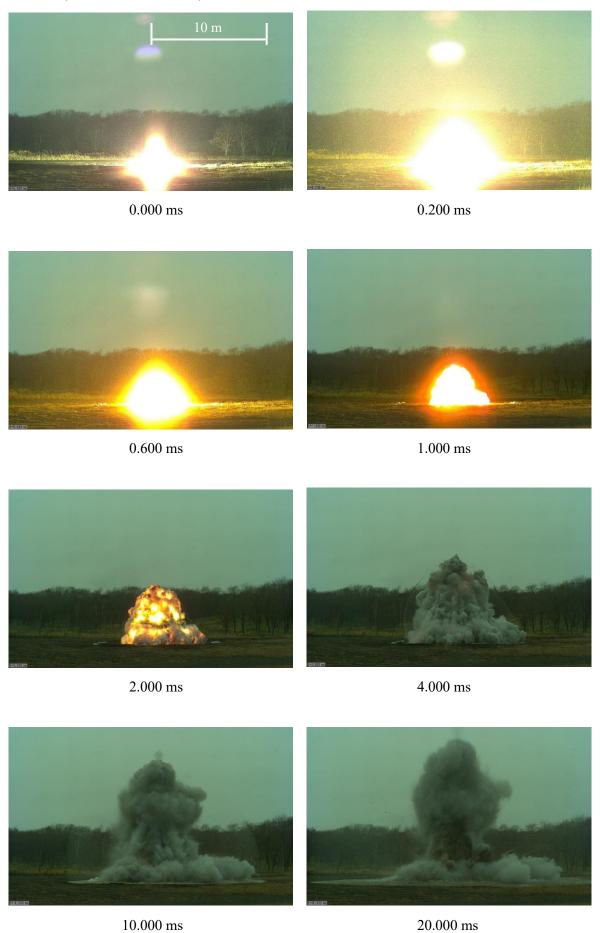
5.342 ms 10.342 ms

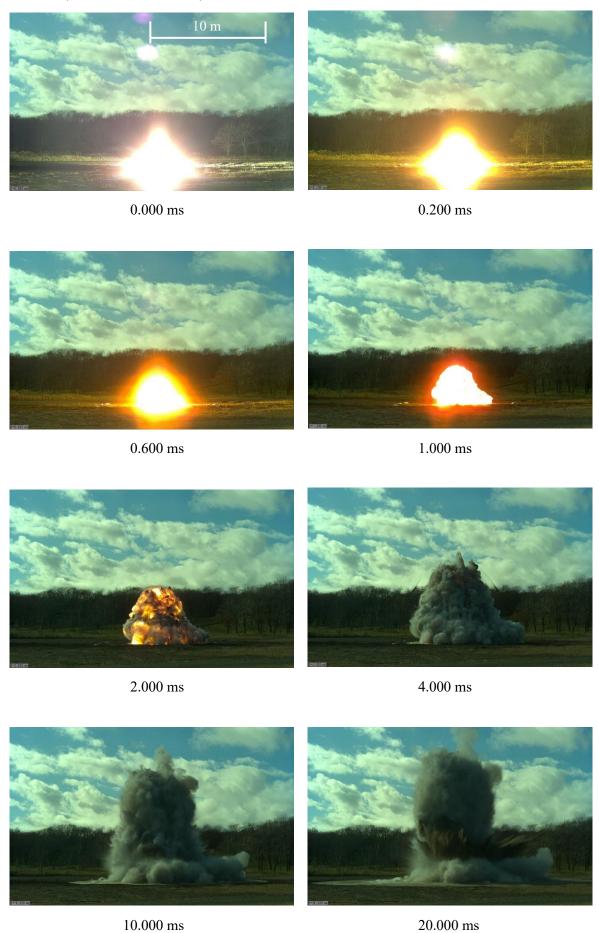


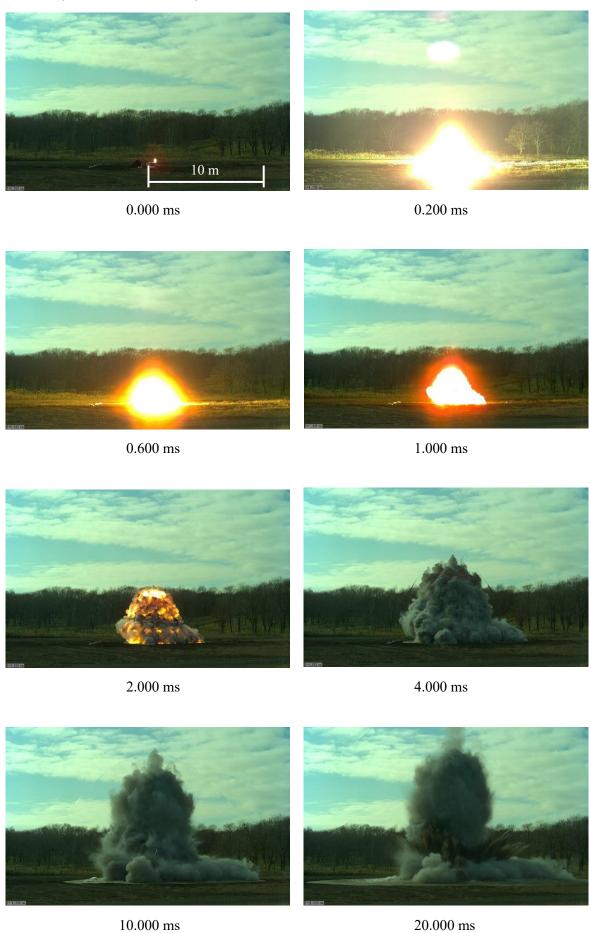
50.342 ms 100.342 ms

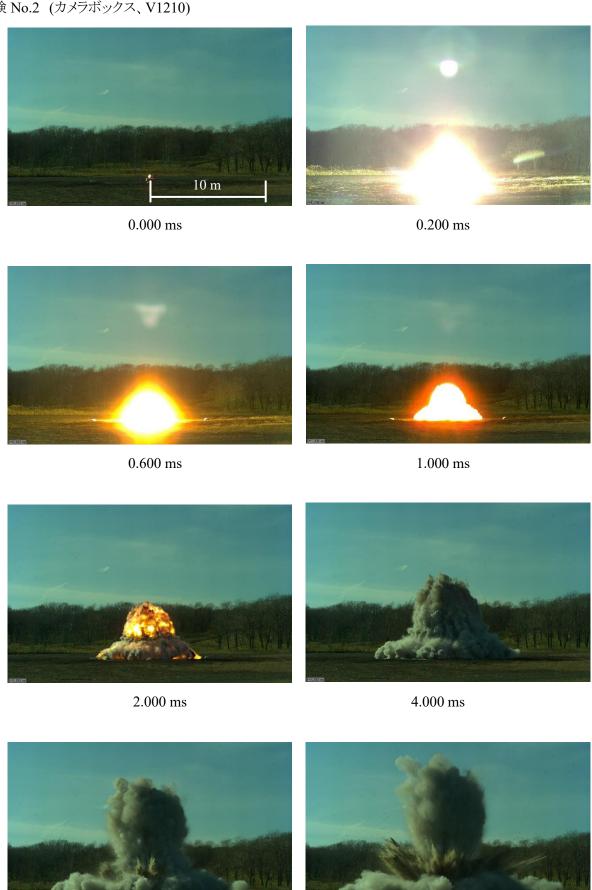


500.342 ms 1000.342 ms




実験 No.1-3 (カメラボックス、K4)





500 ms 1000 ms

10.000 ms 20.000 ms

4.A.4 (付録 5) 爆風波形

ここではケーブル保護方法による爆風波形の違いを検討するため、平成 26 年度 (H26) 実験 No.1-2 と 令和 4 年度 (R04) 実験 No.1-1 の爆風波形を比較する。どちらも薬種 (EMX2)、薬量 (80 kg)、土堤形 状 (ソイルセメントの片側垂直土堤) が同じで、計測位置も概ね薬量換算距離 (K値) 4、8、12、 $16m/kg^{1/3}$ で同様である。

(1) ケーブル保護状況

図 4.A.4-1 に(a) 平成 26 年度(H26)と(b) 令和 4 年度(R04)のケーブル防護方法を示した。H26 は整流板から伸びるホースは土のうで防護しなかったが、R04 は飛散物からホースを防護するためにその上も土のうを敷き詰めて防護した。図 4.A.4-2 は整流板近傍の土のう設置状況であり、整流板の土台として使用した円盤の直径程度の大きさ、整流板とほぼ同じ高さの土のうであった。ここではケーブル防護方法による爆風波形の違いを記載する。

(a) 平成 26 年度(H26)

(b) 令和 4 年度(R04)

図 4.A.4-1 ケーブル防護の違い

図 4.A.4-2 整流板近傍の土のう設置状況

(2) 爆風の時間履歴

図 4.A.4-3 に爆風波形全体、図 4.A.4-4 に爆風到達近傍の過圧履歴を示した。なお、実験時期の温度差による音速の違い程度に爆風の到達時刻に差が生じたため、両実験の爆風の立ち上がり時刻を合わせるために H26 実験 No.1-2 の過圧履歴を並行移動した。ケーブル防護方法によって図 4.A.4-3 の爆風波形全体には大きな違いはなく H26 と R04 において正圧相インパルスは同様な値になっているが、図 4.A.4-4では爆風が到達した後、0.5 ms も経たずに過圧がさらに上昇し 2 回目のピークを経験する。これは図 4.A.4-2 に示すケーブル保護用の土のうから生じた反射波を計測したと考えられる。R04 実験 No.1-1 において爆風が到達した瞬間の立ち上がり過圧は H26 実験 No.1-2 と同等であるが、ピーク静水過圧としては反射波による 2 回目ピークの方を採用することになるので、R04 は H26 と比べて常に 10%程度高い値となった。ケーブル防護方法に起因する結果の違いが観測された。しかしながら、H26 と R04 それぞれの検討結果「土堤を設置したとしても爆風パラメータにほとんど影響を与えない」は共通している。

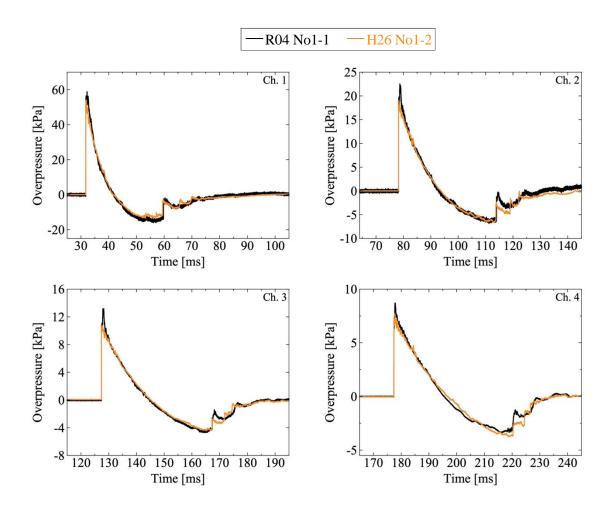


図 4.A.4-3 H26 実験 No.1-2 と R04 実験 No.1-1 の過圧履歴比較(爆風波形全体)

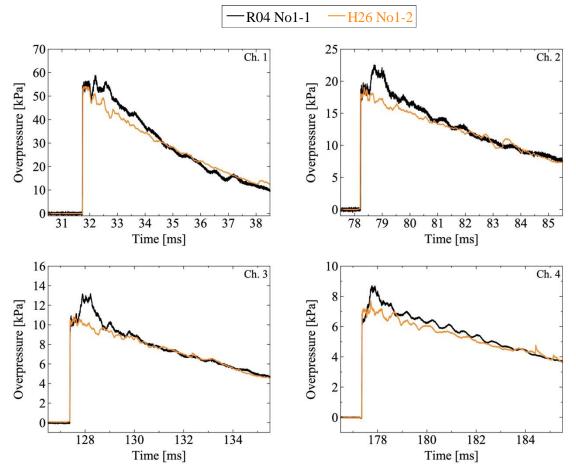


図 4.A.4-4 H26 実験 No.1-2 と R04 実験 No.1-1 の過圧履歴比較(爆風到達近傍)

4.A.5 (付録 6) 飛散物回収結果

表 4.A.5-1 から表 4.A.5-4 に回収した全ての飛散物データを示す。

No: 番号。飛散距離が小さい順から並べて番号づけした

x: X軸(基準線0度方向)に飛散した距離 (m)

y: Y軸(基準線0度方向から-5度の方向)に飛散した距離 (m)

 \mathbf{r} : 飛散距離。飛散物を回収した地点の爆点からの距離 $\sqrt{X^2+Y^2}$ (m)

w: 飛散物質量 (g)

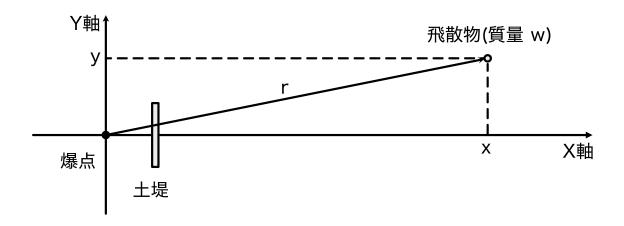


表 4.A.5-1 飛散物回収結果(実験 No.1-1)

No.	x (m)	y (m)	r (m)	w (g)
1	25.10	2.02	25.18	7.1
2	25.53	-1.25	25.56	39.1
3	25.73	1.75	25.79	8.1
4	25.76	-2.17	25.85	9.9
5	26.30	1.42	26.34	18.4
6	26.46	-0.31	26.46	7.9
7	27.37	1.44	27.41	8.3
8	27.93	1.25	27.96	5.5
9	28.95	-1.30	28.98	9.7
10	29.15	-1.04	29.17	18.3
11	30.32	-1.89	30.38	10.6
12	30.40	2.27	30.48	8.7
13	30.46	-2.61	30.57	7.6
14	30.78	-1.88	30.84	5.7
15	31.65	1.85	31.70	5.5
16	32.70	2.30	32.78	19.0
17	32.82	-1.59	32.86	6.2
18	35.00	-2.52	35.09	6.2
19	35.06	1.84	35.11	17.0
20	35.73	1.40	35.76	5.1
21	35.83	-2.93	35.95	8.1
22	36.94	2.43	37.02	8.5
23	37.19	-2.46	37.27	13.7
24	37.91	-2.60	38.00	6.9
25	38.03	-0.72	38.04	5.7
26	38.98	2.61	39.07	12.1
27	39.55	-0.40	39.55	13.0
28	42.32	1.23	42.34	6.3
29	42.48	1.74	42.52	8.8
30	42.80	-0.06	42.80	5.5
31	42.95	-1.07	42.96	6.0
32	43.26	2.95	43.36	6.2
33	44.12	0.77	44.13	7.3
34	46.49	-2.80	46.57	17.1
35	46.73	3.85	46.89	10.7
36	48.24	2.55	48.31	9.1
37	48.32	-2.61	48.39	9.8
38	48.69	-0.03	48.69	6.1
39	48.84	-2.00	48.88	7.4
40	49.91	-2.63	49.98	11.8
41	49.98	-2.84	50.06	7.8
42	50.68	0.90	50.69	6.9
43	52.18	2.57	52.24	6.1
44	53.58	0.78	53.59	5.3
45	53.75	2.70	53.82	5.9
46	54.10	1.68	54.13	9.0
47	54.33	-1.16	54.34	6.7
48	54.21	-4.15	54.37	12.2
49	54.48	-2.51	54.54	8.1
50	54.59	-3.16	54.68	5.9

No.	x (m) y (m)		r (m)	w (g)
51	56.03	2.95	56.11	10.8
52	56.68	0.85	56.69	5.4
53	56.83	-2.95	56.91	7.6
54	56.95	-0.45	56.95	6.8
55	57.39	-3.40	57.49	10.5
56	57.62	2.22	57.66	9.5
57	57.72	1.45	57.74	6.0
58	58.50	-2.14	58.54	9.0
59	59.59	2.44	59.64	5.1
60	60.05	-1.01	60.06	9.0
61	60.31	-3.59	60.42	9.9
62	61.53	5.11	61.74	6.7
63	62.03	2.17	62.07	5.9
64	62.91	-4.50	63.07	9.7
65	63.26	-2.10	63.29	5.1
66	63.38	-5.48	63.62	8.3
67	63.50	3.92	63.62	8.4
68	63.67	-1.89	63.70	6.3
69	63.82	-3.89	63.94	7.5
70	64.71	-1.88	64.74	7.7
71	64.95	2.25	64.99	10.4
72	66.62	0.75	66.62	7.5
73	66.91	-0.62	66.91	7.0
74	68.90	1.38	68.91	15.1
75	68.92	4.03	69.04	5.6
76	68.96	3.88	69.07	5.1
77	69.50	0.67	69.50	5.0
78	69.60	3.20	69.67	6.0
79	69.81	0.65	69.81	9.4
80	69.84	-6.06	70.10	5.2
81	69.99	4.00	70.10	6.4
82	70.33	-1.84	70.35	7.9
83	71.16	-4.46	71.30	7.2
84	73.85	2.52	73.89	5.9
85	74.34	-4.53	74.48	5.5
86	74.72	-2.98	74.78	10.0
87	76.76	1.54	76.78	9.3
88	76.99	-4.70	77.13	7.9
89	77.40	1.41	77.41	14.4
90	78.30	2.20	78.33	5.1
91	78.23	-5.51	78.42	6.8
92	78.25	5.80	78.46	5.1
93	78.38	-5.68	78.59	6.7
94	80.98	-2.89	81.03	6.4
95	80.94	-5.60	81.13	11.6
96	82.20	1.33	82.21	6.3
97	82.31	-1.16	82.32	5.8
98	82.71	5.84	82.92	5.8
99	83.45	-0.20	83.45	5.0
100	84.10	-4.50	84.22	7.1

表 4.A.5-1 飛散物回収結果(実験 No.1-1)つづき

No.	x (m) y (m)		r (m)	w (g)
101	84.25	-4.92	84.39	16.2
102	84.36	-6.40	84.60	10.9
103	84.44	-5.48	84.62	22.2
104	85.11	-2.05	85.13	5.5
105	85.65	-3.20	85.71	8.0
106	85.76	-0.35	85.76	11.1
107	85.78	3.02	85.83	24.3
108	86.33	-3.39	86.40	8.0
109	86.35	-3.42	86.42	7.0
110	86.35	-4.38	86.46	16.7
111	86.95	-2.50	86.99	11.1
112	87.46	-0.50	87.46	10.0
113	87.68	-0.09	87.68	7.1
114	88.30	-6.10	88.51	5.8
115	88.96	-2.69	89.00	15.9
116	89.10	-3.40	89.16	8.0
117	89.30	-2.75	89.34	7.5
118	89.62	-7.67	89.95	18.1
119	89.90	-4.78	90.03	11.0
120	89.90	-4.80	90.03	5.8
121	89.78	-7.45	90.09	5.8
122	90.19	-5.10	90.33	12.4
123	90.60	-1.77	90.62	12.1
124	91.03	3.04	91.08	7.2
125	91.43	-5.62	91.60	7.5
126	91.85	-6.21	92.06	51.3
127	94.81	5.20	94.95	13.4
128	95.37	-7.65	95.68	11.6
129	95.85	-4.85	95.97	9.1
130	96.94	-8.18	97.28	37.1
131	97.38	6.90	97.62	15.9
132	97.67	-5.71	97.84	15.0
133	97.62	7.10	97.88	7.1
134	98.80	7.25	99.07	7.1
135	99.24	0.44	99.24	12.4
136	99.78	1.11	99.79	7.1
137	100.09	3.88	100.17	9.3
138	103.50	-3.95	103.58	8.2
139	105.86	-8.92	106.24	11.9
140	109.18	2.50	109.21	31.8
141	109.66	-8.04	109.95	6.5
142	111.81	-7.22	112.04	10.2
143	112.75	1.40	112.76	11.1
144	114.47	-8.87	114.81	6.9
145	116.75	-6.56	116.93	44.8
146	117.20	-9.25	117.56	36.2
147	118.68	0.85	118.68	34.4
148	119.06	4.88	119.16	15.7
149 150	122.33 124.45	-2.96	122.37 124.45	6.5 24.6
130	124.43	-0.05	124.43	24.0

No.	x (m)	y (m)	r (m)	w (g)
151	125.96	3.70	126.01	9.5
152	126.34	3.54	126.39	10.7
153	126.18	7.48	126.40	9.1
154	127.20	-3.65	127.25	19.7
155	134.08	-0.42	134.08	14.5
156	134.03	8.22	134.28	11.2
157	139.08	-2.30	139.10	56.4
158	140.00	5.85	140.12	10.5
159	141.88	9.28	142.18	13.0
160	144.04	-0.72	144.04	6.3
161	146.99	8.40	147.23	19.6
162	148.00	-9.06	148.28	28.4
163	150.05	-8.80	150.31	212.7

表 4.A.5-2 飛散物回収結果 (実験 No.1-2)

No.	x (m)	y (m)	r (m)	w (g)
1	30.75	-4.18	31.03	12.2
2	29.85	-3.85	30.10	5.3
3	30.12	-3.05	30.27	13.0
4	31.05	-2.20	31.13	10.7
5	29.98	-3.14	30.14	7.5
6	31.15	-4.98	31.55	15.0
7	33.80	-8.66	34.89	13.6
8	34.55	-7.01	35.25	90.4
9	33.15	-3.51	33.34	8.5
10	36.28	-6.16	36.80	7.2
11	36.38	-6.21	36.91	6.4
12	38.31	-5.45	38.70	5.0
13	53.05	-5.32	53.32	8.3
14	21.18	-1.86	21.26	27.1
15	21.25	-2.72	21.42	18.7
16	22.19	-3.33	22.44	27.4
17	22.24	-3.44	22.50	34.3
18	23.65	-2.32	23.76	15.6
19	24.50	-3.65	24.77	7.1
20	23.00	-4.69	23.47	36.4
21	22.61	-5.07	23.17	8.5
22	23.30	-5.32	23.90	6.9
23	24.38	-4.75	24.84	10.9
24	25.03	-5.14	25.55	21.2
25	24.72	-5.19	25.26	5.1
26	24.56	-4.16	24.91	5.9
27	25.70	-3.69	25.96	6.8
28	25.92	-6.58	26.74	8.4
29	48.24	-5.06	48.50	16.7
30	43.87	-3.72	44.03	19.9
31	46.29	-4.28	46.49	8.6
32	42.07	-6.20	42.52	9.0
33	45.27	-4.33	45.48	9.0
34	42.42	-7.05	43.00	8.6
35	47.98	-2.70	48.06	16.6
36	46.85	-5.11	47.13	7.1
37	50.05	-5.69	50.37	43.3
38	30.70	0.70	30.71	8.6
39	20.22	-4.10	20.63	6.4
40	20.90	-4.35	21.35	5.2
41	20.47	-2.77	20.66	6.3
42	20.62	-4.06	21.02	11.8
43	20.45	-2.25	20.57	24.9
44	20.19	-1.28	20.23	6.0
45	21.19	1.22	21.23	11.0
46	21.66	0.20	21.66	9.0
47	23.63	-0.10	23.63	5.8
48	24.62	-0.78	24.63	16.3
49	25.93	-5.22	26.45	15.9
50	23.42	-6.96	24.43	7.8

No.	x (m)	y (m)	r (m)	w (g)
51	26.70	-6.20	27.41	17.2
52	28.69	-5.32	29.18	12.0
53	29.50	-5.45	30.00	6.3
54	28.70	-5.73	29.27	13.2
55	28.34	-4.20	28.65	5.7
56	28.96	-4.40	29.29	7.7
57	32.30	-3.27	32.47	7.0
58	30.34	-1.74	30.39	12.5
59	30.65	0.00	30.65	28.9
60	34.47	2.33	34.55	13.6
61	36.10	-2.02	36.16	7.5
62	25.63	-1.80	25.69	10.5
63	25.92	-3.44	26.15	6.7
64	27.32	-2.55	27.44	10.8
65	26.72	-1.92	26.79	6.0
66	27.05	-0.12	27.05	22.8
67	27.72	-2.26	27.81	7.0
68	29.05	-0.55	29.06	7.6
69	29.15	-0.30	29.15	6.0
70	28.43	-2.78	28.57	7.3
71	28.15	-3.18	28.33	6.8
72	28.20	-3.26	28.39	7.8
73	28.76	-3.32	28.95	5.5
74	28.51	-3.15	28.68	5.1
75	27.87	-4.55	28.24	6.1
76	27.93	0.58	27.94	5.4
77	27.37	1.63	27.42	17.3
78	43.90	-8.80	44.77	26.7

表 4.A.5-3 飛散物回収結果 (実験 No.1-3)

No.	x (m) y (m)		r (m)	w (g)
1	21.30	-1.76	21.37	5.5
2	21.49	-0.30	21.49	10.1
3	21.45	-1.84	21.53	34.4
4	21.71	-1.83	21.79	13.5
5	22.95	-1.57	23.00	8.4
6	23.18	-1.22	23.21	9.2
7	23.72	1.55	23.77	10.3
8	23.94	1.45	23.98	37.4
9	23.99	-0.79	24.00	16.4
10	24.10	0.10	24.10	5.0
11	24.43	-1.77	24.49	21.5
12	24.66	1.57	24.71	6.5
13	24.87	-2.04	24.95	10.6
14	25.38	-1.85	25.45	9.1
15	25.66	-0.63	25.67	26.7
16	25.81	-1.37	25.85	22.3
17	25.82	1.72	25.88	12.5
18	26.11	0.15	26.11	8.7
19	26.62	1.03	26.64	6.7
20	26.76	-0.92	26.78	19.7
21	26.79	0.44	26.79	5.5
22	26.90	-0.22	26.90	20.3
23	26.93	1.50	26.97	18.2
24	26.97	-1.70	27.02	12.9
25	27.18	-1.25	27.21	5.3
26	27.34	0.61	27.35	6.6
27	27.61	-1.83	27.67	33.2
28	28.42	-1.90	28.48	30.8
29	28.92	-1.80	28.98	9.5
30	29.44	-2.05	29.51	26.7
31	29.61	-1.25	29.64	22.8
32	29.58	-2.00	29.65	33.5
33	29.72	-0.95	29.74	10.5
34	29.83	1.68	29.88	25.7
35	29.91	-0.18	29.91	6.3
36	29.92	-0.69	29.93	18.4
37	30.62	-2.12	30.69	8.9
38	30.81	-0.30	30.81	10.9
39	31.13	-1.69	31.18	9.1
40	31.18	0.31	31.18	9.5
41	31.24	-2.66	31.35	9.1
42	31.64	-1.85	31.69	28.1
43	32.11	-2.10	32.18	16.7
44	32.40	0.82	32.41	6.5
45	32.58	1.02	32.60	9.4
46	32.82	-0.67	32.83	6.0
47	33.10	1.99	33.16	38.1
48	33.65	0.35	33.65	33.2
49	33.75	1.79	33.80	8.5
50	34.12	2.45	34.21	11.8

No.	x (m)	y (m)	r (m)	w(g)
51	35.12	1.84	35.17	15.8
52	35.71	-0.97	35.72	11.4
53	36.12	-1.09	36.14	6.9
54	37.20	-1.20	37.22	12.3
55	37.58	-1.42	37.61	10.3
56	37.55	-2.60	37.64	11.9
57	46.73	3.40	46.85	19.8
58	48.33	0.56	48.33	11.3
59	50.70	2.12	50.74	7.6
60	54.72	-4.26	54.89	7.8
61	57.89	-1.10	57.90	15.1
62	60.91	0.71	60.91	5.1
63	89.67	3.94	89.76	5.7
64	92.05	-2.06	92.07	5.0
65	123.83	-9.46	124.19	7.2

表 4.A.5-4 飛散物回収結果 (実験 No.2)

No.	x (m)	y (m)	r (m)	w (g)
1	24.55	0.19	24.55	8.0
2	25.07	-0.15	25.07	6.0
3	27.92	-1.75	27.97	18.9
4	28.18	1.55	28.22	5.5
5	32.68	-0.15	32.68	21.0
6	32.85	0.37	32.85	21.5
7	37.25	-2.24	37.32	11.7
8	37.90	-2.94	38.01	10.0
9	39.90	-0.61	39.90	7.6
10	40.56	-1.50	40.59	7.7
11	40.64	-0.25	40.64	5.1
12	41.46	2.12	41.51	5.1
13	42.28	1.70	42.31	7.2
14	43.87	2.80	43.96	6.0
15	45.43	1.38	45.45	6.8
16	45.83	3.15	45.94	14.3
17	46.10	2.14	46.15	58.5
18	46.45	-0.75	46.46	5.5
19	46.45	2.02	46.49	7.2
20	47.61	-3.06	47.71	37.0
21	48.70	-3.91	48.86	9.2
22	49.07	1.10	49.08	22.9
23	50.21	2.52	50.27	12.1
24	55.75	-0.20	55.75	5.5
25	57.09	-1.28	57.10	6.3
26	58.92	2.92	58.99	5.1
27	67.95	0.40	67.95	18.0
28	68.74	-5.40	68.95	13.2

4.A.6 (付録7)使用器材一覧

実験で使用した機器の一覧を表 4.A.6-1 から表 4.A.6-5 に示す。

表 4.A.6-1 使用機器類(観測所)

機器名称	メーカー	型番	仕様
▲冷 工件 ㎡ロ	TELEDYNE	EC 42	使用電力(W): 100
発破器	RISI	FS-43	充電電圧(V): 4000
			Delay:0 to 99.99999999 seconds with 1 ns
			resolution
			Width:10 ns to 99.999999999 seconds with 1 ns
パルス発生器	Berkeley	BNC575	resolution
	Nucleonics		Accuracy:1 ns+0.0001xtime
			Timebase:10 MHS,25 ppm crystal oscillator RMS Jitter:1 ns
			Trig Delay:Ext.Trig to 0<250 ns
			形式:プラグインモジュール
	タルナシ	可電機 DL750	スロット数:8
デジタルオシ			ロジック入力:16 (8bit*2)
ロスコープ	横河電機		最大レコード長 2.5 MW/Ch トータル 50 M
			取入レコート云 2.3 MW/Cn トータル 30 M
			word 最高サンプルレート:10 MS/s
ウェザーステ			Indoor and outdoor temperature Pressure display
ーション(温	Technoline	WS9032	Dew point
湿度、気圧計)			Humidity:1% to 99% (resolution 1%)
			測定範囲
			風速: 0.4m/s ~ 70m/s
			風向: 0~ 540° Shift 24 分割-16 方位
風向風速計	大田計器	30-T	精度
			風速:6m/s 以下のとき±0.3m/s、6m/s 超過の
			とき±5% (気象庁規格)
			C C - 170 (XV)外/1/1117/

表 4.A.6-2 使用機器類(爆風計測)

			T
機器名称	メーカー	型番	仕様
ピエゾ圧力	DCD	113B28	\leq 500kHz,100mV/psi
素子	PCB	102M256	≦250kHz,200mV/psi
ラインドライバー	Н-ТЕСН	Triple mode 30222	利得×0.5,×1,×2, ×5,×10
アンプレシ	Н-ТЕСН	mode 30310	Wide band low noise ultra-high isolation instrumentation receiver
波形記憶装置	Tasler	LTT184/8	方式: AD 変換によるデジタルデータ記憶 サンプリング間隔: 最高 500 ns 以上 垂直分解能: 16 bit チャンネル数: 8 Ch(同時サンプリング) メモリ: 128 MB 以上

表 4.A.6-3 使用機器類(高速度カメラ撮影)

機器名称	メーカー	型番	仕様 (撮影時の設定)
高速度カメラ	ナックイメ ージテクノ ロジー社	MEMRECAM fx-K4	画素数:1280 (横)×1024 (縦) 画素、撮影速度:1000 コマ/秒(フルフレーム撮影時)
高速度カメラ	Vision	Phantom	画素数: 1280 (横) ×800 (縦) 画素、撮影速度: 12600
同歴及ガブブ	Research 社	v1210	コマ/秒(フルフレーム撮影時)
高速度カメラ	Vision	Phantom v640	画素数: 2560 (横) ×1600 (縦) 画素、撮影速度: 1400
同歴及ガグノ	Research 社	Phantom vo40	コマ/秒(フルフレーム撮影時)

表 4.A.6-4 使用機器類(地盤振動測定関係)

機器名	製造	型番	仕様
	元		
圧電型加速度ピ	TEAC	612ZS	感度(pC/m/s²) 約 0.035±20% 横感度(max) 5% 静
ックアップ			電容量 580pF±20% (ケーブル 3m 付) 補償温度範囲 -
			50℃~160℃ 周波数応答(±3dB) fc~20,000Hz 共振周
			波数 約 60kHz 使用最大加速度(m/s²) ±100,000 耐衝
			擊性 (peak) (m/s²) 100,000
	TEAC	707Z	感度(mV/m/s²) 約 10±10% 横感度(max) 5% 基底
			ノイズ(max) 20uVrms 補償温度範囲 -20℃~100℃ 周波
			数応答(±3dB) 3~5,000Hz 共振周波数 約 10kHz 使
			用最大加速度(m/s²) ±150 耐衝撃性(peak)(m/s²)
			10,000
チャージアンプ	TEAC	SA-611	圧電型加速度トランスデューサ 入力(max) 10000pC(電
			荷入力) / ±10V(電圧入力) 定電流 0.5 mA, 4mA, 24DVC
			感度設定範囲 0.03-999(pC/m/s² or mV/m/s²) 定格出力
			1V±1.5% 周波数特性 0.2-30k Hz (H.M) 0.2-10k Hz(L)
	RION	UV-15	振動計ユニット入力(max) 100000pC(電荷入力)/ ±
			24V(電圧入力)感度設定範囲 0.1-99.9 (pC/m/s ² or
			mV/m/s ²) 定格出力 1V±2% 周波数特性 1-15k Hz
			(ACC, ±5%) 3-3k Hz(VEL, ±5%)
データロガー	HIOKI	8861-50	メモリハイコーダ(高分解能ユニット 8957 使用時) 最高
			サンプリング速度 2MS/s 分解能 16bit 測定レンジ 5m-
			12 V/DIV 確度 DC±0.2% f.s. 周波数特性 DC-200kHz

表 4.A.6-5 使用機器類

名称	メーカー	台数	仕様、性能						
NL-31	リオン (株)	2	A 特性(28~130dB)、C 特性(33~130dB)、平坦特性 (38~130dB)、演算(Lp ,Leq、Le、Lmax、Lmin、L _N)						
377C10	PCB PIEZOTRONICS 社	3	Mic.Diameter 1/4inch, Sensitivity 1.0mV/Pa, Frequency <3Hz~60kHz, Dynamic range 28~165dB						
BK 2250 Hand held analyzer	BK 社	2	ダイナミックレンジ: 120dB 、最大: 140dB、Z(平坦)特性(3~20kHz)、演算 (L _{Aeq} 、L _{Ceq} 、L _{CE} 、L _{AE} 、L _{Zpeak} 、L _{AFmax} 、L _{ASmax} 、L _{CSmax} など 30 以上)						
PC FFT ア ナライザ FP4/OR24J	OROS 社	2	入力チャンネル数: 4, 入力電圧レンジ 1mV~31.6V、ダイナミックレンジ: 90dB 、分析周波数レンジ: 1~40kHz、分析機能: クロススペクトラム、伝達関数、位相差、コヒーレンス関数、ボード、ベクトル表示、三次元分析						

4.A.7 (付録8) 土堤構築材料試験結果

- 1. 土・ソイルセメント試験結果
- 2. コンクリート擁壁試験結果

土質試験結果一覧表

工 事 名:火薬類保安技術実験

整理年月日:令和 4年 11月 15日

測 定 者: ■ ■

										0.00	
	試	料		土	No.		1				
試	彩	採	J	取	測	点	流用土				
試 彩	上土	の深	さ		表面						
試	料	土	採	取	月	月					
試	料	— <u>-</u> — 採	取	時	天	 候					
土		子の			ρε	(g/cm³)	2. 434				
自	然	含	水	比	Wn	(%)	57. 11				
	最	大		粒	径	(mm)	19				
		0 0 mm	通	過	率	(%)	94. 7				
粒	0.4	2 5 mm				(%)	83.8				
	0.0	7 5 mm		"		(%)	48.8				
度	礫	分		2~7	5 mm	(%)	5. 3				
		分				(%)	45. 9				
特		ト分				(%)	32.8				
		上分		ρμmā		(%)	16.0		1		
性	均	等	係	娄	ζ	Uc	56. 58				
	曲	率	係	娄	ζ	Uc	3. 52				
ンシー特性	液	性	限	界	W_I	(%)	NΡ				
シー	塑	性	限	界	W_p	(%)	NΡ				
ケ性	塑	性	指	娄	Ιρ		NΡ				
	+ 1/21 A	工兴 丛	八米五	分	類言	12 号	(SF-G)				
地盛化	1种()	工学的	万狽	分	類	名	下記へ				
طار ك	現	場含	水」	比	W	(%)					
自状	現場	易湿 潤	密」	度	ρ t	(g/cm³)					
然態		易乾燥				(g/cm³)					
締特	試	験フ	与	法			A - b				
締特固	最大	、乾燥	密」	夏ρο	max	(g/cm³)	1. 009				
め性	最)	商 含	水」	Ł Wo	ot	(%)	44. 33				
室内	コーン	/支持力	5		qc	(kN/m^2)	833.6				
単位结	容積質	重量(運	種搬積	載時)		(kg/1)	1. 173				
					(S	F-G)	礫まじり細	粒分質砂			

本試験は、建設発生土(流用土)の効率的な利用を目的として、「(財)土木研究センター・建設発生土利用技術マニュアル(第4版)」の基準に基づき実施したものである。

1. 土質区分判定のための指標を表-1にしめす。

表-1 土質区分判定のための調査試験方法

判定指標**1)	試 験 方 法	規格番号・基準番号
コーン指数**2)	締固めた土のコーン指数試験方法	JIS A 1228
土質材料の工学的分類	地盤材料の工学的分類方法	JGS 0051
自然含水比	土の含水比試験方法	JIS A 1203
土の粒度	土の粒度試験方法	JIS A 1204
液性限界・塑性限界	土の液性限界・塑性限界試験方法	JIS A 1205

- ※1) 改良土の場合は、コーン指数のみを測定する。
- ※2) 1層ごとの突固め回数は、25回とする。(室内コーン支持力試験の測定方法参照)
- 2. 土質試験結果および土質区分を表-2にしめす。

表-2 土質試験結果

	又 4 工具的欧州不	
試 験 名	試 験 結 果	土質区分
コーン指数 (kN/m²)	833. 6	
地盤材料の工学的分類	礫まじり細粒分質砂 (SF-G)	第2b種発生土
土の含水比 W (%)	57. 11	
液性限界・塑性限界	NP (ノンプ [®] ラスティック)	

判定

試験結果から、流用土は「第2b種発生土」に区分される。

適用用途標準より、工作物の埋戻しや道路用盛土(路体・路床)として、そのままで使用可能なものと判断する。

判定に使用した、土質区分ならびに適用用途標準を次項にしめす。

発生土の土質区分は、原則として、コーン指数と土質材料の工学的分類体系を指標とし、表-3に示す土質区 分基準によるものとする。なお、土質改良を行った場合には、改良後の性状で判定するものとする。

		表一	3 土質区分	分基準		
区分		コーン指数	土質材料のエ	学的分類 ^{**6)、**7)}	備	考 ^{※6)}
(国土交通省令)※1)	細区分***: **31、**4)	qc ^{※5)} (kN/m ²)	大分類	中分類 土質 {記号}	含水比 (地山) Wn (%)	掘削 方法
第1種建設発生土	第1種		礫質土	礫(G)、砂礫(GS)		
(砂、礫及びこれ)	/d→ 11里	_	砂質土	砂{S}、礫質砂{SG}	_	
らに準ずるもの	第1種改良土※8)		人工材料	改良土{I}	_	
第2種建設発生土	第2a種		礫質土	細粒分まじり礫{GF}	summer.	
砂質土、礫質土及びこれらに準	第2b種	800 以上	砂質土	細粒分まじり砂{sF}	_	
ずるもの	第2種改良土		人工材料	改良土{I}		
第3種建設発生土	第3a種		砂質土	細粒分まじり砂{SF}		
通常の施工性が	笠の上番	400	粘性土	シルト(M)、粘土(C)	40%程度以下	・排水に考慮する
確保される粘性 土及びこれに準	第3b種	以上	火山灰質粘性土	火山灰質粘性土{V}		が、降水、浸出地下水等により含水
し ずるもの し	第3種改良土		人工材料	改良土{I}		比が増加すると予 想される場合は、 1ランク下の区分
第4種建設発生土	第4a種		砂質土	細粒分まじり砂{SF}		とする。
			粘性土	シルト{M}、粘土{C}	40~80%程度	
粘性土及びこれ に準ずるもの	第4b種	200 以上	火山灰質粘性土	火山灰質粘性土{V}		
(第3種建設 発生土を除く)			有機質土	有機質土 {0}	40~80%程度	・水中掘削等による場合は、2ラン
	第4種改良土		人工材料	改良土{I}		ク下の区分とす る。
	泥土a		砂質土	細粒分まじり砂{SF}		
			粘性土	シルト{M}、粘土{C}	80%程度以上	
泥 土**1)、**9)	泥土b	200 未満	火山灰質粘性土	火山灰質粘性土{V)		
			有機質土	有機質土{0}	80%程度以上	
	泥 土 c		高有機質土	高有機質土{Pt}	_	

- ※1) 国土交通省(建設業に属する事業を行う者の再生資源の利用に関する判断の基準となるべき事項を定める省令 平成13年3月29日 国交令59、建設業に属する事業を行う者の指定副産物に係る再生資源の利用の促進に関する判断の基準となるべき事項を定める 省令 平成13年3月29日 国交令60)においては区分として第1種~第4種建設発生土が規定されている。
- ※2) この土質区分基準は工学的判断に基づく基準であり、発生土が産業廃棄物であるか否かを決めるものではない。
- ※3) 表中の第1種〜第4種改良土は、土(泥土を含む)にセメントや石灰を混合し化学的安定処理したものである。
- 例えば第3種改良土は、第4種建設発生土または泥土を安定処理し、コーン指数400kN/m²以上の性状に改良したものである。 ※4) 含水比低下、粒度調整などの物理的な処理や高分子系や無機材料による水分の土中への固定を主目的とした改良材による土質
- 改良を行った場合は、改良土に分類されないため、処理後の性状に応じて改良土以外の細区分に分類する。
- ※5) 所定の方法でモールドに締め固めた試料に対し、コーンペネトロメーターで測定したコーン指数。
- 計画段階(掘削前)において発生土の区分を行う必要があり、コーン指数を求めるために必要な試料を得られない場合には、土質 材料の工学的分類体系((社)地盤工学会)と備考欄の含水比(地山)、掘削方法から概略の区分を選定し、掘削後所定の方法でコーン 指数を測定して区分を決定する。
- ※7) 土質材料の工学的分類体系における最大粒径は75mmと定められているが、それ以上の粒径を含むものについても本基準を参照し て区分し、適切に利用する。
- ※8) 砂及び礫と同等の品質が確保できているもの。
- ※9)・港湾、河川等のしゅんせつに伴って生ずる土砂その他これに類するものは廃棄物処理法の対象となる廃棄物ではない。(廃棄物 の処理及び清掃に関する法律の施行について 昭和46年10月16日 環整43 環境省通知)
 - ・地山の掘削により生じる掘削物は土砂であり、土砂は廃棄物処理法の対象外である。(建設工事等から生ずる廃棄物の適正処理 について 平成13年6月1日 環廃産276 環境省通知)
 - ・建設汚泥に該当するものについては、廃棄物処理法に定められた手続きにより利用が可能となり、その場合「建設汚泥処理土 利用技術基準」(国官技50号、国官総第137号、国営計第41号、平成18年6月12日)を適用するものとする。

発生土の利用用途は、土質区分に基づき、表ー4に示す適用用途標準を目安とする。

	田園			120		任治		\$27	100	(A)	经治	+	524		\$27		纸粉	150
			м 42	第 1 種 建設発生士	る、療及な	にれるに発するもの	第 2 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AB BX 28 TL T	砂箱土搬包	士及びこれ らに継ずる もの	<u> </u>	4	発設発生士		年 20年 20年 20年 20年 20年 20年 20年 20年 20年 20	なられている。		2 4 2 位
		路体	留意事項	最大粒径注意 粒度分布注意	最大粒径注意	最大粒径注意			指工機械の 静炉荘徳	施工機械の 協定在総	施工機械の確定性態							
	道路用船上		評価	0	0	0	0	0	0	0	0	0	0	0	0	∇	◁	
	遊路	路床	留意事項	最大粒径注意 粒度分布注意	最大粒径注意	最大粒径注意												
			評価	0	0	0	0	0	0	0	0	0	◁	◁	٥	٥	×	
適用用途標準	十木精浴物の歩込め		留意事項	最大粒径注意 粒度分布注意	最大粒径注意	最大粒径注意 細粒分含有率注意	建 粒分含有率性盒											明 前 一子の主社が再発したこの、党が被決に行政を開発した。
適用	十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十		評価	0	0	0	0	0	0	0	0	0	⊲	◁	◁	◁	×	4
4 (1)	は気動の祖籍に※1	O KH	留意事項	最大粒径注意 粒度分布注意	最大粒径注意	最大粒径注意		表图利用注意	施工機械の 協定注意	施工機械の 確定性急	表層利用注意 施工機械の 適定注意							田田田舎谷谷谷
茶	78.55	¥	評価	0	0	0	0	0	0	0	0	0	0	0	0	∇	×	100
	工作物の温度し		留意事項	最大粒径注意 粒度分布注意	最大粒径注意	最大拉径注意 細粒分含有平注意	雑数の合併単独数											5.0 Grants
	H		評価	0	0	0	0	0	0	0	0	0	0	◁	∇	∇	×	い可能が
	國用用途			第1種	第1 改良士	第2a租	第26種	第2種改良土	第3a框	第35種	第3 表页 上	第4a框		郑4 郑县中	派士a	が土り	泥土c	中か存置さ
	/ /		医分	第 1 新建設条件	き、森文で これらに巻 ずるもの	第 2 種 建設発生土	砂質土、職質土及びこ	れらに搭するもの	第 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	自体 ななな なな なな なな なな なな なな なる なる なる なる なる なる	分がから	第 4 額建設整生土	特性主及び	(2 to 0)		施士		[新 意] (48年)

粒度分布注意 核水域利用注意

0

0

最大粒径注意 粒度分布注意

0

表图利用注意

0

最大粒径注意 聯組入率注意 获图利用注意

0

0

0

第1種

木而埋立※

點單

辉 篇

智能事項

附信

鮮塩

智意事項 宅地造成

評官

智意事項 一般堤防

群海

留意事項 高規格堤防

辉色

公園・緑地造成

適用用途標準 土地造成

表一4 (2)

河三级岛

適用用途

校水城利用注意

0

最大粒径注意

0

最大粒径注意

0

表图利用注意

0

最大粒径往並 礫混入率注意 萩磨利用往意

0

0

最大粒径注意 發混入學注意 透水性注意 表格性注意

0

第1組改良十

0

最大粒径注意

0

最大粒径注意

0

表層利用注意

0

最大粒径注意 凝混入率注意 表層利用注意

0

0

最大粒径注意 發視入學注意 粒度分布注意 透水性注意

0

第2a框

粒度分布铝松

0

0

0

0

0

粒度分布強線

0

粒度分布注意

0

第26和

0

0

0

表图利用注意

0

表層利用注意

0

数層利用注意

0

表層利用注意

0

第2種 快原十

构成分布铂银

0

0

0

0

植工器棋の場合用の

0

粒度分析性後 施工機械の 過定性後

0

0

第39種

0

0

0

0

指し接表の暗が音

0

哲政分布 指工機 基工機 関の 関の 関係

0

0

第36種

0 0 0 0 0

施工機械の 協定符続

0 0 0 0 0 ◁

0

表面利用注診 施工機械の 適定注意

0

表图利用注意 施工機械の 確定注意

0

表層利用注診 加工機械の 確定注診

0

0 0 0 0 0 ◁ ×

第3根及及上 第4a框 第46種

粒度分布強急

0

0 0 0 0

0 0

0 0 0

◁ ◁ ◁ ×

0

⊲

0

◁

◁

0

0 ◁ ×

泥土a 泥土り

泥土

第4章

格性士及び これに着す。 るもの

◁

×

◁

19年4年20日 (19年2日) 19年2日 (19年2日) 19年3年2日 (19年3日) 19年3年3日 (19年3日) 19年3年3日 (19年3日) 19年3日 (19年3日) 19年3日

318

砂 分 (0.075~2mm) (%) (b) 粗粒士の小分類および細粒士の 細分類用三角座標 特記事項 1) 主に観察と塑性図で半 (CH) B線 (CH) A線: I _p =0.73(m ₂ -20) B線: m=50	JGS 0051	地 盤	*材料(の工学	的分	類		
試料番号 後用土	 查件名 火薬類保安技	術実験			試 	験年月日	令和 4年	11月 15日
(漢					試	験 者	r ≐ : †:	-
石 分 (75mm以上) %	試 料 番 号	流用土						
職 分(2~75mm) % 6.3 3								
形 分(0.075~2mm) % 45.9 ## 粒 分(0.075mm未満) % 48.8 **								
照 粒 分(0.075~0.075mm/%) % 48.8								
ドルト分(0.005~0.075mm)% 32.8 粘 上分(0.005mm未満) % 16.0 最 大 粒 径 mm 19 均 等 係 数 U, 56.56 酸性 眼 界 w % NP 型性 排 数 J, NP 地線材料の分類名 和地分質砂 分 類 記 号 (SF-C) 凡 例 記 号 O								
格 士 分(0.005mm末端) % 16.0								
展 大 粒 径 mm 19			~~~~~~~					
100 年 保 数 U, 56.58 100								
接 性 限 界 10 96 NP 型 性 指 数 7, NP 型 型 性 国								
型性限界 10, % NP								
型性指数 1, NP 地盤材料の分類名 無数分質砂 分類 記号 (SF-G) 凡 例 記号 (SF-G) こ 角座標 か 分 (0.075~2mm) (%) (CH) B線 10-5 (SH-G) (SS) (SS) (SS) (SS) (SS) (SS) (SS) (S								
地盤材料の分類名 細粒分質砂 分 類 記 号 (SF-G)								
会 類 記 号 (SF-G)	the day to be to the day	礫まじり						
三角座標	B盤材料の分類名 	細粒分質砂						
三角座標								
三角座標	L 例 記 号	0						
一型 性 図 A線	72 4		15 \$ \$ \$ \$	-	角座標	E/(cF-S) (6 (G-S) (GS)	(FSG) (SFG) (SFG) (SG-F) (SG-F	(SF-0) (S) 15 (S-FG) (S) 5 (S-G) (S) 5 (S-G) (S) 5
20 (CL)	10 H	(0.075~2mm) (%)	' 21 1 1 1	A Sept.	(b) 粗粒土の/ 細分類用	ト分類および; 三角座標 	御粒土の
0 20 50 100 150 200 液性限界 w_1 (%)	50 B線 20 (GL) 6 0 20 50	(MH)	B線:w ₁	=0. 73(w ₁ -20)	200	特記事項	1)主に観察と	一塑性図で判別分類

JIS A 1202 JGS 0111 土 粒 子 の 密 度 試 験 (測定)

調查件名 火薬類保安技術実験

試験年月日 令和 4年 11月 11日

			試	験 者	2014 P	ጉ '
試料番号(深さ)	流用土					
ピクノメーターNo.	14	15	24			
(試料+蒸留水+ピクノメーター)の質量 m。g	250. 995	251. 461	261. 528	***************************************		
m をはかったときの内容物の温度 T $^{\circ}$ C	19. 1	19. 1	19. 1			
T℃における蒸留水の密度 ρω(T)g/cm³	0. 99838	0. 99838	0. 99838			
温度f℃の蒸留水を満たしたときの D (蒸留水+ビクノメーター)質量 m。g	236. 843	237. 226	246. 831			
容 器 No.	14	15	24			
試 料 の (炉乾燥試料+容器)質量g	103. 057	107. 574	117. 364			
炉乾燥質量 容 器 質 量 g	79. 093	83. 432	92. 424			
m_{*} g	23, 964	24. 142	24. 940			
土 粒 子 の 密 度 ρ。 g/cm³	2. 438	2. 433	2. 431			
平 均 値 ρ _s g/cm³		2, 434				
試料番号(深さ)						
ピクノメーターNo.						
(試料+蒸留水+ピクノメーター)の質量 mь g						
m 。をはかったときの内容物の温度 T $^{\circ}$ \mathbb{C}						
T℃における蒸留水の密度 ρω(T)g/cm³						
温度f℃の蒸留水を満たしたときの 1) (蒸留水+ピクノメーター)質量 m。g						
容 器 No.						
試 料 の (炉乾燥試料+容器)質量g						
炉乾燥質量 容 器 質 量 g						
m₅ g						
土 粒 子 の 密 度 ρ。 g/cm³						
平 均 値 ρ _s g/cm³			A Control of the Cont		,	

m をはかったときの内容物の温度 T ℃

T℃における蒸留水の密度 ρω(T)g/cm³
温度T℃の蒸留水を満たしたときの m³ g

容 器 No.
試 料 の (炉乾燥試料+容器)質量g

炉 乾燥質量 容 器 質 量 g

m. g

土 粒 子 の 密 度 ρ. g/cm³

平 均 値 ρ. g/cm³

特記事項

試 料 番 号 (深 さ) ピク ノ メ ー タ ー No.

(試料+蒸留水+ピクノメーター)の質量 m。g

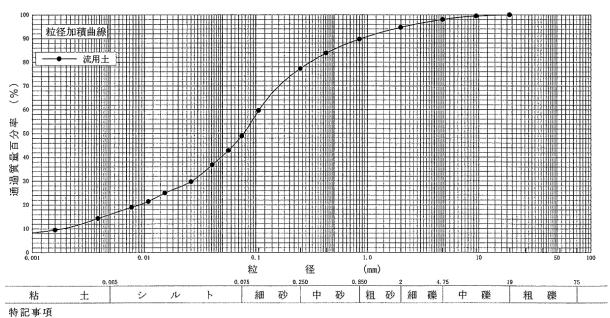
1) ピクノメーターの検定結果から求める。

$$\rho_s = \frac{m_s}{m_s + (m_o - m_b)} \times \rho_w(T)$$

老男子(1971) (1781) (1791) 本。《社

JIS A 120		土 の	含 水 均	上試	 験		
J G S 0 1 2			<u> </u>				
調査件名 火薬料	頁保安技術実験			∄ 	式験年月日	令和 4年	11月 14日
					式 験 者	÷τ	.
試料番号(深さ)	流用土						
容器 No.	249	250	251				
<i>m</i> ₃ g	583. 1	570. 5	510.8				
ть g т∘ g	389. 6 52. 6	383. 2 52. 5	343. 7 51. 9				
w %	57. 42	56. 64	57.27				
平均值 w %		57. 11	1			****	
特記事項							
試料番号(深さ)							
容器 No.							1
m _e g							
<i>т</i> ь g							
m. g w %							
w % 平均値 w %				:			
特記事項							
試料番号(深さ)							
容器 №.							
mь g							
m. g							
w %							
平均値 w % 特 記 事 項		ALTERATION AND A STREET AND A ST					
付 記 争 久							
試料番号 (深さ)							
容器 No.				-			
<i>m</i> . g				-			
ть g те g				-			
w %							
平均值 w %							
特記事項	Total International Control of the C				***************************************		
試料番号(深さ)				T			
容器 No.							
<i>m</i> ₃ g							
ть д							
m. g w %							
w % 平均值 w %							
特記事項							
				$w = \frac{m}{m}$	$\frac{a - m_b}{b - m_c} \times 10$	· 0 m。: (炉	料+容器)質量 乾燥試料+容器)質量
			***************************************			m。: 容都	是質量

(#/Toleto Delay) | 14.000


JIS	Α	1204	 σ	水牛	庄	±;}-	既会	(粒径加積曲線)	
JGŞ		0 1 3 1	 V	小小	汉	Dr.	心火	(在生)和預 四 // /	

調査件名 火薬類保安技術実験

試験年月日 令和 4年 11月 14日

試	験	者	77.4	•	77

								DT/	初天	13	A10.10 A1
試料番号	流用土					活	料	番	号		流用土
(深 さ)		,				(深			さ)		
	粒 径 mm	通過質量百分率%	粒 径 mm	通過質量百分率%	粗	礫		分		%	*
	75		75		中	礫		分		%	2. 0
ふ	53		53		細	礫		分		%	3. 3
	37.5		37. 5		粗	砂		分		%	5. 0
る	26. 5		26. 5		中	砂		分		%	12. 4
٦,	19	100.0	19		細	砂		分		%	28. 5
٧١	9, 5	99. 5	9. 5		シ	ル	۲	分		%	32. 8
(,	4. 75	98.0	4. 75		粘	土		分		%	16. 0
	2	94. 7	2		2mm 3	ふるい	通過	質量	百分章	3 %	94. 7
分	0. 850	89. 7	0.850		4 25 μ	mふる	い Mi	過質量	百分音	≅ %	83. 8
	0. 425	83.8	0. 425		75 μι	nふる	い通過	質量	百分	× %	48. 8
析	0. 250	77. 3	0. 250		最	大	粒	径		mm	19
	0, 106	59.6	0. 106		60	%	粒	径	D_{60}	mm	0. 1075
	0. 075	48.8	0. 075		50	%	粒	径	D_{50}	mm	0. 0782
	0. 0567	42.8			30	%	粒	径	D_{30}	mm	0. 0268
	0.0407	36.8			10	%	粒	径	D_{10}	mm	0.0019
沈	0.0262	29. 7			均	等	係	数	$U_{\mathfrak{e}}$		56. 58
降	0. 0153	25. 0			曲	率	係	数	$U_{\mathfrak{c}}'$		3. 52
and the second s	0.0109	21.4			土粒	7子(の密	度	ρ₅	g/cm³	2. 434
分	0.0078	19.0			使用	したら	散剤				ヘキサメタ燐酸ナトリウム
析	0.0039	14.3			溶液	濃度,	溶液	添加	量		飽和溶液 , 10ml
7/1	0.0016	9. 5			礫			分		%	5. 3
					砂			分		%	45. 9

4-π29-14+ 60-050 A

周査件名 火薬類保安技	b 術宝驗		1 大量		会和 4 4	臣 11日 1	1 日
M	× P13 >< ADX		prve	х-71 н	114H -I-		.т н
			試	験 者	۳۰۰۰	đ	
试料番号(深さ) 流用		-	5	落 10	下 ! 15	回数 2025	30 40
液性限界試験	塑性限界試験	液性限界 心 %					流動曲線
落下回数 含水比 w %	含水比 w %	NP					
		塑性限界 w。%			N P		
		N P					
		塑性指数 / / / / / / / / / / / / / / / / / / /					
		NP					
	i 直径3mmのヒモ	状にならず試験不能	i iii				
式料番号(深さ)	260 to the 100 25 NEA	At III III III III III III III III III I					
液性限界試験	塑性限界試験	液性限界 w %					
落下回数 含水比 w %	含水比 w %	WHILLIFE ES O/					
		塑性限界 w,%					
		塑性指数 I,					
		型注射数 1,					
			%				
	. =						
 式料番号(深さ)			3				
液性限界試験	塑性限界試験	液性限界 ωι %	· 보				
落下回数 含水比 w %							
		塑性限界 w, %	¥ H				
		7					
		塑性指数 I,	40				
式料番号 (深さ)							
液性限界試験	塑性限界試験	液性限界 心。%					
客下回数 含水比 w %	含水比 w %						
		塑性限界 w。%					
		塑性指数 I,					
	_						

14-54 & 00 A 20 1-24 98

IIS A 1210 突固めによる土の締固め試験 (締固め特性) JGS 0711 調査件名 火薬類保安技術実験 試験年月日 令和 4年 11月 14日 試料番号 (深さ)流用土 試験者 🕳 🕶 🛨 土 質 名 称 A – b 土粒子の密度 ρ。g/cm³ 試料の準備方法 乾燥法, 湿潤法 kg 2.5 2.434 試料の使用方法 操返し法,非繰返し法 試料調製前の最大粒径 mm 19 30 試料分取後w。% 突固め回数回/層 25 内径 cm 10 57.11 モールド 乾燥処理後 🐠 % 高 さ"cm 突固め層数 11.47 3 12.735 測 7 8 1 2 3 4 6 平均含水比 w % 25.03 37.71 50.95 63.5576.34 88.65 11.47 乾燥密度ρag/cm³ 0.896 0.949 0.9990.997 0.916 0.820 0.735 乾燥密度一含水比曲線 最大乾燥密度 pdax g/cm² 最適含水比 1.10 (g/cm³) ą o 度 觬 變 0.94 帮 0.78 0. 70 60 含 水 比 (%) 特記事項 1) 内径15cmのモールドの場合はスペ ーサーディスクの高さを差引く。

State of the State

ゼロ空気間隙曲線の計算式 $\rho_{\text{dssst}} = \frac{\rho_{w}}{\rho_{w}/\rho_{s} + w/100}$

JIS A 1210 突固めによる土の締固め試験(測定) JGS 0711 調査件名 火薬類保安技術実験 試験年月日 令和 4年 11月 14日 試料番号 (深さ) 流用土 方 土 質 名 称 A -- b 乾燥法,湿潤法 試料の準備方法 ランマー質量 kg 内 径 2.5 10 高さり 試料の使用方法操返し法,非繰返し法 落下高さ cm 12.73 30 cm] 試料分取後 w。% 容量 V cm³ 突固め回数回/層 57.11 25 1000 K. 質量 m₁ g 比 乾燥処理後 w 1 % 突固め層数 層 3 7438 11.47 測 1 3 4 (試料+モールド) 質量 $m_2^{(2)}$ g 8437 8625 8814 8943 湿 潤 密 度 ρ, g/cm³ 0.999 1.187 1.376 1.505 平均含水比 w % 25.03 37.71 50.95 11.47 乾 燥 密 度 ρag/cm³ 0.896 0.949 0.999 0.997 容器 No. 244 261 263 250 450.8 491.2 459.2 467.6371.0 371.1 327.5 $m_{\mathfrak{b}}$ g 417.4 含 52.6 52.2 53, 1 52.5 g % 25.03 11.47 37.71 50.95 水 容 器 比 m_{ϵ} g 定 7 No. 5 6 8 (試料+モールド) 質量 $m_2^{2)}$ g 8936 8884 8825 湿 潤 密 度 ριg/cm³ 1.498 1.387 1.446 平均含水比 w % 63.55 76.34 88.65 乾燥密度ρag/cm² 0.916 0.820 0.735 容器 No. 262 273 264 484.3 476.0 510.8 316.6 292.7 295.3 含 $m_{\mathfrak{b}}$ g 52.7 52.252.6 % 63.55 76.34 88.65 水 容器 No. 比 m_b $m_{\mathfrak{c}}$ g %

特記事項

$$\rho_d = \frac{\rho_t}{1 + w/100}$$

ラフ行く シェルスルド<mark>・1 神単大仏</mark>

¹⁾ 内径15cmのモールドの場合はスペー サーディスクの高さを差引く。

²⁾ モールドの質量は底板を含む。

室内コーン支持力試験

工	事	名_	火薬類保安技術実験	
試	料	名_	流用土	
較	正 係	数_	4. 380N/1/100mm	試験年月日 令和4年11月14日
コー	ーン底面	ī積 _.	0.000324m ²	試 験 者 名 🔐: : =

	5.0cm貫入	7.5cm貫入	10.0㎝貫入
ゲージの読み	58	61	66
貫入抵抗力(N)	254. 0	267. 2	289. 1
平均貫入抵抗力 (N)		270. 1	
コーン指数(kN/m²)		833. 6	
備考			

貫入抵抗値= ゲージの読み×較正係数 コーン指数= <u>貫入抵抗値×0.001</u> 0.000324(コーン底面積)

• 測定方法

供 は 料 4.75mmふるいを通過したもの。ただし、改良土の場合は 9.5mmふるいを通過させたものとする。
19.5mm ふるいを通過させたものとする。 大
体 モールド高さ 127.3mm
の 同さ 121.3mm
作 プンマー質量 2.5kg
成 突 固 め 3層に分けて突固める。
大
コーンへ ネトロメーター 底面の断面積3.24cm2、先端角度30度のもの。
割 貫入速度1cm/s
定 方 法 モールドをつけたまま、鉛直にコーンの先端を供試体上端部
プ
計 貫入抵抗力 貫入量5cm、7.5cm、10cmに対する貫入抵抗力を平均して、
計算入抵抗力を求める。
プローン指数 (qc) 平均貫入抵抗力をコーン先端の底面積3.24cm2で除する。

注)ただし、ランマーによる突固めが困難な場合は、泥土と判断する。

単位容積質量試験

工事名: 火薬類保安技術実験 試験年月日:令和4年11月10日

試験者名: 📜 📜 試料名:流用土

容器の容量: 9.90 %

試験方法: ジッギング法

測定	番	号		1	2	3
(試料+2	容器)質	量	(kg)	18. 090	18. 131	18. 072
容器	質	量	(kg)	6. 490	6. 490	6. 490
試 料	質	量	(kg)	11.600	11.641	11. 582
単位容	積質	量	(kg/1)	1. 172	1. 176	1. 170
平		均	(kg/1)		1. 173	

試料名:	試験者名:

容器の容量: パン

試験方法:

	測	定	番	号	1	2	3
(討	大料 十名	字器)	質量	(kg)			
容	器	質	量	(kg)			
試	料	質	量	(kg)			
単	位容	積質	重量	(kg/1)			
平			均	(kg/1)			

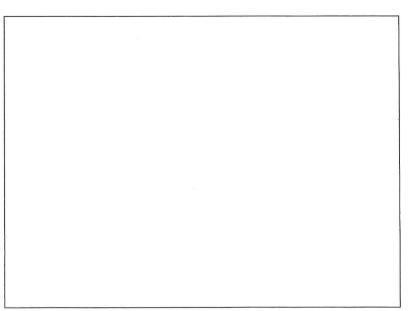
土質試験 土粒子の密度 流用土

土質試験 土の含水比 流用土

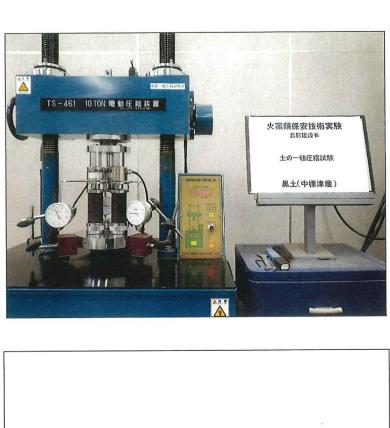
土質試験 土の粒度 流用土

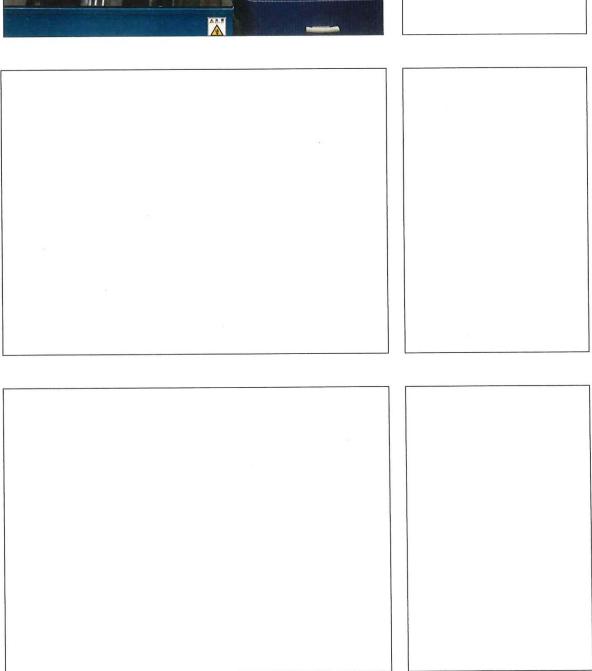
土質試験 土の粒度 流用土

土質試験 液性·塑性限界(NP) 流用土


土質試験土の締固め流用土

土質試験 室内コーン支持力 流用土


土質試験 単位容積質量 流用土


		土質試	験結果	一覧表	(基礎地盤)		
査	件名 火薬類保安技術	実験			整理年月日	令和 4年]	11月 18日
					整理担当者	_ A 5	
記	t 料 番 号 (深 さ)	黒土					
	湿 潤 密 度 ρ, g/cm³						
-	乾燥密度ρ。g/cm³						
	土粒子の密度 ρ。 g/cm³						
	自然含水比 w。 %						
L Z	間隙比。						
_	飽 和 度 S _r % 石 分 (75mm以上) %						
	石 分 (75mm以上) % 礫 分 ¹⁾ (2~75mm) %						
Ĩ.	砂 分"(0.075~2mm)%						
	シルト分¹¹ (0.005~0.075mm) %						
	粘土分"(0.005mm耦)%		+		 		
	最大粒径mm						
=	均 等 係 数 <i>U</i> 。						
	液性限界心 %						
	塑性限界w。 %						
	塑性指数 /。						
	地盤材料の						
î	分 類 名						
ĺ	分類記号						
	試験方法						
:	圧縮指数 C。						
	圧密降伏応力 p。kN/m²						
_	#1076576 \$ 131 / 2	100.00					
	一軸圧縮強さ q。kN/m²	182. 26					
1	破壊ひずみ ε _τ % 変形係数 E ₅₀ MN/m²	0.94		-			
i	发 // /示 数 // 50 MIV/III // // // // // // // // // // // //	35, 55					
	試験条件						
	C kN/m ²						
	全 応 力			<u> </u>			
,	C' kN/m²						
ŕ	有効応力						
				ļ			

[1kN/m² \(\dip 0.0102kgf/cm²]

JIS A 1216 JGS 0511	の一軸圧縮試り	食(強度・変形特別	性)	
調査件名 火薬類保安技術実懸	6	試験年月日	令和 4年 11月 1	17日
試料番号(深さ) 黒土(中標津	産)	試 験 者	CONTRACTOR	
土 質 名 称	供 試 体 No.	1 2		
液性限界 wi"%	試料の状態			
塑性限界 w,"%		. 98 9. 99		
ひずみ速度 %/min 1.0		. 00 5. 00		
特記事項 1) 必要に応じて記載する	L	8. 45 298. 15		
$E_{50} = \frac{q_{\rm u}}{2} / 10$	湿潤密度 ρ, ¹⁾ g/cm ³ 1.	523 1.520		
$E_{50} = \frac{10}{\varepsilon_{50}} / 10$	含水比 w % 5° 一軸圧縮強さ q。 kN/m² 18	7. 13 57. 29		•
		2.76 181.75 .00 0.88		
	h	4. 2 36. 9		
	鋭 敏 比 S _t "	4.2		
		2. 26		供試体の
320 応カーひずみ曲線				破壊状況
				No.1
				No.1
280				
				日) `
240				
				No.2
(KN/m²)				▦▮ょ▮
ρ <i>t</i> ζ				
Fé				
繼 160				▦ "
田 100				No.
120		1241		
				/
				No.
80				# []
40				# !i
/				
	.8 1.2 1.6	2. 0	2. 4 2. 8	لسند
①0.01	圧縮ひずみ。	. (%)	$[1kN/m^2 = 0.0]$)102kgf/cm ²]
	EE ME O' 9 PF 1	: \/9/	[1MN/m²≒10.	2kgf/cm²]
			144 g (de la 1810)	nt ≌.



土の一軸圧縮試験結果一覧表

工 事 名 : 火薬類保安技術実験

試 料 名 : ソイルセメント (土+早強セメント200kg/m³)

供試体	養生	試験日	_	軸圧縮強さ	qu (kN/m	²)		含水比	W (%)	
作成日	日数	高 以 海火 口	1	2	3	平均	. 1	2	3	平均
	σ_2	11/19	413. 37	404. 76	405. 52	407. 88	46. 51	47. 27	46. 42	46. 73
11/17	σ 7	11/24	455. 94	447. 36	456. 79	453. 36	44. 33	43. 79	44. 58	44. 23
	σ ₂₈	12/15	489. 34	498. 53	484. 90	490. 92	42. 16	42. 05	42. 28	42. 16

調査件名 火薬類保安技	術実験			試験年/	月日 令和 44	年 11月 19日	}
試料番号(深さ) ソイル	セメント (土+昇	型強セメント2	200kg/m³) 2 E	日強度 試 験	者 •• • ▮		
土 質 名 称	供試		1		3		
液性限界 心心%	試 料	の状態	改良	土 改良:	土 改良	<u>:</u> ±	
塑性限界 w,1 %	高	さ H。	cm 10.0				
	1.0 直	径 D₀	cm 5.0				
特記事項 1) 必要に応じて記		量 m 图度 ρί ¹⁾ :	g 268.				
$E_{50} = \frac{1}{\epsilon}$	2 /10 含水		g/cm³ 1.36 % 46.8				
Σ ξ	一軸圧縮		N/m ² 413.				
	F	ずみ ει	% 1.0				
	変形保	系数 E ₅₀ 1) A	N/m² 51.	3 50. 8	48.	9	
	}	比 S, 1)					
	平均強	度]	N/m ² 407.	88			// = b / l = =
⁸⁰⁰ 応カーひずみ曲紙	1						供試体の 破壊状況
							No.1
							NO.1
700							
							/
							141
600							N - 0
							No.2
(KN/m²)							
500 KN							}
σ							- 1
で 							
99		44					
出 400							No.3
							\
300							
			1N13-2				
200							No.
²⁰⁰							
100							
				2.0		0.0	
0.0 0.4	0.8	1.2	1.6	2. 0	2. 4	2. 8	
0. 0 0. 4	0.8		1.6 宿ひずみ E !		[1	2.8 kN/m²≒0.0102 MN/m²≒10.2kg	

JGS 調査件	5 051 *名 火薬類	1		——————————————————————————————————————	## <i> </i> 二	2 利自 1	試 験 (強)	試験年			年 11月	24]
abidol ata	ED (WE.S.)				- 15.	1 0001	/ 3)		-+7:				
	号(深さ)	ソイルセメ	r					試影		4. w. k	-		
土質	(名 称		供財	試 の	本 No 状		1 改良士	改良		改良			
塑性			高		H ₀	cm	10.00	9.		10.			
	メ速度 %/mi		直		D ₀	cm	5. 00	5.		5.			
特記事	項 1) 必要に	応じて記載	する。質	量	m	g	270. 77	271.		271			
		q _u	湿	潤密度	$\rho_{\iota}^{(1)}$	g/cm ³	1. 379	1.3	83	1.3	82		
		$E_{so} = \frac{\overline{2}}{\epsilon_{so}} /$	10 含	水比		%	44. 33	43.	79	44.			
			一軸	妊縮強さ		kN/m²	455. 94	447.		456			
			·	要ひずみ		%	0.98	1.		0.			
				形係数			63. 1	71.	3	83	. 6		
			F	敏 均強度		kN/m²	453, 36						
800					1111111								供試体の
	応力ーひす	み曲線										讕	破壊状況
													No. 1
												讕	1 1
700													1)
													<u> </u>
600													
													No.2
_													1
(KN/m') 500													\ \frac{1}{1}
													<i> j)</i>
b R													'
<u>ر</u> خ			11/2										
羅 400													No.3
Ħ													/
												卌	1
						1/5						\blacksquare	4
300						1/3							'
		//											L
		/											No.
200													NO.
) i ;
													1 1
												\blacksquare	
100													
	/												
0	/											\blacksquare	
0. (0 0	. 4	0.8		1.2		1.6	2. 0	2.		2. 8		
					H	- 縮 ひ -	ずみε(%)			[lkN/m²≒(). 0102	2kgf/cm²]
					/	- 1113 O	, .,			Г	lMN/m²≒	10.01	-£/27


JIS A JGS	1216 0511		の	一	油 圧	縮	試 験(強	鱼度	•変形	特性)			
調査件名	火薬類保	安技術実験							試験年月	月 -	令和 4年	月 12月	15 E	3
試料番号(深さ) ン	ノイルセメント	(土	+早強も	2メン	ト200kg	/m³) 28日強	腹	試験	者	244	4		
土 質 名			供	試位	No.	•	1		2		3			
液性限界				料の		態	改良土		改良士		改良			
塑性限界			高			cm	10.00		10.00		10. (
ひずみ速度		1.0	直	~ ~ ~ ~ ~ ~	D_0	Cm	5.00		5.00		5. 0			
符記爭坦 1)		じて記載する。			m . 1)	g _/3	272.53		273. 5		273.			
	E	$=\frac{\frac{q_{\rm u}}{2}}{\frac{\varepsilon_{\rm so}}{}}/10$		密度 水 比	ρ,1)	g/cm³	1. 388 42. 16		1. 393 42. 05		1. 39			
	<i>L</i> ₅₀	ε 50		E縮強さ		kN/m²	489. 34	+	498. 5		484.			***************************************
					ε _f	%	0, 85		0.78		0. 7			
			h	(係数			85. 1		89. 4		111.			
				敏 比										
			平均			kN/m²	490. 92							
800								, mma	rmmarana	077000			шъ	供試体の
応力	フーひず る	み曲線												破壊状況
														No.1
700														1, 1
														1/[
														7
600														
														No.2
2														
(kN/m²) 200 (kN/m²)														
5 500 5 500			*)
۲ 1				N										1/
년				$\lambda \lambda$										
羅 400		///		\mathcal{M}										No.3
Щ		///			X									10.5
	/I	/		- N										
					`2									
300														\\ \
	1///													
	1///													
	1//													No.
200	///													
	//													
	/													1
								Ш						
100														lj
								Ш						
/														
0. 0	0. 4	0.	8	الدادانا شقه مس	1. 2	المار المارية والمحمود	1.6	2. 0		2.	1	2. 8		
					Į:I	に絞 が	ずみε (%)				[1]	kN/m²≒0	. 0102	2kgf/cm²]
		and the second of the second o			El	- 44R O.	, ,, , (/0)				[1]	MN/m²≒1	0. 2kg	gf/cm²]
											ርግነ ጋ.	a		n et

土の一軸圧縮試験

2日強度

ソイルセメント (黒土+早強セメント200kg/m3添加)

土の一軸圧縮試験

7日強度

ソイルセメント (黒土+早強セメント200kg/m3添加)

土の一軸圧縮試験

28日強度

ソイルセメント (黒土+早強セメント200kg/m3添加)

コンクリート配合計画書 令和4年9月 配合の設計条件 スランプ 塩化物含有量 材齢 設計基準強度 粗骨材の最大寸法 セメントの種類 空気量 水セメント比 による記号 % N/mm² cm mm 5 5 50 %以下 0.30 kg/m³以下 14日 40.0 18 使 用 料 密度 Na 2 Oeq セメント 生産者名 太平洋セメント(株) 3.16 0.52 g/cm³ % 密度 Na 2 Oeq 混和材 製品名 種類 g/cm³ % 密度 g/cm³ 種類 産地又は品名 アルカリシリカ反応 粒の大き 粗粒率又 微粒分量 No. 性による区分 さの範囲 は実積率 絶乾 表乾 の範囲 材 % 区分 試験方法 2.5以上 1 砂 庶路産 Α 化学法 2.5 2.70 2.61 2 材 3 1 砕石 尾幌産 Α 化学法 5~2.5 4.90 2.5以上 2.61 0.38 ± 2.0 粗 2 3 混和剤① ヤマソー09NL AE減水剤 標準形 I 種 Na 2 Oeq 0.6 種類 製品名 混和剤② % 細骨材①:0.000 細骨材の塩化物量 % 水の区分 地下水 配合表 細骨材① 細骨材② 細骨材③ 粗骨材① 粗骨材② 粗骨材③ 混和剤① 混和剤② セメント 混和材 水 457 936 % 細骨材率 % 40.3 水結合材比 42.0 水セメント比 % 備考

コンクリート圧縮強度試験成績書

A SCHOOL SERVICE

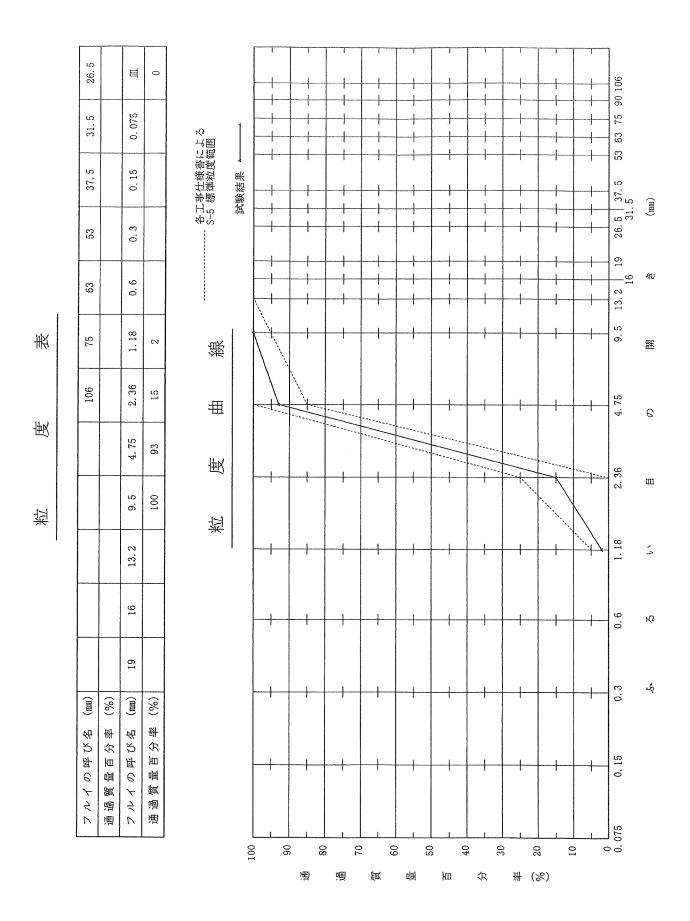
殿

			品名						格	
ンク!	ノート擁	壁					2020 x 504 x	50		
					配合	か設計	条件	6.6321		
18	设計基準強力	芰 (N/mm	f)		40		配合強度	(N/mm²)		49.5
		大寸法(mm			5		セメントの種	類による記号		N
ス	ラン	プの範	囲		18cm±2.	5	空気量	の範囲		5.0%±1.5
塩	氢化物量 (k g/m以下	7)		0.30		アルカリシリカ反応打	卯制対策の方法の記号		Α
	水結合材	細骨材率					単 位 量(kg	J/m³)		
示方 配合	比(%)	(%)	セメント	水	細骨材	細骨材	粗骨材	粗骨材	混和剤	混和材
	40.3	42.0	457	184	671		936		4.8	
				試	験結	果		(試験	負方法:J	IS A1108
Nº	採取年	 手月日	試験年	月日	材齢 (日)	最大	荷重(kN)	圧縮強度(1	N/mm²)	平均値(N/m
1	R4.	9.26	R4.10.	10	14		347.00	44.2		
2							356.00	45.4		
3							355.00	45.2		44.9
供	試体寸	法	Φ	10x20			供試体養生方法	製品	同一養生	
判	定基	準	設計基準	強度以	上である	こと。				
判		定	合 格							
考:										

釧根地区コンクリート製品協同組合統一様式

骨材試験成績一覧表

試験目的: アスファルト


試 料 名 : 粗骨材 砕石5-2.5mm

産 地 名 : 尾幌産

報告年月日: 令和 4年 3月 11日

	試		験	項				目	測	定		頁	目	試	験	結	果
Š	る	لا ا	分け	試	験	J	1 5	S A 1102	粗	粒	K Si	率			4.	90	
微	粒	分	量	試	験	J	IS	S A 1103		ヽ 損シルト			(%) (%)		0. 3	880	
単	位:	容 積	質	量 試	験	J	IS	S A 1104	単位	容和	責質	量	(kg/l)		1. 5	504	
砂	の有	「 機	不 純	物試	験	J	I S	S A 1105	標	準	色	よ	ŋ				
						7			表	乾	密	度	(g/cm³)		2. 6	516	
密	度 及	てびし	吸 水	率 試	験			S A 1109	絶	乾	密	度	(g/cm³)		2. 5	62	
						J	1 8	S A 1110	吸	水		率	(%)		2. 1	03	
す	b	^	ŋ	試	験	J	1 5	S A 1121	すり	^	り減	量	(%)		12	. 8	
安	定		性	試	験	J	IS	S A 1122	損	失		量	(%)		2.	26	
砕	石	混	入率	試	験	I	事	仕様書	砕	石 混	入	率	(%)				
粗	骨 材	中の	軟 石	量試	験	J	I 5	S A 1126	軟	石		量	(%)				
粘	土	塊	量	試	験	J	I S	S A 1137	粘	土	塊	量	(%)		0.	00	
密度	£1.95g/	cm³の液化	本に浮く	粒子の記	式験	J	IS	S A 1141	軽い	粒子の	つ百分	率	(%)				- 1100-511
土。	の液性	限界	・塑性	限界試	験	J	IS	S A 1205	塑	性	指	数					
		20 80 3000	040 40		arr - 8000010				最为	乾炸	彙 密	度	(g/cm³)	41			
		による	土の糸		大 験	J	IS	S A 1210	最为	商 含	水	比	(%)				
修	正	С	B R	試	験	J	IS	S A 1211	修	E C	В	R	(%)				

JIS A	1102		\$ 8	5 V	、 分 (ナ 討	験		報告	用紙
							年月日: 令和	4年 2	2月 25日	
\$	るい分け方法	:機械	、手動			試思	漁者:_ ■■	- 4		
	ふるい目の「 寸 法	呼び (mm) 累加	残留量	(g)	累加残留率	(%)	各 ふ る い 残留率 (%)	通過	率 (%)	
	106									
	※ 75									
	63									
	53									
	※ 37.5									
	31.5									
	26. 5									
	※ 19									
	16									
	13. 2									
	※ 9.5		0.0		0		0	4.	100	
	※ 4.75		81. 4		7		7		93	
	※ 2.36		943. 1		85		78		15	
	※ 1.18		1089. 4		98		13		2	
	※ 0.6									
	※ 0.3									
	※ 0.15									
	0. 075									
	受皿		1114.8		100		2		0	
		総質量=	1114.8	g	_ *	且粒率=	= 4.90			
JIS A	1 1 0 3		微	粒	分 量	試	験		報告	用紙
	①試験前乾燥	質量				(g)	1011.3	10-	45. 2	
	②75μm残留草	 吃燥質量				(g)	1007. 4	10-	41. 3	
	③洗った後の	4750μm残留	了乾燥質量			(g)				
	④洗った後47					~ ~ ~				
	(1)75μmを通過	引する量の全量	量に対する	百分率	①-② _{/①×10}	0 (%)	0. 386	0.	. 373	
	平	均				(%)	0.	380		
	(2)4750μmを通过	過する量に対す	るシルト含	有率①	-3-4/X	00(%)				
	並	均				(%)				

JIS A 1104

単 位 容 積 質 量 試 験

報告用紙

試料名: アスファルト 粗骨材 砕石5-2.5mm(尾幌産) 試験者: ______

容器の容積: 2.03 1 試料の詰め方: 棒突法

測 定 番 号	1	2
(試料+容器)質量 ((kg) 3.819	3. 801
容器質量((kg) 0.758	0. 758
試 料 質 量 ((kg) 3.061	3. 043
含水率測定前質量(kg) 含水率測定後質	質量(kg)	
単 位 容 積 質 量 (k	g/1) 1.508	1. 499
平 均 (k	g/l) 1.50	04

JIS A 1109

細骨材の密度及び吸水率試験

報告用紙

試料名: アスファルト 粗骨材 砕石5-2.5mm(尾幌産)

試験者:

試験温度:____20 ℃

水の密度:___0.9982 g/cm³

ř	測 5	至 番		号	1	2
(Ľ)	クノメーク	タ+水) 0)質量	(g)	654. 1	653. 5
試	料の) 質	量	(g)	500. 0	500. 0
(ピク	ノメータ+:	水+試料)(の質量	(g)	962. 9	963. 1
表	乾	密	度	(g/cm ³)	2. 610	2. 621
平			均	(g/cm ³)	2. 6	516
試	料の) 質	量	(g)	500. 0	500.0
乾燥	後の記	は料の5	質量	(g)	489. 7	489.7
吸	力	K	率	(%)	2. 103	2. 103
平			均	(%)	2. 1	103
絶	乾	密	度	(g/cm ³)	2. 556	2. 567
平			均	(g/cm ³)	2. 5	562

試料	名: <u>租</u> ′	骨材 砕石5-2 	Table .				試験者:	
			洋の質量	球の数:		試験前	回転数:	
		ふるい(mm) 百	分率 (%)	試料質	[量(g)		(g)	
	13. 2	4. 75		500	00	試験後	質量 (g)	
						損失	質量	-5mm参照
						スリヘ	リ減量	
							(%) 1	2.8
S A	1122	-	安 定	性	試	. 影	è	報告用級
試料	名:_粗竹	· 骨材 砕石5-2	5mm(尾帳	晃産)		ifid	は験者: ■■ ■ ■	21
THE CO	מי צי		1					
残 留 ふるい (mm)		各群の質量百分率(%)			試験後の質		各群の損失質量 百分率 (%	
	0. 15						-	
0. 15	0. 3							
0.3	0.6							
0.6	1. 18					4		
1. 18	2. 36	13	100.	. 0	97	. 3	2. 70	0.35
2. 36	4. 75	80	100.	. 0	97	. 8	2. 20	1.76
4. 75	9. 5	7	304.	. 8	298	. 3	2. 13	0. 15
9.5	16							
16	19							
19	26. 5						***************************************	
26. 5	37.5							
37.5	63						-	
63	75							
合	計	100						2. 26
	以上の粒	子個数認めた個数	1		破壊状況はげお	iotae :	ァ 割 れ	ケ ケ その他 ケ
支試験 活	去便覧	*	且骨杉	す の	形状	試 駿	ì	報告用組
	① 4.75	mm 残 留	質	量 (g)			

CHARLES A. C. Lawren

								報告用
試料名: 料	L骨材 砕石5-	2.5mm(尾	幌産)		試験者		 :-	
IS A 1126	粗骨材中の) 軟石量	試験					
10 11 1120	137 13 13 1 42	151 14 34	H-4 1900					
残 留 通 過 ふるい ふるい	各群の質量 百分率 (%)			各群の朝				1骨材の軟石
(mm) (mm) 9.5 16	B 77 4 (70)	0 員	型 (8)	質 量	(g) 百	分 半	(%) [【量百分率(%)
16 19								
19 26.5								Association and the second
26. 5 37. 5								aka diskala da kang ng maganan kati saka
37. 5 63								
軟石個数	試験前個数	***************************************	ケ	軟石(固数			
	*ト 1- トΦ 目 ラナ	- FA						
IS A 1137	粘土塊量試	一						
測	定 番	号			1			2
① 試	験 前 質	產	(g)	1	003. 9			
② 試	験 後 質	鼠	(g)	1	003. 9			
粘 土 塊 	<u> </u>	00	(%)		0.00			
立	均		(%)	-		0.00		
S A 1141	骨材中の密	度1 95	or/cm³Ø	海休に滔	とくおって	の計り	給	
	試験用溶液=	= 塩化亜鉛	俗 復 温度	ξ:		容液密	·医:	
	IEA	質 量	(g)					· · · · · · · · · · · · · · · · · · ·
① 試	験 前 乾 燥 —————		1					
	験 前 乾 燥 ───────────────────────────────────	の質量	(g)					
② こし			(g) (%)					
② こし	網に残った粒子	× 1 0 0						
② こし 軽い粒子のE 平	網に残った粒子 3分率 ② / ① >	× 100	(%)					
② こし軽い粒子の3	網に残った粒子	× 100	(%)					
② こし 軽い粒子のE 平	網に残った粒子 3分率 ② / ① >	× 100	(%)					
② こし 軽い粒子のE 平 S A 5002	網に残った粒子的容 ②/①; サイカ の 塩 化 質	× 100 · · · · · · · · · · · · · · · · · ·	(%) (%) 験					
② こし 軽い粒子のE 平 S A 5002	網に残った粒子 的容 ② / ① さ 増 付材の塩化 潤 質	× 100 物量試 量	(%) (%) 験 (g)	② 上澄液	③ 精 製	液②	上澄液	③ 精製液
② こし 軽い粒子のE 平 S A 5002 湿 ① 乾 N / 10	網に残った粒子 6分率 ② / ① × 情材 の 塩 化 潤 質 燥 質 規 定 硝 酸 銀	× 100 (s)	(%) (%) 験 (g) (g)	② 上澄液	③ 精 製	液②	上澄液	③精製液
② こし 軽い粒子のE 平 S A 5002 湿 ① 乾 N / 10	網に残った粒子 3分率 ② / ① × 増 材 の 塩 化 潤 質 燥 質 規 定 硝 酸 銀	× 100 (s)	(%) (%) 験 (g) (g)	② 上澄液	③ 精 製	液②	上澄被	③ 精製液

ニュイスター しょうけい あためり

2022年7月 ~ 2022年12月度 コンクリート用化学混和剤(JIS A 6204)試験結果報告書

2. 人名英格兰人姓氏 人名英格兰人姓氏克里特的变体。

御中

種 類 AE減水剤 標準形 1種 商品名 ヤマソー09NL

1. コンクリートの試験結果

	項	Н	JIS A 6204 による規定値	形式評価試験値	性能確認試験値		
フレッシュ	減水率 %		10以上:	16	16		
	ブリーディング量の比 %		70以下	50			
	ブリーディング	量の差 cm3/cm2					
コン	凝結時間の差	始 発	−60 ~ +90	+ 55	+ 50		
クリート	分	終結	-60 ∼ +90	+ 65	+ 40		
	経時変化量	スランプ cm	-				
	WELL-T SO IL MA	空気量 %		2000			
	圧縮強度比 %	材齢 1日	_		Knobs		
更化		材齢 2日(5℃)	_	Maria	_		
コンクリート		材齢 7日	110以上	132	133		
		材齢28日	110以上:	120	116		
	長さ変化比	%	120以下	97	-		
	凍結融解に対す (相対動弾性係		60以上	96	-		

注記1. 1m3当たりの化学混和剤の使用量

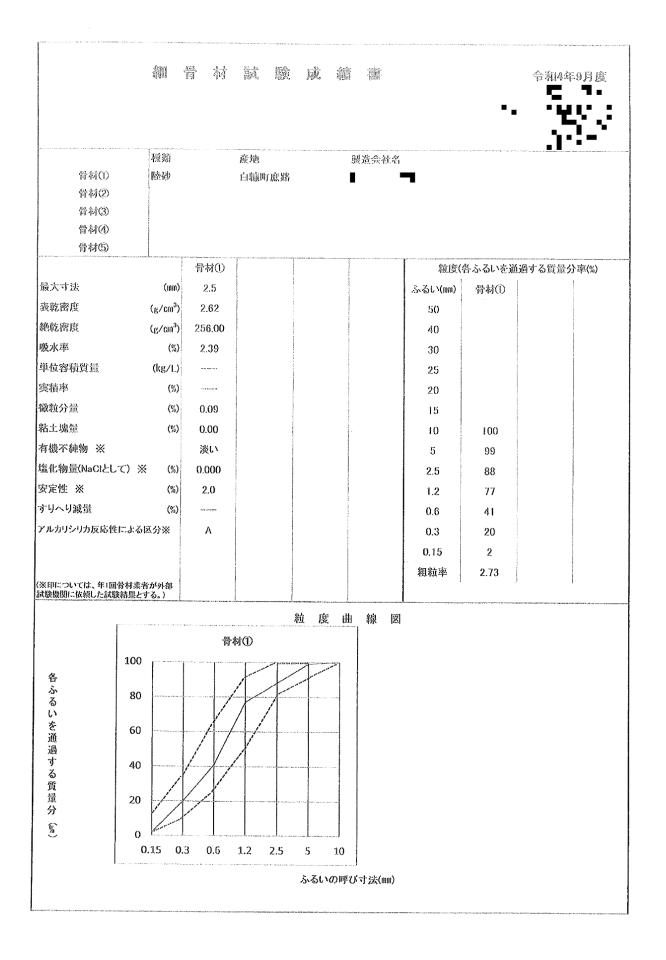
形式評価試験 3.00 kg/m3 , 性能確認試験 3.00 kg/m3

注記2. 性能確認試験は6か月ごとに1回実施し、この表に表示している試験値は、 2022年 5月 の試験結果である。ただし、圧縮強度の性能確認試験は1年に1回実施し、この表に表示している 試験値は、 2021年 12月 の試験結果である。

注記3. この表に表示している形式評価試験は、2019年 11月に で実施した試験結果である。

2. 塩化物イオン(Cl -) 量及び全アルカリ量

頂 日	JIS A 6204(Z	W 137/		性能確認試験			
Ж	よる規定値	形式評価試験値	化学混和剤中の 含有量	1 m3当たりの化学 混和剤の使用量	試験値		
塩化物イオン (Cl -) 量	- 0.02 kg/m3以下	0.00 kg/m3	0.00 %	3.00 kg/m3	0.00 kg/m3		
全アルカリ量	0.30 kg/m3以下	0.02 kg/m3	0.6 %	3.00 kg/m3	0.02 kg/m3		


注記1. 性能確認試験は6か月ごとに1回実施し、この表に表示している試験値は、 2022年 5月の試験結果である。

注記2. この表に表示している形式評価試験は、2019年 11月 に で実施した試験結果である。

3. その他の項目

項目	規 格 値	試 験 値
密度 (g/cm3, 20℃)	1.03 ~ 1.06	1. 04

注記 この表に表示している試験値は、 2022年 5月 の試験結果である。

セメント試験成績表

2022年(令和4年) 9月度

	種 類	普通ポルトランドセメント JIS R 5210			早 <u>旅</u> ポルトランドセメント JIS R 5210			高 毎 セメント B 種 用8 R 5211					
		JIS 試驗成績		AIS 試験成績			Jus 試験成績			貑			
晶光		規格值	平均值	標準個差	最大值 (最小值)	規格値	平均值	標準個差	最大値 (最小値)	思格值	平均值	標準個差	最大値 (最小値)
密	度 g/cm²		3.16	****			3.14	go dest			3.04	****	Man.
比表面	∯ cm²/g	25001% E	3200	67	dados	3300以 [4590	74		3000EX 1	3680	42	
	水量 %		27.2				30.4		_		27.9		1
涨 結	始発hain	60min(), [2-06		(2-00)	45min17, 1.	-50		(1-45)	60min19. lc	<u>}</u> −57		(2-50)
	終結hmin	10h以下	3-49		355	10h 以下	2-58		3-10	10h 以下	4-40		5-30
安定性	パット法	Į.	Ŕ		-	良	14		-~-	泉	iń		
	l d				h-,	10.0 以上	26.7	1.19			\		
圧縮強さ	3 d	12.5 以上	29.3	1.15	e for	20.0 以上	49.7	1.23	*****	10.0 以上	21.9	1.01	
N/10m ²	7 d	22.5 以上	45.8	1.41		32.5 以上	60.7	(.28		17.5 以上	37.6	1.09	
	28 d	42.5 以上:	63.0	1.50	1977	47.5 以 1.	68.8	1/34		42.5 以上	65.2	1,66	
水和熱	7 d		331		-			-\	_			-\	
J/g	28 d		388		_			\				- \	\
	酸化マグネシウム	5.0 以下	2.41		2.44	5.0 D, F	2.36		2.40	6.0以下	3.76		4.12
	三酸化硫黄	3.5 以下	1.95		2.01	3.5 以下	2.80		2.88	4.0以下	2.10		2.10
化学成分	強熱減量	5.0 以下	2.37		2.45	5.0 以下	0.88		0.96	5.0 以下	1.66		1.77
%	全アルカリ	0.75 以下	0.38		0.42	0.75 以下	0.38		0.39				
	塩化物イオン	0.035ELF	0.022		0.026	0.02 以下		_	0.013		0.014		

備老

試験方法は JIS R 5201、JIS R 5202、JIS R 5203 及び JIS R 5204 による。 28d 圧縮強さ及び 28d 水和熱は前月度の値を示す。

全アルカリの最大値のうち直近6ヶ月の最大の値

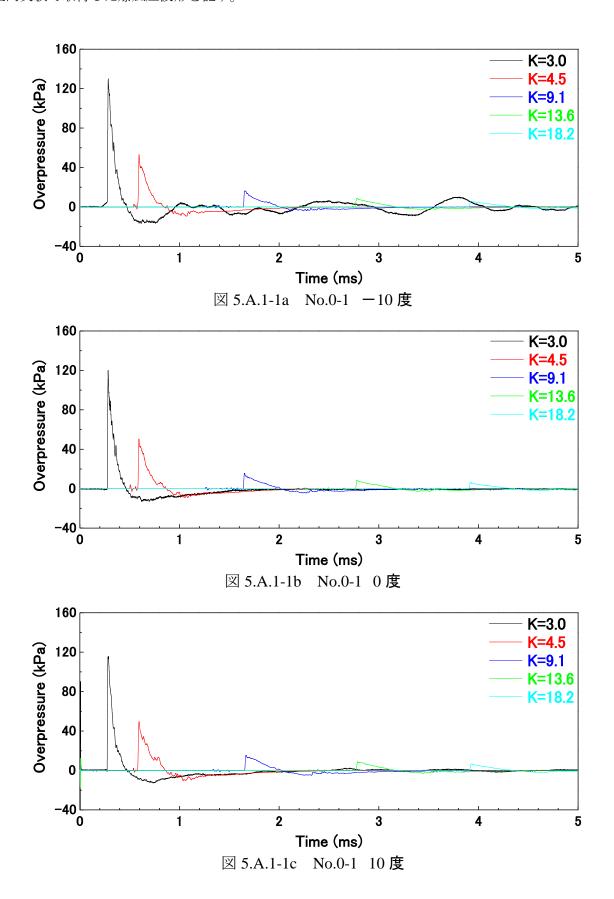
普通ポルトランドセメント 0.52%

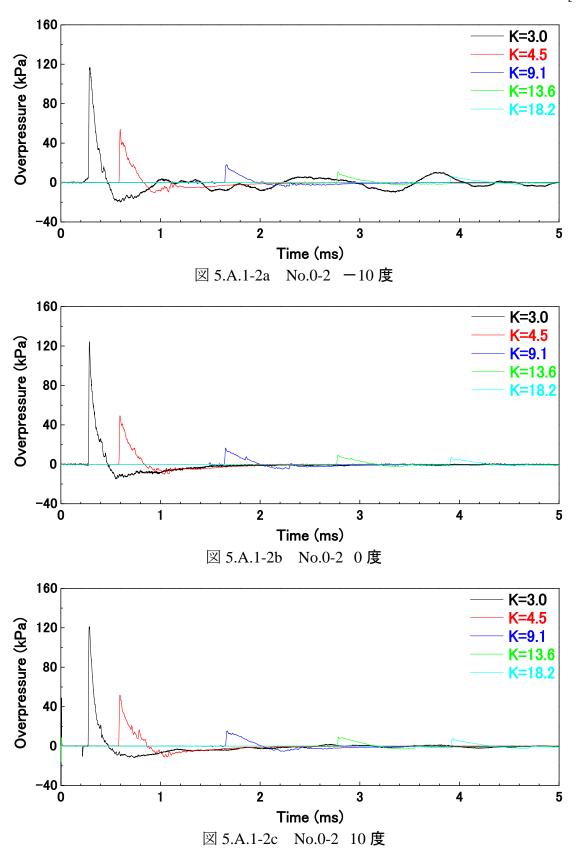
早強ポルトランドセメント 0.52%

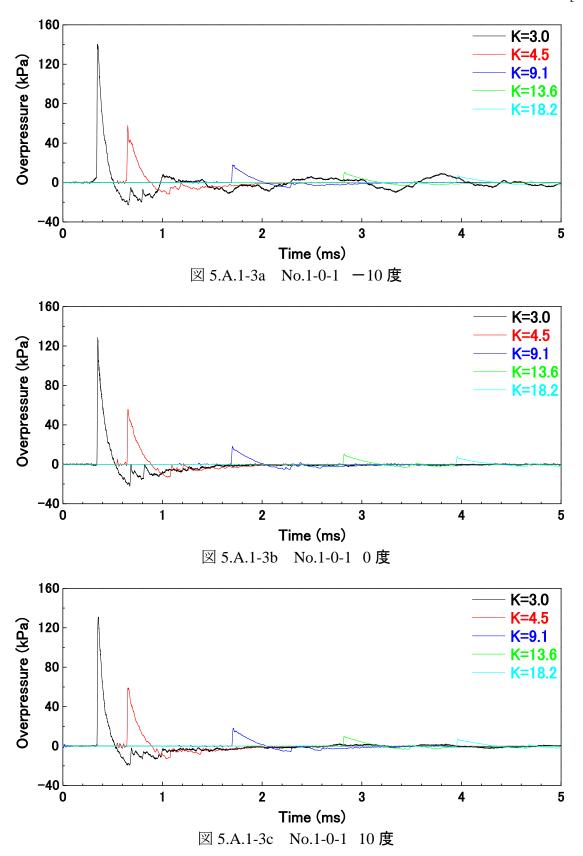
高炉セメントB種

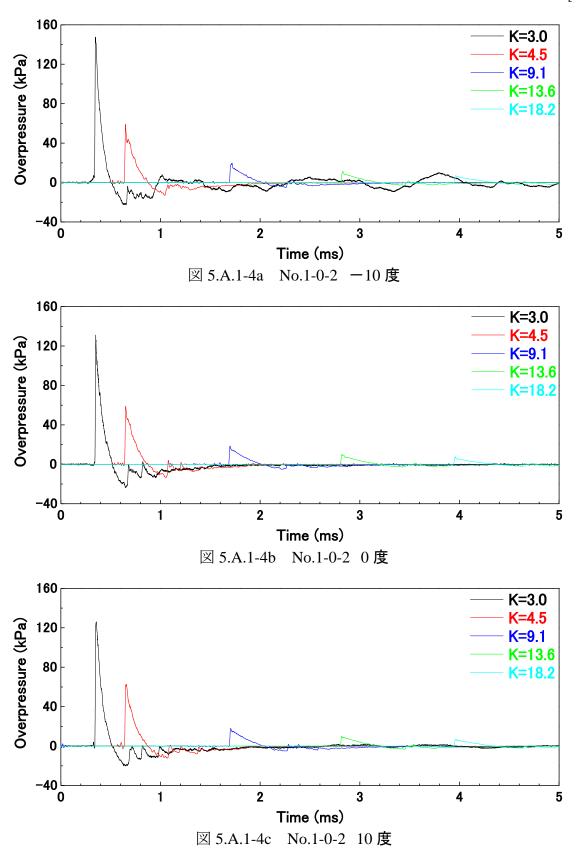
ベースセメントの全アルカリ

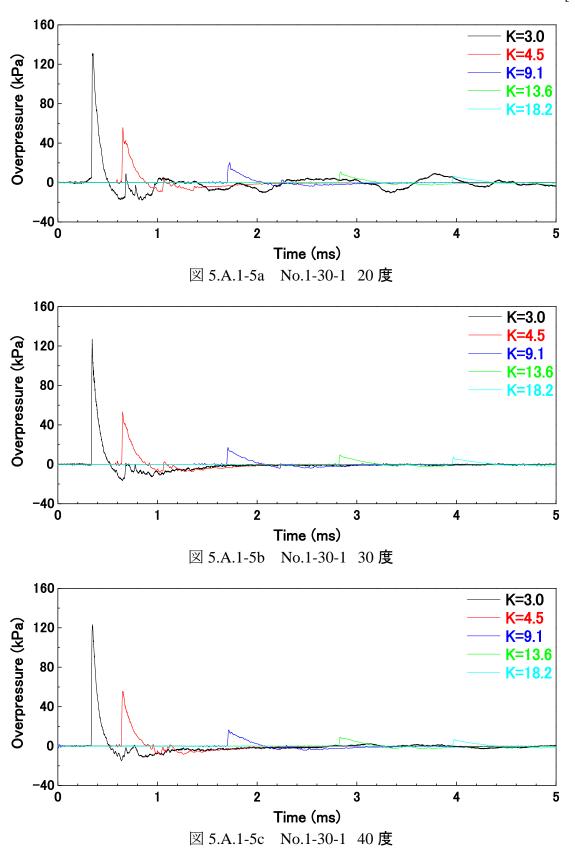
0.38 %

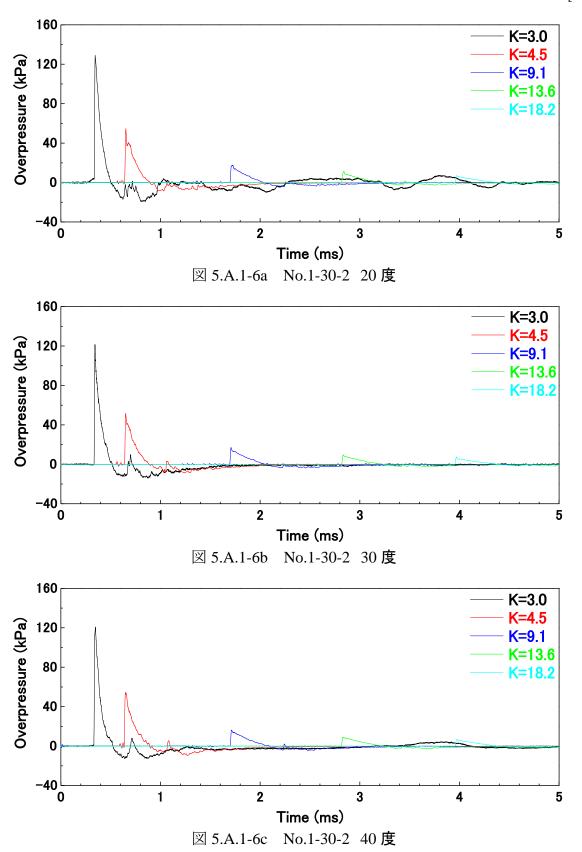

高炉スラグの分量

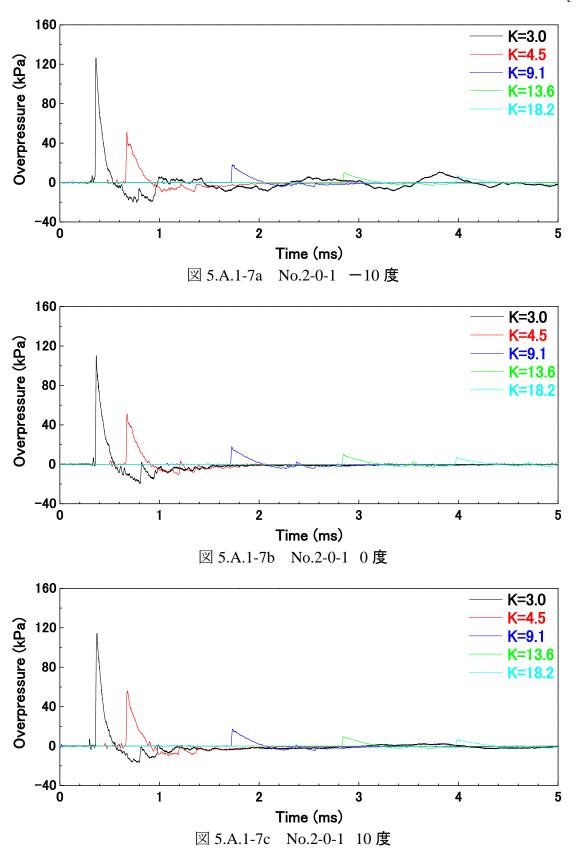

40~45 %

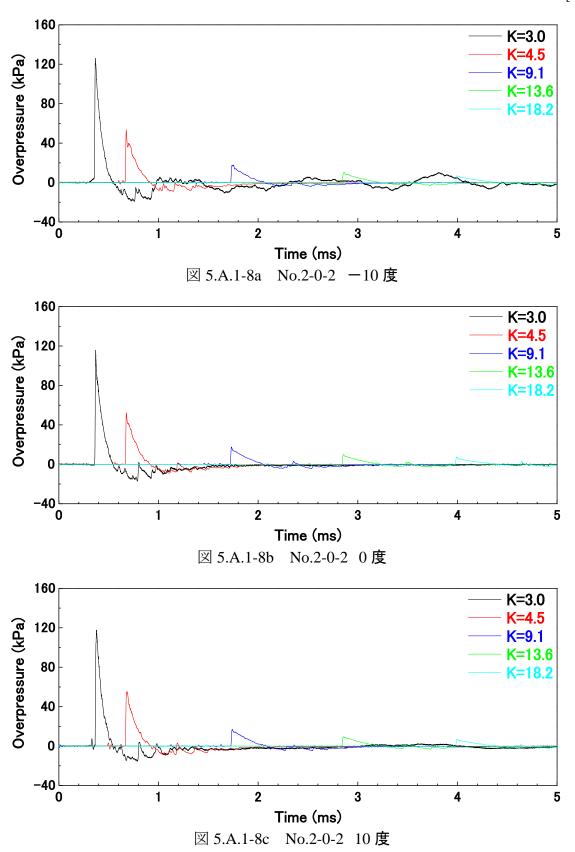


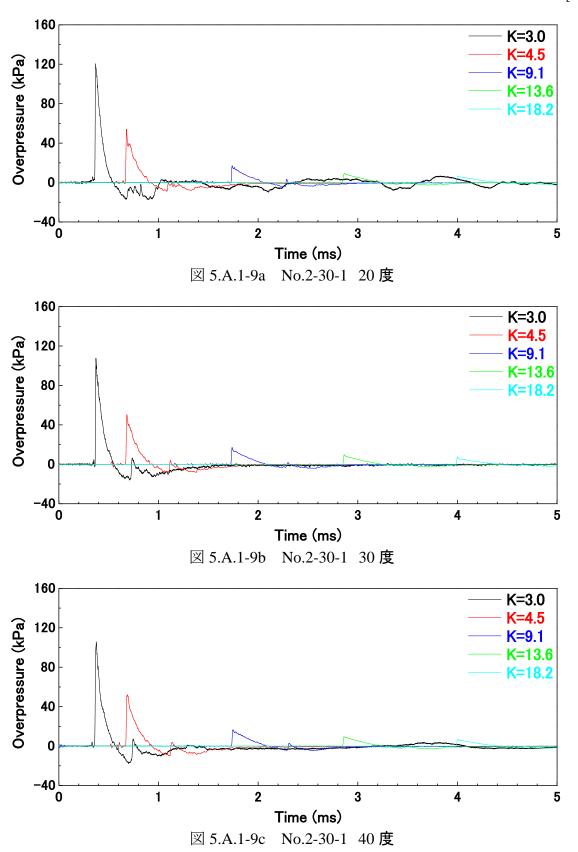

5. A. 1 (付録 9) 室内実験参考資料 (爆風圧波形)

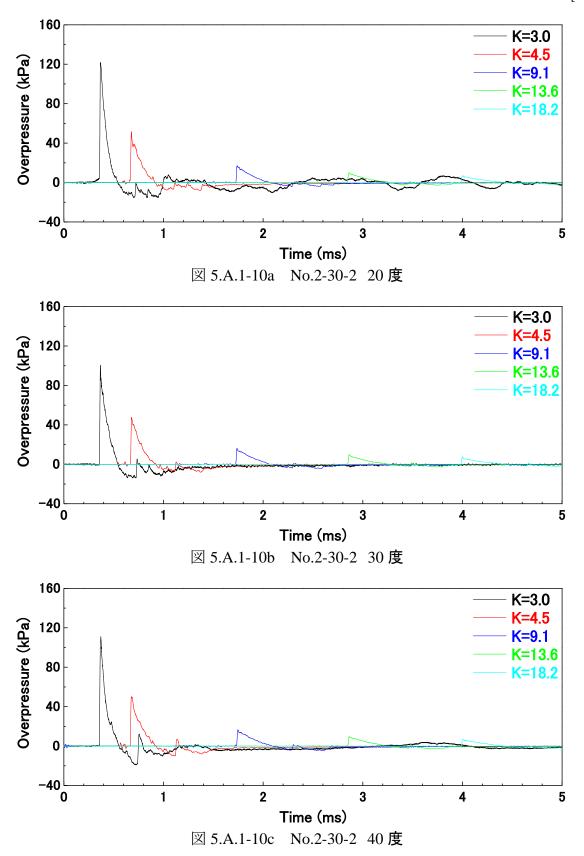

室内実験で取得した爆風圧波形を記す。

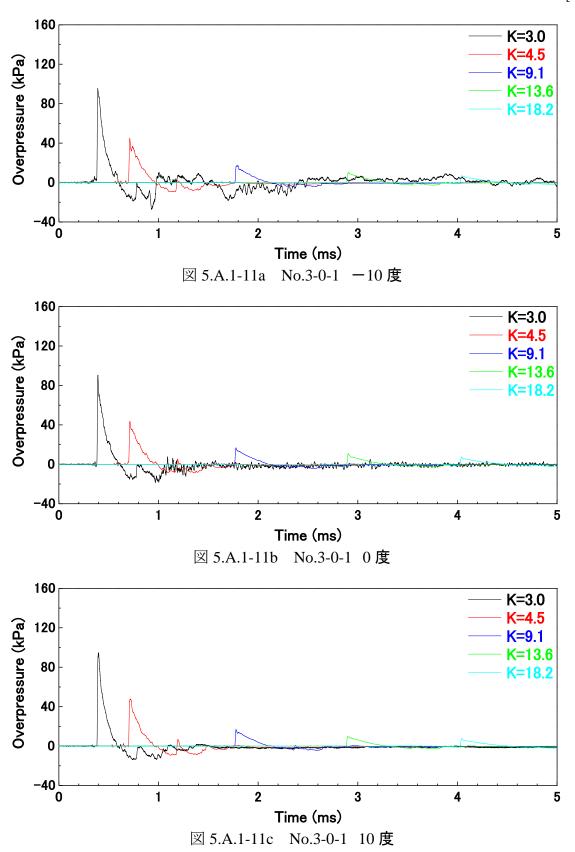


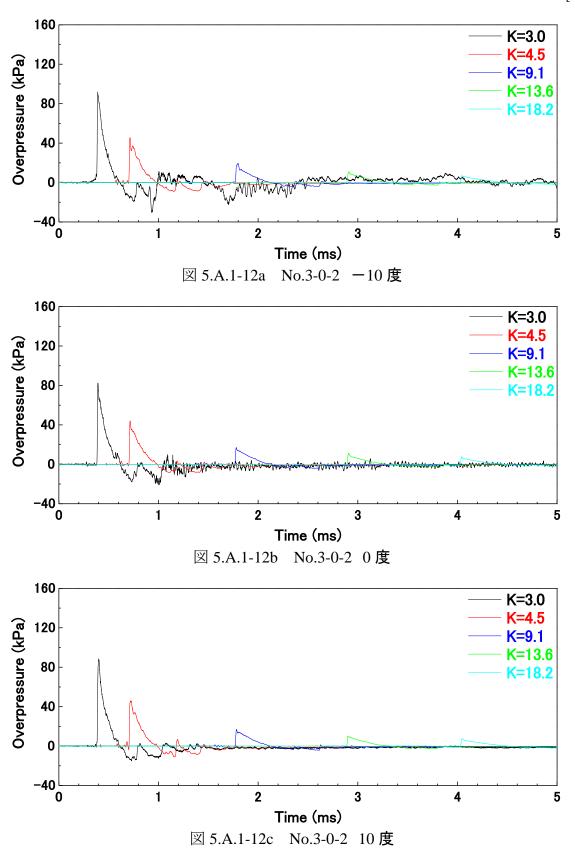


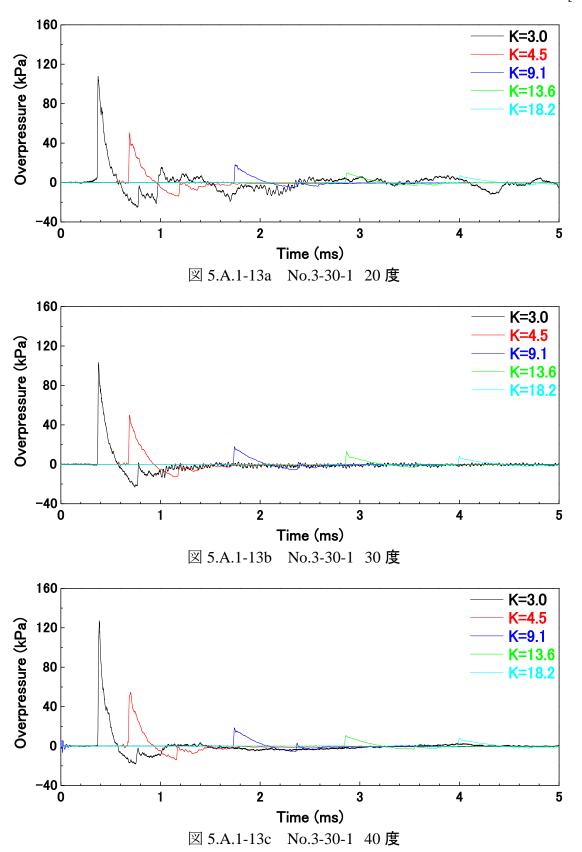


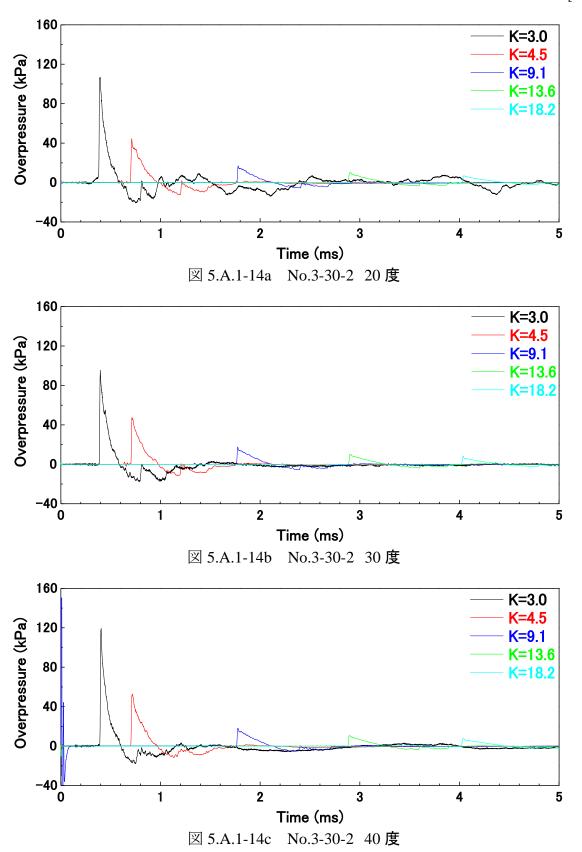


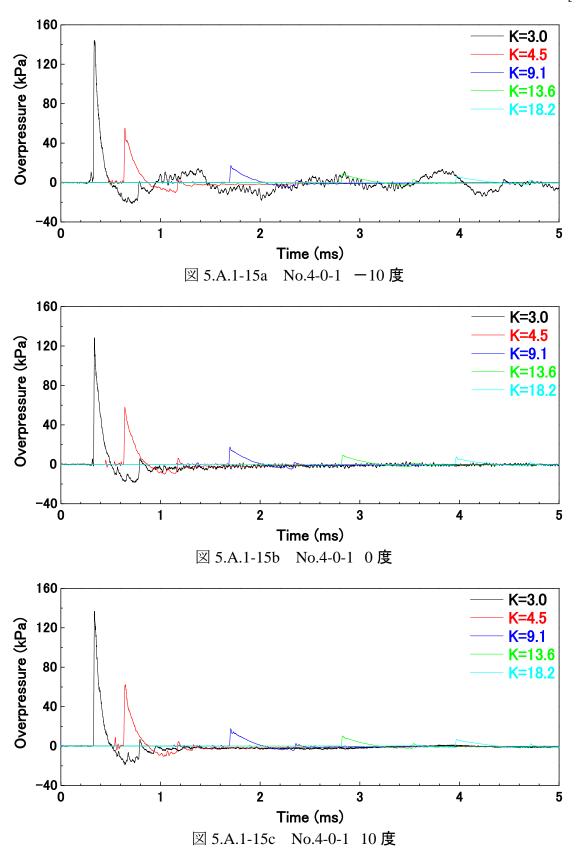


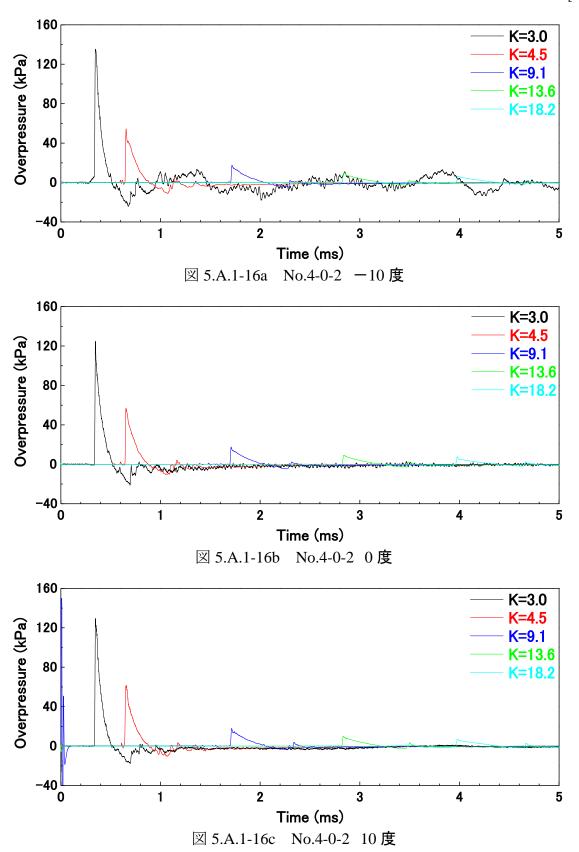


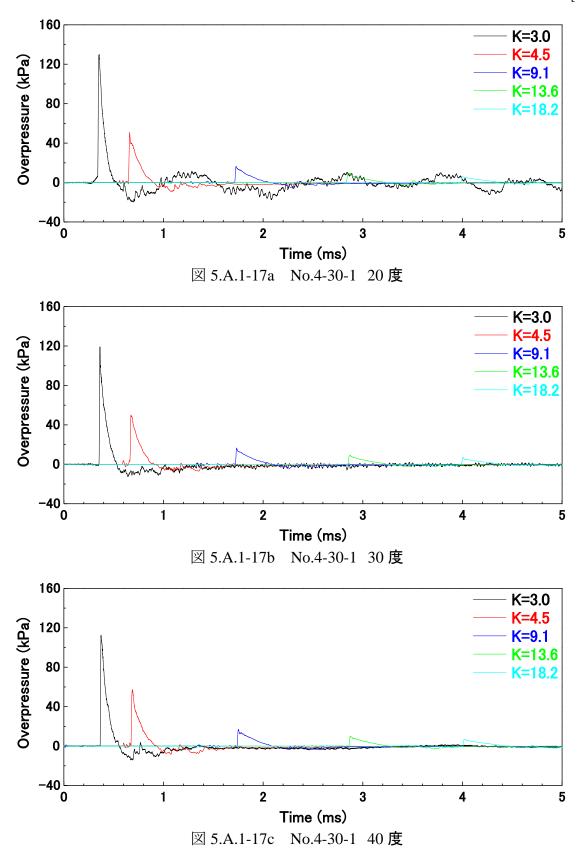


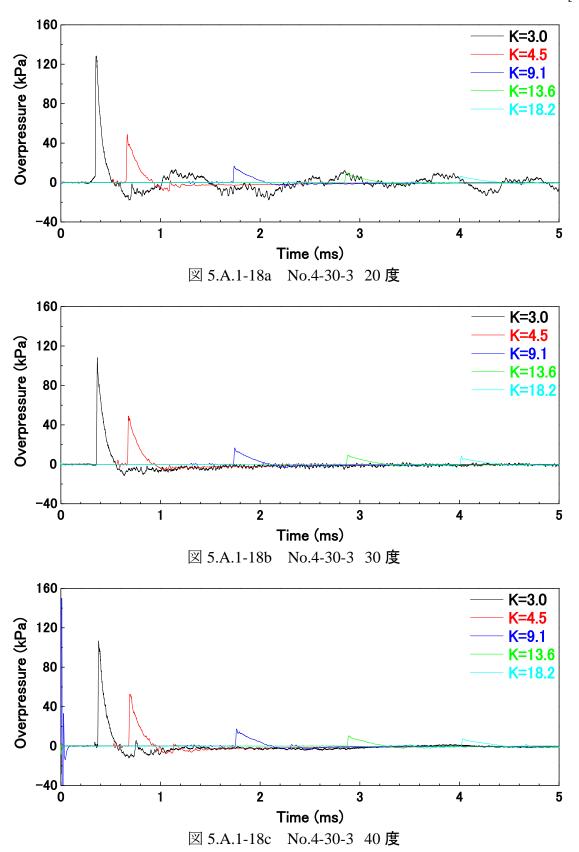


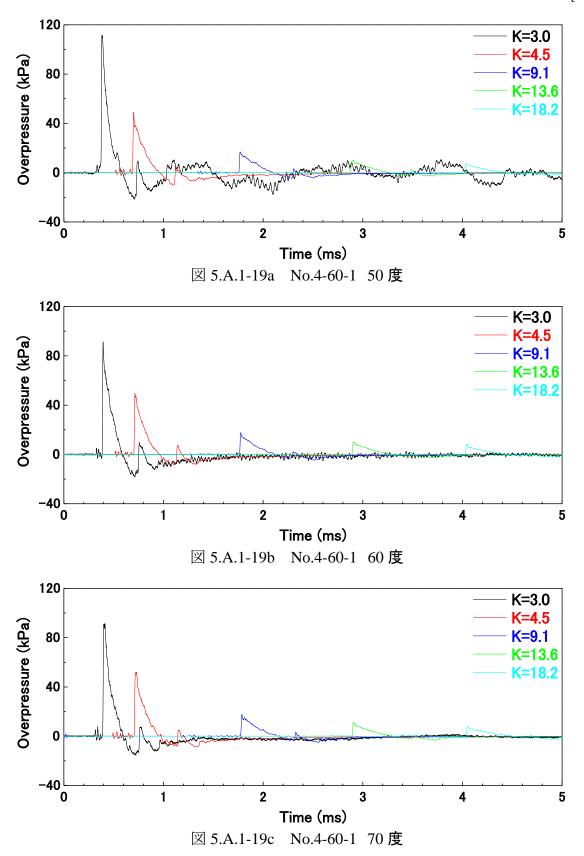


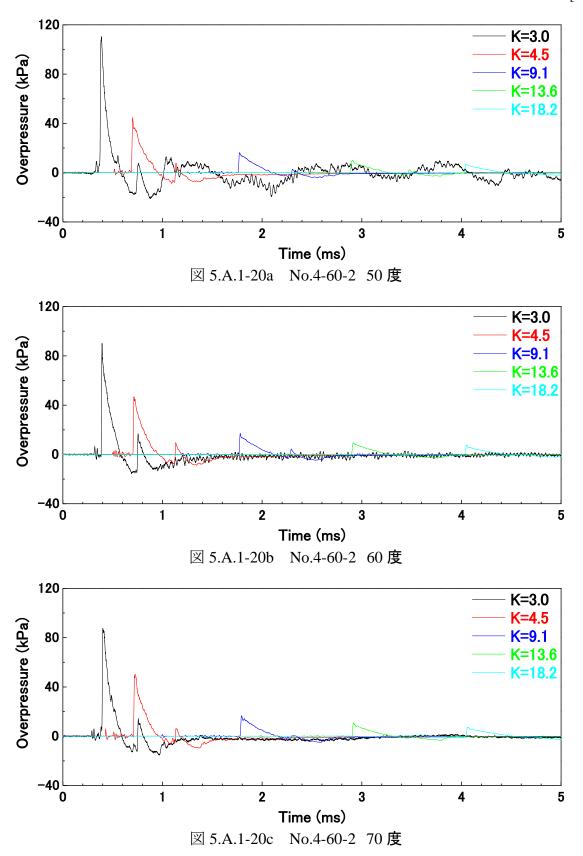


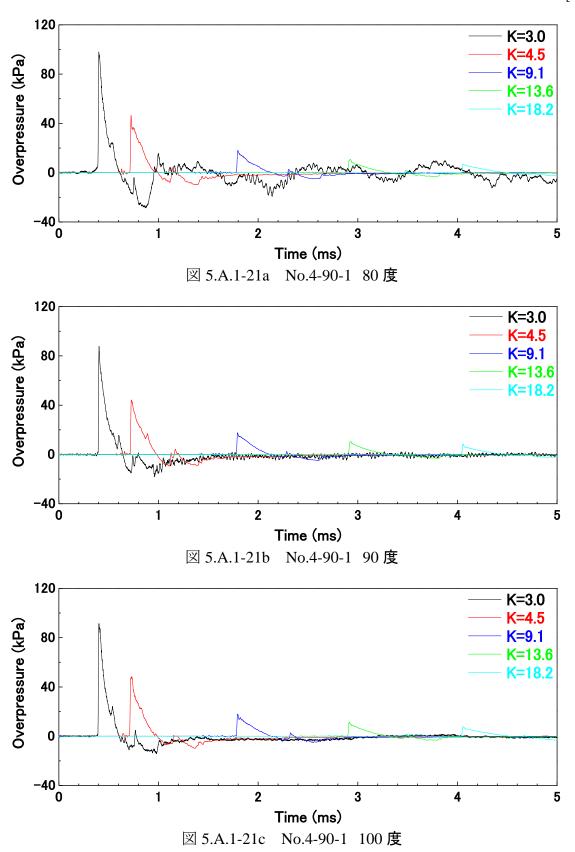


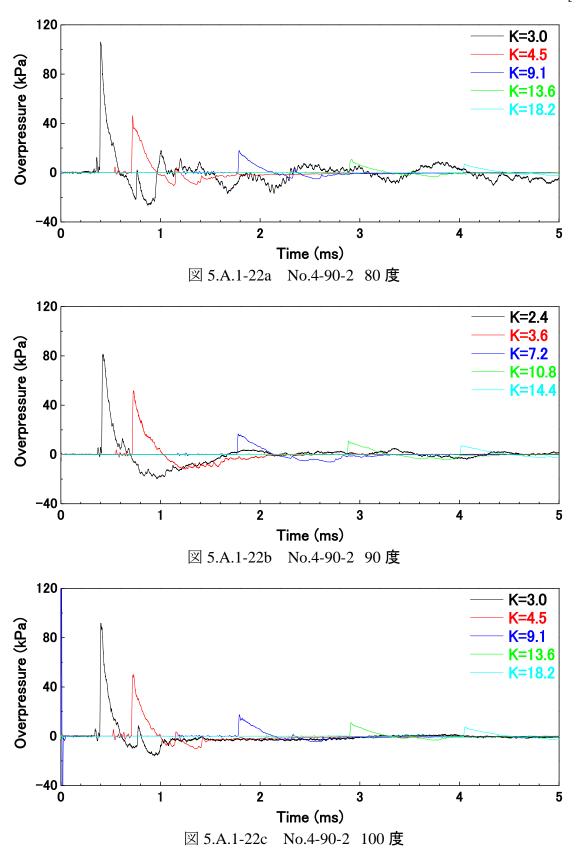


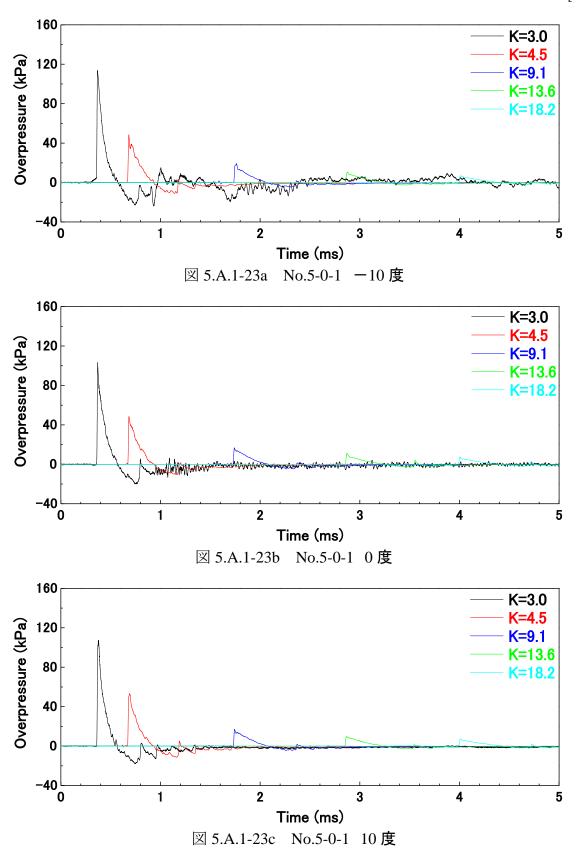


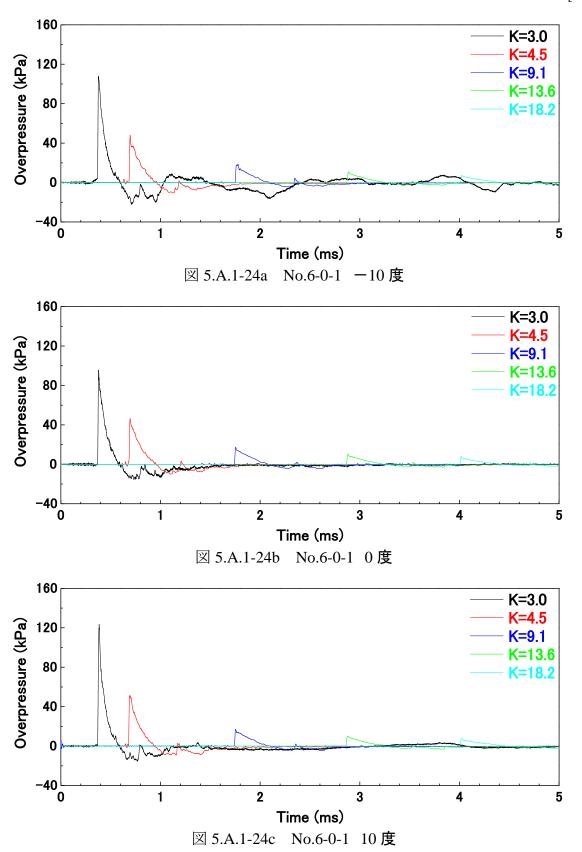


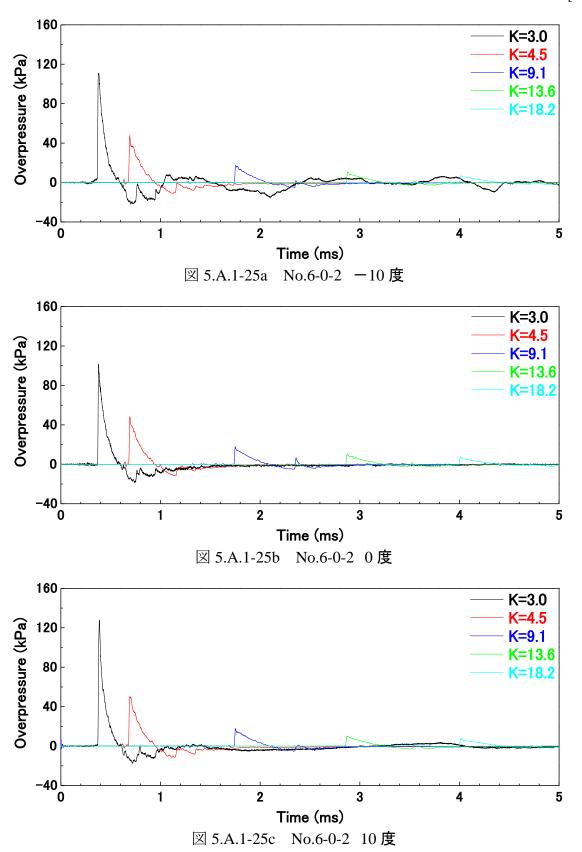


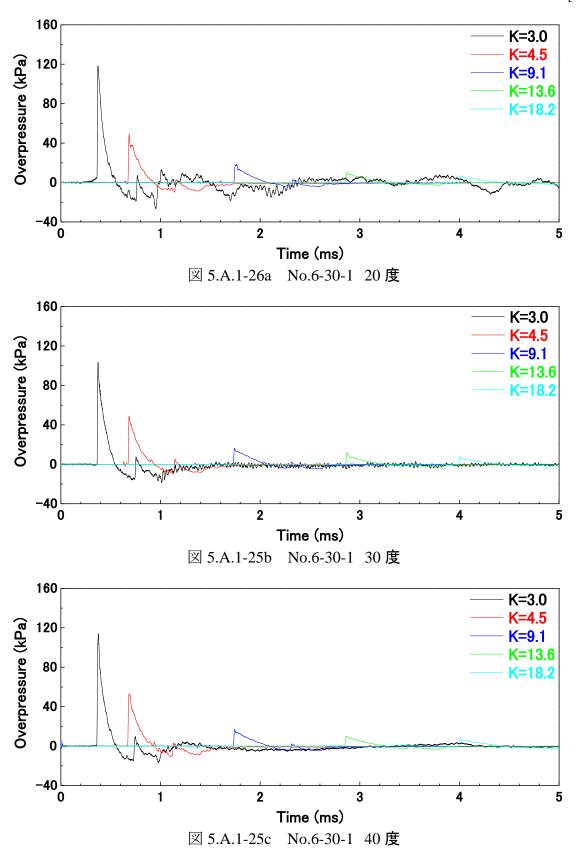


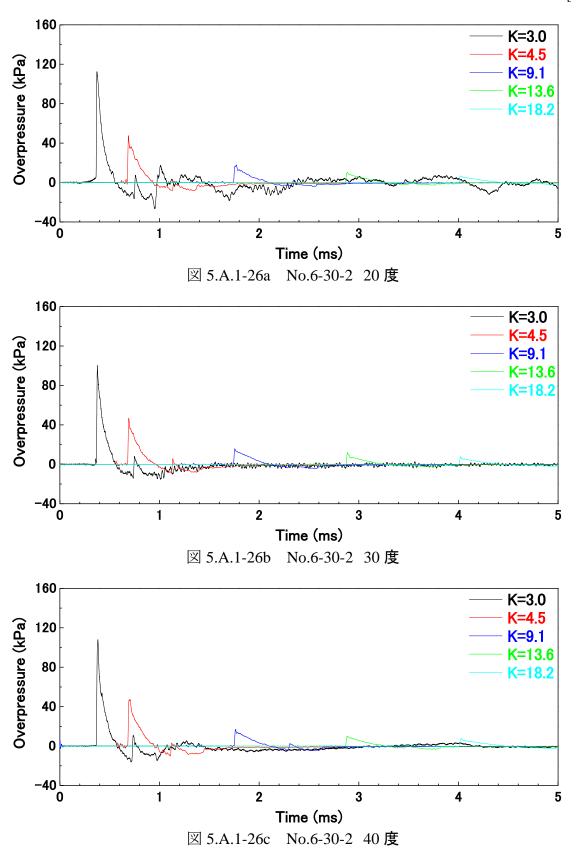


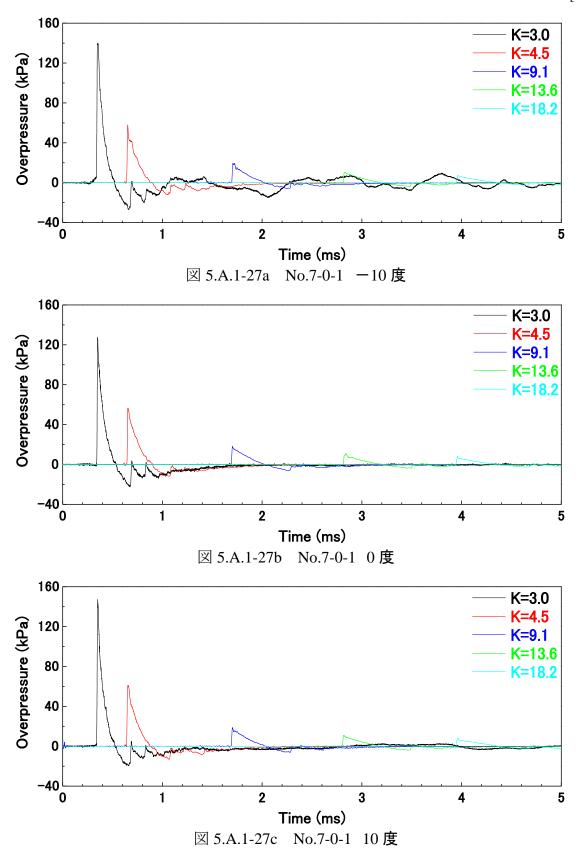


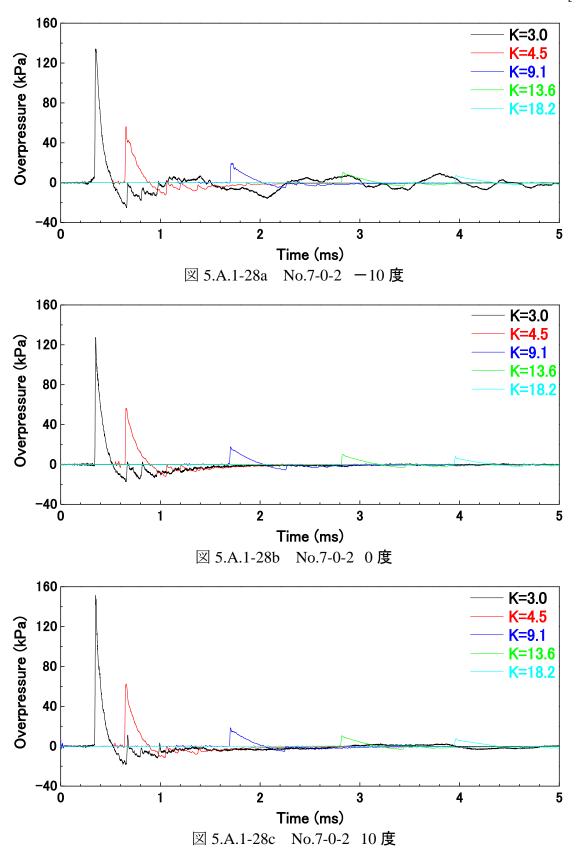


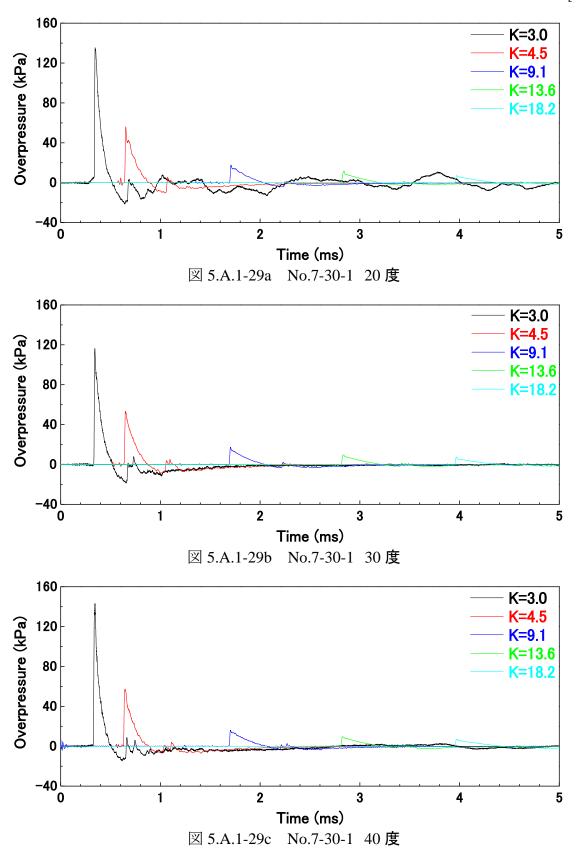


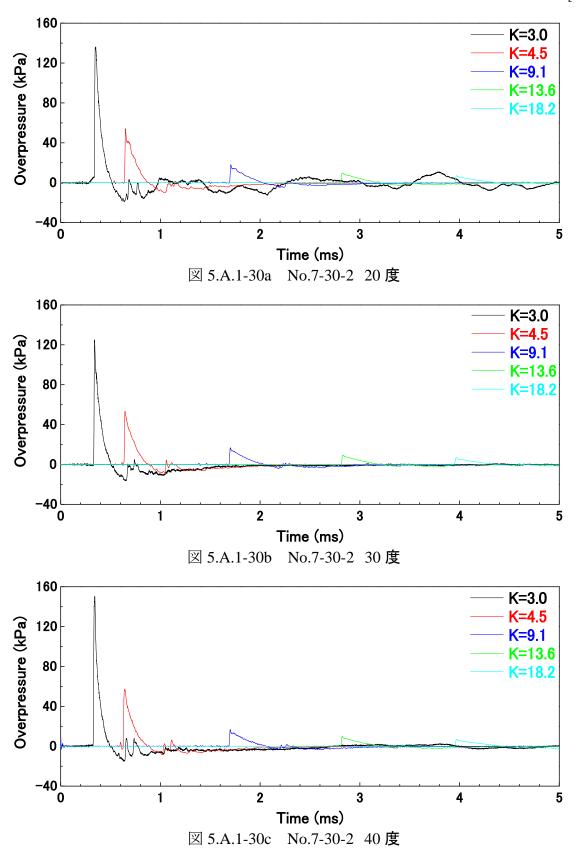


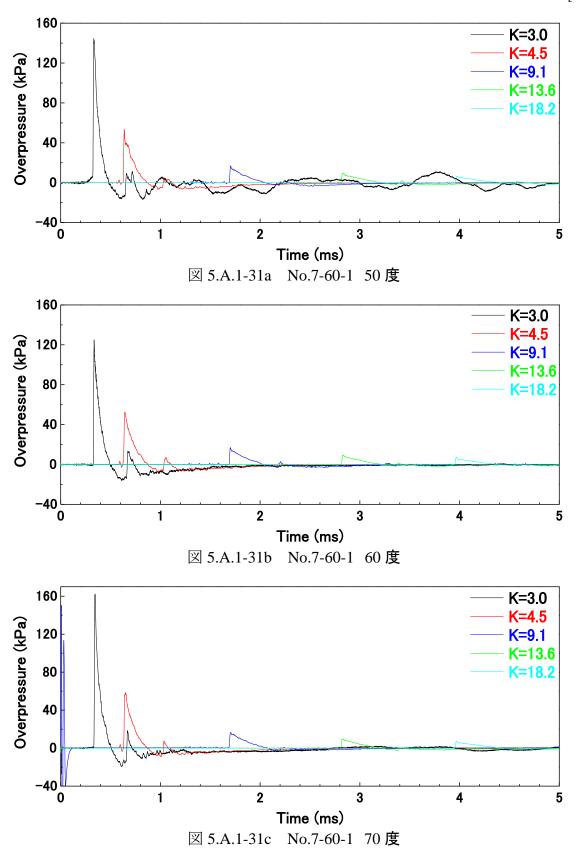


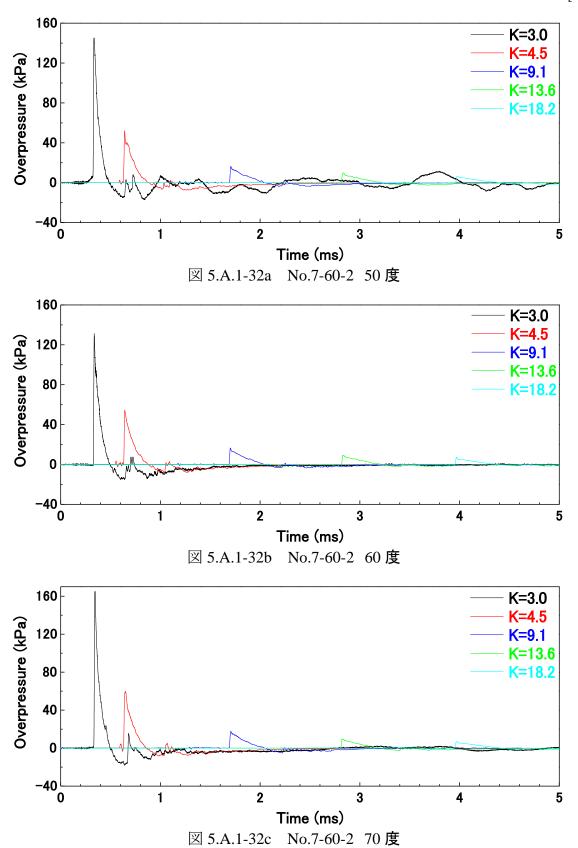


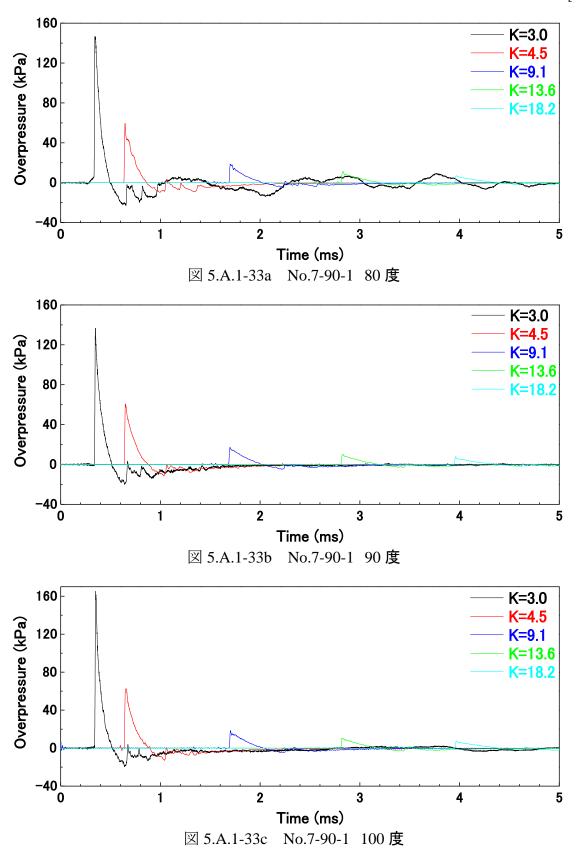


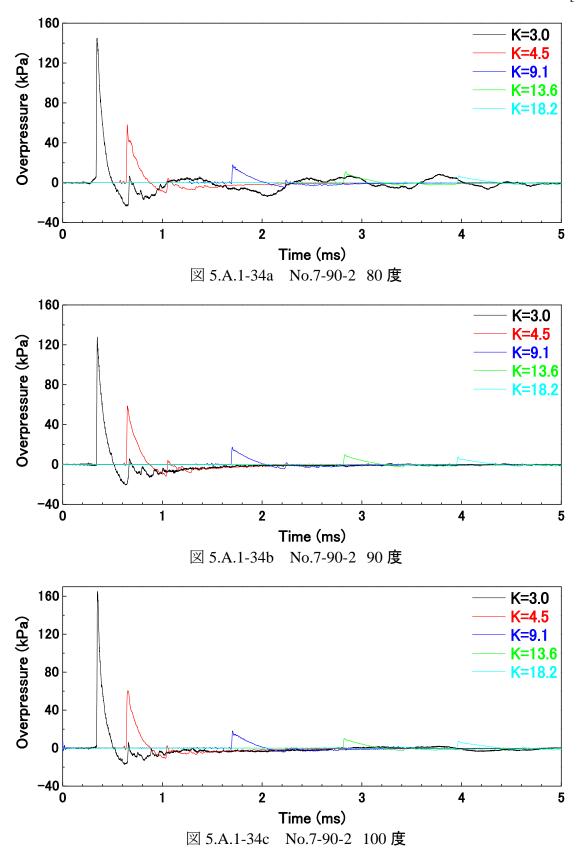


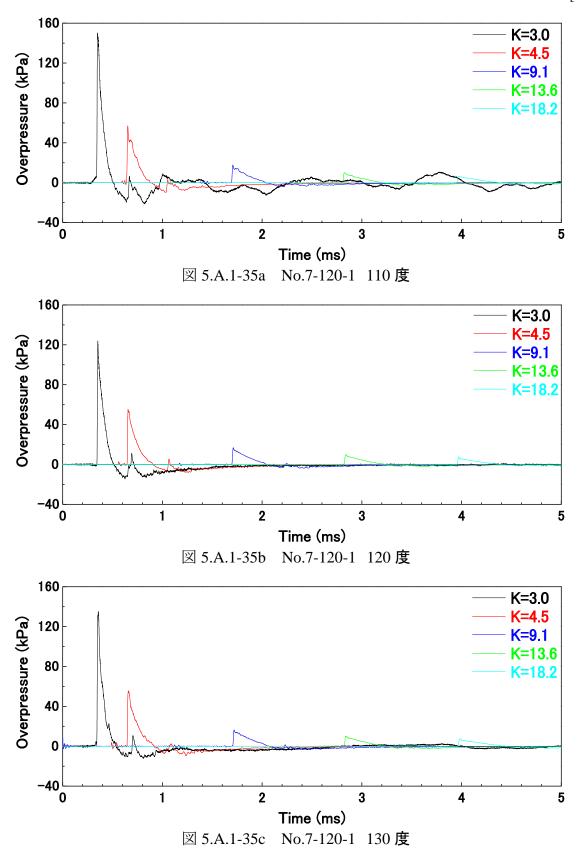


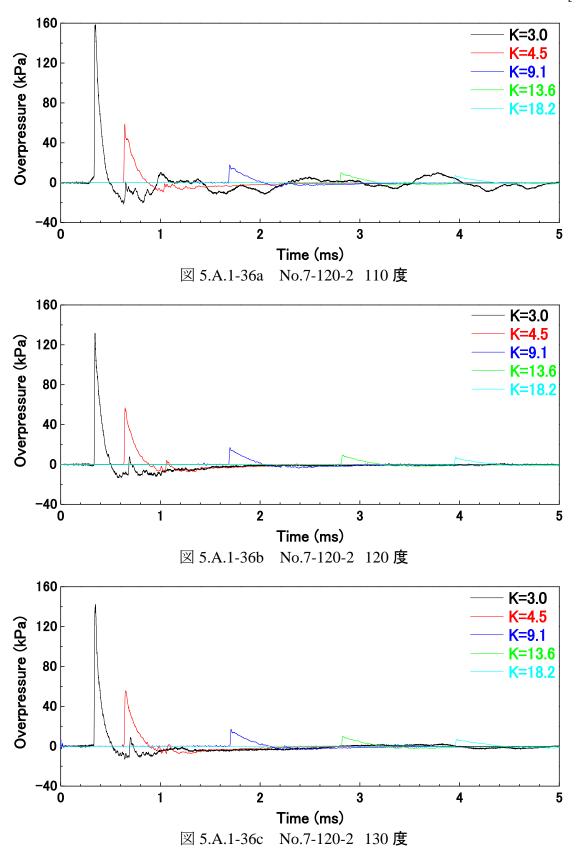


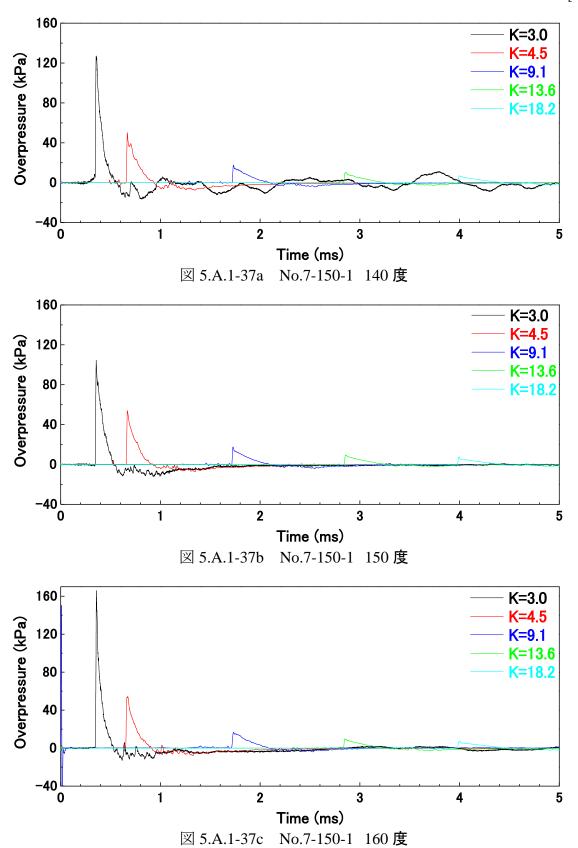


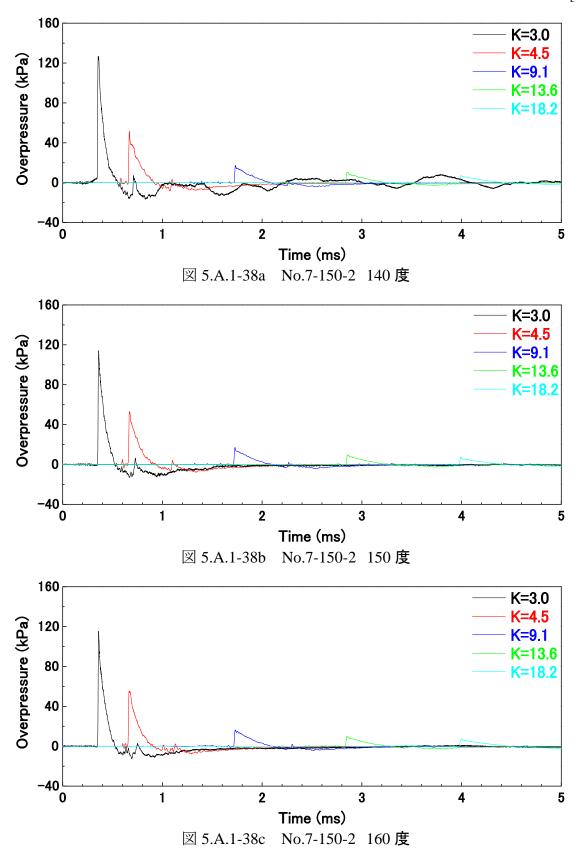


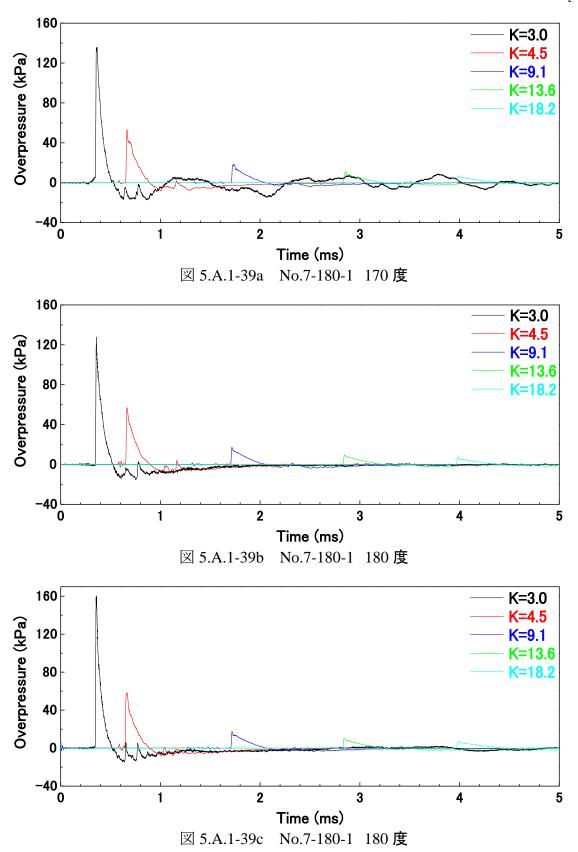


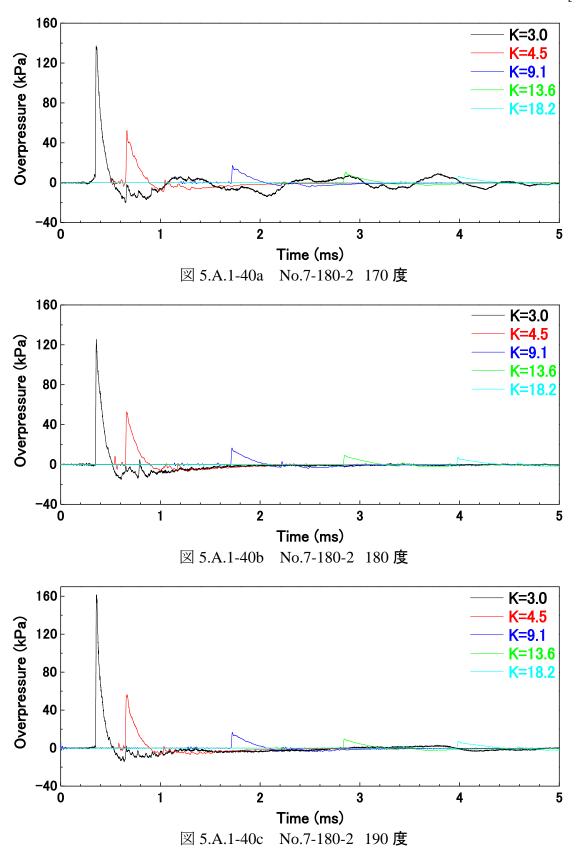


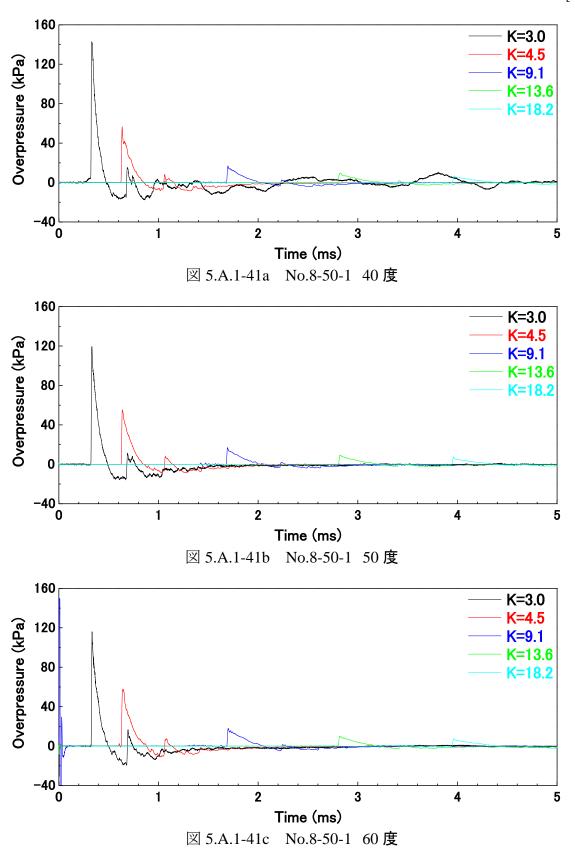


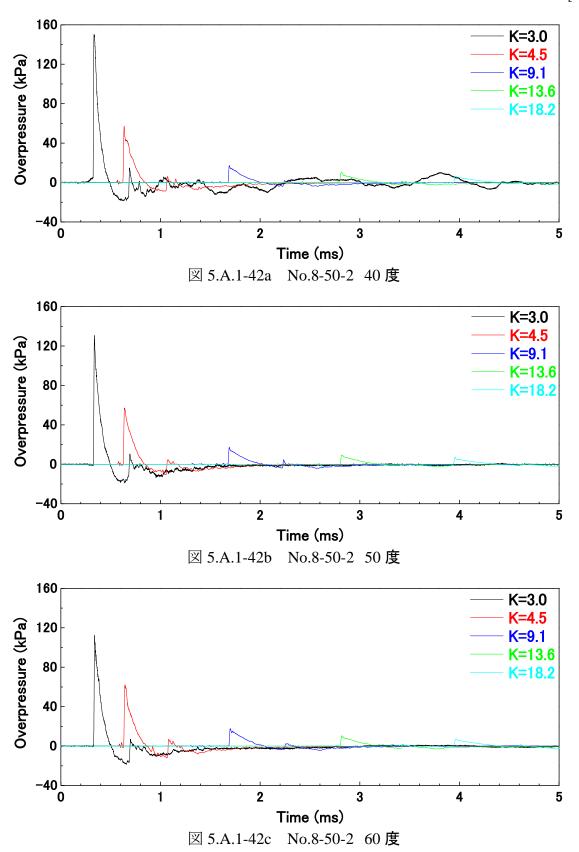


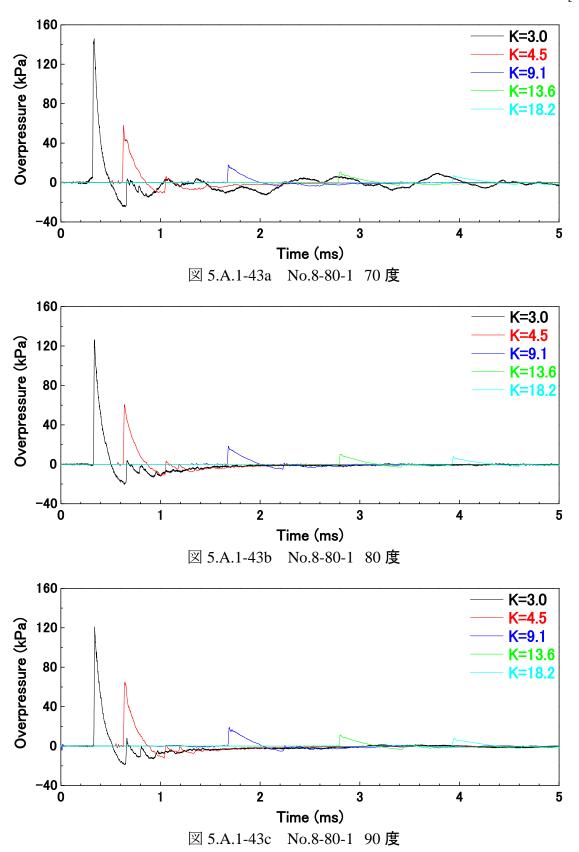


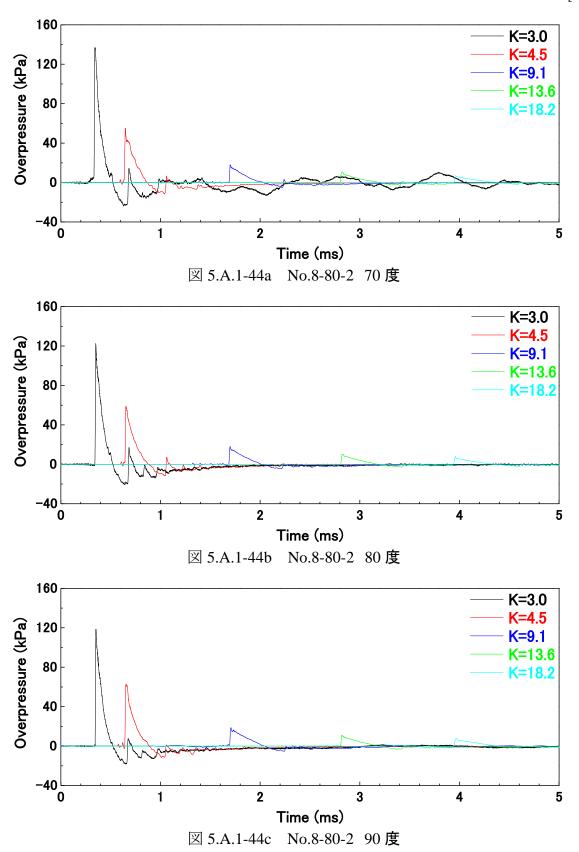


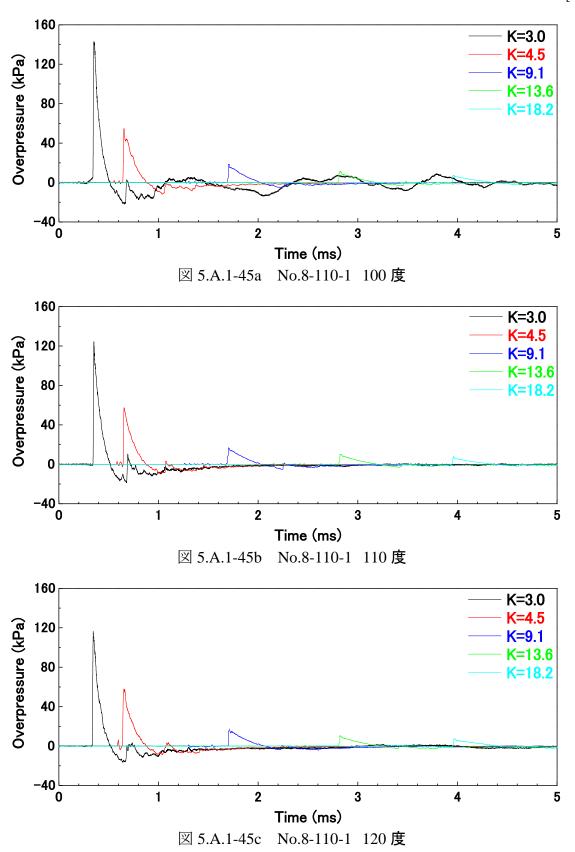


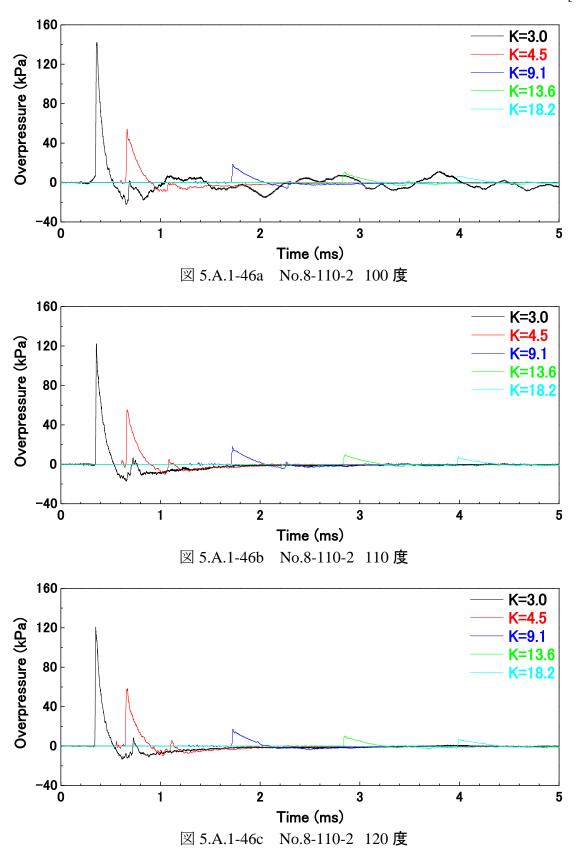


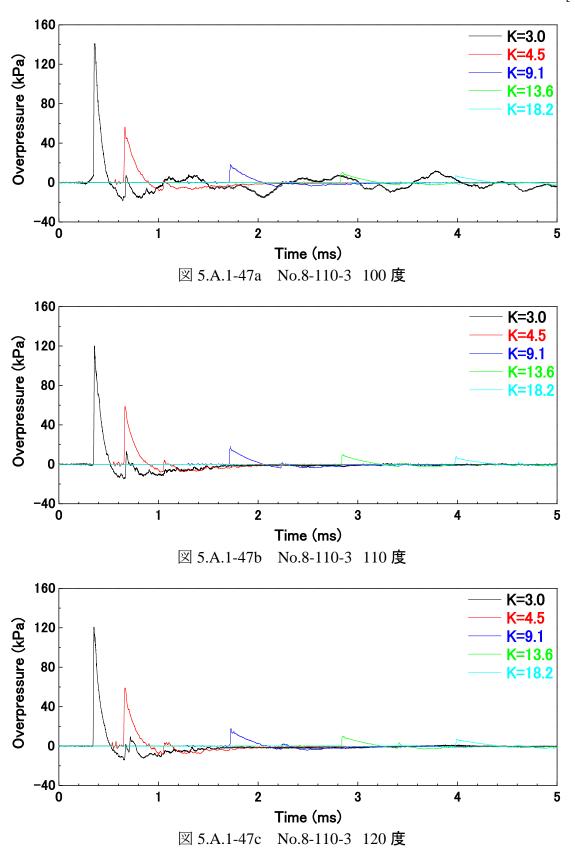


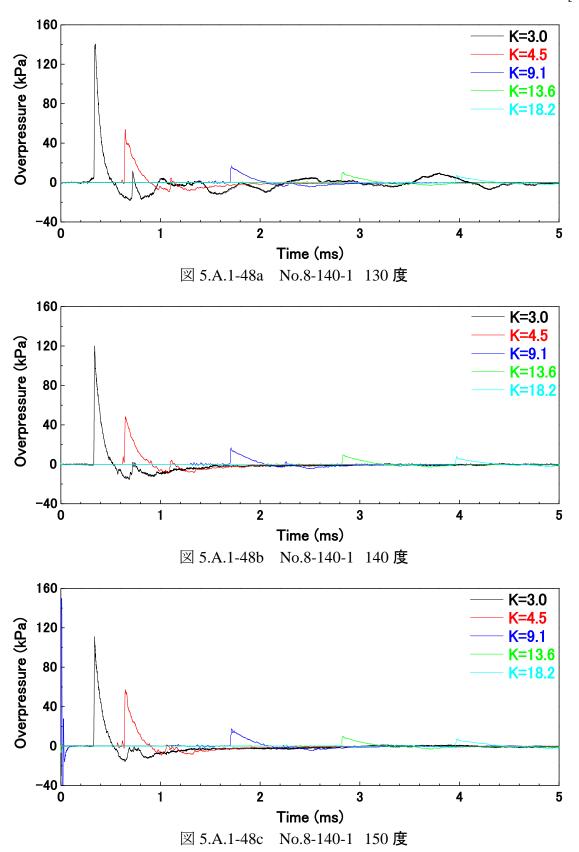


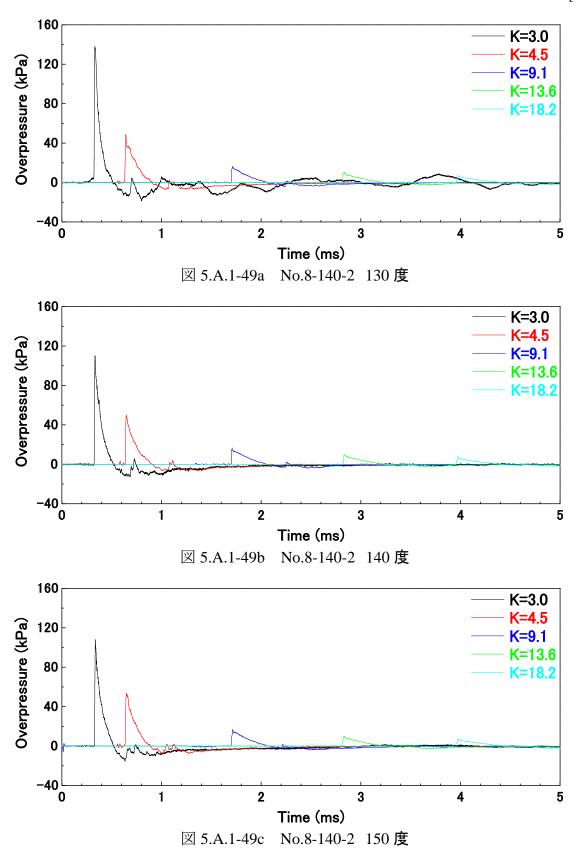


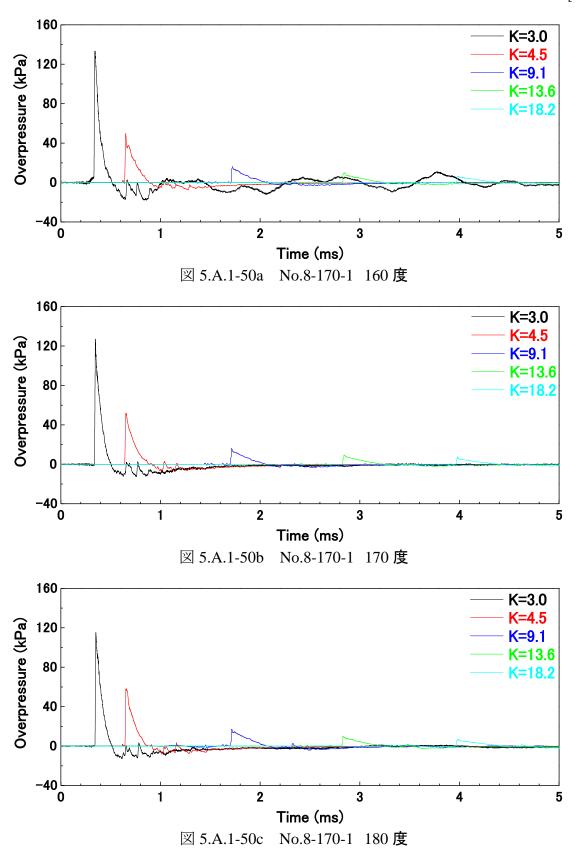


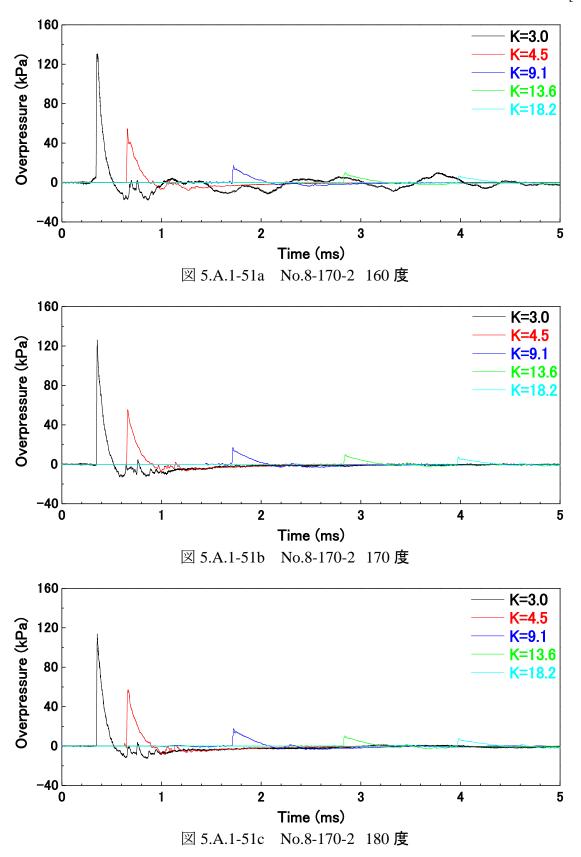


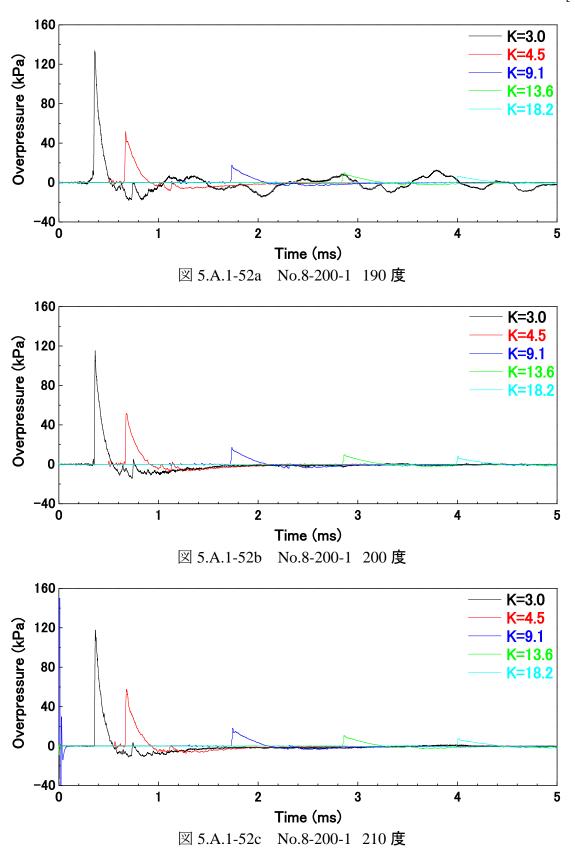


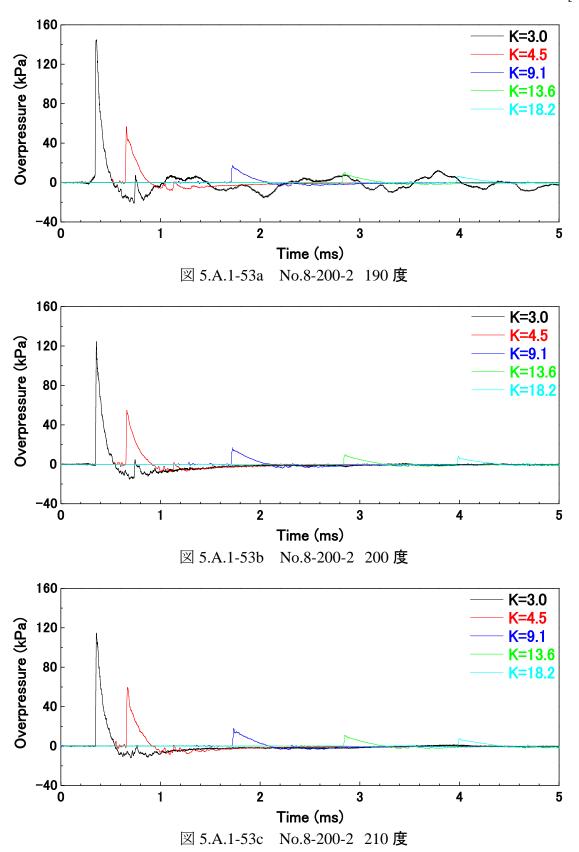


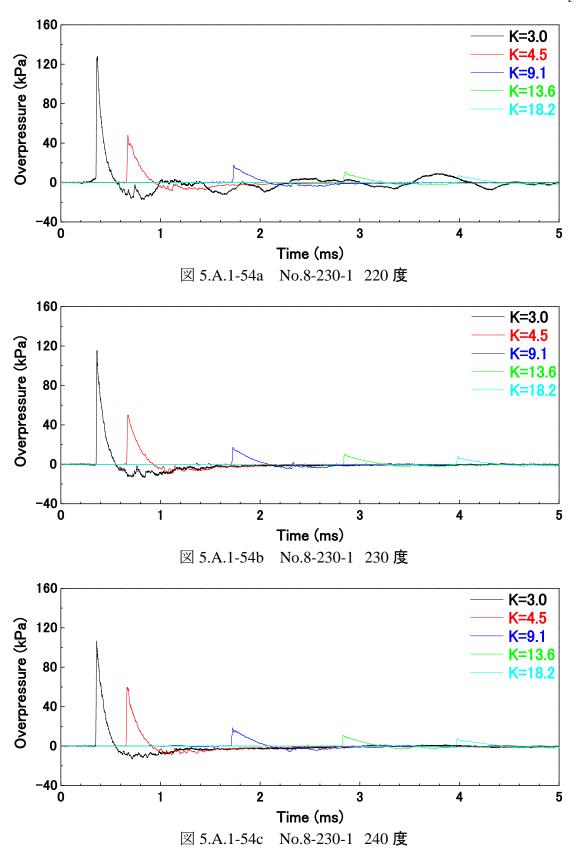


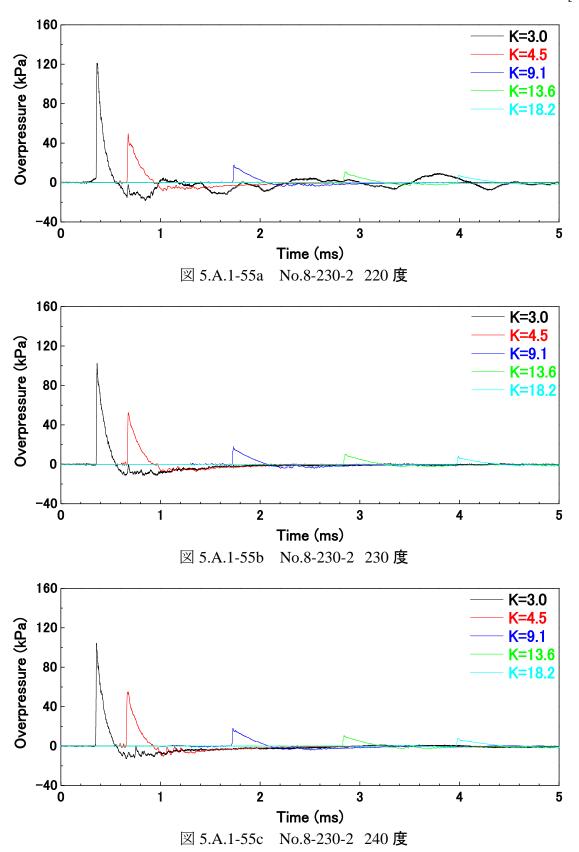












6.A.1 (付録 10) シミュレーション参考資料

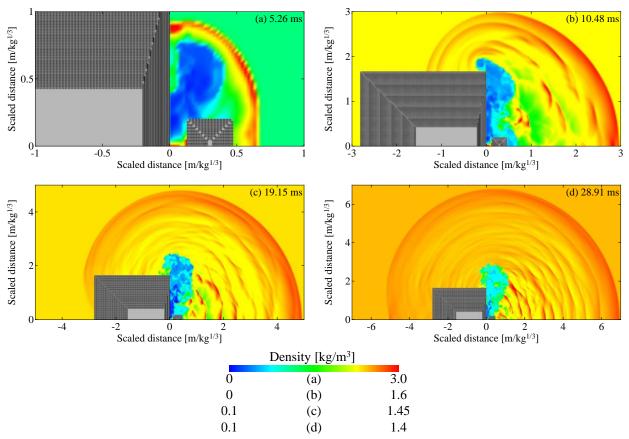


図 6.A.1-1 L/D_2 =3, D_1/D_2 =0.25 における爆風伝播の様子(地表面の密度分布)

断面積縮小部(薬室と前室の境目)が存在する場合、爆風は出口側に向かう成分(通過分)と薬室に戻る成分(反射分)に分割される。反射分が薬室を往復するたびに断面積縮小部にて通過分と反射分が形成され、庫口から間欠的に爆風が放出される。そのため、 L/D_2 が小さいほど庫口から放出される爆風の間隔が短くなる。 L/D_2 =3の場合はその回数が非常に多いため、先頭衝撃波面より内側の流れ場は非常に複雑になる。

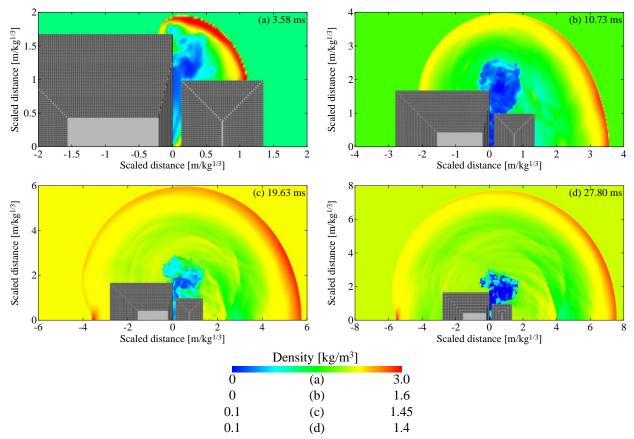


図 6.A.1-2 $L/D_2=3$, $D_1/D_2=1$ における爆風伝播の様子(地表面の密度分布)

断面積縮小部(薬室と前室の境目)がない場合、衝撃波が出口から放出される数が少なくなり、図 6.A.1-1 に比べると単純な流れ場となる。火薬類の爆発によって発生した爆風がほぼ一度で放出されるため、 $D_1/D_2=0.25$ に比べると強い爆風となる。

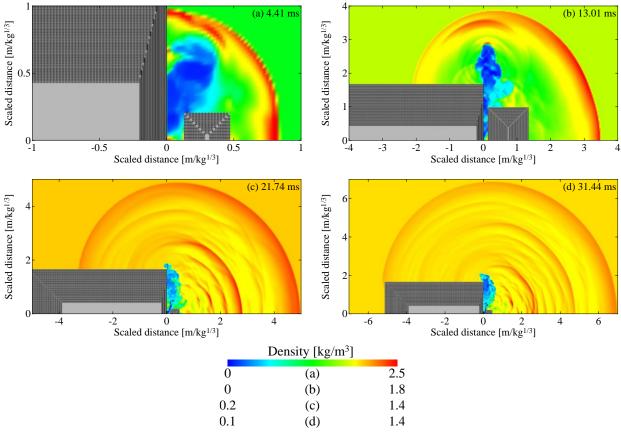


図 6.A.1-3 L/D_2 =9, D_1/D_2 =0.25 における爆風伝播の様子(地表面の密度分布)

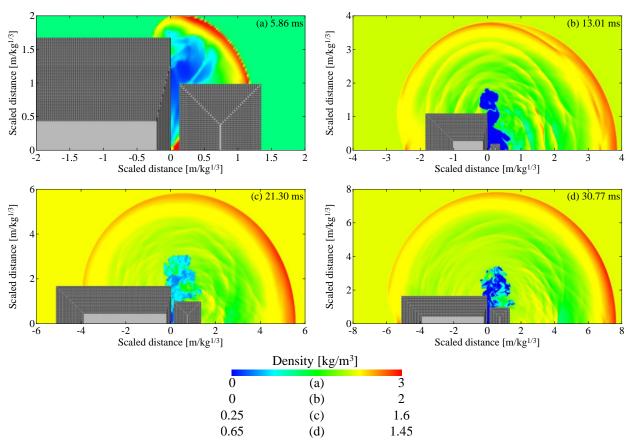


図 6.A.1-4 L/D_2 =9, D_1/D_2 =1 における爆風伝播の様子(地表面の密度分布)

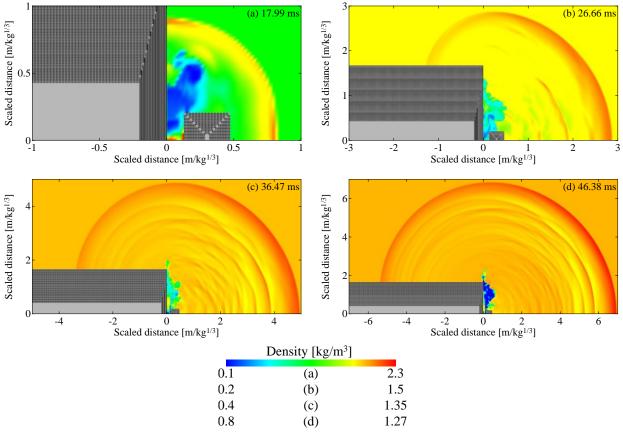


図 6.A.1-5 L/D_2 =40, D_1/D_2 = 0.25 における爆風伝播の様子(地表面の密度分布)

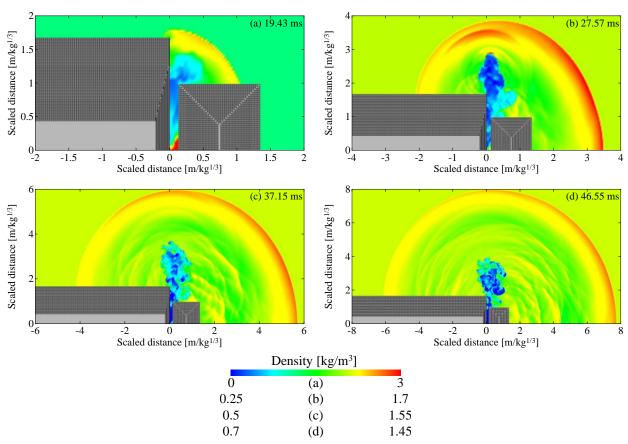


図 6.A.1-6 L/D₂=40, D₁/D₂=1における爆風伝播の様子(地表面の密度分布)