令和4年度石油・ガス供給等に係る保安対策調査等事業 (特定設備検査規則の第二種特定設備に係る例示基準の見直し調査) 報告書

令和5年3月

高圧ガス保安協会

目次

		~-	-ジ
1 事業概要		纟概要	1
	1.1	事業背景及び目的	1
	1.2	事業内容	1
	1.3	委員会構成	2
	1.4	委員会開催状況	2
2	別添	₹7見直し調査について	3
	2.1	別添7見直し調査の方針	3
	2.2	別添7見直し調査結果の概要	3
	2.3	引用規格調査委員会からの意見等	3
3	別添		5
	3.1	総則関係	5
	3.2	材料関係	7
	3.3	加工関係	14
	3.4	溶接関係	34
	3.5	構造関係	59
	3.6	検査の方法	64
	3.7	引用規格	64
4	まと	· め	65

添付資料 引用規格の一覧及び対応案

1 事業概要

1.1 事業背景及び目的

石油コンビナート等で多様な用途に用いられている高圧ガスは、法令に規定された技術 基準に基づき安全な取扱いが求められている。近年のスマート化や情報技術革新におい て、高圧ガスを安全に取り扱うための技術についても開発が活発化しており、最新の業界 基準や標準化された国内規格等が豊富に存在している。

高圧ガス保安法第56条の3の特定設備は、高圧ガスの爆発その他の災害の発生を防止するために製造の工程ごとに特定設備検査を受けなければならない。特定設備検査に係る技術基準のうち、第二種特定設備に係る技術基準(特定設備検査規則の機能性基準の運用について別添7「第二種特定設備の技術基準の解釈」。以下「別添7」という。)は、第一種特定設備に係る技術基準及び米国機械学会圧力容器規格 ASME BPVC Section VIII Division 1 2001 年版(2002Addenda を含む。)を参考として制定された例示基準であるが、制定から基準の見直しが行われていない。このことは最新の技術基準との不整合、事業者の最新技術の活用の阻害といった問題に繋がる可能性がある。

こうした状況を踏まえ、本事業においては、別添7を対象に、圧力容器に係る最新の技術基準を参考とし、高圧ガスの安全な取扱いに係る技術基準の更新を図ることを目的とする。

1.2 事業内容

特定設備検査規則は、特定設備検査に係る技術上の基準(設計の検査、材料の品質確認及び製造中の検査)及び特定設備検査の方法を規定している。別添7は、第二種特定設備の技術上の基準及び検査の方法について、具体的に規定している。

別添7に対応する日本産業規格として JIS B 8267 (圧力容器の設計) が制定されており、現在も定期的に技術基準の更新が図られている。これを踏まえ、本事業においては、次の1)及び2)の調査・検討(以下「別添7見直し調査」という。) を行い、改正に資する資料として取りまとめた。

- 1) JIS B 8267 を中心に圧力容器に係る最新の技術基準の調査を行い、現行の別添7の 規定との比較を行う。
- 2) 上記 1)の比較結果に基づき、現行の別添7の技術的な課題を検討する。

1.3 委員会構成

別添7見直し調査における技術的な課題の検討については、以下の有識者により構成された委員会(令和4年度引用規格調査委員会)を設置し、議論を取りまとめた。

委員長(学識経験者) 高橋 邦夫 東京工業大学

委 員(高圧ガス事業者) 後藤 圭太 株式会社レゾナック

(昭和電工株式会社)

委 員(特定設備製造者) 坂倉 茂樹 株式会社 I H I

委 員(特定設備製造者) 市川 泰司 大陽日酸株式会社

委 員(エンジニアリング事業者)板谷 重基 東洋エンジニアリング設株式会社

委員(エンジニアリング事業者)永井 正二郎 千代田化工建設株式会社

委 員(材料製造者) 山本 治 一般社団法人 日本鉄鋼連盟

委員(検査機関) 中村 英之 株式会社 [H I 検査計測

1.4 委員会開催状況

第1回委員会 開催日 令和4年7月27日(Web形式)

内 容 見直し調査の内容、方針及び方法の説明

第2回委員会 開催日 令和4年9月9日(Web形式)

内 容 調査結果の報告及び技術的な課題の審議

第3回委員会 開催日 令和4年11月11日(Web形式)

内 容 調査結果の報告及び技術的な課題の審議

第4回委員会 開催日 令和5年1月16日(Web形式)

内 容 調査結果の報告及び技術的な課題の審議

報告書案の書面審議 開催日 令和5年2月28日から令和5年3月14日

内 容 報告書案の書面審議

2 別添7見直し調査について

2.1 別添7見直し調査の方針

別添7の見直し調査は、次の1)~3)に示す方針に基づき行った。

- 1) 別添7の各条項とそれに対応する JIS B 8267 の規定とを比較する。
- 2) 比較結果に基づき、現行の別添7の規定を JIS B 8267 の規定に整合させた場合に生じる問題点等を主な技術的な課題とする。この場合、特定設備検査規則の規定にも影響がある場合は、当該規定の見直しについても言及する。
- 3) 技術的な課題に対する対応案も検討する。このうち、より詳細な調査が必要なものにあっては、今後の課題として整理する。

2.2 別添7見直し調査結果の概要

別添7見直し調査結果の詳細は3に示す。別添7見直し調査結果より、各規定の対応案は1)~3)のいずれかとなった。

- 1) 規定内容が同等であり、特段の見直しは不要である。
- 2) 規定内容が異なるが、技術的な課題とはならない軽微な違い*である。
- 3) 規定内容が異なり、技術的な課題がある。

技術的な課題がある条項については、その内容や程度に応じて、個別に対応案を検討した。対応案の検討においては、別添 7 は ASME BPVC Section VIII Division 1 2001 (2002 addenda を含む。) に基づき制定された例示基準であることを踏まえ、最新版(2021 年版。以下同じ。) の ASME BPVC Section VIII Division 1 の規定も参考とした。

- * 軽微な違いとは、次に示すようなものをいう。各条項における軽微な違いについては、3 において備考としてまとめた。
 - 現行の別添 7 の規定値は、別添 7 制定当時の ASME BPVC Section VIII Division 1 の US 単位系の値を SI 単位系の値に換算したものを含む。このため、JIS B 8267 の 規定値又は最新版の ASME BPVC Section VIII の SI 単位系の規定値と若干異なるものがある。
 - 技術的な課題ではないが、規定内容をより明確にするため、表現を見直すべきものがある。

2.3 引用規格調査委員会からの意見等

別添7見直し調査に関連して、引用規格調査委員会より、次の1)及び2)の意見が出た。

- 1) 溶接継手の非破壊検査にデジタル検出器を使用した放射線透過試験を適用する場合の要件は、第一種特定設備の技術基準や他の省令の技術基準においても適用できるようにしてほしい。
- 2) プレートフィン熱交換器の技術基準は第一種特定設備の技術基準としてはあるが、 別添7にはないため、別添7でも当該基準を規定できるようにしてほしい。

- 3 別添7見直し調査結果の詳細
- 3.1 総則関係
- 3.1.1 適用範囲
- (1) 対象条項

別添 7 第 1 条 (適用範囲) JIS B 8267 1.1 適用する圧力容器

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7は、設計圧力20MPa以下の特定設備(圧縮水素スタンド及び移動式圧縮水素スタンドの特定設備を除く。)を適用範囲としている。JISB8267は、適用範囲において設計圧力の制限を設けていないが、設計圧力30MPaを超える場合は高圧への適用に対する設計上の考慮を示す必要があると規定している。

別添7の適用範囲における設計圧力の制限は、「平成29年度石油精製等に係る保安対策調査等事業 (高圧ガス取扱施設における産業保安のスマート化に関する調査研究) (3)特定設備検査規則に関する調査」において、その廃止に係る検討が行われており、以下の結果が得られている。この結果より、圧縮水素スタンド及び移動式圧縮水素スタンドの特定設備に限定せず、別添7の圧力制限を廃止する。

- a) 別添7は、制定時において、圧力制限のない別添1(設計係数4.0)と同等の例示 基準となるように、技術的な検討が行われている。
- b) 別添7の圧力制限 20MPa を超える特定設備については、圧力制限のない別添1が 適用されている。過去の特定設備検査の実績より、別添1は設計圧力 20MPa~ 50MPa の特定設備に適用された実績が多数ある。
- c) 設計圧力 80MPa~110MPa の特定設備については、詳細基準事前評価を申請し、高 圧での使用を想定した基準(KHKS 0220「超高圧ガス設備に関する基準」等)を適 用しているものが多い。別添7の圧力制限を廃止した場合であっても、別添1の適 用状況と同様の結果となると想定される。

3.1.2 用語の定義

(1) 対象条項

別添7 第2条 (用語の定義)

JIS B 8267 3. 用語の定義

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の用語は、省令に規定する用語の定義を前提にしたうえで、追加の用語を定義している。JIS B 8267の用語は、JIS B 0190 (圧力容器の構造に関する共通用語)を引

用したうえで、追加の用語を規定している。別添7の用語は、次に示すものを除き、JIS B8267と同等である。

- a) JIS B 8267 では厚さ、呼び厚さ及び計算厚さの定義があり、規定上、使い分けられている。別添7では厚さに係る用語の定義はなく、最小厚さという用語により、JIS B 8267 の計算厚さ(強度計算上必要とする厚さ)と最小制限厚さ(規格上要求される厚さ)を総称している。また、別添7では厚さという用語を使用し、実際厚さと呼び厚さを総称している。規定上、用語の定義が明確であることが望ましいため、JIS B 8267 で使用されている用語の定義を追加し、用語を使い分ける。
- b) 材料の種類のうち、炭素鋼、低合金鋼及び高合金鋼(JIS B 8267 の規定ではステンレス鋼)の定義は同じであるが、別添7には非鉄金属の定義がなく、その範囲が明確ではない。JIS B 8267 の非鉄金属の定義は、炭素鋼、低合金鋼及び高合金鋼と同様に JIS B 8285 の P 番号により区別している。JIS B 8267 と同様に非鉄金属を定義する。
- c) JIS B 8267 ではボルト及びナットは耐圧部分である。別添7では、基本通達「特定 設備検査規則の運用及び解釈について」第11条関係に基づいてボルト及びナット は耐圧部分から除かれている。ボルト及びナットを耐圧部分とした場合、特定設備 検査の対象となることや、供用中における規制等について検討が必要となるため、 現行の別添7のままとする。なお、実際はボルト締めフランジの強度計算等におい てボルトの強度評価が要求されており、耐圧部分相当の扱いとなっている。

3.1.3 検査記録

(1) 対象条項

別添7 第3条(検査記録等)

JIS B 8267 -

(2) 比較の概要、技術的な課題及び対応案の考え方 別添7にのみ規定がある。現行の別添7のままとする。

- 3.2 材料関係
- 3.2.1 耐圧部分に使用する材料
- (1) 対象条項

別添 7 第 4 条 (特定設備の材料) 第 1 項

JIS B 8267 4.1 一般

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の耐圧部分に使用する材料に係る規定は、JISB8267の規定と同等であり、規格材料、同等材料又は特定材料を使用する。

3.2.2 規格材料

(1) 対象条項

別添7 第4条(特定設備の材料)第1項、別表第1

JIS B 8267 4.1 a) 規格材料、附属書 B (規定) 材料の許容引張応力

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の規格材料に係る規定は、JISB8267の規定と同等であり、主にJISの材料規格を引用している。別添7で引用している材料規格は制定時のままであるため、特定設備検査規則の規定の範囲でJISB8267に整合させる。具体的には、鉄鋼材料及び非鉄金属材料(アルミニウム、銅、チタン及びニッケル並びにこれらの合金)とする。ただし、次に示す材料は、特定設備検査規則の規定の範囲外の材料であるため、対応案の対象から除く(以下、他の条項においても同じ。)。

- a) JIS G 5122 SCH22 及び SCH22CF 以外の鋳造材 (特定設備検査規則第 11 条の設計 温度がクリープ領域に達しない鋳造製品の材料)
- b) ボルト材

3.2.3 同等材料

(1) 対象条項

別添 7 第 4 条 (特定設備の材料) 第 2 項

JIS B 8267 4.1 b) 同等材料

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の同等材料に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。 JIS B 8267の規定では、「規格材料と化学的成分、機械的性質の試験方法及び試験片 採取方法が同等で、規格材料と機械的性質の試験結果が同等な材料」も同等材料となる。当該規定は、JIS B 8267 に整合させる。

3.2.4 特定材料

(1) 対象条項

別添 7 第 4 条 (特定設備の材料) 第 3 項、別表第 2JIS B 8267 4.1 c) 特定材料、附属書 C (規定) 特定材料

(2) 比較の概要、技術的な課題及び対応案の考え方

(2.1) 特定材料

別添 7 の特定材料に係る規定は、JIS B 8267 の規定と同等であり、ASME BPVC Section VIII Division 1 の各パートに規定の材料を引用している。ただし、別添 7 は 2001 年版(2002 Addenda を含む。)、JIS B 8267 では 2017 年版の ASME BPVC Section VIII Division 1 に基づく材料であるため、特定設備検査規則の規定の範囲で JIS B 8267 又は最新版の ASME BPVC Section VIII Division 1 に整合させる。

(2.2) ASME 規格の管フランジ及び管継手の材料

別添7の ASME 規格の管フランジ及び管継手の材料に係る規定は、JIS B 8267の規定と同等である。

3.2.5 クラッド鋼

(1) 対象条項

別添 7 第 4 条 (特定設備の材料) 第 4 項 IIS B 8267 5.1.4 クラッド鋼

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7のクラッド鋼に係る規定は、JIS B 8267 の規定と同等であり、JIS 又は ASME のクラッド鋼の規格を引用している。JIS クラッド鋼の種別について、別添7では種別を限定していないのに対し、JIS B 8267 では1種クラッド鋼(合せ材を強度部材とするもの)に限定している。特定設備には合せ材を強度部材としないものもあるため、現行の別添7のままとする。

なお、特定設備の事例では、1種クラッド鋼を使用している場合であっても、合せ材 を強度部材としていない場合が多い。

3.2.6 材料の使用温度範囲

(1) 対象条項

別添 7 第 4 条 (特定設備の材料) 第 4 項

JIS B 8267 4.1 d) 材料の使用温度範囲

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の材料の使用温度範囲に係る規定は、JIS B 8267の規定と同等であり、規格材料、同等材料及び特定材料を使用することができる最高及び最低の使用温度を示してしている。このうち、最高使用温度の値は許容引張応力表に示されており、いずれの値も規定もほぼ整合しているが、一部整合していない箇所もあるため、JIS B 8267 に整合させる。

3.2.7 材料の使用制限

(1) 対象条項

別添7 第4条(特定設備の材料)第5項

IIS B 8267 4.2 鉄鋼材料の使用制限

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の耐圧部分に使用する材料の制限に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

別添7の規定には、JISG3101(一般構造用圧延鋼材)の使用制限があるが、当該材料はJISB8267では使用可能な材料ではない。使用可能な材料は、JISB8267に整合させることとしたため、当該規定は削除する。

3.2.8 母材の種類の区分

(1) 対象条項

別添 7 -

JIS B 8267 附属書 A(規定) 母材の種類の区分

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の母材の種類の区分は、JIS B 8285の母材の種類の区分を引用している。JIS B 8267も同様であるが、これに加え、JIS B 8267 附属書 A には JIS B 8285に規定のない材料の母材の種類の区分が規定されている。母材の種類の区分は、特定設備検査規則の規定の範囲で JIS B 8267に整合させる。

また、JIS B 8267 附属書 A には、特定材料と規格材料の母材の種類の区分の対応表がある。別添7の別表第6(第38条関係)の溶接後熱処理の最小保持温度表に、同様の表はあるが、JIS B 8267 のように一般規定ではない。当該対応表の扱いは、JIS B 8267 に整合させる。

- 3.2.9 材料の外観
- (1) 対象条項

別添7 第50条(材料の外観)

JIS B 8267 —

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7にのみ規定がある。特定設備検査規則に基づく規定であるため、現行の別添7のままとする。

- 3.2.10 材料の機械試験
- 3.2.10.1 材料の衝撃試験等
- (1) 対象条項

別添 7 第 5 条 (材料の衝撃試験、落重試験又は破壊じん性試験)

第51条(材料の機械試験等)

IIS B 8267 附属書 R (規定) 圧力容器の衝撃試験

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 炭素鋼・低合金鋼

炭素鋼・低合金鋼の衝撃試験等(衝撃試験、落重試験及び破壊じん性試験をいう。以下同じ。)の要否に係る規定は、次の規定を除き、JIS B 8267 の規定と同等である。

- a) P番号1グループ番号1及び2の材料の衝撃試験が不要となる条件の一つとして、 JISB8267の規定では熱衝撃又は機械的衝撃が設計上考慮すべき荷重ではないこと が定められている。当該規定は別添7にはないため、JISB8267の規定に整合させ る。
- b) 衝撃試験不要曲線の材料区分について、別添7の規定では曲線Bに対応する材料に 細粒化処理を施し、かつ、焼なましを行った場合は、曲線Cの材料区分とできると 定められている。当該規定の熱処理は、JISB8267の規定では材料規格に規定する 焼なまし、焼ならし焼戻し又は焼入れ焼戻しと定められており、材料規格に応じた 熱処理が規定されている。JISB8267の規定に整合させる。

(2.2) 9%ニッケル鋼

9%ニッケル鋼の衝撃試験等の要否に係る規定は、JIS B 8267 の規定と同等である。

(2.3) 高合金鋼

高合金鋼の衝撃試験等の要否に係る規定は、次の規定を除き、JIS B 8267 の規定と同等である。

- a) 最低設計金属温度によらず衝撃試験若しくは破壊じん性試験が不要又は必要な材料の種類は、JIS B 8267 の規定の方が多い。これは、JIS B 8267 に規定の材料の種類が多いためである。耐圧部分に使用可能な材料の種類は、特定設備検査規則に規定の範囲で JIS B 8267 に整合させることとしたため、当該規定も同様に、特定設備検査規則に規定の範囲で JIS B 8267 に整合させる。
- b) JIS B 8267 の規定では、最低設計金属温度が-253°C以上で、材料の種類が SUH660、TPXM-19 及び XM-19 の場合は、母材の衝撃試験又は破壊じん性試験が 不要である。これらの材料は、主に圧縮水素スタンドの設備に使用される鋼種拡大 の取り組みから追加されたものであり、液化水素温度においてじん性が確認されて いるため、JIS B 8267 の規定に整合させる。

(2.4) 非鉄金属

非鉄金属の衝撃試験等の要否に係る規定は、IIS B 8267 の規定と同等である。

(2.5) 衝撃試験等の試験要領及び合格基準

材料の衝撃試験等の試験要領は、次に示す規定を除き、JIS B 8267 の規定と同等である。

- a) 炭素鋼及び低合金鋼の衝撃試験の試験温度は、別添7の規定ではP番号3グループ番号3の場合、最低設計金属温度以下の温度とする(サブサイズ試験片の温度低減等は適用しない。)のに対し、JISB8267の規定では材料規格の引張強さが655N/mm²以上の場合、試験片の寸法に関係なく、最低設計金属温度以下の温度とすると定められている。JISB8267の規定は、ASMEBPVC Section VIII Division 1の規定とも整合しているため、当該規定に整合させる。
- b) 最低設計金属温度を-196℃未満とする場合の高合金鋼の衝撃試験等は、別添7の規定では-196℃で行う衝撃試験(母材が溶接されない場合及び母材の溶接をフェライト番号5未満の316Lの溶加材を用いて行う場合に限る。)又は最低設計金属温度以下の温度で行う破壊じん性試験としているのに対し、JIS B 8267の規定では-196℃未満の温度で行う破壊じん性試験としている。JIS B 8267 の規定に整合させる。
- c) 別添7の規定では、同一溶解の材料から複数の小型特定設備を製作する場合、1組の試験片をもって当該特定設備を代表することができる。当該規定は JIS B 8267 に

はない。当該規定は ASME BPVC Section VIII Division 1 の大量生産する圧力容器 に係る規定の一部に基づくものである。JIS B 8267 に整合させ、削除する。なお、 別添 7 の規定では、同一仕様の複数の特定設備を同一条件で連続して製造する場合は、 1 個の試験板で代表することができる。

- d) 破壊じん性試験の試験方法は、別添 7 の規定では JIS G 0564 又は ASTM E1820 によるに対し、JIS B 8267 の規定では JIS Z 2284、JSME S001 又は ASTM E1820 による。JIS G 0564 及び JSME S001 は廃止されている。破壊じん性試験の方法は、JIS Z 2284 又は ASTM E1820 によることとする。
- e) 別添7の規定では非鉄金属の衝撃試験等の試験要領が定められていない。JISB 8267の規定では高合金鋼の衝撃試験等の試験要領によると定められているため、当 該規定に整合させる。
- f) 炭素鋼及び低合金鋼の衝撃試験(フルサイズ試験片の吸収エネルギーが 240J を超える場合を除く。)の再試験の条件は、次に示す違いがある。別添7の規定は ASME BPVC Section VIII Division 1 の規定と同じであるため、現行の別添7のままとする。

■ 別添7:

- ▶ 3個の試験片の吸収エネルギーが最小平均吸収エネルギーの 2/3 以上であって、その平均値及び 2個以上の試験片の吸収エネルギーが最小平均吸収エネルギーの 2/3 以上の場合
- ➤ 3個の試験片の吸収エネルギーの平均値及び2個の試験片の吸収エネルギーが 最小平均吸収エネルギー以上で、1個の試験片の吸収エネルギーのみが最小平 均吸収エネルギーの 2/3 未満の場合

■ IIS B 8267:

- ▶ 3個の試験片の吸収エネルギーの平均値が最小平均吸収エネルギーの 2/3 以上であるが、1個以上の吸収エネルギーが最小平均吸収エネルギー未満の場合
- ▶ 1個の試験片の吸収エネルギーが最小平均吸収エネルギーの 2/3 未満の場合

(2.6) クラッド鋼

クラッド鋼の衝撃試験等の要否、試験要領及び合格基準に係る規定は、JIS B 8267 の 規定と同等である。

備考

1 別添7に規定の衝撃試験の低減温度、材料の強度区分等は、JIS B 8267の規定値と若干異なる。別添7制定時の単位換算に係るものであるため、JIS B 8267の規定に整合させる。

- 2 別添7に規定の衝撃試験免除曲線等は、別添7制定時のままであるため、JISB 8267の規定に整合させる。なお、最小吸収エネルギー及び最小横膨出の規定値は特 定設備検査規則にも規定されているため、当該規定も整合させる。
- 3 ニッケル・クロム・鉄合金は、JIS B 8267 の規定ではニッケル及びニッケル合金 に含まれているのに対し、別添7の規定ではニッケル・クロム・鉄合金という区分 にしている。衝撃試験等の要否については規定上同じである。表記上、現行の別添7のままとする。
- 3.2.10.2 材料の機械試験(衝撃試験等を除く。)
- (1) 対象条項

別添 7 第 5 条の 2(材料の機械試験)、第 51 条の 2(材料の機械試験の方法) JIS B 8267 4.4 材料の機械試験

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の材料の機械試験(衝撃試験等を除く。)に係る規定は、JISB8267の規定と同等であり、材料規格に規定の機械試験に合格すること及び製作中に熱処理を行う高温圧力容器用高強度クロムモリブデン鋼の機械試験が定められている。

備考

- 1 高温圧力容器用高強度クロムモリブデン鋼の特定材料について、材料の種類の記号が別添7制定時のままであるため、JIS B 8267 の規定に整合させる。
- 2 製作中に熱処理を行う高温圧力容器用高強度クロムモリブデン鋼の試験片に行う 熱処理の温度の上限は、別添 7 の規定では最高設計温度又は最低設計温度に 14℃を 加えた温度以下であるのに対し、JIS B 8267 の規定では最高設計温度又は最低設計 温度に 15℃を加えた温度以下である。別添 7 制定時の単位換算に係るものであるた め、JIS B 8267 の規定に整合させる。

- 3.3 加工関係
- 3.3.1 設計計算
- 3.3.1.1 最小制限厚さ
- (1) 対象条項

別添7 第6条(最小厚さ)第1項柱書き

JIS B 8267 5.1.3 最小制限厚さ

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の最小制限厚さに係る規定は、次に示す規定を除き、JIS B 8267の規定と同等であり、炭素鋼及び低合金鋼は2.5mm、高合金鋼、ニッケル・クロム・鉄合金及び非鉄金属は1.5mmである。

- a) 腐食又は摩耗の恐れがある場合、別添7の規定では腐れ代1mmを設けるのに対し、JIS B 8267の規定では腐れ代を適切に設定する。別添7の規定は、特定設備検査規則の規定に基づくものであるため、現行の別添7のままとする。
- b) 最小制限厚さの適用除外に係る規定のうち、次の規定が異なる。
 - JIS B 8267 の規定ではベローズ形伸縮継手及び呼び径 150A 以下の二重管式熱交換器の外管が最小制限厚さの適用除外となっている。当該部位は、別添 7 の規定では最小制限厚さの適用除外ではない。別添 7 の規定は ASME BPVC Section VIII Division 1 の規定に基づくものであるため、現行の別添 7 のままとする。
 - 別添7の規定では、空冷式熱交換器の伝熱管が使用流体等の条件付きで最小制限 厚さの適用除外となっている。当該規定は ASME BPVC Section VIII Division 1 の規定に基づくものであるため、現行の別添7のままとする。
- 備考 空冷式熱交換器の最小制限厚さの適用除外の条件(設計圧力、最小厚さ等)は、 最新版の ASME BPVC Section VIII Division 1 の規定値と若干異なる。別添 7 制定 時の単位換算に係るものであるため、最新版の ASME BPVC Section VIII Division 1 の規定値に整合させる。

3.3.1.2 胴及び管の計算厚さ

(1) 対象条項

別添7 第6条(最小厚さ)第1項第1号及び第2号、別図第2

第70条(円すい胴の形状)、別図第5

JIS B 8267 5.2.1 内圧を保持する胴、E.2 内圧を保持する胴

5.2.3 外圧を保持する胴、E.4 外圧を保持する胴及び鏡板

図 E.10-外圧を保持する円筒胴及び球形胴の計算に用いる材料曲線

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 内圧を保持する胴及び管

別添7の内圧を保持する円筒胴又は管、球形胴及び円すい胴に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- a) 円すいの頂角の 1/2 が 60° を超える円すい胴の計算厚さについて、JIS B 8267 の規定では軸に直角に測った最大外径を直径とする平鏡板の式によると定められている。当該規定は別添 7 にはない。外圧を保持する円すい胴の規定においては、別添7にも同様の規定があるため、JIS B 8267 に整合させる。
- b) 円すい胴の形状(大径端又は小径端に丸みを設けない部分)について、JIS B 8267 の規定では、大径端又は小径端に丸みを設けない部分の内外面は滑らかに仕上げると定められている(図 E.2 及び図 E.5 に示されている。)。当該規定は別添 7 にはないため、JIS B 8267 に整合させる。

(2.2) 外圧を保持する胴及び管

別添7の外圧を保持する円筒胴又は管、球形胴及び円すい胴に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- a) 形状ごとの設計長さ L を表す図は、別添 7 では別図第 2 に、JIS B 8267 では図 E.11 に示されているが、次に示す違いがある。JIS B 8267 の図 E.11 は最新版の ASME BPVC Section VIII Division 1 と整合しているため、当該図に整合させる。
 - 図b) 円すい体形鏡板を有する圧力容器 別添7では両端が円すい鏡の圧力容器 の図であるが、JIS B 8267では鏡板と管台付き円すい鏡を有する圧力容器の図である。
 - 図 e)及び図 f) 円すい胴の大径端又は小径端 JIS B 8267 の図には、大径端又は 小径端に強め輪がある。別添 7 の図にはない。
- b) 別添7別図第2図g)のジャケット付き圧力容器(形式2)のジャケット付き圧力容器本体の設計長さLは、JISB8279の図1に形式1~形式5が規定されているため、当該図を削除し、JISB8279の規定を引用する。
- 備考 外圧を保持する胴及び管の計算における外径と計算厚さの比 Do/t について、別添7の規定では 1/10 以下と 1/10 超で計算方法を区分けしているのに対し、JIS B8267の規定では 1/10 未満と 1/10 以上で計算方法を区分けしている。当該規定は、JIS B8267 に整合させる。

(2.3) 外圧チャート

別添7別表第2に規定の外圧チャートは、JISB8267に規定の外圧チャートとほぼ同等であるが、一部整合していない箇所もあるため、JISB8267に整合させる。

3.3.1.3 鏡板

(1) 対象条項

別添7 第6条(最小厚さ)第1項第3号から第6号

第71条(鏡板の形状)

JIS B 8267 5.2.2 内圧を保持する鏡板、E.3 内圧を保持する鏡板

5.2.4 外圧を保持する鏡、E.4 外圧を保持する胴及び鏡板

(2) 比較の概要、技術的な課題及び対応案の考え方

(2.1) 内圧を受ける鏡板

別添7の内圧を受けるさら形鏡板、全半球鏡板、半だ円形鏡板及び円すい体形鏡板の計算厚さに係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- a) 円すいの部分の計算式について、別添7の規定は内径基準のみであるが、JISB8267 の規定は内径基準と外径基準のいずれの計算式も適用できる。円すいの部分の計算式は、円すい胴と同様に内径基準と外径基準のいずれも適用できるため、JISB8267 に整合させる。
- b) 円すいの頂角の 1/2 が 60° を超える場合について、JIS B 8267 の規定では、円すい 形鏡板の軸に直角に測った最大外径を直径とする平板の式による。当該規定は別添 7 にはないため、JIS B 8267 に整合させる。
- 備考 別添7の規定では、さら形鏡板及び K>1 の半だ円形鏡板の場合で、かつ、材料 規格の引張強さが 483 N/mm² を超える材料で製作する場合は、計算に用いる許容 引張応力の値は、137 N/mm² に設計温度と 40 ℃における許容引張応力の比を乗じた値とする。JIS B 8267 の規定も同じではあるが、材料規格の引張強さは 485 N/mm²、許容引張応力の値は 138 N/mm²であり、最新版の ASME BPVC Section VIII Division 1 の規定と同じである。JIS B 8267 の値に整合させる。

(2.2) 外圧を受ける鏡板

別添7の外圧を受けるさら形鏡板、全半球鏡板、半だ円形鏡板及び円すい体形鏡板の計算厚さに係る規定は、JISB8267の規定と同等である。

(2.3) 鏡板の形状

別添7の鏡板の形状に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

さら形鏡板のクラウン部の丸みの半径 R は、別添 7 の規定では R \leq (D+2t)であるのに対し、JIS B 8267 の規定では R \leq 1.5(D+2t)である。ここで、D はさら形鏡板の直径、t はさら形鏡板の呼び厚さである。別添 7 の規定は、JIS B 8247(圧力容器用鏡板)の規定と同じであるため、現行の別添 7 のままとする。

備考 半だ円体形鏡板の寸法制限は、別添 7 の規定では $1 \le D/2h \le 3$ であるの対し、JIS B 8267 の規定では $D/2h \le 3$ である。ここで、D はだ円の内長径、2h はだ円の内短径である。形状的に $D/2h \le 1$ とはならないため規定上同等である。表記上明確にするため、 $1 < D/2h \le 3$ とする。

3.3.1.4 フランジ付きさら形鏡板

(1) 対象条項

る。

別添 7 第 6 条 (最小厚さ) 第 1 項第 7 号及び第 3 項、別図第 3 JIS B 8267 5.3 ふた板、L.5 フランジ付皿形ふた板

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) フランジ付きさら形鏡板の計算厚さ 別添 7 のフランジ付きさら形鏡板の計算厚さに係る規定は、JIS B 8267 の規定と同等である。
 - 備考 図 a) (鏡板の平行部にフランジを取り付ける形状) の場合、別添 7 の規定では、 材料規格の引張強さが 483 N/mm² を超える材料で鏡板を製作する場合の計算に用 いる許容引張応力の値は、137 N/mm² に設計温度と 40 ℃における許容引張応力の 比を乗じた値とする。JIS B 8267 の規定も同じではあるが、材料規格の引張強さは 485 N/mm²、許容引張応力の値は 138 N/mm²であり、最新版の ASME BPVC Section VIII Division 1 の規定と同じである。JIS B 8267 の値に整合させる。
- (2.2) フランジ付きさら形鏡板のフランジ部の計算厚さ 別添 7 のフランジ付きさら形鏡板のフランジ部の計算厚さに係る規定は、JIS B 8267 の規定と同等である。
- (2.3) フランジ付きさら形鏡板の形状 別添 7 のフランジ付きさら形鏡板の形状に係る規定は、JIS B 8267 の規定と同等であ
 - 備考 鏡板の平行部にフランジを取り付ける場合、鏡板の正接線とフランジまでの間隔は、別添7の規定(別図第3図a))では2t以上(最小12mm)に対し、JISB8267の規定(図L.3(a))では2t以上(最小13mm)と定められており、最小値が若干異なる。JISB8267に整合させる。

3.3.1.5 平鏡板

(1) 対象条項

別添 7 第 6 条 (最小厚さ) 第 1 項第第 8 号、別図第 4JIS B 8267 5.2.2 内圧を保持する鏡板、E.3.6 平鏡板及び平板の計算厚さ

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の溶接又はねじ込みによって取り付ける平鏡板(ステーによって支えないものに限る。)に係る規定は、次の規定(胴と一体又は完全溶込溶接する平板の図)を除き、JIS B 8267の規定と同等である。

- a) 別図第 4 図 a) 別添 7 の規定では、内径 d が 610mm 以下の胴と一体又は完全溶込みの突合せ溶接する円形平板であって、 $t_h \ge t_s$ 、かつ、 $0.05 \le t_h/d \le 0.25$ のものが対象である。JIS B 8267 の規定では、内径 d が 600mm 以下の胴と一体又は完全溶込みの突合せ溶接する円形平板であって、 $t_h = t_s$ のものが対象である。ここで、 t_h は平板の呼び厚さ、 t_s は胴の呼び厚さ、 t_s は内径である。なお、いずれも定数 t_s の値は同じである。別添 7 の規定は、ASME BPVC Section VIII Division 1 の規定と同じであるため、現行の別添 7 のままとする。
- b) 別図第図 d) 胴と一体形のもの又はハブ付き平板で完全溶込みの突合せ溶接するフランジ付き円形又は非円形の平板は、JIS B 8267 の規定では $t_h \ge t_s$ のものを対象としている。ここで、 t_h は平板の呼び厚さ、 t_s は胴の呼び厚さである。当該規定は別添 7 にはない。なお、いずれも定数 C の値は同じである。JIS B 8267 に整合させる。
- c) 別図第4図e) 別添7の規定では、胴、管等の端部に溶接する円形平板が対象であるが、JISB8267の規定では、非円形平板を含む。また、すみ肉溶接部ののど厚の制限が異なる。これは、別図第7(開先溶接による胴と平板の溶接)の規定の違いと同じである。いずれも JISB8267 に整合させる。
- d) 別図第4図f) 別添7とJISB8267のいずれも胴、管等の端部に完全溶込み溶接をする円形平板の図であるが、すみ肉溶接部ののど厚の制限が異なる。これは、別図第7(開先溶接による胴と平板の溶接)の規定の違いと同じである。JISB8267に整合させる。
- e) 別図第 4 図 g),図 h)及び図 j) JIS B 8267 の規定では、胴部の計算厚さ(継手効率 $\eta=1$)と胴部の呼び厚さの比 m が 1 未満の場合、胴の腐れ後の厚さは平板の内面 から胴側へ $2\sqrt{dt_s}$ 以上の長さにわたって一様とするよう定められている。JIS B 8267 に整合させる。
- 備考 別図第4図 a) や別図第4図 l) の胴の内径の上限値は、最新版の ASME BPVC Section VIII Division 1 の規定と値が若干異なるため、最新版の ASME BPVC Section VIII Division 1 の値に整合させる。

3.3.1.6 ボルト締め平板及びはめ込み形平板

(1) 対象条項

別添 7 第 6 条(最小厚さ)第 1 項第 8 号から第 10 号、別図第 4 JIS B 8267 5.3 ふた板、L.3 ボルト締め平ふた板、L.4 はめ込み形円形平ふた板

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7のボルト締め平板及びはめ込み形平板に係る規定は、次の規定を除き、JISB8267の規定と同等である。

JIS B 8267 のはめ込み形平板に係る規定では、ねじリングのせん断力やセクショナルリングの曲げ応力、せん断応力及び支圧応力について、許容引張応力以下にすることが規定されている。当該規定は別添7にはないため、JIS B8267 の規定に整合させる。

備考 ボルト締め平板の計算に使用するボルト荷重 W は、別添7の規定では JIS B 8265: 2000 の附属書 3 から 5 まで、JIS B 8267 の規定では附属書 G による。規定上、大幅な違いはないため、JIS B 8267 附属書 G を引用する。

3.3.1.7 ステーによって支える板

(1) 対象条項

別添 7 第 6 条 (最小厚さ) 第 1 項第 11 号 JIS B 8267 M.4 ステーによって支える板の計算厚さ

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7のステーによって支える板に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- 1) JIS B 8267 の規定では、ステーを不規則に配置する場合及び管板を管ステーで支える場合について定められている。当該規定は別添7にはないため、JIS B 8267 の規定に整合させる。
- 2) 別添 7 と JIS B 8267 のステーのピッチの定義は同じであるが、ステーのピッチを示す図が異なる。JIS B 8267 の図は、ASME BPVC Section VIII Division 1 のピッチの定義と同じであるため、JIS B 8267 に整合させる。

3.3.1.8 管板

(1) 対象条項

別添 7 第 6 条 (最小厚さ) 第 1 項第 12 号及び第 13 号JIS B 8267 5.7 管板、附属書 K (規定) 圧力容器の管板

(2) 比較の概要、技術的な課題及び対応案の考え方

(2.1) 管板の計算厚さ

別添7の管板の計算厚さに係る規定は、JIS B 8267の規定と同等であり、曲げ応力に基づく計算式とせん断応力に基づく計算式が規定されている。

備考 JIS B 8267 の規定では、次に示す一般事項が定められている。いずれも規定上明確になるため、JIS B 8267 に整合させ、別添7に規定する。

- a) 仕切板用溝又はガスケット溝を設ける場合の管板の計算厚さ(計算厚さは溝深 さを含まない。)。
- b) 管板の厚さは均一であること、管穴は一様であること等の管板の構造。
- c) 管板の計算厚さの計算手順(胴側及び管側の両側の条件に対して行う。)。

(2.2) ボルト締めする管板のフランジ部の計算厚さ

別添7の規定では、管板の外周にフランジ部がある場合のフランジ部の計算厚さは、 JIS B 8274: 1993 の 5.3「管板のフランジ部の計算厚さ」による。JIS B 8267 の規定で は、K.5 のボルト締めする管板の計算厚さ、K.6 のボルト締めする管板のフランジ部の 計算厚さの計算方法による。

JIS B 8267 の規定は、JIS B 8274: 1993 の附属書 2「第3種容器の管板」に規定の簡易 設計法と同等である。なお、当該規定は JIS B 8274: 2003 では削除された。

当該規定は、JIS B 8267 に整合させる。

(2.3) JIS B 8274 による設計

別添7の規定で引用している JIS B 8274 に規定の管板の設計方法は、TEMA 規格に基づくものである。現行の別添7の規定では、管板の外周にフランジ部がある場合のフランジ部の最小厚さの計算のみ JIS B 8274 によることとなっている。

第 6 条第 1 項第 12 号の管板の計算厚さ及び第 13 号の管板のフランジ部の計算厚さに係る規定は、上記(2.1)及び(2.2)の対応案のとおりであるが、これらの規定のほか JIS B 8274 の規定も適用できることとする。ここで、JIS B 8274 は、1993 年版と 2008 年版の本体の規定に大幅な違いはないため、最新版の規格を引用する。

3.3.1.9 ジャケット

(1) 対象条項

別添 7 第 6 条(最小厚さ)第 1 項第 14 号から第 16 号 JIS B 8267 - (2) 比較の概要、技術的な課題及び対応案の考え方

別添7にのみ規定がある。当該規定には、内圧を受けるジャケットの胴部、鏡部及び 閉鎖部の計算厚さ及び形状に係る規定があり、主に JIS B 8279(圧力容器のジャケット)が引用されている。

当該規定は、現行の別添7のままとする。ただし、現行の別添7で引用している JIS B 8279: 1993 は、最新版(2003年版)とする。現行の別添7で引用している範囲において、JIS B 8279: 1993 と JIS B 8279: 2003の規定は同等である。これに加え、JIS B 8279の規定より、次に示す事項を別添7の規定上明確にする。

- a) ジャケットを貫通する穴の閉鎖部の形状は、JIS B 8279 の規定では、円筒形以外の形状 (だ円形、長円形又は角形) としてもよい。円筒形以外の形状の場合、計算厚さの規定がないため、別添7の規定において、閉鎖部の形状は円筒形とすることを明確にする。
- b) コイルジャケットの設計上の制限は、別添7にはない。JIS B 8279 附属書2の規定では、圧力容器本体及びコイルジャケットが致死性物質を保有するもの並びにコイルジャケットの設計温度が0°C未満又は200°Cを超えるものには適用できない。当該規定を別添7にも追加する。
- c) コイルジャケットを取り付けた部分の外圧計算に係る規定は、別添7にはない。JIS B 8279 附属書 2 の規定では、当該部分の外圧計算について規定がある。当該規定を 別添7にも追加する。
- 備考 ステーで支えるジャケットの制限について、別添7の規定では設計圧力2.07MPa 以下、計算厚さ13mm以下であるが、最新版のASME BPVC Section VIII Division 1の規定では設計圧力2.0MPa以下、計算厚さ13mm以下である。別添7制定時の 単位換算によるものであるため、最新版のASME BPVC Section VIII Division1に 整合させる。

3.3.1.10 フランジ

(1) 対象条項

別添 7第 6 条 (最小厚さ) 第 2 項JIS B 82675.4 ボルト締めフランジ

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) フランジの強度計算

別添7のフランジの強度計算に係る規定は、JISB8267の規定と同等である。

備考 別添 7 の規定では JIS B 8265 附属書 $3\sim6$ を引用しているのに対し、JIS B 8267 の規定では附属書 $G\sim$ 附属書 J による。JIS B 8267 附属書 $G\sim$ 附属書 J の規定は、 JIS B 8265 附属書 $3\sim6$ 規定と同等であるため、JIS B 8267 附属書 $G\sim$ 附属書 J を引用する。

(2.2) 規格フランジ

別添7の規格フランジの規格は、一部の規格を除き、JISB8267で引用している規格と同等である。

JIS B 8267 で引用している規格のうち、JIS B 2239 (鋳鉄製管フランジ)、JIS B 2240 (銅合金製管フランジ)及び ASME B16.24 (Cast Copper Alloy Pipe Flanges) は、別添7 に規定されていない鋳造材の管フランジの規格である。また、JIS B 2290 (真空装置用フランジ)は別添7の規定上はほぼ用途がない。これより、JIS B 2220 (鋼製管フランジ)、JIS B 2241 (アルミニウム合金製管フランジ)、ASME B16.5 (Pipe Flanges)及び ASME B16.47 (Large Diameter Steel Flanges)を規格フランジの引用規格とする。

なお、ASME B16.5 及び ASME B16.47 は、JIS B 8267 で引用されている年版の改正版 (いずれも 2020 年版) がある。当該改正版は JIS B 8267 で引用している年版から大幅な改正はなく、同等であるため、いずれも 2020 年版とする。

3.3.1.11 管継手

(1) 対象条項

別添7 第6条(最小厚さ)第4項

JIS B 8267 -

(2) 比較の概要、技術的な課題及び対応案の考え方

管継手の規格及び管継手の最小厚さに係る規定は、別添7にのみに規定ある。現行の別添7のままとする。ただし、ASME B16.15 (Cast Bronze Threaded Fittings) は、別添7に規定のない鋳造材の管継手の規格であるため、引用する管継手の規格は、IIS B

2312(配管用鋼製突合せ溶接式管継手)、JIS B 2313(配管用鋼板製突合せ溶接式管継手)、JIS B 2316(配管用鋼製差込み溶接式管継手)、JIS B 2321(配管用アルミニウム及びアルミニウム合金製溶接式管継手)、ASME B16.9(Butt Welded Fittings)及びASME B16.11(Forged Steel Fittings Socket Weld and Threaded Fittings)とし、規格の年版は最新版とする。なお、各引用規格の主な改正の概要は以下のとおりである。

引用規格	主な改正の概要
JIS B 2312(配管用鋼製突合せ	45°ショートエルボの形状・寸法が追加された。
溶接式管継手)	特殊な形状の管継手として、特殊角度管継手及びネ
現行の引用規格:1997 年版	ック付き管継手の寸法・形状が追加された。
最新版:2015 年版	
JIS B 2313(配管用鋼板製突合	45°ショートエルボの形状・寸法が追加された。
せ溶接式管継手)	管継手の材料の種類に SUS304HW(JIS G 3459 の
現行の引用規格:1997 年版	SUS304HTP に対応)が追加され、当該材料に係る
最新版:2015 年版	熱処理が追加された。
	特殊な形状の管継手として、特殊角度管継手及びネ
	ック付き管継手の寸法・形状が追加された。
JIS B 2316(配管用鋼製差込み	管継手の種類にボスが追加され、当該管継手の寸
溶接式管継手)	法・形状が追加された。管継手の材料の種類の記号
現行の引用規格:1997 年版	PA23、PA24 及び PA25 に対して JIS G 3203 の
最新版:2017年版	SFVA の B 種が追加された。
JIS B 2321(配管用アルミニウ	主に引用規格が修正された。
ム及びアルミニウム合金製溶	
接式管継手)	
現行の引用規格:1995 年版	
最新版:2009年版(追補1)	

引用規格	主な改正の概要
ASME B16.9(工場製作鋼製突	ASME B16.28(鋼製突合せ溶接式短半径 90 度エル
合せ溶接式継手)	ボ及び 180 度エルボ)と統合された。なお、当該規
現行の引用規格:1993 年版	格の管継手の形状・寸法は同等である。
最新版: 2018 年版	Table 6.1-6 Dimensions of 3D Radius Elbows が追加
	された。
	Proof Test における試験圧力(9.3.2 の P: computed
	minimum proof test pressure)の計算式は、試験体
	の個数に応じた係数 f(≧1.0)を考慮するようにな
	った。係数 f を考慮することを除いては、JIS B
	2312 等に規定の計算式と同じである。当該規格で
	は、Proof Test に供した試験体の個数により係数 f
	の値が決まり、個数が3個であると、f=1.0とな
	り、JIS B 2312 等と同じ式となる。一方、試験体の
	個数を減じると、f>1.0 となり、試験で要求される
	試験圧力が大きくなる。
ASME B16.11(ソケット溶接	ソケット溶接式のボス及びカップレットの形状・寸
式及びねじ込み式鍛造製継	法が追加された。
手)	ねじ込み式のボス及びカップレットの形状・寸法が
現行の引用規格:1991 年版	追加された。
最新版: 2021 年版	ストリートエルボの形状・寸法が追加された。

3.3.1.12 曲げ加工する直管

(1) 対象条項

別添 7第 7 条 (曲げ加工する管の最小厚さ)、第 25 条 (直管の曲げ加工)JIS B 8267E.5 曲げ加工管

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 曲げ加工する直管の計算厚さ

別添7の曲げ加工する直管の計算厚さに係る規定は、次の規定を除き、JIS B 8267の 規定と同等である。

JIS B 8267 の規定では、適用対象が曲げ半径が管の外径の 4 倍未満の呼び径 150A 以下の管となっている。曲げ半径については、別添 7 第 25 条の規定と同じであるが、呼び径 150A 以下の管とする制限は、別添 7 にはない。JIS B8267 の規定に整合させる。

(2.2) 直管の曲げ加工

別添7の直管の曲げ加工に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

別添7の規定では、曲げ加工後のへん平率は管の外径の10%を超えてはならないと規定されている。当該規定はJISB8267にはない。現行の別添7のままとする。

3.3.1.13 ステー

(1) 対象条項

別添 7 第 14 条 (ステーの取り付け)、第 15 条 (ステーの取り付け方法)、 第 16 条 (ステーの断面積)

JIS B 8267 7.5 ステーの取付け、M.2 ステーによって支える板の厚さの制約、M.3 ステーの間隔の制約、M.5 ステーが支える荷重、M.6 ステーの必要最小断面積

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7のステーの取付け等に係る規定は、次の規定を除き、JIS B 8267 の規定と同等である。

- a) 板にねじ込みで貫通させて取り付けるステーのうち、貫通させた鋼製ステーのねじ 山の端部をかしめる場合、別添7の規定では端部を十分に焼きなまし処理する。当 該規定は JIS B 8267 にはない。別添7の規定は ASME BVPC Section VIII Division1 と同じであるため、現行の別添7のままとする。
- b) 別添7第16条のステーが支える荷重に係る規定は、規則的にステーを配置する場合の規定である。JISB8267の規定は、規則的又は不規則的にステーを配置する場合の両方について規定がある。第6条第1項第11号(ステーを取り付ける平板)の対応案では、JISB8267に整合させ、規則配置以外の場合も適用可能としたため、当該規定もJISB8267に整合させる。
- 備考 ステーの取付間隔は、別添 7 の規定では 221mm 以下、JIS B 8267 の規定では 216 mm 以下である。JIS B 8267 の規定に整合させる。

3.3.1.14 伸縮継手

(1) 対象条項

別添7 第17条(伸縮継手)

JIS B 8267 5.9 伸縮継手、附属書 N (規定) 圧力容器の伸縮継手

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 伸縮継手の要否検討

別添7の伸縮継手の要否検討に係る規定は、JISB8267の規定と同等である。

(2.2) 伸縮継手の応力評価

別添 7 の伸縮継手の応力評価は、JIS B 8277: 1993 の「3. 設計」による。JIS B 8267 の伸縮継手の応力評価は、附属書 N の規定による。

JIS B 8267 附属書 N の規定は、JIS B 8277: 1993 附属書 1「ベローズ形伸縮継手の簡易設計方法」と同等である。当該規定は、最新版の JIS B 8277: 2008 では削除されているため、JIS B 8267 に整合させる。

(2.3) JIS B 8277 による設計

別添7の規定で引用されている JIS B 8277: 1993 の「3. 設計」による伸縮継手の応力評価は、ASME BPVC Section VIII Division 1 に基づくものである。

第 17 条第 2 項の伸縮継手の応力評価に係る規定は、上記(2.2)の対応案のとおりであるが、この規定のほか、JIS B 8277 の規定も適用できることとする。なお、JIS B 8277: 1993 と JIS B 8277: 2008 の伸縮継手の応力評価に係る規定に大幅な違いはない。

3.3.1.15 穴補強

(1) 対象条項

別添 7 第 18 条 (穴の補強)、第 19 条 (強め材の取り付け方法)、

第20条(近接する2以上の穴の補強)

JIS B 8267 5.5 耐圧部に設ける穴、附属書 F (規定) 圧力容器の穴補強

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 補強が不要な単一の穴

別添7の補強が不要な単一の穴に係る規定は、次の規定を除き、JIS B 8267 の規定と同等である。

- a) 圧力の急激な変動を受けない特定設備に設けられる穴 別添7の規定では、圧力の 急激な変動(設備内液体の急激な蒸発による加圧、内容積の小さい容器への急速加 圧等)を受けないことが前提である。当該規定は JIS B 8267 にはなく、ASME BPVC Section VIII Division 1 と整合しているため、現行の別添7のままとする。
- b) ジャケットを貫通する穴 別添7の規定では、JISB8279(圧力容器のジャケット)に規定の形状であれば、穴の補強は不要である。JISB8267の規定では、形状によらず穴の補強が要求される。別添7の規定はJISB8279と同じであるため、現行の別添7のままとする。

備考 計算厚さが 10 mm を超える場合の補強が不要な穴のサイズは、別添7の規定では 60 mm、JIS B 8267 の規定では 61 mm である。別添7の規定は、ASME BPVC Section VIII Division 1 と整合しているため、現行の別添7のままとする。

(2.2) 強め材の取付方法(穴の補強計算)

別添7の強め材の取付方法(穴の補強計算)に係る規定は、次の規定を除き、JISB 8267の規定と同等である。

- a) 穴の軸が胴又は鏡板の半径方向と一致しない場合の穴の径の取り方は、別添7に のみ規定がある。規定上明確であるため、現行の別添7のままとする。
- b) 強め材の外径が穴の補強の有効範囲を超える場合、別添7の規定では強め材の外径は有効範囲の外径とすると定められている。当該規定は JIS B 8267 にはない。 規定上明確であるため、現行の別添7のままとする。
- c) 別図第8(4)c)、(4)j)及び(5)a)からc)のすみ肉溶接により取り付けられた管台の場合、別添7の規定では管台と胴又は鏡板の材料の強さによる低減係数を1.0とすると定められている。これは、当該図において、穴の径dが管台の内径ではなく、穴の直径となっているためである。ASME BPVC Section VIII Division 1とも整合しており、規定上明確であるため、現行の別添7のままとする。
- d) 補強に有効な範囲について、別添7の規定には、本体の内側に強め材が取り付けられる場合の図があり、当該強め材を補強に有効な範囲に含めることができることが明確である。当該図は JIS B 8267 にはない。規定上明確であるため、現行の別添7のままとする。
- e) 平鏡板の中心に設ける単独の大口径穴(穴の直径が平鏡板の直径の半分を超えるもの。以下この項において同じ。)の応力計算の方法のうち、穴に管台を設けない場合の計算方法について、別添7の規定では穴に管台を設ける場合の応力計算を準用すると定められているのに対し、JIS B 8267 の規定では附属書 J (リバースフランジ) によると定められている。
- f) 穴に管台を設けない場合には、別添7と JIS B 8267 のいずれの場合も想定される。現行の別添7の規定に加え、リバースフランジの場合は JIS B 8267 附属書 J によることとする。

備考

- 1 強め材の取り付けについて、別添7とJISB8267のいずれの規定も大口径穴の補強の場合は追加規定があるが、大口径穴とする胴の内径及び穴の径の規定値は、別添7とJISB8267の規定で若干異なる。当該規定値は、JISB8267に整合させる。
- 2 平鏡板の中心に設ける単独の大口径穴の応力計算の方法のうち、穴に管台を設ける場合(管台が平板と一体形又は完全溶込み溶接により一体とする場合)について、別添7の規定では JIS B 8265 附属書 2 (圧力容器の穴補強)を引用しているの

に対し、JIS B 8267 の規定では附属書 F(圧力容器の穴補強)による。規定上同等であるが、最新版である JIS B 8267 附属書 F を引用する。

(2.3) 近接する2以上の穴の補強

別添7の近接する2以上の穴の補強に係る規定は、JISB8267の規定と同等であり、 穴の径や隣接する穴の中心間距離に応じて、補強の方法が規定されている。

備考 平板に補強しなければならない穴を2以上設ける場合、別添7の規定では、隣接する2つの穴の径の平均値が平板の直径又は最小スパンの1/4未満のものが対象であるが、JISB8267の規定では1/4以下ものが対象であり、若干異なる。当該規定値は、JISB8267に整合させる。

3.3.1.16 強め輪

(1) 対象条項

別添 7 第 21 条 (強め輪)

JISB8267 E.2 内圧を保持する胴、E.4 外圧を保持する胴及び鏡板

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 内圧を保持する円すい胴又は円すい体形鏡板の接続部に設ける強め輪 別添7の内圧を保持する円すい胴の接続部に設ける強め輪に係る規定は、JISB 8267の規定と同等である。
- (2.2) 外圧を受ける円筒胴に設ける強め輪

別添7の外圧を受ける円筒胴に設ける強め輪に係る規定は、JIS B 8267の規定と同等である。

- (2.3) 外圧を保持する円すい胴又は円すい体形鏡板の接続部に設ける強め輪 別添7の外圧を保持する円すい胴又は円すい体形鏡板の接続部に設ける強め輪に係 る規定は、JISB8267の規定と同等である。
- 備考 上記(2.2)及び(2.3)の規定において、別添7の規定では慣性モーメントという用語を使用しているが、JIS B 8267の規定と同じ用語である断面二次モーメントを使用することとする。

- 3.3.2 材料の許容応力
- 3.3.2.1 材料の許容引張応力
- (1) 対象条項

別添7 第8条(材料の許容引張応力)

JIS B 8267 4.3.1 材料の許容引張応力、5.1.4 クラッド鋼

附属書 B (規定) 材料の許容引張応力

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 規格材料及び同等材料の許容引張応力等

別添7の規格材料及び同等材料の許容引張応力等(許容引張応力、使用温度範囲及び注記)に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

JIS B 8267 に規定の材料の許容引張応力は、材料規格の改訂や新規材料の追加が反映されている。特定設備検査規則の規定の範囲で JIS B 8267 に整合させる。なお、特定設備検査規則に規定のない材料の許容引張力は、次に示すとおり。

- a) JIS G 3115 等の圧力容器用鋼板の降伏点又は 0.2%耐力に基づく許容引張応力
- b) 鋳造製品の材料(SCH22及び SCH22CF を除く。)の許容引張応力
- c) ボルト材の許容引張応力

(2.2) 特定材料の許容引張応力

別添7の特定材料の許容引張応力に係る規定は、JIS B 8267の規定と同等であり、ASME BPVC Section II Part D を引用している。

備考

- 1 現行の別添 7 には、ASME BPVC Section II Part D の許容引張応力の値を US 単位から SI 単位へ換算する規定がある。最新版の ASME BPVC Section II Part D には SI 単位系の許容引張応力の値があり、当該規定は不要となるため、削除する。
- 2 現行の別添 7 の規定では、−20°F未満における許容引張応力の値は、−20°Fに対応する許容引張応力の値以下の値とする規定がある。当該規定の温度の値は、ASME BPVC Section II Part D の SI 単位系の許容引張応力表に合わせ、+40°Cとする。

(2.3) クラッド鋼の許容引張応力

別添7のクラッド鋼の許容引張応力に係る規定は、次の規定を除き、JIS B 8267 の規定と同等である。

JIS B 8267 の規定では、肉盛溶接の品質がクラッド鋼の合せ材と同等以上の場合には、当該肉盛溶接を合せ材とみなし、クラッド鋼の許容引張応力の計算式を適用でき

る。当該規定は別添7にはなく、肉盛溶接は強度部材として扱わないため、現行の別添7のままとする。

- 3.3.2.2 材料の許容曲げ応力、許容せん断応力及び許容圧縮応力
- (1) 対象条項

別添 7 第 9 条(材料の許容曲げ応力)、第 10 条(材料の許容せん断応力)、 第 11 条(材料の許容圧縮応力)

JIS B 8267 4.3.4 許容曲げ応力、4.3.2 許容せん断応力、4.3.3 許容圧縮応力

(2) 比較の概要、技術的な課題及び対応案の考え方 別添7と JIS B 8267 の許容曲げ応力、許容せん断応力及び材料の許容圧縮応力に係る 規定は同等である。

- 3.3.3 材料物性(降伏点又は0.2%耐力、縦弾性係数及び線膨張係数)
- (1) 対象条項

別添 7 第 12条 (材料の縦弾性係数及び線膨張係数)

別表第3、別表第4、別表第5

JIS B 8267 4.5 材料の諸特性、附属書 D 材料の機械的性質及び物理的性質

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7と JIS B 8267 の材料物性(降伏点又は0.2%耐力、縦弾性係数及び線膨張係数)の値は、ほぼ同じであるが、ASME BPVC Section II Part D との整合、材料規格の改正等により一部整合していない箇所があるため、特定設備検査規則の規定の範囲で、JIS B 8267 に整合させる。

- 3.3.4 溶接継手効率
- (1) 対象条項

別添7 第13条(溶接継手効率)

IIS B 8267 6.2 溶接継手効率

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の溶接継手ごとの溶接継手効率に係る規定は、次の規定を除き、JIS B 8267 の 規定と同等である。 JIS B 8267 の規定では、放射線透過試験の割合が 100%、部分スポット及び 0%のほか、20%に対応する溶接継手効率の値が規定されている。20%に対応する溶接継手効率の値は、特定設備検査規則、別添 7 及び ASME BPVC Section VIII Division 1 には規定がない。現行の別添 7 のままとする。

3.3.5 切断、成形及び仕上げ

(1) 対象条項

別添 7 第 22 条(切断、成形及び仕上げ) JIS B 8267 7.4 胴及び鏡板の成形加工、等

(2) 比較の概要、技術的な課題及び対応案の考え方

(2.1) 胴板等の成形

別添7の胴板等の成形に係る規定は、次の規定を除き、JIS B 8267 の規定と同等である。

- a) 別添7の規定では胴板、鏡板その他の耐圧部分に使用する板の成形について規定しているのに対し、JIS B 8267の規定では胴板及び鏡板が対象である。当該規定は、胴板及び鏡板の成形加工に限定されないため、現行の別添7のままとする。
- b) 別添7の規定では、冷間加工又は熱間加工により成形した炭素鋼及び低合金鋼が成形後熱処理の対象である。JIS B 8267の規定では、冷間加工により成形した炭素鋼及び低合金鋼が成形後熱処理の対象である。当該規定の熱処理は、成形後の加工ひずみに対するものであるため、JIS B 8267の規定に整合させる。
- 備考 別添7に規定の成形後の熱処理等の規定値は、JIS B 8267に規定の値と若干異なる。別添7制定時に ASME BPVC Section VIII Division 1の US 単位系の規定値を SI 単位系に変換したためである。JIS B 8267の値に整合させる。

(2.2) 切断・仕上げ

別添7の切断・仕上げに係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

9%ニッケル鋼のガス、アーク熱切断面に対する磁粉探傷試験又は浸透探傷試験の判定基準は、別添7では線状指示模様及び円形状指示模様がないことであるのに対し、JIS B 8267では溶接継手の判定基準と同じである。判定基準を統一するため、JIS B 8267 に整合させる。

備考

- 1 ねじ込みステーの取り付く板のねじ穴加工について、厚さが 8mm 以下の板を打ち抜きにより穴抜きする場合、別添 7 の規定ではねじの直径より 3.2mm 小さい穴径以下に打ち抜く。最新版の ASME BPVC Section VIII Division 1 の規定値は 3.0mm である。別添 7 制定時の単位換算に係る違いであるため、ASME BPVC Section VIII Division 1 の規定値に整合させる。
- 2 別添7の規定では、管台、マンホール等で圧力容器の内側の露出した縁には丸みをつけるか面取りを行う。当該規定は JIS B 8267 にはないが、管台の溶接図では内側に丸みが設けられており、規定上は同等である。応力集中部とならないようにすることを明確にする規定であるため、現行の別添7のままとする。

(2.3) 板から機械加工するハブ付き平鏡板及びハブ付き管板

別添7の板から機械加工するハブ付き平鏡板及び管板に係る規定は、次に示す規定を除き、JISB8267の規定(5.4 ボルト締めフランジ及び6.5 胴と管板又は平鏡板)と同等である。

- a) 別添7の規定では、板から機械加工される管板及び平鏡板のハブ部は、機械加工の前に JIS G 0801 による超音波探傷試験を行う。 JIS B 8267 の規定では、鍛造材又は圧延板から機械加工される場合が対象である。通常、鍛造材は材料規格により超音波探傷試験を行うことになるため、現行の別添7のままとする。なお、ASME BPVC Section VIII Division 1 の規定においても、超音波探傷試験の対象は板から機械加工される管板及び平鏡板のハブ部である。
- b) JIS B 8267 の規定では、鍛造材又は圧延板から機械加工されるハブ付き管板又はハブ付き平鏡板のハブ部について溶接前に磁粉探傷試験又は浸透探傷試験を行うと定められている。当該規定は別添7にはない。判定基準も含め JIS B 8267 に整合させ、当該規定を追加する。ただし、当該試験の対象は、板から機械加工される管板及び平鏡板のハブ部とする。
- c) 板から機械加工される管板及び平鏡板のハブ部の超音波探傷試験の判定基準は、別添7の規定では対比試験の底面エコー高さとの比較による判定基準であるのに対し、JIS B 8267 の規定では JIS G 0801 の判定基準によると定められている。JIS B 8267 の規定に整合させる。

(2.4) 板又は棒からリング状に曲げ加工したハブ付きフランジ

別添7の板又は棒からリング状に曲げ加工したハブ付きフランジに係る規定は、次の規定を除き、JISB8267の規定(6.5 胴と管板又は平鏡板の溶接)と同等である。

板又は棒からリング状に曲げ加工したハブ付きフランジのフランジ背面及びハブ部外 周の磁粉探傷試験又は浸透探傷試験の判定基準は、JIS B 8267 の規定では溶接継手の判 定基準と同じであるが、別添7の規定では異なる。別添7の溶接継手の磁粉探傷試験又 は浸透探傷試験の判定基準は、JIS B 8267 と整合しているため、当該規定においても同様に溶接継手の判定基準を適用する。

3.3.6 熱交換器等の管の取付方法

(1) 対象条項

別添 7 第 23 条 (熱交換器等の管の取付方法)

IIS B 8267 K.4.1 管板の最小厚さ

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の熱交換器等の管の取付方法(拡管による管の管板への取付)に係る規定は、 JIS B 8267 の規定と同等である。

3.3.7 漏れ止め溶接

(1) 対象条項

別添 7 第 24 条 (漏れ止め溶接)

JIS B 8267 -

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7にのみ規定がある。当該規定では、溶接以外の方法により管、管台等を胴又は 鏡板に取り付ける場合及び毒性ガスの特定設備の管板に拡管によって管を取り付ける場 合に、漏れ止め溶接を行うことを定めている。現行の別添7のままとする。

3.3.8 加工後の外観及び公差

(1) 対象条項

別添 7 第 53 条 (加工後の外観及び公差)

JIS B 8267 7.3 鏡板の製作公差

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の加工後の外観及び公差に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

鏡板の成形公差の測定について、別添7の規定では鏡板の内面から型板を用いて測定するのに対し、JIS B 8267の規定では内面又は外面から測定する。別添7の規定は、JIS B 8247(圧力容器用鏡板)の規定と整合しているが、構造的に内面からの測定が困難な場合もあるため、このような場合には外面からの測定も可能とする。

- 3.4 溶接関係
- 3.4.1 溶接の種類の制限
- (1) 対象条項

別添 7 第 26 条 (溶接の種類の制限)

IIS B 8267 6.1.4 溶接継手の位置による分類

6.1.5 耐圧部分の溶接継手の形式及び適用範囲

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 特定設備の種類に応じた溶接継手の形式及び適用範囲

別添7の特定設備の種類に応じた溶接継手の形式及び適用範囲に係る規定は、次の規定を除き、JISB8267の規定と同等である。

毒性ガスの特定設備に係る溶接継手は、別添7の規定では完全溶込み溶接としなければならない。当該規定は JIS B 8267 にはないが、特定設備検査規則に基づく規定であるため、現行の別添7のままとする。

(2.2) 溶接継手の位置による分類に応じた溶接継手の形式及び適用範囲

別添7の溶接継手の位置による分類に応じた溶接継手の形式及び適用範囲に係る規定は、次に示す規定を除き、JIS B 8267 の規定と同等である。

- a) せぎり溶接は、別添7の規定では全半球鏡板を胴に取り付けるための周継手(A継手)、B継手及びC継手に適用できるのに対し、JISB8267の規定ではB継手及びC継手に限定している。現行の別添7のままとする。
- b) 両側全厚すみ肉重ね溶接は、別添7の規定では全半球鏡板を胴に取り付けるための 周継手(A継手)には適用できないが、JISB8267の規定では適用できる。JISB 8267の規定に整合させる。
- c) プラグ溶接を行う片側全厚すみ肉重ね溶接は、別添7の規定では厚さ16mm以下のジャケットを胴に取り付けるための周継手(プラグ溶接部の中心から板の端までの距離がプラグの外径の1.5倍以上であるものに限る。)に適用できる。当該規定は JIS B 8267にはない。現行の別添7のままとする。

備考

- 1 別添7と JIS B 8267 の溶接継手の形式の呼称は異なる。規定上違いはないが、呼 称により形式が判断できる JIS B 8267 の呼称に整合させる。
- 2 溶接継手の位置による分類について、JIS B 8267 の規定では、強め輪、支持構造物及び非耐圧部材を耐圧部分に直接溶接する継手を分類 E としている。当該分類は別添7にはない。規定上、溶接継手の分類を明確にするため、JIS B 8267 の規定に整合させる。

3.4.2 溶接継手の強度

(1) 対象条項

別添 7 第 26 条の 2 (溶接部の強度)

JIS B 8267 6.1.1 溶接継手

(2) 比較の概要、技術的な課題及び対応案の考え方

溶接部の強度に係る要求について、別添7の規定と JIS B 8267 の規定は同じであるため、現行の別添7のままとする。

3.4.3 溶接準備

(1) 対象条項

別添 7 第 26 条の 3 (溶接準備)

IIS B 8267 -

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の規定では、開先合せ、仮付け溶接及び溶接作業中の溶接継手端面の食違いについて定めている。JIS B 8267 の規定は、溶接前の切断面に対する規定があり、別添7第22条の規定と整合しているが、その他溶接準備に係る規定はない。現行の別添7のままとする。

- 3.4.4 溶接継手の形式
- 3.4.4.1 突合せ溶接
- (1) 対象条項

別添7 第27条 (突合せ溶接)

JIS B 8267 6.1.6 隣接する長手継手間の距離

6.3.2 厚さが異なる部材の突合せ溶接継手

F.12 溶接継手又は近傍の穴

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の突合せ溶接に係る規定は、次に示す規定を除き、JIS B 8267の規定と同等である。

a) 突合せ溶接の周継手上に補強を行わない穴を設ける場合、穴の中心から規定の範囲について放射線透過試験を行う。当該規定については、以下の規定が異なる。JIS B 8267 の規定がより安全側であるため、JIS B 8267 の規定に整合させる。

- ① 放射線透過試験の範囲は、別添7の規定では穴の径の1.5倍以上であるのに対し、JISB8267の規定では穴の径の3倍以上である。
- ② JIS B 8267 の規定では、全半球鏡板に胴を取り付ける周継手(A 継手)は当該規 定の対象から除かれている。
- b) 別添7と JIS B 8267 の規定のいずれも隣接する長手継手間の距離が規定値以下である場合及び補強を行わない穴を周継手上に設ける場合は、放射線透過試験を行う。 別添7の規定では、これらの放射線透過試験は、第41条第2項の部分スポットの 条件を満足するための放射線透過試験として扱うことはできない。当該規定は JIS B 8267 にはない。現行の別添7のままとする。

備考

- 2 両側溶接を行う場合、別添7の規定では、開先底部の欠陥を除去する。当該規定は JIS B 8267 にはない。規定上明確であるため、現行の別添7のままとする。

3.4.4.2 両側全厚すみ肉重ね溶接

(1) 対象条項

別添 7 第 28 条 (両側全厚すみ肉重ね溶接)

JIS B 8267 6.1.5 耐圧部分の溶接継手の形式及び適用範囲

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7では、板の重ね部の長さは内側の板の厚さの4倍以上と規定されている。JIS B 8267の規定も同じであるが、その最小値は25 mm と規定されている。別添7には下限がないため、JIS B 8267に整合させる。

3.4.4.3 胴板と鏡板との溶接

(1) 対象条項

別添7 第29条(胴板と鏡板との溶接)、別図第6

IIS B 8267 6.1.5 耐圧部分の溶接継手の形式及び適用範囲

6.4 プラグ溶接

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の胴板と鏡板の溶接に係る規定は、次に示す規定を除き、JISB8267の規定と同等である。

- a) 胴の内側又は外側に鏡板をはめ込む場合について、別添7の規定では、十分密着するように嵌合する。当該規定は JIS B 8267 にはない。現行の別添7のままとする。なお、当該規定は ASME BPVC Section VIII Division 1 と整合している。
- b) 中間鏡板を胴板に取り付ける場合について、別添7の規定では、溶接部の強度の制限 や胴板の厚さの制限が定められている。当該規定は JIS B 8267 にはない。現行の別 添7のままとする。なお、当該規定は ASME BPVC Section VIII Division 1 と整合し ている。
- c) 厚さが同じ胴板と鏡板との溶接図は、別添7別図第6にのみ規定がある。規定上明確であるため、現行の別添7のままとする。
- d) プラグ溶接を用いて胴板を鏡板に取り付ける場合であって、胴板の厚さが8mmを超える場合、別添7の規定では、胴板の厚さの1/2、穴径の5/16(JISB8267では1/3) 又は8mmのいずれか大なる厚さまでプラグの穴を溶接金属で埋める。JISB8267の規定では、胴板の厚さの1/2、穴径の1/3又は8mmのいずれか大なる厚さであり、別添7の規定値と若干異なる。別添7の規定は、ASMEBPVC Section VIII Division1と整合しているため、現行の別添7のままとする。
- e) 9%ニッケル鋼の胴板に全半球形鏡板を取り付けるための溶接は、別添7の規定では、 第27条第1項第1号ロの図a)又は図c)による。当該規定は JIS B 8267 にはない。 現行の別添7のままとする。なお、当該規定は ASME BPVC Section VIII Division 1 と整合している。
- 備考 せぎり溶接により胴板に全半球鏡板を取り付ける場合の胴及び鏡板の厚さの差は、別添7の規定では2.4mm以下、JISB8267の規定では2.5mm以下と規定値が若干異なる。JISB8267の規定に整合させる。

3.4.4.4 胴板と平板等との溶接

(1) 対象条項

別添 7 第 30 条 (胴板と平板等との溶接)

IIS B 8267 6.1.5 耐圧部分の溶接継手の形式及び適用範囲

6.5 胴と管板又は平鏡板の溶接

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の胴板と平板等との溶接に係る規定は、次の規定(胴板と平板等の溶接図)を除き、JISB8267の規定と同等である。

別添7の別図第7は、JISB8267の図5と同じであるが、次に示す溶接寸法の制限が 異なる。いずれも JISB8267の規定に整合させる。

- a) 図 b-1)3)の両側溶接の完全溶込みの開先溶接の溶接寸法は、別添 7 の規定では a+b ≥ 3t_s、JIS B 8267 の規定では a+b ≥ 2t_sである。ここで、a 及び b は溶着金属の幅及び深さ、t_s は胴の呼び厚さである。
- b) 完全溶込みの開先溶接におけるすみ肉溶接ののど厚は、別添 7 の規定では $0.7t_s$ 又は 6mm のいずれか小さい値以上、JIS B 8267 の規定は $0.7t_s$ 又は $1.4t_r$ のいずれか小さい値以上である。 t_s は胴の呼び厚さ、 t_r は胴の計算厚さである。
- c) 図 b-2) 2-2)の片側溶接の完全溶込みの開先溶接の胴の呼び厚さは、別添 7 の規定では t_s <1.25 t_r である。当該規定は JIS B 8267 にはない。ここで、 t_s は胴の呼び厚さ、 t_r は胴の計算厚さである。
- d) 図 b-3)の胴と片側溶接の完全溶込みの開先溶接によるボルト締めフランジ付き管板の取付け及び図 b-4)のすみ肉溶接による取付けにおける溶接寸法は、別添 7 の規定では $a+b \ge 3t_s$ 、 t_c は t_s 又は $2t_r$ のいずれか小さい値以上(ステーで支える場合は $a+b \ge 2t_s$ 、 t_c は $0.7t_s$ 又は $1.4t_r$ のいずれか小さい値以上)、JIS B 8267 の規定では $a+b \ge 2t_s$ 、 t_c は $0.7t_s$ 又は $1.4t_r$ のいずれか小さい値以上である。ここで、a 及び b は溶着金属の幅及び深さ、 t_s は胴の呼び厚さ、 t_r は胴の計算厚さ、 t_c はすみ肉溶接ののど厚である。

3.4.4.5 管台、強め材等との溶接

(1) 対象条項

別添 7 第 31 条 (管台、強め材等との溶接)

JIS B 8267 6.1.5 耐圧部分の溶接継手の形式及び適用範囲、

K.3.2 伝熱管と管板の溶接継手

5.6 管台及び管の接合

F.13 管台及び強め材の溶接継手の強度

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 管台、強め材等と胴又は鏡板の溶接

別添7の管台、強め材等と胴又は鏡板の溶接に係る規定は、次の規定(管台、強め材等と胴又は鏡板の溶接図)を除き、JISB8267の規定と同等である。

別添7の別図第8は、JISB8267の図と同じであるが、次に示す溶接寸法の制限が異なる。また、JISB8267の規定には胴又は管台とフランジの溶接図がある。いずれもJISB8267の規定に整合させる。

a) 突合せ溶接によるテーパー付き管台の溶接寸法は、別添 7 の規定では $t_3+t_4<0.2t$, $a_1+a_2<18.5^\circ$ 、JIS B 8267 の規定では、 $t_3+t_4<0.2t$ (最大 6mm)、 $a_1+a_2<18.5^\circ$

(9%ニッケル鋼の場合)である。ここで、 t_3 及び t_4 はテーパー部の高さ、 a_1 及び a_2 はテーパー部の角度、t は胴又は鏡板の呼び厚さである。

- b) 突合せ溶接による管台等の内側の隅部の丸みの半径 r_1 は、JIS B 8267 の規定では 0.25t 又は 19mm のいずれか小さい値以下とする。当該規定は別添 7 にはない。ここで、t は胴又は鏡板の呼び厚さである。
- c) 完全溶込み溶接による管台等の隅の丸みの半径は、9%ニッケル鋼の場合、 r_1 は 1/8t から 1/2t、 r_2 は 19mm 以上、 r_3 は 1/8t_n~1/2t_n、 r_4 は 6mm 以上とする。当該規定 は別添 7 にはない。ここで、t は胴又は鏡板の呼び厚さ、 t_n は管台等の呼び厚さで ある。
- d) 部分溶込み溶接及びすみ肉溶接による管台等の外側のすみ肉溶接部ののど厚は、JIS B 8267 の規定では 0.5tm以下とする。当該規定は別添 7 にはない。ここで、tm は溶接する部材の薄い方の厚さ又は 19 mm のいずれか小さい値である。
- e) 部分溶込み溶接及びすみ肉溶接継手による内ねじ付き管継手のすみ肉溶接ののど厚は、JIS B 8267 の規定では、管継手が 80A 以下の場合、 t_1 及び t_2 を 2.5mm 又は $0.7t_m$ のいずれか小さい値以上とすることができる。当該規定は別添 7 にはない。ここで、 t_1 及び t_2 はすみ肉溶接ののど厚、 t_m は溶接する部材の薄い方の厚さ又は 19 mm のいずれか小さい値である。

(2.2) 管と管板の溶接

別添7の胴板と平板等との溶接に係る規定は、次の規定を除き、JIS B 8267 の規定と同等である。

別添7の規定では、突合せ溶接による管と管板の溶接の図がある。当該図は JIS B 8267 にはない。現行の別添7のままとする。

これに加え、第6条第1項第12号及び第13号の対応案に合わせて、管と管板の溶接及び溶接部の強度は、第31条第2項及び第3項の規定のほか、JISB8274の規定も適用できるようにする。

3.4.4.6 取付物

(1) 対象条項

別添 7 第 32 条 (取付物)

JIS B 8267 6.1.5 耐圧部分の溶接継手の形式及び適用範囲、

6.1.7 強め輪,支持構造物及び非耐圧部材の溶接

(2) 比較の概要、技術的な課題及び対応案の考え方

(2.1) 胴板及び鏡板の溶接線上への取付物の溶接

別添7の規定では、胴板及び鏡板の溶接線上に管台の補強板及びその他の取付物を溶接する場合に、当該溶接線の余盛りの平滑化又は取付物を切欠く等して溶接線との間に間隔を設けることを規定している。当該規定は JIS B 8267 にはない。現行の別添7のままとする。

(2.2) 9%ニッケル鋼の耐圧部分への取付物の溶接

別添7の規定では、9%ニッケル鋼の耐圧部分に溶接する取付物の材料に、9%ニッケル鋼又は熱処理によって硬化しないオーステナイト系ステンレス鋼を使用することと定められている。JIS B 8267 の規定では、9%ニッケル鋼の耐圧部分に溶接する管台及び強め材の材料に、9%ニッケル鋼又は熱処理によって硬化しないオーステナイト系ステンレス鋼(材料規格の降伏点又は耐力が9%ニッケル鋼の材料規格の降伏点又は耐力の±20%の範囲内の材料に限る。)を使用することと定められている。JIS B 8267 の規定は、当該規定は別添7第18条(穴の補強)備考1と整合しており、第32条第2項に相当する規定はない。

別添 7 第 32 条第 2 項の取付物の材料に係る規定は現行の別添 7 のままとする。ただし、現行の別添 7 の 9%ニッケル鋼の耐圧部分に溶接する管台、強め材及び取付物の材料の規定は、JIS B 8267 の規定のように溶接継手の制限とすると規定上明確であるため、現行の別添 7 の第 18 条備考 1 及び第 32 条第 2 項の規定を 1 つの条項にまとめる。

(2.3) 支持構造物等の溶接

JIS B 8267 の規定には、支持構造物(スカート、サドル、レグ及びラグ)や当て板の 溶接に係る規定がある。当該規定は別添 7 にはない。JIS B 8267 に整合させる。

3.4.4.7 強め輪の溶接

(1) 対象条項

別添 7 第 32 条 (取付物)

JIS B 8267 6.1.7 強め輪,支持構造物及び非耐圧部材の溶接

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の強め輪の溶接に係る規定は、JISB8267の規定と同等である。なお、JISB8267の規定では、胴と強め輪の溶接継手が図で示されている。

備考 断続すみ肉溶接により強め輪を溶接する場合の個々の溶接部の長さの規定値は、 別添7の規定では51mm以上、JIS B 8267の規定では50mm以上と若干異なる。別 添7制定時の単位換算に係るものであるため、JIS B 8267の規定値に整合させる。

3.4.4.8 ジャケットの溶接

(1) 対象条項

別添 7 第 34 条 (ジャケットの溶接)

IIS B 8267 —

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7にのみ規定がある。当該規定は、胴とジャケットの溶接、ジャケット閉鎖部の 溶接等を定めている。

現行の別添7のままとする。ただし、胴とコイルジャケットの溶接は JIS B 8279 (圧力容器のジャケット) 附属書2の規定と整合していないため、JIS B 8279 附属書2によることとする。

3.4.4.9 ステーの溶接

(1) 対象条項

別添 7 第 35 条 (ステーの溶接)

JIS B 8267 7.5 ステーの取付け

(2) 比較の概要、技術的な課題及び対応案の考え方 別添7のステーの溶接に係る規定は、JIS B 8267 の規定と同等である。

3.4.4.10 伸縮継手の溶接

(1) 対象条項

別添 7 第 36 条 (伸縮継手の溶接)

JIS B 8267 N.7 伸縮継手の溶接継手

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の伸縮継手の溶接に係る規定は、第1項に伸縮継手の長手継手を完全溶込みの 突合せ溶接とすること、第2項に胴と伸縮継手の溶接はJISB8277:1993(圧力容器の 伸縮継手)図4によることが定められている。JISB8267の規定では、附属書Nに胴と 伸縮継手の溶接図が規定されている。 伸縮継手の長手継手に係る規定は、JIS B 8267 に規定はないため、現行の別添7のままとする。

胴と伸縮継手の溶接に係る規定は、JIS B 8277: 1993 の図と JIS B 8267 の図では、寸法に係る規定が異なるが、JIS B 8277: 2008 の図と比較すると同等である。なお、JIS B 8277: 2008 には、外圧を受ける場合の寸法制限がある。当該規定は、JIS B 8277: 2008 の図 4 を引用する。

- 3.4.5 溶接の方法等
- 3.4.5.1 溶接の方法
- (1) 対象条項

別添 7 第 37 条(溶接の方法等) JIS B 8267 –

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の規定では、材料の種類に応じた溶接施工方法や化学成分の制限を定めている。当該規定は JIS B 8267 にはない。現行の別添7のままとする。なお、現行の別添7の規定は、ASME BPVC Section VIII Division 1の規定と同じである。

- 3.4.5.2 溶接施工方法確認試験
- (1) 対象条項

別添 7 第 37 条 (溶接の方法等)

JIS B 8267 6.1.3 溶接の方法

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の溶接施工方法に係る規定は、JIS B 8267と同等であり、JIS B 8285(圧力容器の溶接施工方法の確認試験)の溶接施工方法確認試験に基づき、あらかじめ確認された溶接施工方法による。ただし、溶接施工方法確認試験における衝撃試験等については、別途規定が設けられている(3.4.7.2 参照。)。

別添7の規定では、次に示す事項が定められている。現行の別添7のままとする。

- a) 溶接施工方法確認試験記録は、検査機関等(他法規や ASME 規格に基づくものを含む。)によって認められたものとする。
- b) 衝撃試験等は、ASME 規格に基づく溶接施工方法である場合、ASME 規格によることができる。

3.4.6 溶接後熱処理

(1) 対象条項

別添 7 第 38 条(溶接後熱処理)、第 56 条(溶接後熱処理の方法)JIS B 8267 6.6 溶接後熱処理、附属書 S (規定) 溶接後熱処理

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 溶接後熱処理の要否

別添7の溶接後熱処理の要否に係る規定は、次に示す規定を除き、JIS B 8267の規定と同等である。

- a) 母材の種類が P 番号 6 (SUS410 に限る。)又は P 番号 7 (SUS405 及び SUS410S に限る。)の溶接継手の場合、別添 7 の規定では溶接後熱処理が不要となる条件のひとつとして、全線放射線透過試験を行うと定められている。この条件について、 JIS B 8267 の規定では材料の厚さが 10mm 以下の場合は放射線透過試験を行う必要はないと定められている。 IIS B 8267 の規定に整合させる。
- b) 合せ材が SUS405 又は SUS410S であるクラッド鋼の溶接継手の場合、JIS B 8267 の規定では、母材の溶接後熱処理が不要であっても溶接後熱処理を行うと定められている。ただし、オーステナイト系クロムニッケルの溶着金属を生じる溶接材料又は非空冷硬化形のニッケル・クロム・鉄系の溶着金属を生じる溶接材料を用いて溶接する場合で、かつ、母材の溶接後熱処理が不要な場合は、当該溶接後熱処理を省略することができる。当該規定は別添7にはないため、JIS B 8267 の規定に整合させる。
- c) 別添7の規定では、P番号1の材料を母材とする溶接部の一部は、最低設計金属温度が-48°C未満で、かつ、応力比が0.35以上の場合、最低設計金属温度以下の温度で衝撃試験を行い、母材及び溶接部の吸収エネルギーの平均値が33J以上、かつ、最小値が22J以上であれば溶接後熱処理は不要であると定められている。JISB8267の規定では、当該規定の衝撃試験の合格基準が、母材及び溶接部の吸収エネルギーが34J以上であることと定められている。JISB8267の規定に整合させる。
- d) 上記 c)の規定において、JIS B 8267 の規定では、P 番号 1 の材料を母材とするシール溶接も対象である。JIS B 8267 の規定に整合させる。
- 備考 別添7に規定の溶接後熱処理の対象となる母材の厚さ、予熱温度等の規定値は、 JIS B 8267 の規定値と若干異なる。別添7制定時の単位換算に係るものであるため、JIS B 8267 の規定値に整合させる。
- (2.2) 溶接後熱処理に係る母材の厚さの定義

別添7の溶接後熱処理に係る母材の厚さの定義に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

JIS B 8267 の規定では、管板と管の溶接の場合は管の厚さを母材の厚さとする。JIS B 8267 に整合させる。

(2.3) 溶接後熱処理の方法

別添7の溶接後熱処理の方法に係る規定は、次に示す規定を除き、JIS B 8267の規定と同等である。

- a) 加熱速度及び冷却速度は、別添7の規定では38℃/h 未満となる場合は38℃/h とするのに対し、JIS B 8267の規定では56℃/h より遅くしなくてもよいと定められている。JIS B 8267の規定は、最新版のASME BPVC Section VIII Division 1 と同じであるため、当該規定に整合させる。
- b) 加熱速度及び冷却速度の算定式は同じであるが、算定式中の厚さ t は、別添7の規定では溶接部の最大厚さ、JIS B 8267の規定では胴又は鏡板の最大厚さと定められている。JIS B 8267の規定に整合させる。
- c) 次に示す母材の種類に係る最小保持温度の規定値が異なる。JIS B 8267 の規定値は、最新版の ASME BPVC Section VIII Division 1 と整合しているため、JIS B 8267 の規定に整合させる。
 - ① P番号4の最小保持温度は、別添7の規定では593℃、JISB8267の規定では650℃と定められている。
 - ② P番号 5 (P番号 5B グループ 2) の最小保持温度は、別添 7 の規定では 704℃、 JIS B 8267 の規定では 675℃と定められている。
 - ③ P番号6の最小保持温度は、別添7の規定では677℃、JISB8267の規定では760℃と定められている。
- 備考 別添7に規定の炉内温度、加熱速度、冷却速度等に係る各規定値、最小保持時間 に係る母材の厚さの区分は、JIS B 8267の規定と若干異なる。別添7制定時の単位 換算に係るものであるため、JIS B 8267の規定値に整合させる。
- 3.4.7 溶接継手の機械試験
- 3.4.7.1 溶接継手の引張試験及び曲げ試験
- (1) 対象条項

別添7 第39条(機械試験)

第57条(継手引張試験)

第58条(表曲げ試験、縦表曲げ試験、側曲げ試験、裏曲げ試験及び縦 裏曲げ試験)

第60条(機械試験の再試験)

第61条(試験片の作製が困難な場合の機械試験)

JIS B 8267 附属書 O (規定) 圧力容器の溶接継手の機械試験

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 溶接継手の引張試験

別添7の溶接継手の引張試験に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- a) 別添7の規定では、1号、3号又は4号試験片を使用する(試験片の作成が困難な場合として2号試験片)。JISB8267の規定では、試験片の種類は規定されていない。従って、規定上は1A号、3A号及び4A号試験片も使用することができる。いずれの試験片でも同等の試験ができるため、JISB8267の規定に整合させる。
- b) 別添7と JIS B 8267 のいずれの規定も同一の溶接条件の溶接継手で試験板を作製する。別添7の規定では、同一の溶接条件について具体的に規定されている(JIS B 8285 の溶接の区分が同じであること等)。現行の別添7のままとする。

(2.2) 溶接継手の曲げ試験

別添7の溶接継手の曲げ試験に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- a) JIS B 8267 の規定では、母材の P 番号が規定されていない場合について、曲げ半径 を求める計算式が規定されている。JIS B 8267 の規定に整合させる。
- b) 曲げ試験の合格基準について、次に示す違いがある。判定基準は、JIS B 8267 の規 定に整合させる。
 - 別添7の規定:外側にした溶接金属部及び熱影響部に3.2mm を超える開口欠陥がないときは、これを合格とする。
 - JIS B 8267 の規定:溶接金属の外側に、次に示す割れ及びブローホールがなければ判定基準を満足するものとし、合格とする。
 - ▶ 長さ 3mm を超える割れ (へりのかどに生じる割れを除く。)
 - ▶ 長さ 3mm 以下で合計長さが 7mm を超える複数の割れ
 - ▶ 合計個数が 10 個を超える割れ及びブローホール

3.4.7.2 溶接継手の衝撃試験等(溶接施工方法確認試験を含む。)

(1) 対象条項

別添 7 第 37 条 (溶接の方法等) 第 2 項

第39条(機械試験)

第59条(衝撃試験又は破壊じん性試験)

第60条(機械試験の再試験)

JIS B 8267 附属書 R (規定) 圧力容器の衝撃試験

(2) 比較の概要、技術的な課題及び対応案の考え方

(2.1) 炭素鋼及び低合金鋼の溶接継手

別添7の炭素鋼及び低合金鋼の溶接継手の衝撃試験等に係る規定は、次の規定を除き、 JIS B 8267 の規定と同等である。

溶接施工方法確認試験における衝撃試験について、個々の溶接パスの厚さが 13mm を超え、最低設計金属温度が 21°C未満の場合、別添 7 の規定では、溶加材の有無にかかわらず、熱影響部について衝撃試験を行う。JIS B 8267 の規定では溶加材を用いる場合に溶接金属及び熱影響部について衝撃試験を行う。JIS B 8267 の規定は、ASME BPVC Section VIII Division 1 の規定と整合しているため、当該規定に整合させる。

(2.2) 9%ニッケル鋼の溶接継手

別添7の9%ニッケル鋼の溶接継手の衝撃試験等に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- a) 溶接継手の衝撃試験が不要となる条件は、別添7の規定では溶接継手に焼入れ焼ならしを行う場合であるのに対し、JISB8267の規定では溶接継手に焼入れ焼戻しを行う場合である。当該規定は、溶接継手に材料規格の熱処理を行う場合に衝撃試験が不要となる規定であるが、9%ニッケル鋼の材料規格における熱処理は、焼入れ焼戻し以外に2回焼ならし焼戻しの場合もある。対応案として、溶接継手に材料規格に規定される熱処理を行う場合は、溶接継手の衝撃試験は不要とする。
- b) 溶接金属部の衝撃試験が不要となる条件は、別添7の規定では高ニッケル合金の溶加材を使用する場合であるのに対し、JIS B 8267の規定では溶加材の規格及び種類の記号(JIS Z 3333 YS9Ni 等)が具体的に規定されている。JIS B 8267 に整合させる。

(2.3) 高合金鋼の溶接継手

別添7の高合金鋼の溶接継手の衝撃試験等に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- a) 3.2.10.1(2.3) a)に示した事項(最低設計金属温度によらず衝撃試験若しくは破壊じん性試験が不要又は必要な材料の種類)は、溶接継手の衝撃試験又は破壊じん性試験についても同じであるため、同じ対応案とする。
- b) JIS B 8267 の規定では、最低設計金属温度が-253°C以上で、材料の種類が SUH660、TPXM-19 及び XM-19 の場合は、母材と同様に液化水素温度においてじ ん性が確認されているため、熱影響部の衝撃試験又は破壊じん性試験が不要であ る。JIS B 8267 の規定に整合させる。

- c) JIS B 8267 の規定では、溶加材を用いないオーステナイト系ステンレス鋼の溶接部であって、溶接後に固溶化熱処理を行い、かつ、最低設計金属温度が-196℃以上である場合、衝撃試験は不要である。JIS B 8267 に整合させる。
- d) 別添7とJISB8267のいずれの規定も、オーステナイト系ステンレス鋼の溶接材料は、最低設計金属温度が-104℃未満の場合、溶加材の種類に応じて各溶解及び材料ロット毎に衝撃試験を行う。JISB8267の規定では、被覆金属アーク溶接に用いるJISZ3227(CES308L及びCES316Lに限る。)の溶加材は、最低設計金属温度以下の温度で衝撃試験を行う場合に限り、各溶解及び材料ロット毎の試験を行う必要はない。JISB8267の規定に整合させる。

(2.4) 非鉄金属の溶接継手

非鉄金属の溶接継手に対する溶接施工法確認試験及び機械試験における衝撃試験等に係る規定は、別添7にはない。JIS B 8267の規定では、母材の衝撃試験の要否に係る規定と同じである。JIS B 8267に整合させる。

(2.5) 溶接継手の衝撃試験等の試験要領及び合格基準

別添7の溶接継手の衝撃試験等の試験要領及び合格基準は、次に示す規定を除き、JIS B 8267 の規定と同等である。

- a) 3.2.10.1(2.5) a) \sim g) に示した事項は、溶接継手の衝撃試験等についても同じであるため、同じ対応案とする。
- b) 溶接継手の衝撃試験片及び破壊じん性試験片の厚さ方向の採取位置は、別添 7 と JIS B 8267 で異なる(下表参照。)。また、別添 7 の規定は ASME BPVC Section VIII Division 1 の規定に基づいているが、次のように別添 7 制定時の規定の一部が 最新版では改正されているため、最新版の ASME BPVC Section VIII Division 1 の 規定も示す。ここで、t は試験板の厚さ、 t_1 は試験片表面と試験板表面の距離、 t_2 は 試験片の軸と試験板表面の距離である(単位 mm)。

別添7の規定は、最新版の ASME BPVC Section VIII Division 1の規定と比較すると、熱影響部の試験片採取が改正されている。最新版の ASME BPVC Section VIII Division 1と JIS B 8267 の規定を比較したところ、主に次に示す違いがあるが、試験片の採取位置及び採取数が大幅に異なるわけではない。このため、対応案は最新版の ASME BPVC Section VIII Division 1の規定に整合させることとした。

■ 溶接金属部の試験片採取 ASME BPVC Section VIII Division 1 の規定では、t によらず t₁=1.5mm の位置から採取する。JIS B 8267 では、t₂=0.25t の位置 から採取し、t が 38mm を超えると反対側からも試験片を採取する。

■ 熱影響部の試験片採取 ASME 規格では、片側溶接の場合と両側溶接の場合で 試験片の採取方法を区別している。JIS B 8267 では、溶接金属部の採取方法と 同じである。

溶接金属部の試験片採取

	試験板の厚さ	採取位置及び採取数
別添7	t≦38	t ₁ ≤1.6 (1組)
	38 <t< td=""><td>t₁≤1.6、t₂=3t/4 (2組)</td></t<>	t ₁ ≤1.6、t ₂ =3t/4 (2組)
JIS B 8267	t≦38	t ₂ =t/4 (1 組) ※
	38 <t< td=""><td>t₂=t/4、3t/4(2 組)</td></t<>	t ₂ =t/4、3t/4(2 組)
ASME BPVC	t≦38	t ₁ =1.5 (1組)
Section VIII	38 <t< td=""><td>t₁≦1.5 (1組)</td></t<>	t ₁ ≦1.5 (1組)
Division 1		溶接施工方法確認試験の場合は、
		t ₁ ≤1.5、t ₂ =3t/4 (2組)

[※]試験片の軸がこの位置にとれない場合には、 t_1 が $2 \, mm$ 以内となる適切な位置に とる。

熱影響部の試験片採取

	試験板の厚さ	採取位置及び採取数
別添 7	_	t ₁ ≤1.6 (1組)
JIS B 8267	t≦38	t ₂ =t/4 (1 組) ※
	38 <t< td=""><td>t₂=t/4、3t/4(2 組)</td></t<>	t ₂ =t/4、3t/4(2 組)
ASME BPVC	t≦19	片側溶接:t/4≤t ₂ ≤t/2(1組)
Section VIII		両側溶接:t ₂ =t/2(1 組)
Division 1	19 <t< td=""><td>片側溶接: t/4≤t₂≤t/2 (1組)</td></t<>	片側溶接: t/4≤t ₂ ≤t/2 (1組)
		両側溶接:t/4≦t ₂ ≦t/2、t/2≦t ₂ ≦3t/4(2組)

[※]試験片の軸がこの位置にとれない場合には, t_1 が 2 mm 以内となる適切な位置に とる。

(2.6) クラッド鋼の溶接継手

別添7のクラッド鋼の溶接継手の衝撃試験等の要否、試験要領及び合格基準に係る規定は、JIS B 8267 の規定と同等である。

備考 各規定における材料及び溶加材の種類の記号は、別添7の規定は制定時のままであるため、JISB8267に整合させる。

- 3.4.8 溶接継手の非破壊試験
- 3.4.8.1 溶接継手の放射線透過試験
- (1) 対象条項

別添 7 第 41 条 (放射線透過試験)、第 62 条 (放射線透過試験方法等)

JIS B 8267 8.2 溶接継手の非破壊試験 a) 放射線透過試験

8.3 非破壊試験の方法及び結果の判定 a) 放射線透過試験

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 放射線透過試験基準
- (2.1.1) 100%放射線透過試験が要求される溶接継手

別添7の100%放射線透過試験が要求される溶接継手に係る規定は、次に示す規定を除き、JISB8267の規定と同等である。

次に示す規定は、いずれも対象となる溶接継手が異なる。別添7はASME BPVC Section VIII Division 1に基づき制定されたことを考慮し、現行の別添7のままとする。

- 9%ニッケル鋼の溶接継手は、別添7とJISB8267のいずれも100%放射線透過試験の対象である。ただし、別添7の規定では、内径51mm以下の管台を完全溶込み溶接で取り付けた溶接継手は当該規定が免除されると定められている。また、9%ニッケル鋼に肉盛溶接を行う場合は、肉盛溶接後に放射線透過試験を行うことが定められている。
- 100%放射線透過試験が要求される高合金鋼の溶接継手は、別添7の規定ではマルテンサイト系ステンレス鋼(SUS410, SUS429及び SUS430)及び純クロムの溶接棒(straight chromium electrode)を使用したフェライト系ステンレス鋼(SUS405)の溶接継手が対象であるのに対し、JIS B 8267の規定ではマルテンサイト系ステンレス鋼、フェライト系ステンレス鋼及びオーステナイト・フェライト系ステンレス鋼の溶接継手(いずれも厚さが 38 mm 以下でオーステナイト系の溶接棒を使用する場合を除く。)が対象である。
- 100%放射線透過試験が要求されるチタン及びチタン合金の溶接継手は、別添7の 規定ではA継手及びB継手が対象であるのに対し、JISB8267の規定ではすべての 溶接継手が対象である。
- 別添7の規定では、クラッド鋼の溶接継手の100%放射線透過試験を行うことが定められている。
- 別添7の規定では、エレクトロガス溶接による継手(単一パスが38mm 超のもの) 及びエレクトロスラグ溶接による継手は、100%放射線透過試験を行うことが定め られている。
- 別添7の規定では、100%放射線透過試験を行うものとして設計された継手は、100%放射線透過試験の対象である。

- JIS B 8267 の規定では、気圧試験を行う圧力容器は、100%放射線透過試験の対象である。
- JIS B 8267 の規定では、JIS G 3115, JIS G 3120, JIS G 3126 及び JIS G 3127 に規定の材料(降伏点に基づく許容引張応力の値を適用する場合)及び特定材料の SA533 の溶接継手は、100%放射線透過試験の対象である。
- JIS B 8267 の規定では、ジルコニウム及びジルコニウム合金の溶接継手は、100%放射線透過試験の対象である。
- JIS B 8267 の規定では、低設計金属温度-48°C未満の圧力容器であって、最低設計金属温度低減曲線(図 R.2)において縦軸の比が 0.35 以上の場合の炭素鋼及び低合金鋼の溶接継手は、100%放射線透過試験の対象である。

(2.1.2) 100%放射線透過試験以外の放射線透過試験

別添7の規定は、部分スポットの放射線透過試験(複数の溶接士によって溶接された溶接継手及び同一仕様の複数の特定設備の溶接継手に係る規定を含む。)に係るものである。JIS B 8267 の規定は、部分スポットの放射線透過試験及び抜取率 20%の放射線透過試験に係るものである。ASME BPVC Section VIII Division 1 の規定には、抜取率20%に対する規定はないため、現行の別添7のままとする。

備考

- 1 別添 7 と JIS B 8267 いずれの規定も放射線透過試験が困難な場合は超音波探傷試験に替えることができる。別添 7 の規定では、特定設備の形状により放射線透過試験のフィルムを貼り付けることが困難なもの等、放射線透過試験が困難な場合が例示されている。当該規定は、基本通達「特定設備検査規則の運用及び解釈について」第 31 条関係(2)と同じであるため、現行の別添 7 のままとする。
- 2 別添 7 の規定では、第 41 条第 1 項の各号の突合せ溶接継手が 100%放射線透過試験の対象である。JIS B 8267 の規定では、B-1 継手及び B-2 継手のうちで分類 A~D に用いる溶接継手が対象である。3.4.1(2) 備考 1 において溶接継手の形式の呼称を JIS B 8267 に合わせることとしたため、表記上 JIS B 8267 に整合させる。
- 3 別添7の部分スポットを行う溶接継手の長さの規定値は、最新版の ASME BPVC Section VIII Division 1 の規定値と若干異なる。別添7制定時の単位換算に係るものであるため、ASME BPVC Section VIII Division 1 の規定値に整合させる。

(2.2) 放射線透過試験の方法

別添7とJISB8267の放射線透過試験の方法は、次の規定を除き、溶接継手の種類ごとに放射線透過試験の規格を引用しており、規定上同等である。

別添7では、JIS Z 3104 等の工業用 X 線フィルムによる放射線透過試験(以下「FRT」という。)の規格の必要条件を満足することができれば、工業用 X 線フィルムの代替として、X 線イメージ管、X 線テレビカメラ等を使用することができる。

当該規定は、現行の別添7のままとする。また、当該規定への対応として、令和3年度石油・ガス供給等に係る保安対策調査等事業(特定設備検査規則の第一種特定設備に係る例示基準等の最新の引用規格の技術動向の調査)にて調査した、JIS Z 3110(溶接継手の放射線透過試験方法-デジタル検出器による X 線及び γ 線撮影技術)に基づくデジタル検出器による放射線透過試験(以下「DRT」という。)を例示基準に規定するための課題とそれに対する技術的な要件を別添7第62条ただし書きの規定に基づき以下のとおり整理した。なお、以下は別添7第62条ただし書きの規定に基づき、事前に DRT の必要条件を確認し、FRT と同等であることが確認された範囲を DRT の適用範囲とすることを前提としている。

課題	課題に対する技術的な要件
DRT を行うための個々の検査機器に係る	検査の適用範囲 (材質、厚さ等)、検査機
規定がない。	器の種類・型番等を指定する。
DRT で撮影したデジタル画像におけるき	JIS Z 3104 等によるきずの分類を適用す
ずの分類に係る規定がない。	る。
検出器システムの初期性能に係る JIS 規格	事前確認と同等の画像が得られることを定
がなく、個々の装置メーカに依存する。	期的に確認する。点検・校正は使用者の管
デジタル検出器は経年劣化や繰返し使用等	理や製造者の推奨事項による。
による性能劣化が想定されるが、点検、校	劣化等によるノイズが生じた場合は、点検
正等の性能維持に係る規格はない。	などの処置により、ノイズが生じないよう
	にする。
ソフトウェアの機能要件に係る規定がな	使用するソフトウェアを指定する(検査機
い。ソフトウェアの機能要件は、推奨規定	器を指定することと同じ扱い。第62条た
や前提条件になっており、個々のソフトウ	だし書きの必要条件の確認ができることを
ェアの仕様に依存する。	前提とする。)。

課題 課題に対する技術的な要件 きずの分類において、試験視野の設定や寸 画像上での寸法確認が確実にできること。 法測定を適切に行うための規定がない。 (例えば、対比スケール等を使用する)。 IIS Z 3104 等によりきずの分類を行う場合 は、出力された画像の拡大・縮小を考慮し て、試験視野の設定及びきずの寸法測定を 適切に行う必要がある。 国内における放射線透過試験の検査技術者 現行の資格者が必要条件を確認し、DRT の技量認証は、現状、FRT が前提であ と FRT で得られる結果が同等となること る。 を確認する。 第62条ただし書きの必要条件を確認する IIS Z 3110 で要求される DRT に係る教育 及び訓練は、具体的な規定がないため、 ための手順を指定する。DRT の教育及び 個々の事業者の運用によることになる。 訓練は試験実施者による。 JIS Z 3110 は、契約当事者間の合意による 第62条ただし書きの必要条件の確認に用 事項が多い(例えば、像質を評価する基本 いるパラメータを明確化する。この場合、 空間分解能の測定は、試験体の撮影時には S/N 比、基本空間分解能等の FRT の写真 必須ではない。)。 判定の代替パラメータは JIS Z 3110、IQI IIS Z 3110 の解説においても契約当事者間 値等の共通のパラメータは JIS Z 3104 等を の合意事項を具体的な規定とすることが、 参考にできる。

備考 現行の別添7の規定の X 線イメージ管、X 線テレビカメラ等は、総じてデジタル 検出器と表現する。

第62条ただし書きの必要条件を満足することを事前に確認し、確認された範囲を検

査の適用範囲とする。

(2.3) 放射線透過試験の判定基準

今後の検討課題と記載されている。

別添7と JIS B 8267 の放射線透過試験の判定基準は、規定上同等である。

3.4.8.2 溶接継手の超音波探傷試験

(1) 対象条項

別添 7 第 42 条 (超音波探傷試験)、第 63 条 (超音波探傷試験方法等)

JIS B 8267 8.2 溶接継手の非破壊試験 b) 超音波探傷試験

8.3 非破壊試験の方法及び結果の判定 b) 超音波探傷試験

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 超音波探傷試験基準

別添7と JIS B 8267 の超音波探傷試験基準は、規定上同等である。

備考

- 1 別添 7 と JIS B 8267 のいずれの規定も超音波探傷試験が困難な溶接継手は、超音波探傷試験を行う必要はない。別添 7 の規定では、超音波探傷試験が困難な溶接継手として、オーステナイト系ステンレス鋼その他オーステナイト組織を有する鋼の溶接部としている。当該規定は、基本通達「特定設備検査規則の運用及び解釈について」第 31 条関係 (2) と同じである。現行の別添 7 のままとする。
- 2 JIS B 8267 に規定では、圧力容器を最終的に閉鎖する溶接継手は超音波探傷試験の対象である。別添7の規定では、第41条(放射線透過試験)の備考2より、特定設備の最終溶接線であって、溶接後に当該設備の内部に放射線透過試験のフィルムの貼り付けができない等の理由により放射線透過試験が適切でない場合には、超音波探傷試験に替えることができるとしており、最終溶接線に対して超音波探傷試験が必須ではないため、現行の別添7のままとする。

(2.2) 超音波探傷試験の方法

別添7とJISB8267の超音波探傷試験の方法は、いずれも溶接継手の種類ごとに超音波探傷試験の規格を引用しており、規定上同等である。

(2.3) 超音波探傷試験の判定基準

別添7と JIS B 8267 の超音波探傷試験の判定基準は、規定上同等である。

- 3.4.8.3 溶接継手の磁粉探傷試験
- (1) 対象条項

別添7 第43条(磁粉探傷試験)、第64条(磁粉探傷試験方法等)

JIS B 8267 8.2 溶接継手の非破壊試験 c) 磁粉探傷試験

8.3 非破壊試験の方法及び結果の判定 c) 磁粉探傷試験

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 磁粉探傷試験基準

別添7の磁粉探傷試験基準に係る基準は、次に示す規定を除き、JIS B 8267 と同等である。

次に示す規定は、別添 7 又は JIS B 8267 のどちらか一方にのみ規定されている。別添 7 は ASME BPVC Section VIII Division 1 に基づき制定されたことを考慮し、現行の別添 7 のままとする。

- 気体で耐圧試験を行う特定設備の溶接継手(管台、強め材等を取り付けるための溶接部及びのど厚が 6 mm を超えるすべての溶接部(耐圧部分に非耐圧部材を取り付ける溶接部を含む。))は、別添7の規定では磁粉探傷試験の対象である。
- 9%ニッケル鋼を母材とする溶接部(非耐圧部材を耐圧部分に取り付ける溶接部を含む。)並びに管台を取り付けるための溶接部のうち、管台の内面に露出している胴板及び鏡板の断面部は、別添7の規定では磁粉探傷試験の対象である。
- 塔槽類と特定支持構造物との溶接部は、別添7の規定では磁粉探傷試験の対象である。
- 伸縮継手に係る溶接部のうち、全ての完全溶込みの突合せ溶接部で加工前の内外 面、加工後の外面及び検査可能な内面の範囲並びに伸縮継手と胴板との周継手は、 別添7の規定では磁粉探傷試験の対象である。
- 致死的物質を保有する圧力容器の溶接継手(管台、強め材等を取り付けるための溶接部及びのど厚が 6 mm を超えるすべての溶接部(耐圧部分に非耐圧部材を取り付ける溶接部を含む。))は、JIS B 8267 の規定では磁粉探傷試験の対象である。
- JIS G 3115, JIS G 3120, JIS G 3126 及び JIS G 3127 に規定の材料(降伏点に基づく許容引張応力の値を適用する場合)及び特定材料の SA533 の溶接継手、JIS B 8267 の規定では磁粉探傷試験の対象である。
- 備考 別添 7 と JIS B 8267 のいずれの規定も磁粉探傷試験を行うことが困難な場合は、 浸透探傷試験に替えることができる。別添 7 の規定では、磁粉探傷試験を行うこと が困難な場合として、磁化器が当該特定設備の検査部分に接触できない場合等が例 示されている。当該規定は、基本通達「特定設備検査規則の運用及び解釈につい て」第 31 条関係(2)と同じである。当該規定は JIS B 8267 にはない。現行の別 添 7 のままとする。

(2.2) 磁粉探傷試験の方法

別添7の磁粉探傷試験の方法に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

別添7の規定では、総合性能試験に使用する標準試験片はA2-30/100を使用する。当該規定はJISB8267にはない。現行の別添7のままとする。この場合において、総合性能試験には標準試験片A2-30/100又はこれと同等以上の試験片若しくは試験体を使用することとする。

(2.3) 磁粉探傷試験の判定基準

別添7の磁粉探傷試験の判定基準に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

別添7の規定では、次に示す溶接継手について判定基準が別に定められている。溶接継手の磁粉探傷試験の判定基準として統一するため、次に示す溶接継手の判定基準は第64条第2項(JISB8267の判定基準と同じ。)によることとする。

- せぎり溶接の段付け加工側の長手継手(段付け加工後) 表面割れによる磁粉模様 がないこと。
- 気体で耐圧試験を行う特定設備の溶接継手(開口部、管台、強め材等の溶接継手及びのど厚が 6 mm を超える取付溶接継手(耐圧部分に非耐圧部分を取り付ける部分を含む。)) 表面割れによる磁粉模様がないこと。
- 9%ニッケル鋼の溶接継手 割れによる磁粉模様及び長さ 1.6mm を超える線状の磁 粉模様(長さが幅の 3 倍を超えるもの)がないときは、これを合格とする。
- 伸縮継手の溶接継手 成形前の母材の厚さの 1/4 又は 0.25mm のいずれか小なる値を超える線状の磁粉模様(長さが幅の 3 倍を超えるもの)がないこと。
- 備考 JIS B 8267 で使用している磁粉模様に係る用語は、JIS Z 2320 (非破壊試験 磁 粉探傷試験 –)の用語と整合している。別添 7 で使用している用語は、JIS B 8267 と意味は同じであるが、若干異なるため、JIS B 8267 の表現に整合させる。

3.4.8.4 溶接継手の浸透探傷試験

(1) 対象条項

別添7 第44条(浸透探傷試験)、第65条(浸透探傷試験方法等)

JIS B 8267 8.2 溶接継手の非破壊試験 d) 浸透探傷試験

8.3 非破壊試験の方法及び結果の判定 d) 浸透探傷試験

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 浸透探傷試験基準

別添7の浸透探傷試験基準に係る規定は、次の規定を除き、JIS B 8267 と同等である。

- ニッケル及びニッケル合金の溶接継手は、別添7と JIS B 8267 のいずれの規定も浸透探傷試験の対象であるが、別添7の規定では、熱処理を行う場合、熱処理後に浸透探傷試験を行うと定められている。現行の別添7のままとする。
- オーステナイト系ステンレス鋼及び二相ステンレス鋼の溶接継手であって、サイズ 19mm を超える開先溶接又はのど厚 19mm を超える溶接部は、別添 7 の規定では浸透探傷試験の対象である。現行の別添 7 のままとする。

■ 9%ニッケル鋼の溶接継手の浸透探傷試験は、別添 7 第 44 条では放射線透過試験を行わない部分を対象としている。JIS B 8267 の規定ではすべての溶接部に加え、管台等の溶接継手のうち管台の内面の延長面となっている胴及び鏡板の穴の内面も対象である。別途、別添 7 第 43 条において JIS B 8267 の規定と同じ部分に対して磁粉探傷試験基準を行うと定められている。この場合、溶接継手の溶接金属の種類によって、磁粉探傷試験が困難な場合は浸透探傷試験を実施することになる。規定上同じであるため、現行の別添 7 のままとする。

(2.2) 浸透探傷試験の方法

別添7と JIS B 8267 の浸透探傷試験の方法は、いずれも浸透探傷試験の規格を引用しており、規定上同等である。

(2.3) 浸透探傷試験の判定基準

別添7と JIS B 8267 の判定基準は、規定上同等である。

3.4.8.5 溶接継手の非破壊試験の再試験

(1) 対象条項

別添 7 第 66 条 (非破壊試験の再試験)

IIS B 8267 8.4 非破壊試験の再試験

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の非破壊試験の再試験に係る規定は、次に示す規定を除き、JISB8267の規定と同等である。

- 放射線透過試験の再試験のうち、20%放射線透過試験の再試験に係る規定は、JIS B 8267 にのみ規定がある。溶接継手効率の対応案では、20%放射線透過試験は整合しないとしたため、現行の別添7のままとする。
- 再検査において判定基準を満足しない場合、JISB8267では完全に溶接をやり直すことと定められている。別添7は特定設備検査に係る解釈であり、再試験において判定基準を満足しない場合は不合格となる。現行の別添7のままとする。

3.4.8.6 非破壊検査技術者

(1) 対象条項

別添 7 第 67 条 (溶接の検査の方法) 第 1 項第 5 号及び第 2 項

JIS B 8267 8.3 非破壊試験の方法及び結果の判定 e) 非破壊試験員

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の規定では、非破壊検査技術者は第三者機関(日本非破壊検査協会及び米国非破壊検査協会)により技量を認められた者又はこれと同等の者(ASME 認定工場において技量が認められた者)である。JIS B 8267の規定でも非破壊検査技術者は技量が認められた者であるが、認証規格(JIS Z 2305 又はこれと同等の規格)を引用している。

認証を行う第三者機関を規定するよりは、認証規格を引用した方が適切であるため、 JIS B 8267 に整合させる。この場合、現行の別添7の規定に基づく非破壊検査員も含む ようにするため、現行の別添7の規定が「JIS Z 2305 又はこれと同等の規格に基づく有 資格者」に含まれることを規定上明確にする。

3.4.9 継手の仕上げ

(1) 対象条項

別添7 第40条(継手の仕上げ)

JIS B 8267 6.3.3 余盛の高さ及び仕上げ

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 継手の仕上げ

別添7と JIS B 8267 のいずれも表面を滑らかにすること等を規定している。当該規定は、別添7では非破壊検査を行うものが対象であるのに対し、JIS B 8267 では放射線透過試験を行うものが対象である。現行の別添7のままとする。

(2.2) 余盛り高さの上限

別添7と JIS B 8267 のいずれも母材の厚さに応じた余盛り高さの上限は、別添7では一般規定であるのに対し、JIS B 8267 では放射線透過試験を行う場合の規定である。現行の別添7のままとする。

備考 余盛の高さは、母材の呼び厚さに応じて規定されている。別添7とJISB8267のいずれも母材の呼び厚さの値は同じであるが、呼び厚さの区分を表す不等号が若干異なる。JISB8267の規定に整合させる。

3.4.10 溶接継手の品質等

(1) 対象条項

別添7 第55条(溶接部の品質等)

JIS B 8267 6.1.1 溶接継手、6.3.1 突合せ溶接継手端面の食違い

(2) 比較の概要、技術的な課題及び対応案の考え方

(2.1) 溶接継手の品質

別添7の溶接継手の品質に係る規定は、JIS B 8267の規定と同等であり、溶込みが十分であり、かつ、割れ又はアンダーカット、オーバーラップ、クレータ、スラグ巻込み、ブローホール等があってはならない。

備考 別添7の規定では、アンダーカット、オーバーラップ、クレータ、スラグ巻込み、ブローホール等の有害なきずのサイズが示されている。規定上明確であるため、現行の別添7のままとする。

(2.2) 突合せ溶接継手端面の食違い

別添7の突合せ溶接継手端面の食違いに係る規定は、A継手、B継手、C継手及びD継手に係るものであり、母材の呼び厚さの区分に応じて、食違いの制限を定めている。食違いを制限する規定は、JIS B8267の規定でも同じであるが、食違いの制限はA継手及びB継手のみに対するものである。当該規定は、ASME BPVC Section VIII Division 1の規定との整合を考慮し、現行の別添7のままとする。

備考 別添7に規定の食違いの値は、最新版の ASME BPVC Section VIII Division 1 の 規定と若干異なる。別添7制定時の単位換算に係るものであるため、ASME BPVC Section VIII Division 1 に規定の食違いの値に整合させる。

- 3.5 構造関係
- 3.5.1 特定設備に設ける検査穴
- (1) 対象条項

別添 7 第 45 条 (容器に設けなければならない穴)

JIS B 8267 5.1.5 圧力容器に設ける検査穴

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 検査穴が不要な特定設備

検査穴が不要となる胴の内径、設ける管の個数等は、次表に示すように別添7とJISB8267で異なる。当該規定は、ASME BPVC Section VIII Division 1の規定との整合を考慮し、現行の別添7のままとする。

別添 7 第 45 条第 1 項	JIS B 8267 5.1.5 a)
胴の内径が 305mm 以下の特定設備で、呼	胴の内径が 300 mm 以下の圧力容器。
び径 20A(DN20)以上の取り外すことので	
きる管を2個以上取り付けるもの	
胴の内径が 305mm を超え 406mm 未満の	胴の内径が 500 mm 以下で,外径 40 mm
特定設備(当該特定設備を組立構造物から	以上の取り外しのできる管を2 個以上設け
取り外さないと検査ができないように据付	る圧力容器。
ける場合に限る。)で、呼び径 40A(DN40)	
以上の取り外すことのできる管を2個以上	
取り付けるもの	
_	腐食又は壊食が予測されない場合には、外
	径 40 mm 以上の取り外しのできる管を 2
	個以上設ける圧力容器。

備考 別添 7 と JIS B 8267 のいずれの規定も構造、形状又は用途の関係で、検査、修理、清掃等に供する穴を設ける必要がないものは検査穴を設ける必要はないと定められている。別添 7 では、当該規定とは別に、固定管板式熱交換器が検査穴を設ける必要がない特定設備として規定されているが、構造、形状又は用途の関係で検査穴は不要と解釈する方が適切であるため、表現は JIS B 8267 に整合させる。各規定の内径や検査穴の寸法の値は、最新版の ASME BPVC Section VIII Division 1 の値に整合させる。

(2.2) 検査穴を設ける場合の検査穴の個数、寸法等

別添 7 の検査穴を設ける場合の検査穴の個数、寸法等に係る規定は、胴の内径に応じて必要となる検査穴の寸法、個数等が定められている。JIS B 8267 の規定も同様である

が、下表に示すように胴の内径の区分及び検査穴の寸法の値が異なる。ASME BPVC Section VIII Division 1 の規定との整合を考慮し、現行の別添7のままとする。なお、現行の別添7の規定は、JIS B 8267 の規定をほぼカバーすることができる。

別添7 第45条第2項	JIS B 8267 5.1.5 b)
(1) 胴の内径が 305mm を超え 457mm	1) 胴の内径が 300 mm を超え, 500 mm
未満の特定設備にあっては、長径 76mm 以	以下の場合 長径 75 mm 以上,短径 50
上、短径51mm 以上のハンドホールを2個	mm 以上のだ円形,又は直径 75 mm 以
以上又は呼び径 40A(DN40)以上のねじ込	上の円形の穴を2個以上設ける
みプラグで閉止される検査穴を2個以上設	
けること。	
(2) 胴の内径が 457mm 以上 914mm 以	2) 胴の内径が500 mm を超え,1000 mm
下の特定設備にあっては、長径 406mm 以	以下の場合 マンホール(長径 375 mm 以
上、短径 305mm 以上のだ円形若しくは長	上, 短径 275 mm 以上のだ円形, 直径 375
円形のマンホールを1個以上、直径 406mm	mm 以上の円形, 又は長径 400 mm 以上,
以上の円形のマンホールを1個以上、前号	短径 250 mm 以上の長円形の穴)を 1 個
に規定するハンドホールを2個以上又は呼	以上設ける。ただし,長径 90 mm 以上,
び径 50A(DN50)以上のねじ込みプラグで	短径 70 mm 以上のだ円形,又は直径 90
閉止される検査穴を2個以上のいずれかを	mm 以上の円形の穴を 2 個以上設ける場
設けること。	合は、マンホールを設けなくてもよい。
(3) 胴の内径が 914mm を超える特定設備	3) 胴の内径が 1 000 mm を超える場合
にあっては、前号に規定するマンホールを	2)に示すマンホールを 1 個以上設ける。
1個以 上設けること。	
ただし、マンホールがその目的に適してい	
ない場合には、長径 152mm 以上、短径	
102mm 以上のだ円形のハンドホールを 2	
個以上又はこれと等価な面積を有する穴を	
2個以上設けること。	
(4) ジャケットに設ける検査穴は、ジャケ	-
ットの径に拠らず、プラグで閉止できる検	
査穴を2個以上取り付けなければない。	

備考 別添 7 の胴の内径の区分及び検査穴の寸法の規定値は、最新版の ASME BPVC Section VIII Division 1 の規定値と異なる。別添 7 制定時の単位換算に係るものであるため、ASME BPVC Section VIII Division 1 の規定値に整合させる。

3.5.2 耐震設計設備

(1) 対象条項

別添 7 第 48 条 (耐震設計設備)

JIS B 8267 -

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7にのみ規定されている。特定設備検査規則に基づく規定であるため、現行の別添7のままとする。

3.5.3 胴の真円度

(1) 対象条項

別添 7 第 68 条 (胴の真円度)

IIS B 8267 7.2.1 内圧を保持する胴の直径法真円度

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7と JISB 8267 の胴の真円度に係る規定は、次の規定を除き、同等である。

真円度を求めるための胴の直径の測定について、別添7の規定では内径を測定すると 定められているのに対し、JIS B 8267 の規定では内径又は外径を測定できると定められ ている。

内径の測定が基本であるが、構造上、内径の測定が困難な場合もあるため、内径の測定が困難な場合には外径の測定も可能とする。また、外径を測定した場合は、測定箇所の肉厚を測定し、内径から真円度を計算する必要があることを明確にする。

備考 真円度の定義は同じであるが、JIS B 8267 には真円度の計算式があり、分母の基準内径は公差なしの内径と規定されている。JIS B 8267 の規定に整合させ、真円度の計算式を加える。

3.5.4 外圧を受ける胴の偏差

(1) 対象条項

別添 7 第 69 条 (胴の真円に対する偏差)

JIS B 8267 7.2.2 外圧を保持する胴の偏差

(2) 比較の概要、技術的な課題及び対応案の考え方 別添7と JIS B 8267 の胴の真円に対する偏差は、次の規定を除き、同等である。 別添7第69条には内側から測定する図が示されている。JISB8267の規定では、胴の偏差は内側又は外側から測定すると定められている。

構造上、内面からの測定が困難な場合もあるため、内面からの測定が困難な場合には 外側からの測定も可能とする。

備考 胴の偏差の測定について、JIS B 8267 の規定では、局所的に厚さが異なる箇所では測定しないことと、厚さの異なる断面においては最も薄い板の呼び厚さを用いることが一般事項となっている。当該規定は別添7にはない。規定上明確であるため、JIS B 8267 の規定に整合させる。

3.5.5 耐圧試験

(1) 対象条項

別添 7 第 46 条 (耐圧試験)、第 72 条 (耐圧試験基準)

第74条(構造の検査方法)第1項第2号及び第3号

JIS B 8267 8.5 耐圧試験、附属書 P(規定)圧力容器の耐圧試験

- (2) 比較の概要、技術的な課題及び対応案の考え方
- (2.1) 耐圧試験基準

別添7の耐圧試験基準に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- 耐圧試験に係る一般事項として、JIS B 8267 には次の規定がある。当該規定は別添7にはない。いずれの規定も明確にすべき事項であるため、JIS B 8267 の規定に整合させる。
 - ▶ 耐圧試験は、圧力容器の完成後に実施する。
 - ▶ 耐圧試験後に溶接補修をした場合は、溶接補修後に再度耐圧試験を行う。
 - ▶ 複数の圧力室で構成されている圧力容器は、通常、個々の圧力室ごとに行う。 差圧設計の場合は、最大差圧を設計圧力として耐圧試験を行うことができる。
 - ▶ 外圧を保持する圧力容器は、外圧により耐圧試験を行う。構造上、外圧試験が 実施できない場合は内圧により耐圧試験を行う。
- 気圧試験の適用条件は、別添7の規定では「水その他安全な液体を容易に乾燥させる事ができない構造であって、かつ、ほんのわずかな残留物も使用上許容されない場合」であるのに対し、JISB8267の規定では「水圧試験、液圧試験のいずれも困難な場合」である。別添7の規定は、特定設備検査規則第34条第5号の「その構造により液体を使用することが困難であると認められるとき」を例示したものであり、基本通達「特定設備検査規則の運用及び解釈について」第34条関係とも同じ

である。例示基準上は、水圧試験又は液圧試験を基本とするため、現行の別添7の ままとする。

- 別添7の規定では、各部材の使用厚さと試験温度における許容引張応力から最高許容使用圧力を求め、気圧試験圧力の上限を最高許容使用圧力の 1.1 倍以下に制限する。当該規定は JIS B 8267 にはない。気圧試験圧力は、試験時の安全上、上限値を制限すべきであるため、現行の別添7のままとする。
- 備考 可燃性液体を試験媒体とする場合の当該液体の引火点は、JIS B 8267 は 43 $^{\circ}$ C超 であるのに対し、別添 7 は 43 $^{\circ}$ C以上である。別添 7 制定時の単位換算に係るものであるため、JIS B 8267 の値に整合させる。

(2.2) 耐圧試験の方法

別添7の耐圧試験基準の方法に係る規定は、次の規定を除き、JIS B 8267の規定と同等である。

- 耐圧試験時の金属温度は、別添7とJISB8267の規定のいずれも最低設計金属温度に17℃を加えた温度とする。JISB8267の規定では、衝撃試験を実施し、それに合格した場合は、最低設計金属温度を衝撃試験温度に置き換える。衝撃試験は最低設計金属温度以下の温度で実施するため、JISB8267の規定に整合させる。
- 試験圧力の保持及び異常の確認 次に示す規定が異なる。耐圧試験の危険性を考慮すると、遠隔で監視することや低い圧力まで降圧して確認する方が安全であるため、JIS B 8267 の規定に整合させる。当該規定は、特定設備検査規則の規定も含めて改正を行う。
 - ➤ 水圧・液圧試験における圧力の保持は、別添7の規定では試験圧力で一定時間 放置すると定められているのに対し、JIS B 8267 の規定では単に耐圧試験圧力 まで昇圧し、保持すると定められている(特段、一定時間放置しておく必要は ない。)。
 - ➤ 気圧試験における圧力の保持は、別添7の規定では試験圧力に達した後、再び 設計圧力まで圧力を下げて保持すると定められているのに対し、JIS B 8267 の 規定では水圧・液圧試験と同様に単に耐圧試験圧力まで昇圧し、保持すると定 められている。
 - ➤ 異常の確認の方法は、別添7の規定では設計圧力以上の圧力まで降圧してから 目視による異常の確認を行うと定められているのに対し、JIS B 8267の規定で は、大気圧まで降圧してから異常の確認を行うと定められている(目視に限定 はしていない。)。

3.6 検査の方法

(1) 対象条項

別添7 第49条(設計の検査の方法)、第52条(材料の検査の方法)、

第54条(加工の検査の方法)、第67条(溶接の検査の方法)、

第74条(構造の検査方法)

JIS B 8267 -

(2) 比較の概要、技術的な課題及び対応案の考え方

検査の方法に係る規定は、別添7のみに規定がある(耐圧試験の方法等の一部規定を 除く。)。特定設備検査規則に基づく規定であるため、現行の別添7のままとする。

- 3.7 引用規格
- (1) 対象条項

別添7 - (各条項で引用されている。)

JIS B 8267 2 引用規格

(2) 比較の概要、技術的な課題及び対応案の考え方

別添7の引用規格の多くは、JIS B 8267の引用規格と共通である。共通の引用規格については、別添7の引用規格の年版は別添7制定時の年版のままであるため、JIS B 8267の引用規格の年版と整合させる。ただし、JIS B 8267で引用されている規格のうち、最新版の規格がある場合は、令和3年度石油・ガス供給等に係る保安対策調査等事業(特定設備検査規則の第一種特定設備に係る例示基準等の最新の引用規格の技術動向の調査)における引用規格の年版の見直し調査の結果も踏まえ、最新版の規格を引用する。

別添7又はJISB8267にのみ引用されている規格については、最新版の規格に置き換えても特段の問題はないため、最新版の規格を引用する。

引用規格の一覧及び対応案(引用規格の追加・削除及び年版の見直し)は、添付資料に示す。

4 まとめ

本事業では、JIS B 8267 を中心に圧力容器に係る最新の技術基準の調査を行い、現行の別添7の規定との比較結果に基づき、現行の別添7の技術的な課題を検討した。具体的には、規定上の違いがある条項について、現行の別添7の規定を JIS B 8267 の規定に整合させた場合に生じる問題点等について、その対応案を条項ごとに検討した。各対応案は、引用規格調査委員会において審議した。

別添7見直し調査において検討した主要な対応案を以下に示す。

(1) 総則関係

- 適用範囲は、設計圧力の制限を廃止することとした。
- 用語の定義は、JIS B 8267 に規定の用語(「呼び厚さ」等)について定義を加える こととした。耐圧部分の用語の定義のうち、ボルト及びナットは現行の別添7のま ま非耐圧部分の扱いとすることとした。

(2) 材料関係

- 耐圧部分の材料は、特定設備検査規則の規定の範囲で JIS B 8267 の材料の規定に整合させることとした。
- 材料の衝撃試験等は、基本的に JIS B 8267 の規定に整合させることとした。最小吸収エネルギー及び最小横膨出の規定値は、特定設備検査規則でも整合させることとした。

(3) 加工関係

- 設計計算は、JIS B 8267 に規定の項目を現行の別添7の規定に追加することとした。 伸縮継手及び管板の設計は、JIS の設計規格も適用できることとした。
- 材料の許容引張応力の値や物性値は、材料関係の対応案と同様に、特定設備検査規則の規定の範囲で IIS B 8267 の材料の規定に整合させることとした。
- 溶接継手効率は、特定設備検査規則の規定に基づき、放射線透過試験の割合が 100%、部分スポット及び 0%の場合を規定することとした。

(4) 溶接関係

- 溶接継手の形式は、JIS B 8267 の規定に整合させることとした。また、支持構造物の溶接継手の形式を加えることとした。
- 溶接継手の衝撃試験等は、JIS B 8267 の規定に整合させることとした。ただし、衝撃試験片の採取要領は、ASME BPVC Section VIII Division 1 に整合させることとした。

■ 溶接継手の非破壊試験は、ASME BPVC Section VIII Division 1 との整合を考慮 し、基本的に現行の別添7のままとすることとした。放射線透過試験の方法につい て、デジタル検出器を使用する場合の規定について、必要な要件を整理した。

(5) 構造関係

- 胴の真円度、外圧を受ける胴の偏差及び鏡板の成形公差は、JIS B 8267 の規定に整合させ、外面からの測定を可能とした。ただし、外面からの測定は、内面からの測定が困難な場合に限定することとした。
- 特定設備に設ける検査穴は、ASME BPVC Section VIII Division 1 との整合を考慮し、現行の別添 7 のままとした。
- 耐圧試験の方法は、JIS B 8267 に整合させ、試験圧力まで昇圧した後、大気圧まで 降圧してから、目視等(目視以外も含む。)により、異常の有無を確認することと した。当該方法は、特定設備検査規則でも整合させることとした。

以上

引用規格の一覧及び対応案

引用規格	規格名	引用年度	引用年度	対応案
		別添 7	JIS B 8267	
JIS B 2220	鋼製管フランジ	1995	2012	2012 年版を引用する。
	(旧:鋼製溶接式管フランジ)			
JIS B 2238	鋼製管フランジ通則	1996	-	JIS B 2220 と統合された。
(廃止)				
JIS B 2240	銅合金製管フランジ	1996	2006	鋳造フランジの規格であるため削
	(旧:銅合金製管フランジ通則)			除する(第 6 条第 2 項の対応案参
				照。)。
JIS B 2241	アルミニウム合金製管フランジ	1986	2006	2006 年版を引用する。
	(旧:アルミニウム合金製管フラ			
	ンジの基準寸法)			
JIS B 2312	配管用鋼製突合せ溶接式管継手	1997	-	JIS B 8267 では引用されていない。
(別添7のみ)				2015 年版を適用する(第 6 条第 4
				項の対応案参照。)。
JIS B 2313	配管用鋼板製突合せ溶接式管継手	1997	-	JIS B 8267 では引用されていない。
(別添7のみ)				2015 年版を適用する(第 6 条第 4
				項の対応案参照。)。
JIS B 2316	配管用鋼製差込み溶接式管継手	1997	-	JIS B 8267 では引用されていない。
(別添7のみ)				2017 年版を適用する(第 6 条第 4
				項の対応案参照。)。
JIS B 2321	配管用アルミニウム及びアルミニ	1995	-	JIS B 8267 では引用されていない。
(別添7のみ)	ウム合金製溶接式管継手			2009 年版を適用する(第 6 条第 4
				項の対応案参照。)。
JIS B 8265	圧力容器の構造	2000	-	JIS B 8265 に替えて JIS B 8267 を
(別添7のみ)				引用する。
JIS B 8274	圧力容器の管板	1993	2008	2008 年版を引用する。
JIS B 8277	圧力容器の伸縮継手	1993	2008	2008 年版を引用する。
JIS B 8279	圧力容器のジャケット	1993	2003	最新版を適用する(第 6 条第 1 項
				第 14 号から第 16 号及び第 34 条の
				対応案参照。)。
JIS B 8285	圧力容器の溶接施工方法の確認試	1993	2010	2010 年版を引用する。
	験			
JIS G 0306	鍛鋼品の製造、試験及び検査の通	1988	1988	2009 年版を引用する。
	則		+2009	

引用規格	規格名	引用年度	引用年度	対応案
		別添 7	JIS B 8267	
JIS G 0564	金属材料-平面ひずみ破壊じん	1999	-	廃止されたため、削除する。
(廃止)	(靭)性試験方法			
JIS G 0565	鉄鋼材料の磁粉探傷試験方法及び	1992	-	廃止され、JIS Z 2320 に統合され
(廃止)	磁粉模様の分類			た。
JIS G 0801	圧力容器用鋼板の超音波探傷検査	1993	2008	2008 年版を引用する。
	方法			
JIS G 3101	一般構造用圧延鋼材	1995	-	JIS B 8267 に整合させ、削除する
(別添7のみ)				(第4条の対応案参照。)。
JIS G 3103	ボイラ及び圧力容器用炭素鋼及び	1987	2019	2019 年版を引用する。
	モリブデン鋼鋼板			
JIS G 3106	溶接構造用圧延鋼材	1999	2017	2022 年版を引用する。
JIS G 3114	溶接構造用耐候性熱間圧延鋼材	1998	2016	2022 年版を引用する。
JIS G 3115	圧力容器用鋼板	2000	2016	2022 年版を引用する。
JIS G 3116	高圧ガス容器用鋼板及び鋼帯	2000	2013	2020 年版を引用する。
JIS G 3118	中・常温圧力容器用炭素鋼鋼板	2000	2017	2020 年版を引用する。
JIS G 3119	ボイラ及び圧力容器用マンガンモ	1987	2019	2019 年版を引用する。
	リブデン鋼及びマンガンモリブデ			
	ンニッケル鋼鋼板			
JIS G 3120	圧力容器用調質型マンガンモリブ	1987	2018	2022 年版を引用する。
	デン鋼及びマンガンモリブデンニ			
	ッケル鋼鋼板			
JIS G 3126	低温圧力容器用炭素鋼鋼板	2000	2015	2021 年版を引用する。
JIS G 3127	低温圧力容器用ニッケル鋼鋼板	2000	2013	2021 年版を引用する。
JIS G 3201	炭素鋼鍛鋼品	1988	2008	2008 年版を引用する。
JIS G 3202	圧力容器用炭素鋼鍛鋼品	1988	2008	2008 年版を引用する。
JIS G 3203	高温圧力容器用合金鋼鍛鋼品	1988	2008	2008 年版を引用する。
JIS G 3204	圧力容器用調質型合金鋼鍛鋼品	1988	2008	2008 年版を引用する。
JIS G 3205	低温圧力容器用鍛鋼品	1988	2008	2008 年版を引用する。
JIS G 3206	高温圧力容器用高強度クロムモリ	1993	2008	2008 年版を引用する。
	ブデン鋼鍛鋼品			
JIS G 3214	圧力容器用ステンレス鋼鍛鋼品	1991	2009	2009 年版を引用する。
JIS G 3454	圧力配管用炭素鋼鋼管	1988	2017	2019 年版を引用する。
			+2019	
JIS G 3455	高圧配管用炭素鋼鋼管	1988	2016	2020 年版を引用する。
JIS G 3456	高温配管用炭素鋼鋼管	1988	2019	2019 年版を引用する。

引用規格	規格名	引用年度	引用年度	対応案
		別添 7	JIS B 8267	
JIS G 3457	配管用アーク溶接炭素鋼鋼管	1988	2016	2020 年版を引用する。
JIS G 3458	配管用合金鋼鋼管	1988	2018	2020 年版を引用する。
JIS G 3459	配管用ステンレス鋼鋼管	1997	2017	2021 年版を引用する。
JIS G 3460	低温配管用鋼管	1988	2018	2022 年版を引用する。
JIS G 3461	ボイラ・熱交換器用炭素鋼鋼管	1988	2019	2019 年版を引用する。
JIS G 3462	ボイラ・熱交換器用合金鋼鋼管	1988	2019	2019 年版を引用する。
JIS G 3463	ボイラ・熱交換器用ステンレス鋼	1994	2019	2019 年版を引用する。
	鋼管			
JIS G 3464	低温熱交換器用鋼管	1988	2018	2018 年版を引用する。
JIS G 3467	加熱炉用鋼管	1988	2013	2013 年版を引用する。
JIS G 3468	配管用溶接大径ステンレス鋼鋼管	1994	2017	2021 年版を引用する。
JIS G 3601	ステンレスクラッド鋼	1989	2012	2012 年版を引用する。
JIS G 3602	ニッケル及びニッケル合金クラッ	1992	2012	2012 年版を引用する。
	ド鋼			
JIS G 3603	チタンクラッド鋼	1992	2012	2012 年版を引用する。
JIS G 3604	銅及び銅合金クラッド鋼	1992	2012	2012 年版を引用する。
JIS G 4109	ボイラ及び圧力容器用クロムモリ	1987	2019	2019 年版を引用する。
	ブデン鋼鋼板			
JIS G 4110	高温圧力容器用高強度クロムモリ	1993	2015	2021 年版を引用する。
	ブデン鋼及びクロムモリブデンバ			
	ナジウム鋼鋼板			
	(旧:高温圧力容器用高強度クロ			
	ムモリブデン鋼鋼板)			
JIS G 4303	ステンレス鋼棒	1998	2012	2021 年版を引用する。
JIS G 4304	熱間圧延ステンレス鋼板及び鋼帯	1999	2015	2021 年版を引用する。
JIS G 4305	冷間圧延ステンレス鋼板及び鋼帯	1999	2015	2021 年版を引用する。
JIS G 4311	耐熱鋼棒及び線材	1991	2019	2019 年版を引用する。
	(旧:耐熱鋼棒)			
JIS G 4312	耐熱鋼板及び鋼帯	1991	2019	2019 年版を引用する。
	(旧:耐熱鋼板)			
JIS G 4901	耐食耐熱超合金棒	1999	1999	2008 年版を引用する。
			+2008	
JIS G 4902	耐食耐熱超合金, ニッケル及びニ	1991	2019	2019 年版を引用する。
	ッケル合金-板及び帯			
	(旧:耐食耐熱超合金板)			

引用規格	規格名	引用年度	引用年度	対応案
		別添 7	JIS B 8267	
JIS G 4903	配管用継目無ニッケルクロム鉄合	1991	2017	2017 年版を引用する。
	金管			
JIS G 4904	熱交換器用継目無ニッケルクロム	1991	2017	2017 年版を引用する。
	鉄合金管			
JIS G 5122	耐熱鋼及び耐熱合金鋳造品	1991	2003	2003 年版を適用する。
	(旧:耐熱鋼鋳鋼品)			
JIS H 3100	銅及び銅合金の板及び条	2000	2018	2017 年版を引用する。
JIS H 3250	銅及び銅合金の棒	2000	2015	2018 年版を引用する。
JIS H 3300	銅及び銅合金の継目無管	1997	2018	2018 年版を引用する。
JIS H 3320	銅及び銅合金の溶接管	1992	2006	2006 年版を引用する。
JIS H 4000	アルミニウム及びアルミニウム合	1999	2014	2022 年版を引用する。
	金の板及び条		+2017	
JIS H 4040	アルミニウム及びアルミニウム合	1999	2015	2015 年版を引用する。
	金の棒及び線			
JIS H 4080	アルミニウム及びアルミニウム合	1999	2015	2015 年版を引用する。
	金継目無管			
JIS H 4090	アルミニウム及びアルミニウム合	1990	-	廃止されたため、削除する。
	金溶接管			
JIS H 4100	アルミニウム及びアルミニウム合	1999	2015	2015 年版を引用する。
	金の押出形材			
JIS H 4140	アルミニウム及びアルミニウム合	1988	1988	現行の別添7のままとする。
	金鍛造品			
JIS H 4551	ニッケル及びニッケル合金板及び	2000	-	JIS G 4902 に統合された。
(廃止)	条			
JIS H 4552	ニッケル及びニッケル合金継目無	2000	-	廃止されたため、削除する。
(廃止)	管			
JIS H 4553	ニッケル及びニッケル合金棒	1999	1999	現行の別添7のままとする。
JIS H 4600	チタン及びチタン合金-板及び条	1993	2012	2012 年版を引用する。
	(旧:チタン板及び条)			
JIS H 4605	チタンパラジウム合金板及び条	1993	-	JIS H 4600 に統合された。
(廃止)	2). T 202). A A MI = 1. E	1001	0016	0040 600 7100 7
JIS H 4630	チタン及びチタン合金ー継目無管	1994	2012	2012 年版を引用する。
770 77 117 1	(旧:配管用チタン管)	105:	001-	
JIS H 4631	チタン及びチタン合金-熱交換器	1994	2018	2018 年版を引用する。
	用溶接管(旧:熱交換器用チタン			
	管)			

引用規格	規格名	引用年度	引用年度	対応案
		別添 7	JIS B 8267	
JIS H 4632	チタン及びチタン合金-熱交換器	-	2018	別添 7 では引用されていない。JIS
(JIS B 8267 のみ)	用継目無管			B 8267 に整合させ、引用する。
JIS H 4635	チタン及びチタン合金-溶接管	1994	2012	2012 年版を引用する。
	(旧:配管用チタンパラジウム合			
	金管)			
JIS H 4636	熱交換器用チタンパラジウム合金	1994	-	JIS H 4631 及び JIS H 4632 に統合
(廃止)	管			された。
JIS H 4650	チタン及びチタン合金-棒(旧:	2000	2016	2016 年版を引用する。
	チタン棒)			
JIS H 4655	チタンパラジウム合金棒	2000	-	JIS H 4655 に統合された。
(廃止)				
JIS H 4657	チタン及びチタン合金-鍛造品	-	2016	別添 7 では引用されていない。JIS
(JIS B 8267 のみ)				B 8267 に整合させ、引用する。
JIS Z 2201	金属材料引張試験片	1998	-	JIS Z 2241 に統合された。
(廃止)				
JIS Z 2202	金属材料衝擊試験片	1998	-	JIS Z 2242 に統合された。
(廃止)				
JIS Z 2241	金属材料引張試験方法	1998	2022	JIS B 8267 では引用されていない。
(別添7のみ)				2022 年版を引用する。
JIS Z 2242	金属材料のシャルピー衝撃試験方	1998	2018	2020 年版を引用する。
	法(旧:金属材料衝撃試験方法)		+2020	
JIS Z 2284	金属材料の液体ヘリウム中弾塑性	-	1998	別添 7 では引用されていない。JIS
(JIS B 8267 のみ)	破壊じん(靱)性 JIC 試験方法			B 8267 に整合させ、引用する。
JIS Z 2305	非破壊試験技術者の資格及び認証	-	2013	別添 7 では引用されていない。JIS
(JISB 8267 のみ)				B 8267 に整合させ、引用する。
JIS Z 2320-1	非破壊試験-磁粉探傷試験-第 1	-	2017	別添7の JIS G 0565 に替えて引用
(JIS B 8267 のみ)	部:一般通則			する。
JIS Z 2320-2	非破壊試験-磁粉探傷試験-第2	-	2017	別添7の JIS G 0565 に替えて引用
(JISB 8267 のみ)	部:検出媒体			する。
JIS Z 2320-3	非破壊試験-磁粉探傷試験-第3	-	2017	別添7の JIS G 0565 に替えて引用
(JIS B 8267 のみ)	部:装置			する。
JIS Z 2343-1	非破壊試験-浸透探傷試験-第 1	1992	2017	2017 年版を引用する。
	部:一般通則:浸透探傷試験方法			
	及び浸透指示			
	(旧:浸透探傷試験方法及び浸透			
	指示模様の分類)			

引用規格	規格名	引用年度	引用年度	対応案
		別添 7	JIS B 8267	
JIS Z 3060	鋼溶接部の超音波探傷試験方法	1994	2015	2015 年版を引用する。
JIS Z 3080	アルミニウムの突合せ溶接部の超	1995	1995	現行の別添7のままとする。
	音波斜角探傷試験方法			
JIS Z 3081	アルミニウム管溶接部の超音波斜	1994	1994	現行の別添7のままとする。
	角探傷試験方法			
JIS Z 3082	アルミニウムのT形溶接部の超音	1995	1995	現行の別添7のままとする。
	波探傷試験方法			
JIS Z 3104	鋼溶接継手の放射線透過試験方法	1995	1995	現行の別添7のままとする。
JIS Z 3105	アルミニウム溶接継手の放射線透	1993	2003	2003 年版を引用する。
	過試験方法			
JIS Z 3106	ステンレス鋼溶接継手の放射線透	2001	2001	現行の別添7のままとする。
	過試験方法			
JIS Z 3107	チタン溶接部の放射線透過試験方	1993	1993	2008 年版を引用する。
	法		+2008	
JIS Z 3111	溶着金属の引張及び衝撃試験方法	1986	-	JIS B 8267 では引用されていない。
(別添7のみ)				溶接材料の規格で引用されている
				最新版とする。
JIS Z 3121	突合せ溶接継手の引張試験方法	1993	2013	2013 年版を引用する。
JIS Z 3122	突合せ溶接継手の曲げ試験方法	1990	2013	2013 年版を引用する。
JIS Z 3221	ステンレス鋼被覆アーク溶接棒	2000	2013	2013 年版を引用する。
JIS Z 3224	ニッケル及びニッケル合金被覆ア	1999	2010	2010 年版を引用する。
	ーク溶接棒			
JIS Z 3225	9%ニッケル鋼用被覆アーク溶接	1999	1999	2007 年版を引用する。
	棒		+2007	
JIS Z 3227	極低温用オーステナイト系ステン	-	2013	別添7では引用されていない。JIS
(JIS B 8267 のみ)	レス鋼被覆アーク溶接棒			B 8267 に整合させ、引用する(衝
				撃試験関係の対応案参照。)。
JIS Z 3321	溶接用ステンレス鋼溶加棒,ソリ	1999	2013	2021 年版を引用する。
	ッドワイヤ及び鋼帯			
	(旧:溶接用ステンレス鋼溶加棒			
	及びソリッドワイヤ)			
JIS Z 3322	ステンレス鋼帯状電極肉盛溶接金	-	2010	別添 7 では引用されていない。JIS
(JISB 8267 のみ)	属の品質区分及び試験方法			B 8267 に整合させ、引用する(衝
				撃試験関係の対応案参照。)。
			1	

引用規格	規格名	引用年度	引用年度	対応案
		別添 7	JIS B 8267	
JIS Z 3323	ステンレス鋼アーク溶接フラック	1999	2007	2021 年版を引用する。
	ス入りワイヤ及び溶加棒			
	(旧:ステンレス鋼アーク溶接フ			
	ラックス入りワイヤ)			
JIS Z 3324	サブマージアーク溶接によるステ	1999	-	JIS B 8267 では引用されていない。
(別添7のみ)	ンレス鋼溶着金属の品質区分及び			2010 年版を引用する。
	試験方法			
	(旧:ステンレス鋼サブマージア			
	ーク溶接ソリッドワイヤ及びフラ			
	ックス)			
JIS Z 3327	極低温用オーステナイト系ステン	-	2013	別添 7 では引用されていない。JIS
(JIS B 8267 のみ)	レス鋼ティグ溶加棒及びソリッド			B 8267 に整合させ、引用する(衝
	ワイヤ			撃試験関係の対応案参照。)。
JIS Z 3332	9 %ニッケル鋼用ティグ溶加棒及	1999	1999	2007 年版を引用する。
	びソリッドワイヤ		+2007	
JIS Z 3333	9%ニッケル鋼用サブマージアー	1999	1999	2007 年版を引用する。
	ク溶接ソリッドワイヤ及びフラッ		+2007	
	クス			
JIS Z 3334	ニッケル及びニッケル合金溶加棒	1999	-	JIS B 8267 では引用されていない。
(別添7のみ)	及びソリッドワイヤ			2017 年版を引用する。
JIS Z 3801	手溶接技術検定における試験方法	1997	2018	2018 年版を引用する。
	及び判定基準			
JIS Z 3805	チタン溶接技術検定における試験	1997	-	JIS B 8267 では引用されていない。
(別添7のみ)	方法及び判定基準			2022 年版を引用する。
JIS Z 3811	アルミニウム溶接技術検定におけ	2000	-	JIS B 8267 では引用されていない。
(別添7のみ)	る試験方法及び判定基準			2022 年版を引用する。
JIS Z 3821	ステンレス鋼溶接技術検定におけ	1989	-	JIS B 8267 では引用されていない。
(別添7のみ)	る試験方法及び判定基準			2018 年版を引用する。
JIS Z 3841	半自動溶接技術検定における試験	1997	-	JIS B 8267 では引用されていない。
(別添7のみ)	方法及び判定基準			2018 年版を引用する。
ASME BPVC	Section II Part D	2001	2017	2021 年版を引用する。
		+2002		
		Addenda		
ASME BPVC	Section VIII Division1	2001	2017	2021 年版を引用する。
		+2002		
		Addenda		

引用規格	規格名	引用年度	引用年度	対応案
		別添 7	JIS B 8267	
ASME B16.5	Pipe Flanges and Flanged Fittings	1996	2013	2020 年版を引用する。
ASME B16.9	Factory-Made Wrought Butt	1993	2012	2018 年版を引用する。
	welding Fittings			
ASME B16.11	Forged Fittings, Socket-Welding	1991	2016	2021 年版を引用する。
	and Threaded			
ASME B16.15	Cast Copper Alloy Threaded	1985	2013	鋳造管継手の規格である。
	Fittings			鋳造材は使用可能な材料ではない
				ため、削除する。
ASME B16.24	Cast Copper Alloy Pipe Flanges,	1991	2016	鋳造フランジの規格である。
	Flanged Fittings, and Valves:			鋳造材は使用可能な材料ではない
	Classes 150, 300, 600, 900, 1500,			ため、削除する。
	and 2500			
ASME B16.28	Wrought Steel Butt welding Short	1986	-	ASME B16.9 に統合された。
(廃止)	Radius Elbows And Returns			
ASME B16.47	Large Diameter Steel Flanges	1996	2017	2020 年版を引用する。
ASTM E208	Standard Test Method for	1987	2006	2020 年版を引用する。
	Conducting Drop-Weight Test to			
	determine Nil-Ductility Transition			
	Temperature of Ferritic Steels			
ASTM E1820	Standard Test Method for	2001	2011	2020 年版を引用する。
	Measurement of Fracture			
	Toughness			