令和4年度原子力の利用状況等に関する調査事業 (海外諸国の処理水の取扱い状況及び多核種除去 設備等処理水の処分技術等に関する調査等)

報告書

令和5年3月

目 次

1.	事業名		6
2.	事業目的	ý	6
3.	事業内容	ş	7
5	8.1 海夕	ト諸国の処理水の取扱い状況に関する調査	7
	3.1.1	原子力施設保有国等における処理水の海洋放出時の安全性を確保に係る調	査
			7
	3.1.2	ALPS 処理水の分析のための国際輸送に係る調査	7
9	3.2 多核	核種除去設備等処理水の処分技術等に関する調査研究	7
	3.2.1	トリチウム等 ALPS 処理水の取扱いに関する基礎的情報の提供	7
	3.2.2	多核種除去設備等処理水に関連するデータの収集・分析支援	7
	3.2.3	トリチウム分離技術の調査	7
4.	海外諸国	目の処理水の取扱い状況に関する調査	9
4	4.1 原子	子力施設保有国等における処理水の海洋放出時の安全性を確保に係る調査	9
	4.1.1	国際機関	9
	4.1.2	中国	13
	4.1.3	フランス	25
	4.1.4	韓国	33
	4.1.5	ロシア	42
	4.1.6	米国	54
	4.1.7	台湾	66
	4.1.8	英国	72
4	4.2 AL	PS 処理水の分析のための国際輸送に係る調査	76
	4.2.1	国際機関	76
	4.2.2	フランス	81
	4.2.3	韓国	86
	4.2.4	米国	88
	4.2.5	オーストラリア	92
	4.2.6	スイス	95
	4.2.7	オーストリア	96

5.	多核種院	余去設備等処理水の処分技術等に関する調査研究	97
	5.1 トリ	リチウム等 ALPS 処理水の取扱いに関する基礎的情報の提供	97
	5.2 多核	亥種除去設備等処理水に関連するデータの収集・分析支援	97
	5.2.1	主要国及び日本の原発立地地域におけるトリチウムの大気・海洋・河川	降雨
		の濃度	98
	5.2.2	主要国のトリチウム(大気・海洋)の排出量	103
	5.3 トリ	リチウム分離技術の調査	116
	5.3.1	論文等による情報収集	116
	5.3.2	関係者へのヒアリング	116

- 添付1 UNSCEAR Webinar_職業被ばく
- 添付 2 IAEA MEREIA プログラム第二回テクニカルミーティング参加報告
- 添付 3 勉強会 1_線量評価等・基礎
- 添付 4 勉強会 2_各国の安全基準・環境影響評価

図目次

义	4.1-1	ICRP 勧告と国内法制度の関係9							
図	4.1-2	被ばく状況に合わせた線量の基準10							
図	4.1-3	IAEA の安全基準文書体系11							
図	4.1-4	液体の被ばく経路16							
図	4.1-5	プロセスフロー図21							
図	4.1-6	Flamanville 原子力発電所の所在地と外観							
図	4.1-7	リスク評価フロー30							
図	4.1-8	規制の手続き							
図	4.1-9	規制活動							
図	4.1-10	情報収集・管理の手続き36							
図	4.1-11	月城原発周辺における KINS の環境放射線・放射能の調査地点の例 37							
図	4.1-12	月城原発敷地内部(上)・外部(下)における KHNP の環境放射線・放射能の							
	調査均	也点の例							
図	4.1-13	Diablo Canyon 発電所の所在地と外観54							
図	4.1-14	Three Mile Island 発電所の外観							
図	4.1-15	年間放出制限値設定の手順74							
図	4.2-1	放射性物質の輸送に関する国際機関の基準及び日本の法体系76							
図	4.2-2	輸送物区分							
図	5.2-1	ドイツにおける排水中のトリチウム量109							
図	5.2-2	チェルナヴォダ原子力発電所 1 号機(気体)111							
図	5.2-3	チェルナヴォダ原子力発電所 2 号機(気体)112							
図	5.2-4	チェルナヴォダ原子力発電所 1 号機(液体)112							
図	5.2-5	チェルナヴォダ原子力発電所 2 号機(液体)113							

表目次

表	4.1-1	原子力発電所からの放出放射性物質の年間制限値(気体)14
表	4.1-2	原子力発電所からの放出放射性物質の年間制限値(液体)14
表	4.1-3	液体被ばく経路の線量計算パラメータ17
表	4.1-4	トリチウムに関する内部被ばくの線量換算係数17
表	4.1-5	液体被ばく経路が各地域の個人(成人)に与える実効線量18
表	4.1-6	プロジェクトの主な建設内容一覧20
表	4.1-7	工程システムの主な機能および設備の構成状況 · · · · · 21
表	4.1-8	Flamanville 発電所の通常運転中に発生する液体放出物量・・・・・・26
表	4.1-9	Flamanville 原子力発電所の放出基準 · · · · · · 27
表	4.1-10	Flamanville 原子力発電所の放水水域 ······27
表	4.1-11	1 日において放出できる各物質の濃度(その 1)28
表	4.1-12	1日において放出できる各物質の濃度(その 2)29
表	4.1-13	水処理施設からの排水等の基準29
表	4.1-14	EDF によるモニタリング結果の公表例 ······32
表	4.1-15	通常運転時にバルト原子力発電所からの液体放射性廃棄物の年間排出量45
表	4.1-16	通常運転時にバルト原子力発電所からの気体放射性廃棄物の年間放出量46
表	4.1-17	バルト原子力発電所 2 基からの放射性核種の排出量 (Bq/s)、排出地点 (排水溝
		コ)から $500 \mathrm{m}$ 離れた地点での水中の放射性核種濃度の予測値($\mathrm{Bq/I}$)および堆積
	物のう	予測値(Bq/kg) ·······47
表	4.1-18	住民の年齢層別主要食品消費量(kg(l)/年) · · · · · · · · 48
表	4.1-19	住民の総外部被ばく量 H _{ext} (μSv/年) ·················48
表	4.1-20	水、魚、甲殻類の摂取による総内部被ばく量 H _{int} (μSv/年) ·············48
表	4.1-21	被ばく全種類の合計線量(μSv/年)49
表	4.1-22	緊急対応区域の設定基準(NRB-99/2009) · · · · · · · · 50
表	4.1-23	放射線事故初期における判断のための放射性物質基準50
表	4.1-24	再定住および汚染された食品の摂取制限に関する判断のための放射性物質基準
	•••••	51
表	4.1-25	事故後1年間の汚染された食品の摂取制限に関する判断基準51
表		線量測定値の算出において考慮すべき被ばく経路(原子力発電所における放射
		女の初期段階) 51
		シビアアクシデント状態における環境への緊急放出量52
表	4.1-28	Diablo Canyon 発電所 ······54
表	4.1-29	トリチウムに関する濃度基準

表	4.1-30	Diablo Canyon 発電所の 2021 年報告書における液体放射性物質放出量とそれ
	による	る被ばく線量計算結果(直近3年分)
表	4.1-31	Three Mile Island 発電所······59
表	4.1-32	1979年(事故直後)と 1992年(蒸発処分完了前)の AGW の放射能濃度 · 60
表	4.1-33	NRC の評価結果 · · · · · · 64
表	4.1-34	個人の最大全身線量と器官線量71
表	4.2-1	郵政公社で郵送可能な器具、物品及び限定数量の放射性物質の放射能制限値・90
表	5.1-1	トリチウム等 ALPS 処理水の取扱いに関する基礎的情報に関する 論文等の検索
	件数	97
表	5.2-1	2021年英国における海域・淡水域・周辺環境のトリチウム濃度(最大値) …99
表	5.2-2	2021 年韓国の原子力発電所周辺におけるトリチウムの 大気・海洋・河川・降雨
	の濃厚	きの平均値(カッコ内は範囲)100
表	5.2-3	大気浮遊じん・大気の分析結果101
表	5.2-4	降下物の分析結果・・・・・・・102
表	5.2-5	英国の再処理施設及び原子力発電施設における 2021 年のトリチウム放出実績
	•••••	
表	5.2-6	仏国の再処理施設及び原子力発電施設における 直近のトリチウム放出実績
	(202)	21 年)
表	5.2-7	韓国の原子力発電施設における 2022 年のトリチウム放出実績106
表	5.2-8	米国の原子力発電施設における直近のトリチウム放出実績(2021 年) $\cdots \cdot \cdot 107$
表	5.2-9	スペインの原子力発電施設における直近のトリチウム等放出実績(2021 年)
	•••••	
表	5.2-10	スロベニアのクルスコ原子力発電所の液体排出におけるトリチウム量111
表	5.2-11	スロベニアのクルスコ原子力発電所の気体排出におけるトリチウム量111
表	5.2-12	台湾の原子力発電所における直近(2021年)のトリチウム放出実績 113
表	5.2-13	中国の原子力発電所における直近のトリチウム放出実績114
表	5.2-14	カナダの原子力発電施設における直近のトリチウム放出実績114
表	5.2-15	我が国の原子力施設における直近のトリチウム放出実績(令和 3 年度下期)
	•••••	
表	5.3-1	トリチウム分離技術に関する論文等の検索件数116
表	5.3-2	「トリチウム分離技術検証試験 (廃炉・汚染水対策事業)」採択事業者と トリチ
	ウムタ	·)離技術 · · · · · · · · · · · · · · · · · · ·
表	5.3-3	トリチウム分離技術に関する事業者の状況

1. 事業名

令和4年度原子力の利用状況等に関する調査事業(海外諸国の処理水の取扱い状況及び 多核種除去設備等処理水の処分技術等に関する調査等)

2. 事業目的

東京電力ホールディングス株式会社の福島第一原子力発電所(以下、「福島第一原発」という。)では、多核種除去設備等によって日々発生する汚染水を多核種除去設備(ALPS)等の装置で浄化処理し、ALPS 処理水*1等として、発電所敷地内のタンクに貯蔵している。

ALPS 処理水の取扱については、原子力災害対策本部の汚染水処理対策委員会の下に設置したトリチウム水タスクフォースや「多核種除去設備等処理水の取扱いに関する小委員会」など専門家による議論等を踏まえ、令和3年4月13日に、「東京電力ホールディングス株式会社福島第一原子力発電所における多核種除去設備等処理水の処分に関する基本方針*2」(以下、基本方針)が公表された。基本方針において、日本政府はALPS 処理水の放出の方法として海洋放出を選択することが示されるとともに、海洋放出に当たっては、安全に係る法令等の遵守に加え、風評影響を最大限抑制するための放出方法(客観性・透明性の担保されたモニタリングを含む。)を徹底しなければならないことなどが示されている。*3また、トリチウムの分離技術については、国内外の原子力関連施設において実用化されているものはあるが、濃度や量の観点でそのまま ALPS 処理水に適用することはできない。そのため、ALPS 処理水は希釈して放出していくこととするが、引き続き、新たな技術動向を注視し、現実的に実用可能な技術があれば、積極的に取り入れていくこととしている。

このため、本事業では、諸外国における海洋放出の取組(特に安全性を確認するための取組)等について情報収集・分析するとともに、分離技術等トリチウムに関する国内外の最新の研究状況を調査・分析・資料作成することを目的とする。

^{*1} 多核種除去設備等により、トリチウム以外の放射性物質について安全に関する規制基準値を確実に下回るまで浄化した水。

^{*2} https://www.meti.go.jp/earthquake/nuclear/hairo_osensui/alps_policy.pdf

^{*3} https://www.meti.go.jp/earthquake/nuclear/hairo_osensui/alps.html

3. 事業内容

- 3.1 海外諸国の処理水の取扱い状況に関する調査
- 3.1.1 原子力施設保有国等における処理水の海洋放出時の安全性を確保に係る調査 既存及び新規の原子力施設や当該施設を保有する国等(主要な保有国である中国、 フランス、韓国、ロシア、米国は必ず含めること)における処理水の海洋放出時に安 全性を評価するための取組等や国際機関等が示すガイダンス等に関して、以下の事項 を調査する。
 - ① 実施主体
 - ② 根拠法令
 - ③ 評価手法
 - ④ 評価結果の公表又は国際機関等への提供の有無
 - ⑤ 評価結果を踏まえて、追加的な措置を講じた例の有無
- 3.1.2 ALPS 処理水の分析のための国際輸送に係る調査

ALPS 処理水の国外分析機関での分析に当たって、輸送に係る国際基準及び各国・地域(欧米・アジアから4ヶ国程度とし、資源エネルギー庁電力・ガス事業部原子力発電所事故収束対応室(担当課)と相談の上決定する)での規制等を調査する。なお、輸送形態は、航空輸送、海上輸送、陸上輸送とする。

- 3.2 多核種除去設備等処理水の処分技術等に関する調査研究
- 3.2.1 トリチウム等 ALPS 処理水の取扱いに関する基礎的情報の提供

ALPS 処理水の取扱いに関して、トリチウムを中心とする放射性物質の取扱いに関する国内外の科学的・社会的な基礎的情報、国内外のトリチウムを始めとした健康影響に関する情報等について、最新の情報を調査する。

3.2.2 多核種除去設備等処理水に関連するデータの収集・分析支援

以下のデータに加え、担当課の担当者の指示に基づき、国内外の ALPS 処理水等に 関連するデータの収集・分析作業を行い、分析結果を納入する。その際、バックデー タも併せて納入を行い、作成方法の共有も併せて行う。

- ・ 主要国及び日本の原発立地地域におけるトリチウムの大気・海洋・河川・降雨の 濃度
- ・ 主要国のトリチウム (大気・海洋) の排出量
- ・ トリチウムを始めとした放射性物質による健康影響に関する最新の情報

3.2.3 トリチウム分離技術の調査

国内外のトリチウム分離技術について、最新動向を文献や関係者へのヒアリング等

により調査を行う。特に、国外の原子力関連施設で実用化されている分離技術について、最新の研究状況について調査をし、福島第一原発等への応用可能性を調査する。

- 4. 海外諸国の処理水の取扱い状況に関する調査
 - 4.1 原子力施設保有国等における処理水の海洋放出時の安全性を確保に係る調査

4.1.1 国際機関

国際的に放射線防護に係る様々な組織が存在する。原子放射線の影響に関する国連科学委員会(UNSCEAR)は、電離放射線による被ばくの程度と影響を評価・報告するために国連によって設置された委員会で、幅広い研究結果を包括的に評価し、国際的な科学コンセンサスを政治的に中立の立場からまとめ、定期的に報告書の形で見解を発表している。国際放射線防護委員会(ICRP)は、専門家の立場から放射線防護に関する勧告を行う国際的な学術組織(いわゆる「国際機関」ではない)で、

UNSCEAR の報告等を参考にしながら、専門家の立場から放射線防護の枠組みに関する勧告を行っている。国際原子力機関(IAEA)は、国連の機関の一つで、原子力の平和利用の促進と軍事利用の防止を目的とする国際機関であり、ICRPの勧告等を踏まえて基本安全基準を策定している。ICRPによる放射線防護に関する勧告を基に、IAEAがBSS(図 4.1-1 参照)を作成する。各国はその内容を参考にして、国内法令を整備している。

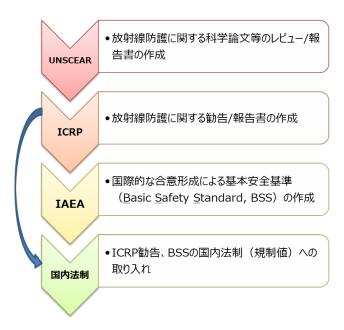


図 4.1-1 ICRP 勧告と国内法制度の関係

我が国は、ILO(国際労働機関)の「電離放射線からの労働者の保護に関する条約 (第115号)に批准しており、ICRP 勧告の内容を基に防護基準が策定されている。

ILO「電離放射線からの労働者の保護に関する条約 第 115 条約第 3 条」

第1項 労働者の健康および安全に関して電離放射線から労働者を効果的に保護することを確保するため、その時に利用しうる知識に照らして、あらゆる適当な手

段をとる。

- 第2項 このため、必要な規則および措置を採用し、かつ、効果的な保護にとつて 不可欠な資料を利用に供する。
- 第3項 放射線防護条約第3条第2項を実施するために、すべての加盟国は、国際放射線防護委員会が随時行う勧告および他の管轄機関が採用する基準を十分に 考慮する必要がある。
- 第4項 放射線防護条約第6条,第7条,および第8条で 言及されるレベルは,国際放射線防護委員会が随時推奨する関連する値を十分に考慮して修正する必要がある。さらに,体内に取り込まれる可能性のある空気や水中の放射性物質の最大許容濃度は,これらのレベルに基づいて設定する必要がある。

ICRP の放射線防護に関する基本的な勧告としては、2007年に発行された ICRP Publ.103「国際放射線防護委員会の 2007年勧告」がある。ICRP 2007年勧告では、3つの被ばく状況(計画被ばく状況、緊急時被ばく状況、現存被ばく状況)を定義しており、被ばく状況に合わせた線量の基準が示されている(図 4.1-2)。

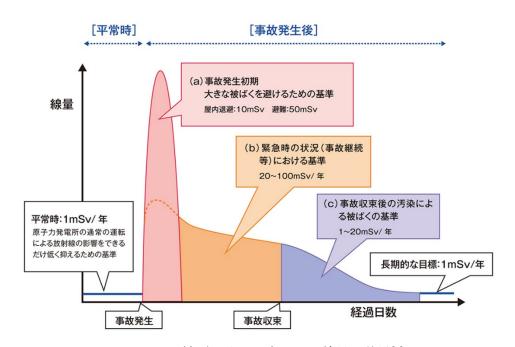


図 4.1-2 被ばく状況に合わせた線量の基準[1]

IAEA の安全基準文書は、基本安全原則(SF: Safety Fundamentals)を礎とし、要件(Shall;しなければならない)にあたる一般安全要件(GSR: General Safety Requirements、国際基本安全基準(BSS: International Basic Safety Standards))と個別安全要件(SSR: Specific Safety Requirements)、指針(Should;すべきであ

る)にあたる一般安全指針(GSG: General Safety Guides)と個別安全指針(SSG: Specific Safety Guides)に分類される。(図 4.1-3)

図 4.1-3 IAEAの安全基準文書体系

IAEA の人の線量評価に関する勧告・安全基準に関する文書として、以下があげられる。

IAEA 安全基準シリーズ GSR Part 3「放射線防護と放射線源の安全:国際基本安全基準」

放射線防護と放射線源の安全に係る国際基本安全基準で、欧州委員会

(EC/Euratom)、FAO、ILO、OECD/NEA、PAHO、UNEP、WHOの7つの国際機関が共同で発行している。本書は、UNSCEARの最新の知見およびICRPの最新の勧告を考慮し、大幅に改訂・更新されている。本書では、電離放射線の有害な影響から人々や環境を保護するための要件、および放射線源の安全性について詳しく説明している。放射線被ばくのあらゆる状況が考慮されている。

計画被ばく状況下における線量限度として、下記が提示されている。

- ・ 実効線量は1年間で 1 mSv
- ・ 特殊な状況下で、連続する 5 年間の平均線量が 1 年間で 1 mSv を超えない限り、いずれかの 1 年間でより高い実効線量が適用される
- ・ 眼の水晶体の等価線量は1年間で 15 mSv
- ・ 皮膚の等価線量は1年間で 50 mSv

IAEA 安全基準シリーズ GSG-9「環境への放射性物質の放出に対する規制管理」 この安全ガイドは、政府、規制機関、認可申請者および運営組織が、施設や活動の 通常運転による排出物から生じる公衆の放射線被ばくを管理し、保護と安全を最適化するための構造的なアプローチを支援することを目的としている。具体的には、新規および変更された施設や活動からの放出物の認可のプロセス、および確立された認可のレビューについて述べている。このガイダンスは、核施設から産業、医療、研究における放射性同位元素の利用まで、さまざまなタイプの施設に適用される。また、核燃料サイクルの一部であるウランやトリウムを抽出するための鉱石の採掘や加工、非原子力産業における自然発生的な放射性物質の排出に起因する、通常運転時の環境への制御可能な放出も対象としている。

単一の線源に対して設定される線量拘束値は、「年間の実効線量で表現されるべきである。現実的には、線量拘束値を年間 0.1~1mSv の範囲で選択する必要がある。」とされている。

通常運転中で公衆への線量が非常に低い場合は免除の概念が適用可能であることや BAT (best available techniques) の概念が一部の国等で適用されている旨が記載されている。

規制機関及び許可申請者が排出限度を設定するためのプロセスが示されている。 通常運転時の公衆に対する放射線環境影響評価では、施設の運転または活動に起因 する放出物による公衆の線量を以下の手順で推定するとしている。

- 1. ソースタームの選択
- 2. 環境中の直接照射、拡散、移動のモデリング
- 3. 被ばく経路の特定
- 4. 通常運転時の代表的個人の特定
- 5. 代表的個人の被ばく線量の評価
- 6. 推定された線量およびリスクと基準との比較

4.1.2 中国

中国における処理水の海洋放出時の安全性評価について、陽江原子力発電所を対象に調査を実施した。また、秦山第三原子力発電所におけるトリチウム処理の追加措置を調査した。

(1) 陽江原子力発電所における処理水の海洋放出時の安全性評価[2]

1) 基本情報

陽江原子力発電所は、100万kW級の加圧水型軽水炉6基を建設しており、1号機は2014年3月に正式に商業運転を開始した。

陽江原子力発電所 3、4 号機は、嶺澳II 期からさらに改良した第 2 世代改良型 CPR1000+技術案を採用した。嶺澳原子力発電所 3、4 号機をベースに、福島原子力発電所事故のフィードバックに基づき、陽江原子力発電所 3、4 号機を体系的に見直し、合理的で実現可能な改善策を講じて、重大事故の予防・対応能力を高め、より安全性と信頼性の高い技術的解決策を実現した。具体的な改善策のうち、廃棄物処理と環境モニタリングに関しては以下のような項目が挙げられている。

- ・ 廃液処理システムはイオン交換+膜技術を採用した。固体廃棄物処理(TES) システムは高モノリシック容器プロセスにより湿式固体廃棄物を処理し、それ に対応するインターフェースも調整した
- ・ 廃棄物補助建屋 (QS) /固体廃棄物中間保存建屋 (QT) は原子炉 6 基の共通設計に基づき建設され、QS 建屋と設備を新設した。QT には 400L 金属ドラムとHIC 廃棄物ドラムが使われている
- ・ 環境実験室の緊急モニタリングバックアップ能力の向上など、環境モニタリング施設の様々な改善を行った

陽江原子力発電所で発生した放射性廃液は、タンク式放出が行われる。貯蔵タンクに貯蔵された放射性廃液は、放出規制に適合するように処理・モニタリングされ、発電所の循環冷却水と混合されて、最終的に排水管から海へ放出される。

2) 実施主体

陽江原子力発電所の環境影響評価報告書は、陽江核電有限公司により公表されている。

3) 根拠法令

「原子力発電所の環境放射線防護規定」(GB6249-2011)

原子力発電所運用期間中における線量拘束値と排出制限値については、「原子力発電所の環境放射線防護規定」(GB6249-2011)を参考にしている。本規定において、具体的には以下のような項目が記載されている。

6.1 すべてのサイトのすべての原子炉から環境中に放出された放射性物質による、

公衆のあらゆる個人に対する実効線量は、線量拘束値である年間 0.25mSv 未満でなければならない。

原子力発電事業者は、審査管理部門が承認した線量拘束値に基づいて、大気中および液体放射性排出物について、それぞれ個別の線量管理目標値を設定するべきである。

6.2 原子力発電所は、原子炉ごとに放射性放出物の年間放出量を管理すべきであり、 熱出力 3000MW の原子炉に対する制限値は以下のとおりである。

表 4.1-1 原子力発電所からの放出放射性物質の年間制限値(気体)

(単位:Bq)

	· · · · · · · · · · · · · · · · · · ·					
	軽水炉	重水炉				
希ガス	6×10 ¹⁴					
I	2×10 ¹⁰					
粒子(半減期≥8d)	5×10 ¹⁰					
C-14	7×10 ¹¹ 1.6×10 ¹²					
トリチウム	1.5×10^{13} 4.5×10^{14}					

表 4.1-2 原子力発電所からの放出放射性物質の年間制限値(液体)

(単位:Bq)

(Bq)	軽水炉	重水炉
トリチウム	7.5×10 ¹³	3.5×10^{14}
C-14	1.5×10 ¹¹	2×10 ¹¹
その他核種	5.0×10 ¹⁰	(トリチウム除く)

- 6.3 熱出力が 3000MW 以上又は 3000MW 未満の原子炉については、6.2 節の規定に基づき、出力に応じて適切な調整を行う。
- 6.4 同一炉型の複数の原子炉を所有するサイトの場合、全ての原子炉の年間総排出量は、6.2 節で規定された値の 4 倍以内に管理するべきである。炉型が異なる複数の原子炉を所有するサイトの場合、全ユニットの年間総排出量限度値は、審査管理部門による承認が必要である。
- 6.5 原子力発電所からの放射性物質排出量の設計目標値は、上記 6.2 節、6.3 節及び 6.4 節で決定された年間排出限度値を超えないものとする。事業者は、原子力発電所サイトの環境特性及び放射性廃棄物処理プロセスの技術水準を考慮し、「合理的に達成可能な限り低い(ALARA)」原則に従って、定期的に審査管理部門に放射性排出物の排出量を申請または見直しをしなければならない(初回の燃料装填前に申請し、その後5年に1回見直しを行う)。申請された放射性排出物の排出量

は、放射性排出量の設計目標値を超えてはならず、審査管理部門の承認を経て実施されなければならない。

6.6 原子力発電所からの年間総排出量は、四半期及び月単位で管理され、各四半期については承認された年間総排出量の2分の1、各月については承認された年間総排出量の5分の1を超えないものとする。超過した場合は、速やかに原因を究明し、効果的な対策を講じるべきである。

6.7 原子力発電所からの液体放射性排出物は、タンク式排出を採用するものとし、液体放射性排出物の排出は、放射性濃度管理の対象とし、濃度管理値は、サイトの条件と運転経験からのフィードバックを考慮し、実施可能な最善の技術に従って最適化し、審査管理部門による承認を受けるべきである。

6.8 沿岸部サイトでは、タンク式放出口の放射性放出物中のトリチウム及び C-14 以外の核種濃度は 1000Bq/L を超えてはならない。内陸部サイトでは、タンク式放出口の放射性放出物中のトリチウム及び C-14 以外の核種濃度は 100Bq/L を超えてはならなく、また、放出口から 1km 下流の水中の全ベータ放射能は 1Bq/L、トリチウム濃度は 100Bq/L を超えてはならない。上記濃度を超える場合、事業者は放出前に審査管理部門の承認を得る必要がある。

「海水水質基準」(GB3097-1997)

原子力発電所運用期間中における海水中の原発関連放射性核種濃度の指標については、「海水水質基準」(GB3097-1997)を参考にしている。

「海水水質基準」(GB3097-1997) の要件により、陽江原子力発電所の運用期間中の放出に伴う受入水域の放射性核種濃度の制限値は以下の通りである。

• 60Co: 0.03Bq/L

• 90Sr: 4.0Bq/L

• 106Ru: 0.2Bq/L

• $^{134}\text{Cs}: 0.6\text{Bg/L}$

• $^{137}\mathrm{Cs}:0.7\mathrm{Bq/L}$

4) 評価手法

陽江原子力発電所の排水トンネルの一般的なレイアウトは「1 ユニット 1 トンネル」の形式である。3 号機と 4 号機は TER システムを共有し、液体放射性放出物は片方のトンネルから排出され、同時に原子炉が大型改修を行う際にもう片方のトンネルに放出物を放出するためのインターフェースを確保している。

陽江原子力発電所 3、4 号機からの液体放射性放出物の年間設計排出量、原子炉 2 基の廃液放出システム (TER) 年間放出時間 (約 150h)、排水トンネルの循環冷 却水の希釈流量 (62.77m³/s)、最大取水リターン (0.6155) を考慮すると、陽江原

子力発電所 3、4 号機の運転開始後、液体放射性放出物が環境(排水トンネル出口付近)に以下の核種を放出すると予想され、これは GB3097-1997 で規定されている海水水質の放射能濃度要件を満たし、受け入れ海域の海水水質への影響は限定的であることが明らかにされた。

 $\begin{array}{l} \bullet \ \, ^{60}{\rm Co} : 1.08 \times 10^{\text{-}2}{\rm Bq/L} \\ \bullet \ \, ^{90}{\rm Sr} : 1.33 \times 10^{\text{-}5}{\rm Bq/L} \\ \bullet \ \, ^{106}{\rm Ru} : 1.27 \times 10^{\text{-}5}{\rm Bq/L} \\ \bullet \ \, ^{134}{\rm Cs} : 3.30 \times 10^{\text{-}1}{\rm Bq/L} \\ \bullet \ \, ^{137}{\rm Cs} : 3.09 \times 10^{\text{-}1}{\rm Bg/L} \\ \end{array}$

また、陽江原子力発電所の運転中、放射性放出物は気体および液体の被ばく経路 を通じて公衆に放射線被ばくをもたらすことが予想されている。そのうち液体放 射性放出物がサイトの評価区域内の公衆にもたらす放射線影響は、以下の被ばく 経路が考慮される:

- ・ 海上活動外部被ばく
- ・ 海水浸水外部被ばく
- ・ 沿岸沈着物部被ばく
- ・ 海産品摂取内部被ばく

液体放射性放出物が公衆に放射線被ばくをもたらす被ばく経路については図4.1-4に示した。

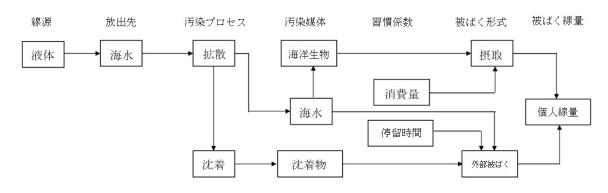


図 4.1-4 液体の被ばく経路

液体放射性放出物が公衆にもたらす被ばく線量の計算に使われる、浮遊物質の 有効沈着密度、海水中浮遊物質の濃度、沿岸沈着物中の放射性累積時間のデータは 表 4.1-3 に示した。

表 4.1-3 液体被ばく経路の線量計算パラメータ

パラメータ	単位	数值
浮遊物質の有効沈着密度	kg/m³	60
海水中浮遊物質の濃度	kg/m³	0.01
沿岸沈着物中の放射性累積時間	h	8760

本環境影響報告書では、液体放射性放出物の中にある放射性核種に関する地表面沈着・浸水による外部被ばくおよび吸入・食物摂取による内部被ばくに対する線量換算係数をまとめている。そのうち吸入・食物摂取による内部被ばくの線量換算係数は「電離放射線防護および放射線源の安全に関する基本基準」(GB18871-2002)を引用し、地表面沈着による外部被ばくの線量換算係数は IAEA Safety Reports Series No.19 を引用し、浸水による外部被ばくの線量換算係数は美国联邦导则12 号报告を引用した。

具体的に、トリチウムに関しては表 4.1-4 の通り引用した。

表 4.1-4 トリチウムに関する内部被ばくの線量換算係数

核種	食物摂取による内部被ばく(Sv/Bq)					
	小児	青少年	成人			
H-3	3.10E-11	2.30E-11	1.80E-11			

5) 評価結果の公表又は国際機関等への提供の有無

陽江核電有限公司は、陽江原子力発電所の1~4号機が正常に運転している状況下で、液体放射性物質が各地域の個人(成人)に与える実効線量を「陽江原子力発電所3、4号機環境影響報告書(運転段階)」にて、表4.1-5に示すようにまとめて公表した。

表 4.1-5 液体被ばく経路が各地域の個人(成人)に与える実効線量 (単位: Sv/年)

距離(km) 方位	0~1	1~2	2~3	3~5	5~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80
N			:8—-12	3.77E-07	4.84E-09	3.28E-08	8.76E-08	1.16E-07	2.26E-07	2.26E-07	3.11E-08	3.48E-09
NNE	; .	() (:	2 1	3.77E-07	4.84E-09	3.26E-08	3.24E-08	2.26E-07	8.78E-08	8.64E-08	1.69E-07	1.14E-07
NE		, n-	;: - ;-	3.77E-07		4.78E-09	3.26E-08	1.43E-07	1.16E-07	1.42E-07	1.14E-07	5.87E-08
ENE			- 100	u s di e	4.79E-09	1.15E-07	1.16E-07	1.71E-07	1.98E-07	8.68E-08	5.92E-08	1.97E-07
E		1-1	· · · · · · · · · · · · · · · · · · ·		4.79E-09	1.15E-07	8.76E-08	2.26E-07	1.43E-07	2.53E-07	2.53E-07	; i—;
ESE	1-1	1-1	7 — L	7,-7	9-9	j.— i	2.26E-07	2.26E-07	-	3.83E-09	-	1-7
SE		ş—ş	> <u>-</u> ,-				_		1	Y		·
SSE		1			_		_	1-1	_	/ 7	-	7
S	-	2-2			· · · · · · · · · · · · · · · · · · ·	<u></u>		_			_	
SSW	-	-				<u> </u>	<u></u>	_	_	2	_	_
SW	, - -	, - ,		1-2	- 1 1 .		, -	, - , -	1-1	<i>j-</i>	, ,—,	1,777-34
WSW		<u></u>	·			_	7.32E-09	9.02E-08	9.02E-08	· · · · · · · · · · · · · · · · · · ·	3.32E-09	1.14E-07
W	:	4.12E-07	,:: <u>'</u>	27 — 2	1-1	ş.—.	_	7.32E-09	9.02E-08	5.89E-08	1.42E-07	3.59E-09
WNW					1-	4.78E-09	1.16E-07	1.18E-07	2.56E-07	3.26E-08	2.25E-07	1.69E-07
NW		1 - 1	3.77E-07	3.77E-07	4.37E-09	2.54E-07	6.04E-08	2.26E-07	8.78E-08	2.25E-07	1.14E-07	8.83E-08
NNW	<u> </u>	19	3.77E-07	3.77E-07	1.19E-08	2.53E-07	6.00E-08	1.16E-07	1.16E-07	3.23E-09	3.56E-09	1.97E-07

また、「陽江原子力発電所 2021 年核安全年度報告書」も公表されており、気体放出物の 2021 年年間累計放出量は希ガス 3.13E+12Bq、ヨウ素は 1.12E+07Bq、粒子は 1.03E+07Bq、気体トリチウムは 1.81E+12Bq、気体 C-14 は 9.61E+11Bq である。

一方で、液体放出物の 2021 年年間累計放出量は、トリチウムと C-14 を除いた 核種は 4.62 E+08Bq、液体トリチウムは 1.12 E+14Bq、液体 C-14 は 3.94 E+10Bq である。

6) 評価結果を踏まえて、追加的な措置を講じた例の有無

本環境影響報告書の完成後、陽江原子力発電所 3、4 号機プロジェクトの概要、原子力発電所建設時に考えられる環境への影響、散熱システム運転時の影響、通常運転時および事故時の環境への放射線影響、建設時の汚染防止対策、運転時の汚染防止対策、環境影響評価報告書で提示された環境影響評価結論のポイントを陽江核電有限公司のホームページ上で一般公衆向けに公開した。その結果、公衆から意見などは寄せられず、陽江核電有限公司が実施した地方住民との交流活動へのフィードバックから、公衆は陽江原子力発電所の建設が自身に影響を与えると感じていないと結論付けられた。

(2) 秦山第三原子力発電所のトリチウム処理の追加措置3

1) 追加措置の建設背景

現在秦山地区には秦山第一、秦山第二、秦山第三、方家山原子力発電所の4つの原子力発電所があり、これらで原子力発電基地を構成し、施設は秦山原子力サイト敷地内にある。秦山第三原子力発電所1号機から直線距離で約100m、秦山第三原子力発電所2号機から直線距離で約200m離れている。1997年1月に秦山第三原子力発電有限公司(以下「秦山第三」と略。)が設立された。この会社は秦山第三(重水炉)原子力発電所工事プロジェクトの事業主であり、所在地は浙江省海塩県である。秦山第三(重水炉)原子力発電所工事プロジェクトは1998年6月8日に着工し、設備容量は728MWeX2基で、それぞれ2002年12月31日と2003年7月24日に商業運転を開始した。2005年9月22日に工事プロジェクトが国の竣工検収を通過した。2017年1月1日、中核集団による統一的な計画に基づき、秦山原子力発電有限公司、原子力発電秦山聯営有限公司、秦山第三原子力発電有限公司、中核原子力発電管理運行管理有限公司の4社が「合署弁公(複数の組織がある政策課題について合同で事務を行う)」の方式で運営を開始した。

原子炉の運転年数が経つにつれて、秦山第三原子力発電所の 2 基の発電機の減速材に含まれるトリチウムの比放射能が年々増加し、作業員の内部被ばく線量も徐々に増加している。トリチウム除去の対策を講じなければ、圧力管交換中の減速材システムのフラッシング作業が我が国の環境排出規制値要件を超える可能性がある。

現在、秦山第三原子力発電所の高トリチウムの問題については、国家生態環境部が既に重大な注意を払っている。特に日本の福島原子力発電所の事故の後は、国のトリチウム排出管理は厳しくなる一方である。秦山第三原子力発電所は減速材の重水処理を行い、重水トリチウムの比放射能を低下させており、この件は重要かつ緊迫になってきている。秦山第三原子力発電所の高トリチウム運転のリスクを低減し、かつ2 基の発電機の圧力管の交換作業が問題なく行われるようにするためには、できるだけ早期に重水炉ユニット付属の重水精留設備プロジェクトの建設を完了させて発電機のトリチウム比放射能を低下させる必要がある。

プロジェクトの完了・稼働後、処理された減速材重水のトリチウム濃度は元の約 1/4 まで減少する見込みである。

2) 追加措置の建設内容

当プロジェクトは秦山第三(重水炉)原子力発電ユニットの高トリチウム運転の リスク低減、および圧力管の交換に有利な条件を整え、2024年までに30kg/hの 重水処理能力を形成することを目的としている。当プロジェクトの主な建設内容 は、重水精留建屋の新規建設、重水送水管廊の建設および関連の屋外工事(公共工

- 事)であり、また重水炉ユニットと精留施設との接続関連を適切に改造する。 主な建設内容は以下の4つである。
- 1) 重水精留建屋の新規建設
- 2) 重水送水管廊の建設
- 3) 炉内接続部分の改造
- 4) 屋外工事(水道、電気、風力、ガスなどの共用工事)。

主要プロセス設備 8 台(組)を新規追加する。新規追加の建物面積は 7962.66m²、総投資額は 60358 万元、資金は秦山第三原子力発電有限公司による自己調達。 具体的な建設内容は表 4.1-6 を参照のこと。

	-	
No.	アイテム	建設内容
1	重水精留建屋	精留システムなどの主工程システムの新規建設。冷凍水システ
		ム、換気システム、自動制御システム、トリチウム濃度モニタ
		リングシステムなどの補助的な付帯システムの新規建設
2	重水送水管廊の	総合管廊の新規建設。主に重水送水管と廃液送水管など。
	建設	
3	炉内接続部分の	呼吸用圧縮空気システム、低トリチウム重水復水システム、放
	改造	射性廃液輸出システム、劣化重水輸送システム、重水原料投入
		システム、高トリチウム重水復水システム、生産用上水供給シ
		ステムなど
4	屋外工事	水道、電気、風力、ガスなどの供給

表 4.1-6 プロジェクトの主な建設内容一覧

当プロジェクトには、重水を直接に操作する工程システムが合計 9 種類あり、 重水給水システム、精留システム、非凝縮性ガス処理システム、水生成システム、 劣化重水システム、高トリチウム重水貯蔵システム、蒸気回収システム、重水緊急 システム、重水分析・サンプリングシステムであり、各システムおよび設備の構成 状況は表 4.1-7 を参照のこと。

また、システムの運転方式として、3年を運転1サイクルとし、まず1号機の 重水を連続処理し、それから2号機の重水に切り替えるという順番で行う。

表 4.1-7 工程システムの主な機能および設備の構成状況

シリアルナンバー	システム名称	システム機能
1	重水給水システム	給水する重水の一時保管、輸送
2	精留システム	DTO/D ₂ O の分離
3	生成水システム	生成した重水の一時保管、輸送
4	高トリチウム重水貯蔵シス	高トリチウム重水の貯蔵、輸送
	テム	
5	非凝縮性ガス処理システム	非凝縮性ガスの凝縮、捕集
6	重水緊急システム	重水の緊急時一時保管、輸送
7	重水分析・サンプリングシス	重水濃度のオンライン分析・サンプリ
	テム	ング
8	劣化重水システム	劣化重水の一時保管、輸送
9	蒸気回収システム	重水蒸気の回収

ガス、冷水、冷凍液、蒸気に対する主工程システムの要件を満たすために、当プロジェクトには工程補助システムが設置されており、主なものは給気システム、冷水・冷凍液システム、補助蒸気および凝縮水システムなどである。このうち、給気システムは工場用圧縮空気システム、呼吸圧縮空気システム、ヘリウム供給システムに分かれる。補助蒸気および凝縮水システムには、主に補助蒸気分配システムと凝縮水回収システムがある。主なプロセスのプロセスフローの略図は図 4.1-5 に示す通りである。

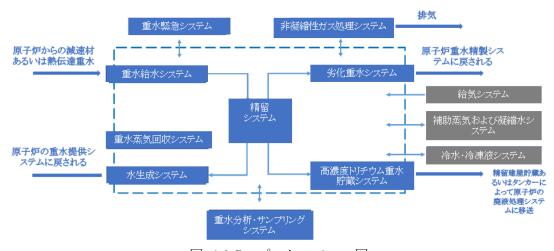


図 4.1-5 プロセスフロー図

3) 本プロジェクトの廃棄物

▶ 気体廃棄物

当プロジェクトの空気中の放出物の発生源は主にシステムからのテールガス、 作業現場の排気・換気、プロセス操作に起因する放出である。

(1) システムからのテールガス

システムからのテールガスは3つに分かれる。1つ目はトリチウム水の放射線分解で生成されるトリチウムガスであり、これは凝縮システムで凝縮処理されることはない。2つ目は非凝縮性ガス処理システムで凝縮された後に残留する水蒸気であり、3つ目はトリチウム重水内に存在する不純物核種である。

高トリチウム重水貯蔵タンク内のトリチウムガスは空洞を残しながらパイプライン内を循環し、外部に排出されることなく水素酸素複合装置で処理される。その他残りの各精留塔および貯蔵タンクで、年間で合計 19.186TBq の放射線分解水素が生成される。当プロジェクトの主工程システムは負圧下で操作し、通常運転時に建屋内の空気が主工程システムに漏れる。空気が主工程システム内でシステムからのテールガスに伴い流動し、最終的に、非凝縮性ガス処理システムで処理された後、局所排気システム経由で大気に排出される。精留システムからのテールガス中のトリチウム水の年間排出量は 10.90TBq/年である。重水中の14CをCO2とすると、年間排出量は4.75E·3TBq/年である。41Arの半減期は1.83hで、重水中のアルゴンは貯蔵時間の経過に伴い急速に崩壊する。従って当施設から環境に排出される41Ar ガスの環境に対する影響は考慮しなくてもよい。その他不純物は不揮発性塩であり、当施設から環境に排出されるトリチウム水の総量は少ないので環境への排出量も考慮しなくてよい。

(2) 作業現場の排気・換気

作業現場の排気・換気で環境に放出されるガス状トリチウムは工程システムの各設備から作業現場に漏れた部分である。各システムの気相体積と気相水分活性に基づいて計算すると、トリチウム水の総放出量は5.247TBq/年である。

(3) プロセス操作に起因する放出

プロセス操作の過程での放出源には、換気キャビネット、グローブボックスなどの設備内で行われるサンプリングプロセス、および重水タンカーによる高トリチウム移送プロセスがある。計算の結果、プロセス操作に起因して環境に放出されるトリチウム水の年間排出量は9.94E-2TBqである。

▶ 液体流出物

当プロジェクトの運転中、蒸気回収システムに回収された液体が収集され、それがパイプ経由で 1 号機に輸送されて重水精製システムに回収される。当プロジェクトの運転中、非凝縮性ガス処理システムによって生成されたトリチウム含有重水が劣化重水貯蔵タンクに戻され、1 号機の重水精製システムに戻されて処理される。当プロジェクトの運転中、汚染作業員の除染によって年間約 $1 \text{m}^3 \text{l}^4$ 年の除染廃水が生成され、放射能濃度は 1000 Bq/L 未満である。当プロジェクトの精留ホールは空気循環の方式を採用し、換気システムのでは約 $500 \text{m}^3 \text{l}^4$ 年の凝縮水が生成され、放射能濃度は約 $4.4 \times 10^6 \text{Bg/L}$ である。

当プロジェクトでは 2.2TBq/年の廃水が生成され、廃水が収集されて貯蔵タンクに入り、1号機の廃液処理システムに定期的に輸送されて処理された後、排出される。廃水が移送される前にトリチウム放射能濃度をサンプリングして分析する。

▶ 固体廃棄物

当プロジェクト運転中に生成される固体廃棄物は主に乾燥剤、サンプリングボトル、金属触媒、綿布などである。固体廃棄物は当施設内で分類して収集され、包装される。例えば拭き取りで生成される綿布といった吸水性固体廃棄物は1号機の既存の固体廃棄物処理システムに送られて乾燥処理され、その他の廃棄物は表面汚染検査に合格したら秦山第三の既存の廃棄物倉庫に送られて一時保管される。

主工程システム内の高トリチウム重水貯蔵システムに使用される水素酸素複合装置は、金属触媒を1台につき20kg 含有し、交換周期は2年に1回、交換量は合計で2年ごとに80kg である。主工程システム内の蒸気回収システムの蒸気回収装置は乾燥剤を1台につき1トン充填し、5年ごとに交換、生成量は1t である。

4) 運行期間中の環境への影響の評価

『原子力発電所環境放射線保護規定』(GB6249-2011)の規定には、原子力発電所の原子炉から環境に放出される放射性物質によって引き起こされる、一般市民の個人に対する放射線量は、いかなるものも、誰に対してであっても、年間0.25mSv の線量拘束値を下回らなければならないとある。秦山原子力発電所の9基の発電ユニットについて申請される線量拘束値は0.23mSv/年である。

秦山第三の建設中、『秦山第三(重水炉)原子力発電所プロジェクト環境影響レポート(初回原料投入段階)』は、秦山第三の2基の発電ユニットの評価線量目標値を0.05mSv/年に決定したと表明した。2002年7月16日に、旧国家環境保護総

局の環審[2002]188 号『秦山第三原子力発電所環境影響レポート(初回原料投入段階)の審査意見に関する回答書簡』で、このレポートが正式に承認された。

当プロジェクトで新たに建設する重水精留施設は秦山第三重水炉原子力発電所の付帯施設である。当プロジェクトで排出する流出物の、周辺の一般市民に対する個人線量は最大で約 0.0002mSv/年であり、秦山第三の放射線による影響(約 0.01mSv/年)をはるかに下回る。当プロジェクトが秦山発電所外部の一般市民に及ぼす放射線影響の線量拘束値は秦山第三および秦山発電所の各期発電ユニットとあわせて総合的に考えなければならず、秦山発電所が一般市民に及ぼす有效線量が 0.23mSv/年の線量拘束値の要件を満たすようにしなければならない。

計算の結果、当プロジェクトの通常運転時の空気中トリチウムが一般市民に及ぼす個人線量は最大で約 2.39E-07Sv/年 (発電所の西南西 2-3km の箇所) である。 液状トリチウムが一般市民に及ぼす放射線量は空中浮遊と比べると考慮しなくてよいレベルである。従って、当プロジェクトの運転で排出される気状・液状トリチウムが一般市民に及ぼす最大個人線量は 2.39E-07Sv/年であり、発電所の線量拘束値 (0.23mSv/年) の 0.10%に過ぎず、発電所周辺の一般市民に及ぼす放射線影響は非常に低い。

各事故の状況が環境への放出に与える影響に基づき、発電所の気象データを採用し、各事故が一般市民に及ぼす放射能の影響を計算した。事故による線量の結果は GB6249-2011 で要求される線量規制値要件を満たしている。

4.1.3 フランス

フランスについては以下発電所を対象に調査を実施した。

・ Flamanville 発電所の通常運転中の液体放出物(liquid effluent)の海洋放出

(1) 基本情報

Flamanville 原子力発電所は、フランス電力公社 EDF が所有・運転しており、フランスの北西におけるノルマンディ地方のコタンタン半島の西岸に位置している。液体放出物の放出先はイギリス海峡である。

(Google Maps、EDF 資料より)

図 4.1-6 Flamanville 原子力発電所の所在地と外観

Flamanville においては現在 PWR の炉が1、2 号機として設置されており、それぞれの運転開始等については、以下のとおりである。

ユニット	容量(MW)	建設開始	運転開始	
1 号機	1,300	1979年	1986年	
2 号機	1,300	1980年	1987年	

Flamanville 発電所の通常運転中に発生する液体放出物 (Liquid effluent) の量とその放射線影響については、年月環境データとして公開されている[4]。最新のデータは、2023年1月の報告として記載されている。

液体放射性放出物は、特定の運用及びメンテナンス作業に関連して、原子力の一次回路および補助回路から発生している。再利用できない廃液は、収集され、放射能を低減するために処理され、規制によって設定された制限内で海に放出される前に保管及び測定される。

表 4.1-8 Flamanville 発電所の通常運転中に発生する液体放出物量

	C14*	トリチウム	ヨウ素
2023年1月に放出された量 (GBq)	9.66 x10 ⁻²	2.7×10^{3}	1.09 x 10 ⁻²
年間放出基準(GBq)	2.8×10^{2}	1.45×10^{5}	1.2 x 10 ⁻¹

^{*}C14のみ、2022年12月のデータとなる

(2) 実施主体

Flamanville 原子力発電所、またその他のフランスにおける商業用の原子力施設は EDF 社により運転されており、同社が建設時に液体放出物の放出量について申請を行い、許可された基準値内で液体放出物を排出できることになっている。運転後も、EDF 社がモニタリングを実施する責任を持っており、その結果と放出基準との適合性について情報公開している。

(3) 根拠法令

フランスにおける法令では、原子力発電所からの排出量や濃度基準は定められておらず、各発電所の計画時に、ASN がその特徴や国際的な基準 (ICRP や IAEA) を参考について、個別に定めることになっている。

ASN は、2006年のフランス原子力安全法(Nuclear Safety Act)により設立された機関であり、大統領直轄の組織として、他の省庁とは独立した形で原子力安全、放射線防護及び原子力活動の規制を担っている。

政府が定める原子力安全又は放射線防護分野の政令や省令案の作成や、政府が作成する法令の条文への意見の提出等、原子力発電所を含む個別の基本原子力施設 (BNI: Basic Nuclear Installations) の建設許可又は廃炉の申請の審査を行う。

また、政令及び省令をより詳細に規定した ASN 決定、指針等の作成や一般市民への情報提供も行っている。

ASN は、2018 年に、当発電所からの液体放出物の基準を以下 Decision (決定) として定めている。これら決定は、フランスの官報にて公布され、拘束力がある。

- Decision n.2018-DC-0639 ASN から EDF への Flamanville 1 号機、2 号機及び3 号機の運転のための液体及びガス放出物の基準規定^[5]
- Decision n.2018-DC-0640 ASN から EDF への Flamanville 1 号機、2 号機及び3 号機の運転のための液体及びガス放出物の放出方法規定^[6]

上記指令では、表 4.1-9 の基準が定められている。

表 4.1-9 Flamanville 原子力発電所の放出基準

項目	放出基準 (GBq)		
トリチウム	145,000 + 10,000 x N*		
C14	280		
ヨウ素	0.12		
その他のβ線またはγ線	13		

^{*}Nとは、高燃焼度燃料を扱う炉の基数を示す。

放射性排水以外の排水についても、同決定において定めれている。

Flamanville 原子力発電所には、表 4.1-10 のとおり放水水域が設けられている。 放射性排水は、温排水と混合させ希釈させてから水域 1 及び水域 2 にて放出されている。

表 4.1-10 Flamanville 原子力発電所の放水水域

水域	放水の種類
水域 1	・復水器からの温排水及びその他原子力または通常機器
水域 2	・処理されていない放射性排水(T及びS貯留水)
	・機械室からの放射性の可能性がある排水(Ex及びS貯留水)
水域 3	・Flamanville 3 号機*からの復水器からの温排水及びその他
	原子力または通常機器

^{*} 運転開始前

1日において放出できる各物質の濃度については、表 4.1-11のとおりである。

表 4.1-11 1日において放出できる各物質の濃度(その1)

A-fm FrF	2 時間分	24 時間分	月間分	年間分	放水口における	
物質	(kg)	(kg)	(kg)	(kg)	最大濃度(mg/L)	
ホウ酸 ⁽¹⁾	870	2,500	•	15,600 + 1000 x N ⁽²⁾	1.3	
ヒドラジン	-	$3^{(3)}$	-	54	0.002	
モルホリン (4)	•	$17^{(5)}$	-	2,100	$0.01^{(5)}$	
エタノールアミ ン ⁽⁴⁾	-	10 (6)	-	1,150	$0.005^{(6)}$	
ナトリウム	140(8)	$175^{(8)}$	-	25,000(8)	$0.09^{(8)}$	
(アンモニウム、 硝酸塩、亜硝酸塩)塩)(7)	60 ⁽⁹⁾	80(9)	-	14,700 ⁽⁹⁾	$0.05^{(9)}$	
浄化剤	110	270	-	3,600	0.14	
DO	-	170	-	-	0.09	
浮遊物質	•	160	1	•	0.08	
リン酸塩	160	200	-	2,000	0.1	
全金属(亜鉛、銅、マンガン、ニッケ						
ル、クロム、鉄、 アルミ、鉛) (10), (11)	-	-	31	96	0.001	

- (1) ホウ酸タンク(ボロン補給水、タンク)の完全または部分的な排出中、上記上限が保てないことが証明された場合のみに、2 時間及び 24 時間にわたる流量の制限と、放水口で追加される濃度はそれぞれ 2,250 kg、5,600 kg 及び 3 mg/L までとする。
- (2) N とは、高燃焼度燃料を扱う炉の基数を示す。
- (3) 年間を通じて、24 時間のヒドラジン流量の 2%が $3 \log$ を超えることは認められるが、 $4 \log$ を超えないこと
- (4) 二次回路の工程が変更した場合、旧工程の 24 時間フラックス制限は、2 つの原子炉のサイクルが終了するまで引き続き適用される。同年に 2 種類の二次回路調整方法(モルホリンまたはエタノールアミン)が使用される場合、年間制限を以下のとおり計算する。
- 旧工程の場合、最後の原子炉のサイクルが終了するまでの運転期間の比例配分
- 新工程の場合、切り替え日からの運転期間の比例配分とする。
- (5) 年間を通して、24 時間にわたるモルホリン流量の 5%が $17 \, \mathrm{kg}$ を超えることは認められるが、 $95 \, \mathrm{kg}$ を超えないこと。
- (6) 年間を通して、エタノールアミンの24 時間にわたる流量の5%が10kgを超えることは認められるが、

25 kg を超えるないこと。

- (7) 二次回路の工程が変更した場合、制限を以下のとおり計算する。
- 旧工程の基準は工程変更後の3か月以内まで適用される
- 新工程の場合、切り替え日からの運転期間の比例配分とする。
- (8) 二次回路の工程でアンモニアを利用する場合
- (9) 二次回路の工程でエタノールアミンまたはモルホリンを利用する場合
- (10) 銅、亜鉛、ニッケル、クロム、鉛の各金属の年間排出量が全金属の限度の30%を超えないこと。
- (11) 本決定の発効後、3 号機の最初のサイクルが終了するまで、総金属排出量の制限は、1 日で 18 kg、年間で 360 kg、濃度として 0.01 mg/L とする。(本調査では対象外とする)

·		,, , , , , , , , , , , , , , , , , ,		
物質	24 時間分(kg)	水域における1日当たりの追加濃度(kg)		
残留酸素⑴	3,380	0.52		
ブロモホルム	116	0.02		

表 4.1-12 1日において放出できる各物質の濃度(その2)

- (1) 塩素処理を実施した場合、24 時間にわたる残留酸素の流量と追加濃度は、それぞれ $4,800\,\mathrm{kg}$ と $1\,\mathrm{mg/L}$ とする。
- (2) 塩素処理を実施した場合、24 時間にわたるブロモホルムの流量と追加濃度は、それぞれ 170 kg と 0.04 mg/L とする。

また、水処理施設、事務ビルや低濃度の放射性廃棄物の保管施設等の周辺からの 雨水、水処理施設からの排水等については、サイト内で再利用されているが、それ についても基準値が設けられている。

物質	排出元	24 時間分(kg)
鉄	純水施設	100
硫酸塩	淡水化施設	2,100
浄化剤	淡水化施設	125
全ナトリウム	排水処理施設	40
全リン	排水处理	7

表 4.1-13 水処理施設からの排水等の基準

(4) 評価手法

基本的に原子力施設からの排出量を定めるための根拠となる評価手法に関する情報は公開されておらず、前述した BNI 法令では、以下のように記載されている。「放出量をなるべく制限するために、機器の設計、運転および保守すること。排出物は、可能な限り発生源で収集、監視し、必要に応じて、対応する排出量が合理的に可能な限り低く保たれるように処理すること。排出基準は、経済的に許容できるコストで利用可能な最良の技術の使用に基づいて設定し、サイトの特定の環境特性を考慮すること。」

したがって、OSPAR 条約に関する利用可能な最善の技術 (BAT) の適用については、フランスの国内法に明確に盛り込まれていると言える。

例として、フランス CEA (原子力・新エネルギー庁) が公開している資料から読み取れるリスク評価フローを図 4.1-7 に示す。

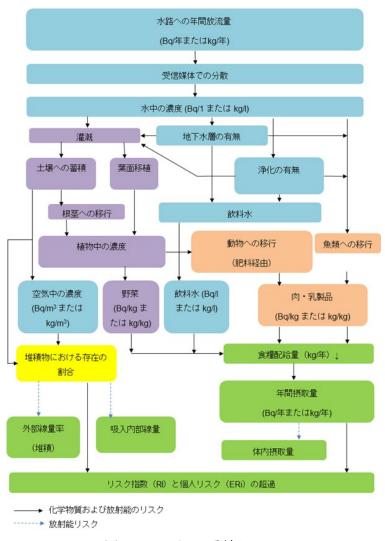


図 4.1-7 リスク評価フロー

CEA は、CERES (Code for Rapid Environmental and Health Assessments) を使用して水域への事前評価をしている (液体排出用は ABRICOT モジュールという)。

考え方としては、各媒体中の濃度を算出し、下記のような被ばく経路に対して、排出先の河川の近隣住民(成人、10歳児、 $1\sim2$ 歳児)を対象に年実効線量を算出することになっている。

- ・プルームや堆積物からの放射線による外部被ばく
- ・吸入および皮膚からの移行
- ・ 大気または液体排出物によって汚染された飲料水、魚、食物の摂取
- ・ 河川水は灌漑用水や家畜の水やりの使用
- ・ 食料は地場産物で自給自足と仮定

液体で排出された放射性物質は、河川水を直接利用する場合と帯水層を経由して間接的に利用する場合を考慮している。排出された放射性物質は、浮遊物質への吸着、液体媒体への沈降、希釈といったプロセスを考慮。なお、堆積物への分配は考慮されていない。

トリチウムを考慮したモデルでは、以下を考慮している。

- ・ プルームへの浸漬が、吸入と皮膚移行によるトリチウムからの内部被ばくにつ ながる。
- ・プルーム中のトリチウムからの直接的な外部被ばくとトリチウムの表面沈着は 重要ではないとしている。
- ・ 土壌中のトリチウムの蓄積は想定されていない。
- ・ 葉面転流は HTO (トリチウム水) 形態のみ、根からの移行はトリチウムガス (土 壌微生物による変換後) のみとする。植物に入った後は、HTO の 40%が OBT (有機結合トリチウム) に変換される。

(5) 評価結果の公表又は国際機関等への提供の有無

評価内容については基本的に公開されていない状況であるが、モニタリング結果については毎月の環境データとして表 4.1-14 のように EDF が公表している。

表 4.1-14 EDFによるモニタリング結果の公表例

Surveillance de la radioactivité des eaux de l'environnement

	Eaux de mer				Eaux sou	terraines	Eaux de pluie Les eaux de pluie sont collectées en continu vie un pluviomètre. Les indicateurs suivis sont ractivité beta globale et l'activité trisum des eaux exprimées en Bqt.	
	Les eaux de mer sont surveillées grâce à plusieurs prélèvements effectués dans un rayon de 50 mètres du point de rejet et au large hors influence des rejets à 50 m. Les indicateurs suivis sont l'activité beta globale et l'activité bitaum des eaux exprimées en BgL.			ments rayon int de hors a 50 sulvis lobale des	Les eaux souterraines sont surveilées grâce des prélèvements effectués via un réséau de 14 piézomètres. Les indicateurs suivis sont l'activité bota globale et l'activité trisum exprimées en BqfL.			
	Activité bêta globale		Activité tritium		Activité bêta	Activité	Activité bêta	Activité
	A 50m	Au	A 50m	Au	globale	triticina.	globale	tritium
Moyenne mensuelle	12,3	12,9	6,7	7,9	5,3	5,4	0,3	< 4,5
Moyenne année précédente	12,2	12,3	11,8	13,0	5,3	7,9	0,2	5,0

Précision 1 : les valeurs mesurées sont parfois inférieures au seuil

de mesure (valeurs précédées de <).

Précision 2 : Toutes les données relatives à la surveillance de la radioactivité de l'environnement sont consultables sur le site internet du Réseau national de mesure de la radioactivité de l'environnement.

(6) 評価結果を踏まえて、追加的な措置を講じた例の有無

現在公開されている Flamanville 発電所の年次報告書を確認したが、評価結果が 公開されていないため、それを踏まえた追加的な措置を講じた事例は見当たらない。

4.1.4 韓国

(1) 実施主体

原子力安全セキュリティ委員会(NSSC)

原子力及び放射能に係る全ての業務を担当する最上位機関として、下位機関から 報告を受けた排出物に関する対する情報の評価及び規制等を行う。

原子力安全技術院(KINS)

NSSC 傘下の検査機関として、原発周辺地域における放射線量及び被曝線量等を調査し、KHNP から受けた報告に対する技術的検討を行う。

韓国水力原子力(KHNP)

原発の運営及び管理主体として液体及び気体排出物の監視と分析、環境放射能線量の評価を行い、これを NSSC に報告する。

韓国の原子力施設運営者は、年間線量基準値を確認するため、放射性排出物による住民被曝線量の評価を行っている。2015年12月1日に改正された『原子力安全法』により、発電用原子炉と関係施設の運営許可申請書類に敷地別・核種群別の排出総量を含む「液体及び気体状態の放射性物質等の排出計画書」が追加された(2016年12月2日施行)。KHNPは2018年、上記『原子力安全法』改正に伴う後続措置として運営中原発の排出計画書をNSSCに提出し、KINSは当該排出計画書に対する技術検討を行ったことがある。

(2) 根拠法令

原子力施設の運営過程で発生する液体及び気体状態の放射性物質は、許可排出 (Authorized Discharge) の概念に従って適切な処理プロセスを経た後、監視及び 統制された状態で環境に排出されており、放射性排出物は放射線防護の基本原則で ある「ALARA」に基づき、できるだけ低い濃度で環境に排出している。『放射線防護等に関する基準』(NSSC 告示第 2019-10 号)第6条(排出管理基準)は各放射性核種の排出濃度を制限しており、同告示第16条(環境上の危害防止)は放射性排出物による制限区域境界での年間線量基準値を制限している。

放射性排出物に関する安全規制の一覧は以下の通りである。

原子力安全法

『原子力安全法』第 11 条、第 20 条及び第 21 条は、建設許可・運営許可の条件 事項として「放射性物質等による国民の健康及び環境上の危害防止」を規定し、排 出量に関する規制*を定めている。

*『原子力安全法施行令』第174条

原子力安全法施行令

『原子力安全法施行令』第35条第2号は、定期検査の合格基準として「放射性物質等から国民の健康及び環境上の危害防止」を規定している。第174条第1号は、施設から排出される放射性物質の濃度がNSSCの定める基準*に満たさなければならず、第174条第2号は、その他の放射線障害を防止するためNSSCの定める基準**を満たさなければならないことを規定している。

- *放射線防護等に関する基準 (NSSC 告示第 2019-10 号)
- **高レベル放射性廃棄物深層処分施設に関する一般基準 (NSSC 告示第 2021-21 号)

原子力安全法施行規則

『原子力安全法施行規則』第136条は、原発など『原子力安全法』第104条第1項が規定している放射線施設に対し、放射線環境調査及び放射線環境影響評価の遂行を規定している。調査及び評価方法については、『原子力利用施設周辺の放射線環境調査及び放射線環境影響評価に関する規定』(NSSC告示 2017-17)の別表1に記載されている。

原子炉施設等の技術基準に関する規則

『原子炉施設等の技術基準に関する規則』第20条第1項第7号及び第8号は、排水口や排気筒出口に放射性物質の濃度計測装備または間接測定装置を設置することを要件とし、第38条第1項は排出物監視器に関して自動警報装置を設置することを規定している。また、第32条第1号ナ目は、制限区域境界で排出管理基準を満たす設備及び処理能力を確保しなければならず、第32条第1号ラ目は排気口や排水口以外の場所から放射性廃棄物が放出されてはならないことを規定している。第66条第1項は放射性廃棄物管理計画の樹立を通じて排出物・放出量の最小化及び環境影響を「合理的に達成可能な限り低い水準」(ALARA)で管理しなければならないことを明示している。

放射線安全管理等の技術基準に関する規則

『放射線安全管理等の技術基準に関する規則』第10条は、制限区域境界において 水中・空気中の放射性物質の濃度が排出管理基準を超えてはならず、そのために排 気・排水監視設備で監視しなければならないと規定している。

放射線防護等に関する基準(NSSC 告示第 2019-10 号)

NSSC告示第2019-10号第6条、第16条第1項及び別表3は液体及び気体排出物に対する排出管理基準を定量的に規定しており、同基準値の適用を1週間平均値(やむを得ない場合は3ヵ月の平均値)と明示している。第16条第2項は、環境上の危害防止のために排出物に対する年間線量基準値を次のように明示している。

単一号機	液体	有効線量	0.03 mSv/y
		等価線量	$0.1~\mathrm{mSv/y}$
_	気体	ガンマ線量	$0.1~\mathrm{mSv/y}$
		ベータ線量	$0.2~\mathrm{mSv/y}$
		外部有効線量	$0.05~\mathrm{mSv/y}$
		皮膚等価線量	0.15 mSv/y
		長期等価線量	0.15 mSv/y
多数号機	有效	線量	0.25 mSv/y
	甲状態	 泉線量	0.75 mSv/y

原子力利用施設周辺における放射線環境調査及び放射線環境影響評価に関する規定 (NSSC 告示第 2017-17 号)

NSSC 第 2017-17 号は、原発周辺における環境放射線・放射能に関する調査及び 影響評価のための詳細な指針を明示している。

発電用原子炉及び関係施設の液体及び気体状態の放射性物質等の排出計画書の作成に関する規定 (NSSC 告示第 2017-4 号)

NSSC 告示第 2017-4 号は、発電用原子炉及び関係施設の運営許可申請書類である排出計画書の作成のための詳細な指針を明示している。

(3) 評価手法

NSSC 及び KINS は図 4.1-8 のようなプロセスを経て規制管理を行っている。

図 4.1-8 規制の手続き[7]

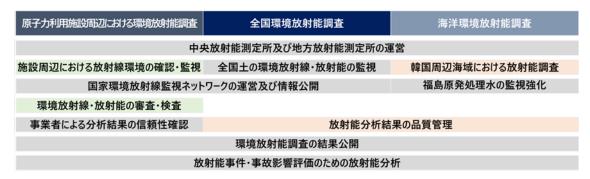


図 4.1-9 規制活動[7]

また、KINS の放射性廃棄物安全管理統合情報システム (WACID) は、図 4.1-10 のようなプロセスを通じて情報収集と管理を行っている。

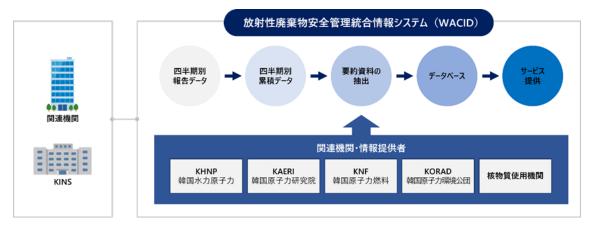
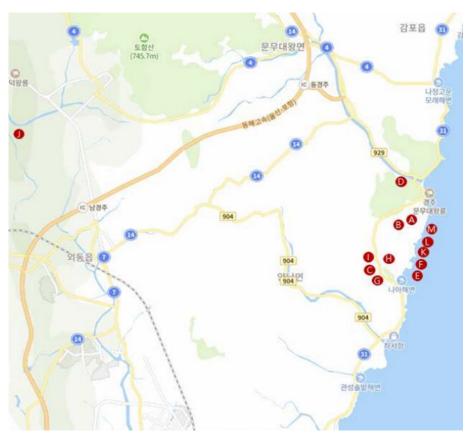



図 4.1-10 情報収集・管理の手続き[8]

資料の更新周期は、『原子力安全法』第98条に基づく定期報告を準用して四半期ごと(3ヵ月)を基本としている。

一方、KINS は原子力利用施設周辺における環境放射能の調査を行っており、詳細な調査方法は当該報告書(原子力利用施設周辺における環境放射能の調査・評価報告書)に記載されている。

番号	採取地点	採取試料	番号	採取地点	採取試料
A	上鳳	土壌	Н	後門西側	土壌
В	貯蔵庫	土壌	Ι	羅児	土壤、穀類、野菜類、地下水
C	職員社宅	土壌	J	キョンイル牧場	牛乳
D	大鐘川	穀類、野菜類、地下水	K	2排水口	海底堆積物
Е	取水口	海底堆積物、海水、海藻類、魚類	L	新月城取水	海底堆積物、海水、海藻類、魚類
F	1排水口	海底堆積物、海水、海藻類、魚類	M	П	海底堆積物、海水、海藻類、魚類
G	邑川	土壤、穀類		新月城排水	
				П	

図 4.1-11 月城原発周辺における KINS の環境放射線・放射能の調査地点の例^[9]

KHNPは2016年の法施行に従って、原発許可時に排出計画書を提出し、排出管理基準及び環境上の危害防止基準についてNSSCから審査を受け、運営中には排出量の定期報告と環境放射能調査・評価報告を行う。

各原発における詳細な排出量・被曝線量・環境放射能等の調査方法は当該報告書 (原子力発電所周辺における環境放射能調査及び評価報告書)に記載されている。

図 4.1-12 月城原発敷地内部(上)・外部(下)における KHNP の環境放射線・放射能の調査地点の例^[10]

(4) 評価結果の公表又は国際機関等への提供の有無

KINS は WACID を通じて、KHNP が提出した四半期別気体・液体排出物情報を公表している。

※最新情報は2022年第4四半期の排出物現況(2023年3月6日公開)

- ・ 気体排出物の公表資料: https://www.kins.re.kr/wacid/gas02?catId=01
- ・ 液体排出物の公表資料: https://www.kins.re.kr/wacid/liquid02?catId=02

また KINS 独自で全国環境放射能調査報告書及び原子力利用施設周辺における放射線環境調査及び評価報告書を調査・公表している。

- 全国環境放射能調査報告書の公表資料:
 https://clean.kins.re.kr/home/environmentRad/report/ReportNationEvrionme
 ntRadInguery.do
- ・ 原子力利用施設周辺における放射線環境調査及び評価報告書の公表資料:
 https://clean.kins.re.kr/home/environmentRad/report/ReportNuclearFacilityPeriInquiry.do

KHNPは「オープン原発運営情報」を通じて毎月の液体・気体排出現況を「トリチウム」・「トリチウム以外」に分けて公表しており、毎年原発周辺における環境放射能調査及び評価報告書を作成し、公表している。

- ・毎月の液体・気体排出現況:
 https://npp.khnp.co.kr/board/list.khnp?boardId=BBS_0000020&menuCd=DO
 M_000000103003004001&contentsSid=110
- 原子力発電所周辺における環境放射能調査及び評価報告書:
 https://npp.khnp.co.kr/board/list.khnp?boardId=BBS 0000032&menuCd=DO
 M 000000104003000000&contentsSid=161

以上のデータはホームページ及び報告書により公表している一方、原発重大事故の際*ほか国際原子力機関 (IAEA) など海外への情報提供を義務付けた法令はない。ただ、韓国は IAEA 加盟国であり、『原子力の安全に関する条約』(Convention on Nuclear Safety) 締結国として同条約及び原子力一般安全指針 (GSG) に従って排出管理を行っている。関連情報は3年周期の国家報告書(National Report)を通じてIAEA に提出している。

- *『原子力利用施設における事故・故障発生時の報告・公開規定』(NSSC 告示第 2020-3 号) 第 11 条 (海外への情報公開)
- ①委員会は、次の各号いずれかに該当する場合には、別紙第3号の様式による事件等級評価の内容を事件等級評価報告体系(INES-NEWS)に基づき、IAEAに送付する。

- i. 第7条による暫定等級評価結果が2等級以上の場合
- ii. 第8条の規定による事件の等級評価結果のうち、国際原子力事件等級マニュアルに従って IAEA が関心を持つ事件の場合
- iii. 委員会が必要であると認める場合
- ②委員会は第8条による等級評価・決定結果が2等級以上であるか、海外に経験を伝播する必要があると判断した場合、国際原子力事件報告体系(IAEA-IRS)にともなう報告書をIAEAに送付することができる。

(5) 評価結果を踏まえて、追加的な措置を講じた例の有無

排出監視の途中または評価結果に異常値が発生した場合には、『原子力利用施設における事故・故障発生時の報告・公開規定』(NSSC告示第2020-3号)に基づき、事業者は直ちにNSSCに報告しなければならず、初期書面報告書を提出しなければならない。NSSCは報告を受けるとKINS事件調査チームを現場に派遣して経緯を把握し、調査するようにしている。

原子力利用施設における事故・故障発生時の報告・公開規定 (NSSC 告示第 2020-3 号)

第4条(報告対象)

事業者がこの規定により報告しなければならない対象事件は別表*のとおりである。

*別表

- 1. 原子力利用施設に共通して適用される報告事件
- ⑥施設から環境に放射性物質が放出された次の各号のいずれかに該当する場合 カ. 排水口、排気口以外で液体または気体放射性物質が環境に放出が確認された とき
- ナ. 計画または統制されていない状態で放射性物質が環境に放出が確認されたとき

. . .

- ⑩1 時間平均したとき、施設境界(制限区域境界が設定されている場合には制限 区域境界をいう)における放射性物質の放出が次の各号のいずれかに該当するこ とが確認された場合
- カ. NSSC 告示の放射線防護等に関する基準の別表 3 第 5 欄及び別表 4 第 4 欄が 規定する、排気中の排出管理基準を超える気体放射性物質の放出。
- ナ. NSSC 告示の放射線防護等に関する基準の別表 3 第 8 欄及び別表 4 第 6 欄に 規定する、排水中の排出管理基準を超える液体放射性物質の放出。ただし、トリ チウムと溶解された稀有ガスを除く。

この規定により措置を講じた主な事例は2件ある。

1. 韓国原子力研究院(KAERI)の放射性物質排出事件

KAERI は 2020 年 1 月 10 日、本部正門前の排水口から C-137 濃度が増加したことを発見し、NSSC に報告した。NSSC は KINS を通じて調査を行い、放射線管理 区域内で発生した汚染水が外部マンホールへ排出されたことを把握した。

2. 月城原発のトリチウム問題

2021年1月7日、MBC 安東放送局が月城原発敷地から高濃度のトリチウムが検出されたという KHNP の報告書を報道し、大きな波紋が起きた。これに対し NSSC は 2021年3月、「月城原発トリチウム民間調査団」及び「懸案疎通委員会」を発足させ、高濃度のトリチウムが検出された原因の把握と外部環境への流出有無などについて調査中である。

4.1.5 ロシア

ロシアについては以下のバルト原子力発電所を対象に調査を実施した[11][、12]。

(1) バルト原子力発電所の基本情報

バルト原子力発電所(NPP)1号機は、ロシア連邦カリーニングラード州ネマン地区に建設中の2基の発電所である。カリーニングラード州は、バルト海に面したロシア連邦西部の飛び領土であり、面積は約15,000km²である。南はポーランド、東と北はリトアニアに国境を接する。今後の人口増加予測によれば、2020年までにカリーニングラード地方の人口は2006年の94万人から160万~200万人に増加すると言われている。経済発展予測によると、電力需要は2006年の電力需要に比べ、2020年には約1.9倍、2030年には約2.6倍に増加すると予測されている。

バルト原子力発電所 1 号機の役割は、カリーニングラード地域の増大する電力需要を賄い、近隣諸国への電力輸出を可能にすることである。

バルト原子力発電所 1 号機の運用者が許認可申請に必要となる書類の一部として、環境影響評価 (Environmental Impact Assessment: EIA) を実施する必要がある。ロスエネルゴアトム・コンツェルン社(Rosenergoatom Concern 社)には、バルト原子力発電所 1 号機の環境影響評価に関する資料の提示が任命された。

ロシア連邦国営原子力企業 (ROSATOM 社) は国際原子力機関 (IAEA) に、IAEA の安全基準に対し、バルト原子力発電所 1 号機の環境影響評価の国際ピアレビューを行うよう要請した。

(2) 実施主体

ロスエネルゴアトム・コンツェルン社 (Rosenergoatom Concern 社) が、バルト 原子力発電所 1 号機の環境影響評価に関する資料の提示を担っている。

(3) 根拠法令

以下の法律および規制文書は、ロシア連邦における原子力発電所の職員、公衆、 および環境の放射線防護を規制している。

- · 1995年11月21日付 連邦法第170-FZ号「原子力の利用について」
- ・ 1996年1月9日付 連邦法第3-FZ号「公衆の放射線安全について」
- 2002年1月10日付 連邦法第7-FZ号「環境保護について」
- 2009年7月7日付 「放射線安全基準(NRB-99/2009)第47号」
- 2000 年 9 月 25 日付 「放射線安全確保のための基本衛生規則(OSPORB-99)
 第 57 号」
- ・ 1997年11月14日付 「原子力発電所の安全基本規則(OPB-88/97)第9号」
- ・ 2003 年 2 月 28 日付 「原子力発電所の設計および運転に関する衛生規則(SP

AS-03) 第 69 号 L

2001 年 4 月 18 日付 「原子力発電所運転に関する放射線安全規則(PRB AS-99)第 210 号

「連邦法第 170-FZ 号」は、原子力利用のための法的枠組みおよび規制原則を確立し、人間の生命と健康を守り、環境を保護することを目的とする。連邦法第 3-FZ 号「公衆の放射線安全について」は、健康保護を目的とした公衆および職員の放射線防護のための法的枠組みを確立している。本法律は、放射線防護の分野における主要概念、基準、規制原則を定め、放射線防護対策に不可欠な措置を特定し、放射線防護分野におけるロシア連邦当局の責任を示している。本法律および「NRB-99/2009」は、国際放射線防護委員会(ICRP)の勧告を考慮して作成された。

原子力施設からの放射線影響の基準を定めたロシアの主な規制文書は以下の通りである。

- ・ 2009 年 7 月 7 日付 「放射線安全基準 (NRB-99/2009) 第 47 号」
- 2003 年 2 月 28 日付 「原子力発電所の設計および運転に関する衛生規則(SP AS-03) 第 69 号」
- 1997年11月14日付 「原子力発電所の安全基本規則(OPB-88/97)第9号」
- ・ 原子力発電所の立地、安全保障のための基本的基準および要求事項 NP-032-01

(4) 評価手法

1) 通常運転時の放射性物質基準

原子力発電所の通常運転において、大気中への放射性物質の許容放出量(permissible releases, PR)および水域環境への許容排出量(permissible discharges, PD)は、サイト全体(サイト内のユニット数に関連せず)に対してロシアの規制(SPAS-03 の 5.11-5.19 項)に従い、公衆への被ばくに対する 10μ Sv/年の基準に基づいて設定されている。この基準は、気体および液体の排出に別々に適用される。

放射線学的に重要な核種または核種グループについては、PR 値はロシアの規制「原子力発電所の設計および運転に関する衛生規則(SPAS-03)」で確立されている。ロシアの規則に従い、特定の施設に対する最終的な PR と PD の値は、設置容量、原子炉タイプ、およびサイト特性(例えば、地域の人口統計、住民の生活習慣)を考慮し、導き出される。

これらの PR と PD の値について、施設の運転開始前に規制当局の承認を受ける必要がある。バルト原子力発電所 1 号機の最終的な PR と PD の値は、試運転段階の開始直前に設定されることになっている。

放射性物質基準の適用目的は、原子力事故の結果として生じる確定的影響を回避し、確率的影響を最小化することである。この目的のために、「放射線安全基準

(NRB-99/2009)」では、防護措置の介入レベルが定義されている。

2) 通常運転時でのバルト原子力発電所からネマン川への排出による住民の予測被 ばく線量

通常運転時にバルト原子力発電所からの排出による住民への放射線量評価は、IAEA 出版物の方法論的勧告に従って行われており、その出版物とは、「環境への放射性物質排出の影響評価に使用する総称モデル、安全報告書シリーズ No.19、IAEA、ウィーン(2001)」、「放射線防護と放射線源の安全:国際基本安全基準一暫定版、IAEA 安全基準シリーズ No. GSR Part 3(暫定版)、IAEA、ウィーン(2011)」、及び、発電所の定格運転条件における非放射性液状物排出による環境への放射性物質摂取量の値(GBq/(年及びユニット))(AES・2006、バルト原子力発電所 1 号機、安全解析暫定報告書、第 10 章 放射性廃棄物の取扱い Rev.2、20.02.2013)を使用した「Interatomenergo association による仕様書及び技術文書NTD38.220.56・84」である。また、通常運転時にバルト原子力発電所からの気体・液体放射性廃棄物の年間放出量は表 4.1・15 及び表 4.1・16 に示す。

表 4.1-15 通常運転時にバルト原子力発電所からの液体放射性廃棄物の年間排出量

環境への年間排出量(GBq/年/ユニット)					バラコヴォ原子力
	立ち入り制限区域からの排水		フリーアクセス		発電所における許
4/.台1.切.4十年			区域からの排水		容排出量(運転中)
放射性核種	KBF、KPFシス	フィルター(LCQ、	フィルター(LD)	総排出量	GBq/年
	テムの過剰水	KPF40)再生水	再生水		(4ユニット)
H-3	9.1 E+3	-	-	9.1 E+3	-
I-131	1.8 E-3	1.7 E-5	2.1 E-2	2.3 E-2	-
I-132	3.9 E-3	2.3 E-9	4.5 E-4	4.3 E-3	-
I-133	4.6 E-3	1.7 E-7	5.8 E-3	1.0 E-4	-
I-134	3.5 E-3	-	9.6 E-5	3.6 E-3	-
I-135	4.0 E-3	-	1.5 E-3	5.5 E-3	-
Sr-89	1.4 E-5	2.0 E-4	8.0 E-4	1.0 E-3	-
Sr-90	1.1 E-7	8.1 E-7	2.2 E-6	3.1 E-6	-
Cs-134	2.6 E-2	1.8 E-2	6.6 E-2	1.1 E-1	3.0 E+0
Cs-137	4.0 E-2	2.8 E-2	1.0 E-1	1.7 E-1	8.4 E-1
Cr-51	6.4 E-4	3.0 E-5	1.5 E-4	8.2 E-4	-
Mn-54	6.0 E-4	1.0 E-5	1.4 E-5	6.2 E-4	1.6 E+1
Co-60	2.4 E-3	5.5 E-5	9.7 E-5	2.5 E-3	1.4 E+0
Co-58	4.2 E-4	5.9 E-5	2.3 E-4	7.1 E-4	-
合計(トリチウ	8.8 E-2	4.6 E-2	2.0 E-1	3.3 E-1	
ムを除く)	0.0 E Z	4.0 E 2	2.0 E 1	9.9 E 1	_

表 4.1-16 通常運転時にバルト原子力発電所からの気体放射性廃棄物の年間放出量 (単位: GBg/年/ユニット)

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				1 12 . 0.2 9	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	通気管		<u> </u>		<u> </u>	屋根上
放射性核種	原子炉建屋	特殊ガス処		 原子炉補助		
	換気装置	理システム		建屋内換気装置	放出総量	タービン建屋
		KPL-2	KPL-3			
H-3	3.9 E+3	_	_	5.0 E+1	3.9 E+3	1.2 E+0
C-14	_	_	_	_	3.0 E+2	_
Kr-83m	5.6 E+2	_	1.1 E+2	2.9 E+0	6.7 E+2	2.7 E+1
Kr-85m	2.0 E+3	3.6 E-1	2.4 E+2	8.4 E+0	2.3 E+3	6.1 E+0
Kr-85	5.5 E+0	3.5 E+2	2.6 E-1	1.6 E-2	3.6 E+2	6.6 E-2
Kr-87	1.1 E+3	_	2.5 E+2	6.6 E+0	1.4 E+3	6.4 E+1
Kr-88	4.4 E+3	_	5.8 E+2	2.1 E+1	5.0 E+3	1.5 E+2
Xe-131m	1.0 E+2	1.4 E+2	6.6 E+0	3.1 E-1	2.5 E+2	1.6 E+0
Xe-133	2.6 E+4	2.1 E+2	1.8 E+3	7.9 E+1	2.8 E+4	4.7 E+2
Xe-135	6.2 E+3	_	1.3 E+3	2.2 E+1	7.6 E+3	3.3 E+2
Xe-138	1.7 E+2	_	1.2 E+2	1.5 E+0	2.9 E+2	3.1 E1
I-131	1.6 E-2	_	2.0 E-2	3.6 E-2	7.3 E-2	3.1 E-3
I-132	3.3 E-2	_	_	6.4 E-2	9.7 E-2	1.0 E-2
I-133	4.3 E-2	_	_	9.4 E-2	1.4 E-1	9.3 E-3
I-134	2.4 E-2	_	_	4.2 E-2	6.6 E-2	2.8 E-3
I-135	3.6 E-2	_	_	7.7 E-2	1.1 E-1	7.1 E-3
Cr-51	3.4 E-6	_	_	7.5 E-5	7.9 E-5	1.5 E-7
Mn-54	2.1 E-7	_	_	4.6 E-6	4.8 E-6	2.1 E-7
Co-60	1.3 E-6	_	_	3.1 E-5	3.1 E-5	2.4 E-6
Sr-89	1.3 E-5	_	_	3.1 E-4	3.35 E-4	1.4 E-5
Sr-90	2.6 E-8	_	_	5.7 E-7	6.0 E-7	4.4 E-8
¹³⁴ Cs-134	8.6 E-4	_	_	1.9 E-2	2.0 E-2	1.0 E-3
¹³⁷ Cs-137	1.3 E-3	_	_	2.9 E-2	3.0 E-2	1.3 E-3
希ガス元素	4.1 E4	7.0 E+2	4.4 E+3	1.4 E+2	4.6 E4	1.1 E+3
ヨウ素	1.5 E-1	_	2.0 E-2	3.1 E-1	4.9 E-1	3.2 E-2
エアロゾル	2.2 E-3	_	_	4.9 E-2	5.1 E-2	2.3 E-3
合計	4.1 E+4	7.0 E+2	4.4 E+3	1.4 E+2	4.6 E+4	1.1 E+3

放射性核種の被ばく経路及び人体への侵入経路として、以下のものが挙げられる。

- ・ 遊泳、ボート遊び、岸辺での滞在
- ・ ネマン川の水を飲料水として利用する (この場合、水利用区域は排出地点から 500m 離れたモニタリング区間の下流にあると仮定)、魚、甲殻類を食べる。

解析は2つの年齢層(17歳以上の成人、1歳の子ども)に対して行われた。解析では、バルト原子力発電所2基からの放射性核種の排出を考慮している。比放射能と堆積物の予測値を表4.1-17に示す。

表 4.1-17 バルト原子力発電所 2 基からの放射性核種の排出量 (Bq/s)、排出地点 (排水 溝の出口) から 500m 離れた地点での水中の放射性核種濃度の予測値 (Bq/l) および堆積 物の予測値 (Bq/kg)

北京	2 基からの放射性核種の排出量 排出地点から 500m に		排出地点から 500m に	
放射性核種	Bq/s	Bq/年	おける水中濃度(Bq/l)	おける堆積物中濃度 (Bq/l)
H-3	5.78E+5	1.82E+13	21.7	0
I-131	1.46E+0	4.60E+7	5.48E-5	1.64E-2
I-132	2.73E-1	8.60E+6	9.65E-6	2.89E-3
I-133	6.35E-3	2.00E+5	2.37E-7	7.11E-5
Sr-89	6.35E-2	2.00E+6	2.39E-6	4.77E-3
Sr-90	1.97E-4	6.20E+3	7.40E-9	1.48E-5
Cs-134	6.98E+0	2.20E+8	2.62E-4	3.59E+1
Cs-137	1.08E+1	3.40E+8	4.06E-4	5.56E+1
Mn-54	3.94E-2	1.24E+6	1.48E-6	1.34E-1
Co-58	4.51E-2	1.42E+6	1.69E-6	1.80E-1
Co-60	1.59E-1	5.00E+6	5.97E-6	6.33E-1

外部被ばく線量の計算式は、人間の臓器や組織の自己遮蔽を考慮せずに導出されている。簡略化に伴う実効線量値の誤差は50%を超えない。

原子力発電所周辺住民の内部被ばくは、食物及び生物連鎖への移行に伴う摂取 による放射性核種の摂取によって形成される。解析には、以下の仮定を含む。

- (1) ニマン川の水を飲料水として使用する。
- (2) ニマン川産の魚や甲殻類が年間食物供給の 100%を占める。 このように、最悪の条件が選択されており、保守的な解析と考えられる。 線量係数は、「GSR Part 3 の表Ⅲ-2D」に準拠して定義されている。

表 4.1-18 に、成人及び子どもによる水および水生生物の消費率を示す。これらは、人体への放射性核種の侵入を分析し、摂取による潜在的に重要な住民集団の内部被ばくを算出するための基礎として採用された。上記生産物の消費平均値は、「IAEA 安全報告書シリーズ No.19」に準じて使用されている。

表 4.1-18 住民の年齢層別主要食品消費量 (kg(l)/年)

食物区分	年齢層、年齢		
及物区分	1歳の子ども	成人(>17歳)	
魚	15	30	
飲料水	260	600	
甲殼類	0	15	

予測される外部及び内部の総線量を表 4.1-19 及び表 4.1-20 に示す。

表 4.1-19 住民の総外部被ばく量 Hext (µSv/年)

被ばく	H _{ext} (μSv/年)		
校はく	1歳の子ども	成人(>17 歳)	
遊泳	9.59E-7	2.47E-5	
ボート遊び	4.79E-7	1.23E-5	
低質土砂	2.59E-3	5.83E-2	
岸辺での滞在	5.19E-4	1.17E-2	
合計	3.11E-3	7.00E-2	

表 4.1-20 水、魚、甲殻類の摂取による総内部被ばく量 H_{int} (μSv/年)

4				
食物品目	H_{intr} ($\mu Sv/$ 年)			
艮物吅日	1歳の子ども	成人(>17 歳)		
水	6.82E-1	5.54E-1		
魚	9.23E-1	1.97		
甲殼類	_	8.59E-2		
合計	1.61	2.61		

表 4.1-21 被ばく全種類の合計線量 (uSv/年)

被ばく	H (μSv/年)		
校は、	1歳の子ども	成人(>17歳)	
内部	1.61	2.61	
外部	0.003	0.070	
合計	1.61	2.68	

バルト原子力発電所の通常運転時にネマン川に排出される放射性核種による住民の被ばく線量を算出する際、堆積物中の人為的放射性核種による外部被ばくやネマン川岸辺での滞在、遊泳、ボート遊びによる外部被ばく及び成人と子どもの内部被ばくを推定した。

内部被ばくの算出においては、ネマン川の水が飲料水として使用され、その消費量が年間 100%であることを仮定している。また、年間消費する魚や甲殻類が 100%ネマン川産であることを仮定している。

外部被ばくは、主に堆積物中の 58 Co、 54 Mn、 134 Cs の蓄積によるものである。遊泳、ボート遊び、岸辺での滞在、ネマン川の堆積物による合計外部被ばく線量は、成人で $^{0.07\mu}$ Sv/年、子供で $^{0.003\mu}$ Sv/年である。

水、魚及び甲殻類の摂取による内部被ばくは、「安全報告書シリーズ No.19」に基づく年間平均食物摂取量の値を用いて分析されている。水及び食品の摂取による内部被ばくは、1歳児で $1.6\mu Sv/$ 年、成人で $2.6\mu Sv/$ 年である。

バルト原子力発電所 2 基からの液体排出による住民の総被ばくは、ほとんどが 魚の消費によるもので、その放射線量は、大人で $2.68\mu Sv/$ 年、子どもで $1.61\mu Sv/$ 年である。ネマン川の水は実際には飲料水として使用されていないため、ネマン川 への放射性核種の排出による実際の線量は大幅に低くなるであろう。

バルト原子力発電所からネマン川への排出による関連リスクは、子どもで 9.2×10^{-8} 年 $^{-1}$ 、成人で 1.8×10^{-7} 年 $^{-1}$ 、すなわち無視できるリスクレベル(10^{-6} 年 $^{-1}$ 未満)であると推定される。

人為的な内部被ばくと外部被ばくの合計線量は、デミニミス線量レベルである $10\mu Sv/$ 年を超えない。これは、原子力発電所からの排出に起因する線量について 設定された上限値 $50\mu Sv/$ 年よりも 1 桁低く、「NRB-99/2009」で規定された住民外部被ばく上限値 $1000\mu Sv/$ 年よりも 3 桁低い値である。

3) 事故放出後に適用される放射性物質基準

事故後、「住民強制避難区域」と「防護措置計画区域」という2つの緊急対応区域が設定される。これらの区域を設定するための基準は表 4.1-22 にまとめられている。

「NRB-99/2009」によると、防護措置の判断は、特定の防護措置を実施した場合に回避できる線量レベルに基づいて行われる。この目的のために、「NRB-99/2009」では、様々な防護措置のための線量バンドを記述している。これらのバンドの下端(レベル A)は回避される線量値を示し、それ以下では対策を講じる必要がない。上限(レベル B)は、回避される線量レベルを表し、あらゆる状況において対応が必要とされる。これらの範囲内の線量レベルに関して、防護措置の適用は具体的な状況による。適用基準は、表 4.1-23~表 4.1-25 にまとめられている。避難、屋内退避、安定ョウ素剤予防服用に関する判断は、事故後最初の 10 日間に受けると予測される線量(表 4.1-23)をもとに行われ、予測線量は表 4.1-26 で規定される被ばく経路を用いて算出される。食物消費と再定住に関する判断は、事故後 1 年以降の線量評価およびその後数年間に受ける線量に基づく(表 4.1-24 および表 4.1-25)。

表 4.1-22 緊急対応区域の設定基準 (NRB-99/2009)

緊急対応区域	対象臓器・組織	事故後 10 日以降の期間に受けた			
※心刈心	X) 多X加铁石户 * 形L.和X	吸収線量(mGy)			
	全身	500			
在是	肺	5000			
住民強制避難計画区域	皮膚	5000			
	甲状腺	5000			
	全身	5			
防護措置計画区域	肺	50			
	皮膚	50			
	甲状腺	50			

表 4.1-23 放射線事故初期における判断のための放射性物質基準

	最初の 10 日間	間の回避線量(mGy)	Gy)	
防護措置	全身		甲状腺、肺、皮膚		
	レベル A	レベル B	レベル A	レベル B	
屋内退避	5	50	50	500	
安定ヨウ素剤予防服用:					
成人	-	-	250*	2500*	
乳幼児	-	-	100*	1000*	
避難	50	500	500	5000	

^{*} 甲状腺線量のみ。

表 4.1-24 再定住および汚染された食品の摂取制限に関する判断のための放射性物質基準

防護措置	回避される実効線量		
別 愛 相 L	レベル A	レベル B	
汚染された食品・飲料水の	1 年目:5mSv	1 年目:50mSv	
摂取制限	2 年目以降:1mSv	2 年目以降:10mSv	
再定住	1 年目:50mSv	1年目:500mSv	
开 龙江	再定住期間全体: 1000mSv		

表 4.1-25 事故後1年間の汚染された食品の摂取制限に関する判断基準

放射性核種	食品中の放射能濃度(Bq/kg)		
// / / / / / / / / / / / / / / / / /	レベル A	レベル B	
I-131、Cs-134、Cs-137	1000	10000	
Sr-90	100	1000	
Pu-238, Pu-239, Am-241	10	100	

表 4.1-26 線量測定値の算出において考慮すべき被ばく経路 (原子力発電所における放射線事故の初期段階)

	被ばく経路			
線量測定値	プルーム中の放射性核	地表の放射性核種	吸入	
	種による外部被ばく	による外部被ばく	"双八	
吸収線量 a	+	+	+	
RBEb(赤色骨髄の加重吸収線量)	+	+	-	
RBE (甲状腺の加重吸収線量)	-	-	+	
甲状腺等価線量	-	-	+	
実効線量	+	+	+	

a 全身吸収線量は、プルームおよび沈着被ばく経路について算出したものである。

b RBE: Relative biological efficiency (相対生物学的効率)

表 4.1-27 シビアアクシデント状態における環境への緊急放出量 (単位 TBq の時間関数として)

	放出特性/	゚アクシデン	/ト発生から	の時間					
	低高度放出							高高度放	<u></u> Щ
核種	0~8 時間		0~24 時間		1~7 日間		7~30 日 間	1~7 日 間	7~30 日 間
	格納容器 漏れ経由	格納容器バイパス		格納容器バイパス	格納容器バイパス	KLC*フィル ターバイパス	KLC フィル ターバ イパ ス	KLC 71N3	7-経由
ガス	4				ı	ı			
Kr-85m	2.3E+01	2.2E+00	1.3E+01	8.3E-01	7.2E-02	3.6E-01	-	3.6E+01	-
Kr-87	8.8E+00	1.8E+00	2.6E-01	4.6E-02	-	-	-	-	-
Kr-88	4.6E+01	5.2E+00	1.1E+01	8.3E-01	1.9E-02	1.1E-01	-	1.1E+01	-
Xe-133	4.8E+02	3.4E+01	1.8E+03	7.9E+01	4.8E+02	5.7E+02	2.0E+02	5.7E+04	2.0E+04
Xe-13	1.1E+02	9.0E+00	4.7E+02	2.3E+01	1.8E+01	2.9E+01	-	2.9E+03	-
Xe-138	3.1E-01	4.7E-01	8.1E-03	3.2E-03	-	-	-	-	-
Ru-103	1.1E+00	6.2E-02	7.0E+00	2.9E-01	1.3E-01	3.1E-01	2.1E-01	3.1E+01	2.1E+01
ョウ素分子	2.				1	1			•
I-131	7.4E-01	4.8E-02	8.2E+00	4.0E-01	6.2E-02	3.5E-01	_	3.5E-01	_
I-132	4.9E-01	2.4E-02	2.6E-01	1.6E-02	2.4E-03	2.8E-03	_	2.8E-03	_
I-133	1.5E+00	8.9E-02	1.1E+01	5.3E-01	1.7E-02	2.9E-01	_	2.9E-01	_
I-134	2.4E-01	1.3E-02	1.1E-02	1.1E-04	_	_	_		_
I-135	1.1E+00	6.4E-02	3.7E+00	2.0E-01	9.4E-04	7.7E-02	_	7.7E-02	_
有機ヨウ素	THE STATE OF THE S								
I-131	3.6E-01	2.5E-02	1.3E+00	5.7E-02	3.9E-01	4.5E-01	4.7E-01	4.5E+00	4.7E+00
I-132	1.3E-01	1.7E-02	2.1E-01	1.9E-02	1.5E-02	1.6E-02	-	1.6E-01	-
I-133	6.1E-01	4.6E-02	1.6E+00	7.3E-02	1.1E-01	1.8E-01	5.9E-04	1.8E+00	5.9E-03
I-134	2.2E-02	6.6E-03	4.8E-04	1.1E-03	-	-	-		-
I-135	3.9E-01	3.4E-02	4.4E-01	2.4E-02	5.9E-03	1.8E-02	-	1.8E-01	-
エアロゾル	エアロゾル								
I-131	2.3E+01	5.9E+00	1.3E+01	2.3E+00	6.3E-01	6.2E+00	-	6.2E-01	-
I-132	1.8E+01	7.9E+00	6.2E+00	2.1E+00	2.6E-02	5.3E-02	-	5.3E-03	-
I-133	4.2E+01	1.2E+01	1.8E+01	3.4E+00	1.7E-01	5.5E+00	-	5.5E-01	-
I-134	3.1E+00	2.6E+00	6.4E-02	4.0E-02	-	-	-		-
I-135	2.8E+01	8.7E+00	6.7E+00	1.5E+00	9.7E-03	9.1E-01	-	9.1E-02	-
Cs-134	5.7E+00	1.5E+00	3.3E+00	5.8E-01	1.2E-01	1.5E+00	2.5E-01	1.5E-01	2.5E-02

	放出特性/アクシデント発生からの時間									
	低高度放出							高高度放出		
拉锤	0 - 0 11488		0 - 04 11 - 11		1 - 7 🗆 🖽		7~30 日	1~7 日	7~30 日	
核種	0~8 時間		0~24 時間		1~7日間		間	間	間	
	格納容器	格納容器	格納容器	格納容器	格納容器	KLC*フィル	KLC 71N	ZI C zod	∜ ∀ ⊞	
	漏れ経由	バイパス	漏れ経由	バイパス	バイパス	ターバイパス	ターバイパス	KLC 71N7	KLC フィルター経由	
Cs-137	2.7E+00	6.9E-01	1.6E+00	2.7E-01	7.5E-02	7.3E-01	1.6E-01	7.3E-02	1.6E-02	
Sr-90	6.4E-02	1.6E-02	2.6E-02	4.5E-03	6.0E-03	6.2E-03	1.3E-02	6.2E-04	1.3E-03	
Te-131m	3.5E+00	9.3E-01	1.1E+00	2.0E-01	4.5E-03	5.4E-01	6.0E-05	5.4E-02	6.0E-06	
Ba-140	1.5E+00	3.8E-01	5.8E-01	1.0E-01	1.3E-01	4.5E-01	1.3E-01	4.5E-02	1.3E-02	
La-140	1.2E-01	2.9E-02	1.4E-01	2.5E-02	2.2E-02	1.6E-01	2.7E-02	1.6E-02	2.7E-03	
Ce-141	3.5E-02	8.7E-03	1.4E-02	2.4E-03	4.5E-03	1.3E-02	7.1E-03	1.3E-03	7.1E-04	
合計	合計									
ガス	6.7E+02	5.3E+01	2.3E+03	1.0E+02	5.0E+02	6.0E+02	2.0E+02	6.0E+04	2.0E+04	
ヨウ素	1.2E+02	3.7E+01	7.1E+01	1.1E+01	1.4E+00	1.4E+01	4.7E-01	8.6E+00	4.7E+00	
エアロソ゛ル(ヨウ	1.4E+01	3.5E+00	6.8E+00	1.2E+00	3.7E-01	3.4E+00	5.9E-01	3.4E-01	5.9E-02	
素を除く)	1.4ETU1	o.9E⊤00	0.0ET00	1.4E±00	5.7E-U1	5.4ET00	0.3E-01	ე.4E⁻UI	0.9E-02	

^{*} KLC フィルターは、原子炉建屋内を減圧するためのシステムであり、有効なョウ素フィルター及びエアロゾルフィルターが設置されている。

(5) 評価結果の公表又は国際機関等への提供の有無

国営原子力企業「ロスアトム社(Rosatom 社)」は IAEA に、IAEA の安全基準に対し、バルト原子力発電所 1 号機の環境影響評価の国際ピアレビューを行うよう要請した。カリーニングラードがリトアニアとポーランドに接していることに着目し、ロスアトム社はエスポー条約(越境影響の環境アセスメント条約)の要件に対し、環境影響評価資料をレビューすることも要請した。

国際ピアレビューチームは、2014年7月にIAEA本部で会議を開き、レビューからの成果を検討し、2014年10月に中間報告書がロスエネルゴアトム・コンツェルン社に提出された。

2014年11月にはサンクトペテルブルクで会議を開催し、中間報告書の内容を検討した。2014年12月に最終報告書案のコピーをロスエネルゴアトム・コンツェルン社に提供し、報告書の事実関係の正確性を確認することができた。最終報告書は、2015年1月にロスエネルゴアトム・コンツェルン社に提出された。

(6) 評価結果を踏まえて、追加的な措置を講じた例の有無 評価結果を踏まえて追加的な措置を講じた事例については現状見当たらない。

4.1.6 米国

米国については以下の2つの発電所を対象に調査を実施した。

- ・ Diablo Canyon 発電所の通常運転中の液体放出物(liquid effluent)の海洋放出
- Three Mile Island 発電所の 1979 年事故時に発生した水 (AGW: Accident Generated Water) の大気中への蒸発処分

(1) Diablo Canyon 発電所の通常運転中の液体放出物(liquid effluent)の海洋放出 1) 基本情報

Diablo Canyon 発電所(WH-PWR:全2基)は、PG&E 社が所有・運転する原子力発電所で、カリフォルニア州サンルイスオビスポ郡にあるアヴィラビーチ沿いの太平洋岸に立地しており、液体放出物の放出先と最終ヒートシンクは太平洋である。

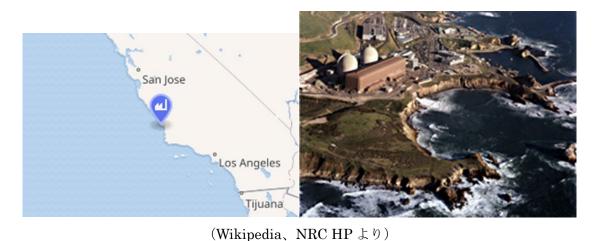


図 4.1-13 Diablo Canyon 発電所の所在地と外観

Diablo Canyon 発電所の運転認可取得、運転開始、現在の認可期限は表 4.1-28 の通りである。

表 4.1-28 Diablo Canyon 発電所

ユニット	運転認可取得	運転開始	認可期限
1号機	1984 年	1985 年	2024年
2 号機	1985 年	1986 年	2025 年

なお、 $Diablo\ Canyon\ 発電所の運転を継続していくかどうかについてはこの十数年の間で大きく変遷があったため注記しておく。<math>PG\&E\ 社は、2000\ 年代末から2010\ 年代にかけて\ Diablo\ Canyon\ 発電所の認可期限の延長を申請し、審査を受け$

ていたが、福島第一原子力発電所事故後にカリフォルニア州と環境団体からの要請を受けて認可期限で廃炉する方針を表明し、2018年に認可期限の延長申請を撤回していた。しかしながら、PG&E社はこれを覆し、2022年10月に認可期限の延長を再度申請することを表明している。

Diablo Canyon 発電所の通常運転中に発生する液体放出物(liquid effluent)の量とその放射線影響については、放射性放出物放出に関する年次報告書(Annual Radioactive Effluent Release Report)の中で毎年報告されている^[13]。2022 年 11 月時点の最新版は、2021 年報告書となっている。

前述の通り、Diablo Canyon 発電所は太平洋岸に立地しているため、トリチウムを含む液体放出物は太平洋へと放出されることとなる。

なお、原子力発電所からの液体放出物中の放射性物質の濃度制限基準は、10 CFR Part 20, Appendix B「職業被ばくのための放射性核種の年摂取限度(ALI)および誘導空気中濃度(DAC)、排水濃度、下水道への放出に関する濃度」に核種毎に定められており、気体及び液体の放出物の濃度制限基準は Table 2 に示されている [14]。この内、トリチウムに関する濃度基準は表 4.1-29 の通りである。

		2 111 10 1 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1	4		
原子			Table 2 放出物濃度		
番号	核種	クラス	欄 1	欄 2	
留り			気体(μ Ci/ml)	液体(μ Ci/ml)	
1	三重水素	液体、誘導空気中濃度 (DAC)、 皮膚吸収を含む	1E-07	1E-03	

表 4.1-29 トリチウムに関する濃度基準

※欄1及び欄2の濃度は、1年間継続して吸入または摂取した場合、総実効線量当量(TEDE)で $0.05\,\mathrm{rem}$ (50 mrem、 $0.5\,\mathrm{mSv}$) となる放射性核種濃度に相当する。

2) 実施主体

PG&E 社が Diablo Canyon 発電所の運転で発生する液体放出物による放射線影響の評価を毎年実施している。

3) 根拠法令

PG&E 社は、10 CFR 50.36a「原子力発電所からの放出物に関する Tech. Spec.」の(a)(2)項(以下)の規定に従い、液体状(及び気体状)の放射性物質放出量と推定被ばく量を毎年報告している。

(10 CFR 50.36a(a)(2)項)

各運転認可取得者、および NRC 委員会が 10 CFR 52.103(g)に基づく決定を行った後の各 COL 取得者は、過去 12 ヶ月間に液体および気体の放出物で非制限区域に放出された主要な放射性核種の各量を明記し、放出物による公衆への潜在的な最大年間放射線被ばく量を推定するために NRC 委員会が必要とするその他の情報を含む報告書を毎年提出しなければならない。報告書は、10 CFR 50.4 に規定されたとおりに提出されなければならず、報告書の提出間隔は 12 ヶ月以内でなければならない。報告期間中に放出された放射性物質の量が設計目標を大幅に超えている場合、報告書はこのことを具体的に取り上げなければならない。(以下略)

4) 評価手法

放射性放出物による被ばく評価について、NRC は規制指針として以下を公表している。

- Reg. Guide 1.109, Rev.1「10 CFR Part 50, Appendix I への遵守を評価するための原子炉放出物の定期的な放出による人への年間被ばく線量の算出方法」 (1977年10月付)
- Reg. Guide 1.111, Rev.1「軽水炉からの定期的な放出における気体状放出物の 大気輸送・拡散の推定方法」(1977 年 7 月付)

なお、Diablo Canyon 発電所では、放射性放出物放出に関する年次報告書の添付 資料(Attachment)において、より具体的な評価手法を説明している。特に、最 新の 2021 年報告書(下記 URL)では、添付資料 4 として Diablo Canyon 発電所 の手順書「オフサイト線量計算(Rev.42)」が示され、線量計算に関する具体的な 評価手法(計算式など)が列記されている。

https://www.nrc.gov/docs/ML2212/ML22124A030.pdf

一部抜粋して以下に示す。

(2021 年報告書の添付資料 4「オフサイト線量計算(Rev.42)」より一部抜粋)

- 5.2 液体放出物による線量計算
 - 5.2.1 Diablo Canyon 発電所の号機による線量の分割
 - a. 1 号機と 2 号機は、号機共通の放射性廃液処理系から放出される線量を それぞれ 50% ずつ考慮する。
 - 5.2.2 線量への寄与
 - a. 下記式1及び式2に示すように非制限区域へ放出される液体放出物中に

含まれる全ての放射性核種に関して、海水魚及び海水無脊椎動物の摂取 による最大被ばく者(成人)の全身及び各個別臓器(骨、肝、甲状腺、腎、 肺、消化器・肺)への線量寄与を計算する。

$$D_o = F_{\ell} \Delta t \sum_i A_{io} C_i e^{-\lambda_i t_m} \text{ (eq 1)}$$

Do =臓器「o」への線量預託(mrem)

Δt=放出の期間 (時間)

 A_{io} =放射性核種「i」による臓器「o」に対するサイト固有の摂取線量預託 係数(μ Ci/ml あたり mrem/hr) 式 3 で定義される。

C_i=未希釈の液体放出物中の放射性核種「i」の濃度 (μCi/ml)

λ_i=放射性核種「i」の崩壊定数

tm=サンプリング終了から放出の中間点までの時間間隔

 F_{ℓ} =放出期間中のニアフィールド平均希釈係数:以下式2で定義される

$$\frac{\text{Waste flow}}{\text{Dilution flow} \times Z} \text{ (eq 2)}$$

Z= 放流構造物のサイト固有の混合効果; 具体的には、液体摂取経路における魚類または無脊椎動物の汚染を引き起こす、放流構造物と水域の間で発生する希釈を考慮したもの。 Diablo Canyon 発電所の場合、Z=5。

(以下略)

5) 評価結果の公表又は国際機関等への提供の有無

前述の通り、PG&E 社は 10 CFR 50.36a(a)(2)項の規定に従い液体状(及び気体状)の放射性物質放出量と潜在的な最大年間被ばく線量を毎年 NRC に報告している。NRC はこれを HP上で公開している。

Diablo Canyon 発電所の 2021 年報告書における液体放射性物質放出量とそれによる被ばく線量計算結果のサマリ(直近3年分)を表 4.1·30 に示す。

表 4.1-30 Diablo Canyon 発電所の 2021 年報告書における液体放射性物質放出量とそれ による被ばく線量計算結果(直近3年分)

液体放出物	2021年	2020年	2019年	脚注
トリチウム以外の全放射能(Ci)	1.17E-02	6.87E-03	3.27E-02	1
トリチウムの放射能 (Ci)	1080	2782	2214	2
全身被ばく (mrem)	1.25E-04	3.36E-04	4.64E-04	3
一次液体廃棄物の全放出量(リットル)	7.39E+06	9.91E+06	7.19E+06	

- 脚注 1:全放射能は、燃料交換停止の回数や、燃料サイクルが原子炉冷却材の希釈に比例するサイクルの初期、中期、後期であるかによって変動する。
 - 2: トリチウム放出量は、主に2つの要因によって年ごとに変化する。1つ目は、原子炉冷却材のトリチウム生成量が燃料の燃焼特性に基づいて変化することである。トリチウムは原子炉の起動時に増加し、サイクルの中期で安定し、サイクルの終わりに向かって減少し始める。2つ目は、放出されるトリチウムの値が暦年の運転停止回数に依存することである。ユニット停止中は、より多くの液体廃棄物が処理され放出される。
 - 3: Diablo Canyon 発電所の立地とその周辺のセキュリティ警戒区域の関係上、サイトからの液体放出物によって大きな被ばくを受ける可能性のある一般公衆は存在しない。ここに示した液体放出中の全身被ばく線量は、仮想的な評価対象者を設定して計算されたものである。
 - 6) 評価結果を踏まえて、追加的な措置を講じた例の有無 現在公開されている Diablo Canyon 発電所の 2005 年~2021 年の年次報告書 (Annual Radioactive Effluent Release Report) を確認したが、評価結果を踏ま えて追加的な措置を講じた事例は見当たらない。
 - (2) Three Mile Island 発電所の 1979 年事故時に発生した水 (AGW: Accident Generated Water) の大気中への蒸発処分
 - 1) 基本情報

Three Mile Island(TMI)発電所(B&W-PWR:全 2 基)は、(1979 年当時) GPU 社が所有し、GPU Nuclear 社が運転していた原子力発電所である。ペンシルバニア州ミドルタウン南方約 2.5 マイル(約 4km)にあるサスケハナ川内の中州であるスリーマイル島に立地しており、最終ヒートシンクはサスケハナ川であった。

(NUREG/KM-0001 より)

図 4.1-14 Three Mile Island 発電所の外観

TMI 発電所の 2022 年現在の状況はいずれも廃止措置中となっている。TMI 発電所の運転認可取得、運転開始、永久停止、廃止措置完了(予定)は表 4.1-31 の通りである。

表 4.1-31 Three Mile Island 発電所

ユニット	運転認可取得	運転開始	永久停止	廃止措置完了(予定)
1 号機	1974 年	1974年	2019年	2079年
2 号機	1978年	1978年	1979 年**	2037年

※2号機は、1979年以降は運転状態になったことがなく、事故時点を永久停止とした。

TMI 発電所 2 号機では、1979 年 3 月に炉心溶融事故が発生した。この事故によって放射性物質を含む大量の水が原子炉建屋内等に発生した。TMI 発電所ではこの水のことを AGW(Accident Generated Water)と呼んでおり、以下と定義される。

- (a) 1979 年 10 月 16 日時点で一次系を含む 2 号機の補助建屋、燃料取扱建屋、格納容器建屋内に存在した水(ただし、除染作業の結果、AGW ではない水と合流し、処理前の合流水のトリチウム濃度が 0.025 μ Ci/ml 以下になる水は例外とする。)
- (b) 処理前の総放射能が 1μ Ci/ml を超える水 (ただし、そのような水が元々AGW ではない水で、洗浄に使用することにより汚染される場合は除く。)
- (c) 処理前のトリチウム含有量が 0.025 µ Ci/ml を超える水

この AGW は、1979 年の事故後、燃料撤去作業や系統の除染作業、原子炉建屋の空気冷却器の凝縮、雨水や地下水に流入などによって増加していき、最終的に約2.3 百万ガロン(約8706トン)となった。なお、後述の通り、この AGW は大部分が大気中に蒸発処分され、1993 年8月までに完了した。

参考として、1979 年(事故直後)と 1992 年(蒸発処分完了前)の AGW の放射能濃度を表 4.1-32 に示す $^{[15]}$ 。

表 4.1-32 1979 年(事故直後) と 1992 年(蒸発処分完了前)の AGW の放射能濃度

核種	1979 年 8 月 (μ Ci/ml)	1992 年 9 月 (μ Ci/ml)
トリチウム	1.03	0.018
セシウム 137	176.3	3.2
ストロンチウム 90	2.81	0.45

2) 実施主体

AGW の処分方法について、GPU Nuclear 社は、大部分 (99%以上)の AGW (主にトリチウム水)をサイト内で大気中に蒸発処分し、残ったごく一部 (1%未満) (主にセシウムとストロンチウムを含むホウ酸塩水) は固化して低レベル放射性廃棄物 (LLW) 処分場に処分する方法が最適であると NRC に提案した。

これを受けて、NRC は、1981 年~1989 年にわたってプログラマティック環境 影響声明書 (PEIS: Programmatic Environmental Impact Statement) (NUREG-0683 の Vol.1~2 及び Supplement 1~3) を順次発行した。

文献 ID	URL
NUREG-0683, Vol.1	https://adamswebsearch2.nrc.gov/webSearch
	2/main.jsp?AccessionNumber=ML19343C359
NUREG-0683, Vol.2	https://adamswebsearch2.nrc.gov/webSearch
	2/main.jsp?AccessionNumber=ML20003C732
NUREG-0683, Supplement 1	https://adamswebsearch2.nrc.gov/webSearch
	2/main.jsp?AccessionNumber=ML20106J132
NUREG-0683, Supplement 2	https://adamswebsearch2.nrc.gov/webSearch
	2/main.jsp?AccessionNumber=ML20235A112
NUREG-0683, Supplement 3	https://adamswebsearch2.nrc.gov/webSearch
	2/main.jsp?AccessionNumber=ML20247F778

この Supplement 2 で、NRC は、下記 9 種類の処分方法について、処分に要する費用や長期的に利用可能な空間の有無、処分に要する時間等の観点から、妥当性を検討した。

- (1) 蒸発処分、底部を固化して LLW 処分場に処分(認可取得者の提案)
- (2) 蒸発処分、底部を固化してサイト内保管
- (3) 蒸留 (閉サイクル蒸発)、底部を固化して LLW 処分場に処分、凝縮水の河 川放水
- (4) 米国エネルギー省(DOE)のネバダテストサイトのサイト外での蒸発処分
- (5) 固化した廃棄物を恒久的にサイト内保管
- (6) 固化した廃棄物を LLW 処分場で処分
- (7) サスケハナ川への長期的(数年間)な放出
- (8) サスケハナ川への短期的(数日)な放出
- (9) TMI サイト内のタンクでの液体貯蔵

その結果、NRC は、以下に示すように結論付け、GPU Nuclear 社が提案する処分方法(大部分のAGW の蒸発処分、一部を固化して LLW 処分場に処分)を妥当と判断し、承認した。

(NUREG-0683, Supplement 2)

認可取得者の提案する行動に対して、明らかに望ましいと思われる代替案はなかった。どの代替案も、TMI の周辺住民と作業員に対する影響の総和は非常に小さいと推定される。いくつかの潜在的影響(コスト、長期的な空間的余裕、所要時間)の定量的見積もりは、いくつかの代替案で異なることが分かったが、これらの違いは、明らかに好ましい代替案を特定したり、評価された 9 つの代替案のいずれかを拒否したりできるほど大きくはないと判断された。

(中略)

NRC スタッフは、本評価に基づき、また本 Supplement 案に対するコメントを 考慮した結果、認可取得者の提案する AGW を蒸発させるという処分計画は容認可能と結論づける。本報告書で確認されたように、TMI サイトで水を蒸発させ、その後、残りの低レベル放射性固体を処分することは、人間環境の質に大きな影響を与えることはない。

(NUREG-0683, Supplement 3)

NRC スタッフは、本評価と本 Supplement のドラフトに対するコメントに基づき、認可取得者の提案と NRC スタッフが特定した代替案について、関連する規制要件の遵守や人間環境の質に大きな影響を与えるかどうかを検討した。環境面で認可取得者の提案する活動よりも明らかに優れていると思われる代替案はなかった。

なお、NRC は、上記 9 種類以外にも以下に示す 15 種類の処分方法についても 候補として摘出したが、これら 15 種類は上記 9 種類に比べて費用面や技術面、規 制面で明らかに劣ると考えられたため、詳細な評価が行われることなくスクリーンアウトされた。

海洋処分	オークリッジ国立研究所のハイドロフ
	ラクチャリング施設で処分
サイト内の池で蒸発	再利用
蒸留固化処理	ネバダテストサイト(NTS)での陸上散
	布
蒸留後開サイクル蒸発処理	複合触媒交換処理
サイト内の冷却塔で蒸発させ、濃縮物を	水蒸気蒸留処理
河川に廃棄	
TMI での深井戸注入	高高度処分
ネバダテストサイトの深井戸注入	ケンタッキー州マキシフラッツでの開
	サイクル蒸発
ハンフォードのクリブ処分	_

この内、海洋処分に関する NRC の評価結果は以下のみである。

(経済産業省 汚染水処理対策委員会 トリチウム水タスクフォース 第 6 回 資料 3「TMI-2 Tritiated Water Experience」添付資料[16]より)

海洋処分

バルク液体または固化包装された固体(ドラム缶に濃縮)として海洋投棄することが検討された。ただし、40 CFR Subchapter H の規定に基づく環境保護庁(EPA)の承認が必要である。また、議会の承認も必要である。

米国が加盟しているロンドン条約 (IMO 1985) の決議により、放射性廃棄物の 海洋投棄は禁止されている。従って、近い将来に承認される可能性は極めて低い。コストが他の選択肢より大幅に低くなるとは考えられない。

3) 根拠法令

国家環境政策法(NEPA: National Environmental Policy Act)では、省庁等の 連邦政府機関に対して、所掌する活動が環境に及ぼす影響を評価するよう義務付 けている。NEPAの主な条項を以下に抜粋する。

(国家環境政策法[17])

42 USC § 4321

本法律の目的は次の通り:人間と環境との生産的で楽しい調和を奨励する国 家政策を宣言すること、環境と生物圏への損害を防止または排除し、人間の健康 と福祉を増進する努力を促進すること、国家にとって重要な生態系と天然資源 に対する理解を深めること、および環境の質に関する委員会を設立すること。

(中略)

Sec. 102 [42 USC § 4332]

議会は、可能な限り、次のことを認可し指示する。

- (1) 合衆国の政策、規制、および公法は、この法律に定められた政策に従って解釈され、管理されるものとする。
- (2) 連邦政府のすべての機関は、以下を行うものとする。
 - (A) 人間の環境に影響を与える可能性のある計画および意思決定において、自然科学および社会科学と環境設計技術を統合的に利用することを保証する体系的、学際的なアプローチを利用すること。
 - (B) 本法律の Title II で設立された環境の質に関する委員会と協議して、 現在では定量化されていない環境上の快適さと価値が、経済的・技術 的な考慮とともに意思決定において適切に考慮されるようにする方 法と手順を特定し、開発すること。
 - (C) 人間環境の質に重大な影響を与える立法案およびその他の主要な連邦政府の行動に関するすべての勧告または報告書に、担当官による以下の詳細な説明を含めること。
 - (i) 提案された措置の環境影響。
 - (ii) その提案が実施された場合に回避できない環境への悪影響。
 - (iii) 提案された措置の代替案。
 - (iv) 人間環境の短期的な暫定的利用と、長期的な生産性の維持・向上 との関係。
 - (v) 提案された措置が実施された場合に、それに伴う不可逆的かつ回復不能な資源の預託。

(以下略)

4) 評価手法

NRC は、NUREG-0683, Supplement 2 において、前述の 9 種類の処分方法によって想定されうる複数の影響を評価した。本評価で検討された影響は以下の通り。

- ・ サイト外の公衆の被ばく量(骨、全身、甲状腺)
- ・ サイト外の公衆の放射線起因のがん死亡率(予想)と遺伝子異常(予想)
- ・ 作業員の被ばく量
- 作業員の放射線起因のがん死亡率(予想)

- ・ 利用する土地の広さ
- 放射性廃棄物の地中処分量
- ・ 認可取得者のコスト
- ・ 完了までの時間
- ・ 交通事故の回数と死亡者数 (予想)
- ・ 事故による個人最大被ばく量(骨、全身)
- ・ 事故による被ばく(骨、全身)

NRC の評価結果を表 4.1-33 に示す。

表 4.1-33 NRC の評価結果

2	文 4.1 ⁻ 33 NRU の評価結果
影響	影響の範囲
サイト外の公衆の被ばく量	0~14 人 rem (0~0.14 人 Sv)
(骨)	サイト外の個人最大被ばく量 $0\sim0.4~\mathrm{mrem}~(0\sim4\mu\mathrm{Sv})$
サイト外の公衆の被ばく量(全	0~3 人 rem (0~0.03 人 Sv)
身)	サイト外の個人最大被ばく量 $0\sim5~\mathrm{mrem}~(0\sim50\mu\mathrm{Sv})$
サイト外の公衆の被ばく量(甲	0~6 人 rem (0~0.06 人 Sv)
状腺)	サイト外の個人最大被ばく量 $0{\sim}4~{ m mrem}~(0{\sim}40\mu{ m Sv})$
サイト外の公衆の放射線起因	0~0.0004
のがん死亡率予想	
サイト外の公衆の放射線起因	0~0.002
の遺伝子異常予想	
作業員の被ばく量	$0\sim25$ 人 rem($0\sim0.25$ 人 Sv)
作業員の放射線起因のがん死	0~0.003
亡率予想	
利用する土地の広さ	$0\sim49,000 \text{ ft}^2 \ (0\sim4,552 \text{ m}^2)$
放射性廃棄物の地中処分量	0~460,000 ft ³ (0~13,026 m ³)
認可取得者のコスト	10 万ドル~4100 万ドル
完了までの時間	0~36 か月
交通事故の回数	0~12 回
交通事故の死亡者数予想	0~0.8 人
事故による個人最大被ばく量	全身:0~60 mrem (0~600 µ Sv)
	骨: 0~3000 mrem (0~30 mSv)
事故による被ばく	全身:0~0.02 人 rem (0~0.2 人 mSv)
	骨:0~0.7人rem (0~70人mSv)

上記評価の結果、前述の通り NRC は以下と結論付け、GPU Nuclear 社が提案する処分方法(大部分の AGW の蒸発処分、一部を固化して LLW 処分場に処分)を妥当と判断し、承認した。

(NUREG-0683, Supplement 2)

認可取得者の提案する行動に対して、明らかに望ましいと思われる代替案はなかった。どの代替案も、TMI の周辺住民と作業員に対する影響の総和は非常に小さいと推定される。いくつかの潜在的影響(コスト、長期的な空間的余裕、所要時間)の定量的見積もりは、いくつかの代替案で異なることが分かったが、これらの違いは、明らかに好ましい代替案を特定したり、評価された 9 つの代替案のいずれかを拒否したりできるほど大きくはないと判断された。

(中略)

NRC スタッフは、本評価に基づき、また本 Supplement 案に対するコメントを 考慮した結果、認可取得者の提案する AGW を蒸発させるという処分計画は容認可能と結論づける。本報告書で確認されたように、TMI サイトで水を蒸発させ、その後、残りの低レベル放射性固体を処分することは、人間環境の質に大きな影響を与えることはない。

5) 評価結果の公表又は国際機関等への提供の有無

前述の通り、NRC は、TMI の AGW の処分に関する評価結果を NUREG-0683 シリーズとして ADAMS で公表している。

6) 評価結果を踏まえて、追加的な措置を講じた例の有無

前述の評価結果を踏まえて追加的な措置を講じた事例は見当たらない。NRCは、NUREG-0683, Supplement 2 で評価した通り、GPU Nuclear 社の処分方法を妥当と結論付けた。GPU Nuclear 社は、NRC から許可された蒸発処分を実施し、1993年8月までに完了した。

4.1.7 台湾

台湾について台湾第四原子力発電所(龍門原子力発電所)を対象に調査を行った [18]。

(1) 実施主体

台湾電力公司(以下「台電」と略す)が、龍門原子力発電所の環境影響評価に関する資料の提示を担っている。

(2) 根拠法令

原子力発電所の施工と稼働が環境に与える影響の評価のために、先ずは評価の根拠として、適用する環境法規(原子力エネルギー法規を含む)を明確にしなければならない。本環境影響評価で採用する環境法規は以下の通りである。

1) 公害防止に関する法規

▶ 大気:

大気汚染防止法(中華民国 71 年(1982 年)5 月 7 日に公布)、大気汚染防止法施行細則(中華民国 72 年(1983 年)5 月 4 日行政院衛生署)、中華民国台湾地区環境大気品質標準(中華民国 79 年(1990 年)3 月 12 日に環保署が修正を公告)、台湾省固定汚染源大気汚染物質排出基準(中華民国 75 年(1986 年)8 月 18 日に省政府が公告)、交通機関による大気汚染物質排出基準(中華民国 80 年 (1991 年)4 月 15 日に環保署が改定公布)。

➤ 水:

水汚染防止法(中華民国 80 年 (1991 年) 5月6日に総統令として修正公布)、 水汚染防止法施行細則(中華民国 73 年 (1984 年) 5月18日に行政院衛生署が公 布)、放流水基準(中華民国 80 年 (1991 年) 1月16日に環保署が改定公布)、飲 用水管理条例(行政院衛生署が中華民国 61 年 (1972 年) 12月16日に公告し施 行)。

▶ 廃棄物:

廃棄物処理法(中華民国 77年 (1988年) 11月 11日に総統令として改定公布)、 廃棄物処理法台湾省施行細則(台湾省政府が中華民国 72年 (1983年) 1月4日に 修正)、事業廃棄物保管・撤去処理方法および施設基準(中華民国 78年 (1989年) 5月8日に環保署が公布)。

▶ 騒音:

騒音規制法 (中華民国 72 年 (1983 年) 5 月 13 日に総統令として公布)、騒音規制法施行細則 (中華民国 73 年 (1984 年) 12 月 20 日に行政院衛生署が公布)、騒音規制標準 (中華民国 74 年 (1985 年) 2 月 12 日に行政院衛生署が公告)。

2) 原子力エネルギーに関する法規

原子力エネルギー法(中華民国 60 年 (1971 年) 12 月 24 日に総統令として改定公布)、原子力エネルギー法施行細則(中華民国 72 年 (1983 年) 11 月 25 日に改定公布)、電離放射線保護安全基準(中華民国 80 年 (1991 年) 7 月 10 日に改定公布)、放射性物質安全運送規則(中華民国 60 年 (1971 年) 12 月 15 日に公布)、処理予定放射性物質の管理規則(中華民国 78 年 (1989 年) 5 月 10 日に改定公布)、米国連邦規則 10 CFR Part 20,50,51,100 (米国原子力規制委員会が中華民国 79年 (1990 年)に公布)。

3) 自然保全に関する法規

文化資産保存法(中華民国 71 年 5 月 26 日に公布)、文化資産保存法施行細則 (中華民国 73 年 (1984 年) 2 月 22 日に文建会が公布)、水利法(中華民国 72 年 (1983 年) 2 月 28 日に総統令として修正)、水利法施行細則(中華民国 64 年 5 月 12 日行政院が改定公布)、漁業法(中華民国 80 年 (1991 年) 2 月 1 日に改定公 布)、漁業法施行細則(中華民国 74 年 (1985 年) 8 月 5 日に農業委員会が改定公 布)、山間斜面地保全利用条例(中華民国 75 年 (1986 年) 1 月 10 日に総統令とし て改定公布)、野生動物保全法および施行細則(中華民国 79 年 (1990 年) 3 月 31 日に行政院農業委員会令として公布)。

4) 観光に関する法規

観光発展条例 (中華民国 69 年 (1980 年) 11 月 24 日に総統令として改定公布)、 特定風景区管理規則 (中華民国 74 年 (1985 年) 1 月 11 日に交通部が改定公布)。

(3) 評価手法

1) 環境影響評価制度

環境影響評価制度は、現時点で最も予防的な機能があると世界で認められている環境保護制度であり、かつ資源管理に効果的に組み込むことができ、環境計画のための優れたツールとして世界各国で次々と採用されている。国内での環境保護意識の生まれと高まりはここわずか数年のことであるが、行政院経済建設委員会(以下「経建会」と略す)、原子能委員会(以下「原能会」と略す)、環境保護署(以下「環保署」と略す)といった政府の経済・建設および環境保護に関連する主管機構は早くからこの制度を非常に重視していた。中華民国 69 年 (1980 年)、経建会および原能会はそれぞれに台 69 経 4655 号および台 69 会核字 0683 と 0756 号の書簡を発行し、原子力発電所の建設前に環境影響評価作業を行わなければならないと要求した。

中華民国 74 年(1985 年)10 月、行政院は「環境影響評価プランの推進強化」

を承認し、台湾第四原子力発電所も環境影響評価(Environmental Impact Assessment, EIA)のモデル計画 14 項目を実施しなければならないとされたが、その審査手順は原能会の規定に従って行うこととなった。

原能会の「原子力発電所環境影響評価作業要点」によると、環境影響評価レポート(以下「評価レポート」と略)の評価作業のプロセスは以下の通りと説明されている。

①原子力発電所の環境影響評価レポートの形式およびその詳細事項は、原子力エネルギー委員会(以下「原能会」と略)が他の関連機関と共同で定める。台電は原子力発電所の建設計画を提出すると同時に評価レポート初稿を提出し、計画主管機関に提出し、原能会に転送する。

評価レポート初稿には下記の事項を記載する。

- 1. 原子力発電所建設計画の目的および内容
- 2. 建設場所と環境の説明
- 3. 発電所の設計および安全特性
- 4. 発電所の施工による環境影響
- 5. 発電所の運転による環境影響
- 6. 排出物質と環境モニタリング計画
- 7. 予期せぬ事故による環境影響
- 8. 代替プランの評価
- 9. 計画の総合的評価
- 10. 環境保全および汚染防止策
- 11. 緊急時の計画
- 12. 結論と提案

原能会は評価レポート初稿の受領後 15 日以内に審査作業を開始しなければならず、原能会は評価レポート初稿を関連機関それぞれに送付して意見を募集する。この初稿審査作業は、整った評価レポート初稿を原能会が受領してから 6 か月以内に完了させるが、開発計画の規模および影響レベルによっては延期してもよい。評価レポート初稿の審査は原能会で構成する「環境評価委員会」が行う。

②一般市民の参加

原能会は評価レポート初稿の受領後 15 日以内にプレスリリースを行い、同時に台電が評価レポート初稿を関連の県(市)政府に送り、郷(鎮、市、区)の役所に転送し、一般市民の閲覧に 30 日間供する。関連機関(郷、鎮、市、区役所を含む)、社会公益団体、学者・専門家、および地域住民は、環境保全、汚染防止および原子力エネルギーの安全の観点から、評価レポート初稿に対する提案

および修正意見を評価レポート初稿の閲覧期限内に書面で原能会に提出し、台電に転送して説明を提出する。台電は一般市民の閲覧期限満了後 30 日以内に説明会を行い、その日時および場所はプレスリリースし、閲覧場所に公示する。地域住民の代表者には説明会への参加を依頼し、台電は、地域の住民の代表者から寄せられた、環境保全、汚染防止および原子力エネルギー安全などに関する意見に対して詳細に回答する。説明会の各提案および提案に対する回答は文書化して保存し、その後の発電所の設立と稼働の参考に供すること。

③報告、修正

台電は環境評価委員会の審査意見および一般市民の参加によって得られた提案と修正意見をまとめ、関連事項に必要な修正を加えた後、環境影響評価レポート(以下「評価レポート」と略す)を作成して計画主管機関に提出し、原能会と環境保護主管機関に合同審査のために転送する。

④計画の承認

評価レポートの審査が完了した後、原能会は審査結果を計画主管機関に送付し、発電所の投資計画の承認の参考に供する。台電は原子力発電所の建設計画が承認されてから 15 日以内に主管機関に報告し、評価レポートを関連機関(郷、鎮、市、区役所を含む)それぞれに送付し、同時にプレスリリースを行う。

2) 評価方法

現地の人間、およびヒト以外の生物に対する主な被ばく経路は、下記 2 つの節でそれぞれに論じる。

人間以外の生物の被ばく経路

発電所から放射性物質が放出される水域に生息する水生生物は、ベータ、ガンマ放射線の直接外部被ばくを受け、その他の外部被ばくは水底の泥や砂に堆積した放射性核種および水面に堆積した放射性粒子によるものである。それらは水域に放射される放射性核種を吸収するので内部放射被ばくの影響も受ける。放射性ガスが大気に放出されるので、発電所周辺の地上の動植物はガス状放出物の煙を浴び、また植物、土壌および海岸線などの汚染された地表からの直接放射にさらされて外部放射線量を受ける。また外部のガス状放出物を吸い込むこと、および汚染された食物を摂取することで内部放射被ばくの影響を受ける。

▶ 人間の被ばく経路

水を介して伝播する放射性液体放出物が人間を放射被ばくさせる経路は、下記

の水域生態系統による可能性がある。

- ✓ 食用の魚、無脊椎動物、海洋植物。
- ✓ 海辺でのレジャー時の、海洋堆積物による外部被ばく。
- ✓ 遊泳やボート遊び時の、水域内の放射性核種による外部被ばく。

台湾第四原子力発電所の放射性液体は直接に海中に放出されるので、線量を計算する際には汚染水の飲用や汚染水で灌漑された食物の摂取は考慮しない。

人間は、下記の陸上生態系経路を介して放射性ガス放出物の被ばくを受ける。

- ✓ ガス放出物を含む大気への曝露。
- ✓ 地表に堆積した放射性核種による照射。
- ✓ 放射性ガス放出物の吸入。
- ✓ 汚染された食物の摂取。

最初の2つの経路は、人間がベータ線とガンマ線によって外部全身線量および皮膚線量を受けることが理由である。放射性ハロゲンおよび核種を吸い込むことで全身および特定の器官が放射被ばくを受ける。吸入する放射性物質の総量はプルーム(plume)中の放射性物質の濃度および呼吸率に関連し、各器官への線量は当該物質の体内の分布と滞留に関係し、それらを紐づけすると呼吸線量になる。地表に堆積した放射能が植物に吸収されると、摂取経路を介して人体に入る。

3) 液体経路の評価結果

▶ 個人最大線量率

液体経路を介して受ける個人の最大線量率は、コンピュータープログラム LADTAP-II を利用して計算して得る。このプログラムは法規ガイド 1.109 に記載されているモードおよび線量ファクターを根拠としている。放出された液体中の放射性核種の毎年の濃度は表 5.2·1 から取り、線量分析で考慮する経路には、魚類、無脊椎動物および水生植物の摂取による内部被ばく、および遊泳、ボートおよび海浜レジャーでの外部被ばくがある。発電所からの放出物は海に放流されるので、飲料水および食物の灌漑という経路は考慮しない。ここでボート遊び、遊泳、および海浜レジャーの使用ファクターが法規ガイドライン 1.109 に記載されているものより高いのは、近くの福隆海水浴場の夏の遊泳客、および発電所近くの抗日記念碑の観光客が理由である。個人の最大全身線量と器官線量は表 4.1·34 に記載の通りである。

表 4.1-34 個人の最大全身線量と器官線量

	各基発電機ユニッ	原能会による設計	10 CFR 50 付録 I
	トの最大計算線量	目標	の設計目標
液体放出物			
全経路からの全身	0.0189mrem/年	3mrem/年	3mrem/年
線量			
全経路からのいず	1.27mrem/年	10mrem/年	10mrem/年
れかの器官の線量			

▶ 発電所設備からの直接被ばく

台湾第四原子力発電所建屋の遮蔽の設計方式は、原子炉建屋、補助建屋、廃棄物建屋および蒸気タービン建屋外部の最大の直接放射線量率を 0.5mrem/h 未満にすることである。遮蔽の設計は燃料の 1%が損傷し放射線源が放出するという保守的な仮定に基づいている。実際には、放射線源は一般的に燃料の 0.12%に欠陥を与えると予想されるため、これらの領域で予想される放射線程度は設計値を大きく下回る。1号機、2号機の中心点から 357m 離れた最も近い発電所敷地境界では、個人が受ける被ばく線量は大気または建築物の減衰、および距離の逆二乗に反比例することが理由でさらに減少する。表面線量を 0.5mrem/h とすると、発電所からの直接放射被ばく下で最も近い発電所敷地境界の個人線量率は 0.26mrem/年を下回り、発電所に最も近い住民が受ける直接線量率は、最も近い発電所敷地境界よりも離れたところにいるので、その直接線量は更に少い。

(4) 評価結果の公表又は国際機関等への提供の有無

評価結果を含めた台湾第四発電所における環境影響評価報告書は公表されている。

(5) 評価結果を踏まえて、追加的な措置を講じた例の有無 評価結果を踏まえて追加的な措置を講じた事例については現状見当たらない。

4.1.8 英国

(1) 実施主体

Sizewell B 原子力発電所の環境影響評価は、事業者である EDF Energy Nuclear Generation 社が実施している。

(2) 根拠法令

原子力関連の基本法は、1946年に公布された原子力法である。原子炉等の原子力施設の規制は、2011年4月に独立行政機関となった原子力規制局 (ONR: Office for Nuclear Regulation) *4により、「1965年原子力施設法(NIA65: Nuclear Installations Act 1965)」に基づいて行われている。

放射線防護(人工放射線や自然放射線からの被ばくを合理的に実行可能な限り低く保ち、個人の線量限度を超えないようにするための枠組み)に関する主要な法令は、電離放射線規則(Ionising Radiations Regulations: IRR)2017である。最新のIRR17はICRP Publication 103(2007年勧告)の内容を取り入れた欧州基本安全基準指令(2013/59/EURATOM)にしたがっている。

IRR17では公衆の被ばくについて、計画被ばく状況では、 $1 \, \text{mSv/y}$ を線量限度として定めている。また、単一の被ばく源からは $0.3 \, \text{mSv/y}$ かつ単一サイトから $0.5 \, \text{mSv/y}$ と EURATOM 2013 に記載されるレベルと同様の線量拘束値が採用されている。

放射性物質の環境中の規制は、1993 年放射性物質法、1995 年環境法、2016 年環境許可規則 (EPR16: The Environmental Permitting (England and Wales) Regulations 2016) 等がある。EPR2016 は、イングランドとウェールズにおいて有効であり、イングランドに所在する Sizewell B 原子力発電所には EPR16 が適用される。

なお、スコットランドでは、2018 年 9 月に発効された 2018 年スコットランド環境許可規則 (Environmental Authorisations (Scotland) Regulations 2018)、北アイルランドでは放射性物質法 2003 (The Radioactive Substances (Basic Safety Standards) Regulations (Northern Ireland) 2003) に基づいて規制が実施される。

(3) 評価手法

英国環境庁 (EA) から、様々な定性的もしくは定量的規制を考慮して個々の原子力施設や原子力施設サイトに対する環境放出制限値を定める方法に関するガイダンス「Developing guidance for setting limits on radioactive discharges to the environment from nuclear licensed sites (2005)[19]」が出されている。

^{*4 2014}年4月、ONR は、HSE から独立し、原子力施設及び放射性物質輸送の許認可と安全規制の権限を有する一つの行政機関(主務省相当)となった。

このガイダンスでは、原子力施設の通常運転時における年間放出制限値設定の手順が示されている(図 4.1·15)。設定にあたっては、過去の放出実績や今後のプラント運転、廃棄物処理施設の性能向上の考慮(ステップ1の前提)、環境放出の最悪ケースの考慮(ステップ2~5 および8)、制限値を設定する対象(サイト内の施設毎もしくはサイト全体、等)の検討(ステップ6、7、9 および10)、公衆被ばく線量等と規制値(例えば安全衛生庁(HSE: Health and safety executive)のターゲット)との比較等がなされる。なお、放出制限に係る規制値設定対象の選定の考え方は非常に柔軟であり、サイト内に設置・運転されている施設の種類や施設内の廃棄物処理系の特性等が考慮され、サイト全体に対する規制値、個別施設(もしくは施設群)に対する設定、さらには廃棄物処理系の環境放出に関連するパラメータに対する設定等が有り得るとしている。

EA では線量評価モデルについて特定のモデルは推奨していないとしているが、 英国では一般的に PC-CREAM 08 が使用されている。

Sizewell B 原子力発電所の環境影響評価では、以下の代表的個人を特定し、線量 評価を実施している。

- · 隣接するサイズウェル A サイトのスタッフ
- ・ 最も近い住宅の住民 -成人、小児、乳児、幼児
- ・ 基地南側の海岸でボートや漁具を管理する漁業者とその家族 被ばく線量評価の結果、Sizewell B(単一線源)からの放出の場合、線量は 10.8 μ Sv/y(漁業者の家族の成人)であり、線量拘束値である 0.3mSv/y の 4%相当であった。Sizewell A& Sizewell B からの放出の場合、線量は 16.6 μ Sv/y(漁業者の家族の成人)であり、線量拘束値である 0.5mSv/y の 3%相当であった。

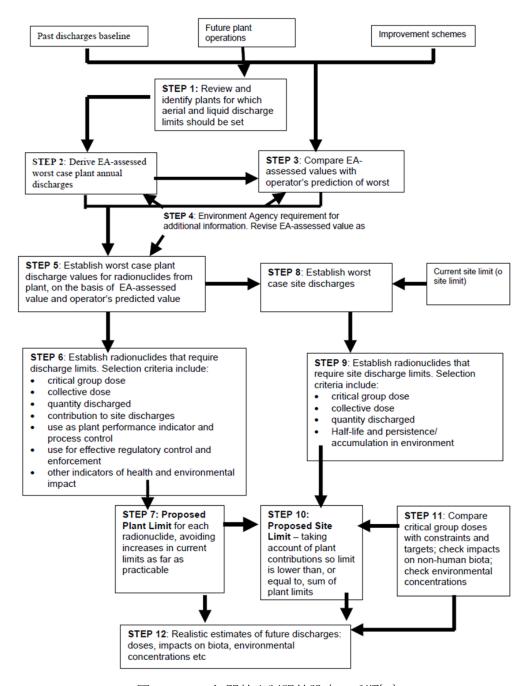


図 4.1-15 年間放出制限値設定の手順[19]

(4) 評価結果の公表又は国際機関等への提供の有無

英国の場合、「Environmental Permitting Guidance Radioactive Substances Regulation For the Environmental Permitting (England and Wales) Regulations 2010」には、「加盟国が放射性廃棄物の処分方法を変更したり、大気、水、土地への排出量を増加させる可能性のある原子力施設を新設するたびに、欧州委員会に提出しなければならず、欧州委員会は、条約第 31 条で言及されている専門家グループ

に相談した後、6ヵ月以内に意見を述べる。」となっており、ビジネス・エネルギー・産業戦略省(BEIS: Department for Business, Energy and Industrial Strategy) や EA 等政府機関が欧州委員会に、「Part 1. UK Report on application of Best Available Techniques (BAT) in civil nuclear facilities (2012-2016) Implementation of PARCOM Recommendation 91/4 on radioactive discharges」を提出している。

また、英国の排出物の影響に関する評価についての詳細は、英国環境庁(EA)、 食品基準スコットランド(FSA)、北アイルランド環境庁(NRW)、スコットランド 環境保護局(SEPA)に代わり、環境漁業養殖科学センター(CEFAS)が毎年作成 する「食品と環境における放射能(RIFE)」年次報告書が公表されている。

(5) 評価結果を踏まえて、追加的な措置を講じた例の有無 評価結果を踏まえて追加的な措置を講じた事例については現状見当たらない。

4.2 ALPS 処理水の分析のための国際輸送に係る調査

4.2.1 国際機関

放射性物質の輸送は、陸海空とも国際整合性のある一貫した法体系のもとに行われている。参考のため、国際機関の基準及び日本の法体系の関連性を図 4.2-1 に示した。

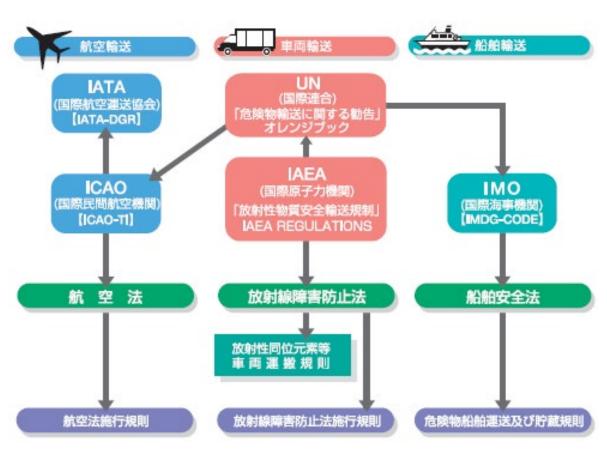


図 4.2-1 放射性物質の輸送に関する国際機関の基準及び日本の法体系[20]

(1) IAEA(International Atomic Energy Agency: 国際原子力機関) 放射性物質安全輸送規制^[21]

▶ 最初の運搬前の要件

- 501. 輸送容器が放射性物質の輸送に最初に使用される前に、本規則の該当する 規定及びいかなる適用可能な承認証明書にも適合することを確かなものと するために、設計仕様に合致して製作されていることが確認されなければ ならない。該当する場合は、次の要件が満足されなければならない:
 - (a) 密封装置の設計圧力が 35kPa (ゲージ圧) を超える場合は、各輸送容器 の密封装置は、その圧力下でその装置が健全性を維持する能力に係る承認された設計要件に合致することが確実なものとされなければならな

V10

- (b) B(U)型、B(M)型又は C 型輸送物として使用することが意図された各輸送容器、並びに核分裂性物質を収納することが意図された各輸送容器については、その遮蔽及び閉じ込めの有効性、並びに、必要な場合には、その熱伝達特性及び臨界安全維持体系の有効性が、適用される限度内にあるか、又は承認された設計で規定されたものであることが、確実なものとされなければならない。
- (c) 核分裂性物質を収納することが意図された各輸送容器については、臨界安全機能の有効性が、適用可能な限度値内にあてはまるか、又は承認された設計で規定されたものであることが、確実なものとされなければならない。また特に、673項の要件を満たすため、中性子毒物が明らかに含まれている場合には、それらの中性子毒物の存在と分布を確認するために点検が行われなければならない。

▶ 各運搬前の要件

- **502.** いかなる輸送物も各運搬に先立ち、それは輸送物に収納されていないこと が確実なものとされなければならない:
 - (a) 輸送物設計に関して規定されたものとは異なる放射性核種、又は
 - (b) 輸送物設計に関して規定されたものとは異なる形状又は物理的若しくは 化学的状態の収納物。

▶ 汚染及び漏えい輸送物の要件及び管理

- 508. いかなる輸送物の外表面の非固定性汚染は実行可能な限り低く保たれなければならず、かつ、輸送における通常状態の下で次の限度を超えてはならない:
 - (a) ベータ及びガンマ放射体並びに低毒性アルファ放射体について $4Bq/cm^2$ 。
 - (b) 他の全てのアルファ放射体について 0.4Bq/cm²。
 - これらの限度は表面のいかなる部分について 300cm2 の面積にわたって平均した場合に適用される。
- 509. 514 項で定める場合を除き、オーバーパック、貨物コンテナ及び輸送手段の 外表面及び内表面の非固定性汚染のレベルは 508 項に定める限度を超えて はならない。本要件は、積み込まれた又は空の輸送物として使用されている 貨物コンテナの内表面には適用されない。
- 510. 輸送物が損傷若しくは漏えいしていることが明らかであるか、又はその輸送物が漏えい若しくは損傷していた疑いのある場合には、その輸送物への

接近は制限されなければならず、また、有資格者ができるだけ速やかに輸送物の汚染の程度とそれから生ずる線量率とを評価しなければならない。この評価の範囲は、輸送物、輸送手段、近傍の荷積み及び荷卸し区域、及び、必要であれば、その輸送手段で輸送された全ての他の物質を含まなければならない。必要な場合には、関係主務当局の制定する諸規定に従って、このような漏えい又は損傷の影響を克服し、また、最小化するために、人の生命と健康、財産及び環境の保護のための追加の手段が取られなければならない。

- 511. 輸送における平常状態に対する許容限度を超えて損傷又は放射性収納物を漏えいしている輸送物は、監督の下に、許容される暫定的な場所に移動されてもよいが、しかし、修理又は再調整され、かつ除染されるまでは、送り出されてはならない。
- 512. 放射性物質の輸送に常時用いられる輸送手段及び設備は、汚染のレベルを 決めるため定期的に点検されなければならない。このような点検の頻度は、 汚染の可能性及び放射性物質が輸送される範囲に関連付けられなければな らない。
- 513. 514 項で定める場合を除き、放射性物質の輸送中に 508 項に規定される限度を超えて汚染したか、又は、表面において 5µSv/h を超える線量率を示す輸送手段、設備又はその一部は、できるだけ速やかに有資格者によって除染されなければならず、また、以下の条件を満足しない限り再使用されてはならない:
 - (a) 非固定性汚染が508 項に規定される限度を超えてはならない。
 - (b) 除染後の表面上の固定性汚染から生じる線量率が表面において $5\mu Sv/h$ を超えてはならない。
- 514. 専用積載の下で非梱包の放射性物質の輸送に供される、貨物コンテナ又は 輸送手段は、その内面についてのみ、及び、その特定の専用積載の状態にあ る限りにおいてのみ、509項及び513項の要件の適用を除外される。
- (2) UN (United Nations: 国際連合) オレンジブック^[22]
 - 1) 放射性物質の輸送

所管官庁は放射性物質の輸送貨物、輸送の引き受け及び輸送が本モデル規則に 規定する放射線防護計画に従っていることを確認しなければならない。所管官庁 は「放射線防護と放射線源の安全:一般的安全要件」(安全シリーズ No.GSR3、 IAEA、ウィーン(2014))に適合した放射線の防護及び安全のシステムを確保す るために、放射性物質の輸送従事者への定期的な放射線量評価を行わなければな らない。

2) 放射性物質に関する通則

本規則は、放射性物質の利用に付随する輸送を含め、陸上、水上及び航空の全ての輸送モードによる輸送に適用される。輸送には、放射性物質の移動に係り、かつ、これに伴う全ての取扱い及び状況が含まれる;これらには輸送容器の設計、製造、保守及び修理並びに放射性物質及び輸送物の準備、輸送の委託、積荷役、積替え時保管を含む輸送、荷卸し及び最終目的地での受取りが含まれる。本規則においては、次に 3 つの普遍的な厳しいレベルで特徴づけられる性能基準の段階的手法が適用されている。

- (a) 通常時輸送条件(異常の無い状態);
- (b) 平常時輸送条件(軽微な出来事のある状態);
- (c) 事故時輸送条件

3) クラス 7-放射性物質

▶ 定義

放射性物質とは、放射性核種を含むすべての物質であって、放射能濃度と輸送貨物内の全放射能の双方が定める値を超えるものをいう。

▶ 汚染

汚染とは、ベータ及びガンマ放射体並びに低毒性アルファ放射体については 0.4Bq/cm²を、その他すべてのアルファ放射体については 0.04Bq/cm²をそれぞれ 超える量の放射性物質が表面上に存在することをいう。

非固定性汚染とは、通常の輸送条件において表面から取り除くことができる汚染をいう。固定性汚染とは、非固定性汚染以外の汚染をいう。

(3) ICAO (International Civil Aviation Organization: 国際民間航空機関) [23]

> ICAO Annex 18

危険物の国際航空輸送の基本的ルールとなっているのは、国連専門機関である ICAO が定める国際民間航空条約 (Convention on International Civil Aviation)第 18 附属書(Annex)「危険物の航空安全輸送」である。国際民間航空条約締約国 (2019年 10月1日現在日本を含め 193カ国) に対して法的拘束力を持つ。

> ICAO TI

第 18 附属書を補足する「危険物の航空安全輸送に係る技術指針(Technical Instructions for the Safe Transport of Dangerous Goods by Air Doc 9284)」が、より詳細な内容を定めている。日本における危険物国内航空輸送を規制する「航空法」「航空法施行規則」「航空機による爆発物等の輸送基準等を定める告示」は、ICAOの国際基準を採り入れている。

(4) IATA (International Air Transport Association: 国際航空運送協会) [24] 国際航空運送協会 (IATA) は、世界の航空会社の業界団体であり、航空輸送量全体の 83%に相当する約 300 社の航空会社を代表している。さらに、航空活動の多くの分野をサポートし、重要な航空問題に対する業界の方針策定を支援している。

> IATA DGR

ICAO の指針に従って民間航空業界団体 IATA (国際航空運送協会) が毎年発行する IATA Dangerous Goods Regulations「危険物規則書」(DGR)は、航空会社の自主的規則であり、ICAO TI とほぼ同内容である。

(5) IMO (International Maritime Organization:国際海事機関) [25][26]

危険物の海上運送にあたっては、運送される物質の危険性について充分な配慮が必要であり、国際海事機関(IMO)が危険性を考慮した上で国際海上危険物規程 (IMDG コード)、国際バルクケミカルコード (IBC コード)、核燃料物質等専用運搬船の基準 (INF コード) 等の国際的な安全基準を定めている。

IMO は、船舶の安全、海洋汚染防止、海難事故発生時の適切な対応、被害者への補償、円滑な物流の確保などの様々な観点から、船舶の構造や設備などの安全基準、 積載限度に係る技術要件、船舶からの油、有害物質、排ガス等の排出規制(地球温暖化対策を含む)等に関する条約、基準等の作成や改訂を随時行っている。

4.2.2 フランス[27][28]

(1) 概要

放射性物質の輸送安全については国際原子力機関(IAEA)によって国際的基盤が 定義されている。

道路輸送に関する ADR 協定、鉄道輸送に関する RID 規則、内陸水路輸送に関する ADNR 規制、海上輸送に関する IMDG コード、航空輸送に関する ICAO の技術指針など、現在施行されている形態別安全規制の定義にこの基礎が用いられている。これらの形態別規制は、フランスの法律に完全に置き換えられ、省庁間の命令によって実施されている。このため、フランス原子力安全規制当局(ASN)はさまざまな輸送形態を扱う政府部門(内陸輸送局、海事・船員局、民間航空総局)と頻繁に連絡を取り、危険物輸送に関する省庁間委員会(CITMD)に代表者を置いている。

輸送の安全性は、主に3つの要素に基づいている。

- ・ 優先事項として、梱包の工学的強度
- ・ 輸送の信頼性と特殊装備の車両
- ・ 事故発生時の効率的な緊急対応

規制は IAEA の勧告に基づいており、梱包の性能基準を規定している。保証されるべき安全機能は、格納容器、放射線防護、熱危険の防止、臨界の防止である。

梱包の安全度合は、輸送物質の潜在的有害性に適応する。規制により、梱包の種類(いわゆる除外梱包、工業用梱包、タイプ A 梱包、タイプ B 梱包、タイプ C 梱包)ごとに、関連する安全要求と到達すべき試験規格が規定されている。

(2) 国際規制

ASN は IRSN と共同で、特に危険物や放射性物質の輸送を扱う様々な国際的または多国間のワーキンググループに参加することで、できるだけ早く規制の起草に関与することを目指している。ASN は IAEA の TRANSSC 委員会(輸送安全基準委員会)のメンバーであり、放射性物質の輸送が問題となる場合、輸送形態ごとに組織された多くの作業部会に専門家として参加している。

また、ASN は欧州委員会エネルギー・運輸総局の放射性物質輸送の安全に関する常設作業部会のメンバーでもある。

(3) 国内規制

各放射性物質輸送形態に適用される命令は以下の通りである。

- ・ 道路による危険物輸送に関する修正命令(通称「ADR 命令」)2001 年 6 月 1 日 付
- ・ 鉄道による危険物輸送に関する修正指令(通称「RID 命令」)2001年6月5日付
- ・ 内陸水路による危険物の輸送に関する命令 (通称「ADNR 命令」) 2002 年 12 月

5日付

- ・ 公共航空運送事業者による航空機の運航のための技術的条件に関する修正命令 (OPS1) 1997 年 5 月 12 日付
- · 船舶安全規制 411 項に関する修正命令 (RSN) 1987 年 11 月 23 日付
- ・ 海港における危険物の輸送と取扱いを規制する修正命令 2000 年 7 月 18 日付
- ・ これらの命令は、有効な国際協定や規制の要件を完全に反映したものである。

(4) 放射性物質輸送規制に定める管理

汚染度および線量率が放射性物質輸送規制の定める限度を超えないことを確認するため、ADRでは、輸送における梱包、車両、機器について管理を行うことを定めている。

引き渡し前に、梱包周り(ADR 第 4.1.9.1.2 条、第 4.1.9.1.4 条、第 4.1.9.1.10~ 12 条参照)及び車両周り(ADR 第 7.5.11 条 CV33(3.3)及び(3.5)参照)の汚染と線量率の制限の遵守を確認することが必要である。実施された管理(放射線測定又は適切な実証)は、ADR 第 1.7.3 条で要求される管理システムの下で記録されなければならない。

(5) 輸送物

輸送物という用語は、輸送の準備が整った放射性物質を含む容器を指す。規制では、輸送される物質の特性(総放射能、比放射能、物理化学的形態、核分裂性など)に応じて、数種の輸送物を定義している。各放射性核種について、基準放射能レベルが定義されており、最低レベルは最も有害な製品に相当する。この値は、特殊形態の物質(非拡散保証)については A_1 、それ以外の場合は A_2 と呼ばれる。例として、Pu239 の場合、 A_1 は 10TBq、 A_2 は $10^{-3}TBq$ に等しい。

図 4.2-2 は、規制によって定義された輸送物の種類を示したものである。

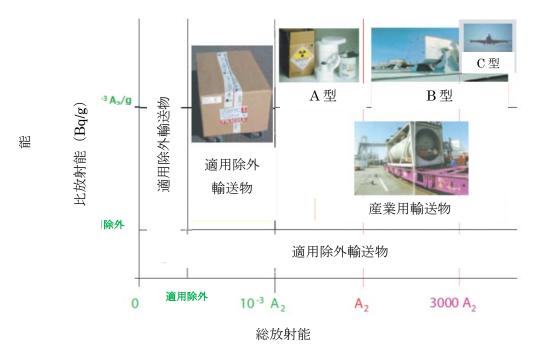


図 4.2-2 輸送物区分 *輸送物の種類は総放射能および比放射能による

輸送物は以下の区分のいずれかに分類される。

- ・ 適用除外輸送物:内容物の放射能が非常に低く、10⁻³ A₁ または 10⁻³ A₂ 未満
- ・ 産業用輸送物:内容物の比放射能が低く、2.10⁻³ A₁/g または 10⁻³ A₂未満
- ・ A型輸送物:内容物の放射能が A1または A2未満
- ・ B型輸送物:内容物の放射能が A1または A2を超える
- ・ C 型輸送物 (航空輸送): 内容物の放射能が 3000 A₁ または 3000 A₂ を超える この輸送物区分は、関連輸送規則で定められた免責基準値を超える比放射能およ び総放射能を持つ物質の輸送にのみに適用される。比放射能レベルまたは総放射能 レベルが免責基準値未満の輸送物は、適用除外とみなされる。

各種輸送物は、特定の安全要件、並びに通常または事故時の輸送条件に耐えうる 輸送物能力を確認する試験基準によって管理されている(下記ボックスを参照)。

様々な種類の輸送物における特徴

適用除外輸送物は、適格性試験の対象とはならない。しかし、最大表面線量率が 0.005mSv/h 未満であることなど、多くの一般的な仕様に適合しなければならない。 非核分裂性産業用輸送物または A 型輸送物は、事故状況に耐えられるように設計されていない。しかし、取り扱い中や保管中に発生の可能性がある事故には耐えなければならない。そのため、以下のテストに耐える必要がある。

- 暴風雨へのばく露(降雨量が5cm/hに達し、少なくとも1時間)
- 輸送物重量に応じて変化する高さ(最大 1.20m)からターゲットとなる岩への 落下
- 輸送物重量の5倍に相当する圧縮
- 標準棒を輸送物 1m の高さから落下させることによる貫通

これらの試験による材料の損失はなく、放射線遮蔽の劣化は 20%を超えてはならない。

核分裂性輸送物またはB型輸送物は、事故条件下において、その格納容器、未臨界、放射線遮蔽機能を確保し続けるように設計されなければならない。これらの事故は、以下の試験に代表される。

- 3 連続試験
 - ・ターゲットとなる岩への 9m 落下試験
 - ・スパイクへの 1m 落下
 - ・少なくとも 800℃の炎への 30 分間のばく露
- 水深 15m への 8 時間に渡る浸漬(使用済み燃料の場合は水深 200m)

C 型輸送物は、代表的な航空輸送事故条件下において、その格納容器、未臨界、 放射線遮蔽機能を確保し続けるように設計されなければならない。これらの事故は、 以下の試験に代表される。

- 3連続試験
 - ・ターゲットとなる岩への 9m 落下試験
 - ・スパイクへの 3m 落下
 - ・少なくとも 800℃の炎への 60 分間のばく露

(6) 年間輸送量

フランスでは年間 30 万個の放射性物質の輸送物が輸送され、危険物輸送の数パーセントを占めている。そのほとんど (3分の2) は、医療、製薬、工業用の放射性同位元素で構成されている。これら輸送物は非常に多様である。放射能は 12 桁以上、つまり数千ベクレル (医薬品輸送物) から数百億ベクレル (使用済燃料) まで、重量は数キログラムから数百トンまで、さまざまである。

4.2.3 韓国

放射性物質の運搬に関する規定は、『原子力施設等の防護及び放射能防災対策法施行令』、『放射線安全管理等の技術基準に関する規則』(NSSC規則第29号)及び『放射性物質等の包装及び運搬に関する規定』(NSSC告示第2021-2号)にあり、このうちALPS 処理水の運搬については、次の規定を適用することができるものとみられる。

放射性物質等の包装及び運搬に関する規定 (NSSC 告示第 2021-2 号)

第5条(低レベル非放射能物質)

①放射線規則第93条第3項の規定による「低レベル非放射能物質」とは、本質的に制限された非放射能を含む放射性物質をいい、区分する基準は次の各号のいずれかのとおりである。

1. ...

- 2. 第2種低レベル非放射能物質の基準は、次の各号のいずれかのとおりである。
- カ. トリチウムの濃度がリットル当たり 0.8 テラベクレル以下の水
- ナ. 放射能が均一に分布しており、平均非放射能が固体及び気体に対してはグラム当たり A2 値の 1 万分の 1 を一次を超えない物質。

• • •

第24条 (IP型運搬容器の技術基準)

. .

- ②IP-2型運搬容器の技術基準は次の各号のとおりである。
- 1. 第1項の規定による IP-1型運搬容器の基準に適合すること。
- 2. 第 45 条第 1 項第 2 号及び第 3 号の規定による落下試験及び積層試験を経た後に、 次の各号の基準に適合すること。
- カ. 放射性内容物の流失または分散がないこと。
- ナ. 外表面における放射線量率が 20 パーセント以上増加するような遮蔽能力の喪失 がないこと。
- ③IP-3型運搬容器の技術基準は次の各号のとおりである。
- 1. 第1項の規定による IP-1型運搬容器の基準に適合すること。
- 2. 第 25 条第 1 項第 3 号から第 14 号までの規定による基準に適合すること。

. . .

⑥タンクコンテナ以外のタンクが第5項の基準と同等の基準に適合する場合には、第2項及び第3項の規定にもかかわらず、放射線規則別表9による液体及び気体状態の第1種及び第2種低レベル非放射能物質を運搬するIP-2型またはIP-3型運搬容器と

して使用することができる。

第2種低レベル非放射能物質の運搬に関する規定は、次のとおりである。

放射線安全管理等の技術基準に関する規則 (NSSC 規則第 29 号)

第91条(運搬物別放射性物質の限度量)

. .

- ②IP型運搬物の放射性物質等とその限度量は次の各号のとおりである。
- 1. 運搬物の放射性物質が低レベル非放射能物質である場合、低レベル非放射能物質が遮蔽されない状態で当該運搬物から 3 メートル地点の放射線量率が時間当たり 10 ミリシーベルトを超えないようにすること。

. . .

第92条 (運搬容器の種類)

- ①運搬容器の種類は、運搬しようとする運搬物の種類によって区分するものの、第 90 条の規定による運搬物の種類ごとにそれぞれ次のように区分する。
- 1. L型 運搬容器
- 2. IP 型運搬容器 (IP-1 型運搬容器、IP-2 型運搬容器及び IP-3 型運搬容器と区分する。)
- 3. A型 運搬容器
- 4. B型運搬容器 {B(U)型運搬容器及びB(M)型運搬容器に区分する}
- 5. C形 運搬容器
- 6. 核分裂性物質の運搬容器
- ②第1項の規定による各運搬容器の技術基準は、NSSC が定めて告示する。

第116条(低レベル非放射能物質の運搬)

- ①低レベル非放射能物質は、別表 9 による要件により IP 型運搬物として運搬することができる。
- ②低レベル非放射能物質を IP 型運搬物として運搬する内陸輸送用の船舶または他の 運搬手段の単一船倉または隔室における総放射能は、別表 4 による制限値を超えては ならない。
- 一方、同規則第125条~第128条はそれぞれ鉄道及び道路、船舶、航空、郵便運搬 に関する基準を規定している。

4.2.4 米国[29][30]

(1) 輸送規制

放射性物質の輸送を管理する規制は、1935年頃に郵政公社により開始された。その後、州間通商委員会(ICC)が関与するようになった。現在、放射性物質の輸送を規制する規則を公布している団体は少なくとも5つある。それは、運輸省(DOT)、原子力規制委員会(NRC)、郵政公社、エネルギー省(DOE)、そして自治州である。これらの機関のうち、DOTとNRCが、国際原子力機関(IAEA)が策定した基準に基づいて規制を発行する主要な機関である。

NRC と DOT は了解覚書(MOU)に基づいて放射性物質輸送の管理責任を分担している。一般に、DOT 規制(49 CFR)の方がより詳細にわたっている。これらは、包装、荷送人と運搬人の責任、文書化、免除数量から非常に高いレベルまでのあらゆるレベルの放射性物質を含む、輸送のあらゆる側面を網羅している。NRC 規則(10 CFR 71)は、主に高レベルの数量に対する特別な包装要件に関係している。NRC 規則 10 CFR 71.5 は、NRC 規則が適用されない場合、放射性物質を輸送するNRC の許可取得者が DOT 規則に従うことを義務付けている。

輸送目的では、放射性物質は比放射能がグラムあたり 0.002 マイクロキュリー (μ Ci) を超える物質と定義されている。この定義では、数量は定められておらず、 濃度のみが定められている。一例として、純粋なコバルト 60 の比放射能はグラム あたり 1,000 キュリーで、この定義の約 5000 億倍である。しかし、ウラン 238 の 比放射能はグラムあたり 0.3 マイクロキュリーに過ぎず、この定義の 150 倍に過ぎない。どちらも純粋な形では放射性物質の定義を超えているが、どちらの物質も汚泥などの十分な量の物質と均一に混ざり合う可能性があり、その場合は濃度が定義を下回る。ウラン 238 の場合、1 グラム中に約 150 グラム(約 1/3 ポンド)の汚泥が混ざっている場合には、その濃度は非放射性に分類される可能性がある。ただし、上記の放射性物質の定義は輸送にのみ適用されることに留意されたい。

輸送事故を防止することはできないため、規制は主に以下を目的として考案されている。

- ・ 危険性が最小限の物質の場合、日常的な取り扱い状況における安全性の保証、及び
- ・ 危険性の高い物質の場合、あらゆる状況下での完全性の保証。 これらの目標は、輸送物 (パッケージ) と次のような機能を果たすその能力に焦点を当てることにより達成される。
- ・ 物質の格納 (漏れの防止)
- ・ 異常発生(臨界など)の防止、及び
- ・ 外部放射線を安全なレベルに低減する(遮蔽する)。 放射性物質の安全な輸送を確保するために創設された制度は、各放射性核種への、

その形態(すなわち、輸送中に輸送物から放出された場合でのその相対的な危険性)に応じた番号の割り当てを基本としている。数字又は「A」値は、A型輸送物での輸送が許可される制限値をキュリー単位で表している。この制度には2つの異なる区分が設けられている。特殊な形態(A_1)の放射性核種は通常、輸送物が破裂した場合に汚染災害ではなく、唯一外部放射線による災害をもたらすだけであるカプセル化された線源である。通常の形態(A_2)の放射性核種は、大抵の場合安全に封入されておらず、輸送物が破裂した場合に重大な汚染をもたらす可能性がある。これらの物質は事故現場の人々に体内障害をもたらす可能性がある。通常の形態の物質とは、典型的には液体と粉末である。「A」の値には輸送物内の量の制限値が設定されているため、 A_2 の値は A_1 の値より大きくすることはできないが、これは、 A_2 の値が通常形態での物質を表しており、より「危険」なものとなるためである。しかし、一部の核種では、 A_1 が A_2 と等しくなるため、どちらの形態でも危険性が同じとなる場合がある。いずれにせよ、 A_1 も A_2 も 1000 キュリーを超えることはできない。

 A_1 が A_2 と等しい場合、物質が通常の形態であろうと特殊な形態であろうと、危険有害性は同じと見なされる。これはガンマ放射体の場合に当てはまる傾向がある。アルファ放射体の場合、通常の形態(カプセル化されていない)は特殊な形態(密封)の 1,000 倍危険であると考えられているため、 A_1 値は約 1,000 倍低くなっている。ベータ放射体は、この 2 つの中間に区分される。

(2) 輸送方法

輸送のための放射性物質の取り扱い方法は、次のように、物質の量とその相対的な危険有害性に応じて異なる。非放射性一物質の量がグラムあたり0.002 マイクロキュリー未満の場合、輸送目的では放射性物質とは見なされない。限定数量一物質の量がグラムあたり0.002 マイクロキュリーを超えても、(形態に応じて) A_1 又は A_2 の値の1000分の1を超えていない場合、物質は限定数量と見なされ、日常的な取り扱いに耐えられるはずである強力な密閉容器のみが必要となる。A型数量一分量が(形態に応じて) A_1 又は A_2 の値以下で、値の1000分の1を超える場合、その物質には小さな事故に耐えられるはずである A型輸送物が必要となる。B型数量一分量が(形態に応じて) A_1 又は A_2 の値より大きいがこれらの値の3000倍以下の場合、その物質には重大な事故に耐えられるはずである B型輸送物が必要となる。幹線道路一分量が A_1 又は A_2 の値(規制された形態に応じて)の300066を超えるが27,000キュリー未満の場合、物質は幹線道路用の数量規制量であり、B型輸送物が必要となり、運送業者は特殊な訓練を受けている必要がある。物質が放射性廃棄物であれば、州当局者に通知しなければならない。

郵政公社は、若干異なる制限値を設けている。郵政公社は、限られた数量、すな

わち、強靭密閉輸送物しか必要とはならないほど十分に少量のものを格納する輸送物しか受け入れていない。A型とB型の輸送物が必要となる数量は、郵政公社では受理されていない。追加の安全マージンを確保するために、郵政公社はDOTとは異なる限定数量を定義している。USPSの制限値は低く、DOTの制限値のちょうど1/10である。また、郵政公社では液体と気体で別個の制限値が設けられている。

表 4.2-1 郵政公社で郵送可能な器具、物品及び限定数量の放射性物質の放射能制限値

	器具及び物品		
含有物の性質	各器具又は物品 の制限値 ¹	輸送物制限 値 ¹	物質輸送物制限値 1
固形物質:			
特殊形態	10 ⁻² A ₁	A_1	$10^{-3} A_1$
通常形態	$10^{-2}\mathrm{A}_2$	A_2	$10^{-3}{ m A}_2$
液体:			
トリチウム水:			
<0.0037 TBq/リットル (0.1 Ci/L)	$10^{-3}{ m A}_2$	$10^{-1}{ m A}_2$	37 TBq (1000 Ci)
0.0037 TBq~0.037 TBq/L (0.1 Ci~1.0 Ci/L)			37 TBq (100 Ci)
>0.037 TBq/L (1.0 Ci/L)			0.037 TBq (1.0 Ci)
その他の液体;	$10^{-3}\mathrm{A}_2$	$10^{-1}\mathrm{A}_2$	$10^{-4} \mathrm{A}_2$
気体;			
トリチウム2	$2 \times 10^{-2} A_2$	$2 \times 10^{-1} A_2$	$2 \times 10^{-2} \mathrm{A}_2$
特殊形態	$10^{-3}\mathrm{A}_1$	$10^{-2} A_1$	$10^{-3}\mathrm{A}_1$
その他の形態	$10^{-3}{ m A}_2$	$10^{-2}{ m A}_2$	$10^{-3}{ m A}_2$

^{1.}放射性核種の混合物については、49 CFR 173.433(d)を参照のこと。

事故で放出されても危険性がほとんどない程度に物質全体に均一に分散している放射性物質には、低比放射能という特別な分類が付与されている。低比放射能に分類されるためには、濃度がグラムあたり 0.002 マイクロキュリーを超える(そう

^{2.}これらの値は、活性発光塗料中のトリチウム及び固形担体に吸着したトリチウムにも適用 される。

でなければ放射性物質ではない)が、「A」値に基づく指定濃度制限値未満でなければならない。許容される濃度は低い($300\,\mu\mathrm{Ci/g}\,\mathrm{U}$ 下)が、総質量がどれだけあるかによっては、物質の総量がかなり多くなることがある。したがって、低比放射能の定義は総量ではなく濃度のみを考慮しているが、低比放射能物質に必要な輸送物の種類(強靭密閉容器又は A 型のいずれか)は、濃度($\mu\mathrm{Ci/g}$)ではなく放射能総量(キュリー)に左右されることになる。

4.2.5 オーストラリア[31]

放射性物質の安全かつ確実な輸送に関連するオーストラリアの法的枠組みは、国際的なベストプラクティス(最優良事例)に基づいている。人、組織又は政府機関による、陸路(道路・鉄道)、水路及び空路による放射性物質の輸送は、放射性物質の輸送に適用される連邦、州、準州又は国際管轄区域の放射線安全法制に準拠しなければならない。

(1) 安全規制

オーストラリアは、放射線の観点から、安全規制が世界的な状況の中で機能して いることを長年にわたり認識してきた。その結果、オーストラリア国内外への放射 性物質の輸送を途切れなく行うことができるようになる必要がある。それゆえに、 長年にわたり、オーストラリアにおける放射性物質の輸送は、国際原子力機関 (IAEA) が公表する国際的な要件に基づいてきた。連邦、州及び準州の管轄区域の 規制枠組みでは、現在、2005 年版 IAEA の放射性物質安全輸送規則(TS-R-1)(IAEA 規則) に基づく 2008 年放射性物質安全輸送実施基準(RPS2) を適用している。 IAEA は 2012 年 10 月に運輸規則の新版を公表し、現在は SSR-66 と呼ばれてい る。オーストラリアが放射性物質の輸送における国際的慣行と足並みを揃えるよう にするため、オーストラリア放射線防護・原子力安全庁(ARPANSA)は、IAEA2012 年版文書を採択する RPS2 の改訂に着手している。IAEA 規則は、鉱石や鉱石濃縮 物などの非常に低放射能の物質から、使用済燃料や高レベル廃棄物などの非常に高 放射能の物質まで、あらゆる種類の放射性物質を対象としている。輸送される物質 は、その放射能濃度、総放射能、核分裂性物質の特性(ある場合)、その他関連する 副次的特性に基づいて分類される。次に、内容物の危険有害性に基づいて包装及び 輸送物要件が規定され、通常の市販の包装(危険有害性の低い内容物の場合)から 厳格な設計・性能要件(危険有害性の高い内容物の場合)まで多岐にわたる。また、 特定の貨物と輸送物の種類へのマーキング、ラベリング、輸送機関の掲示、文書化、 外部放射線制限、運用管理、品質保証、及び通知と承認についても特定の要件が定 められている。RPS2の輸送安全要求事項と ARPANSA の放射線源の安全のための 実施基準 20078 (RPS 11) の輸送安全要求事項は、オーストラリアのすべての管轄 区域にわたって一貫して適用されているが、管轄区域間で認可要求事項にはばらつ きがある。たとえば、一部の管轄区域では輸送業者の登録又は許可が必要であるが、 他の管轄区域ではこれらの要求事項は存在しない。これは、特に州間輸送業者にと って誤解を招く可能性があり、管轄区域の取り決めに不注意に違反する結果をもた らす可能性がある。オーストラリア国内の管轄区域での要求事項にはこのような違 いがあるにもかかわらず、RPS2と RPS11を一貫して適用することで、放射性物質 の安全かつ確実な輸送が保証されている。それ以外でのオーストラリアの各州及び

準州の管轄下にはない航空及び水路による放射性物質の輸送は、それぞれ 1988 年連邦民間航空法及び 2012 年連邦航海法の対象となる。国際海上危険物規程 (IMDG 規程) の要求事項は、TS-R-1 の使用に基づいており、その使用を義務付けている。オーストラリア海上安全庁 (AMSA) は、IMDG 規程との調整を行う責任を負っている。航空輸送については、1998年民間航空規則により、国際民間航空機関(ICAO)の「危険物の安全な航空輸送に係る技術指示」(DOC 9284 AN/905) が採択されており、この技術指示にも TS-R-1.9 が採用されている。民間航空安全庁 (CASA) は、この技術指示との調整を行う責任を負う。

(2) 保安規制

オーストラリアは、世界の安全保障に対する責任ある貢献者として、放射性物質のセキュリティ(保安)を真剣に考えている。この目的のために、オーストラリアは、放射線源のセキュリティに係る IAEA 行動規範と、放射性物質の輸出入に係る補足的な IAEA 指針を採択した。RPS11 は、これらの国際文書と直接関連しており、セキュリティが強化された放射線源の輸送がオーストラリア国内で適切に保護され、国際的な義務と責務に沿ったものとなるようにしている。

オーストラリアでは、ここ数年にわたり、輸送関連の事故が少数発生している。 これらの事故は、汚染された半製品の陸上及び海上での不注意な輸出入に伴って生 じたものである。本記事の執筆時点では、セキュリティ関連の悪意ある行為の結果 としてオーストラリア内で発生した放射性物質の輸送事故に関連する情報は公表 されていない。

放射性物質の安全かつ確実な輸送に関連するオーストラリアの法的枠組みは、国際的なベストプラクティス(最優良事例)に基づいている。特定の経路に沿った放射性物質の輸送を禁止するいかなる取り決めも、輸送される貨物中の放射性物質の有無のみに焦点を当てたリスクの認識ではなく、すべての輸送リスクに関連する事実に基づいて慎重に検討する必要がある。これらの認識については、放射線防護及び原子力の安全とセキュリティを損なうことがないように対処することが重要である。

(3) オーストラリアの保有量

オーストラリアで実施されている規制インフラは、輸送リスク管理の背景となる 状況を明らかにしている。リスク管理では、輸送される放射性物質の数量や性質を 考慮することが重要である。次のような5つの主な物質区分を識別することができ る。

- ・ 医療目的及び科学研究に必要となる放射性物質
- 研究用原子炉燃料

- ・ ウラン及びその他の自然起源放射性物質(NORM)
- ・鉱工業及び製造業で使用される密封線源
- 放射性廃棄物

4.2.6 スイス[32]

スイス連邦原子力安全検査局(ENSI)、連邦公衆衛生局(FOPH)、スイス事故保険基金(Suva)は、スイスにおける放射性物質の輸送を監督する機関である。スイスにおける放射性物質の輸送に関する規制は、下記のように、主に国際機関及び欧州の規則に従って定められている。

▶ 全般

IAEA 固有の安全要件 SSR-6、放射性物質安全輸送規則

▶ 道路

欧州危険物国際道路輸送協定 (ADR) 道路による危険物の運送に係る規則 (SDR、SR 741.621)

▶ 鉄道

欧州危険物国際鉄道輸送規則 (RID) 鉄道及び索道による危険物の運送に係る規則 (RSD、SR 742.412)

▶ 航空

国際民間航空機関(ICAO)の危険物の航空安全輸送に係る技術指針、航空運送規則(LTrV, SR 748.411)

▶ 内陸水路

危険物の内陸水路による国際輸送に関する欧州協定(ADN)に係る環境・運輸・エネルギー・通信連邦省(DETEC)令(SR 747.224.211)

▶ 海上

国際海上危険物規程クラス 7 (IMDG)

4.2.7 オーストリア[33]

オーストリアでは、最大限の安全性を確保するために、放射性物質の輸送は厳しく 管理されている。一般的な安全対策は、1969年に制定された放射線防護法に規定され ている。

▶ 鉄道

鉄道による貨物輸送に関する国際条約(the Convention Concerning the International Carriage by Rail, COTIF)の付属書である欧州危険物国際鉄道輸送規則(the Regulation Concerning the International Carriage of Dangerous Goods by Rail, RID)の規定によって管理されている。オーストリアが COTIF の締約国になったときから、RID はオーストリアの危険物の国際輸送に適用されている。1998年の危険物輸送法(the Carriage of Dangerous Goods, GGBG)により、オーストリア国内の輸送業務にも適用される。

▶ 道路

道路による放射性物質の国際輸送は、オーストリアが欧州危険物国際道路輸送協定 (ADR)」に加盟しているため、ADR の規定がそのまま適用される。GGBG の規定に基づき、ADR は、オーストリアの国内における道路輸送にも適用される。

▶ 航空

ICAO の危険物の航空安全輸送に係る技術指針(Technical Instructions for the Safe Transport of Dangerous Goods by Air)が、GGBG によって実施される。さらに、ICAO の指針に従って民間航空業界団体 IATA(国際航空運送協会)が毎年発行する IATA Dangerous Goods Regulations「危険物規則書」(DGR)は、IATA 加盟航空会社によって締結される運送契約の不可欠な部分である。

▶ 内陸水路

危険物の内陸水路による国際輸送に関する欧州協定(ADN)に参加している。

5. 多核種除去設備等処理水の処分技術等に関する調査研究

5.1 トリチウム等 ALPS 処理水の取扱いに関する基礎的情報の提供

ここでは、ALPS 処理水の取扱いに関して、トリチウムを中心とする放射性物質の取扱いに関する国内外の科学的・社会的な基礎的情報、トリチウムを始めとする放射性物質による健康影響に関する国内外の最新の論文情報等について、調査を実施した。

論文等に関しては、Google Scholar、Pub Med、J-Stage を利用して、以下に示す検索 条件で、検索を実施した。

• 国内検索条件

キーワード:「トリチウム」&「健康影響」、「トリチウム」&「被ばく」

期間: 2022 年以降

• 国外検索条件

キーワード: 「tritium」& 「health effect」、「tritium」& 「exposure」、「fukushima」

期間:「2022年以降」

2023年3月27日時点の検索結果を表 5.1-1(件数)に示す。

表 5.1-1 トリチウム等 ALPS 処理水の取扱いに関する基礎的情報に関する 論文等の検索件数

検索エンジンキーワード	Google Scholar	Pub Med	J-Stage
「トリチウム」&「健康影響」	12	-	8
「トリチウム」&「被ばく」	19	-	18
「tritium」 & 「health effect」	27	0	0
「tritium」 & 「exposure」	2,720	17	12
「fukushima」	23,800	2,683	2,390

[※]期間はいずれも 2022 年以降

トリチウムの健康影響については、従来の知見を覆すような情報はなかった。

5.2 多核種除去設備等処理水に関連するデータの収集・分析支援

ここでは、国内外の ALPS 処理水等に関連するデータの収集・分析作業を実施する。 収集・分析対象は以下の通りである。

- ・ 主要国及び日本の原発立地地域におけるトリチウムの大気・海洋・河川・降雨の濃度
- ・ 主要国のトリチウム (大気・海洋) の排出量

- ・ トリチウムを始めとした放射性物質による健康影響に関する最新の情報
- 5.2.1 主要国及び日本の原発立地地域におけるトリチウムの大気・海洋・河川・降雨の 濃度
 - (1) 英国におけるトリチウム濃度

英国環境庁らによるレポート[34]より、英国の原発立地地域における各モニタリング資料のトリチウム濃度を表 5.2-1 にまとめる。

表 5.2-1 2021 年英国における海域・淡水域・周辺環境のトリチウム濃度(最大値)

	海水	農度(Bq/L) 淡水濃度(Bq/L)			その他(Bq/kg)		
Hartlepool	<4.3	North Gare	<4.1	Boreholes, Dalton	<20	Grass (0.6km NE	
				Piercy		of site)	
Heysham	9.5	Shore	<3.4	Damas Gill	<14	Grass (Half Moon	
		adjacent to		reservoir		Bay, recreation	
		Northern				ground)	
		Outfall					
Hinkley	<3.7	Pipeline	<4.0	Durleigh Reservoir	<10	Grass (Wall	
Point						Common)	
Hunterston	210	Pipeline	<1.0	Loch Ascog	<5.0	Grass	
Sizewell	<3.8	Sizewell	<3.6	The Meare	<17	Grass (Sizewell	
		beach				belts)	
Torness	_		<1.0	Hopes Reservoir	<5.0	Grass	
Berkeley	<3.6	2km south	<3.6	Gloucester and	9.9	Grass	
and Oldbury		west of		Sharpness Canal			
		Berkeley					
Bradwell	<3.6	Bradwell	<3.9	Coastal ditch,	10	Lucerne	
		Pipeline		drain pit overflow			
Chapelcross	<1.0	Pipeline	14	Gullielands Burn	<5.0	Grass	
Dungeness	<3.6	Dungeness	<3.9	Long Pits	<13	Grass(Lydd)	
		South					
Trawsfynydd	_		<3.8	Afon Tafarn-helyg	<3.7	Grass	
Wylfa	<3.5	Cemaes Bay	_		<13	Grass(Wylfa Head	
						Nature Reserve)	
Sellafield	_	_	_	_	<16	Grass(Braystones)	
Irish Sea	_	_	_	_	<25	North	
						Anglesey(Plaice)	

(2) 韓国におけるトリチウム濃度

2021 年度原子力発電所周辺の環境放射能調査及び評価報告書^[35]より、韓国の原子力発電所周辺におけるトリチウムの大気・海洋・河川・降雨の濃度を表 5.2-2 にまとめる。

表 5.2-2 2021 年韓国の原子力発電所周辺におけるトリチウムの 大気・海洋・河川・降雨の濃度の平均値(カッコ内は範囲)

	大気(Bq/m³)	海洋(Bq/L)	河川 (Bq/L)	降雨(Bq/L)
古里 2-4 新古里 1-2	0.0178 (<0.00557 \sim <0.0327)	2.86 (<1.26~95.3)	<1.29	5.90 (<1.23~42.5)
新古里 3-4	0.0331 (<0.00737~0.121)	<1.23	<1.26	2.56 (<1.22~17.7)
月城 2-4、新月城 1-2	1.22 (0.0109 \sim 6.68)	3.12 (<1.33~8.87)	3.27 (<1.40~6.60)	64.2 (<1.43~528)
ハンビット(霊光)1-6	0.232 (<0.0275~0.635)	3.08 (<0.890~14.7)	<0.929	7.77 (<0.896~51.6)
ハヌル(ハンウル) (蔚珍)1-6 新ハヌル 1	0.123 (<0.00298~0.534)	2.27 (<1.30~25.4)	<1.32	10.4 (<1.31~77.5)

(3) 我が国における各試料のトリチウム濃度

公益財団法人日本分析センターの環境放射線データベース[36]より、2022 年 4 月 \sim 2023 年 3 月までの各試料のトリチウム分析結果を表 5.2-3 \sim 表 5.2-4 にまとめる。

表 5.2-3 大気浮遊じん・大気の分析結果

都道府県名	試料採取地点名	試料名	試料採取開始日	核種名	放射能濃度	放射能濃度単位
千葉県	千葉市稲毛区	大気	2022/3/29	H-3	3.5	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/3/29	Н-3	5.1	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/3/29	Н-3	760	mBq/L·水分
千葉県	千葉市稲毛区	大気	2022/3/29	Н-3	450	mBq/L·水分
千葉県	千葉市稲毛区	大気	2022/4/12	Н-3	3.2	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/4/12	Н-3	7	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/4/12	Н-3	1400	mBq/L·水分
千葉県	千葉市稲毛区	大気	2022/4/12	Н-3	480	mBq/L·水分
千葉県	千葉市稲毛区	大気	2022/4/19	H-3	7.1	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/4/19	Н-3	6.2	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/4/19	Н-3	1100	mBq/L·水分
千葉県	千葉市稲毛区	大気	2022/4/19	Н-3	740	mBq/L·水分
千葉県	千葉市稲毛区	大気	2022/4/26	Н-3	2.3	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/4/26	Н-3	4.3	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/4/26	Н-3	1300	mBq/L·水分
千葉県	千葉市稲毛区	大気	2022/4/26	Н-3	430	mBq/L·水分
千葉県	千葉市稲毛区	大気	2022/5/10	Н-3	3.8	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/5/10	H-3	6.7	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/5/10	H-3	1300	mBq/L-水分
千葉県	千葉市稲毛区	大気	2022/5/10	Н-3	450	mBq/L-水分
千葉県	千葉市稲毛区	大気	2022/5/17	Н-3	4	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/5/17	Н-3	4.1	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/5/17	Н-3	740	mBq/L-水分
千葉県	千葉市稲毛区	大気	2022/5/17	Н-3	460	mBq/L-水分
千葉県	千葉市稲毛区	大気	2022/5/24	Н-3	5.6	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/5/24	H-3	6.6	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/5/24	H-3	1200	mBq/L-水分
千葉県	千葉市稲毛区	大気	2022/5/24	H-3	650	mBq/L-水分
千葉県	千葉市稲毛区	大気	2022/5/31	H-3	4.9	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/5/31	H-3	3.9	mBq/m3-空気
千葉県	千葉市稲毛区	大気	2022/5/31	H-3	740	mBq/L-水分
千葉県	千葉市稲毛区	大気	2022/5/31	H-3	560	mBq/L·水分

表 5.2-4 降下物の分析結果

都道府県名	試料採取地点名	試料名	試料採取開始日	核種名	放射能濃度	放射能濃度単位
青森県	むつ市	月間降下物	2022/4/1	H-3	1.21	Bq/L
青森県	むつ市	月間降下物	2022/4/1	H-3	51	MBq/km2.月
青森県	むつ市	月間降下物	2022/5/9	H-3	0.64	Bq/L
青森県	むつ市	月間降下物	2022/5/9	H-3	36	MBq/km2.月
青森県	むつ市	月間降下物	2022/6/1	H-3	0.46	Bq/L
青森県	むつ市	月間降下物	2022/6/1	H-3	61	MBq/km2.月
福島県	福島市	月間降下物	2022/4/1	H-3	0.72	Bq/L
福島県	福島市	月間降下物	2022/4/1	H-3	68	MBq/km2.月
福島県	福島市	月間降下物	2022/5/9	H-3	0.71	Bq/L
福島県	福島市	月間降下物	2022/5/9	H-3	43	MBq/km2.月
福島県	福島市	月間降下物	2022/6/1	H-3	0.6	Bq/L
福島県	福島市	月間降下物	2022/6/1	H-3	104	MBq/km2.月
千葉県	千葉市稲毛区	月間降下物	2022/4/1	H-3	0.4	Bq/L
千葉県	千葉市稲毛区	月間降下物	2022/4/1	H-3	81	MBq/km2.月
千葉県	千葉市稲毛区	月間降下物	2022/5/9	H-3	0.32	Bq/L
千葉県	千葉市稲毛区	月間降下物	2022/5/9	H-3	41	MBq/km2.月
千葉県	千葉市稲毛区	月間降下物	2022/6/1	H-3	0.63	Bq/L
千葉県	千葉市稲毛区	月間降下物	2022/6/1	H-3	39	MBq/km2.月
京都府	京都市伏見区	月間降下物	2022/4/1	H-3	0.46	Bq/L
京都府	京都市伏見区	月間降下物	2022/4/1	H-3	49	MBq/km2.月
京都府	京都市伏見区	月間降下物	2022/5/9	H-3	0.52	Bq/L
京都府	京都市伏見区	月間降下物	2022/5/9	H-3	33	MBq/km2.月
京都府	京都市伏見区	月間降下物	2022/6/1	H-3	0.35	Bq/L
京都府	京都市伏見区	月間降下物	2022/6/1	H-3	40	MBq/km2.月

5.2.2 主要国のトリチウム (大気・海洋) の排出量

(1) 英国

英国の再処理施設及び原子力発電施設における 2021 年のトリチウム放出実績[34]を表 5.2-5 に示す。

表 5.2-5 英国の再処理施設及び原子力発電施設における 2021 年のトリチウム放出実績

サイト	気体(Bq/年)	液体(Bq/年)
Sellafield	3.87E+13	1.85E+14
Berkeley	3.97E+09	7.80E+07
Bradwell	6.10E+09	1.20E+09
Chapelcross	2.11E+13	5.68E+08
Dungeness A Station	5.26E+10	1.91E+09
Dungeness B Station	1.22E+11	2.37E+12
Hartlepool	5.22E+11	2.54E+14
Heysham Station 1	8.31E+11	2.44E+14
Heysham Station 2	9.24E+11	2.29E+14
Hinkley Point A Station	1.40E+10	1.92E+09
Hinkley Point B Station	1.10E+12	1.65E+14
Hunterston A Station	4.69E+08	1.00E+07
Hunterston B Station	1.19E+12	2.04E+14
Oldbury	2.97E+10	5.93E+08
Sizewell A Station	1.74E+10	7.70E+08
Sizewell B Station	3.65E+11	1.87E+13
Torness	1.33E+12	2.86E+14
Trawsfynydd	1.90E+10	1.23E+09
Wylfa	4.00E+10	6.82E+08

(2) 仏国

仏国の再処理施設及び原子力発電施設における直近のトリチウム放出実績(2021年) $^{[37]}$ を表 5.2-6 に示す。

表 5.2-6 仏国の再処理施設及び原子力発電施設における 直近のトリチウム放出実績(2021年)

サイト	液体(Bq)	気体(Bq)
ANDRA CSFMA-Aube	7,00E+05	6,50E+07
ANDRA CS-Manche: Compta R6-10	2,24E+09	_
ORANO cycle La Hague	1,00E+16	5,38E+13
ORANO cycle Pierrelatte (INB+INBS)	2,34E+07	_
CEA Bruyères le Chatel (INBS)	2,99E+08	1,06E+10
CEA Cadarache (INB)	4,80E+08	6,21E+10
CEA Paris-Saclay - Saclay (INB)	6,53E+09	4,40E+12
CEA Grenoble (INB)	0,00E+00	0,00E+00
CEA Marcoule (INBS)	2,60E+11	1,21E+13
CEA Valduc (INBS)	1,63E+09	1,45E+14
CNPE de Belleville-sur-Loire	4,63E+13	1,04E+12
CNPE du Blayais	4,40E+13	1,02E+12
CNPE de Bugey	4,26E+13	6,20E+11
CNPE de Cattenom	1,02E+14	2,04E+12
CNPE de Chinon	4,41E+13	1,11E+12
CNPE de Chooz	3,84E+13	6,35E+11
CNPE de Civaux	3,58E+13	1,06E+12
CNPE de Creys-Malville	4,01E+10	2,90E+10
CNPE de Cruas	3,36E+13	1,27E+12
CNPE de Dampierre-en-Burly	4,20E+13	1,21E+12
CNPE de Fessenheim	1,84E+12	3,49E+11
CNPE de Flamanville	4,16E+13	9,97E+11
CNPE de Golfech	4,30E+13	8,20E+11
CNPE de Gravelines	5,97E+13	1,64E+12
CNPE de Nogent-sur-Seine	5,03E+13	6,72E+11
CNPE de Paluel	9,36E+13	2,08E+12
CNPE de Penly	4,75E+13	7,18E+11
CNPE de Saint-Alban	5,58E+13	8,78E+11
CNPE de Saint-Laurent-des-Eaux	1,52E+13	7,17E+11
CNPE de Tricastin	4,21E+13	9,67E+11
ILL Grenoble	1,50E+11	1,00E+13

サイト	液体(Bq)	気体(Bq)
CEA Marcoule: Atalante - Phenix - Melox (pas de rejet		
tritium) - Les rejets 3H liquides de l'INBs exploitée par le	2,60E+11	1,92E+10
CEA sont inclus		
Marine Nationale Brest (pas de rejets	_	2,34E+10
tritium) et L'Ile Longue (INBS)	_	_
Marine Nationale Cherbourg (INBS)	4,82E+08	2,15E+08
Marine Nationale Toulon (INBS): pas de rejet tritium	_	3,21E+09
SOCATRI	_	7,80E+07
SODERN	_	1,89E+12
INBS PN	_	1,70E+08
Total	1,09E+16	2,47E+14

(3) 韓国

韓国の原子力発電施設におけるトリチウム放出実績^[38]を表 5.2-7 に示す。2023 年 3 月 25 日時点では、2022 年 10 月以降のデータは公表されていない。

表 5.2-7 韓国の原子力発電施設における 2022 年のトリチウム放出実績

2022年	放出量(TBq)	古里	セウル	ハンビット	ハンウル	月城
1 🛘	液体	4.43	3.57	0.82	1.86	1.60
1月	気体	1.37	0.05	1.47	0.82	13.62
0 🖽	液体	2.00	1.53	1.01	1.30	2.16
2月	気体	1.72	0.04	1.12	0.77	7.69
3月	液体	1.90	0.19	0.99	4.38	1.55
3月	気体	4.51	0.05	1.23	1.61	8.17
4月	液体	0.86	0.11	0.00	3.43	2.76
4 月	気体	1.70	0.03	1.19	0.99	7.69
5月	液体	1.30	13.50	0.00	3.17	2.40
3月	気体	0.91	0.05	1.37	0.80	7.22
с П	液体	3.63	1.86	0.00	4.08	7.84
6月	気体	0.75	0.04	1.30	0.77	6.24
7月	液体	2.09	5.26	2.82	1.23	4.11
7 月	気体	0.97	0.04	1.45	0.96	7.01
ο Я	液体	0.98	3.60	2.05	1.87	4.96
8月	気体	1.05	0.09	1.49	0.96	6.94
9月	液体	1.68	1.96	1.39	6.71	2.11
ЭЛ	気体	1.85	0.06	1.74	1.11	7.48

(4) 米国

米国の運転中原子力発電施設における直近のトリチウム放出実績(2021 年) $^{[39]}$ を表 5.2-8 に示す。

表 5.2-8 米国の原子力発電施設における直近のトリチウム放出実績(2021年)

	施設名	気体 (Ci)	液体(Ci)
BWR	BROWNS FERRY-1, 2, 3	2.85E+02	1.51E+01
	Brunswick 1 & 2	9.03E+01	7.29E+01
	Clinton	2.71E+01	0.00E+00
	Columbia Generating Station	1.98E+01	-
	Cooper	1.71E+01	0.00E+00
	Dresden 2	9.86E+01	2.49E-03
	Dresden 3	2.13E+01	2.49E-03
	Edwin I. Hatch 1	6.14E+01	2.44E+02
Fe Gi He Ja La	Edwin I. Hatch 2	3.83E+01	4.03E+01
	Fermi 2	5.58E+01	-
	Grand Gulf 1	1.78E+01	1.94E+01
	Hope Creek 1	4.19E+02	6.92E+01
	James A. FitzPatrick	1.57E+01	5.66E-02
	La Salle County 1 & 2	9.98E+01	-
	Limerick 1 & 2	1.91E+01	1.69E+01
	Monticello	2.14E+01	0.00E+00
	Nine Mile Point 1	2.90E+01	-
	Peach Bottom 2 & 3	1.42E+02	1.16E+01
	Perry 1	8.30E+00	5.05E+00
	Quad Cities 1 & 2	7.72E+01	3.65E+00
	River Bend 1	6.10E+00	3.59E+01
	Susquehanna 1 & 2	6.02E+01	3.15E+01
PWR	Arkansas Nuclear One 1	1.55E+01	3.71E+02
	Arkansas Nuclear One 2	3.06E+01	6.66E+02
	Beaver Valley 1	1.58E+01	1.58E+03
	Beaver Valley 2	5.63E+01	-
	Braidwood 1 & 2	7.74E+01	3.18E+03
	Byron Station 1	1.68E+01	1.26E+03
	Byron Station 2	8.04E+01	1.26E+03
	Callaway	2.56E+01	7.73E+01
	Calvert Cliffs 1 & 2	6.53E+00	1.37E+03
	Catawba 1 & 2	2.54E+02	1.16E+03
	Comanche Peak 1 & 2	3.33E+01	1.84E+03

施設名	気体 (Ci)	液体(Ci)
Davis-Besse	2.40E+01	9.93E+02
DC Cook 1 & 2	7.29E+01	1.53E+03
Diablo Canyon 1 & 2	3.48E+01	1.08E+03
Ginna	1.54E+02	3.68E+02
H. B. Robinson 2	1.07E+01	4.71E+02
Joseph M. Farley 1	1.10E+01	5.36E+02
Joseph M. Farley 2	1.48E+01	3.96E+02
McGuire 1 & 2	8.65E+01	1.17E+03
Millstone 1	4.17E-02	5.00E-02
Millstone 2	2.83E+01	5.82E+02
Millstone 3	4.43E+01	9.21E+02
North Anna 1 & 2	1.49E+01	1.01E+03
Oconee 1, 2 & 3	1.90E+02	1.08E+03
Palo Verde 1	4.84E+02	-
Palo Verde 2	1.10E+03	-
Palo Verde 3	1.00E+03	-
Point Beach 1 & 2	6.91E+01	8.95E+02
Prairie Island 1 & 2	2.50E+01	2.50E+01
Salem 1	2.27E+02	4.83E+02
Salem 2	1.90E+02	4.10E+02
Sequoyah 1 & 2	8.97E+00	1.86E+03
Shearon Harris 1	9.67E+01	4.17E+02
South Texas Project 1 & 2	1.97E+01	3.91E+02
St. Lucie 1 & 2	1.18E+01	8.08E+02
Summer	1.30E+00	8.01E+02
Surry 1 & 2	4.67E+01	1.77E+03
Turkey Point 3 & 4	2.34E+00	9.16E+02
Vogtle 1	4.75E+01	5.14E+02
Vogtle 2	9.63E+00	7.07E+02
Waterford 3	4.13E+01	4.52E+02
Watts Bar 1	1.29E+02	6.44E+03
Watts Bar 2	3.65E+01	1.82E+03
Wolf Creek 1	5.62E+01	1.18E+03

(注) 1Ci=3.7×10¹⁰Bq

(5) ドイツ

ドイツの原子力発電施設における直近のトリチウム放出実績(液体) $^{[40]}$ を図 5.2-1 に示す。

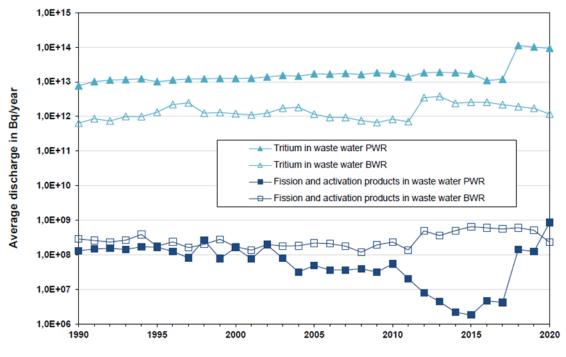


図 5.2-1 ドイツにおける排水中のトリチウム量

(6) スペイン

スペインの原子力発電施設における直近のトリチウム等放出実績(2021 年) $^{[41]}$ を表 5.2-9 に示す。

表 5.2-9 スペインの原子力発電施設における直近のトリチウム等放出実績(2021年)

	(Bq)	Santa María de Garoña	Almaraz	ASCÓ I	ASCÓ II	Cofrentes	Vandellós II	Trillo	José Cabrera.
液体	溶存ガス (トリチウムを除く)	2,57E+07	1,57E+10	6,38E+09	1,94E+09	1,05E+08	1,04E+10	2,63E+08	-
	トリチウム	5,97E+10	4,08E+13	2,50E+13	9,63E+12	5,63E+11	2,23E+13	1,56E+13	6,82E+07
	溶存ガス	-	ND	4,47E+07	ND	ND	4.01E+07	-	-
気体	希ガス	ND	1,00E+11	2,69E+10	9,00E+10	1,40E+12	1,45E+11	9,94E+10	-
	ハロゲン	-	ND	ND	ND	8,50E+07	4,21E+07	ND	-
	微粒子	1,06E+04	5,01E+03	2,12E+06	2,82E+06	1,09E+07	3,23E+07	3,46E+05	-
	トリチウム	6,13E+10	5,73E+12	8,26E+11	6,88E+11	4,60E+11	9,26E+11	7,97E+11	ND
	C-14	-	3,54E+11	1,51E+10	9,60E+10	1,13E+11	3,44E+11	2,65E+11	-

(7) スロベニア

スロベニアのクルスコ原子力発電所における直近のトリチウム放出実績(液体、気体) $^{[42]}$ を表 5.2- 10 および表 5.2- 11 に示す。

表 5.2-10 スロベニアのクルスコ原子力発電所の液体排出におけるトリチウム量

液体排出		2019	2020	2021
核分裂生成物・放射化生成物	放出された放射能	25.1 MBq	11.2 MBq	35.6MBq
制限値:100GBq	制限値に対する割合	0.025 %	0.011 %	0.04 %
トリチウム	放出された放射能	13.6 TBq	2.9 TBq	16.1 TBq
制限值:45TBq	制限値に対する割合	30.2%	6.6%	35.9%

表 5.2-11 スロベニアのクルスコ原子力発電所の気体排出におけるトリチウム量

気体排出		2019	2020	2021
トリチウム	放出された放射能	2.8 TBq	3.5 TBq	6.7 TBq
C-14	放出された放射能	$75~\mathrm{GBq}$	198 GBq	103 GBq

(8) ルーマニア

ルーマニアのチェルナヴォダ原子力発電所における直近のトリチウム放出実績 (気体、液体) $^{[43]}$ を図 5.2- 2 2〜図 5.2- 5 5 に示す。

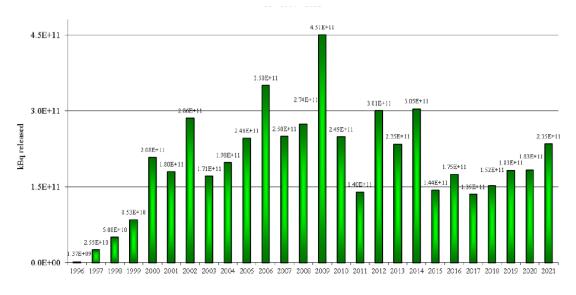


図 5.2-2 チェルナヴォダ原子力発電所 1 号機 (気体)

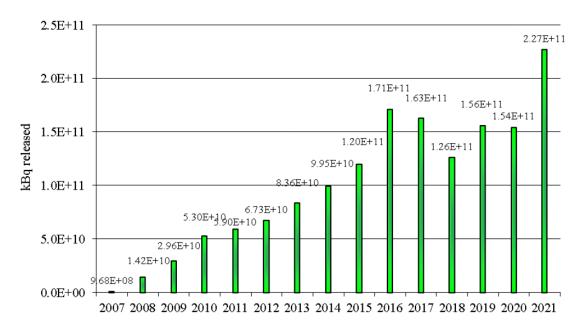


図 5.2-3 チェルナヴォダ原子力発電所 2 号機 (気体)

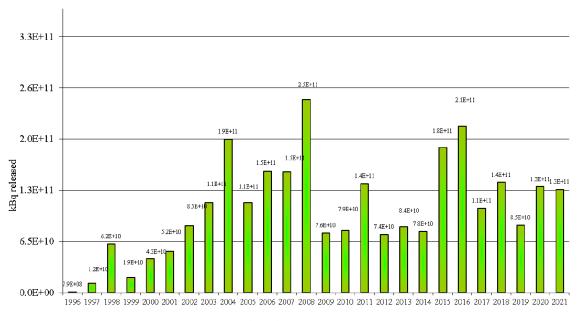


図 5.2-4 チェルナヴォダ原子力発電所 1 号機 (液体)

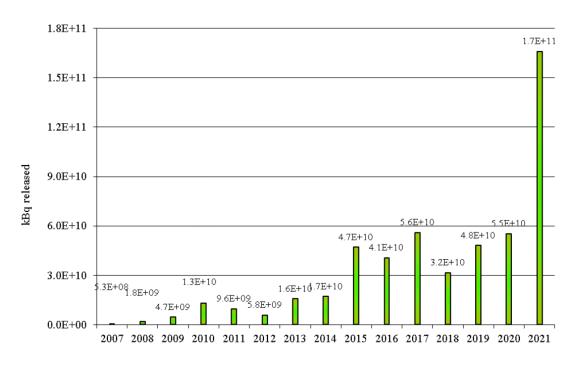


図 5.2-5 チェルナヴォダ原子力発電所 2 号機 (液体)

(9) 台湾

台湾の国聖(第2)原子力発電所及び馬鞍山(第3)原子力発電所における直近のトリチウム放出実績(液体、気体)[44][45]を表 14に示す。

表 5.2-12 台湾の原子力発電所における直近(2021年)のトリチウム放出実績

サイト	液体(TBq)	気体(TBq)
国聖(第2)	0.215	0.816
馬鞍山(第3)	35.1	10.54

(10)中国

中国の原子力発電所における直近のトリチウム放出実績を表 5.2-13 に示す。

表 5.2-13 中国の原子力発電所における直近のトリチウム放出実績

発電所	年度	液体(TBq)	気体(TBq)
昌江[46]	2021	37.5	0.41
防城港[47]	2020	50.5	0.439
福清[48]	2021	113.4	2.37
大亜湾[49]	2022	40.9	1.75
嶺澳 I 期 ^[49]	2022	34	3.18
嶺澳Ⅱ期[49]	2022	40.5	1.54
海陽[50]	2020	42.5	0.645
紅沿河[51]	2021	90.35	2.2647
寧徳[52]	2021	102	1.62
秦山 (9基) [53]	2021	218	114
三門[54]	2020	29.38	0.54
台山[55]	2022	25.75	0.68
田湾[56]	2021	79.2	1.09
陽江[57]	2021	112	1.81

(11)カナダ

カナダの原子力発電施設における直近のトリチウム放出実績 $^{[58]}$ を表 5.2-14 に示す。

表 5.2-14 カナダの原子力発電施設における直近のトリチウム放出実績

		2020年		2021年		
	気体(Bq/年)		液体	気体(Bq/年)		液体
	HT	НТО	(Bq/年)	HT	НТО	(Bq/年)
ブルースA		3.40E+14	2.50E+14		8.10E+14	2.80E+14
ブルース B		3.10E+14	5.70E+14		4.20E+14	9.10E+14
ダーリントン	1.50E+13	1.90E+14	1.20E+14	1.70E+13	2.60E+14	1.90E+14
ピカリング		6.50E+14	4.30E+14		5.20E+14	4.80E+14
ポイント・ルプロー		2.87E+14	4.61E+14		2.70E+14	8.20E+13
ジェンティリー		8.11E+13	1.97E+13		4.43E+13	1.56E+14

(12) 日本

我が国の原子力施設における直近のトリチウム放出実績(令和3年度下期) $^{[59]}$ を表 5.2-15に示す。

表 5.2-15 我が国の原子力施設における直近のトリチウム放出実績(令和3年度下期)

原子力発電所・再処理施設	気体(Bq/年)	液体(Bq/年)
泊	9.3E+10	1.6E+10
東通	2.0E+10	ND
女川	8.6E+10	放出実績なし
柏崎刈羽	2.0E+11	ND
福島第一	5.8E+10	放出実績なし
福島第二	1.1E+11	1.8E+09
東海第二	1.5E+09	1.0E+10
東海	5.1E+09	ND
浜岡	5.9E+10	2.4E+08
志賀	2.2E+10	ND
敦賀	7.8E+11	4.2E+11
美浜	2.3E+12	1.4E+12
大飯	7.2E+12	3.4E+13
高浜	3.1E+12	2.0E+13
島根	3.0E+10	9.8E+08
伊方	5.9E+11	9.8E+12
玄海	9.1E+11	5.4E+13
川内	9.5E+11	4.3E+13
日本原燃株式会社再処理事業所(六ケ所)	4.8E+10	9.4E+09
日本原子力研究開発機構核燃料サイクル工学研究所 (東海)	ND	7.2E+10

5.3 トリチウム分離技術の調査

ここでは、国内外のトリチウム分離技術について、最新動向を文献や関係者へのヒアリ ング等により調査を行った。

5.3.1 論文等による情報収集

論文等に関しては、Google Scholar、Pub Med、J-Stage を利用して、以下に示す 検索条件で、検索を実施した。

• 国内検索条件

キーワード:「トリチウム」&「分離」

期間: 2022 年以降

• 国外検索条件

キーワード: 「tritium」&「separation」&「fukushima」

期間:「2022 年以降」

2023年3月27日時点の検索結果を(件数)表 5.3-1に示す。

検索エンジンキーワード	Google Scholar	Pub Med	J-Stage
「トリチウム」&「分離」	39	-	29
「tritium」 & 「separation」 & 「fukushima」	284	0	0

※期間はいずれも 2022 年以降

文献検索により得られた論文の多くは、液体トリチウム向けではなくガス状トリチ ウム向け、重水素向け、核融合炉向け等の分離技術であり、トリチウムの挙動解明で ある。また、トリチウム分離技術について、実施されているのは理論研究やラボスケ ールの実験であり、ALPS 処理水について、直ちに実用化できる段階にある技術を検 証したような事例はなかった。

5.3.2 関係者へのヒアリング

国内外のトリチウム分離技術について、2022年度以降の最新動向を関係者へのヒア リングにより調査を行った。調査対象は、「トリチウム分離技術検証試験(廃炉・汚 染水対策事業)」(2014年10月~2016年3月)への参加機関(表 5.3-2)とし、検索 エンジンである Google を利用して、「機関名」&「トリチウム分離技術」をキーワー ドとして、トリチウム水の分離技術の開発の最近の動向を確認した。

さらに、上記事業に参加していない機関についても、トリチウムの分離技術に関す

る最新の動向を把握するために、以下の通りインターネットによる検索を実施した。

・ 検索エンジンである Google を利用して、キーワード「トリチウム」&「分離技術」、 期間は「2022 年以降」を指定して検索した結果、454 件が検索された(2023 年 3 月 5 日時点)。

これらインターネットにより得られた各機関の現況を表 5.3-3 にまとめた。その結果、創イノベーション株式会社・慶應義塾大学、京都大学との共同研究者である株式会社フォワードサイエンスラボラトリ、近畿大学、RosRao 社の日本の窓口である株式会社テネックス・ジャパンに対してヒアリングを実施した。

表 5.3-2 「トリチウム分離技術検証試験 (廃炉・汚染水対策事業)」採択事業者と トリチウム分離技術^[60]

カテゴリ	事業者名	実施期間	トリチウム分離技術
	Kurion, Inc.	2014. 10. 21 -2016. 3. 31	水-水素同位体交換法(CECE 法)
A	Federal State Unitary Enterprise "Radioactive Waste Management Enterprise "RosRAO"	2014. 10. 14 -2016. 3. 31	水蒸留法と CECE 法との組み合わせ
	株式会社ササクラ	2015. 3. 31 -2016. 3. 31	触媒機能を有した低温真空蒸留法
	創イノベーション株式会社	2015. 3. 30 -2016. 3. 31	二段階ガスハイドレート法
D	株式会社東芝	2015. 3. 31 -2016. 3. 31	多段式晶析法
В	株式会社ネクスタイド	2015. 3. 31 -2016. 3. 31	多連電解槽式電解法
	国立大学法人北海道大学	2015. 3. 31 -2016. 3. 31	燃料電池を用いた電解再結合法

※カテゴリAは、任意の規模の設備を構築し、実プラントにおける分離性能やコスト等を評価することを 目的とし、3事業者において、CECE 法、水蒸留法及び両者の組み合わせの3通りの技術の実証試験が 行われた。

カテゴリBは、実用開発初期段階の技術で、実験室レベルにおける試験を中心としたものであり、実プラントにおける分離性能やコスト等を評価することを目的とし、4事業者において、晶析法に基づく技術が2件、電解法に基づく技術が2件の計4件の技術の実証試験が行われた。

表 5.3-3 トリチウム分離技術に関する事業者の状況

	ノソム万触X州に関する事業有の仏仏
事業者名	状況及び対応
①Veolia Nuclear Solutions (旧	インターネットにて"Veolia"、"tritium"、"separation"
Kurion, Inc.)	を検索したところ進捗状況は確認されなかった。
②Federal Environmental	インターネットにて"tritium"、"separation"を検索した
Operator, Federal State	ところRosRao社の日本の窓口である株式会社テネック
Unitary Enterprise	ス・ジャパンがヒットしたためヒアリングを実施。
③株式会社ササクラ	インターネットにて「ササクラ」、「トリチウム」を検索
	したところ進捗状況は確認されなかった。
④創イノベーション株式会社	慶應義塾大学 大村亮教授に問い合わせをし、創イノベ
慶應義塾大学	ーション株式会社の方も交えてヒアリングを実施。
株式会社 イメージ ワン	
⑤株式会社東芝	インターネットにて「東芝」、「トリチウム」、「分離技術」
	を検索したところ進捗状況は確認されなかった。
⑥株式会社ネクスタイド	インターネットにて「ネクスタイド」、「トリチウム」を
	検索したところ進捗状況は確認されなかった。
⑦北海道大学	北海道大学大学院工学院工学研究院 松島永佳准教授
	等による「グラフェン膜で水素と重水素を分離する技
	術、原子力機構などが開発」
	(https://news.mynavi.jp/techplus/article/20220901-
	<u>2441503/</u>)の情報あり。
⑧近畿大学	近畿大学原子力研究所 山西弘城教授に問い合わせを
	し、ヒアリングを実施。
⑨京都大学	株式会社フォワードサイエンスラボラトリにヒアリン
株式会社フォワードサイエン	グを実施。
スラボラトリ(FSL)	
⑩東海大学	東海大学工学部生物工学科 木村啓志教授の HP 等を
	確認したところ進捗状況は確認されなかった。
	l

創イノベーション株式会社・慶應義塾大学:

ハイドレートによるトリチウム分離技術の開発者である創イノベーション株式会社は、「トリチウム分離技術検証試験事業」終了後も継続的に研究開発を続けており、同社の研究設備を慶應義塾大学に移動し、引き続き実験を行っているとのことであった。現在、処理能力を拡大するため、実装プレパイロット装置の製造に着手しているとのことであった。

フォワードサイエンスラボラトリ:

フォワードサイエンスラボラトリでは、触媒(水酸化マンガン)が OH⁻より構造が不安定な OT⁻から働く原理を用いて、水中のトリチウムを空気中に取り出す技術を開発しているとのことであった。本技術は、実験室規模では、濃度が低いほど向いており、エネルギーとしては、Ar ガスを送るぐらいの電力で済むとのことであった。

近畿大学:

本研究の主導者が 2019 年に退官したため、それ以降の研究開発は進めているもののペースダウンしたとのことであった。しかしながら、今までは共同研究先の状況やシステムに合わせないといけなかったため、試せなかった部分もあるが、来年度からは、再チャレンジする予定であるとのことであった。

<u>テネックス・ジャパン</u>

RosRao では、「トリチウム分離技術検証試験事業」終了後も事業で建設した試験プラントを解体せずにいたが、今年早々に解体する予定とのことであった。

以上より、一部の研究は継続され、また研究に進展がみられるものの、トリチウム 水タスクフォース報告書において「直ちに実用化できる段階にある技術が確認されな かった」と評価された状況から、当該評価を覆すほどの大きな進展はみられていない ことが分かった。

- [1] 工ネ百科, https://www.ene100.jp/zumen/6-3-11.
- [2] 陽江核電有限公司、陽江原子力発電所 3、4 号機に関する環境影響評価報告書、2014 年 7 月.
- [3] 秦山第三原子力発電有限公司、秦山第三原子力発電所付属重水精留建屋の建設プロジェクトに関する環境影響評価報告書、2021年12月.
- [4] EDF, https://www.edf.fr/sites/groupe/files/2023-02/01 2023%20Plaquette%20Publique%20DPN.pdf.
- [5] ASN, https://www.asn.fr/l-asn-reglemente/bulletin-officiel-de-l-asn/installations-nucleaires/decisions-individuelles/decision-n-2018-dc-0639-de-l-asn-du-19-juillet-2018.
- [6] ASN, https://www.asn.fr/l-asn-reglemente/bulletin-officiel-de-l-asn/installations-nucleaires/decisions-individuelles/decision-n-2018-dc-0640-de-l-asn-du-19-juillet-2018.
- [7] 韓国原子力技術院, https://www.kins.re.kr/radiation01.
- [8] WACID, https://www.kins.re.kr/wacid/gather.
- [9] 2021 年度原子力利用施設周辺における放射線環境調査及び評価報告書.
- [10] 2021 年度原子力発電所周辺における環境放射線の調査及び評価報告書.
- [11] IAEA, International Peer Review of the Environmental Impact Assessment Performed for the Licence Application of the Baltic-1 Nuclear Power Plant, Kaliningrad, Russian Federation, 2015.01.
- [12] IAEA, Annexes to the Final Report of the IAEA International Review Team, International Peer Review of the Environmental Impact Assessment Performed for the Licence Application of the Baltic-1 Nuclear Power Plant, Kaliningrad, Russian Federation, 2015.01.
- [13] NRC, https://www.nrc.gov/reactors/operating/ops-experience/tritium/plant-specific-reports/diab1-2.html.
- [14] NRC, https://www.nrc.gov/reading-rm/doc-collections/cfr/part020/part020-appb.html.
- [15] https://www.meti.go.jp/earthquake/nuclear/pdf/140326/140326_01j.pdf.
- [16] 経済産業省 汚染水処理対策委員会 トリチウム水タスクフォース 第6回 資料3 「TMI-2 Tritiated Water Experience」添付資料, https://www.meti.go.jp/earthquake/nuclear/pdf/140326/140326 01e.pdf.
- [17] https://www.energy.gov/sites/default/files/nepapub/nepa_documents/RedDont/Req-NEPA.pdf.
- [18] 台湾電力、台湾第四原子力発電所に関する環境影響評価報告書、1980.
- [19] UK EA, "Developing Guidance for Setting Limits on Radioactive Discharges to the Environment from Nuclear-Licensed Sites", Science Report SC010034/SR, December 2005
- [20] アイソトープ協会、アイソトープ輸送ガイド、2014年4月.
- [21] IAEA, Specific Safety Requirements, Regulations for the Safe Transport of Radioactive Material, 2018 Edition.
- [22] UN, Recommendations on the Transport of Dangerous Goods, https://unece.org/rev-21-2019.
- [23] 国立国会図書館、危険物輸送に関する国際的な取り決め、 https://rnavi.ndl.go.jp/jp/guides/1-2-2013320-the.html.
- [24] IATA, https://www.iata.org/en/about/.

- [25] 国土交通省、危険物の海上運送等に係る安全対策、 https://www.mlit.go.jp/maritime/maritime_fr8_000012.html.
- [26] 外務省、国際海事機関(IMO)概要、https://www.mofa.go.jp/mofaj/gaiko/imo/.
- [27] ASN, TRANSPORT OF NUCLEAR MATERIALS, C H A P T E R 11.
- [28] ASN, Radiation Protection in Radioactive Substance Transport Activities, Guide No. 29. Version of 29/03/2018.
- [29] USNRC Technical Training Center, Transportation of Radioactive Material.
- [30] U.S. Postal Service (USPS), Pub. 52, Hazardous, Restricted, and Perishable Mai, https://pe.usps.com/text/pub52/pub52c3 025.htm#ep999364.
- [31] The ARPANSA Radiation Health and Safety Advisory Council, Transport Of Radioactive Material In Australia Discussion Of The Risks, https://www.arpansa.gov.au/sites/default/files/rhsac-transport-of-radioactive-material-background 0.pdf.
- [32] The Swiss Federal Nuclear Safety Inspectorate (ENSI), Quality Management Guideline for the Manufacture and Use of Packaging for the Transport of Radioactive Material https://www.ensi.ch/en/wp-content/uploads/sites/5/2015/10/guideline manufacture and use of packaging.pdf.
- [33] Austrian National Report Under The Convention On Nuclear Safety, 2001.09.
- [34] ENVIRONMENT AGENCY, FOOD STANDARDS AGENCY, FOOD STANDARDS SCOTLAND, NATURAL RESOURCES WALES, NORTHERN IRELAND ENVIRONMENT AGENCY, SCOTTISH ENVIRONMENT PROTECTION AGENCY, RIFE 27: Radioactivity in food and the environment 2021, November 2022.
- [35] KHNP, 원자력발전소 주변환경방사능 조사 및 평가 보고서(Rev.1), https://npp.khnp.co.kr/board/view.khnp?boardId=BBS 0000032&menuCd=DOM 0 00000104003000000&startPage=1&dataSid=4402.
- [36] 公益財団法人日本分析センター, 環境放射線データベース, https://www.kankyo-hoshano.go.jp/data/database/.
- [37] ASN, LIVRE BLANC TRITIUM, Mise à jour du 07/02/2023.
- [38] KHNP, https://npp.khnp.co.kr/board/list.khnp?boardId=BBS_0000020&menuCd=DOM_00_0000103003004001&contentsSid=110.
- [39] NRC, Radioactive Effluent and Environmental Reports, https://www.nrc.gov/reactors/operating/ops-experience/tritium/plant-info.html.
- [40] Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV), Report by the Government of the Federal Republic of Germany for the Combined 8th/9th Review Meeting of the Convention on Nuclear Safety in March 2023.
- [41] CSN, Informe del Consejo de Seguridad Nuclear al Congreso de los Diputados y al Senado, Año 2021.
- [42] REPUBLIC OF SLOVENIA MINISTRY OF THE ENVIRONMENT AND SPATIAL PLANNING SLOVENIAN NUCLEAR SAFETY ADMINISTRATION, Slovenian Report on Nuclear Safety Slovenian 9th National Report as Referred in Article 5 of the Convention on Nuclear Safety, July 2022.
- [43] ROMANIA National Report under the Convention on Nuclear Safety, 9th Revision, August 2022.

%B3%AA%E6%8E%92%E6%94%BE%E5%B9%B4%E5%A0%B1.pdf.

[45] 台湾電力, 核三廠 110 年 放射性物質排放年報,

 $\frac{\text{https://www.taipower.com.tw/upload/203/203_06/\%E6\%A0\%B8\%E4\%B8\%89\%E5\%}{\text{BB\%A0110\%E5\%B9\%B4\%E6\%94\%BE\%E5\%B0\%84\%E6\%80\%A7\%E7\%89\%A9\%E8}{\text{\%B3\%AA\%E6\%8E\%92\%E6\%94\%BE\%E5\%B9\%B4\%E5\%A0\%B1.pdf.}$

[46] 中国核能電力股份有限公司,

https://www.cnnp.com.cn/cnnp/cydwzd62/hnhdyxgs/haqxxgk/1204065/2022033017111278743.pdf.

- [47] 広西防城港核電有限公司, http://www.fcgnp.com.cn/fcgnp/c20210420/2021-03/30/content 80e3aab55783408c9e479d3e9c592620.shtml.
- [48] 中国核能電力股份有限公司、

 $\frac{\text{https://www.cnnp.com.cn/cnnp/cydwzd62/fjfqhdyxgs/hdchaqxx11/1201787/20220328}}{16580321040.pdf}.$

[49] 大亜湾核電運営管理有限責任公司,

http://www.dnmc.com.cn/dnmccn/c101751/lewgl.shtml.

[50] 中国核能行業協会, https://www.china-

nea.cn/upload/ebook/hnnj/hnnj2021/mobile/index.html#p=82. [51] 遼寧紅沿河核電有限公司, http://www.lhnp.com.cn/lhnp/c101589/2022-

08/22/content f33e77a8783543558b77f1a74f529712.shtml.

- [52] 福建寧徳核電有限公司, http://www.ndnp.com.cn/ndnp/c20092912/2020-09/29/1a0047a7223b4cc8accbb0b6e83f73cc/files/1add75717b754b75a6888f0f4f1ca556.pdf.
- [53] 中核集団秦山核電、

https://www.cnnp.com.cn/cnnp/cydwzd62/gshdzhyx/hdchagxx1/c9cedc3c-2.html.

[54] 三門核電,三门核电厂核安全信息公开年度报告(2020年),

https://www.cnnp.com.cn/cnnp/cydwzd62/smhdyxgs/hdchagxx95/index.html.

- [55] 台山核電合営有限公司, http://www.tnpjvc.com.cn/tnpjvc/c100617/xxaq lcwgl.shtml.
- [56] 江蘇核電有限公司, 2021 年田湾核电站核安全信息公开年报,

https://www.cnnp.com.cn/cnnp/cydwzd62/jshdyxgs/hdchaqxx96/1197492/202203152 2342262523.pdf.

- [57] 陽江核電有限公司, 阳江核电厂 2021 年度核安全报告,
 - http://www.yjnp.com.cn/yjnp/c20210816/2021-

08/17/content bc3a5f1381fc43a8b788ca9431390c27.shtml.

[58] CNSC Radionuclide Release Datasets,

https://open.canada.ca/data/en/dataset/6ed50cd9-0d8c-471b-a5f6-26088298870e.

- [59] 原子力規制委員会,規制法令及び通達に係る文書,
 - https://www.nra.go.jp/disclosure/law_new/genshiryoku_index.html.
- [60] 廃炉・汚染水対策事業事務局,トリチウム分離技術検証試験事業 総括及び評価(経済 産業省 トリチウム水タスクフォース(平成28年4月19日)資料3),

https://www.meti.go.jp/earthquake/nuclear/osensuitaisaku/committtee/tritium_tus_k/pdf/160419_06.pdf.

Webinar to present the findings of UNSCEAR 2020/2021 REPORT, ANNEX D "EVALUATION OF OCCUPTIONAL EXPOSURE TO IONIZING RADIATION" (2022 年 11 月 17 日 1-2.30 p.m. (CET))

UNSCEAR (原子放射線の影響に関する国連科学委員会) は、1955年に設立された委員会で、地球上に存在するあらゆる放射線源を対象として、放射能レベル、人や環境への被ばく線量とその生物学的影響、放射線リスクなどを、最新データの知見に基づいてまとめ、報告書として公表している。(図 1 参照)

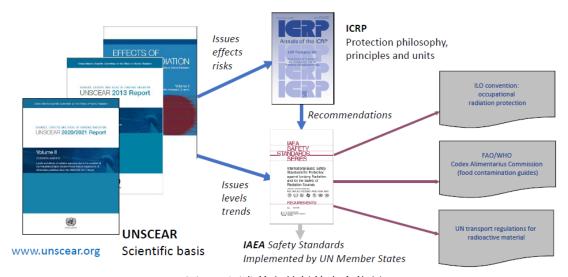


図 1 国際的な放射線安全体制

UNSCEAR では、1962 年、1972 年、1977 年、1982 年、1988 年、1993 年の職業被ば くレベルを評価しており、最近では以下の期間での評価を実施している。

- UNSCEAR 2000 (1990-1994)
- UNSCEAR 2008(1995-2002)
- UNSCEAR 2020/2021 (2003-2014)

2022 年 9 月に発行された UNSCEAR 2020/2021 報告書、付属書 D「電離放射線による職業被ばくの評価(Evaluation of Occupational Exposure to Ionizing Radiation)」 *1 は、天然起源放射線源および人為起源放射線源による被ばくに伴う様々なセクターの世界的な職業被ばくに関する委員会の最新の推定値を示したものである。評価には、1)電離放射線の使用を伴う主要な作業セクターおよびサブセクターごとの作業者の年間平均集団

_

^{*1} https://www.unscear.org/unscear/en/publications/2020 2021 4.html

実効線量*2の推定値、2) 職業被ばくの時間的傾向の分析が含まれている。これらは、国連加盟国および国際機関から提供されたデータ、およびピアレビューされた文献、作業者の放射線被ばくに関する各国の報告書に基づいている。

本ウェビナーでは、科学、研究、規制、事業者からの放射線防護専門家や意思決定者、 および外交コミュニティや国際機関を対象に、主な調査結果、傾向、今後の評価への示唆 が発表される。ウェビナーは表 1 のアジェンダに沿って実施された。

なお、当日の資料及び動画は、下記の URL より参照可能である。

https://www.unscear.org/unscear/en/events/webinars/2022-11_webinar-occuptional-exposure.html

² 放射線防護に用いられる線量の一つ。被ばくした集団について、全体としての被ばくに伴う放射線の影響を表す。単位は人・シーベルト(Sv)である。

表 1 ウェビナーアジェンダ

プログラム	スピーカー		
1. Introduction	• Dr Jing Chen		
	Chair of UNSCEAR, Contributing writer and member		
	of the occupational exposure expert group, Canada		
	Ms Borislava Batandjieva-Metcalf		
	Secretary of UNSCEAR		
2. Presentation of the UNSCEAR	Dr Peter Hofvander		
Report 2020/2021, Annex D	Chair of the occupational exposure expert group,		
"Evaluation of Occupational	Sweden		
Exposure to Ionizing Radiation"			
3. Questions and Answers	Dr Peter Hofvander		
(Moderation: Dr Ferid Shannoun)	Chair of the occupational exposure expert group,		
	Sweden		
	Dr Vincent Holahan		
	Senior technical adviser and member of the		
	occupational exposure expert group, USA		
	• Dr Dunstana Melo		
	Lead writer and member of the occupational		
	exposure expert group, USA		
	Dr Cameron Lawrence		
	Contributing writer and member of the occupational		
	exposure expert group, Australia		
	• Dr Uwe Oeh		
	Contributing writer and member of the occupational		
	exposure expert group, Germany		
	Dr Steven Simon		
	Contributing writer and member of the occupational		
	exposure expert group, USA		
	Mr Halil Burçin Okyar		
	Contributing writer and observer of the occupational		
	exposure expert group, IAEA		
	Dr Ferid Shannoun		
	Senior Scientific Officer and Deputy Secretary of		
	UNSCEAR		

Dr Peter Hofvander による、電離放射線による職業被ばくの現状やトレンドについてのプレゼンテーションの主な内容を以下に記す。

- UNSCEAR では 2016 年~2019 年に調査を実施したところ 57 ヵ国が回答。2020 年に IAEA が補足調査を実施し 31 件の回答が得られた。さらに約 700 件の文献をレビューし、その他の機関(IAEA、OECD/NEA、ICAO、ISOE、WNA、等)からのデータも補足した。
- 天然起源放射線源および人為起源放射線源による様々なセクターにおける被ばくの状況を分析。

≪天然起源放射線源による被ばく≫

- 天然起源放射線源による被ばくは下記の通り。
 - 航空機乗務員、宇宙飛行士の宇宙線被ばく
 - 採掘・加工産業における被ばく
 - ▷ 石炭採掘・加工
 - ▷ 鉱物の採掘と加工
 - 石油・ガス採掘
 - 鉱山以外の作業場におけるラドン被ばく
- 2010年~2014年に、自然起源放射線による被ばくを伴うセクターに雇用された作業者は1,260万人で、1995年~1999年と比較して、わずかに増加した。石炭や鉱物の採掘・加工作業者が約1,180万人で、年間作業者数の94%を占めていた。天然起源放射線源の年間集団実効線量は24,300人・Svであり、被ばくレベルは減少傾向にある。なお、データ不足により、石油・ガス採掘及び鉱山以外の作業場におけるラドン被ばくは除外されており、過小評価となっている。(表 2)

表 2 2010年~2014年の天然起源放射線源による全世界の職業被ばくの推定値

Sector	Number of monitored workers (10 ³) ^a	Annual collective effective dose (man Sv)	Weighted average annual effective dose (mSv)
Civil aviation	750	2 030	2.7
Coal extraction/processing	8 000	12 800	1.6
Mineral extraction/processing	3 800	9 500	2.5
Total (2010-2014)	12 600	24 300	1.9
Total (1995-1999)	11 800	31 260	2.7

a Values are rounded

≪人為起源放射線源による被ばく≫

- 人為起源放射線源による被ばくは下記の通り。
 - 核燃料サイクル
 - □ U採掘、転換・濃縮、燃料製造、原子炉運転、廃炉、再処理、研究、廃棄物管理、輸送、安全・保障措置検査、その他
 - 医療用
 - ▷ 診断放射線学、核医学、放射線治療、獣医学、その他
 - 産業用
 - ▶ 照射、X線撮影、発光、同位体製造、坑井掘削、加速器運転、計測器、その他
 - 軍事用途
 - その他の用途
 - ▷ 学校、未使用線源、輸送、その他
- 2010 年~2014 年に、人為起源放射線源による被ばくを伴うセクターに雇用された作業者は約1,140万人であった。人為起源放射線源により被ばくした作業者は、医療部門が圧倒的に多く、全作業者の約80%を占めた。2010年~2014年の全人為起源放射線源の平均年間実効線量は0.5mSvであり、平均年間集団実効線量は5,460人・Svであった。(表3)

表 3 2010年~2014年の人為起源放射線源による全世界の職業被ばくの推定値

Sectors	Number of monitored workers (10 ³) ^a	Annual collective effective dose (man Sv)	Weighted average annual effective dose (mSv)
Nuclear fuel cycle	760	485	0.6
Medical use	9 000	4 500	0.5
Industrial use	1 100	437	0.4
Miscellaneous use	540	38	0.1
Total	11 400	5 460	0.5

a Values are rounded.

• 1975 年以降、人為起源放射線源に分類されるセクターでの職業被ばくレベルの評価が 実施されてきた。核燃料サイクルに関しては記録やデータが管理されているが、医 療、産業、その他の用途では不確実性が高く、過小評価されている可能性がある。ま たいくつかの部門の作業者に関しては、データや適切なパラメータの欠如から、線量 推定値も得られていない。 ≪2010年~2014年の全体的な結果≫

• 2010年~2014年に天然起源放射線源及び人為起源放射線源により被ばくした作業者は、世界中で年間約2,400万人と推定された。そのうち約52%は天然起源放射線源による被ばくを伴うセクターに雇用されており、約48%は人為起源放射線源による被ばくを伴うセクターに雇用されていた。(図2)

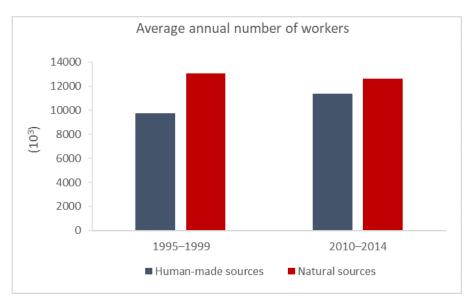


図 2 被ばくを受けた作業者の推定値

• 2010 年~2014 年の全作業者の世界の平均年間実効線量は約 $1.2 \,\mathrm{mSv}$ と推定され、これは 1995 年~1999 年の推定値の約2/3 であった。年間実効線量は、天然起源放射線源により被ばくした作業者では約 $2 \,\mathrm{mSv}$ 、人為起源放射線源により被ばくした作業者では $0.5 \,\mathrm{mSv}$ と推定された。(図3)

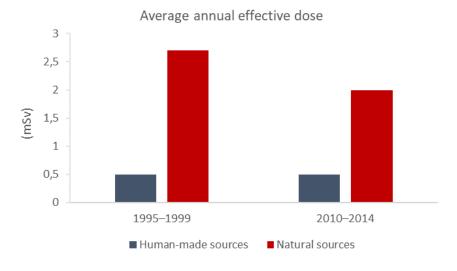


図 3 年間実効線量

≪眼の水晶体への線量≫

- 文献調査から、眼の線量限度の引き下げは、一部の作業者(特に、画像下治療や産業 用放射線に従事する者)にとっては制限値を超える線量をもたらす可能性があること が示された。
- UNSCEAR 調査での眼の水晶体への等価線量の情報は限られており、数ヵ国からのみ 提供された。
- 報告された年間平均値はすべて 20mSv より低い。
 - 放射線診断における線量は 7mSv 以下
 - 放射線治療 (ブラキセラピー) では約 0.1mSv
 - 獣医学では 1mSv

≪今後の評価について≫

- UNSCEAR は、今後、より多くの加盟国からの報告の重要性と必要性を強調する。加盟国や国際機関との協力はこれまでも、そしてこれからも不可欠なものである。
- 多くの国では、作業者のラドン被ばくのモニタリングは義務付けられていない。しか し、被ばくデータの収集を継続し、ラドンが被ばく源となりうる作業場の種類も含め ることが重要である。

IAEA MEREIA プログラム 第二回テクニカルミーティング参加報告

【開催日】2022年11月28日~12月2日

【開催方法】対面・オンラインハイブリッド形式

【概要】

IAEA の放射線環境影響評価手法に関するプログラムである、MEREIA の第二回テクニカルミーティングが開催された。IAEA は過去 40 年間に渡り BIOMASS、EMRAS I and II、MODARIA I and II など、放射線に関わる環境モデリングや線量評価を取り扱う国際会議を主催してきたが、MEREIA はこれらに後続するプログラムであり、2021 年から 2025 年頃まで継続される予定となっている。昨年度はコロナ禍に伴う渡航制限の影響により完全オンライン形式で開催されたが、今年度は対面及びオンラインのハイブリッド形式で開催され、66 か国の加盟国からの参加者約 290 名のうち、約 90 名がウィーンにおいて対面でミーティングに参加した。MEREIA プログラムの概要及び活動方針、各ケーススタディの概要説明が行われた全体会議の後、既に採用が決定した五つのケーススタディ毎にブレークアウトセッションが開催され、今後の活動方針について議論された。また、対面参加者向けに解析ツールの研修や、MEREIA で特に重要視されるメンタープログラムのセッションも行われた。次年度の第三回テクニカルミーティングは、2023 年 10 月にウィーンにおいて、今年度同様対面・オンラインハイブリッド形式で開催予定である。

第二回テクニカルミーティングの資料は、下記の Web サイトにおいて公表される予定となっている。

https://gnssn.iaea.org/main/MEREIA/Pages/default.aspx

【放射線環境影響評価分野における IAEA プログラムの役割】

- 原子力施設や地下貯蔵施設、その他病院など放射性物質を扱う施設及び活動、またその他の環境中に存在する放射線源の放射線環境影響評価分野における機能及び能力を強化する。
- IAEA により定められた安全基準に関連して、放射線環境影響評価で用いられる国際的かつ学際的な評価基準として認知される。
- 放射線及び原子力安全に関する知識を維持、向上するという IAEA の取り組みを促進する。

【MEREIA プログラムにおいて期待される成果物】

- 評価モデル及び手法の活用に関する指針評価
- MEREIA 最終テクニカルミーティングの講演集

(MODARIA プログラムの TECDOC に取って代わるものとなる)

- 評価に用いられる環境モデルやデータを取り纏めた、ウェブベースのレポジトリやデータベース
- メンタープログラムやトレーニングなどの研修資料

【MEREIA プログラムのスコープ】

- 様々な複雑性を持つ実在のシナリオに基づいたケーススタディを用い、評価モデルや 方法論の適用方法に着目した、放射線環境影響評価に対する全体論的アプローチ
- 実在するサイトなど特定の状況下における評価方法、アプローチ、モデル、データの選択と使用に関するガイダンスの提供
- 放射線環境影響評価を目的とした、既存のモデル、コード、データの提供
- 加盟国が直面する課題に対応することを目的とした、新たな評価アプローチの開発、または既存の方法論の適応
- 複数の加盟国が直面している熱帯地域における評価など、異なる状況や地域に対する 出力(アウトプット)の比較検討
- 規制や政府の意思決定における、より広い文脈での評価手法の適用及び適用可能性の 検討
- キャパシティービルディングとノウハウの管理 過去プログラムと比較して、MEREIA ではこの要素に特に重点を置いている。若手技術 者を対象としたメンタープログラム、研修、ワークショップなどを通して、世代間、加盟 国間の技術共有、継承を目的とする。

【ケーススタディによる検討】

直近の過去プログラムである MODARIA II では、生態学、海洋環境、安全評価等のトピック毎に分割されたワーキンググループによる活動が主であったが、MEREIA ではより各加盟国が直面する課題の解決に資するケーススタディによる検討が行われている。第一回テクニカルミーティング後に五つのケーススタディが既に採用されており、本会議において各ケーススタディの代表者により活動目的や方針などが説明された。また、今後採用される可能性のあるケーススタディ候補のプレゼンテーションも、各代表者によって行われた。各ケーススタディでは異なるサイトにおける評価を取り扱うが、課題の特定、インプット、実施方法や期待される成果などが整理された共通のフレームワークによって進められる。各ケーススタディに取り組むワーキンググループに加え、コミュニケーション、社会、経済、法律、歴史などより包括的なトピックを扱うワーキンググループも設立予定である。

第二回テクニカルミーティングにおいてケーススタディ毎の活動が実施されたトピックは、以下の通りである。

- ケーススタディシナリオ1:低レベル放射性廃棄物貯蔵
- ケーススタディシナリオ 2:事故によるセシウム 137 漏洩
- ケーススタディシナリオ3:過去に実施された放射性廃棄物の海洋投入
- ケーススタディシナリオ4:ウラン採掘・精錬
- ケーススタディシナリオ5:フィヨルドにおける複合ストレス要因

また、今後採用される可能性のあるケーススタディ候補は、以下の通りである。

- 福島地方における集水域
- 自然起源放射性物質(NORM)の浄化
- 北極における放射能評価
- 加圧重水型原子炉
- 湖への放射能放出
- 加圧水型原子炉
- 北極圏の小型原子炉

既に採用が決定している五つのケーススタディについては、ワーキンググループ毎のブレークアウトセッションが行われ、今後の活動方針や最終目標について議論された。各ケーススタディの概要を以下に示す。

【ケーススタディシナリオ1:低レベル放射性廃棄物貯蔵】

発表者: Lise Griffault

発表者所属: Andra/DISEF/DES/SES (フランス)

概要:フランスのオーブ処理場は短寿命低中レベル放射性廃棄物処分場として、1992年に 操業が開始された。オーブ処理場はフランスの規制対象となるため、定期的な安全性再検査 が必要とされ、年に一度施設及び周辺環境に関する報告書が作成される。この施設について、 稼働中(50~60年)及び閉鎖後(~10,000年)の核種移行のケーススタディを行う。ヒト 及びヒト以外の生物相への移行経路としては大気、地下水、河川が挙げられ、気候変動の影響を含めて評価することとする。

今後の活動予定:液体廃棄物の排出に着目し、操業中及び施設閉鎖後におけるヒト及びヒト 以外の被ばく状況を評価する。参加者が多数あったため、以下のトピック毎のサブグループ に分割された。

- ① 環境中の移行拡散(水圏移行モデル)
- ② 被ばく量の特定(ヒト)
- ③ 被ばく量の特定(長期評価におけるヒト以外の生物相)

④ 被ばく量の特定(菌茸類など特定の移行経路を含む、森林、湿地等その他の生態系)

【ケーススタディシナリオ 2:事故によるセシウム 137 漏洩】

発表者:Christine Bullock

発表者所属: Los Alamos National Laboratory (米国)

概要:このケーススタディでは、2019年にアメリカで発生した医療・研究用の線源破損によるセシウム 137漏洩事故の除染状況を取り扱う。この漏洩事故は大都市圏であるシアトルで発生し、その社会的・経済的混乱の大きさより、放射線事故の管理チームがステークホルダーとのコミュニケーションを戦略的に行い、漏洩したセシウム 137の除染活動、放射線環境影響評価を実施することが必要とされた。これらの一連の行動の分析、改善点に関する議論、ステークホルダーの関与とコミュニケーション戦略の検討が主な活動内容として計画されており、期待されるアウトプットとしては以下が挙げられる。

- 実際に取られた措置の分析、改善点などの検討
- 急速に変化する状況下でのコミュニケーションとステークホルダー参画のための戦略案

今後の活動予定:ソースターム、地形、サイト特性等を決定し、概念モデルを構築する。この概念モデルを基に複数のソフトウェアによりシミュレーションモデルを構築し、モデル間比較を行う。また、このケーススタディでは緊急時におけるステークホルダーとのコミュニケーション方法の開発にも重点を置くため、構築したモデルがステークホルダーに対するリスク認知、交渉の観点でどのように活用できるかを検討する。

【ケーススタディシナリオ3:過去に実施された放射性廃棄物の海洋投入】

発表者: Diego Telleria

発表者所属: IAEA

概要:中低レベル放射性廃棄物の海洋投入は、1974年から 1993年にかけて、国際条約の枠組みの下で行われた活動としてよく知られている。海洋投入が実施された当時、IAEAの勧告に基づく評価手法により各国でプロスペクティブ(予測的)評価が実施されたが、本ケーススタディでは、最新の概念、手法、モデル等を用いて、過去に実施された海洋投入のレトロスペクティブ(事後的)評価を行う。

今後の活動予定:IAEA TECDOC 1776 を主な情報源として、過去に行われた海洋投入の実施位置やインベントリを参照し、検討対象とするサイトを決定する。インベントリから抽出した核種リストや放出率(ソースターム)を使用し、海洋における移行拡散を取り扱う概念

モデル、またヒト及びヒト以外の生物相に対する線量を取り扱う概念モデルを構築する。また、既存の海洋モデル(コード)の活用も予定している。これらのモデルを使用し、海底資源の採掘や漁業等の社会経済活動に与える影響について検討する。

【ケーススタディシナリオ4:ウラン採掘・精錬】

発表者: Alexandre Oliveira

発表者所属:Brazilian Nuclear Energy Commission(ブラジル)

概要:1982~1995年に稼働されたブラジルのウラン採掘サイトを対象としてケーススタディを実施する。施設の運営者であった Brazilian Nuclear Industries がサイト閉鎖後の環境及び線量管理などの除染作業前活動を行っている。放射線防護の観点では計画被ばくと考えられるが、他の州から持ち込まれた放射性廃棄物の問題などの懸念点がある。

期待される成果として以下が挙げられる

- 線量評価のための概念モデル
- 公衆への線量に関するソースタームの定義
- 被ばく経路の定義
- 水や大気を通した排出について、代表的個人の定義
- 既存の検証済みモデルを使用した線量計算

今後の活動予定:今後一年程度は現在のサイト状況に着目し、ソースタームの決定、移行経路の特定、概念モデル及び数値モデルの構築などの作業を行う。その後システムや外部要因の変化などを加味した長期的評価を実施し、論文や技術ドキュメントなどの投稿を目指す。今後数年の間に新しいデータ、特に水文地質に関するデータが生成されるため、事業者自身がモデルを使用し、再計算できることを特に重要視している。

【ケーススタディシナリオ5:オスロフィヨルドの放射性核種マッピング】

発表者: Marte Holmstrand

発表者所属:Norwegian Radiation Protection Authority(ノルウェー)

概要:近年ノルウェー政府によりフィヨルドへの廃水放出量低減を目的としたアクションプランや生態系状況の包括的調査が計画されるなど、高い優先順位を持つ課題として注目されている。今後フィヨルド周辺に新規建築される医療施設からの廃水がフィヨルドの放射性核種濃度を上昇させると見込まれており、この廃水の影響、またフィヨルド全体の水質環境を把握するため、拡散モデルを使用してフィヨルド全体の核種濃度をマップ化する。

今後の活動予定:サイト特性情報の収集を収集し、人為的に放出される放射性核種に限定せ

ず NORM や重金属、物理化学的ストレス源などの汚染源を整理する。IRAT2 や SRS19 などのモデルを用いて、放射性核種の拡散状況の解析を行う。放射性及び非放射性の汚染源の包括的解析手法を構築し、複雑なシナリオを想定した環境影響評価手法の改善を目指す。

新たなケーススタディ候補

【集水域の景観と生態系における福島シナリオの構築】

発表者:田上 恵子

発表者所属:量子科学技術研究開発機構(日本)

概要:福島の帰還困難区域解除にあたり放射線量の把握が必要となるが、大部分を森林で覆われる集水域におけるセシウム 137 の挙動は未だ不明な点が多い。原発事故直後に行われたデータ収集は、住民の防護の観点から都市部を中心に実施されたため、森林地帯におけるデータ収集は十分に行われなかった。そこで本ケーススタディでは、集水域の景観と生態系におけるシナリオ構築を行い、モデル結果と実データの比較を行う。将来起こり得る事故イベントに備え、事故後に適切に放射線量や被ばく量を把握するために収集が必要なパラメータなどの状況を加盟国と共有することを目的とする。

【NORM の浄化:中国におけるレアアース製錬所跡地のケーススタディ】

発表者: Chunyan Chen

発表者所属: China Institute of Atomic Energy (中国)

概要:本事例で対象となるレアアース製錬所は2003年に閉所され、レガシーサイトとなった。非放射性物質、低~中レベル放射性廃棄物が発生し、分析結果によると主な核種はTh-232+DなどのNORMであった。NORMにより汚染されたサイトにおける土壌中の許容可能な残留核種レベル、NORMの処分における包括的な評価基準やリスク管理指標等の検討を通して、安全性、環境保護及び経済性を考慮したより適切な評価手法を確立し、将来のNORM廃棄物処理に役立てることを目的とする。

【北極における放射能評価】

発表者:Amanda Anderson

発表者所属: USDOE (米国)

概要:北極における既存及び潜在的な放射能の発生源を特定し、自然起源もしくは人為的な放射能データの収集・解析を行い、過去どのように濃度が変異してきたか把握する。また、地球温暖化により気温や積雪パターンの変化、氷河の融解等が発生すると考えられるが、これらによって放射性核種濃度や移行挙動がどのように変化するかを評価する。NORM の発生源としては、産業活動、大気や海洋を介した長距離輸送、生物学的輸送、また人為的放射能発生起源としては、核兵器実験の影響、近隣国の原子力関連施設からの排出、北極における小型モジュール原子炉や原子力船利用の増加などが想定される。

【放射線及び環境影響評価のための方法】

発表者:Sabyasachi Rout

発表者所属:Bhabha Atomic Research Centre(インド)

概要:地形特性や熱帯モンスーン気候に対応した、より正確な公衆被ばく線量の評価方法の確立を目的とする。対象とする原子炉は1,000MWeの設備容量を持ち、大気や海洋を通して主にAr-41、C-14、H-3等の核種を放出する。また、40~600mの丘に囲まれた盆地のような形状の地域に位置し、熱帯モンスーンによる気象条件の変動にも影響を受ける。規制対応に十分な公衆被ばく評価モデルは存在するが、現地の地形特性や気象条件に適した、より正確な手法の確立を目指す。

【ヨルダン湖周辺に居住する住民の線量評価】

発表者: Mutasem Abu Ghazal, Jordan

発表者所属:Jordan Nuclear Regulatory Commission(ヨルダン)

概要:ヨルダン科学技術大学には、国の原子力技術の拠点として実験炉が設置されている。 実験炉から約2kmに位置する湖は大学内の灌漑水として使用されおり、この湖を対象として、代表的個人の線量評価を行う。線量計算にはNRCDose3などのコードの活用を想定している。

【加圧水型原子炉発電プラントにおけるケーススタディシナリオ】

発表者: Renata Freire

発表者所属: Eletrobras Eletronuclear (ブラジル)

概要:ブラジルで現在稼働中の加圧水型原子炉発電プラントでは、海洋放出により 54 Mn、 50 Fe、 58 Co 等の核種が、大気放出により 87 Kr、 88 Kr、 133 Xe 等の核種が環境中に放出されている。過去の放射線環境影響評価実施時から、土地利用や人口の変化が見られるため、最新のデータを用いて再評価を行う。

【北極圏の小型原子炉に関するケーススタディ】

発表者: Trevor J. Stocki

発表者所属: Health Canada (カナダ)

概要:カナダでは2018年に、カナダ政府組織や複数の電力会社により、小型原子炉のロードマップが示された。特に現在ディーゼルを主な電力源としている北極地域では、その代替として温暖化ガスを排出しない小型原子炉の活用が期待される。そこで過去に米国陸軍により運営された小型原子炉を対象に線量評価を行う。実在した小型原子炉を対象としたレトロスペクティブスタディや、より近代的な小型原子炉に置き換えたプロスペクティブスタディを想定している。

資料1:線量評価等·基礎知識

令和4年度勉強会

目次

- ICRP勧告と国内法令の関係
- ICRP2007年勧告
- 人の線量評価に関する安全基準と勧告
- 人の線量評価に関する考え方
- ・環境の防護
- ・生物濃縮に関する基礎知識
- ERICAツール

ICRP勧告と国内法制度の関係

国際放射線防護委員会(ICRP)による放射線防護に関する勧告を基に、IAEAがBSS(下記参照)を作成する。各国はその内容を参考にして、国内法令を整備している。

UNSCEAR

●放射線防護に関する科学論文等のレビュー/報告書の作成

ICRP

●放射線防護に関する勧告/報告書の作成

IAEA

■国際的な合意形成による基本安全基準 (Basic Safety Standard, BSS)の作成

国内法制

● ICRP勧告、BSSの国内法制(規制値)への 取り入れ

- UNSCEAR (原子放射線の影響に関する国連科学委員会): 電離放射線による被ばくの程度と影響を評価・報告するために国連によって設置された委員会。
- ICRP(国際放射線防護委員会): 専門家の立場から放射線防護に関する勧告を行う国際的な学術組織(いわりる「国際機関」ではない)。
- IAEA (国際原子力機関) : 国連の機関の一つで、原子力の平和利用の促進と軍事利用の防止を目的とする国際機関。

ICRP勧告について

・日本は ILO(国際労働機関)の「電離放射線からの労働者の保護に関する条約(第115号)に批准。ICRP勧告の内容を基に防護基準が策定されている。

ILO「電離放射線からの労働者の保護に関する条約 第 115 条約第 3 条」

第1項 労働者の健康および安全に関して電離放射線から労働者を効果的に保護することを確保するため、その時に利用しうる知識に照らして、あらゆる適当な手段をとる。

第2項 このため、必要な規則および措置を採用し、かつ、効果的な保護にとつて不可欠な資料を利用に供する。

第3項 放射線防護条約第3条第2項を実施するために, すべての加盟国は, 国際放射線防護委員会が随時行う勧告および他の管轄機関が採用する基準を十分に考慮する必要がある。

第4項 放射線防護条約第6条,第7条,および第8条で 言及されるレベルは,国際放射線防護委員会が随時推奨する関連する値を十分に考慮して修正する必要がある。さらに,体内に取り込まれる可能性のある空気や水中の放射性物質の最大許容濃度は,これらのレベルに基づいて設定する必要がある。

ICRP勧告の歴史的変遷

年代	1928-1955年	1956-1972年	1973-1990年	2007年-
防護対策の 対象となる被 ばく状況	医療従事者の職業被ば(平時のみ)	すべての職業被ばく 公衆被ばく 患者の医療被ばく (平時+緊急時)	すべての職業被ばく 公衆被ばく 患者の医療被ばく (平時+緊急時) 行為と介入	制御可能な線源からの すべてのヒトへの被ばく ヒト以外の生物種の被 ばく(計画+緊急時+ 現存)
防護の対象	人のみ	人(+環境)	人(+環境)	人と環境 (生物種)
防護の目的	しきい値のある急 性影響の回避	確定的影響の回避 確率的影響の最小 化	確定的影響の回避 確率的影響の最小 化	確定的影響の回避 確率的影響の最小化 生物学的新知見「標的 外への影響」を認知
防護原則	「可能な最低限の レベルに」 (TLPL) (1954-)	「合理的に実行可能 な限り低く」 (ALARP) (1965-) 「容易に達成可能な 限り低く」」 (ALARA1) (1965-)	「合理的に達成可能 な限り低く」 (ALARA2) (1973-)	「合理的に達成可能な限り低く」(ALARA2) (1973-)

放射線防護の三原則 (ICRP 2007年勧告)

国際放射線防護委員会(ICRP)では、放射線防護について、以下の三原則を定めている。

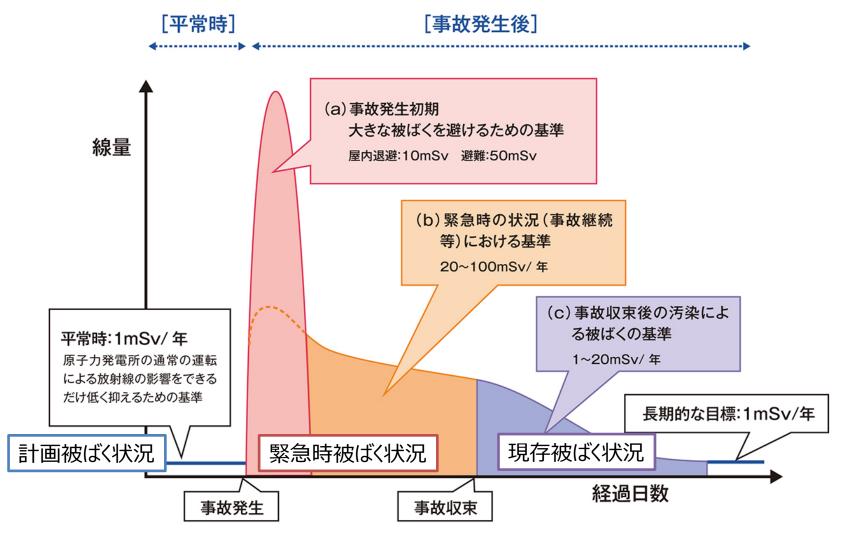
正当化:

放射線被ばくの状況を変化させるいかなる決定も、害より便益を大きく すべきである。

- 防護の最適化 (ALARA) : 被ばくする可能性、被ばくする人の数、及びその人たちの個人線量の大きさは、すべて、経済的及び社会的な要因を考慮して、合理的に達成可能な限り低く (As Low As Reasonably Achievable) 保たれるべきである。
- 線量限度

患者の医療被ばくを除く計画被ばく状況においては、規制された線源からのいかなる個人の総線量も、委員会が勧告する適切な限度を超えるべきでない。

三つの被ばく状況 (ICRP 2007年勧告)


対象:すでに環境中に存在する自然・人工の放射性物質も含める

- ◆計画被ばく状況
 - 計画的に線源を利用する状況。 廃止措置、放射性廃棄物の処分、土地の復旧を含む。
- ◆ 緊急時被ばく状況

 不測の事態、悪意の行為から生じた予期せぬ状況。
- ◆現存被ばく状況

自然バックグラウンドや過去の行為の残留物を含む管理の開始時に既に存在する被ばく状況あるいは長期被ばく状況。

被ばく状況に合わせた線量の基準

(出典)エネ百科 https://www.ene100.jp/zumen/6-3-11

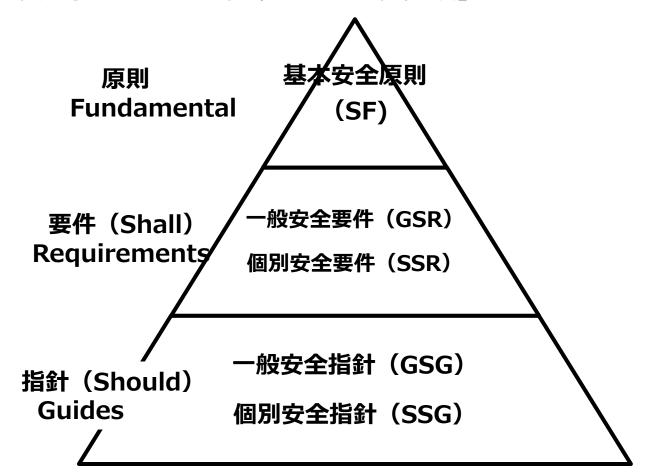
人の線量評価に関する勧告・安全基準

- ・ ICRP Publ.103「国際放射線防護委員会の2007年勧告」 ⇒ICRPの放射線防護に関する基本的な勧告
- ICRP Publication 116「外部被ばくに対する放射線防護量のための換算係数」
- ICRP Publication OIR (放射性核種の職業上の摂取) シリーズ

Publ. 130「放射性核種の職業上の摂取―第1部―」(日本語版あり)

Publ. 134「放射性核種の職業上の摂取―第2部―」

Publ. 137「放射性核種の職業上の摂取―第3部―」


Publ. 141「放射性核種の職業上の摂取―第4部―」

Publ. 151「放射性核種の職業上の摂取―第5部―」

- Publication 147「放射線防護における線量の使用」⇒次期主勧告
- ICRU (国際放射線単位測定委員会) Report No.90 Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Application⇒ICRP Publ.147

人の線量評価に関する勧告・安全基準

- IAEA安全基準シリーズGSR Part 3「放射線防護と放射線源の安全:国際 基本安全基準」
- 一般安全指針GSG-7「職業上の放射線防護」

外部被ばく:空間線量と実効線量の関係

被ばく線量は、防護量である各臓器の等価線量、もしくは、全身の被ばく線量である実効線量で規制される。この被ばく線量の正確な算出のためには、通常個人モニタリングが必要であるが、エリアモニタリングの値から概算値を算出することも可能である。ただし、被ばく線量は、個人の体型、方向におおきく依存することから、この結果は目安の線量であることに留意しなければならない。

空間線量

空気吸収線量(Gy) 空気吸収線量率(Gy/h) • 物理量

(検出器などで直接測定可能な量)

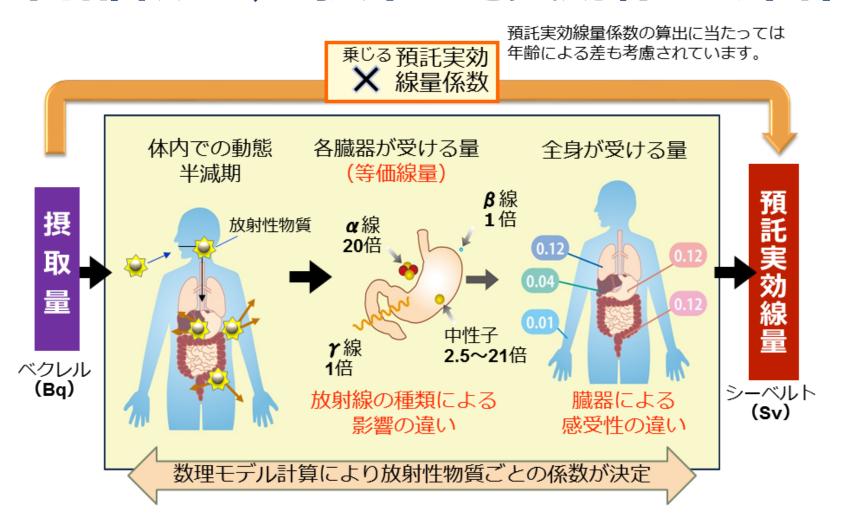
モニタリングポストの表示値

空気吸収線量から実効への換算(γ線の場合)には、 UNSCEARなどでは0.7を推奨、放医研などでは、0.748が使用されている。 ※環境放射線モニタリング指針においては、換算係数は1としている。 ICRPの示すエネルギーに対応した換算係数を用いて変換 参考:連続モニタによる環境γ線測定法 http://www.nsr.go.jp/data/000214168.pdf

被ばく線量

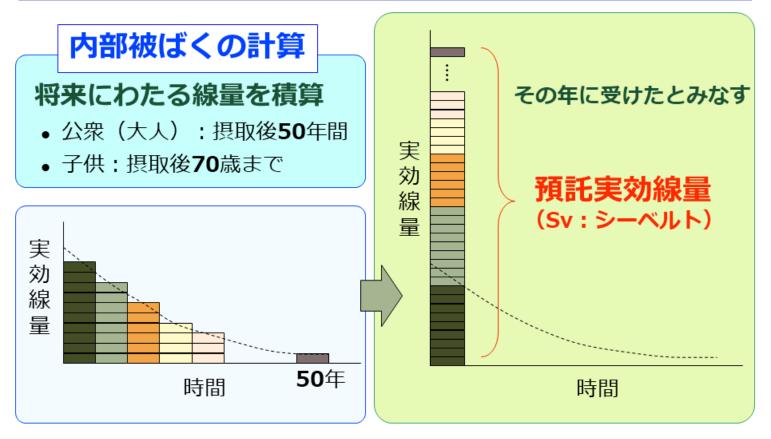
実効線量(Sv) 吸収線量(Gv)

周辺線量当量の 0.55 ~ 0.85 倍程度になる。 福島では、換算係数=0.6 周辺線量当量(Sv) 周辺線量当量率(Sv/h) 空間線量


- 防護量(人体への影響を考慮して計算した被ばく線量)
- 確率的影響のリスクの程度を表す線 量概念
- 全身の被ばく線量として用いられる
- 直接測定できない

線量の大きさ

- 実用量(サーベイメーターなどで表示される値)
- エネルギー(線質)によって変化
- 防護量の近似値で、物理量に算出
- 防護量を少し上回る値(保守的)となるように設定
- 管理上、実効線量とみなせる


内部被ばく:摂取量と実効線量の関係

出典:環境省H29年度統一的基礎資料

内部被ばく:預託実効線量の考え方

放射性物質を一回だけ摂取した場合に、それ以後の生涯にどれだけの放射線を被ばくすることになるかを推定した被ばく線量

出典:環境省H29年度統一的基礎資料

預託線量と線量預託

 預託線量・預託実効線量
 ⇒前述のように、内部被ばく等による放射性核種摂取によって人体が受ける内部 被ばくの影響を評価する線量として、摂取後50年(子供は70年)間に受ける 線量を1年で受けた(預託)と仮定して計算される。

排出や代謝等による核種の移動などを考慮しない値。

線量預託

ICRP Publication 60(1990年勧告)では「ある一単位の行為(例えば1年間の行為)といった特定された事象による1人あたりの線量率の無限時間積分で定義される」とある。また、ある一定の割合で行われる行為が無期限に実施される場合には、特定の集団に対する将来の1人当たりの最大年間線量は、1年間の行為による線量預託と数値的に等しい。」と定義されている。

⇒ICRP Publication 103(2007年勧告)ではPublication 101などによる「代表的個人(集団内でより大量に被ばくした人々のうち代表的な線量を受けた個人)の線量評価」を勧告している。

ICRPの環境の防護に関する刊行物

- Publ.91 ヒト以外の生物種に対する電離放射線のインパクト評価の枠組み
 - 初めて環境の防護について記載された。
- Publ.103 国際放射線防護委員会の2007年勧告
 - 環境放射線防護の理念が示された。
- · Publ.108 環境防護:標準動物および標準植物の概念と使用
 - 12種類の標準動植物が設定された。
 - 個体における死亡、(適応度に影響を与えるような)罹患、繁殖成功度の 低下、染色体異常の4つの影響についてデータを収集し、それぞれの標準 動植物に対して誘導考慮参考レベル(DCRL)が設定された。
- Publ.124 さまざまな被ばく状況における環境の防護
 - 環境防護の枠組と、防護体系の中での適用について説明
- ・Publ.146 大規模な原子力事故が発生した場合の人と環境の放射線防護
- このほか、Publ.114、136、144、148も環境防護関連の刊行物である。

ヒト以外の生物種の防護

- 人が防護されている状態 = ヒト以外の生物種の防護がされている 状態と認識されてきた
- ・時代の変遷とともにヒト以外の生物種について、環境の防護*に関する考え方が整理され、Publication 91などで基本的な考え方が勧告された。
- ・ICRP 2007年勧告には、環境の防護の評価基準ととして標準動植物(RAP)と誘導考慮参考レベル(DCRL)が提案され、 以降の刊行物で具体的な策定が行われている。
- IAEA、UNSCEARも環境の防護に関する勧告・報告書を公開している。
- *環境の防護の対象は、動植物のみである。

ICRP Publ.124 によるDCRL

DCRLは線量率バンドで以下のように設定されている。計画被ばく状況ではDCRL線量率バンド内、現存被ばく状況・緊急時被ばく状況では線量率が関連のDCRL線量率バンドを上回る場合は関係する個体群について被ばくをDCRL線量率バンド内に抑えることを目指し、同時にその活動による放射線と放射線以外の影響を十分に考慮するよう勧告している。

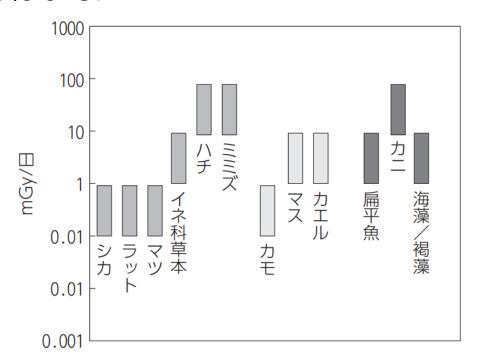


図 3.1 生息環境(陸生陸域,淡水域,海水域)ごとにグループ分けされたそれぞれの標準動物 または標準植物(RAP)に対応する,環境防護のための誘導考慮参考レベル(DCRL)

DCRLと影響

Publ.124「さまざまな被ばく状況における環境の防護」

表 A.2 標準カエル,標準マス,標準扁平魚に対する線量率と影響 [誘導考慮参考レベル (網掛けの部分)*]

線量率 (mGy/日)	標準カエル	標準マス	標準扁平魚
>1000	成体死(LD _{50/160} 19 Gy), オタマジャクシの個体死 (LD _{50/30} 17 Gy)	胚の死 (LD ₅₀ 0.3 ~ 19 Gy), 胚の発生段階により異なる	成体死 (LD _{50/50} 30 Gy), 卵の致死 (LD ₅₀ 1 Gy)
100~1000	卵の致死(LD _{50/40} 0.6 Gy)	罹病増加の可能性	稚魚・孵化したての稚魚 おける一部の個体死
10~100	有害な影響情報なし	若い魚に何らかの有害な影響が予想される(例えば, 感染抵抗力の低下)。繁殖 成功度の低下。	繁殖成功度の低下
1~10	有害な影響情報なし	繁殖成功度低下の可能性	雄の生殖力低下による繁 殖成功度低下の可能性
0.1~1	情報なし	情報なし	情報なし
0.01~0.1	情報なし	情報なし	情報なし
< 0.01	自然バックグラウンド	自然バックグラウンド	自然バックグラウンド

LD50 は、致死率 50%となる線量。LD50/30 は、30 日以内に致死率 50%となる線量。

各国際機関による勧告

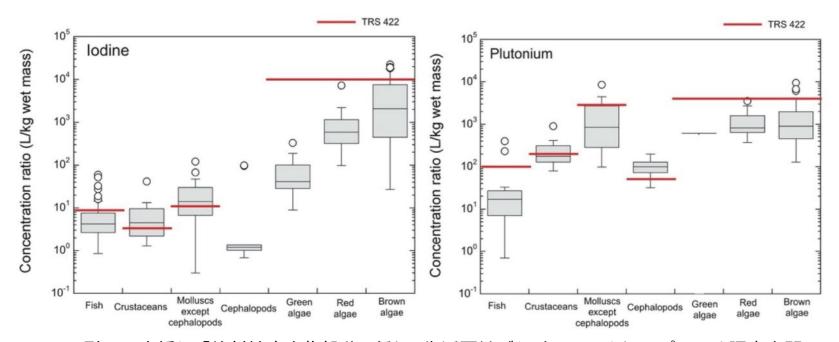
現在、ICRP、IAEA、 UNSCEARによって、ヒ ト以外の生物種につい てのDCRLがそれぞれ 設定されている。

Organism	IAEA (1992)	UNSCEAR (1996, 2011)	ICRP (2008)
Terrestrial			
Plants	400	100**	
Reference pine tree*			4–40
Reference wild grass			40-400
Animals	40	40-100**	
Reference bee			400-4000
Reference earthworm			400-4000
Reference duck			4–40
Reference deer			4–40
Reference rat			4–40
Aquatic			
Freshwater organisms	400	400	
Reference frog			40-400
Reference trout			40-400
Marine organisms		400	
Reference crab			400-4000
Reference flatfish			40–400
Reference brown seaweed			40-400

^{*&#}x27;Reference organism type' refers to the ICRP's Reference Animals and Plants (RAPs).

出典: ARPANSA Radiation Protection of the Environment

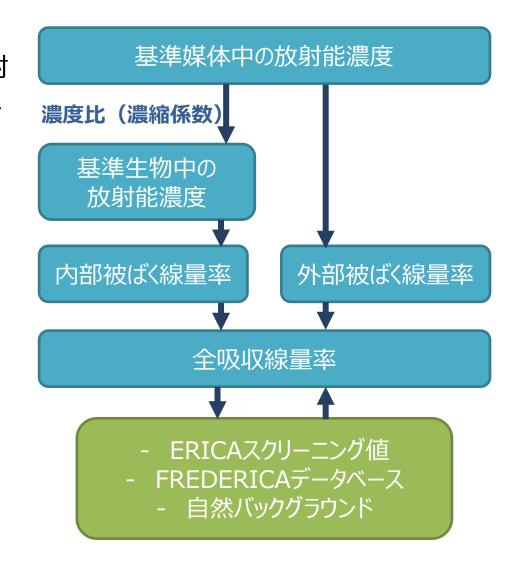
^{**}Most highly exposed individuals.


放射性核種の生物濃縮(海洋生物)

- 生物濃縮=環境濃度より高い濃度で蓄積する現象
- IAEA Technical Report No.422(TR-422)に生物濃縮 に関するデータが記載。
- トリチウムについては濃縮しない。
- TR-422によるセシウム、ストロンチウムに関する生物濃縮係数は 以下の通り。

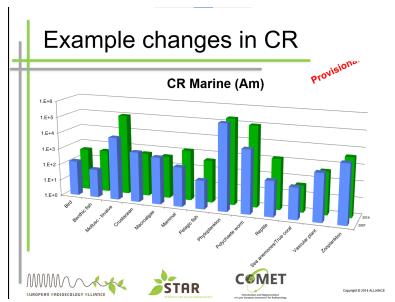
	セシウム	ストロンチウム
魚	100	3
植物プランクトン	20	1
動物プランクトン	40	2
エビ・カニ	50	5
大型藻類	50	10

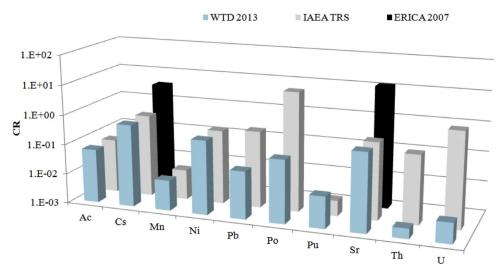
濃縮係数の値


- 濃縮係数については様々なデータがあり、ばらつきが大きい。
- TR-422で設定される海産生物の濃縮係数と、日本の水産物の濃縮係数についてヨウ素、プルトニウムで比較した結果は以下の通り。
- TR-422の値はほとんどの場合同程度、あるいは十分安全側に設定されている。

引用:高橋ら、「放射性廃棄物処分に係わる生活圏被ばく評価に用いられる パラメータ調査専門 研究会」活動報告 (Jpn. J. Health Phys., 56(4). 288-305(2021))

ERICAツール


- ERICAツールは、生物相への放射線リスクを評価するためのソフトウェアである。本ツールは、2004年から2007年にかけて実施されたFPEURATOMプロジェクトの成果の一つとして開発された。
- ERICAツールには、環境を介した 放射性核種の移行をモデル化し、 放射性核種の内部および外部分 布から生物相の線量率を推定し、 生物が受ける線量率の重要性を 確立するなど、多くの評価項目が 含まれている。


出典: ERICA Tool https://erica-tool.com/about/

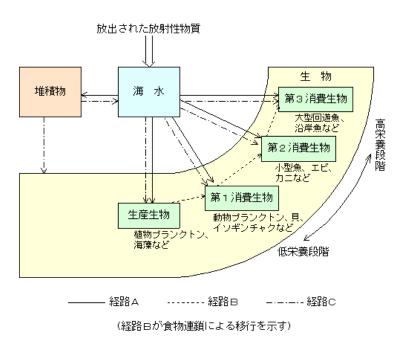
ERICAツールの設定値等

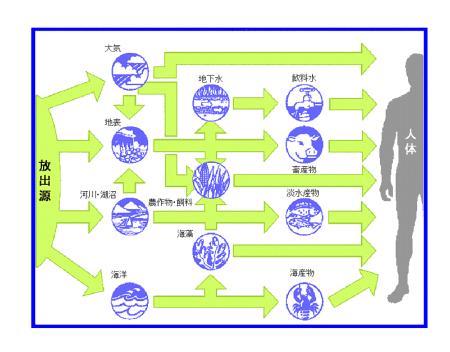
- ERICAプロジェクトにおける基準生物の選定方法は、ICRP報告書と若干異なり、分類学的、解剖学的、生理学的、生活史的特徴に基づいて特定の種を選定するのではなく、異なる環境特徴における典型的な生物種に基づいている。
- ERICA(2014、バージョン1.2)では、ICRP Publ.108,114で勧告されているRAPと 放射性核種を採用。濃縮係数等もアップデートされた。
- CR値はIAEAと国際放射線生態学連合が共同で開発し得ている環境影響評価に関するparameterのデータベース(Wildlife Transfer ParameterDatabase(WTD)の値が用いられている。

出典: ERICA Tool https://erica-tool.com/about/

出典: Brown et al., A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals, Jornal of Environmental Radioactivity, 153. 141-148(2016) (図中IAEA TRSはTechenical Report No.479)

その他


放射線防護に係る国際機関等の動向


ICRP

- 次期主勧告(2029年ごろ公開予定)に関する動向・環境の防護に関するタスクグループ(TG)が作業中
 - > TG125 環境放射線防護における生態系サービスが新たに設置
- 次期主勧告に関連する論文2本が2021年に公表されている(「Keeping the ICRP recommendations fit for purpose」、「Areas of research to support the system of radiological protection」)。
- 次期主勧告に関する意見交換の場として2021 年10 月にデジタルワークショップ 「The Future of Radiological Protection」が開催された。
- ICRPシンポジウムが2022年11月7~10日にカナダ、2023年11月6~9日に日本で開催予定。
- IAEA 放射線安全委員会(RASSC)第52回(2022年6月)においてICRPと 共同のトピカルセッション(「Is the current Radiation Protection System fit for purpose? Feedback from the application of IAEA Safety Standards. 」)が開催された。
- ・以下の分野が<mark>優先順位が高いトピック</mark>として、今後18か月間以内に検討が進められる。
 - ▶ 生物相と生態系における影響とリスク
 - > 環境を含む被ばく状況と被ばくカテゴリー

放射性物質の移行経路

- 水環境に放出された放射性核種の一部は、水生食物連鎖を経て、最終的に人間に到達する可能性がある。線量評価では、水生環境中の放射性核種の移行をシミュレーションするためのモデルが用いられる。
- IAEA Safety Reports Series No. 19では、環境への放射性物質の放出から生じる線量を計算する簡易的な方法を提供している。

出典: IAEA Safety Reports Series No. 19、ATOMICA

エネルギーと環境を考える **JANUS**

資料2:各国の安全基準・環境影響評価

勉強会

2023年03月24日

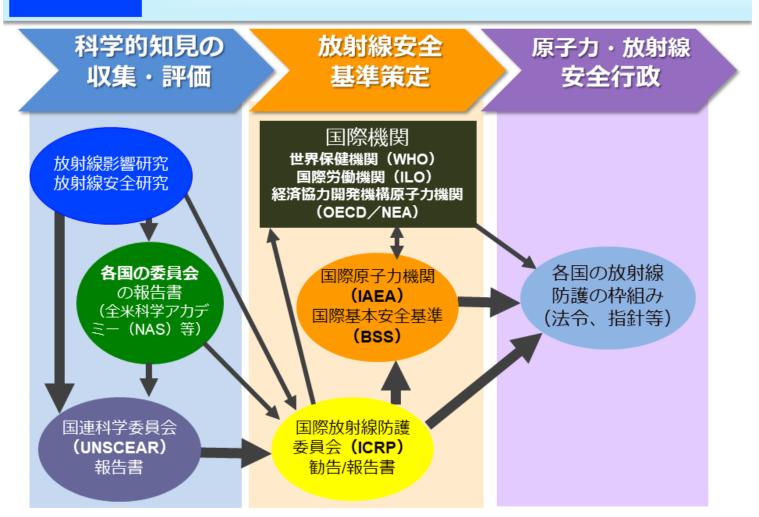
日本エヌ・ユー・エス株式会社

本勉強会主旨

対象各国の安全基準・環境影響評価について理解する

本勉強会で 解説する内容

- ① 原発からのトリチウム排水に関する規制基準 (濃度規制・総量規制)
- ② 原発設置にあたり実施する環境影響評価の指針 (特に、液体廃棄物放出の際の放射性物質の蓄積に関する評価方法)


対象国

国際的に放射線防護に係る組織

防護の原則

放射線防護体系

3

IAEAの放射線の排出基準に係る文書

安全基準要件

IAEA Safety Standards

for protecting people and the environment

Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards

Jointly sponsored by EC, FAO, IAEA, ILO, OECD/NEA, PAHO, UNEP, WHO

General Safety Requirements Part 3

No. GSR Part 3

【計画被ばく状況下における線量限度】

- ✓ 実効線量は1年間で 1 mSv
- 特殊な状況下で、連続する5年間の平均線量が 1年間で <u>1 mSv</u> を超えない限り、 いずれかの1年間でより高い実効線量が適用される
- ✓ 眼の水晶体の等価線量は1年間で 15 mSv
- ✓ 皮膚の等価線量は1年間で 50 mSv

【3つの安全指針】

- GSG-8 「公衆及び環境の放射線防護」
- ・GSG-9 「環境への放射性物質の放出に対する規制管理」
- GSG-10「施設及び活動に対する将来の放射線環境影響評価」

引用文献:

https://www-pub.iaea.org/mtcd/publications/pdf/pub1578_web-57265295.pdf

GSG-9「環境への放射性物質の放出に対する規制管理」で定める排出基準と線量の評価手順

文書の 概要

計画被ばく状況における運転中施設の気体・液体排出物についての安全指針

排出基準

単一の線源に対して設定される線量拘束値は、 年間の実効線量で表現されるべきである。

現実的には、**線量拘束値を年間0.1~1mSvの範囲で選択する必要**がある。

線量の 評価手順 通常運転時の公衆に対する放射線環境影響評価では、施設の運転または活動 に起因する放出物による公衆の線量を以下の手順で推定する。

- 1. ソースタームの選択
- 2. 環境中の直接照射、拡散、移動のモデリング
- 3. 被ばく経路の特定
- 4. 通常運転時の代表的個人の特定
- 5. 代表的個人の被ばく線量の評価
- 6. 推定された線量およびリスクと基準との比較

アメリカ -規制-

法令

10 CFR Part 20「放射線防護基準」

公衆の 線量限度

- ◆公衆の線量限度: 1 mSv/年
- ※NRCの事前認可により、5 mSv/年までの運転が可能。
- <申請条件>
- ✓ 1 mSv/年 の制限を超える運用の必要性と予想される期間
- ✓ 5 mSv/年 の限度内で線量評価し管理するための許可取得者のプログラム
- ✓ 合理的達成可能な限り線量を低く維持するために従うべき手順
- ◆ICRP Publ.2 がべースとなったALARA 目標値(液体)

全身: <u>0.03 mSv/年</u> 臓器: <u>0.10 mSv/年</u>

排出規制

◆規制方法: **濃度規制**

1 mSv/年を超えないよう逆算した数値として、0.5 mSv/年に相当する濃度が、排気中濃度と排水中濃度の限度値として以下の様に各種別に定められている。

✓ トリチウム(液体) : 37,000 Bq/L✓ セシウム137(液体) : 25,900 Bq/L

アメリカ -環境影響評価 評価手法-

参考 発電所

Diablo Canyon発電所

実施主体

PG&E社(事業者)

根拠法令

国家環境政策法、10 CFR Part 50、10 CFR Part 51など

評価手法

非制限区域へ放出される液体放出物中に含まれる全ての放射性核種に関して、 海水魚及び海水無脊椎動物の摂取による最大被ばく者(成人)の 全身及び各個別臓器(骨、肝、甲状腺、腎、肺、消化器-肺)への線量寄与を計算

> ※参考資料: 放射性放出物放出に関する年次報告書 https://www.nrc.gov/docs/ML2212/ML22124A030.pdf

アメリカ -環境影響評価 評価結果-

被ばく線量計算結果のサマリ(直近3年分)

1 rem = 0.01 Sv

液体放出物	2021年	2020年	2019年	変動の要因
トリチウム以外の 全放射能(Ci)	1.17E-02	6.87E-03	3.27E-02	全放射能は、燃料交換停止の回数や、燃料サイクルが 原子炉冷却材の希釈に比例するサイクルの初期、中期、後期であ るかによって変動する。
トリチウムの放射能 (Ci)	1080	2782	2214	トリチウム放出量は主に2つの要因によって年ごとに変化する 1. 原子炉冷却材のトリチウム生成量が燃料の燃焼特性に基づいて変化することである。 トリチウムは原子炉の起動時に増加し、サイクルの中期で安定し、サイクルの終わりに向かって減少し始める。 2. 放出されるトリチウムの値が暦年の運転停止回数に依存することである。ユニット停止中は、より多くの液体廃棄物が処理され放出される。
全身被ばく(mrem)	1.25E-04	3.36E-04	4.64E-04	Diablo Canyon発電所の立地とその周辺のセキュリティ警戒区域の関係上、サイトからの液体放出物によって大きな被ばくを受ける可能性のある一般公衆は存在しない。ここに示した液体放出中の全身被ばく線量は、仮想的な評価対象者を設定して計算されたものである。
一次液体廃棄物の 全放出量(リットル)	7.39E+06	9.91E+06	7.19E+06	

イギリス -規制-

法令

電離放射線規則(Ionising Radiations Regulations: IRR)2017

公衆の 線量限度 ◆公衆の線量限度: <u>1 mSv/年</u>

単一の原子炉による線量拘束値 : <u>0.3 mSv/年</u> 複数原子炉による線量拘束値 : <u>0.5 mSv/年</u>

◆規制方法: **総量規制**

環境許可規則2010のガイダンスに従って、規制当局が、専門家の判断によって地域の状況を考慮した上で、放出制限値が設定される。

排出規制

◆液体のトリチウム年間排出量の制限値

Sellafield 再処理施設

- ✓ パイプラインを介したアイリッシュ海への排水: 18,000 TBq
- ✓ プラントの下水道を経由したアイリッシュ海への排水: 68 TBq

Sizewell B 原子力発電所(PWR)

✓ 総排出量: 80 TBq/年

イギリス -環境影響評価 評価手法-

参考 発電所

Sizewell B 原子力発電所

実施主体

EDF Energy Nuclear Generation社(事業者)

根拠法令

イングランドとウェールズ:2016年環境許可規則 スコットランド:2018年スコットランド環境許可規則 北アイルランド:放射性物質法2003

◆評価対象

- ✓ 単一の原子炉による線量拘束値 0.3 mSv/年 (Sizewell B(単一線源)からの放出)
- ✓ 複数の原子炉による線量拘束値 0.5 mSv/年 (Sizewell A & Sizewell B (隣接したサ イト)からの放出)

評価手法

- ◆線量評価のための代表的な人物の特定
- ✓ 隣接するサイズウェルAサイトのスタッフ
- ✓ 最も近い住宅の住民-成人、小児、乳児、幼児
- ✓ 基地南側の海岸でボートや漁具を管理する漁業者とその家族

イギリス -環境影響評価 評価結果-

◆線量評価モデル:PC-CREAM 08(メインなモデル)

<海洋放出による被ばく経路>

外部被ばく:海産食品の摂取、海岸堆積物など

内部被ばく:海水噴霧の吸入など

◆被ばく線量評価結果

Sizewell B(単一線源)からの放出

✓ 対象者: 漁業者の家族の成人

✔ 線 量 : <u>10.8 μ Sv/y</u>

線量拘束値 0.3mSv/yの4%に相当

<u>Sizewell A& Sizewell Bからの放出</u>

✓ 対象者:漁業者の家族の成人

✓ 線 量:<u>16.6 *µ* Sv/y</u>

線量拘束値 0.5mSv/yの3%に相当

フランス -規制-

法令

公衆衛生法典R1333-11

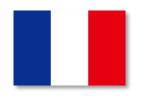
公衆の 線量限度

1 mSv/年

◆規制方法: **総量規制**

各発電所に対する放出制限値は、事業者と規制当局が議論によって決定した内容を ANS決定文書という形で文書化される。

排出規制


◆液体の年間排出量の制限値

Flamanvilleサイトの場合

✓ トリチウム: 145,000 GBq/年 (高燃焼度燃料の場合は1基につきプラス 10,000 GBq/年)

✓ C-14: 280 GBq/年✓ ヨウ素: 0.12 GBq/年

✓ その他のβ線またはγ線核種: <u>13 GBq/年</u>

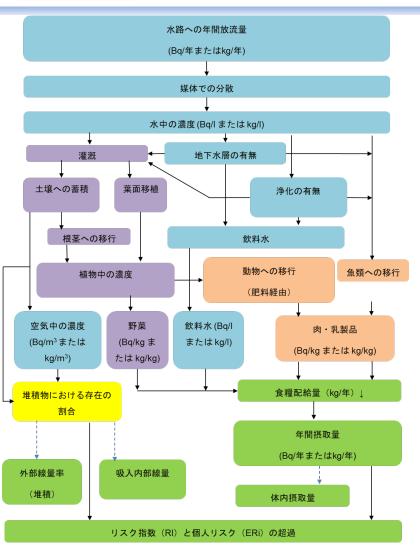
フランス -環境影響評価 評価手法-

事前評価

基本的にCEA (原子力・新エネルギー庁) が開発した
CERESプラットフォーム (Code for Rapid Environmental and Health Assessments) を使用して水域への事前評価を実施。
(液体排出用はABRICOTモジュール)

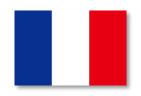
実効線量

施設の運転開始1年後・50年後、あるいは事前に定義されている場合は施設の予想耐用年数に対して評価。


評価手法

各媒体中の濃度を算出し、下記のような被ばく経路に対して、 排出先の河川の近隣住民(成人, 10歳児, 1~2歳児)を対象に年実効線量を算出。

- ✓ プルームや堆積物からの放射線による外部被ばく
- ✓ 吸入および皮膚からの移行
- ✓ 大気または液体排出物によって汚染された飲料水、魚、食物の摂取
 - 河川水は灌漑用水や家畜の水やりに使用。
 - 食料は地場産物で自給自足と仮定。


フランス -環境影響評価 評価フロー-

液体排出による影響を決定するためのフロー

化学物質および放射能のリスク放射能リスク

フランス -環境影響評価 評価手法-

事前評価

基本的にCEA (原子力・新エネルギー庁) が開発した
CERESプラットフォーム (Code for Rapid Environmental and Health Assessments) を使用して水域への事前評価を実施。
(液体排出用はABRICOTモジュール)

実効線量

施設の運転開始1年後・50年後、あるいは事前に定義されている場合は施設の予想耐用年数に対して評価。

評価手法

各媒体中の濃度を算出し、下記のような被ばく経路に対して、 排出先の河川の近隣住民(成人, 10歳児, 1~2歳児)を対象に年実効線量を算出。

- ✓ プルームや堆積物からの放射線による外部被ばく
- ✓ 吸入および皮膚からの移行
- ✓ 大気または液体排出物によって汚染された飲料水、魚、食物の摂取
 - 河川水は灌漑用水や家畜の水やりに使用。
 - 食料は地場産物で自給自足と仮定。

フランス -環境影響評価 評価手法-

- ✓ 液体で排出された放射性物質は、河川水を直接利用する場合と帯水層を経由して間接的に利用する場合を考慮。
- ✓ 排出された放射性物質は、浮遊物質への吸着、液体媒体への沈降、 希釈といったプロセスを考慮。なお、堆積物への分配は考慮され ていない。
- ✓ トリチウムを考慮したモデル
 - プルームへの浸漬が、吸入と皮膚移行によるトリチウムからの内部被ばくにつながる。
 - プルーム中のトリチウムからの直接的な外部被ばくとトリチウムの表面沈着は重要ではないとしている。
 - ▶ 土壌中のトリチウムの蓄積は想定されていない。
 - ▶ 葉面転流は HTO (トリチウム水) 形態のみ、根からの移行はトリチウムガス (土壌微生物による変換後) のみとする。植物に入った後は、HTOの40%が OBT (有機結合トリチウム) に変換される。

中国 -規制-

法令

「原子力発電所の環境放射線防護規定」、「海水水質標準」

公衆の 線量限度

1 mSv/年

排出規制

- ◆原子炉による線量拘束値: 0.25 mSv/年
- ◆液体放射性排出物: <u>タンク式放出</u>

<総量規制>

出力3000MWの原子炉(1基)に対する 年間制限値(液体) (単位: Bq)

核種	軽水炉	重水炉
トリチウム	7.5×10 ¹³	3.5×10 ¹⁴
C-14	1.5×10 ¹¹	2×10 ¹¹
その他核種	5.0×10 ¹⁰	(トリチウム除く)

注:同じタイプの原子炉を複数所有するサイトの場合、総放出量は制限値の4倍以内

く濃度規制>

① <u>タンク式放出口地点</u>

核種総濃度: 1,000 Bq/L 以下 (トリチウムおよびC-14 を除く)

② <u>放出口から下流1 km 地点</u> 総β線核種濃度: 1 Bq/L以下

トリチウム濃度: 100 Bq/L 以下

③ <u>原子力発電所の放流水域における</u> 放射性核種濃度の限度値

• ⁶⁰Co: 0.03Bq/L

•90Sr:4.0Bq/L

• ¹⁰⁶Ru: 0.2Bg/L

• ¹³⁴Cs: 0.6Bq/L

■ 137Cs: 0.7Bq/L

中国 -環境影響評価 評価手法-

参考 発電所

陽江原子力発電所3、4号機

実施主体


陽江核電有限公司(事業者)

根拠法令

環境保護法、核安全法、放射性汚染防治法、原子力発電所の環境放射線防護規定など

評価手法

- ◆下記の条件に基づいて、公衆と環境に及ぼす放射線影響を計算・評価
- ✓ 放射性流出物の放出源
- ✓ サイト周辺の環境特徴
- ✓ 公衆の食生活と生活習慣 など
- ◆液体放射性放出物による被ばく経路
- ✓ 海上活動外部被ばく
- ✓ 海水浸水外部被ばく
- ✓ 沿岸沈着物外部被ばく
- ✓ 海産品摂取内部被ばく

中国 -環境影響評価 評価手法-

◆ 液体被ばく経路の線量計算パラメータ

パラメータ	単位	数値
浮遊物質の有効沈着密度	kg/m³	60
海水中浮遊物質の濃度	kg/m³	0.01
沿岸沈着物中の放射性累積時間	h	8760

◆ トリチウムに関する内部被ばくの線量換算係数

核種	食物摂取による内部被ばく(Sv/Bq)			
1久1里	小児	青少年	成人	
H-3	3.10E-11	2.30E-11	1.80E-11	

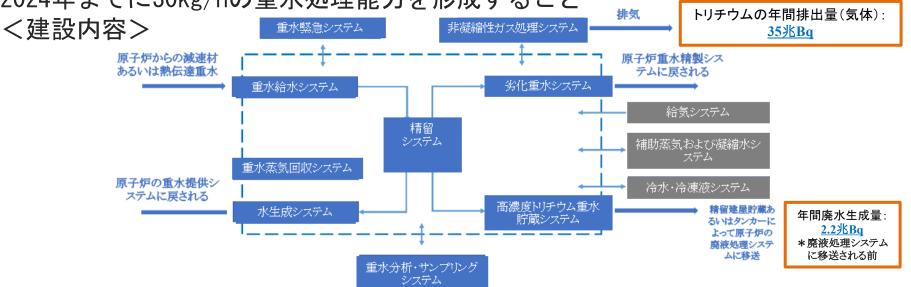
- ◆ 海産物の濃縮係数: IAEA SRS No. 19、IAEA Safety Series No. 57の推奨値を採用
- ◆ 水域による希釈:
 IAEA SRS No. 19で推奨されているモデルとパラメータを用いて、放射性核種の移行・拡散過程の海水懸濁物と堆積物中の濃度を計算

中国 -環境影響評価 評価結果-

◆被ばく評価結果

<代表的個人>

3号機の西方位1~2kmに位置する住民(大人): 5.07 μ Sv/年



原子炉による公衆の線量拘束値 <u>0.25 mSv/年 の2.03%</u>

中国 -トリチウム処理の追加措置-

- ◆建設プロジェクト:秦山第三原発付属の重水精留設備
- <建設背景>
- ・減速材に含まれるトリチウムの比放射能が年々増加し、作業員の内部被ばく線 量も徐々に増加している
- ・対策を講じなければ、圧力管交換中の減速材システムのフラッシング作業が環境排出規制値要件を超える可能性がある
- <建設目的>

韓国 -規制-

法令

『放射線防護等に関する基準』(原子力安全セキュリティ委員会告示第 2019-10号)

◆公衆の線量限度: 1 mSv/年

韓国の主要な原子力施設に適用される線量拘束値

公衆の <u>線量</u>限度

放出形態	対象線量	線量拘束値	サイト単位の 年拘束値
液体	実効線量	0.03mSv/年	運転中原子炉 (単基サイト) 実効線量:
	組織等価線量	0.1mSv/年	天劝禄里: 0.25mSv/年 甲状腺等価線量: 0.75mSv/年

排出規制

◆規制方法: **濃度規制**

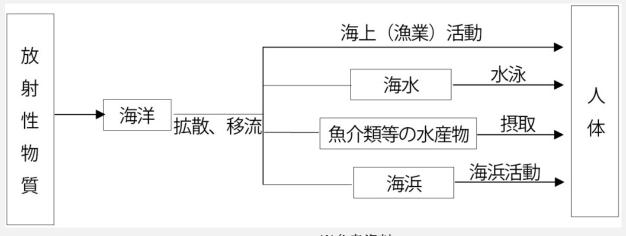
✓ トリチウム水: 40,000 Bq/L✓ OBT: 20,000 Bq/L

韓国 -環境影響評価 評価手法-

参考 発電所

セウル原子力本部及び近隣の古里原子力本部

実施主体


韓国水力・原子力会社(事業者)

根拠法令

原子力安全法施行令、放射線防護等に関する基準、(原子力発電所) 運営技術指針書の作成に関する基準、原子力利用施設周辺の放射 線環境調査及び放射線の環境影響評価に関する規定

◆液体放射性物質の移行経路

評価手法

※参考資料:

2020年度原子力発電所周辺の環境放射能調査及び評価報告書

韓国 -環境影響評価 評価結果-

◆住民への被ばく線量評価結果

<代表的個人>

制限区域境界での住民(最大被ばく年齢1歳): 0.02 mSv/y

✔ 公衆の線量限度

1 mSv/y **0**2.058%

✓ 敷地当たりの制限値 <u>0.25 mSv/yの8.23%</u>

気体・液体放射性物質の排出による住民への被ばく線量

豆 八	# ##	古里1~4号機及び新古里1~4号機			ᄔᆓᄵ
区分	基準 	気体	液体	計	比率(%)
実効線量	0.25	2.056E-02	2.113E-05	2.058E-02	8.23
甲状腺等価線量	0.75	2.056E-02	1.392E-05	2.057E-02	2.74

ロシアー規制ー

法令

「放射線安全基準(NRB-99/2009)第47号」など

公衆の 線量限度

原子炉による線量拘束値: 10 μSv/年 (気体・液体排出別々に適用)

◆規制方法: **総量規制**

各発電所に対する放出制限値は、ロシアの規則に従い、原子炉タイプ・容量およびサイト特性(例えば、地域の人口統計、住民の生活習慣)を考慮し、導き出される。 最終的な制限値は、試運転段階の開始直前に設定されることになっている。

排出規制

- ◆液体の年間排出量の制限値
 - バラコヴォ原子力発電所(4基)の場合
- ✓ Cs-134
 3 GBq/年
- ✓ Cs-137 <u>0.84 GBq/年</u>
- ✓ Mn-54 16 GBq/年
- ✓ Co-60 **1.4 GBq/年**
- ※液体トリチウムに関する排出制限値は設定されてない

ロシア -環境影響評価 評価手法-

参考 発電所

バルト原子力発電所

実施主体

ロスアトム社(事業者)

根拠法令

- ◆ 放射線安全基準(NRB-99/2009)第47号
- ◆ 原子力発電所の設計および運転に関する衛生規則(SP AS-03)第69号
- ◆ 原子力発電所の安全基本規則(OPB-88/97)第9号
- ◆ 原子力発電所の立地、安全保障のための基本的基準および要求事項 NP-032-01

評価手法

- ◆被ばく経路
 - ✓ 遊泳、ボート遊び、岸辺での滞在
 - ✓ ネマン川の水を飲料水として利用する、魚、甲殻類を食べる

◆解析年齡層

- ✓ 17歳以上の成人
- ✓ 1歳の子ども

※参考資料:

バルト原子力発電所の許認可申請のために実施された 環境影響評価のIAEA国際ピアレビュー報告書

ロシア -環境影響評価 評価結果-

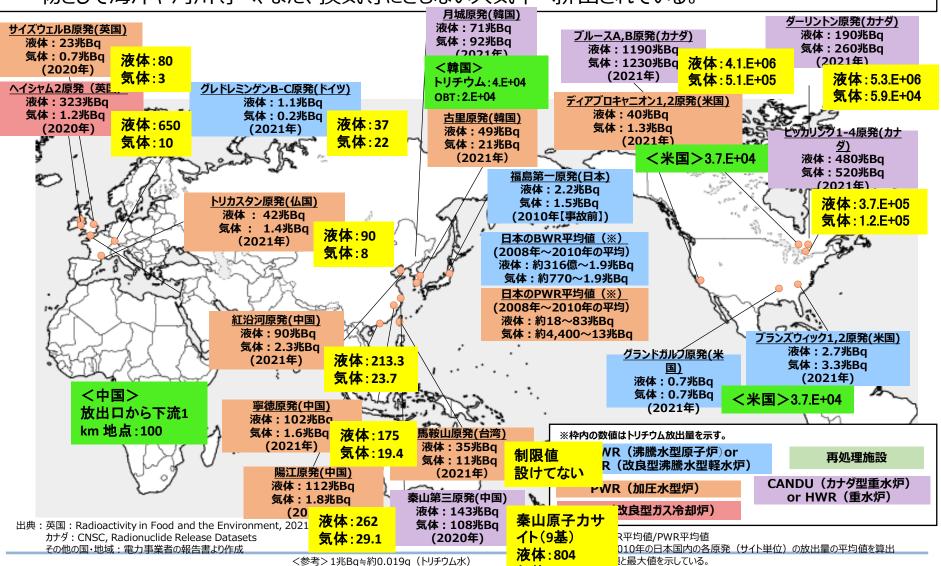
- ◆被ばく評価結果
- ① バルト原子力発電所からの液体排出による住民の総被ばくは、 ほとんどが魚の消費によるもの
- ② 大人 <u>2.68 μ Sv/年</u> 子ども <u>1.61 μ Sv/年</u>

原子炉による

公衆の線量拘束値 <u>10 μ Sv/年</u> を超えない

被ばく全種類の合計線量

被ばく	線量(µSv/年)		
	1歳の子ども	成人(>17歳)	
内部	1.61	2.61	
外部	0.003	0.070	
合計	1.61	2.68	


各国規制基準の比較

	規制タイプ	トリチウム液体廃棄物の制限値
アメリカ	濃度規制	37,000 Bq/L
イギリス	総量規制	サイトごと設定 Sizewell B サイト: 80 TBq/年
フランス	総量規制	サイトごと設定 Flamanvilleサイト: 145000 GBq/年(高燃焼度燃料の場合は1基につきプラス10,000 GBq/年)
中国	総量•濃度規制	<総量> 3000MWの軽水炉:75 兆Bq/年 ※同タイプが複数ある場合はこれの4 倍以内)。3000MW未満、 越えのものは適宜調整。 重水炉:350兆Bq/年 <濃度>:100Bq/L 以下 (放出口から下流1 km 地点)
韓国	濃度規制	トリチウム 40,000 Bq/L OBT 20,000 Bq/L
ロシア	総量規制	トリチウム制限なし

(参考)トリチウムの年間処分量 ~国内外の例~

トリチウムは、国内外の原発・再処理施設においても、各国・地域の法令を遵守した上で、液体廃棄 物として海洋や河川等へ、また、換気等にともない大気中へ排出されている。

気体:708