令和4年度 新興国等におけるエネルギー使用合理化等に 資する事業 新エネルギー人材育成事業 事業報告書

令和5年3月

一般 財団法 人日本エネルギー経済研究所

はしがき

アジアやアフリカ、中南米の新興国等では、引き続き大幅なエネルギー需要の伸びが見込まれている。こうした国々における新エネルギー等の普及促進は、エネルギーアクセスの向上や気候変動対策上重要であることに加えて、我が国のエネルギー安全保障確保にも資するものである。

一方、こうした国々では新エネルギー普及に足る制度・執行体制が十分整っていないことが多く、 普及促進の課題となっている。このため、これらの国々を対象とする日本の新エネルギー政策・制度の紹介・導入に向けた研修や、日本の優れた新エネルギー関連技術を有する企業との意見交換等で、各国の新エネルギー政策・制度の整備や、その立案・執行に係る人材の能力育成を図ることは、対象国のエネルギー政策の向上に加え、日本のエネルギー安全保障政策上も重要となる。

本事業では、日本の政策・制度・技術を効果的に紹介することで、各国の制度や政策を新エネルギー関連技術が導入されやすい仕様に整備し、日本の企業が当該国にビジネス参入しやすい環境づくりの構築を目指している。研修実施に当たっては、コロナ禍で物理的な人材の往来が困難となって以降、オンラインによる研修が主体となっていたが、一部改善の兆しが見えたため、中南米(アルゼンチン・チリ)について研修生の招請、タイ、エジプトについては専門家派遣を実施し、現地参加できない講師等には、オンラインで参加いただくハイブリッド方式にて実施した。また、オンライン形式のみの場合でも、研修の実施に際しては、コミュニケーションの不足が生じないよう、質疑応答の時間やディスカッションの時間を極力確保する等配慮を行った。

本年度事業では、中南米(アルゼンチン・チリ(ハイブリッド))、インドネシア(オンライン)、ASEAN(オンライン)、ケニア(オンライン)、ベトナム(オンライン)、タイ(ハイブリッド)、エジプト(ハイブリッド)、インド(オンライン)を対象に8回開催した。各国政府のエネルギー政策担当者、電力会社等の新エネルギー産業関係者や研究機関等有識者を研修に招聘し、対象国における再生可能エネルギー拡大のための課題解決につながる日本の新・再生可能エネルギー政策や関連技術を紹介するとともに、参加者間で、各々の経験や、今後の政策の方向性等に関する意見交換を行った。

本事業が新興国における新・再生可能エネルギーの普及に対する意欲を高め、導入促進の一助になることを祈念するとともに、本事業を実施するにあたって多大なご協力を賜った関係者各位に、この場を借りて御礼申し上げたい。

令和5年3月

目 次

1. 受入	研修	1
1.1. 中南	i米(アルゼンチン、チリ)水素研修	1
1.1.1.	日時・期間	1
1.1.2.	会場	1
1.1.3.	背景と目的	1
1.1.3	3.1 アルゼンチン	1
1.1.3	3.2 チリ	11
1.1.4.	招聘者	30
1.1.5.	日程概要	30
1.1.6.	プログラム概要	31
1.1.7.	成果/展望	32
1.1.8.	挨拶要旨/講演要旨	34
1.1.9.	フォローアップ会合の実施	48
1.2. イン	· ドネシア対象研修 報告書	50
1.2.1.	日時・期間	50
1.2.2.	主会場	50
1.2.3.	背景と目的	50
1.2.4.	招聘者	51
1.2.5.	セッション概要	52
1.2.6.	プログラム概要	52
1.2.7.	成果/展望	53
1.2.8.	講演要旨	53
1.3. ASE	AN 対象水素研修	59
1.3.1.	日時・期間	59
1.3.2.	主会場	59
1.3.3.	背景と目的	59
1.3.4.	招聘者	62
1.3.5.	セッション概要	62
1.3.6.	プログラム概要	63
1.3.7.	成果/展望	63
1.3.8.	講演要旨	64
2. 専門]家派遣	69
2.1. ケニ	ア対象再生可能エネルギー開発専門家派遣(オンライン)研修	69
2.1.1.	日時・期間	69

2.1.2. 主会場	69
2.1.3. 背景と目的	69
2.1.4. 招聘者	79
2.1.5. 1.1.5 日程概要	80
2.1.6. プログラム概要	80
2.1.7. 成果/展望	80
2.1.8. 講演要旨	81
2.2. ベトナム洋上風力・系統柔軟性リモート研修	85
2.2.1. 背景と目的	85
2.2.2. 事前調査に関する小規模ミーティング	91
2.2.2.1. 日時・期間	91
2.2.2.2. 形式、会場	91
2.2.2.3. 参加者	91
2.2.2.4. プログラム概要	91
2.2.2.5. 挨拶要旨、講演要旨、質疑応答	91
2.2.3. ベトナムを対象としたワークショップ	93
2.2.3.1 日時・期間	93
2.2.3.2 形式、会場	93
2.2.3. 3 参加者	93
2.2.3.4 プログラム概要	94
2.2.3.5 挨拶要旨、講演要旨、質疑応答	95
2.2.4. フォローアップ会議	98
2.2.4.1 日時・期間	98
2.2.4.2 形式、会場	98
2.2.4.3 参加者	98
2.2.4.4 プログラム概要	99
2.2.4.5 挨拶要旨、講演要旨、質疑応答	99
2.2.5. 成果/展望	100
2.3. タイ対象再エネ現地/オンラインハイブリッド研修	101
2.3.1. 日時・期間	101
2.3.2. 主会場	101
2.3.3. 背景と目的	101
2.3.4. 招聘者	102
2.3.5. セッション概要	102
2.3.6. プログラム概要	103
237 战里/展望	103

	2.3.8.	講演要旨	103
2.4	4. エジ	プト対象水素・燃料電池専門家派遣(ハイブリッド)研修	107
	2.4.1.	日時・期間	107
	2.4.2.	主会場	107
	2.4.3.	背景と目的	107
	2.4.4.	課題および研修での対応	113
	2.4.5.	招聘者	113
	2.4.6.	日程概要	114
	2.4.7.	プログラム概要	114
	2.4.8.	成果/展望	115
	2.4.9.	講演要旨	115
2.:	5. イン	ド対象エネルギー・トランジション専門家派遣(オンライン)研修	120
	2.5.1	- al. Hepp	
	2.5.1.	日時・期間	120
		日時・期間主会場	
	2.5.2.		120
	2.5.2.2.5.3.	主会場	120 120
	2.5.2.2.5.3.2.5.4.	主会場 背景と目的	120 120 129
	2.5.2.2.5.3.2.5.4.2.5.5.	主会場 背景と目的 課題および研修での対応	120 120 129 129
	2.5.2.2.5.3.2.5.4.2.5.5.2.5.6.	主会場 背景と目的 課題および研修での対応 招聘者	120 120 129 129
	2.5.2. 2.5.3. 2.5.4. 2.5.5. 2.5.6. 2.5.7.	主会場	120 120 129 130 130
	2.5.2. 2.5.3. 2.5.4. 2.5.5. 2.5.6. 2.5.7. 2.5.8.	主会場 背景と目的 課題および研修での対応 招聘者 日程概要 プログラム概要	120 129 129 130 130

表目次

表	1.1-1	主な再生可能エネルギー政策の変遷(アルゼンチン)	4
表	1.1-2	チリの主なエネルギー政策	12
表	1.1-3	長期気候戦略の主な目標	13
表	1.1-4	主な再生可能エネルギー政策の変遷(チリ)	17
表	1.1-5	再生可能エネルギー競争入札結果の概要	19
表	1.1-6	チリにおける再エネプロジェクトの状況(2023年2月時点)	21
表	1.1-7	招聘者一覧	30
表	1.1-8	日程概要	31
表	1.2-1	招聘組織	52
表	1.2-2	セッション概要	52
表	1.3-1	ASEAN 加盟国における一次エネルギー供給及び CO2 削減目標	60
表	1.3-2	国別招聘組織	62
表	1.3-3	セッション概要	62
表	2.1-1	最少費用電源開発計画における総発電設備容量-最適化更新計画	71
表	2.1-2	FIT 価格 (第三次改訂、2021 年 11 月レビュー後価格)	72
表	2.1-3	オークション基準価格	73
表	2.1-4	地熱発電基準価格	73
表	2.1-5	招聘者一覧	80
表	2.1-6	日程概要	80
表	2.2-1	再生可能エネルギーに関する首相決定	86
表	2.2-2	ベトナム FIT における買取価格	87
表	2.2-3	2019 年 7 月 1 日~2020 年 12 月 31 日の太陽光発電 FIT 価格	87
表	2.2-4	No. 21 QD-BCT での太陽光、風力の上限価格	88
表	2.2-5	小規模ミーティング参加組織	91
表	2.2-6	ベトナムとの WS 参加組織	94
表	2.2-7	プログラム概要	99
表	2.3-1	招聘組織	102
表	2.3-2	セッション概要	102
表	2.4-1	招聘者一覧	114
表	2.4-2	日程概要	114
表	2.5-1	RPO Trajectory(2022年7月改定)	122
表	2.5-2	蓄電池 RPO Trajectory (2022年7月制定)	123
表	2.5-3	国家電力計画案における2031年度までの再エネ導入目標(設備容量	および発電
	量)		125

表	2.5-4	招聘者一覧	130
表	2.5- 5	日程概要	130

図目次

义	1.1-1 アルゼンチンの一次エネルギー供給と電源構成(2020年)	3
図	1.1-2 再生可能エネルギー電源構成と発電量に占める割合の推移(アルゼンチン)	6
図	1.1-3 アルゼンチンの太陽光発電ポテンシャル分布図	7
义	1.1-4 アルゼンチンの平均風速分布図(m/s、高度 100m)	8
义	1.1-5 アルゼンチンにおける水素ハブのマッピング	.10
义	1.1-6 チリの一次エネルギー供給と電源構成(2020年)	.12
図	1.1-7 チリの電力供給システム	.15
図	1.1-8 RENOVA の仕組み	.17
図	1.1-9 再生可能エネルギー電源構成と発電量に占める割合の推移(チリ)	.20
図	1.1-10 チリの再エネポテンシャル	.21
図	1.1- 11 チリの太陽エネルギー資源量(GHI)	.22
図	1.1-12 風力資源量	.23
図	1.1-13 チリにおける輸出向けグリーン水素プロジェクトのマッピング	.25
図	1.1-14 チリにおける国内需要向けグリーン水素プロジェクトのマッピング	.25
図	1.1-15 チリにおけるグリーンアンモニア関連プロジェクトのマッピング	.26
図	1.2-1 再生可能エネルギー電源構成および発電量に占める割合の推移	.50
図	1.3- 1 ASEAN における再エネ導入量と割合の推移	.59
図	1.3-2 ASEAN における最終エネルギー消費量(ベースラインシナリオ)	.61
図	2.1-1 ケニアの1次エネルギー供給構成と電源構成(2020年)	.69
図	2.1-2 ケニアの電源別発電量推移(2000年-2020年)	.70
図	2.2-1 ベトナムの1次エネルギー供給構成及び電源構成(発電量ベース)(2020年).	.85
义	2.2-2 再生可能エネルギー電源構成および発電量に占める割合の推移	.88
図	2.2-3 再生可能エネルギーの開発動向	.89
义	2.4-1 エジプトの1次エネルギー供給構成および電源構成(2020年)	109
図	2.4-2 エジプトの再エネ電源構成および再エネシェアの推移(発電量ベース)	110
	2.5-1 インドの1次エネルギー供給構成および電源構成(発電量ベース)(2020年)	
図	2.5-2 インドにおけるセクター別二酸化炭素排出量推移	127

1. 受入研修

1.1. 中南米(アルゼンチン、チリ)水素研修

1.1.1. 日時•期間

2022年8月29日(月)~9月2日(金)

1.1.2. 会場

主会場:NS スカイカンファレンス (新宿 NS ビル 30F)

副会場:神戸ポートピアホテル

視察先:つばめ BHB 株式会社(川崎市) 川崎重工業株式会社(神戸市)

1.1.3. 背景と目的

チリ、アルゼンチンの両国は再生可能エネルギー(以下、「再エネ」)資源に恵まれており、発電部門においては水力発電を中心に再エネ資源を活用してきた(チリ 48.8%、アルゼンチン 25.6% (2020年))。近年は、太陽光や風力を中心に非水力再エネ(チリ 22.7%、アルゼンチン 5.8% (2019年))が拡大しており、特にグリーン水素の輸出国としての可能性が注目されている。

チリは 2020 年に「国家グリーン水素戦略」を策定しており、各国によって多数の水素事業が進められている。2021 年 11 月にはフアン・カルロス・ジョベット・エネルギー大臣兼鉱業大臣が来日し、日本政府ほか水素事業に取り組む日本企業と水素協力の可能性等について意見交換を行うとともに、同国の水素経済の構築における日本勢の参画への期待を強調した。その後、日本企業が水素分野で複数の事業に参画している。

アルゼンチンは、水素関連政策を国家の重要政策と位置づけ、大統領直下の戦略庁の所管事項とし、国家水素戦略の策定を進めているが、最初のアナウンスから3年経っても発表されない。 2023年は総選挙も予定されており、動向を注視する必要がある。日本とは、同国として初めて水素分野の協力について覚書を2019年に締結しており、日本企業によるプロジェクト組成や協力が期待されている。

1.1.3.1 アルゼンチン

アルゼンチンは、国内に天然ガスや石油等の化石エネルギーが賦存しており、エネルギー自給率は98%(2019)と国内資源に恵まれている。石油とガスの余剰分はブラジル、チリ等の周辺諸国に輸出されている。エネルギー政策の基本方針は国内の原油、天然ガス生産を増加し、石油製品やLNGの輸入を抑制することにより外貨流出を減少させ、エネルギー純輸出国としての地位を確保することにある。再エネはその目的達成のための役割を担うことが期待される。

2018 年以前までは非水力の再生可能エネルギーの導入は限定的であったが、2015 年に再エネ法(Law 27191)が制定され、同法律に基づく国際入札プログラム(RenovAr)が実行されたため、

風力発電と太陽光発電を中心に近年導入が大幅に加速している。Law 27191では、再エネを2018年に電源構成の8%、2019年に12%、2023年に18%、2025年に20%にする目標を掲げている。一方、再エネ電力の系統接続のための送電網の整備が追い付いていないため、送電網の整備に対する投資促進が課題である。

同国は、豊富な風力資源やガス資源を利用したグリーン水素及びブルー水素の製造のポテンシャルが高いとされている¹。グリーン水素とブルー水素(+CCS)が 2030 年に 313MtCO₂e の温室効果ガスを削減する目標に寄与することが期待される。日本とは、2019 年 9 月に開催された「第 2 回水素閣僚会議」において、同国が他国と結ぶ初めて水素分野の協力覚書を締結している。水素国家戦略の策定を進めており、大統領府の戦略庁が担当している。

一方、2019 年より導入された資本取引規制や、パリクラブ(主要債権国会議)に対する債務を理由に、同国のカントリーリスクを勘案し、進出に慎重な日本企業が多い²。2022 年 5 月、パリクラブに対する債務については返済期限を2024年9月まで延ばすことで合意している。同政府は、2022年に入って同国への投資案件が増えていることを強調している³。

【アルゼンチンの一次エネルギー供給と電源構成】

アルゼンチンは、国内に天然ガスや石油等の化石エネルギーが賦存しており、エネルギー自給率は 98%(2019)と国内資源に恵まれている。石油とガスの余剰分についてはブラジル、チリ等の周辺諸国に輸出されている。また、米エネルギー情報局(EIA)によると国内の技術的に回収可能なシェールオイル埋蔵量は 270 億バレル(世界第 4 位)、シェールガス埋蔵量は 802Tcf(世界第 2 位)となっており、経済立て直しのための外貨収入獲得策として期待されている 4。

2020年の一次エネルギー供給量は73.8Mtoeで、そのうち天然ガス54.2、石油31.8%であった。また、電源構成では天然ガスが60.8%と一番高く、次いで、水力発電が16.5%占めている。水力を除く再エネは9.1%と開発途上であり、2025年に電源構成の20%とする上記目標を達成するには、更なる対策が必要である。

-

¹ ブルー水素及びグリーン水素の生産コストは、それぞれ 2ドル及び 3ドル強と見積もられている。(在亜日本大使館情報: フォーラム「水素国家戦略 2030 に向けて」(2021 年 5 月 17 日))

² 企業へのヒアリングに基づく。

³ 在京亜大使館談。

⁴ U.S. Energy Information Administration https://www.eia.gov/international/analysis/country/ARG (2022 年 3 月 28 日アクセス)

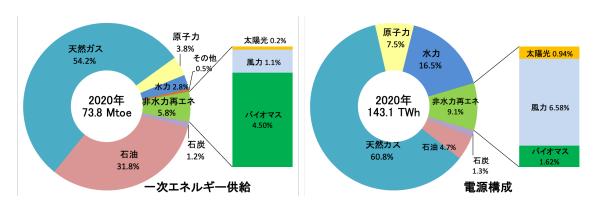


図 1.1-1 アルゼンチンの一次エネルギー供給と電源構成(2020年)

(出所) IEA, World Energy Statistics and Balances 2022 より作成

【アルゼンチンのエネルギー政策】

アルゼンチンでは、2001 年 12 月に経済危機に陥り対外債務不履行を起こし、2002 年にエネルギー法を制定した。これによりガスと電力の料金を凍結し、通貨切り下げによる末端価格への波及の最小限化を図った。また、原油、石油製品、ガスの輸出に大きな税を課し、国内のエネルギー価格上昇を抑え政府歳入を増やそうとした。この価格抑制政策の結果、民間エネルギー会社の投資意欲が減退し、アルゼンチンの原油、天然ガス生産量は減少を続けていたが、現在はウクライナ危機を受けて増産に切り替え、新しいパイプラインの整備も進んでいる5。

アルゼンチンのエネルギー政策は、国内の原油、天然ガス生産を増加させて、石油製品やLNG輸入増加に伴う外貨流出を減らし、純輸出国の地位を保つことを基本とする。この基本政策の下、アルゼンチンは、外資導入やエネルギー部門の民営化等に積極的に取り組んできたが、2012年に再度、民営化された旧国営石油会社 YPF (Yacimientos Petrolíferos Fiscales)を国有化した。しかし、YPFの再国有化後も、シェール開発のために天然ガス価格の引き上げや探鉱活動に対するインセンティブを供与する等、エネルギー部門の民営化、国営化が繰り返されている。

【アルゼンチンの電力政策】

電力部門については、1980 年代に電力インフラの老朽化が進み、停電が多発する等の問題が発生したため、国家改革法(1989年)、電力規制法(1992年)等によって再編成・民営化が推進された。その結果、電力産業は発電、送電、配電部門の3つの部門に分離され、公正な競争を確保するための規制機関 CAMMESA(Compañía Administradora del Mercado Mayorista Eléctrico S.A.)が創設された。また、競争促進のために、各部門における資本の集中および部門間の株式の相互持合いに制限を設けている。原子力発電と二国間の水力発電プロジェクトおよび送電部門は政府の管理下にある6。

電源開発は政府主導で行われ、入札で建設・運営者を決めている。送電能力の拡大について

⁵ 在京大使館談 (2023年2月9日)

在从人使期談(2023年2月9日)

⁶ 海外電力調査会(2020)「第6章アルゼンチン」『海外諸国の電気事業第2編(下巻)』、pp.261-262

は送電会社ではなく、配電会社や電力の大口ユーザーが責任を負っているため、配電会社等には投資インセンティブがなく、設備投資があまり行われなかった。そこで、電源開発と同様に、政府主導で送電線の新設・増強を進め、入札により事業主体を決定している。主な配電会社には首都ブエノスアイレスの北部を担当する Edenor (Pampa Energia 子会社)、南部を担当する Edesur (イタリア Enel 子会社)がある。なお、大口契約については発電会社が需要家と相対取引で締結する場合がある。

【アルゼンチンの再生可能エネルギー政策】

再生可能エネルギーは、エネルギー純輸出国としての地位を確保する目的達成に資することが期待されている。そのため、政府は2015年に再生可能エネルギー法(Law 27.191)を制定し、再生可能エネルギーの導入拡大を図っている。なお、同法が再生可能エネルギー源として認めているものは風力・太陽熱・太陽光・地熱・潮力・波力・海流・水力・バイオマス・埋立地ガス・プラント処理ガス・バイオガス・バイオ燃料・小規模水力(50MW以下)である7。

下表に主な再生可能エネルギー政策を整理する。

表 1.1-1 主な再生可能エネルギー政策の変遷 (アルゼンチン)

年	法令等	概要
1998	風力・太陽光エネルギー促進法	風力・太陽光エネルギーを促進するためインセンティ ブを規定。
1999	地方電化推進プログラム (PERMER)	農村部の低所得者にオフグリッドで電力を供給するためのプロジェクト。2012年に終了。
2005	国家風力エネルギー戦略計画	2005年から3年間で300MWの風力発電設備を導入。
2006	再生可能エネルギー発電促進法	1998年の風力・太陽光エネルギー促進法の改定版
2006	バイオ燃料法	エネルギー供給源の多様化、環境対応、地方開発促進とし、義務化されたバイオ燃料の混合率の根拠
2008	再生可能エネルギー生成プログラ ム	国営会社 IEASA(旧 ENARSA)が再生可能エネルギーにより発電された電力を対象に入札を実施、15 年間の電力購入契約によって電力を購入。2016 年に廃止。
2015	再生可能エネルギー法	2006 年の再生エネルギー発電促進法の改定版 再生可能エネルギー発電のシェアを 2018 年に 8%、 2025 年に 20%とする目標を規定。
2015	PERMER-II	家庭、学校、生産活動への電力供給およびマイクログ リッドの構築により地方電化を推進。
2016	国際入札プログラム RenovAr	再生可能エネルギー法に基づき入札を実施。
2017	分散型再生可能エネルギー発電 の促進に関する法律	余剰再生可能エネルギー発電電力の系統への送電が 可能に。
2017	通達 Resolución 281	大規模電力消費者が再生可能エネルギー電力供給者と直接、自由に電力の売買契約の締結が可能に。 再エネ電力定期市場 MATER を創設。

⁷ Argentina.gov.ar, "Legal Regulations on National Promotion for the Use of Sources of Renewable Energy – Electric Power Generation – Amendment - Passed on September 23rd 2015 – Enacted on October 15th 2015 (published in the Official Gazette on October 21st 2015)," https://www.argentina.gob.ar/sites/default/files/argentina_renewable_energy_law_act_27191_english_version.pdf (2023 年 3 月 6 日アクセス)

Δ

	2021	グリーン生産開発計画 ⁸	持続可能な国家を目指し、全国3,500 社以上に100 億ペソ超の資金と技術支援を実施。関連機器の国内生産・輸出により外貨節約、国内の雇用創出を狙う。太陽熱温水器の国内生産の促進・普及のためのプログラムなどが含まれる。
--	------	-------------------------	---

(出所) 各種資料より日本エネルギー経済研究所作成

アルゼンチンの再生可能エネルギーの導入促進は、主に国際入札(RenovAr)と大口需要家向けの再エネ電力定期市場 MATER が両輪となって進められている。また、再エネを利用して低電化率を改善するため、地方電化推進プログラム(PERMER-II)も実施されている。

2016年7月より開始されている国際入札プログラム RenovAr では、入札がエネルギー省の管轄で行われる。応札資格者には、①サイトの場所の所有権、関連する環境ライセンスと許可等を提出できること、②入札された電力の 1MW あたり最低 250,000 米ドルの資本を持っていること、③少なくとも 12 か月間の測定データを持っていること等の要件が求められる。また、入札を落札したプロジェクトは 20 年間の PPA 契約を締結し、契約締結時から 2 年以内に完成しなければならない。

また、再生可能エネルギー法で 300kW を超える大口需要家は再生可能エネルギーの発電事業者と直接取引することが可能になり、通達 Resolución 281 により再生可能エネルギー由来の電力定期市場(Mercado a Término de Energía Eléctrica de Fuente Renovable, MATER)が創設された。大口需要家は、発電事業者と自由に購入条件を交渉することができる。さらに、再生可能エネルギープロジェクトの国家レジストリー(RENPER)が設置された。CAMMESA は優先配電(異なる再生可能エネルギー発電所間の配電の調整)を担当する。MATER に登録されたプロジェクトは法律第27,191 号第9条の税控除を受けられる。

2018 年に施行された分散型再生可能エネルギー法により再生可能エネルギー電力の自家消費も可能になっている %。

さらに、再生可能エネルギーによって地方の低電化率を改善するため、2015 年から地方電化推進プログラム(PERMER-II)¹⁰ が実施されている。家庭、学校、生産活動への電力供給およびマイクログリッドの構築が中心である。家庭分野の目標は、約12万世帯と想定される無電化世帯の全ての農村への電力供給で、教育分野では、配電網に接続されていない全ての学校(約2000校)への電力供給を目指す。

【アルゼンチンの変動再生可能エネルギーの導入状況】

アルゼンチンの一次エネルギー供給(2020年)は化石燃料が約86%と大部分を占めており、再生可能エネルギーは、バイオマスと水力がわずかに使われている程度である。

⁸ Argentina.gob.ar, "Presentación del Plan de Desarrollo Productivo Verde," https://www.argentina.gob.ar/sites/default/files/plan_desarrollo_productivo_verde.pdf(2023 年 3 月 6 日アクセス)

⁹ Andina (Dec 27, 2017), "El Gobierno promulgó la ley que permite a los usuarios generar energía removable"

¹⁰ Argentina.gov.ar, "PERMER," https://www.argentina.gob.ar/produccion/energia/permer(2023 年 3 月 6 日アク

発電量における再生可能エネルギーの割合は水力が 16.5%で、非水力は風力(6.58%)、バイオマス(1.62%)、太陽光(0.94%)を合わせて 9.1%である。太陽光、風力はともに 2018 年以降、導入が本格化してきている。下図に導入量の推移を示す。

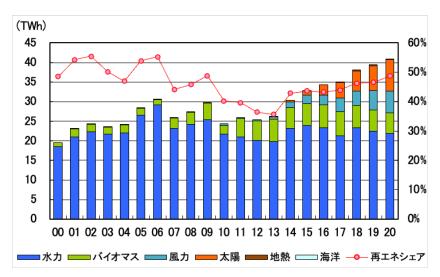


図 1.1-2 再生可能エネルギー電源構成と発電量に占める割合の推移(アルゼンチン)

(出所) IEA, World Energy Statistics and Balances 2022 より作成

アルゼンチンは太陽エネルギーのポテンシャルが非常に高く、中でも La Rioja、Salta、Jujuy を含む北西部地域と Mendoza、San Juan、San Luis がある中西部山岳地帯(Cuyo)は日射量が優れており、年間 1,800kWh/m²~2,200kWh/m²のポテンシャルを有する 11。

¹¹ Renewables Now (May 2018), "2018 ARGENTINA RENEWABLE ENERGY REPORT", p.21

図 1.1-3 アルゼンチンの太陽光発電ポテンシャル分布図

(出所) World Bank 12

2016年より開催されている国際入札プログラム RenovAr で落札されたプロジェクトが 2018年より順次稼働開始し、発電量が 2018年 108GWh から 2020年 1,345GWh へと着実に増加している。 発電設備容量も同様に 2018年より大幅に増加し、2020年は 761MW であった。 Round 1~3で落札されたプロジェクトが順調に稼働すれば合計約 2GW となる。

また、アルゼンチンは風力資源に恵まれており、中でもパタゴニア地域のアルゼンチン南部 (Neuquén, Chubut, Rio Negro, Santa Cruz, Tierra del Fuego) は世界的にも豊富な風力資源を有し、平均風速は $9.0\sim11.2$ m/s である。また、北部 (Neuquén, Río Negro) でも比較的資源に恵まれており、平均風速は $7.2\sim8.4$ m/s である。技術的に利用可能な風力ポテンシャルは約 300GW と推定されている 13 。

 $^{^{12}}$ World Bank, "Global Solar Atlas: Solar Resource Map, Photovoltaic Solar Potential: Argentina," https://globalsolaratlas.info/download/argentina(2023 年 3 月 6 日アクセス)

¹³ Wind Energy International, "Argentina" https://library.wwindea.org/listing/argentina/ (2023 年 3 月 6 日アクセス)

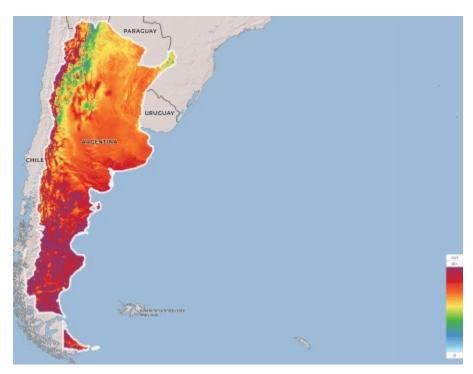


図 1.1-4 アルゼンチンの平均風速分布図 (m/s、高度 100m)

(出所) Global Wind Atlas 14

風力発電についても国際入札プログラム RenovAr で落札されたプロジェクトが 2018 年より順次 稼働を開始し、導入設備容量が大幅に増加してきている。これまでに落札されたプロジェクトが順調に稼働すれば合計約 2.6GW の増加となる。業界団体 Cluster Eolico Argentino ¹⁵ (Argentine Chamber of Industrial and Engineering Projects and Capital Expenditures の一部)が産業省の支援の下、アルゼンチンの風力発電の開発を牽引している。

【アルゼンチンにおける水素をめぐる動向】

アルゼンチンはグリーン、ブルー、ピンクを含めたあらゆる種類の水素を選択肢として考慮している。豊富な天然ガスを原料とするブルー水素の利用については、先進国を中心に将来的なカーボンニュートラルが表明され、今後天然ガスの開発および投資が困難になることが予想される状況下で、シェールオイル・ガス田バカムエルタ開発を含めた天然ガス開発を水素開発と結びつけて進めていく方針も伺える。ブルー水素の開発の課題として CCS 技術の導入を掲げている。16

(1) 水素国家戦略の策定に向けた動き

アルゼンチンは早くから水素の推進を検討しており、2005年にアルゼンチン南部の Santa Cruz 州の Pico Truncado で Jorge Romanutti 風力発電所(1995年建設)の電力を利用した水素製造試

¹⁴ Global Wind Atlas. https://globalwindatlas.info/ (2023 年 3 月 6 日アクセス)

¹⁵ Cluster Eólico Argentino, https://clustereolico.com.ar/

¹⁶ 在亜日本大使館情報 (フォーラム「水素国家戦略 2030 に向けて」 (2021 年 5 月 17 日)議事録)

験を開始し、水素に関する生産、研究、開発、普及を推進してきた。同地区は年間を通して風力エネルギーに恵まれており、2012年 Pico Truncado を"National Hydrogen Capital"として宣言し、国内の水素燃料促進をけん引することを目指している。

2006年に国内の水素エネルギー産業の強化を目的とし、「水素推進法」が可決された。同法では国家水素振興基金(FONHIDRO)を設立し、関連企業に対して付加価値税の早期払い戻し、加速度償却等の税制上のインセンティブを与えることとしていたが、資金が集まらず基金が設立されなかったため、具体的な導入計画や支援策は策定されていない.一方、2020年10月に開催された「第2回水素閣僚会議」で、ハビエル・パパエネルギー副大臣が、水素推進法の改正を検討していると述べた。最新の水素関連技術開発を踏まえた実効性あるものに改正することになっている。

経済社会審議会内に省庁間水素委員会(Mesa Interministerial del Hidrogeno)が設置され、同委員会の下で水素政策立案のための協議が行われている。2021 年内に水素戦略が策定される予定とされていたが ¹⁷、2023 年現在、まだ公表されていない。

(2) 水素に関する協力覚書の締結

2019 年 9 月に開催された「第 2 回水素閣僚会議」において、経済産業省と亜財務省エネルギー政府事務局とは再生可能エネルギーによる水素製造、水素戦略ロードマップの整備、中・長期的なコスト低減の方策等について、専門家間による情報交換、知見の共有等を推奨していくための協力覚書を締結した。水素分野での二国間の取組は日本との覚書が初めてであり、日本とは現在アンモニアについても交渉中である 18。

(3) 水素ビジネスの動向

IEA が 2021 年 8 月に発行した Hydrogen in Latin America では、南米は再エネ利用を先導する地域の一つであり、低炭素水素製造において国際的に主要な役割を果たすとされる ¹⁹。同国は豊富な風力資源やガス資源があるため、それらを利用したグリーン水素およびブルー水素の製造に高いポテンシャルを持っている ²⁰。2021 年 5 月に「水素国家戦略 2030 フォーラム」がブエノスアイレスで開催され、エネルギー計画事務局のハビエル・パパ次官はシェールガスから生産するブルー水素を起点とした水素産業の発展に言及し、課題として CO2 回収技術の導入についても触れている。また、再生可能エネルギーを利用したグリーン水素、原子力発電を利用したピンク水素についても国内での生産が可能であると述べている ²¹。

-

¹⁷ 在亜日本大使館情報

¹⁸ 在亜日本大使館情報 (フォーラム「水素国家戦略 2030 に向けて」 (2021 年 5 月 17 日)議事録)

¹⁹ IEA (2021), *Hydrogen in Latin America: From near-term opportunities to large-scale deployment*, p7. https://iea.blob.core.windows.net/assets/65d4d887-c04d-4a1b-8d4c-

²bec908a1737/IEA HydrogeninLatinAmerica Fullreport.pdf (2022年9月29日アクセス)

²⁰ NEDO HP 「水素閣僚会議 2020」、https://www.nedo.go.jp/events/report/ZZHY_00007 html(2022 年 9 月 29 日アクセス)

²¹ JETRO (2021 年 5 月 25 日)「水素国家戦略 2030 フォーラムを開催、水素産業への期待が高まる」 https://www.jetro.go.jp/biznews/2021/05/edb216269f2bb3cb.html (2022 年 9 月 29 日アクセス)

現在、水素戦略ロードマップを策定中であり、2023 年中に発表される見込みである。また、水素の支援策に関連する法案も 2023 年に成立・施行される予定。水素プロジェクトに対する税控除措置と 20 年間にわたる軽減税率が主な内容である。²²

2020年7月には国営石油会社 YPF 傘下の Y-TEC と国立科学技術研究評議会 CONICET が水素バリューチェーンを統合する企業間での共同ビジネスプラットフォームの構築を目指す水素経済開発コンソーシアム (Consortium for the Development of the Hydrogen Economy in Argentina, H2ar)を立ち上げた。同団体によると国内の水素製造量は年間約 328 千トンで、そのうち 97.7%が産業界での自家消費であり、0.3%が発電用とされている。2021年6月、Bahía Blanca港を、港として初めての加盟企業として迎えた。H2arでは、参加企業間で生産コスト等に関するケーススタディやモデリングを共有しているほか、需要側のニーズを考慮することの重要性を強調している。また、将来的には、日亜共同での実証事業の実施に関心を示している 23 。

現在、アルゼンチンでは、Buenos Aires、Bahía Blanca、Patagonia、Cuyo の 4 つの水素ハブを構築することを構想しており(下図)、各ハブにおいて国内外の企業がプロジェクトを検討し始めている。

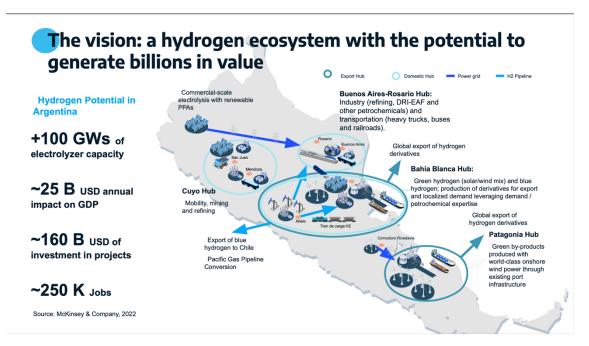


図 1.1-5 アルゼンチンにおける水素ハブのマッピング

(出所) アルゼンチン政府提供

最近では、国営石油ガス会社 IEASA が水素・リチウム事業への参入を発表しているほか 24、豪

²² 在京アルゼンチン大使館との面談による。

²³ 同上

²⁴ S&P Global Platts (March 26, 2021) "Argentina's IEASA to enter hydrogen, lithium sectors on demand growth expectations" https://www.spglobal.com/platts/en/market-insights/latest-news/electric-power/032621-argentinas-ieasa-to-enter-hydrogen-lithium-sectors-on-demand-growth-expectations

Fortescue Future Industries が Río Negro 州政府及び亜政府と協定を結び、同州内でグリーン水素を含むグリーン事業の検討を開始する。また、米 MMEX 社は、ティエラ・デル・フエゴにて、米・アジアへの輸出も視野に 2025 年より水素の生産を予定している 25 。同国は、将来的には、日亜共同での実証事業の実施に関心を示している 26 。

1.1.3.2 チリ

チリは豊富な太陽光・風力エネルギー資源を有しており、再エネの導入も大きく進展している。 世界中で最も競争力のある価格で国際入札が行われている市場の一つであり、日本企業を含む 世界中の企業が既に市場に参入している。また、優れた競争力を有する再エネ発電コストを踏まえ た場合、長期的にはチリはグリーン水素の一大輸出国になる可能性もある。

2015 年に施行された「国家エネルギー政策(National Energy Policy 2050, NEP2050)」で 2050 年 70%の再エネ導入目標などが設定されたが、NEP 2050 に掲げられた諸目標は、2021 年に「長期気候戦略」で 2030 年 80%、2050 年カーボンニュートラルに引き上げられ、気候枠組法で法制化された(後述)。 2020 年 11 月には「グリーン水素国家戦略」を策定している。

2021年11月21日の大統領選挙では、左派のガブリエル・ボリック氏が選出され、資源ナショナリズムの傾向を強める可能性があるため、注視する必要がある。2019年10月の反政府デモを受けて、2020年10月に国民投票を行い、投票者の約8割の賛成により新憲法を起草する制憲議会の議員155人を選挙によって選出した。新憲法案は、銅やリチウム等の鉱山資源、水利権の国有化が可能になる条項が含まれるとされていたが、2022年9月4日に行われた国民投票で、62%の反対によって否決され27、大統領は内閣改造を行い、エネルギー大臣はClaudio Huepe 氏からDiego Pardow 氏に交代した28。再起草した憲法改正の国民投票が2023年秋に予定されており、引き続き動向を注視する必要がある。

【チリの一次エネルギー供給と電源構成】

チリでは一次エネルギー供給量に占める化石燃料の比率が 70.4%と大部分を占めている。再エネについて、電源構成における非水力再エネの割合は 2020 年時点で 22.7%である。なお、最近では、干ばつによって 26.0% を占める水力発電が稼働できず、石炭火力を再稼働する等の対応をしてきた。

²⁵ 在京亜大使談(2022年6月3日)

²⁶ 日上

²⁷ The New York Times (Sept 4, 2022) "Chile Says 'No' to Left-Leaning Constitution After 3 Years of Debate" https://www.nytimes.com/2022/09/04/world/americas/chile-constitution-no.html

²⁸ bnamaericas (Sept 7, 2022) "Chile gets new energy minister as Boric shakes up cabinet" https://www.bnamericas.com/en/news/chile-gets-new-energy-minister-as-boric-shakes-up-cabinet

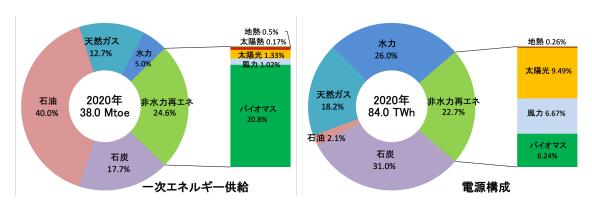


図 1.1-6 チリの一次エネルギー供給と電源構成(2020年)

(出所) IEA, World Energy Statistics and Balances 2022 より作成

【チリのエネルギー政策】

チリはエネルギー部門において、民間資本を積極的に導入して効率的な運営を目指す政策を進めてきた。1970年代後半から電力部門の改革に取組み、世界でもいち早く電力事業は1982年から分割民営化・自由化が開始された。2004年のアルゼンチンからのガス供給の途絶および2010年の大地震を契機として、国内外の環境変化に対応すべく、2010年のエネルギー省(Ministerio de Energía)の創設を含む行政機関および政策の見直しが行われた。

下表に同国の主なエネルギー政策を整理する。

表 1.1-2 チリの主なエネルギー政策

1982 年	電力サービス一般法(Ley General de Servicios Eléctricos)の施行	
	電力事業の分割民営化・自由化を開始	
2006年	再エネ発電及び小規模発電に関する規則令 (Reglamento para Medios de Generación No	
	Convencionales y Pequeños medios de Generación)(大統領令 244 号)	
2008年	再生可能エネルギー法(Ley de Generación de Energía Eléctrica con Fuentes	
	de Energía Renovables no Convencionales)(法律 20257 号)	
2008年	非在来型再生可能エネルギー法(Non-Conventional Renewable Energy Law, 法令 20257	
	号)	
2010年	エネルギー省 (Ministerio de Energía)創設	
2012 年	国家エネルギー戦略 2012-2030 (National Energy Strategy 2012-2030)発表	
2013年	再生可能エネルギー電源構成拡張法(Ampliación de la Matriz Energetica me diante	
	Fuentes Renovablesno Convencionales)(法令 20698 号)	
2014年	2014-2018 エネルギーアジェンダ(Energy Agenda)発表	
2015 年	入札に関する法律(Perfecciona el Sistema de Licitaciones de Suministro Eléctrico para	
	Clientes Sujetos a Regulaciones de Precios)(法律 20805 号)	
2015 年	国家エネルギー政策 (National Energy Policy 2050)施行	
2018年	エネルギーロードマップ 2018-2022 (Energy Road Map 2018-2022)発表	
2021 年	国家グリーン水素戦略 (Estrategia Nacional de Hidrógeno Verde)発表	
2021 年	チリにおける省エネに関する法律(Ley de Eficiencia Energética en Chile)(法律 21035 号)	
2021年	長期気候戦略(Estrategia Climatica de Largo Plazo de Chile)発表	

2022年	気候枠組法(Ley Marco de Cambio Climático)(法律 21455 号) 発表	
2022年	2022-2026 エネルギーアジェンダ(Agenda de Energia)発表	

(出所) 各種資料より日本エネルギー経済研究所作成

○チリにおける省エネに関する法律

2021 年 2 月、政府はチリで初めて省エネを規定する法律を制定した(チリにおける省エネに関する法律)。同法によって、エネルギー省は、5 年ごとの国のエネルギー効率化計画の作成が義務付けられた。2030 年までにエネルギー原単位の 2019 年比 10%削減することを目標に掲げる。

○長期気候戦略 29

2021 年、チリ政府は、国連気候変動枠組条約第26回締約国会議(COP26)にて国連気候変動枠組み条約(UNFCCC)事務局に、「長期気候戦略」を提出した。同戦略は、市民や専門家との対話を経て作成され、下表の目標を含む407の長期、中期、短期の目標で構成される。

表 1.1-3 長期気候戦略の主な目標

目標年	目標	
2025 年	石炭火力発電所の 65%を閉鎖。	
	1万~1万 5,000 ヘクタールの湿地を増加。	
2030年	国内発電全体の80%を再エネに。	
	大規模鉱山でゼロエミッションを実装。	
2040 年	全ての石炭火力発電所を閉鎖し、他のエネルギーに代替。	
	エネルギー源の 20%をグリーン水素由来に。	
2050年	国内発電の 100%をゼロエミッションに。	
	鉱業、産業分野からの炭素排出を 70%削減。	

出所:長期気候戦略をもとに IEEJ 作成 30

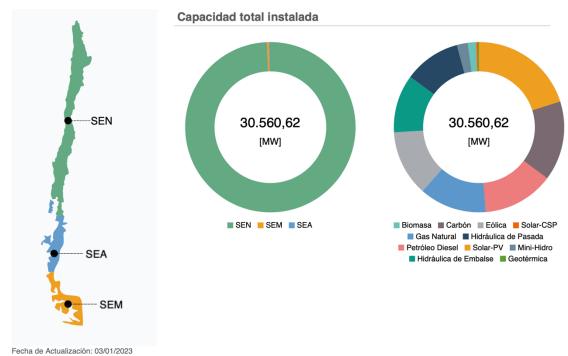
○気候枠組法

「気候枠組法」は、2019年12月に議会に提出され、政権交代を経て2022年6月に可決された。 長期気候戦略(2021年)、そして2050年までのカーボンニュートラル(CN)達成や2025年に排出 量のピークアウトなどをその内容とするNDCの諸目標を法律で規定した。これらの目標達成について、5年ごとに中間評価を環境省主導で行う。同法では、州やコムーナの役割と義務も規定されており、2023年は地方レベルで展開され、2025年には企業も気候戦略の目標設定を義務付けられる。

○エネルギーアジェンダ 2022-2026

²⁹ Gobierno de Chile (2021) Estrategia Climatica de Largo Plazo de Chile: Camino a la carbono neutralidad y resiliencia al 2050 https://unfccc.int/sites/default/files/resource/CHL_LTS_2021.pdf
³⁰ ibid

政府は、2022年8月にクリーンエネルギーによって人々の生活の質を向上させ、社会・環境の公正な移行に向けた行動を促進する短期的なロードマップ「エネルギーアジェンダ 2022-2026」を発表した。同文書は、「人権とジェンダー」「社会・環境の公正な移行と気候変動」「地方分権と領土の調和」「エネルギー効率」「エネルギーに関する教育と市民への情報提供」という横断的な原則の下、国内 16 地域で 17 のテーマ別ワークショップが開催され、社会・機能団体、学者、公共部門関係者、エネルギー企業、先住民の代表など、さまざまなアクターが集まり、エネルギーに関する地域の課題や優先事項について意見や地域のビジョンを述べました。との対話により作成された。8 つの柱、34 の方針、123 のアクションで構成される。


【チリの電力システム】

1982 年、電力サービス一般法(Ley General de Servicios Eléctricos)が施行され、電力部門が完全に民営化された。電力事業は発電、送電(23kV以上の電圧を送電する施設)、配電の3部門に分離され、特別な場合を除いて、政府の関与は最小となるよう設計されている。以降、電力事業への参入および投資は市場原理に従い、3部門への全ての投資は民間資本によって行われ、部門間の垂直統合は法律により制限されている。

下図のとおり、チリには国家グリッド(Sistema Eléctrico Nacional、SEN) ³¹、アイセングリッド (Sistema de Aysén)およびマガジャネスグリッド(Sistema de Magallanes)の 3 系統の電力供給システムが存在する。チリ中央部の需要家のほとんどが一般家庭で、北部では多数の大規模鉱山に電力を供給している。アイセングリッドとマガジャネスグリッドを合わせた発電設備容量は全国の 0.63% 程度と規模は小さくユーザー数も少ない。

-

³¹ 北部供給グリッド (Sistema Interconectado del Norte Grande, SING) と需要地が集中する中央供給グリッド (Sistema Interconectado del Central、SIC) の接続が 2019 年に完了したことによって、北部に集積する太陽光発電所で発電した電力の需要地である中央部へ送電することが可能となり、2017 年は最大 20%であった出力抑制を 1%に抑えることができた。

Fuente: Comisión Nacional de Energía | Conjunto de datos: Descargar

Notas:

1. La capacidad instalada neta no considera los sistemas de «Los Lagos» (10,5 MW) e «Isla de Pascua» (8 MW). 2. La central de Gas Natural localizada en Salta (Argentina), interconectada al SING (380 MW), no se considera.

図 1.1-7 チリの電力供給システム

出所: CNE ウェブサイト 32

(1)チリの脱石炭政策

2018 年 1 月、ミシェル・バチェレ大統領は炭素回収・貯蔵(CCS)設備のない石炭火力発電所の国内での新設を禁止すると発表し、エネルギー省と電力事業者業界団体(Asociación Gremial de Generadoras de Chile)の間で合意された。政府と加盟企業(イタリア Enel、フランス Engie、AES Gener、Colbun)による共同発表された。エネルギー省主導による具体的な実施計画とスケジュールを定める官民ワーキンググループ (Phase-out and/or Reconversion of Coal Units Roundtable)の設置も同時に決定された。同ワーキンググループは、石炭火力の廃止に向けた課題整理、具体的な実施計画とスケジュールの検討を行い、報告書を公表している 33 。

「長期気候戦略」(2021 年)では、2025 年までに石炭火力発電所の 65%を閉鎖し、2040年には完全に廃止することを目標に掲げる。現在の計画では、2019-2026年に 18基(3.5GW)の石炭火力発電所を廃止する。2022年、Enel 社は、所有する全ての石炭火力発電所を閉鎖

³² Comisión Nacional de Energía, Energia Abierta "Installed Capacity," http://energiaabierta.cl/visualizaciones/installed-capacity/?lang=en http://energiaabierta.cl/visualizaciones/capacidad-

³³ Ministry of Energy (2021) Plan of Phase-out and/or Reconversion of Coal Units, https://energia.gob.cl/sites/default/files/folleto estrategia desc eng 30102020.pdf

した ³⁴。残る 10 基(1.9GW)については環境影響評価などの課題が残るためスケジュール が未定である。政府は、石炭火力発電所でのアンモニア混焼にも関心を示しており35、2022 年 12 月には三菱重工業がチリ国内で 30%混焼実証にむけた検討を発表している 36。

グリーン水素戦略では、最大の系統のである SEN グリッドに接続していない地域での水素発電 の利用等を謳っている。

(2)エネルギー貯蔵施設の系統接続に関する法律

2022 年 11 月、エネルギー貯蔵施設の系統接続に関する法律(Ley Sobre Promoción del Almacenamiento y La Electromovilidad)が制定された。同法は、再エネの系統接続の拡大とEVの 普及を促進する目的で2021年12月エネルギー省が法案を提出したものである。

電力貯蔵については、電気事業法(ley General de Servicios Eléctricos)の各条項を改正し、発電 所に併設されない独立の蓄電システムが、系統に放電できるようにした。蓄電池などの系統接続に よって出力抑制を最小限に抑えるとともに、日中と夜間の電力価格差が最小限に抑えられる効果 が期待される。対象設備は蓄電池や EV に限らず、液化空気エネルギー貯蔵(LAES)、水素、CSP なども含まれる。 蓄電設備からの売電の価格については、2023 年 11 月までにエネルギー省が規 制を整備することになっている。

また、電気事業法第 25 条の「発電・電力消費システム(Generation-Consumption Systems)」を、 再エネによる自家発電設備を有する水素製造や海水淡水化などの製造施設で、単一の接続ポイ ントで電力系統に接続するシステムと定義し、これらの接続も可能にした。供給事業者を介して系 統電力を利用したり、余剰分を系統に入れたりすることが認められ、系統からの電力消費量に対し てネット課金されることになる。

電気自動車に関しては、ゼロエミッション車と認定された外部充電式の電気自動車およびハイブ リッド車金銭的インセンティブを与えるとしている。

(3)電源トラッキングシステム RENOVA

現在、電源証明の義務化に向けて新法案が審議中である。

2022 年初頭より、送電系統運用者(TSO)の CEN が自主的な再エネトラッキングのプラットフォー ム(RENOVA; Registro Nacional de Energias Renovables)37を運営している。ブロックチェーン技術 を利用し、系統の電力需給バランスや電源からの排出量の情報、INFOTECNICA(発電所、変電

³⁴ Enel (September 30, 2022, press release) "Enel becomes the first company in Chile to stop using coal for electricity generation," https://www.enel.com/media/explore/search-press-releases/press/2022/10/enel-becomes-thefirst-company-in-chile-to-stop-using-coal-for-electricity-generation

³⁵ エネルギー省、CORFOへのヒアリングによる。

³⁶ 三菱重工業(2022年 12月7日プレスリリース)「チリ・グアコルダ社の石炭火力発電所に対するアン モニア混焼導入へ覚書に調印 30%混焼実証に向けた詳細検討を2026年までの2フェーズで実施」

https://www.mhi.com/jp/news/221207.html

³⁷ RENOVA ウェブサイト https://www.coordinador.cl/renova/; マニュアルは、CEN (2021) Manual de Uso RENOVA.https://www.coordinador.cl/wp-content/uploads/2022/03/Manual-de-Usuario-RENOVA.pdf

所、送電線などの技術情報プラットフォーム)と REUC(企業の登録情報などのプラットフォーム)などの情報を管理する。CEN が運営するためダブルカウントの心配がなく、米 Green-e の認定を受けている。

現在は、依頼ベースで電源証明の証書を無償で発行しているが、全量トラッキングが義務化された場合にフィーを徴収するかどうかは未定である。本格導入に対して大手電力会社が抵抗しており、導入が遅れているとの話もある38。

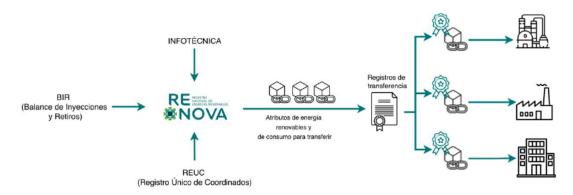


図 1.1-8 RENOVA の仕組み

出所: RENOVA ウェブサイト

【チリの再生可能エネルギー政策】

2008 年、非在来型再生可能エネルギー法(Non-Conventional Renewable Energy Law)において、初めて電源に占める再エネ導入比率目標が設定された。その後も導入目標は引き上げられ、割当義務や入札制度を通じて再エネの普及が図られている。

2015年12月に発表されたNEP2050では、全発電量に占める再エネ比率を2035年までに60%、2050年までに少なくとも70%に高めることを目標としていたが、長期気候戦略において、2030年80%、2050年100%ゼロエミッションに引き上げられた。

下表に同国の主な再生可能エネルギー政策を整理する。

表 1.1-4 主な再生可能エネルギー政策の変遷 (チリ)

年	法令	概要
2004	法令 19940 号, "Short Law I"	再エネのグリッドアクセスの促進
2005	法令 20018 号, "Short Law II"	入札制度導入
2008	非在来型再生可能エネルギー法(法令 20257号) Non-Conventional Renewable Energy Law,	再エネ導入目標:2024 年 10% 割当義務量の導入
2012	エネルギーセクターのための国家戦略 National Strategy for the Energy Sector 2012-30 非在来型エネルギー電源開発プログラム Non- Conventional Energy Development Program	再エネ導入目標:2024年までに「最低」10% に引き上げ 実証・投資前の再エネ電源開発、太陽熱発電 (CSP)、太陽光発電の研究・開発センターへ の補助金

³⁸ Invest Chile へのヒアリングによる。

2013	非在来型再生可能エネルギー開発法(法令 20698 号) "Law 20/25"	再エネ導入目標(2025年20%)、割り当て義務量の引き上げ 非在来型再生可能エネルギーを「バイオマス、20MW未満の水力発電、地熱、太陽光、風力、海洋エネルギーおよびその他 CNE が定めるもの」と定義
	エネルギーアジェンダ 2014-2018 ³⁹	2014~2025 年の新規導入発電設備容量の再
2014	Energy Agenda 2014-2018	エネ比率を 45%に
		2025 年までにエネルギー消費量を省エネに
		より 20%削減
2015	国家エネルギー政策	再エネ導入目標:2035 年までに 60%、2050
	National Energy Policy 2050	年までに少なくとも 70%に。
	入札法 (法令 20805 号)	時間別供給ブロックの導入など
2018	エネルギーロードマップ 2018-2022	分散型電源の普及促進のための規制緩和や
	Energy Roadmap 2018-2022	排出権取引システムの創設 40など
2021	長期気候戦略	再エネ導入目標:2030 年 80%、2050 年 100%
	Estrategia Climatica de Largo Plazo de Chile	ゼロエミッション
2022	エネルギー貯蔵施設の系統接続に関する法律	蓄電池や水電解装置の系統接続が可能に。
	(Ley Sobre Promoción del Almacenamiento	
	y La Electromovilidad)	

(出所) 各種資料より IEEJ 作成

チリの主な再エネ導入促進策として、(1)割当義務量と、(2)入札制度が挙げられる。

(1)割当義務量

2008 年の非在来型再生可能エネルギー法の下、再エネ電源からの電力利用に関する割当義務量(Quota Obligation)が導入され、初年度の 2014 年の再エネ電力の割当義務量を 5%/年とし、2024 年まで毎年 0.5%/年ずつ引き上げることが定められた。割当義務量は全ての電力に適用され、不履行時にはペナルティとして 32ドル/MWh が課される(3 年間不履行が継続した場合、47ドル/MWh に増額)。2013 年には Law 20/25(法令 20698 号)により割当義務量が引き上げられ、2013年7月以降に締結される契約については、初年度(2013 年度)の割当義務量を 5%/年、その後、1.0%/年ずつ増加させ、2020年に 12%、2024年に 18%(2021年以降は 1.5%/年ずつ増加)、2025年に 20%(2024-2025年以降の 1年間は 2%/年増加)となった 41。

(2)入札制度

チリにおける発電容量の入札制度は、民間投資の促進を目的とした競争入札制度となっている。 現行の入札制度は2015年制定の入札法(法令 20805号)で規定されている。入札の実施主体は 国家エネルギー委員会(Comisión Nacional de Energía, CNE)であり、在来型・再エネ発電事業者は

³⁹ Ministerio de Energía (2014), *Energy Agenda*, Chile: Ministerio de Energía, p.17

^{40 2023}年3月現在、チリでは排出権取引システムは導入されていない。

⁴¹ IRENA (2015) Renewable Energy Policy Brief: Chile, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_RE_Latin_America_Policies/IRENA_RE_Latin_America_Policies_2015_Country_Chile.pdf (2023 年 3 月 6 日アクセス)

技術的に中立な競争入札に参加し、落札した発電事業者は配電会社との間で長期 PPA を締結する。再エネ事業者の競争力を一段と高めることを目的に、時間帯別や四半期別といった「時間別供給ブロック」、PPA の 20 年間への延長、重大事象や予期不能な法令・規制・物理的変化による価格調整メカニズム、入札評価における平準化価格が導入されている 42。

表 1.1-5 再生可能エネルギー競争入札結果の概要

入札実施年		2015年10月	2016年8月	2017年11月	2021年8月	2022年8月
	応札社数(社)	38	84	21	29	15
入	電力調達量	1,200	12,430	2,200	2,310	777
札	(GWh/年)					
結	PPA 期間	20 年	20 年	20 年	15 年	15 年
果		(2017-36)	(2021-40)	(2024-43)	(2026-40)	(2027-41)
	平均落札価格	79.3	47.6	32.5	21~28	37.38
	(ドル/MWh)					
	最低落札価格	N.A.	29.1	25.4	13.32	37.19

(出所) IRENA⁴³, pv magazine⁴⁴⁴⁵⁴⁶, IJGlobal 等より作成

なお、太陽光発電のポテンシャルが高いチリ北部は国有地が多く、土地制約が再エネ導入の足枷となっていた。2010年以降、エネルギー省は国有財産省(Ministry of National Assets)とともに、公有地の登録・管理に関する手続きやコンセッションにより公有地で再エネ開発をはじめとするプロジェクトを実施するための入札制度を整備してきた 47。2017年、国有財産省は、手続きを簡素化する新たな規制を導入し、土地の利用期間を 30~35年とし、再エネ発電設備の建設期間が 2年から 10年以内に延長された。2021年までに再エネ開発用に 250件のコンセッション(計105,000ha)が契約され、国内で契約された再エネプロジェクトの約 40%が公有地に所在する 48。

【チリの変動再生可能エネルギーの導入状況】

⁻

⁴² AURES II, "Auctions for the support of renewable energy in Chile," http://aures2project.eu/wp-content/uploads/2019/12/AURES_II_case_study_Chile.pdf (2023 年 3 月 6 日アクセス)

⁴³ IRENA (2015) op. cit., pp. 54-57.

⁴⁴ pv magazine (October 28, 2015), "Solar wins substantial contracts in Chile's energy supply auction," https://www.pv-magazine.com/2015/10/28/solar-wins-substantial-contracts-in-chiles-energy-supply-auction 100021755/ (2023 年 3 月 6 日アクセス)

⁴⁵ pv magazine (November 19, 2021), "Chile to hold new energy auction in June," https://www.pv-magazine.com/2019/11/19/chile-to-hold-new-energy-auction-in-june/ (2023 年 3 月 6 日アクセス)

⁴⁶ pv magazine (August 3, 2022), "Chile contracts 777 GWh of power in renewables auction, average price comes in at \$0.03738/kWh" https://www.pv-magazine.com/2022/08/03/chile-contracts-777-gwh-in-renewables-auction-average-prices-comes-in-at-0-03738-kwh/ (2023 年 3 月 6 日アクセス)

^{47 2018~2022} 年の入札計画は国有財産省のウェブサイトに掲載されており、公示中の入札のほか、過去および将来の入札も掲示されている。(Ministerio de Bienos Nacionales "Plan de Licitaciones MBN" https://licitaciones.bienes.cl/visor/ (2023 年 3 月 6 日アクセス))

⁴⁸ Gob.cl (November 3, 2021) "Chile's National Assets Ministry announces the decade's greatest boost to renewable energies" https://www.gob.cl/en/news/chiles-national-assets-ministry-announces-the-decades-greatest-boost-to-renewable-energies/(2023 年 3 月 6 日アクセス)

チリでは一次エネルギー供給量における化石燃料の比率が 2020 年時点で 71.48%と大部分を占めている。再生可能エネルギーについて、電源構成における非水力再エネの割合は 2020 年時点で 22.65%である。電源構成における再生可能エネルギー導入の中心は水力(26.04%)、次いで太陽光(9.49%)、風力(6.67%)、バイオマス(6.23%)である。太陽光は 2013 年以降、風力は 2008 年以降導入が本格化しており、2020 年に初めてバイオマスのシェアを上回った。

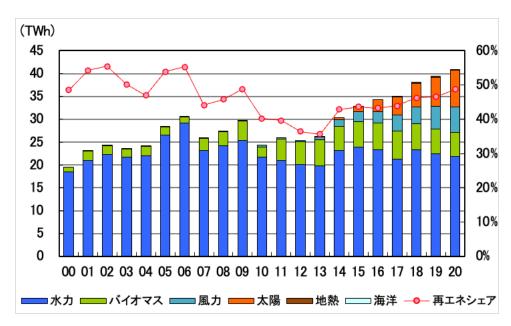


図 1.1-9 再生可能エネルギー電源構成と発電量に占める割合の推移(チリ) (出所) IEA, World Energy Statistics and Balances 2022 より作成

エネルギー省は、長期エネルギー政策の中で、下図のように同国の再エネポテンシャルを整理 している。

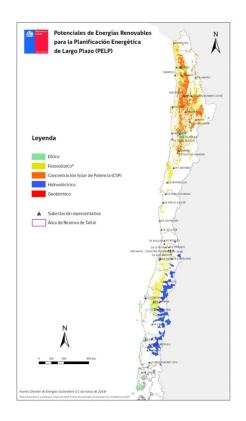


図 1.1-10 チリの再エネポテンシャル

出所:長期エネルギー政策 49

また、国家エネルギー委員会(CNE)の発表によると、現在約 5.4GW が建設中で、約 51.2GW が環境許認可を取得済み、10.1GW が審査中である。

表 1.1-6 チリにおける再エネプロジェクトの状況 (2023年2月時点)

発電技術	稼働中(MW)	建設中(MW)	承認済 (MW)	審査中(MW)
バイオマス	490	0	0	0
風力	3,821	629	13,717	4,577
地熱	51	0	155	0
小水力	616	46	730	0
太陽光	6,245	4,723	33,900	5,552
CSP	108	0	2,722	0
合計	11,331	5,397	51,225	10,129

(出所) CNE 月次報告書 50

21

⁴⁹ Ministerio de Enerigia (2019) *Planificación Energética de Largo Plazo: Informe de Actualización de Antecedentes 2019*, https://energia.gob.cl/sites/default/files/documentos/20191209_actualizacion_pelp_iaa 2019.pdf (2023 年 3 月 6 日アクセス)

_iaa_2019.pdf (2023 年 3 月 6 日アクセス)

50 CNE (Febrero 2023), *Report Mensual: ERNC*, p.3, https://www.cne.cl/wp-content/uploads/2023/02/RMensual ERNC v202302.pdf (2023 年 3 月 6 日アクセス)

チリは太陽エネルギーに恵まれ、ポテンシャルは、太陽光 1,263GW、太陽熱(CSP)548MWと見積もられている 51 。特に、140,000m²と広大な北部 Atacama 砂漠は世界でもトップクラスの年間 2,800kWh/m²を超える水平面全天日射量(Global Horizontal Irradiance, GHI)を誇る。

図 1.1-11 チリの太陽エネルギー資源量(GHI)

(出所) Global Solar Atlas, World Bank⁵²

チリの 2021 年の PV の発電量は 10,602GWh (前年比約 1.4 倍)、設備容量は 4.360MW (前年比約 1.4 倍)となっている。また、メガソーラーの導入も堅調に進んでいる。NEP 2050 では、PV は 2050 年までに 20GW 超の発電設備容量の追加導入が想定されている。

チリは風力資源にも恵まれており、そのポテンシャルは 37GW と見積もられている 53。特に Atacama 砂漠を中心とした北部および南部では 9m/秒の風力資源量を有する。

_

⁵¹ IEA (2018), Energy Policies beyond IEA Countries: Chile 2018, https://iea.blob.core.windows.net/assets/8c16efa0-41b1-47be-b12a-a29483a0c635/EnergyPoliciesBeyondIEACountriesChile2018Review.pdf (2023 年 3 月 6 日アクセス)

⁵² The World Bank (2019), "Photovoltaic Power Potential: Chile," https://globalsolaratlas.info/download/chile (2023 年 3 月 6 日アクセス)

⁵³ IEA (2018), op.cit., p. 144

図 1.1-12 風力資源量 (出所) エネルギー省ウェブサイト ⁵⁴

チリにおける風力発電の導入は 2007 年から本格化し、2021 年の発電設備容量は 3,137MW に達した(前年比 1.5 倍)。同年の風力発電量は 7,222GWh(前年比 1.3 倍)であった)。NEP 2050 において、風力は 2050 年までに 20GW 超の発電設備容量の導入が想定されている。

100MW以上の規模の大規模風力発電設備が多数稼動開始しており、太陽光同様、それらは主 に北部 Atacama 砂漠に集積している。

【水素をめぐる動向】

(1) グリーン水素国家戦略

2050 年にカーボンニュートラルを実現することを宣言し、2020 年 11 月に「グリーン水素国家戦略」55を策定した。戦略は大きく3 つの目的を掲げる:①2025 年までに5GW の水素製造能力、②2030 年に世界で最も安価なグリーン水素(\$1.5/kg 以下)の供給、③2040 年に世界3 位以内のグリーン水素輸出国となる。具体的には、2025 年までに5,000 百万ドルのグリーン水素の投資、5GW 規模の水電解槽の導入および国内2ヵ所の水素製造ハブ(Hydrogen Valley)における20万トン/年の水素製造、2030 年までに2,500 百万ドル/年のグリーン水素および派生製品の輸出創出、25GW 規模の水電解槽の導入を目標として設定されている。

また、国内ではグリーンアンモニアの利用による鉱業(主に銅、コバルト、リチウム)のグリーン化

⁵⁴ Ministerio de Energia, "Explorador Eolico" https://eolico minenergia.cl/mediciones (2023 年 3 月 6 日アクセス)

⁵⁵ Ministerio de Energía (November 3, 2020), "National Green Hydrogen Strategy," https://energia.gob.cl/sites/default/files/national_green_hydrogen_strategy_-_chile.pdf (2021 年 1 月 29 日アクセス)

とともに、長距離輸送やトラック輸送への水素利用等国内の需要拡大も目指すことにしている。第1段階で、国内の石油精製や燃料電池トラック・バス用燃料等6事業を選定。グリーン水素の国内消費を促し、実用化の前倒しを図る。第2段階では、欧州を中心にグリーンアンモニアの輸出を開始。第3段階で欧州や日本、韓国等へグリーン水素を幅広く展開していく。2050年にはグリーン水素とグリーンアンモニアの合計で、年間240億ドルの輸出を目指す。

2023 年 2 月現在、国家グリーン水素戦略の Action Plan の策定を進めている。同戦略の目標や野心は変更せず、①インフラ/領土(土地利用)、②投資/開発、③持続可能性を主な柱とした行動計画になる予定である。

(2) 水素発電への期待

国家エネルギー政策(NEP2050)では、2050 年までに少なくとも 65%の発電は GHG 排出量の少ない燃料によりなされる必要があるとしており、それを実現する発電源の1つに水素を挙げていた。 国家グリーン水素戦略では、最大の系統である SEN グリッドに接続していない地域での水素発電の利用等を謳っている。但し、深刻な水不足に直面しているチリでは、水素製造に太陽光、風力を使用した場合には、海水の脱塩処理のコストが嵩むことも考えられる。

(3) 水素ビジネスの動向

チリ政府は水素の需要国と積極的に覚書を締結している。2021年3月に同国エネルギー省とシンガポールの間で輸送に関する技術的・商業的実現可能性に関する調査のほか、ロッテルダム港、韓国と覚書を、ドイツと協力協定を締結している。2021年11月にはジョベットエネルギー大臣兼鉱業大臣が訪日し、日本政府ほか水素事業に取り組む日本企業と水素協力の可能性等について意見交換を行った。同国における再エネ発電の高い競争力を踏まえ、2022年8月時点で60件以上の水素事業が進められている56(主なプロジェクトは下図の通り)。

⁵⁶ PVMagazine (March 9, 2021) "Green hydrogen projects proliferate in Chile, Mexico, Uruguay" https://www.pv-magazine.com/2021/03/09/green-hydrogen-projects-proliferate-in-chile-mexico-uruguay/

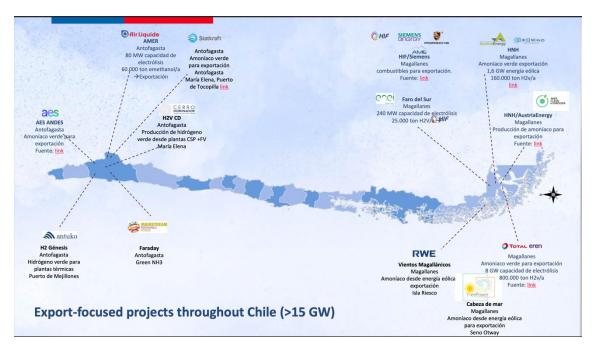


図 1.1-13 チリにおける輸出向けグリーン水素プロジェクトのマッピング (出所) チリ政府提供

図 1.1-14 チリにおける国内需要向けグリーン水素プロジェクトのマッピング (出所) チリ政府提供

図 1.1-15 チリにおけるグリーンアンモニア関連プロジェクトのマッピング (出所) チリ政府提供

2021年4月、政府の生産開発公社 CORFO (Corporación de Fomento de la Producción)が、グリーン水素生産への資金提供を行う入札を公示した。10MW 超のグリーン水素生産設備に対して2022~2025年の間に最大50百万米ドルが拠出され、生産されたグリーン水素は鉱山や製油所といった国内需要向けに供給される見通しである。2021年9月に行われた世界初となる水素事業の国主導の入札では、欧州各社を中心とする10件の応札があった。この入札は、10MW以上の水電解装置を利用し、2025年12月までに稼働できることを条件に、1件あたり最大3千万ドル、総額5千万ドル提供するというものである。2022年12月に下記の落札者6件が発表された。

【水素に関する法規制】

○CORFO による入札制度

2021 年、チリにおける省エネに関する法律(Ley de Eficiencia Energética en Chile) (法律 21035 号) において水素を「燃料」と規定し、エネルギー省の規制対象とした。

また、保安規制は現在策定中で、電力・燃料監督庁(SEC)が、保安規制が制定されるまでの間、暫定的に使用するガイド 57を発行している。

【グリーン水素委員会の設立】

2022 年 7 月、常設の省庁間委員会 Green Hydrogen Committee を立ち上げ、グリーン水素

⁵⁷ SECE (2021) Guía de Apoyo para Solicitud de Autorización de Proyectos Especiales de Hidrógeno https://energia.gob.cl/sites/default/files/guia_proyectos_especiales_hidrogeno_2021.pdf (2023 年 3 月 6 日アクセス)

に関する様々な課題に関する省庁間の調整を行っている。エネルギー、経済、財務、外務、社会開発、公共事業、運輸、国有財産、環境、農業、科学、CORFO など 11 省庁・機関で構成される。エネルギー大臣が委員長を務め、CORFO が運営する。国有企業 ENAP が所有するインフラの共同利用に関する調整、地元住民の参画の調整、インセンティブの検討などを進めている。

【CORFO による入札制度】

2021年4月、政府の生産開発公社 CORFO (Corporación de Fomento de la Producción)が、グリーン水素生産への資金提供を行う入札を公示した。10MW 超のグリーン水素生産設備に対して2022~2025年の間に最大50百万米ドルが拠出され、生産されたグリーン水素は鉱山や製油所といった国内需要向けに供給される見通しである。2021年9月に行われた世界初となる水素事業の国主導の入札では、欧州各社を中心とする10件の応札があった。この入札は、10MW以上の水電解装置を利用し、2025年12月までに稼働できることを条件に、1件あたり最大3千万ドル、総額5千万ドル提供するというものである。2022年12月に下記の落札者6件が発表された。

①HyEx - Producción Hidrógeno Verde (Green Hydrogen Production)

仏 Engie 社主導。アントファガスタにパイロットプラントを建設し、26MW の水電解装置を用いて年間 3,200トンのグリーン水素の製造を目指す。グリーン水素は Enaex 社に供給し、グリーンアンモニアの製造により、年間 3 万トン以上の CO_2 排出量を削減する。 CORFO から 950 万ドルの資金提供を受ける。

②Antofagasta Mining Energy Renewable (AMER)

仏 Air Liquide 社主導。アントファガスタ州で、再エネ、グリーン水素、定置電源から回収した CO2 を利用して年間 6 万トンのエタノールの生産を目指す。CORFO から 240 万ドルの資金提供を受ける。

(3)HvPro Aconcagua

独 Linde GmbH 社主導。国営石油会社エンプレサ・ナシオナル・デ・ペトロリオス(ENAP)が所有するバルパライソ州のアコンカグア製油所で現在生産しているグレー水素の一部を置き換える。 20MW の水電解装置を用いて年間 3,000 トンのグリーン水素を製造する予定。 CORFO から 240 百万ドルの資金提供を受ける。

(4) Hidrógeno Verde Bahía Quintero (Bahía Quintero Green Hydrogen)

GNL Quintero S.A.社主導。で、チリ中部のバルパライソ地域初の大規模グリーン水素プラントの開発、建設、運営を行う。10MW の水電解装置を用いて年間 430トンのグリーン水素を生産する予定。 CORFO から 570 万ドルの資金提供を受ける。

⑤H2V CAP

CAP SA 社主導。バイオビオ地方にグリーン水素プラントを建設する。20MW の水電解装置を用いて年間 1,550 トンのグリーン水素を製造し、16.1 万トン以上の CO_2 排出を削減する。CORFO から360 の資金提供を受ける。

⑥Proyecto Faro del Sur (Southern Lighthouse Project)

伊 Enel Green Power。マガジャネス地方で、風力発電設備と240MW の水電解システムを導入し、年間25,000トンのグリーン水素を製造する。このグリーン水素はチリ HIF Global 社に売却され、HIF Global は合成燃料(エタノールとe ガソリン)を生産し、欧州に輸出する。CORFOから1690万ドルの資金提供を受ける。本プロジェクトは、独ポルシェ社が7500万ドル投資し58、2022年12月に生産開始している59。

○グリーン水素委員会の設立

2022年7月、常設 60の省庁間委員会 Green Hydrogen Committee を立ち上げ、グリーン水素に関する様々な課題に関する省庁間の調整を行っている。エネルギー、経済、財務、外務、社会開発、公共事業、運輸、国有財産、環境、農業、科学、CORFO など 11 省庁・機関で構成される。エネルギー大臣が委員長を務め、CORFO が運営する。国有企業 ENAP が所有するインフラの共同利用に関する調整、地元住民の参画の調整、インセンティブの検討などを進めている。

1.3.3 まとめ

(1) エネルギー/鉱物資源セキュリティの強化

現在日本が水素の輸入を検討している、有望なブルー水素輸出国の多くは、従来、化石燃料を輸入している国であるため、資源の多様化にはつながらないという課題がある。中南米地域からの安価な水素の輸入は日本のエネルギーセキュリティの強化に資する。また、日本は銅需要の48%をチリから輸入しており、今後再エネや EV の促進が世界的にさらに進むと、銅資源をめぐる競争は高まることが予想される。グリーン水素戦略の中でも謳っている鉱業のグリーン化にも寄与できれば、鉱物資源セキュリティの観点からも日本にとって強みとなる。

(2) コストの低減と国内需要の創出

日本に水素を競争力ある価格で輸出するためにはコスト低減が課題であるが、その解決は製造・

⁵⁸ Porche (April 6, 2022 press release) "Porsche strengthens commitment to industrial production of eFuels" https://newsroom.porsche.com/en/2022/company/porsche-commitment-industrial-production-efuels-investment-hifglobal-llc-27935 html (2023 年 3 月 6 日アクセス)

⁵⁹ HIF (Ddecember 20, 2022 press release) "HIF Global and its partners celebrate the first liters of synthetic fuels from Haru Oni, Chile" https://www.hifglobal.com/docs/default-source/default-document-library/press-release---first-liters-hif-haru-oni.pdf (2023 年 3 月 6 日アクセス)

⁶⁰ 政権交代によって解散することがないと InvestChile へのヒアリングにて聴取。

貯蔵・輸送にかかるコストの低減は今後の技術開発の進展に大きく依存している。そのため、両国内における利活用による水素需要の拡大が大きな鍵を握ると考えられる。本研修では、日本企業の製造・輸送技術を紹介するほか、水素・燃料アンモニアの利用技術を紹介し、両国内での展開可能性や課題について議論する。

2) 系統安定化

チリは、太陽光、風力を中心とする再エネ資源が北部に集中し、全国グリッド(Sistema Eléctrico Nacional; SEN)によって、需要地に電力を供給している。一方、風力発電のポテンシャルが高いチリ南部は、SEN から独立しているマガジャネスグリッド(Sistema de Magallanes; SEM)の管轄であるほか、系統が整備されていない地域も多く存在する。今後さらに再エネ資源の開発が進んだ場合に、系統の増強が必要となることが想定されるものの、南北に細長い地理的条件と、住民の反対運動等により送電線の増設は困難な状況にある。アルゼンチンも送電網の整備が課題となっており、両国では、水素や燃料アンモニア技術を利用した系統安定化は有望な選択肢の一つと考えられる。

1.3.4 当研修の目的

本研修は、2021 年度研修の幅広い情報提供に基づき、より具体的な議論を促進することを意識 した。

(1) 2021 年度研修との連続性

本年度の研修は、2021 年度の研修のアンケート結果や、その後のチリ・エネルギー省や在京アルゼンチン大使館との継続的なフォローアップ会合を踏まえて会議設計を行った。

アルゼンチン大使とは研修後に 2 回面会し、次回研修では、キャリア技術のアップデートや製造や利用に関するコストの具体的な検討を扱ってほしいとの要望があった。チリ・エネルギー省とは、前回のワークショップ後、9 回オンライン会合を実施し、今後、①経済的実現可能性、②技術協力の可能性、③資金スキーム、④規制障壁、⑤既存の政策支援策について、鉱業の脱炭素化、海運の脱炭素化、水素・燃料アンモニアによる発電技術、大規模輸出プロジェクトの文脈で検討できると良いとの提案があった。さらに、アンモニアに特化したセッションの設置の要望も出された。

本研修では、2021 年度研修で両国の関心の高さが伺えた日本企業(千代田化工建設、東芝 ESS、三菱重工業、川崎重工業、IHI)にも再度講演をお願いし、理解の深化をねらうとともに、対面 の機会を設けることを重視した。

(2) 水素に関連する政策や見通しについて、各国の状況の紹介と課題の共有

セッション 1 では、日本、アルゼンチン、チリの水素に関連する政策や取組の状況を紹介した。 それに加え、各セッションの冒頭で、テーマに関するカントリーレポートを発表してもらうことで、両 国の状況やテーマに対するスタンスを知る機会を設けた。これは、講演する日本企業向けの配慮 であるとともに、両国参加者が互いの方向性や課題について理解を深めることを目的とした。

(3)ビジネス機会を意識した日本の技術の紹介

南米から日本への国際水素サプライチェーンの構築より早期に実現できそうな、国内での水素利活用や産業部門の脱炭素化を視野に入れた技術の紹介を行った。アルゼンチン、チリの政策立案担当者や水素関連企業の関係者と議論を深めることによって、課題の抽出と将来的なビジネス展開のきっかけとなることを目指した。

(4) 社会の各層での取組の紹介

来日の機会を利用し、オンラインでは伝えることが難しかった、脱炭素化、そしてその一つの手段としての水素経済の実現に各層で取り組む姿を紹介した。国際サプライチェーンの構築に関する大規模プロジェクトを紹介するとともに、山梨県等の地域レベルで水素社会を構築する取組や川崎市のカーボンニュートラルコンビナートの取組等を紹介した。

(5) サイトビジットを通じた具体的なイメージの形成

水素に関連する港湾設備の視察の要望に応えて、川崎重工業の施設見学を設けた。つばめ BHB については、2021 年度研修のアンケートで具体的な要望があった他、肥料用アンモニアを全 量輸入するチリを意識し、見学先に選定した。

1.1.4. 招聘者

下記の通り、アルゼンチン側3機関計6名、チリ側1機関3名を招聘した。その他、アルゼンチン・チリ両国の在京大使館から1名ずつ全日程の参加があった。

招聘国	所属機関	人数		
アルゼンチン	大統領府戦略庁 (Secretaría de Asuntos Estratégicos)	1		
	外務省 (Ministerio de Relaciones Exteriores, Comercio Internacional y	1		
	Culto)			
	水素協会 (Y-TEC)	1		
	在京アルゼンチン大使館	1		
	小計	4		
チリ	エネルギー省 (Ministerio de Energía)	3		
	在京チリ大使館対内投資促進庁 Invest Chile	1		
	小計	4		
合計 8				

表 1.1-7 招聘者一覧

1.1.5. 日程概要

表 1.1-8 日程概要

日程	実施内容		
2022年8月29日(月)	日本側からの講義(4件) カントリーレポート(2件) ディスカッション(1件)		
2022年8月30日(火)	日本側からの講義(4件) カントリーレポート(2件) サイトビジット(1件)		
2022年8月31日(水)	日本側からの講義(5 件) サイトビジット(1 件)		
2022年9月1日(木)	日本側からの講義(7 件) カントリーレポート (5 件)		
2022年9月2日(金)	日本側からの講義(3件) カントリーレポート (2件) ディスカッション(2件)		

1.1.6. プログラム概要

日本側からの講義:

- (1)「水素社会に向けた日本のヴィジョンと取組」
- (2) 「再生可能エネルギーからの水素製造および CO2メタネーション」
- (3) 「カーボンニュートラルに向けた東芝の水素ソリューション」
- (4) 「MCH-LOHC 法によるグローバル水素サプライチェーン開発」
- (5) 「カーボンニュートラルの実現へ!山梨から始まる水素エネルギー社会」
- (6)「水素社会実現に向けた東レの取り組み」
- (7)「カーボンニュートラルに向けた需要の電化・水素化」
- (8) 「カーボンニュートラルと水素ボイラ」
- (9)「水素社会実現にむけて -グローバルサプライチェーンの構築」
- (10)「丸紅の水素への取り組み」
- (11)「神戸・関西圏水素活用協議会 協議会レポート(2020年度)」
- (12)「プラントの脱炭素化のための水素利用」
- (13) 「三菱重工の水素・アンモニアガスタービン」
- (14)「脱炭素化への取組み」
- (15)「国際海運における経済的手法の展望と課題」
- (16) 「川崎水素戦略及び川崎カーボンニュートラルコンビナート構想」
- (17)「水素・アンモニア技術の全体像について」
- (18)「アンモニア混焼およびアンモニアサプライチェーンに関する IHI の取組み紹介」
- (19) 「川崎汽船の水素・アンモニアに対する取組み」
- (20)「カーボンニュートラルに向けたクリーンアンモニアの商業利用」
- (21)「水素サプライチェーンの機会と課題」
- (22)「水素サプライチェーンのカーボンフットプリント算出の考え方」
- (23) 「脱炭素社会に向けた JBIC の挑戦」

カントリーレポート:

- (1) 「国家水素戦略 2030 に向けたアルゼンチンのロードマップ」
- (2)「地球冷却化おけるチリの役割」
- (3)「アルゼンチンにおける地域での水素利活用」
- (4)「チリにおける地域での水素利活用」
- (5)「チリにおける工業、船舶部門の動力への水素利用」
- (6)「アルゼンチンにおける工業・船舶部門の動力への水素利用」
- (7)「アルゼンチンにおけるアンモニア利用」
- (8)「チリにおけるアンモニア利用」
- (9)「チリのエネルギー政策:水素の政策と戦略」
- (10)「水素の生産・輸出におけるアルゼンチンの機会」
- (11)「総括―チリ」

ディスカッション:

- (1)「水素関連政策・戦略」
- (2)「総括」
- (3)「水素の認証・ファイナンス」

サイトビジット:

- (1) つばめ BHB 株式会社
- (2) 川崎重工業株式会社

1.1.7. 成果/展望

研修の成果

(1) 在京大使館等の関心の高まり

本研修では、在京大使館の関与が特徴的であった。アルゼンチン大使館は 2021 年度研修から大使や書記官が参加する等、高い関心を示しており、本研修にも、政策決定権を有する本ハイレベルの参加者を推薦した。また、チリ側も、本研修では大使や書記官、投資促進局からも参加がある等、テーマに対する関心の高さが伺えた。在京大使館の関与により、フィードバックが得やすくなった。

(2) 水素サプライチェーンにおけるアルゼンチン・チリ間の協力可能性

本研修では、アルゼンチンから水素をチリに輸出し、チリの輸出港から日本等へ輸出する二国間協力の構想について何度か言及があった。実現すれば、太平洋側に港がないアルゼンチンからの日本への水素輸入も現実性が生まれる。

(3) オフテイカーの具体的なイメージの形成

研修参加者からは、来日して様々なステークホルダーの講演を聞き、直接話をすることで、輸入水素の具体的なオフテイカーの姿を確認することができたとのコメントが多かった。日本が打ち出している将来の需要量が他のアジア各国と比較して大きいため、具体的なイメージを持ちたかったとのことである。

川崎重工業(株)の液化水素荷役実証ターミナルでは、最先端のキャリア技術、輸入港の港湾設備の開発が進んでいることを実感することができた。また、政府が実証事業等、水素関連の研究開発に対して提供している補助金の規模が両国より大きく、県や市、企業レベルでも脱炭素化に向けたロードマップを策定し、その中で水素を位置付けていることを知り、社会全体で水素経済を推進している姿を確認できたとのコメントもあった。

(4) 国内の脱炭素化に向けた水素の利活用に向けた意識の強化

国内需要創出に向けた水素・燃料アンモニアの利活用の技術や取組を紹介した。チリは、独立系統における水素発電や鉱業部門での水素利用について「国家グリーン水素戦略」においても言及があり、研修を経て、国内での水素利活用技術への関心が深まった。一方、アルゼンチンのフォーカスは依然として輸出にあるようで、本研修のカントリーレポートでも、既存の水素・アンモニア利用についての説明が多く、脱炭素化に向けた水素の利活用の展望への言及は少なかった。

一方、チリは 2040 年までに石炭火力を廃止する目標を立てているものの、それまでの移行期には一部石炭火力発電設備を利用して、アンモニア混焼を導入する方向性を打ち出した。

(5) アルゼンチン・チリによる国際水素サプライチェーンにおける存在感の強化へ

両国は、複数の企業の講演の中で、中南米地域がビジネスの対象地域に位置付けられていない ことにショックを受けていた。距離が大きな課題にならず、安価なクリーン水素を日本に輸出できる こと、具体的なプロジェクトを進められる事業環境が整っていることを、日本のステークホルダーに 知ってもらうことが、今後重要になることを認識したと思われる。

(6) 日本企業のビジネスチャンスの構築

一方、本研修では、日本企業側の関心の高まりも確認することができた。2020 年度に実施した第 1回中南米対象研修では、投資リスク等を理由に関心を示す企業が少なかった。今回は、特に小松製作所や川崎重工業等はほぼ全日程聴講され、三菱重工業は次回は視察先に選定してほしいとコメントされる等、国内企業の関心度にも変化が見られる。アンケート結果からも、中南米での事業展開を検討している企業の存在が目立つ。

研修中にも、参加した日本企業を対象にフォローアップ会合の開催の要望があった。どのような企業が中南米の水素・アンモニアに関心があり、協力を模索できるか、意見交換を通して知るとともに、具体的なビジネスにつなげられたら良いとのことであった。

研修後、下記の通り、本研修参加企業が現地企業とMOU を締結する動きも見られる。

- 12/7 MHI-Guacolda 社 MOU(石炭火力でのアンモニア混焼の検証)
- 2/3 住友商事-Colbun 社 MOU(グリーンアンモニア製造)

(7) 水素・アンモニアに関する法整備における協力

チリでは、最近ようやく水素やアンモニアが「キャリア」として法律の中で位置付けられる等、法整備が遅れている。アルゼンチンも、政府レベルでは水素の大規模製造・輸出に向けた法整備は進んでおらず、パタゴニア地方を中心に、プロジェクト形成が進む自治体レベルで法制度を整え始めている段階である。

水素やアンモニアの取り扱いに関する法規制が進んでいる日本の知見の共有は、今後両国との協力分野の一つになりうる。これは、日本企業が進出しやすい事業環境を整えることにも資すると資料する。

(8) 今後の対応

研修中の参加者や講師からコメントやアンケート結果を踏まえ、下記の対応によって、次年度研修につなげることを提案する。

- ① 研修での主な議論内容について報告書を亜智側に示し、オンラインでフォローアップ会合を実施する。場合によっては、在日本大使館とは対面で実施する。
- ② 日本側講師(特に、コマツ、住友商事等)の要望に応えて、国内のフォローアップ会合を実施する。

1.1.8. 挨拶要旨/講演要旨

1 日目(8月29日)

開会挨拶1(経済産業省資源エネルギー庁)

【要旨】

気候変動対策と経済成長の両立に加え、ロシア・ウクライナ情勢を中心とした世界情勢の激動を受け、特にエネルギー安全保障の重要性が増していることに鑑み、カーボンニュートラル(CN)の実現に向けて、官民の取組による現実的なエネルギートランジションについて国際的に議論し、協力することが重要であることが強調された。

開会挨拶 2 (一般財団法人日本エネルギー経済研究所)

【要旨】

脱炭素化において、再エネの導入拡大、系統安定化、水素の国際バリューチェーンの構築が特

に重要であり、亜・智両国は再エネ資源に恵まれ、導入拡大も進んでいるため、グリーン水素の輸 出国として注目されている点に触れ、亜・智両国、そして日本における水素に関する政策や技術 開発動向についての情報共有や意見交換、サイトビジットが、サプライチェーン構築に関する協力 や事業化につながることへの期待が示された。

開会挨拶3(アルゼンチン大使館)

【要旨】

2023 年に日本との国交成立 125 年周年を迎えるアルゼンチンにとって、水素は両国の主要な協力分野の一つであり、2019 年に締結した MOC にも象徴されることを踏まえ、亜国の確立された化学業界向け水素・アンモニアの市場、肥料業界を中心としたアンモニアの製造技術、風力発電設備の製造技術を拡大する好機であることが指摘された。

開会挨拶 4 (チリ大使館)

【要旨】

2020年に国家グリーン水素戦略を発表して以来、智国はグリーン水素・アンモニア等のクリーン燃料の生産国としての地位確立に向けて取り組んできた。2022年、ボリッチ大統領の任期中にグリーン水素産業を商業規模に高めることにコミットし、この目的達成のために、制度枠組みの構築を進めているが、ワークショップの講義やサイトビジットを通じて、水素やアンモニアが社会全体に影響を与える姿を実感できることへの期待が述べられた。

セッション 1: 水素関連政策・戦略

講義1「水素社会に向けた日本のヴィジョンと取組」

英題: Japan's Vision and Actions towards Hydrogen Economy

講演者:経済産業省 資源エネルギー庁

【要旨】

本講義は、日本の水素戦略の動向を概説し、CO2フリー水素に対する最近の状況を紹介することにより、中南米の参加者が、水素に関する日本との将来的な関係構築等について検討することを目的としたものである。

講義では、「グリーン成長戦略」や「グリーンイノベーション(GI)基金」「第 6 次エネルギー基本計画」などの政策的な動向に加え、国際的な水素サプライチェーンを構築に関する海外との連携や実証事業を紹介し、将来的な導入目標などにも言及した。

カントリーレポート 1 「国家水素戦略 2030 に向けたアルゼンチンのロードマップ」

英題: Argentina's Roadmap towards a National Hydrogen Strategy 2030

講演者: アルゼンチン・戦略庁

【要旨】

本報告は、アルゼンチンの水素ロードマップの策定の状況や、アルゼンチンにおける水素関連プロジェクトの開発状況などついて、日本側及び中南米側参加者と共有することを目的としたものである。

報告では、同国の再エネ導入ポテンシャルに基づいた水素製造の優位性や、水素実証プロジェクトの紹介、水素ハブの構想などが紹介された。

本講義は、

カントリーレポート2「地球冷却化おけるチリの役割」

英題: Chile's Role in Global Cooling

講演者: チリ・対内投資促進庁

【要旨】

本報告は、チリのグリーン水素国家戦略を中心とした水素に関連する取り組みについて、日本側及び中南米側参加者と共有することを目的としたものである。

報告では、チリの最新の政策動向やグリーン水素関連プロジェクトの開発状況のほか、同国のグリーン水素が世界的に競争力があることが強調された。

ディスカッション:「水素関連政策・戦略」

モデレーター: 柴田 善朗(一般財団法人日本エネルギー経済研究所 次世代エネルギーシステムグループマネージャー、研究理事)

【要旨】

ウクライナ危機を受けて、潜在的な水素の世界需要が増えたことに対して両国が持っている印象について議論され、欧州での水素関連事業開発の加速化と、アジアのオフテイカーの需要の大きさが指摘された。また、エネルギー安全保障上の中南米地域の重要性の拡大、そして、投資を呼び込むための市場からのサインの必要性が強調された。

セッション 2: 水素製造・貯蔵

講義 2 「再生可能エネルギーからの水素製造および CO2 メタネ―ション」

英題: CO2 Methanation and Hydrogen Production from Renewable Energy

講演者: 日立造船株式会社

【要旨】

本講義は、日本の水電解技術、Power to Gas (P2G)技術と、再エネの活用における有効性の紹介を目的としたものである。

講義では、大型 PEM 型水電解装置の開発状況やメタネーション技術とのそのエネルギー貯蔵や既存インフラを利用したグリーン水素の活用における有効性について説明があった。

講義3「カーボンニュートラルに向けた東芝の水素ソリューション」

英題: Toshiba's Hydrogen Solution in Carbon Neutral Field

講演者: 東芝エネルギーシステムズ株式会社

【要旨】

本講義は、輸送部門や産業部門の一部では電化できない炭素排出源の脱炭素化に向けた水素利用技術や水素を利用した系統調整力の中南米での導入検討を目的としたものである。

講義では、余剰再エネ電力を水素に変換し様々な用途に活用する P2G(Power to Gas)技術、FH2R での系統調整力の研究開発について説明があった。

講義 4「MCH-LOHC 法によるグローバル水素サプライチェーン開発」

英題: Development of Global Hydrogen Supply Chain by MCH-LOHC method

講演者:千代田化工建設株式会社

【要旨】

本講義は、千代田化工建設のメチルシクロヘキサン (MCH) による大容量の水素貯蔵・輸送に関する取り組みの紹介を通し、中南米との将来的な水素サプライチェーンの検討を目的としたものである。

講義では、常温・常圧の液体であり、安全性が高く、既存インフラの利用が可能である MCH の利 点やブルネイとの国際水素サプライチェーン実証を含む海外との協力関係、商用化スケジュール について説明があった。

総括(セッション 2)

【要旨】

両国がセッション 2 の講義について意見交換を行った。日本が新しい低炭素燃料に非常に有望な潜在市場があるという共通認識を持つことができた、日本企業による実証事業を誘致したい、などのコメントがあった。

2 日目(8 月 30 日)

セッション 3: 地域での水素利活用(1): 山梨県の P2G システム

カントリーレポート3「アルゼンチンにおける地域での水素利活用」

英題: AR Local Hydrogen Applications

講演者: アルゼンチンY-TEC

【要旨】

本報告は、アルゼンチンにおける水素の利活用について日本側及び中南米側参加者と共有することを目的としたものである。

報告では、アルゼンチンが自国産の天然ガスから水素を製造し、非療養尿素や石油精製、製鉄などの分野でも利活用の実績があることのほか、安価な天然ガス価格を踏まえた競争力ある水素 価格が紹介された。

カントリーレポート4「チリにおける地域での水素利活用」

英題: CN Local Hydrogen Applications

講演者: チリ・エネルギー省

【要旨】

本報告は、チリにおける水素の利活用について日本側及び中南米側参加者と共有することを目的としたものである。

「グリーン水素国家戦略」では、6 つの優先分野での水素利活用に焦点を絞っている。①製油所、②アンモニア、③鉱業用トラック(OEM・鉱山会社は電化(e モビリティ)によって脱炭素化を図るのか、グリーン水素を利用するのか決めかねている。)、④輸送トラック、⑤長距離バス、⑥ガス網への注入の優先分野の他に、製鉄プロセスでの利用や、石炭火力発電所でのグリーンアンモニア混焼も視野に入れていることが報告され、展開予定の関連プロジェクトの紹介があった。

講義5「カーボンニュートラルの実現へ!山梨から始まる水素エネルギー社会」

英題: Towards the Realization of Carbon Neutrality! Starting a Hydrogen Energy Society in Yamanashi Prefecture

講演者: 山梨県

【要旨】

本講義は、日本における水素の地域での利活用の例として、山梨県の取組について日本側及び中南米側参加者と共有することを目的としたものである。

講義では米倉山電力貯蔵技術研究サイトでの P2G 技術の実証事業や YHC(やまなしハイドロジェンカンパニー)について説明があった。

講義 6「水素社会実現に向けた東レの取り組み」

英題: Toray's Initiatives for the Realization of a Hydrogen Society -

講演者: 東レ株式会社

【要旨】

本講義は、日本における水素の地域での利活用の例として、山梨県での取組を中心に日本の水電解技術の開発状況について日本側及び中南米側参加者と共有することを目的としたものである。

講義では、山梨県・米倉山の P2G システム技術開発・実証事業で進めている国内初の MW 級 PEM 型水電解技術開発・実証についての説明のほか、16MW の PEM 型水電解装置の開発や海外市場に向けた国内外のパートナーシップの構築状況について紹介があった。

講義7「カーボンニュートラルに向けた需要の電化・水素化」

英題: Electrification and hydrogenation of demand for Achieve Carbon Neutrality

講演者: 東京電力ホールディングス株式会社

【要旨】

本講義は、日本における水素の地域での利活用の例として、山梨県での取組を中心に再エネ電気を近接の需要地で利用する「地産地消」モデルについて日本側及び中南米側参加者と共有することを目的としたものである。

講義では、米倉山で実施しているP2G実証の、太陽光発電の余剰エネルギーから製造した水素を燃料利用する日本初のサプライチェーン実証としての位置付けや、同社によるシステムの電力系適用性検討の紹介があった。

講義8「カーボンニュートラルと水素ボイラ」

英題: Carbon-Neutral and Hydrogen-fired Boiler

講演者: 三浦工業株式会社

【要旨】

本講義は、日本における水素の地域での利活用の例としての山梨県での取組を含め、水素ボイラ技術について日本側及び中南米側参加者と共有することを目的としたものである。

講義では、ボイラの燃料転換による CO₂ 削減、同社の水素ボイラ技術の開発状況について紹介があった。

サイトビジット1: つばめ BHB 株式会社

本視察は、グリーンアンモニアのオンサイト(分散型)での合成技術を中南米側参加者と共有することを目的としたものである。

事前説明1:全体説明「低温・低圧による分散型アンモニア合成」

英題: Decentralized Ammonia Production by Low Temperature and Low Pressure Synthesis Technology

【要旨】

講義では、同社のアンモニア合成触媒の技術やビジネスモデル、グリーンイノベーション基金の NEDO 事業(2021~2030年)での大型アンモニア製造用の触媒開発の取組について紹介があった。 施設見学: パイロットプラント

【概要】

グリーンアンモニア合成のパイロットプラントの説明の後、見学と質疑応答を実施した。

3 日目(8月31日)

サイトビジット 2: 川崎重工業株式会社(KHI)

本視察は、日本の国際水素サプライチェーンに関する先進的な重要技術や、需要拡大のための利活用技術について中南米側参加者と共有することを目的としたものである。

事前説明 1: 「液体水素の国際サプライチェーンと水素ガスタービン~世界初のデモンストレーション~」

英題: International Liquefied Hydrogen Supply Chain and Hydrogen Fueled Gas Turbine -The World's First Demonstration-

【要旨】

本講義は、国際水素サプライチェーンに関して、液化水素に関する先進的な貯蔵・輸送技術に ついて中南米側参加者と共有することを目的としたものである。

講義では、液化水素の特徴や同社が実施する日豪実証事業(HESC)実証事業、2020 年代半ばを目指した商業スケールのサプライチェーン構築や、グリーンイノベーション基金事業に採択された大型化技術開発の計画について紹介された。

事前説明 2:「水素コジェネレーションシステムを利用したスマートコミュニティ技術の紹介」 英題: Introduction of the Smart Community Technology by utilization of Hydrogen Co-Generation System-

【要旨】

本講義は、国際水素サプライチェーンに関して、水素利活用による需要拡大の取組の一つとして、水素ガスタービン技術について中南米側参加者と共有することを目的としたものである。

講義では、同社の水素コジェネを利用したスマートコミュニティ実証や、水素ガスタービン技術について紹介があった。

施設見学: CGS 設備および液化水素荷役基地

【概要】

事前説明を受けた CGS 設備及び液化水素荷役基地の視察と、質疑応答を実施した。

セッション 4: 地域での水素利活用(2)

講義9「水素社会実現にむけて -グローバルサプライチェーンの構築」

英題: For H2 Society to Come -Building Global Supply Chain -

講演者: 岩谷産業株式会社

【要旨】

本講義は、水素サプライチェーンに関して、日本の確立された液化水素の輸送、供給技術ついて中南米側参加者と共有することを目的としたものである。

講義では、同社のターミナルの建設も含めた輸送分野やエンドユーズの開発等の広い分野でのグローバルサプライチェーン構築の取組、国内の水素ステーション拡大の取組、グリーンイノベーション基金による大規模液化水素サプライチェーンの実証事業などについて紹介された。

講義10「丸紅の水素への取り組み」

英題: Marubeni's Activities on Hydrogen

講演者: 丸紅株式会社

【要旨】

本講義は、水素サプライチェーンに関して、日本の確立された液化水素の輸送、供給技術ついて中南米側参加者と共有することを目的としたものである。

講義では、同社のカーボンニュートラルに向けた戦略や、神戸関西圏の臨海エリアにおける効率的な水素供給モデルの構築を目指した FS での受入基地・タンク・輸送等を含むコスト評価でのコスト評価の取組について紹介があった。

講義11 「神戸・関西圏水素活用協議会 協議会レポート(2020年度)」

英題: Kobe/Kansai Hydrogen Utilization Council: The Study Report (2020)

講演者: 丸紅株式会社

【要旨】

本講義は、製造から供給まで一気通貫で、供給ポテンシャル価格やサプライチェーンの定量化を地域で行っている、神戸・関西圏水素活用協議会の先進的な活動について、中南米側参加者と 共有することを目的としたものである。

講義では、同社のカーボンニュートラルに向けた戦略や、神戸関西圏の臨海エリアにおける効率的な水素供給モデルの構築を目指した FS での受入基地・タンク・輸送等を含むコスト評価の取組について紹介があった。

講義12「プラントの脱炭素化のための水素利用」

英題: Hydrogen utilization activity for decarbonization of plants

講演者: 株式会社神戸製鋼所

【要旨】

本講義は、水素供給機器・システムのサプライヤーであるとともに水素のユーザーである同社の

取組や技術について、中南米側参加者と共有することを目的としたものである。

講義では、同社のカーボンニュートラルに向けた戦略や、熱によるエネルギー消費が主体の工場の脱炭素化に向けた水素利活用モデル調査、ハイブリッド型水素ガス供給システムなどについて紹介された。

講義13「三菱重工の水素・アンモニアガスタービン」

英題: MHI H2/NH3 Gas Turbine 講演者: 三菱重工業株式会社

【要旨】

本講義は、ガスタービンについて世界のトップシェアを誇る同社の水素・アンモニアガスタービン 技術について、中南米側参加者と共有することを目的としたものである。

講義では、高効率の天然ガスガスタービン・コンバイドサイクル発電プラント(GTCC)から、バイオマス・アンモニア混焼、GTCC+CCUS、水素・アンモニアガスタービンに移行するロードマップの紹介とともに、同社の水素・アンモニア混焼/専焼技術の状況について説明があった。

総括 (セッション 4)

【要旨】

両国がセッション 4 について意見交換をした。各社の最先端の脱炭素技術の開発が着実に進んでいるという状況だけでなく、企業レベルで脱炭素化に向けてロードマップを策定し、コミットしている点は印象的であった。また、供給や需要のポテンシャルがあるということ示すだけでなく、各社の取組や、様々なレベルでの利活用の具体例を通じて中期的に市場が形成されることが具体的にイメージできたとのコメントがあった。

4 日目(9 月 1 日)

セッション 5: 産業、船舶部門の動力としての水素利用

カントリーレポート5「チリにおける産業、船舶部門の動力としての水素利用」

英題: H2 Use in Industrial and Maritime Mobility

講演者: チリ・エネルギー省

【要旨】

本報告は、チリにおける産業、船舶部門での水素利用について、日本側、中南米側参加者と共有することを目的としたものである。

報告では、水素とその派生燃料の産業利用を目的としたプロジェクトや、バンカー燃料として水素を供給することを視野に入れた調査などについて紹介された。

42

カントリーレポート6「アルゼンチンにおける産業、船舶部門の動力用水素利用」

英題: Hydrogen Use in Industrial and Maritime Mobility

講演者: アルゼンチン Y-TEC

【要旨】

本報告は、アルゼンチンにおける産業、船舶部門での水素利用について、日本側、中南米側参加者と共有することを目的としたものである。

報告では、水素コンソーシアム H2Ar の紹介と、産業部門における現在の水素利用状況、運輸部門での水素利用の展望について説明があった。

講義14「脱炭素化への取組み」

英題: Decarbonization Approaches

講演者: 株式会社小松製作所

【要旨】

本講義は、鉱山機械の動力源の脱炭素化について、中南米市場での売上が大きい同社から、中南米側参加者と共有することを目的としたものである。

講義では、鉱山・建設事業におけるエネルギー転換の課題や、バイオ燃料、e 燃料、水素とディーゼルのミックス、100%水素エンジン、FC など鉱山機械の動力源の脱炭素化のソリューションについて説明があった。また、脱炭素技術の開発には、バッテリー技術や水素インフラに取組む企業、鉱山・建設分野の顧客との連携に加え、各国政府・国際機関との連携(安全基準・規制の整備)が重要であることが強調された。

講義15「国際海運における経済的手法の展望と課題」

英題: Prospects and Challenges of Market Based Measures for International Shipping

講演者: 公益財団法人日本海事センター 主任研究員

| 西台

本講義は、国際海運における経済的手法の展望と課題について、中南米側参加者と共有することを目的としたものである。

講義では、IMO における燃料の LCA ガイドラインの検討状況や、国際海運における経済的手法として、航海毎の排出量に応じて寄港地で課金する「炭素課金制度」と、「排出量取引制度 (ETS)」の検討状況について紹介があった。

講義 16 「川崎水素戦略及び川崎カーボンニュートラルコンビナート構想」

英題: Kawasaki Hydrogen Strategy and Kawasaki Carbon-Neutral Industrial Complex Initiative

講演者: 川崎市

【要旨】

43

本講義は、自治体が進めるカーボンニュートラルコンビナート構想について、中南米側参加者と共有することを目的としたものである。

講義では、「川崎水素戦略」「川崎カーボンニュートラルコンビナート構想」の紹介とともに、臨海部の CN 化に向けた市としての役割について説明があった。

総括(セッション 5)

【要旨】

両国の間で、セッション 5 について意見交換が行われた。両国の水素利活用のビジョンを共有し、 鉱業と海運の発展に関与する日本企業の講義を聞くことで、研究開発拠点や需要地、生産拠点、 地域社会が調和したハブの実現に向けた取組の重要性が認識された。

セッション 6: 水素・アンモニア技術の俯瞰

講義17「水素・アンモニア技術の全体像について」

英題: Perspective of Hydrogen and Ammonia Technology

講演者: 一般財団法人エネルギー総合工学研究所 研究顧問

【要旨】

本講義は、学術的視点から、水素・アンモニアの特徴や、製造・貯蔵・輸送・利活用について技術動向や課題について俯瞰的に、中南米側参加者と共有することを目的としたものである。

講義では、温暖化対策で水素を選ぶ経済的合理性や、水電解技術、水素キャリア技術、水素の 利活用技術になどついてそれぞれの特徴を含め幅広く説明があった。

セッション 7: アンモニア利用

カントリーレポート7「アルゼンチンにおけるアンモニア利用」

英題: Ammonia Applications

講演者: アルゼンチン Y-TEC

【要旨】

本報告は、アルゼンチンにおけるアンモニアの利用について、日本側、中南米側参加者と共有することを目的としたものである。

報告では、アンモニアの大規模生産拠点でアンモニア輸入港を有するバイアブランカ市の現状 や計画について紹介があった。

カントリーレポート8「チリにおけるアンモニア利用」

英題: Ammonia Applications

講演者: チリ・エネルギー省

【要旨】

本報告は、アルゼンチンにおけるアンモニアの利用について、日本側、中南米側参加者と共有することを目的としたものである。

報告では、チリ国内で公表されているグリーンアンモニアプロジェクトやアンモニア輸出入拠点と しての有望地の紹介があった。

講義 18「アンモニア混焼およびアンモニアサプライチェーンに関する IHI の取組み紹介」

英題: IHI Activities for Ammonia Co-Firing and Ammonia Supply Chain

講演者: 株式会社 IHI

【要旨】

本講義は、日本の最先端のアンモニア利用技術について、中南米側参加者と共有することを目的としたものである。

講義では、同社が進める、石炭火力発電所での混焼、アンモニアガスタービン、固体酸化物形燃料電池(SOFC)の開発、そしてアンモニアの国際サプライチェーンに関する実証事業について報告された。

カントリーレポート9「チリのエネルギー政策:水素の政策と戦略」

英題: Energy Policy of Chile: Hydrogen Policies and Strategies

講演者: チリ・エネルギー省

【要旨】

本報告は、チリの国家グリーン水素戦略を中心としたエネルギー政策について、日本側、中南米側参加者と共有することを目的としたものである。

報告では、エネルギー転換を中心に据えたエネルギー計画 Transicion Energitica de Chile (2022 年 3 月)、「気候変動枠組法」(2022 年 7 月)、「2022-2026 エネルギーアジェンダ」(2022 年 8 月)など最新の政策動向の紹介があった。

講義19「川崎汽船の水素・アンモニアに対する取組み」

英題: "K"LINE Group's Initiatives for Hydrogen and Ammonia -

講演者: 川崎汽船株式会社

【要旨】

本講義は、水素・アンモニアを利用した航行効率改善、舶用燃料の転換の取組について、中南 米側参加者と共有することを目的としたものである。

講義では、国際コンソーシアム HySTRA、水素バリューチェーン推進協議会、神戸・関西圏水素 利活用協議会、カーボンニュートラルポート(CNP)などでの活動に加え、同社のアンモニアの輸送 の経験やアンモニアを舶用燃料として利用する技術の動向について紹介された。

講義20「カーボンニュートラルに向けたクリーンアンモニアの商業利用」

英題: Commercial Use of Clean Ammonia for Carbon Neutrality

講演者: 東洋エンジニアリング株式会社

【要旨】

本講義は、世界各地でアンモニアプラントやアンモニア貯蔵タンクの建設実績を有する同社に、アンモニア取り扱いの経験や最新のビジネスソリューションについて、中南米側参加者と共有することを目的としたものである。

講義では、同社の事業実績に加え、アンモニアの特徴を踏まえた設備設計、アンモニア製造コスト低減に向けた取組、グリーンアンモニアプラントの設備構成を最適化するソフトウェア「GAPAO」などが紹介された。

総括(セッション7)

【要旨】

両国の間で、セッション 7 について意見交換が行われた。アンモニアの安全性に関する規制や 基準、安全対策等の情報の有用性が指摘されたほか、水素キャリアとしてのアンモニアの可能性 を確信できたとのコメントがあった。

5 日目(9 月 2 日)

セッション 8: 総括

カントリーレポート10「水素の生産・輸出におけるアルゼンチンの機会」

英題: Argentina's Opportunities for Hydrogen Production and Export

講演者: アルゼンチン外務省、戦略庁、Y-TEC

【要旨】

アルゼンチンからの参加者による、研修の総括が行われた。特に、規制枠組みの構築の重要性や、今後の三カ国間の具体的な協力分野についてコメントがあった。

カントリーレポート 11 「総括―チリ」

英題: Final Wrap-up Chile 講演者: チリ・エネルギー省

【要旨】

チリからの参加者による、研修の総括が行われた。特に、法的枠組みの強化や官民協力の重要

性についてコメントがあった

ディスカッション (総括)

モデレーター: 一般財団法人日本エネルギー経済研究所

【要旨】

両国の総括を受けて、エネルギー安全保障の観点から中南米の重要性が増していること、水素 利活用の拡大に注目するべきであることなどへの言及があった。

セッション 9: 認証・ファイナンス

講義21「水素サプライチェーンの機会と課題」

英題: Challenges and Opportunities for Hydrogen Supply Chain

講演者: 住友商事株式会社

【要旨】

本講義は、日本の商社が推進する水素ビジネスと事業展開の課題ついて、日本側、中南米側参加者と共有することを目的としたものである。

講義では、世界各地の地産地消プロジェクト、大規模サプライチェーンプロジェクト、サービスプラットフォームプロジェクト、新技術への投資など同社が取組む水素関連事業が紹介された。また、ビジネス展開にはコストとタイミングのギャップが課題であり、政府支援の必要性が強調された。

講義22「水素サプライチェーンのカーボンフットプリント算出の考え方」

英題: An Approach to Measure Carbon Footprint of Hydrogen Supply Chain

講演者: 国立研究開発法人產業技術総合研究所

【要旨】

本講義は、水素サプライチェーンのカーボンフットプリント算出の考え方について、日本側、中南 米側参加者と共有することを目的としたものである。

講義では、欧州統一の「CertiHy」認証、国際水素燃料電池パートナーシップ (IPHE) の算出法、水素協議会の算出法など、水素の LCA を算出する主な取組が紹介された。

講義 23「脱炭素社会に向けた JBIC の挑戦」

英題: JBIC Challenges towards Decarbonized Society

講演者: 株式会社国際協力銀行

【要旨】

本講義は、水素・アンモニア関連事業に対する融資の動向や課題について、日本側、中南米側 参加者と共有することを目的としたものである。 講義では、「グローバル投資強化ファシリティ」の新設を含む、水素・アンモニア等のプロジェクトへの支援の仕組みや最近の動向について説明があった。また、水素・アンモニア関連の様々な事業に資金を提供するには、事業環境の予測可能性を高めることが重要であることが確認された。

ディスカッション(セッション9)

モデレーター:一般財団法人日本エネルギー経済研究所

【要旨】

水素の認証、ファイナンス、将来的な水素市場について講演者とディスカションを行い、研修生から質疑を受けた。

閉会

閉会挨拶 1(経済産業省)

【要旨】

ワークショップでの講義やサイトビジットが、亜智両国における水素政策の促進に役立つこと、エネルギー安全保障の強化や CN の実現に向けた脱炭素化における脱化石燃料の重要性に鑑み、対話の継続と関係の更なる強化への期待が述べられた。

閉会挨拶 2(チリ・エネルギー省)

【要旨】

チリでは、複数の水素関連プロジェクトがアセスメントの段階に入っており、できるだけ早期に輸出できる状況の構築を望み、課題解決に向けて日本の技術移転、企業進出を強く望むことが共有された。

閉会挨拶 3(アルゼンチン戦略庁)

【要旨】

プログラム構成を高く評価するとともに、水素バリューチェーンにおける亜智日のそれぞれの役割は相互補完的で、亜国は信頼できるサプライヤーの地位確保に向けて努力しなければならないことが実感されたことが共有された。

1.1.9. フォローアップ会合の実施

参加企業の要望を受けて、下記の通りフォローアップ会合を実施した。

1) 日時: 2023年2月27日(月) 16:00~17:40

2) 会場: (一財)日本エネルギー経済研究所 11 階会議室1

- 3) 参加者: 15者
- 4)議事概要
 - ① 自己紹介
 - ワークショップの所感
 - ・ 水素・アンモニア分野、中南米地域における活動状況
 - ・ 中南米地域への期待、事業展開における課題 など
 - ② ディスカッション「中南米地域における水素ビジネス展開の課題と機会」 モデレーター: 中村 博子(一般財団法人日本エネルギー経済研究所 電力・新エネルギーユニット 主任研究員)

以上

1.2. インドネシア対象研修 報告書

1.2.1. 日時•期間

2023年2月7日15:00-18:50、2月8日11:00-18:30(いずれも日本時間)

1.2.2. 主会場

インドネシア会場: The Mirah Hotel Bogor 大会議室 事務局: 日本エネルギー経済研究所 11F 大会議室 日本側講師、一部参加者、オブザーバーはオンライン参加

1.2.3. 背景と目的

発電部門における再生可能エネルギーの普及状況としては、2020 年時点の全発電量に占める割合は18.8%である。水力発電は8.3%を占め最も寄与しており、次いで地熱発電やバイオマス発電もそれぞれ5.3%と5%を占めている。以前から水力発電及び地熱発電が中心であったが、近年ではバイオマス発電、さらに風力発電や太陽光発電の利用量が徐々に増えてきており、再生可能エネルギーの利用が多様化し始めている。

バイオ燃料については、2021年のバイオディーゼル混合率は29.6%であり、2020年の政府目標(輸送、産業、発電の各部門で30%)と変わらず、USDAは世界のどの国よりも高いと推定している。

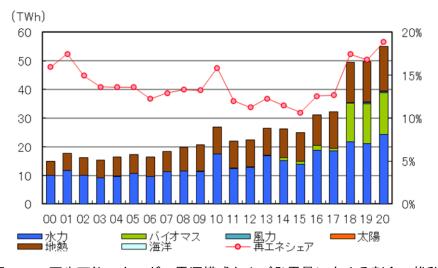


図 1.2-1 再生可能エネルギー電源構成および発電量に占める割合の推移

(出所) IEA, World Energy Statistics and Balances 2022 より作成

インドネシア政府は、2017年に再生可能エネルギー発電の買取規則を定め、その後、投 資阻害要因(B00T制度)の除外やループトップPVの買取価格の引き上げ等の規制緩和を図 ってきている。また、2021年7月には国連気候変動枠組条約事務局にNDCの最新版を提出 し、2060年までに温室効果ガスの正味ゼロ排出化を宣言している。

2022 年 1 月、インドネシアの脱炭素化に向けた事情を踏まえ、幅広い技術・エネルギーを活用した現実的かつ多様なトランジションを進めるため、萩生田経済産業大臣とアリフィン エネルギー鉱物資源大臣との間で、エネルギー・トランジションの実現に関する協力 覚書に署名し、アジア・エネルギー・トランジション・イニシアティブ(AETI)の下での両国の連携が確認された。

その後、インドネシアと日本の企業間で様々な協力事業が加速され、4月末の第1回アジアグリーン成長パートナーシップ閣僚会合官民フォーラムの場で数多くの企業間 MOU 署名がなされた。会合後に萩生田経済産業大臣は、アリフィン エネルギー鉱物資源大臣(インドネシア共和国)との TV 会談で1月のエネルギー・トランジションの実現に関する協力覚書等に基づく両国間の協力を更に深化させていくことで合意された。

また、9 月末には西村経済産業大臣とアリフィン エネルギー鉱物資源大臣との間で「アジア・ゼロエミッション共同体」の実現に向けた協力や二国間における様々なエネルギー分野での協力について議論を行い、今後、更に協力関係を深化させていくことを確認されている。

さらに同年 11 月には岸田首相とジョコ大統領の首脳会談が開催され、会談終了後、両首脳は、「アジア・ゼロエミッション共同体構想」に関する共同発表を行った。このように 2022 年はインドネシアと日本の間で、カーボンニュートラルに向けたゼロエミッションの共同体に関する関係が劇的に強化された。

【当研修の目的】

本研修においてはアジア・ゼロエミッション共同体構想も視野に入れ上記のカーボンニュートラルに向けた両国の関係強化に貢献できるよう、再エネのさらなる拡大、また水素利用に関するインドネシア研修の開催を計画する。具体的には変動再エネ対策に関しては従来の取り組みをさらに深化させた発表及び関係者による議論を目指す。水素については別途 10 月末に実施したインドネシア含む ASEAN 向け研修等の METI 水素研修で、可能な限り重複を避けてグリーン水素を中心とした内容とし、インドネシアに対して水素に関するより多様な情報提供を心掛ける。

1.2.4. 招聘者

政府、電力会社、業界団体、大学等からオンライン、現地会場加合わせて合計 40 名の参加者があった。

表 1.2-1 招聘組織

	所属機関	参加者数
1	エネルギー鉱物資源省 MEMR(再エネ省エネ総局:14、電力総局:11)	25
2	国立研究革新庁(BRIN)	4
3	国営電力会社(PLN)	1
4	国営石油会社(PERTAMINA)	4
5	再エネ協会(IRES)	1
6	バンドン工科大学(ITB)	2
7	燃料電池水素協会(IFHE)	3

1.2.5. セッション概要

表 1.2-2 セッション概要

日程	実施内容
セッション 1 (開会式)	開会挨拶、集合写真
セッション2 (政府及び国の機関による講演)	日本側からの講義(2件) カントリーレポート(3件)
セッション 3 (系統安定化)	日本側からの講義(3件) カントリーレポート(2件)
セッション 3 (グリーン水素)	日本側からの講義(5件) カントリーレポート(1件)

1.2.6. プログラム概要

日本側からの講義:

- (1)「カーボンニュートラル時代における水素政策の今後の方向性」
- (2)「JOGMEC の活動紹介」
- (3)「再生可能エネルギー多発下における東京電力送電網の電力系統運用」
- (4)「カーボンニュートラルに向けた需要の電化・水素化」
- (5)「再生可能エネルギーシステムに適した長寿命鉛蓄電池」
- (6)「ENEOS の水素社会の実現に向けた取り組み」
- (7)「国内外における地熱発電を利用した水素製造から供給に係るサプライチェーン構築の大林組の取り組み」
- (8)「建物においてカーボンニュートラルを実現するためのグリーン水素技術の開発」
- (9) 「一カーボンニュートラルへの東京電力の取り組みーインドネシアの水素事業の可能性に向けた NEDO の実証プロジェクト」
- (10)「オーストラリアとインドネシアでのグリーン水素実証事業」

カントリーレポート:

- (1)「再生可能エネルギーとグリーン水素:政策と進展」
- (2)「2060年ネットゼロ排出へインドネシアの電力ロードマップ」
- (3) 「2060年カーボンニュートラリティに向けての水素技術」
- (4)「RUPTL2021-2030 における再生可能エネルギーの拡大と、2060 年カーボンニュートラルへの 道筋!
- (5)「インドネシアにおける再生可能エネルギー拡大への課題と対策」
- (6)「エネルギー転換におけるプルタミナ」

1.2.7. 成果/展望

今回の研修は系統安定化及びグリーン水素のテーマで実施した。昨年度までのテーマにグリーン水素を加えつつ、その他運営は昨年度研修を踏襲して実施した。

研修における議論では系統安定化、変動再エネ対策に関して、余剰再エネ対策としての水素 製造についての質問が繰り返し質問された。余剰再エネを活用した水素製造について引き続き紹介すべきと考えると同時に、広域連系を含む様々な余剰再エネ対策を紹介すべきと感じた。また 蓄電池に関して V2G 等への関心も見られた。前述の余剰再エネ対策にも関連するが、デマンドレスポンスやエネルギー・リソース・アグリゲーション・ビジネスの概要等の紹介も良いように感じられた。 また、太陽光、風力といった変動再エネ以外の地熱やバイオマスといった再エネ安定電源の中でインドネシアの再エネ拡大に日本から貢献できるものがないかについても検討すべきとも考える。

水素について今年度は様々なグリーン水素を供給面から紹介したが、予想外にインドネシアでの取組みが進んでおり、輸送部門での水素利用の関心も高かった。今後は水素供給だけでなく各種規制を含む水素利用、また輸送分野での取り組みについても紹介すべきと考える。また、地熱からの水素製造を含むグリーン水素製造に関して高い関心があり、政府高官から視察希望のコメントもあった。近い将来に同じテーマで日本招聘が可能となればグリーン水素関連の視察先を検討すべきと考える。

1.2.8. 講演要旨

1 日目

セッション1

カントリーレポート1「再生可能エネルギーとグリーン水素:政策と進展」

講演者: Directorate General of New Renewable Energy and Energy Conservation, MEMR

【要旨】

本報告は、インドネシアにおける再エネ及びグリーン水素の導入計画に関する最新情報を、日本側を含む研修参加者と共有することを目的としたものである。

報告では、輸送部門でのバイオ燃料、電力部門での再エネの最大限活用に加え、天然ガス代替としての水素導入を進める際の可能性、水素政策で重視する分野等に関する説明が行われた。

講義1「カーボンニュートラル時代における水素政策の今後の方向性」

講演者: 経済産業省 資源エネルギー庁

【要旨】

本講義は、日本におけるカーボンニュートラルに向けた水素政策の方向性等の共有を通じて、 インドネシアにおける水素利用の促進を目的としたものである。

講義では、日本の水素導入計画、多様な供給および需要に関する実証事業、水素キャリアの商業化に向けた動向水素サプライチェーン構築のための支援策等が紹介された。

カントリーレポート 2「2060 年ネットゼロ排出へインドネシアの電力ロードマップ」

講演者: Directorate of General of Electricity, MEMR

【要旨】

本報告は、インドネシアの電力部門におけるゼロエミッション計画に関する最新情報を、日本側を含む研修参加者と共有することを目的としたものである。

報告では、2030年までの国家電力供給計画、2060年までネットゼロエミッションに向けて再エネ 最大化、原子力の導入でなく、火力発電における水素、アンモニアの導入を検討していること等が 紹介された。

カントリーレポート 3「2060 年カーボンニュートラリティに向けての水素技術」

講演者: National Research and Innovation Agency (BRIN))

【要旨】

本報告は、インドネシアにおける水素技術に関する最新情報を、日本側を含む研修参加者と共有することを目的としたものである。

報告では、混焼用バイオマス、政府作成の水素ロードマップ概要及びロードマップ拡充の必要性、輸送部門における水素利用に向けた技術開発の取組み等に関する説明が行われた。

講義 2:「JOGMEC の活動紹介」

講演者:独立行政法人石油天然ガス・金属鉱物資源機構

【要旨】

本講義は、日本の政府機関における水素導入支援策等の共有を通じて、インドネシアにおける水素製造の促進を目的としたものである。

講義では、日本のエネルギー計画、アンモニア・水素の予見可能な市場を創出するためグリーンアンモニア及びブルーアンモニアを拡大させるための実施事業等が紹介された。

議論1「カーボンニュートラルに向けた政策」

モデレーター:一般財団法人日本エネルギー経済研究所

【要旨】

本議論は、ここまでの内容についてのインドネシアからのコメント及び質疑応答による理解促進 を目的としたものである。

議論では水素自動車として燃料電池と内燃機関の比較を中心にグリーン水素供給やインフラ、 グリーン水素の定義等について議論がなされた。

2 日目

カントリーレポート 4「RUPTL2021-2030 における再生可能エネルギーの拡大と、2060 年カーボンニュートラルへの道筋」

講演者: PT PLN (Persero)

【要旨】

本報告は、インドネシアおける電力計画、カーボンニュートラルに至る道筋に関する最新情報を、 日本側を含む研修参加者と共有することを目的としたものである。

報告では、2030年までの短期目標、2060年までの長期目標、政策の3本柱や企業向けイニシアティブを含むゼロエミッション達成のために必要な事項等に関する説明が行われた。

カントリーレポート5「インドネシアにおける再生可能エネルギー拡大への課題と対策」

講演者: Indonesian Renewable Energy Society

【要旨】

本報告は、インドネシアにおける再生可能エネルギー拡大への課題と対策に関する最新情報を、日本側を含む研修参加者と共有することを目的としたものである。

報告では、国家電力政策の目標概要、再エネ導入の目標との乖離、再エネ各エネルギー現別 の資源量と導入における課題等に関する説明が行われた。

講義3「再生可能エネルギー多発下における東京電力送電網の電力系統運用」

講演者:東京電力パワーグリッド株式会社

【要旨】

本講義は、日本の送電網における変動再エネ対策の共有を通じて、インドネシアにおける再エネ大量導入の支援を目的としたものである。

講義では、FIT 導入後に再エネが大幅に増加した日本の電力安定化対策、広域連携やデマンドレスポンス、コネクトアンドマネージ等を含む既存の電力網の最大限活用化の手法等が紹介された。

講義4「カーボンニュートラルに向けた需要の電化・水素化」

講演者:東京電力ホールディングス株式会社

【要旨】

本講義は、国内で先進的な山梨県水素実証における特に余剰再エネの活用の共有を通じて、インドネシアにおける余剰再エネの利用法を目的としたものである。

講義では、エネルギー利用の電化の観点で米倉山電力貯蔵技術研究サイトでの余剰電力からの水素製造(P2G)技術実証等が紹介された。

講義 5「再生可能エネルギーシステムに適した長寿命鉛蓄電池」

講演者:古河電池株式会社

【要旨】

本講義は、長寿命の鉛蓄電池の紹介を通じて、特にインドネシアオフグリッドにおける大量の再 エネ導入の促進を目的としたものである。

講義では、PV寿命にも相当する長寿命の鉛蓄電池の特性や使用実績等が紹介された。

議論2「系統安定化」

モデレーター:一般財団法人日本エネルギー経済研究所

【要旨】

本議論は、ここまでの内容についてのインドネシアからのコメント及び質疑応答による理解促進 を目的としたものである。

インドネシア参加者からは水素への高い関心が見られた。すなわち水素の生産コスト、副産物で発生する酸素の扱い、電解装置への電力供給方法、離島におけるディーゼル代替の可能性等について質疑及び議論を実施した。

カントリーレポート 7「エネルギー転換におけるプルタミナ」

講演者: PT Pertamina (Persero)

【要旨】

本報告は、インドネシア国営石油会社プルタミナのカーボンニュートラルに向けた最新情報を、日本側を含む研修参加者と共有することを目的としたものである。

報告では、脱炭素化は地熱を中心にバイオマス、水素、EV 導入で検討していること、CO2 吸収源としてマングローブの利用、水素は将来の輸送部門での利用や混焼を検討していること等に関する説明が行われた。

講義 6「ENEOS の水素社会の実現に向けた取り組み」

講演者:ENEOS株式会社

【要旨】

本講義は、国内最大手である同社の水素に関する取組みの共有を通じて、インドネシアにおける水素の利用の促進を目的としたものである。

講義では、クリーン水素の大手供給者になるための戦略、MCH の取組み、水素ステーションを含む国内外の水素に関する実証等が紹介された。

講義 7「国内外における地熱発電を利用した水素製造から供給に係るサプライチェーン構築の大林組の取り組み」

講演者:株式会社大林組

【要旨】

本講義は、国内で先進的な建設会社である同社の再エネ事業、特に地熱からの水素製造実証の取組みの共有を通じて、インドネシアにおける地熱からの水素の製造利用の促進を目的としたものである。

講義では、地熱からの水素製造実証の概要等が紹介された。

講義 8「建物においてカーボンニュートラルを実現するためのグリーン水素技術の開発」 講演者:清水建設株式会社

【要旨】

本講義は、国内で先進的な建設会社である同社の再エネ事業、特に建物における水素貯蔵関連の実証の取組みの共有を通じて、インドネシアにおける水素利用の促進を目的としたものである。 講義では、余剰再エネを活用した水素製造、安全な水素貯蔵及び BEMS を利用した水素利用の取組みに関する実証等が紹介された。

講義 9「-カーボンニュートラルへの東京電力の取り組み-インドネシアの水素事業の可能性に向けた NEDO の実証プロジェクト」

講演者:東京電力ホールディングス株式会社

【要旨】

本講義は、NEDO がインドネシアで実施する水素実証の共有を通じて、あらためてインドネシアにおける水素の製造利用の促進を目的としたものである。

講義では、地熱を利用した同水素実証の利点と課題、検証予定の内容等が紹介された。

講義 10「オーストラリアとインドネシアでのグリーン水素実証事業」 講演者:丸紅株式会社

【要旨】

本講義は、インドネシアも関係する国際水素サプライチェーン実証の共有を通じて、インドネシアにおける水素の製造利用の促進を目的としたものである。

講義では、島嶼国利用を視野に豪州で余剰再エネ電力から水素製造、まずインドネシアに運搬 し利用する技術実証等が紹介された。

議論3「グリーン水素」

モデレーター:一般財団法人日本エネルギー経済研究所

【要旨】

本議論は、ここまでの内容についてのインドネシアからのコメント及び質疑応答による理解促進を目的としたものである。

インドネシア参加者から水素の危険性、輸送コスト、地熱からの水素実証の詳細、余剰電力活用法、水素貯蔵方法等について質疑がなされた。

1.3. ASEAN 対象水素研修

1.3.1. 日時・期間

2022年10月31日11:00-19:00(日本時間)

1.3.2. 主会場

講師、参加者:リモート参加

事務局:日比谷国際ビル 8E 会議室

1.3.3. 背景と目的

経済発展の度合いが異なる ASEAN では再生可能エネルギーの導入割合は様々となっている。カンボジアやラオス、ミャンマーのように産業が成長前で需要が十分でないことから再エネの割合が比較的高い国々もあれば、フィリピンやインドネシアのように再エネ発電の導入は進めているものの、むしろ、それを上回る国内エネルギー需要の増加により、再エネ比率が長期的に下落傾向にある国々もある。また、ベトナムの再エネ割合はほぼ横ばいとなっている。また、タイのように再エネ導入に積極的に取組み、着実に再エネの割合を増加させている国もあれば、ブルネイやシンガポールのように国土が狭いことから再エネ発電を十分に進められていない国々もある。ASEANの再エネ導入は様々な状況となっているが、全体としては2005~6年頃から着実に再エネ導入が進められ、ここ数年は全体のペースを上回って再エネ拡大が続き、再エネの比率が上昇している。再エネ源別では水力及びフィリピンやインドネシアの地熱が主要な再生可能エネルギーであったが、近年ではバイオマス、次いで太陽光発電、風力発電などでも導入の増加傾向が見られる。

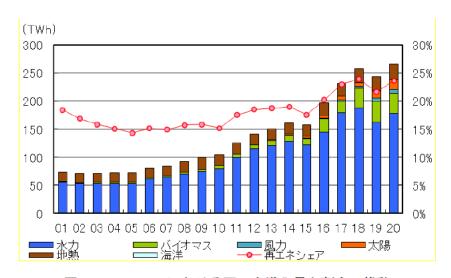


図 1.3-1 ASEAN における再エネ導入量と割合の推移

(出所) International Energy Agency (IEA), World Energy Statistics and Balances 2022 より作成

ASEAN の国別の再エネ導入目標を表1に示すが、ASEAN全体としてはASEAN行動計画(ASEAN Plan of Action for Energy Cooperation, APAEC:2016-2025) で2025年までに一次エネルギー供給全体の23%の再エネ導入を目標としている。なお、APAECは2016~2020年を対象とするフェーズ1と2021~2025年を対象とするフェーズ2がある。

表 1.3-1 ASEAN 加盟国における一次エネルギー供給及び CO2 削減目標

	一次エネルギー供給(2020年、ktoe)				2030年目標	カーボン	ネットゼロ	
	合計値	再□	ロネ	非再エネ		(無条件/条件付)	ニュートラル	
ブルネイ	3,931	0	0%	3,931	100%	BAU比20%削減		
カンボジア	8,531	3,828	45%	4,703	55%	BAU比42%削減	2050年	
インドネシア	233,380	62,422	27%	170,958	73%	BAU比29%/41%削減	2060年	
ラオス	5,360	4,054	76%	1,306	24%	BAU比60%削減		2050年
マレーシア	92,212	3,586	4%	88,626	96%	2005年比45%削減	2050年	
ミャンマー	22,671	11,729	52%	10,942	48%	BAU比/45%削減		
フィリピン	58,040	20,762	36%	37,278	64%	BAU比3%/75%削減		
シンガポール	32,114	392	1%	31,722	99%	2030年CO2:6,000万トン		2050年
タイ	133,114	24,121	18%	108,993	82%	2005年比20%/40%削減	2050年	2065年
ベトナム	97,225	14,670	15%	82,555	85%	BAU比9%削減	2050年	
合計	686,578	145,564	21%	541,014	79%			

(出所) IEA, World Energy Statistics and Balances 2022、各種資料より作成

APAECのフェーズ2では下記7点を主要戦略としている。

- 1. ASEAN 電力網の強化:ガス火力発電の拡大、電力アクセスの向上
- 2. ASEAN 域内ガスパイプライン:持続可能で低炭素排出に向けた天然ガス発電の最大化
- 3. クリーンコール技術:持続可能で低炭素排出に向けたクリーンコール技術の最大化
- 4. 省エネ: 2025 年までにエネルギー原単位 32%削減
- 5. 再エネ: 2025 年までに一次エネ供給の 23%、設備容量の 35%の導入
- 6. 地域エネルギー政策計画:エネルギー移行と強靭性を加速させる政策と計画を前進
- 7. 原子力エネルギー:原子力発電科学技術における人材育成

更に 2040 年に向けては ASEAN 域内 GDP が倍増することによりエネルギー需要が 2 倍以上に拡大、特に輸送部門での需要増加及び電動化の進展が予測されている。

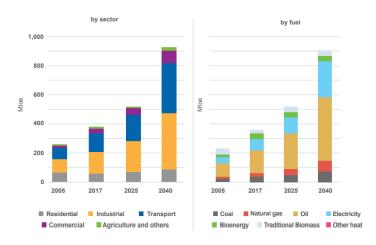


図 1.3-2 ASEAN における最終エネルギー消費量(ベースラインシナリオ)

(出所) 6th ASEAN Enegy Outlook, 2020

日本では 2020 年 10 月に当時の菅首相が「2050 年までに温室効果ガスの排出を全体としてゼロにする」脱炭素社会の実現を目指すことを宣言した。アジアの多くの国もカーボンニュートラルの達成を目標として掲げ、この人類共通の課題に積極的に挑んでいる。

エネルギーの安定供給確保を前提として、持続的な経済成長を実現しつつ、脱炭素化を各国の実情に応じた方法で行っていくことが重要である。アジアのエネルギー事情は、相対的に再生可能エネルギーのポテンシャルが低く、しかも、今後の人口増、経済成長に伴って、電力需要が今後30年間で2.5倍になると予想されている。そのため、今後も、一定程度、需要に応じ柔軟に活用できる電源に頼らざるを得ない。

ASEAN を含む世界全体でのカーボンニュートラル実現に向けて、2021 年 6 月にオンライン開催された日 ASEAN エネルギー大臣特別会合で、日本の経済産業大臣が各国の事情に応じた現実的なトランジション(移行)を着実に推進していく重要性を強調し、アジアのトランジションに向けた 100 億ドルに上る日本の包括的な支援策「アジア・エネルギー・トランジション・イニシアティブ(Asia Energy Transition Initiative, AETI)」を提案した。同支援策については、その後も9月の ASEAN+3 エネルギー大臣会合で経済産業副大臣、11月の COP26 でも岸田首相が重ねて表明した。

2022 年 1 月に岸田首相が発表した「アジア・ゼロエミッション共同体構想」は、こうしたアジアの現実を直視しながら、引き続き、再エネ導入や、省エネを推進するとともに、火力発電のゼロエミッション化に向けた、バイオマス、水素、アンモニア、CCUS(二酸化炭素回収・有効利用・貯蓄)の共同での実証や、インフラ・サプライチェーンの共同整備、アジア版トランジション・ファイナンスのルール整備、ゼロエミッション技術に関する標準の策定、また、アジアワイドでの排出権取引の活用などを進めることで、アジアが共に、脱炭素化を目指していくための枠組みである。我が国の技術や経験、ノウハウ、ファイナンス能力

を総動員して、アジアの脱炭素化に貢献していくものである。

【当研修の目的】

本研修においてはアジア・ゼロエミッション共同体構想も視野に入れ ASEAN の事情に応じた現実的なトランジションのための日本の支援策 AETI (Asia Energy Transition Initiative) に貢献できる研修内容を念頭に置いて、特に水素や燃料アンモニアといったエネルギーキャリアの国内および ASEAN 地域での実証事業例のクリーンエネルギー技術等の紹介、議論を通じて、AETI への貢献を目指す。

1.3.4. 招聘者

ASEAN10 ヵ国から ASEAN 地域組織含む計 38 組織から約 15 名を招聘。

表 1.3-2 国別招聘組織

	参加人数	組織別人数内訳
ブルネイ	6	電力省(4)、エネルギー省(1)、財務省/Darussalam Assets(1)
インドネシア	22	エネルギー鉱物資源省(5)、経済調整省(1)、国立研究革新庁(4)
イントホング		PLN(7) 、Pertamina(5)
ラオス	2	エネルギー鉱業省(2)
マレーシア	46	首相府(1)、エネルギー天然資源省(4)、持続エネ開発庁(5)、エネ委員会(8)
40		Petronas(12/Gentari3)、TNB(11)、Sarawak(3)、HL銀行(2)
ミャンマー	19	エネルギー省(7)、電力省(4)、地方開発省(2)、資源環境省(1)
		石油ガス公社(2)、石化公社(2)、電力公社(1)
フィリピン	10	エネルギー省(8)、石油公団(2)
シンガポール	9	EMA(7)、通商産業省(1)、LNG公社(1)
タイ	9	エネルギー省(3)、DEDE(3)、EPPO(2)、ENTEC(1)
ベトナム	9	商工省(1/EREA1)、IE(3)、EVN(3)、PVN(1)
ASEAN組織	17	ACE(17)
合計	149	

1.3.5. セッション概要

表 1.3-3 セッション概要

日程	実施内容		
セッション 1	日本側からの講義(3 件) カントリーレポート(1 件)		
(エネルギートランジションについて)			
セッション2	日本側からの講義(5件) カントリーレポート(1件)		
(ASEAN 及び日本における水素活用)	日本側//*ロジ神我(3 計) ルントリーレホート(1 件)		
セッション 3			
(ASEAN 及び日本の水素及び燃料アン	日本側からの講義(5件)		
モニアの協力)			

1.3.6. プログラム概要

日本側からの講義:

- (1)「水素社会に向けた日本のビジョンと取組み」
- (2)「カーボンニュートラルに向けたロードマップ」
- (3)「水素及びアンモニアのグローバルバリューチェーンに向けた JBIC のアプローチ」
- (4) 「始動する GX! やまなしから始まる水素エネルギー社会」
- (5)「カーボンニュートラルに向けた需要の電化・水素化」
- (6)「水素社会実現に向けた東レの取り組み」
- (7)「日本国内での水素の取り扱い」
- (8) 「カーボンニュートラルと水素ボイラ」
- (9)「三菱重工の水素・アンモニアガスタービン」
- (10)「アンモニアバリューチェーン構築に向けた IHI グループの取り組み」
- (11)「低温・低圧における地産地商型アンモニア合成」
- (12)「タイでのカーボンニュートラル・スマート工業団地」

カントリーレポート:

- (1)「ASEAN における水素エネルギーの機械と課題:経済的観点、開発と利用」
- (2)「マレーシアにおける水素製造及び利用について」

1.3.7. 成果/展望

今回の研修は水素及び燃料アンモニアのテーマで実施した。研修の招聘人数について、約 150 名、特に約 3 分の1を占めるマレーシアからの参加人数が注目される参加状況となった。また、参加者属性においては、参加総数は前年度研修と大差ものの傘下組織数は前年 28 組織から 38 組織へと大幅に増加、幅広い層から参加があった。

議論においても昨年度と比べて 2 つの観点で進展が見られた。昨年度は質問を発する国も限定的、またその内容も水素とアンモニア等の講演内容の比較が中心だったが、今回は幅広い国から質問があり、質問内容についても自国で利用する場合を念頭に様々な議論があり、最終的にはグリーン水素の定義や基準の議論もなされた。ASEAN 側の全般的な理解も深まりつつあると考えられる。

テーマによる評価バラつきはなく全般に高評価だったが、研修全般としては、もっと講演内容の深堀(講演時間の延長)や実施日程を2~3日に延長する要望が数多くあった。

参加者の日程延長要望や国内のコロナ禍対策の緩和及びネットワーク強化の観点から次年度も 開催の場合は対面式も視野に計画、実施場所としては圧倒的に参加者数の多かったマレーシア 等も視野に入れての検討が考えられる。

1.3.8. 講演要旨

セッション 1(エネルギートランジション):

講義 1「水素社会に向けた日本のビジョンと取組み」

講演者:経済産業省 資源エネルギー庁

【要旨】

本講義は、日本における水素社会に向けた日本のビジョンと取組みの共有を通じて、ASEAN における水素利用の促進を目的としたものである。

講義では、日本における水素の位置づけと目標、運輸部門及び発電部門での取り組み、また地産地消や国際サプライチェーンの取組み、世界的な再エネ由来及び低炭素水素の導入目標等が紹介された。

カントリーレポート 1「ASEAN における水素エネルギーの機会と課題:経済的見通し、開発及び利用」

講演者: ASEAN Centre for Energy, (ACE)

【要旨】

本報告は、ASEAN における水素導入に関する最新情報を、日本側を含む研修参加者と共有することを目的としたものである。

ASEAN 地域における協力、ACE が実施した調査での水素を導入する必要性と課題、水素ロードマップ等に関する説明が行われた。

講義2「カーボンニュートラルに向けたロードマップ」

講演者:株式会社 JERA

【要旨】

本講義は、日本国内における同社の脱炭素化へのロードマップの共有を通じて、ASEAN における水素利用の促進を目的としたものである。

講義では、同社における水素を含むロードマップ、アンモニア混焼及びサプライチェーン構築の 取組み、アジア地域への貢献等が紹介された。

講義 3「水素及びアンモニアのグローバルバリューチェーン構築に向けた JBIC のアプローチ」 講演者:株式会社 国際協力銀行

【要旨】

本講義は、水素及びアンモニアのグローバルバリューチェーン構築に向けた日本企業等への融資支援の取組みの共有を通じて、ASEANにおける水素利用の促進を目的としたものである。

講義では、日本企業が参加する水素・燃料アンモニアの国際バリューチェーン構築への支援状況等が紹介された。

議論 1 「エネルギートランジションについて」

モデレーター:一般財団法人日本エネルギー経済研究所

【要旨】

本議論は、ここまでの内容についての ASEAN 加盟国からのコメント及び質疑応答による理解促進を目的としたものである。

ASEAN 諸国から自国の水素、燃料アンモニア利用に向けた取組みに関する多様なコメントの後、経済性、環境影響を含む水素(液体水素、MCH)とアンモニアの比較、JBIC へのアクセス方法、アジア地域内外での水素実証等について質疑がなされた。

セッション 2 (ASEAN 及び日本における水素活用)

講義 4「始動する GX! やまなしから始まる水素エネルギー社会」

講演者:山梨県企業局

【要旨】

本講義は、国内で先進的な山梨県水素実証の取組みの共有を通じて、ASEAN における水素の製造利用の促進を目的としたものである。

講義では、米倉山電力貯蔵技術研究サイトでの電力からの水素製造(P2G)技術実証の全体像等が紹介された。

講義5「カーボンニュートラルに向けた需要の電化・水素化」

講演者:東京電力ホールディングス株式会社

【要旨】

本講義は、国内で先進的な山梨県水素実証における特に電力管理取組みの共有を通じて、 ASEAN における水素の製造利用の促進を目的としたものである。

講義では、エネルギー利用の電化の観点で米倉山電力貯蔵技術研究サイトでの余剰電力からの水素製造(P2G)技術実証等が紹介された。

講義6「水素社会実現に向けた東レの取組」

講演者:東レ株式会社

【要旨】

本講義は、国内で先進的な山梨県水素実証における特に水素製造の取組みの共有を通じて、 ASEAN における水素の製造利用の促進を目的としたものである。

講義では、米倉山電力貯蔵技術研究サイトでの MW 級 PEM 型水電解技術の実証等が紹介された。

講義 7「国内での水素の取扱」

講演者:株式会社巴商会

【要旨】

本講義は、国内で先進的な山梨県水素実証における特に水素輸送の取組みの共有を通じて、 ASEAN における水素の製造利用の促進を目的としたものである。

講義では、米倉山電力貯蔵技術研究サイトでの貯蔵容器、輸送容器、運搬方法等が紹介された。

講義8「カーボンニュートラルと水素ボイラ」

講演者:三浦工業株式会社

【要旨】

本講義は、国内で先進的な山梨県水素実証における特に水素利用の取組みの共有を通じて、 ASEAN における水素の製造利用の促進を目的としたものである。

講義では、国内販売されている水素ボイラの効率や排ガス等の性能、販売実績等が紹介された。

カントリーレポート2「マレーシアにおける水素製造と利活用」

講演者:Gentari Hydrogen

【要旨】

本報告は、ASEANにおける水素導入事例としてマレーシアにおける最新情報を、日本側を含む 研修参加者と共有することを目的としたものである。

マレーシアペトロナス社が再エネ、水素等の拡大のために新設した Gentari から同国での水素製造、商業化に向けた取組み等に関する説明が行われた。

議論 2「ASEAN 及び日本における水素活用について」 モデレーター: ASEAN Centre for Energy (ACE)

【要旨】

本議論は、ここまでの内容についての ASEAN 加盟国からのコメント及び質疑応答による理解促進を目的としたものである。

ASEAN 諸国から自国の水素取組みに関する多様なコメントとともに、太陽光以外の変動再エネの利用、水素貯蔵、輸送、水素の危険性、コストと商業化取組み、国際協力等について質疑がなされた。

セッション 3(ASEAN 及び日本の水素及び燃料アンモニアの協力)

講義9「三菱重工の水素・アンモニアガスタービン」

講演者:三菱重工業株式会社

【要旨】

本講義は、水素混焼、水素専焼、アンモニア混焼等の取組み、また ASEAN 地域での実証の共有を通じて、ASEAN における水素の製造利用の促進を目的としたものである。

講義では、同社の専焼、混焼技術、国内外における実証事業等が紹介された。

講義 10「アンモニアバリューチェーン構築に向けた IHI グループの取組」 講演者:株式会社 IHI

【要旨】

本講義は、アンモニア製造、利用技術等の開発の取組み、また ASEAN 地域での実証の共有を通じて、ASEAN におけるアンモニアの製造利用の促進を目的としたものである。

講義では、同社の混焼技術、国内外における実証事業等が紹介された。

講義 11「低温・低圧による分散型アンモニア合成」

講演者:つばめ BHB 株式会社

【要旨】

本講義は、分散型アンモニア製造の開発の取組み、また ASEAN 地域で実証の共有を通じて、 ASEAN におけるアンモニアの製造利用の促進を目的としたものである。

講義では、同社のグリーンアンモニアの製造技術、国内外における実証事業等が紹介された。

講義 12「水素サプライチェーン事業化に向けた千代田化工の取組のご紹介」

講演者:千代田化工建設株式会社

【要旨】

本講義は、水素輸送キャリアの導入の取組み、また ASEAN 地域で実証の共有を通じて、 ASEAN における水素貿易の促進を目的としたものである。

講義では、同社の MCH 技術の商業化に向けた取組み、国内外における実証事業等が紹介された。

講義13「タイのカーボンニュートラル・スマートパーク工業団地」

講演者:アーサー・ディ・リトル

【要旨】

本講義は、ASEAN 地域での水素利用を含むカーボンニュートラル工業団地の実証事業の取組みの共有を通じて、ASEAN における水素利用の促進を目的としたものである。

講義では、同社のタイでのマプタプット工業団地における実証事業等が紹介された。

議論 3「ASEAN 及び日本の水素及び燃料アンモニアの協力について」 モデレーター: 一般財団法人日本エネルギー経済研究所

【要旨】

本議論は、ここまでの内容についての ASEAN 加盟国からのコメント及び質疑応答による理解促進を目的としたものである。

ASEAN 諸国からアンモニア混焼の排ガス、工業団地実証の離島への適用可能性、水素の安全な取り扱い方、日本の輸入見通し、再エネによる水素製造またブルー水素とグリーン水素の違い等について質疑がなされた。

2. 専門家派遣

2.1. ケニア対象再生可能エネルギー開発専門家派遣(オンライン)研修

2.1.1. 日時•期間

2022年9月21日(水)15:00-22:30(日本時間)

2.1.2. 主会場

事務局:アクセア半蔵門貸会議室 講師及び参加者はオンライン参加

2.1.3. 背景と目的

【概況】

ケニアの経済成長率は、2010年の8.4%以降、2019年まで前年比4.5-8.4%と高いレベルで推移している。但し、COVID-19の流行などの影響により2020年は-0.3%と1992年以降初めてマイナス成長となった⁶¹。

ケニアの経済政策では、2008 年に"2030 年までに中所得国になる"との目標を掲げた長期経済 開発戦略「ビジョン 2030」が発表され、これがその後に続く全ての政策の根幹をなしている。「ビジョン 2030」の具体的な政策は5年ごとに改定される中期計画(Medium Term Plan, MTP)に掲げられている。2022年現在は2018年から2022年を対象とした第3次中期計画が進められている。

ケニアでは一次エネルギー供給、発電量ともに再生可能エネルギーが占める割合が高い。前者では伝統的バイオマスや地熱を中心として 81.3%、後者では水力および地熱を中心として 93.5% となっている。(図 2.1-1 参照)

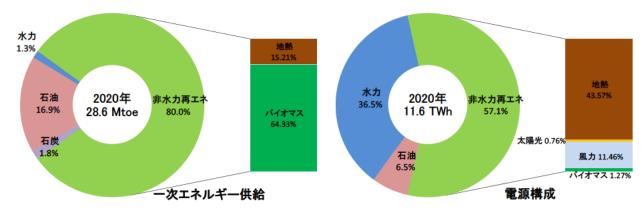


図 2.1-1 ケニアの1次エネルギー供給構成と電源構成(2020年) (出所) IEA, World Energy Statistics and Balances 2022 より作成

61 https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=KE(2022 年 5 月 27 日アクセス)

2000 年代初頭から総発電量に占める再生可能エネルギー発電の割合は高く、かつては水力発電がシェア一位を占めていたが、2014 年以降は地熱発電がシェア一位となっている。また、2018年以降、風力発電が大幅に増加してきていることも特徴として見て取れる。(図 2.1-2 参照)

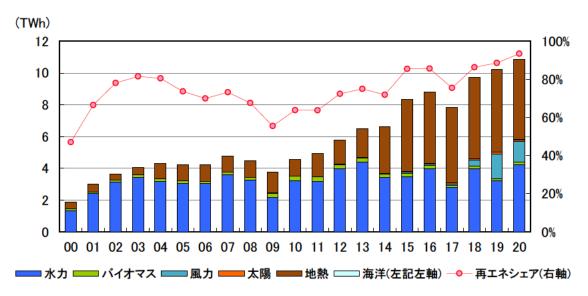


図 2.1-2 ケニアの電源別発電量推移(2000 年-2020 年) (出所) IEA, World Energy Statistics and Balances 2022 より作成

高い経済成長率に伴い電力需要も伸び続けており、ピークデマンドは 2014 年度 62 の 1,512MW から 2019 年度の 1,926MW となり、年率平均約 5%の伸びを示している。COVID-19 の影響により 2020 年 3 月から 8 月にかけては電力需要も落ち込んだものの、同年 12 月のピークデマンドは 1,976MW と記録を更新した。

しかしながら 2020 年 6 月時点の送電ロスは 23%強にのぼる。また、停電も頻発しており、大口顧客が自家発電による電力調達にシフトしている模様で、電力の安定供給が喫緊の課題となっている 63。

【ケニアのエネルギー・電力政策】

ケニアでは、2008年に前述した「ビジョン 2030」の発表や2010年に新憲法の発布があり、エネルギー政策もそれらの理念や規定に沿うよう修正が求められ、2012年に国家エネルギー政策 (National Energy Policy)が策定された(その後2018年に改定)。

2019 年のエネルギー法の改定(Energy Act 2019)では、石油業法の改定(Petroleum Act 2019) と共に、ケニアのエネルギーセクターの近代化と開発を促進するための制度改正が行われた。新

.

⁶² ケニアの会計年度は7月~6月である。

⁶³ https://www.kplc.co.ke/content/item/3540/update-national-power-outage---restoration-efforts-ongoing (2022 年 5 月 27 日アクセス)

法は、エネルギー関連の責任を負う政府組織の改組、再生可能エネルギー資源の開発環境の整備、新たに発見された石油や石炭開発の中下流領域の規制、および電力の供給と消費に関する規制を規定している。

電力に特化した計画に関しては「最小費用電源開発計画(Least Cost Power Development Plan (LCPDP))」があり、これには 20 年間の長期電源開発と送電網の敷設計画が含まれる。最新版は COVID-19 の影響を反映した LCPDP(2020-2040)(2021 年 1 月改訂、表 2.1-1 参照) ⁶⁴である。この計画では、2020 年時点の発電設備容量 2,752MW を 2040 年までに約 3 倍の 8,186.5MW まで増加させることを目標としており、地熱および水力を中心とする再生可能エネルギーの増設の他、現時点では導入されていないガスタービン(LNG)を 2025 年までに、また、石炭火力、天然ガス発電も 2040 年までに導入するとしている。

表 2.1-1 最少費用電源開発計画における総発電設備容量-最適化更新計画

	20	20	20	25	20	30	20	40
発電種別	MW	%	MW	%	MW	%	MW	%
水力	829	30	848.8	24.05	1499.5	29.11	1813.9	22.16
地熱	783	28	976.6	27.67	1411.6	27.4	2586.8	31.6
太陽光	53	2	250.3	7.09	454.3	9	404	4.93
風力	336	12	475.5	13.47	771.4	20	731	8.93
コーシ・ェネレ ーション	2	0	71.44	2.02	197.4	3.83	239.8	2.93
ディーセル	749	27	506.4	14.35	417.8	8.11	_	_
ハ・イオカ・ス	_	_	_	_	_	_	_	_
パイオマス	-	_	_	_	_	_	_	_
輸入	-	_	200	5.67	200	3.88	200	2.44
カ [*] スターヒ [*] ン (LNG)	1	1	200	5.67	200	3.88	480	5.86
石炭	_	_	_	_	_	_	981	11.98
天然ガス	_	_	_	_		_	750	9.16
原子力	_	_	_	_	_	_	_	_
合計	2752	100	3529	100	5152	100	8186.5	100

(出所) Republic of Kenya, Updated Least Cost Power Development Plan Study Period 2020-2040 より作成

71

-

⁶⁴ https://www.decoalonize.org/wp-content/uploads/2021/03/LCPDP-2020-2040.pdf (2022 年 5 月 27 日アクセス)

また、これまでケニアでは天然資源がほとんど産出されなかったため、石油輸入が赤字貿易収支の大きな原因となっていたが、2012年に北部トゥルカナで大規模な石油・天然ガス田が発見され、さらに Mui 堆積盆においては商業規模の石炭資源が確認された。今後は石油の輸入依存度低下や自国産資源による火力発電が期待される。そのため、エネルギー政策にも大きな影響を及ぼすものと考えられる。

【再生可能エネルギー導入促進政策】

主たる再生可能エネルギー導入促進政策としては、下記が挙げられる。

(1) 固定価格買取制度(FIT)

再生可能エネルギー導入促進策として 2007 年度より、固定価格買取制度(Feed-in Tariff (FIT))が導入されている。現時点での最新版は 2021 年 1 月にエネルギー部門の進展に合わせて改定された第三次改訂版である(表 2.1-2 参照)。

ケニアの FIT では、事業者は KPLC と電力購入契約 (PPA) を締結し、KPLC は運開日から 20 年にわたり固定価格にて電力を買い取る。KPLC は唯一の買い取り事業者であり、送電・配電および消費者への小売りを受け持つ。第二次改訂版では設備容量により分類されており、10MW 未満の風力、水力バイオマス、バイオガス、太陽光 (系統接続および未接続)と 10MW 以上 70MW 以下の風力、水力、バイオマス、地熱、太陽光 (系統接続)であったが、最新の第三次改訂版では、最大 20MW までの小規模バイオマス、バイオガス、小水力に限定されている。

表 2.1-2 FIT 価格(第三次改訂、2021 年 11 月レビュー後価格)

対象発電設備(最大 20MW)	買取価格 (US cents/kWh)	最大買取期間(年)
小水力(10MW 未満)	9.0	20
小水力(10MW~20MW)	7.6	20
バイオマス	9.5	20
バイオガス	9.5	20

(出所) THE KENYA GAZETTE65より作成

(2) 再生可能エネルギー入札政策

2021 年、上記の FIT の改定とともに、最少費用電源開発計画に沿った競争力のある再生可能エネルギーを調達することを目的に再生可能エネルギー入札政策 (Renewable Energy Auctions Policy 2021)も発行され、対象は全ての太陽光発電、風力発電および地熱発電を除く FIT 対象ではないその他の再生可能エネルギーである。入札希望者は該当プロジェクトを実施するために必要な経験、財務能力、土地の権利、接続ルートなどを提出し、その後詳細な技術提案と入札価格を USD/kWh で提出する。落札者はエネルギー省と契約を結ぶこととなる(表

⁶⁵ https://gazettes.africa/archive/ke/2021/ke-government-gazette-dated-2021-11-23-no-238.pdf(2022 年 5 月 27 日アクセス)

2.1-3 参照)。

表 2.1-3 オークション基準価格

対象発電設備	買取価格 (US cents/kWh)	設備容量	
風力	9.0	オークション時に決定	
太陽光	7.6	同上	
水力	5.6	20MW 超	
バイオマス	8.4	同上	
バイオガス	8.4	同上	

(出所) THE KENYA GAZETTE より作成

尚、FIT やオークションの対象とならない地熱発電の現状の基準価格は下記の通りである。

表 2.1-4 地熱発電基準価格

対象発電設備	基準価格(US cents/kWh)	設備容量	
地熱	6.5	調達時に決定	

(出所) THE KENYA GAZETTE より作成

(3) 地方電化計画

2020 年時点のケニアの電化率は 71.4%とサブサハラの平均電化率 48.4% 66と比較するとかなり高いものの、地方電化(都市部の電化率 94.0%に対し、地方の電化率は 62.7%となっている。) は、まだまだ電力分野の重点課題の一つである。

地方電化・再生可能エネルギー公団 (REREC) は 2021 年 11 月、地方電化 5 カ年計画を発表した ⁶⁷。計画の期間は発表から遡る 2018 年度から 2022 年度 (2023 年 6 月まで)までの 5 カ年となっており、1,990 億ケニアシリング (約 2,174 億円) の予算、25,899 カ所の公共施設、および 112,500 世帯の電化を目標としている。再生可能エネルギーの普及促進のために、200 カ所の太陽光発電施設、および 20 カ所の風力発電施設、並びに 20 の公共施設のためのバイオガス およびバイオマス発電施設、および導入済みの 5,000 カ所の公共施設のメンテナンス、マッピングされた 250,000 中 50,000 カ所の SHS の導入も含まれる。

また、同計画には、オフグリッド地域における 3,728 カ所の公共施設の再エネミニグリッドシステムによる電化も含まれる。

但し、前述した予算は確保されたものではなく、REREC は国庫や PPP などによる具現化を期待しているとしている。

⁶⁶ https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?locations=ZG(2022 年 5 月 27 日アクセス)

⁶⁷ https://www.kenyanews.go.ke/energy-corporation-launches-a-five-year-plan-for-electricity/(2022 年 5 月 27 日アクセス)

(4) 太陽熱温水器利用義務

2012 年に導入された規定であり、容量 100 リットル以上の温水機器は、その熱需要の 60%以上を太陽熱で賄うことが義務付けられた。既設設備についても、この規定の発行から5年以内に同様の基準を満たすものに交換しなければならないとしている 68。

(5) 再生可能エネルギー関係製品に関する税制優遇策

2013 年の VAT 法および 2014 年の修正 VAT 法に基づき、発電所の建設や地熱探査のため に輸入または購入された製品に対しての付加価値税 (VAT) および輸入関税を免除する。これ は組み立てられていない太陽電池モジュールや風力発電設備に適用される ⁶⁹。

【再生可能エネルギーの導入状況】

(1) 水力発電

ケニアでは早くから水力発電の開発が進み、主力電源として活用されてきたが、旱魃をはじめとする気候変動による影響が避けられなかった。図 1.2 でも明らかなように、ここ 20 年間でも水力の発電量は年により大きく変動している。このため、ケニア政府は豊富な地熱資源を活用する地熱発電の開発を促進してきた。2014 年以降、発電量ベースで地熱発電に首位の座を明け渡している。2021 年 6 月時点の設備容量は 838.4MW で、容量ベースでも地熱発電の 863MW に次ぐ規模となっている。この内 KenGen が 826MW を保有し、20MW 以上の規模が 9 カ所、小水力発電の設備容量合計は 11.7MW である 70。

一方、2008年の FIT 制度の施行以来、IPP による小水力発電の開発も進み、Kenya Tea Development Authority を中心に計 12.4MW の規模となっている。

国内には $3,000\sim6,000$ MW の水力発電のポテンシャルがあり、経済的に重要な未開発水力 資源は 1,484MW で、内出力 30MW 以上の水力発電が 1,249MW を占めると推定されている 71。 それらの有望な地域はビクトリア湖の附近や Tana 川流域に集中している。中でも有望な地点は Kirinyaga、Muranga、Meru そして Tharaka Nithi の各地区において 260 カ所が確認されている。

ケニア政府は 2040 年までに水力発電の設備容量を 1,813.9MW にまで引き上げる計画を立てているが、水力発電開発における様々な課題、例えば、初期投資の比重の高さ、小規模な発電施設でも大規模発電施設と同様な運営管理費を必要とする点、降水量による稼働率の変化なども同時に指摘している ⁷²。

_

⁶⁸ https://www.iea.org/policies/5285-solar-water-heating-regulations (2022 年 5 月 27 目アクセス)

⁶⁹ https://www.iea.org/policies/6007-tax-incentives-for-renewable-energy (2022 年 5 月 27 日アクセス)

 $^{^{70}}$ https://www.kplc.co.ke/img/full/KPLC%20Annual%20Report%20and%20Financial%20Statements%20for%20the%20 year%20ended%2030.6.2021.pdf(2022 年 5 月 27 日アクセス)

 $^{^{71}}$ https://www.decoalonize.org/wp-content/uploads/2021/03/LCPDP-2020-2040.pdf (2022 年 5 月 27 日アクセス)

⁷² 前掲

(2) 地熱発電

東アフリカのジブチからタンザニアにかけて横たわる地熱資源の豊富な大地の切れ目「グレート・リフトバレー(大地溝帯)」が、ケニアの西部を南北に縦断している。ケニアは、グレート・リフトバレーが縦断する国の中でも地熱資源が特に豊富であり、10,000MWが同国に賦存すると言われている。地域は大きく3つに分類され、リフトバレー北部に4,250MW、同中央部に1,850MW、同南部に3,450MW、加えて、ウガンダ国境に近いNyabzaに450MWの地熱資源がある。

地熱資源の掘削調査は、早くも 1950 年代から行われてきた。しかしながら、地熱資源の調査・開発が本格化したのは、1969 年、ケニア政府の要請により国連開発計画 (UNDP) と当時の東アフリカ電力会社 (East African Power and Lighting Co. (EAPLC)、現 KPLC) が調査を再開して以降であり、1981 年に Olkaria East field の蒸気を利用し、第 1 号機 (15MW) が稼働を開始した。その後、1982 年に 2 号機 (15MW)、1985 年に 3 号機 (15MW) が稼働開始し、現在のオルカリア I 地熱発電所を形成している。現在、オルカリア地熱発電所は下記 5 カ所で稼働している。

- ▶ オルカリア I:ユニット1-3:15MWx3(三菱パワー製)、運開年上述; ユニット4-5:75MWx2 (東芝製)、運開年 2014年; ユニット6:83.3MW(富士電機製)、2022年3月完工、6月運 開予定 73
- ▶ オルカリア II:35MWx3(三菱パワー製)、2003年、2010年運開
- ▶ オルカリアⅢ:2000年運開(8MW)、2021年6月時点計150MW(オーマット製)
- オルカリアIV:75MWx2(東芝製)、2014年運開
- ▶ オルカリアV:75MWx2(三菱パワー製)、2019年運開

オルカリアではこの他に複数の坑口発電(Wellhead System)が 2011 年より順次運転を開始しており、2021 年 6 月時点の総発電容量は 88.5MW⁷⁴となっている。

また、KenGen が掘削し、使用しなかった調査井を活用した自家使用の Oserian 地熱発電所 (1.8MWx2、2004 年および 2006 年運開)もある。

オーマット社の現地子会社 OrPower 4 社が所有するオルカリア III と Oserian 地熱発電所を除き、オルカリアの地熱発電所と Eburru 地熱発電所は、KenGen が所有並びに運営管理を行っており、KenGen が所有する地熱発電所の総発電容量は 2021 年 6 月時点で 713.13MW に達する。

前述した LCPDP(2020-2040)では、2040 年までに地熱発電の設備容量を 2,586.8MW にまで引き上げる計画を立てている。直近の計画としては、Menengai 地熱発電所で 35MW 規模のプロジェクトが 3 件、合計 105MW が 3 社(Orpower Twenty Two (Menengai I)、QPEA GT Menengai (Menengai II)、Sosian Menengai Geothermal Power (Menengai III))で落札されており、GDC が IPP に蒸気を販売する BOO スキームとなっている。2013 年の落札以降、3 社とも建設が遅延して

⁷³ https://www.kengen.co.ke/index.php/information-center/news-and-events/good-news-for-kenya-as-kengen-completes-construction-of-olkaria-i-unit-6-geothermal-power-plant.html (2022年6月3日アクセス)

⁷⁴ https://www.kengen.co.ke/images/2021/15-KenGen-IR.pdf(2022 年 5 月 27 目アクセス)

いたが、中国企業 Kaishan Renewable Energy Development が EPC 契約により発電所建設を進めていた Sosian Menengai が 2022 年 12 月には稼働を開始する見込みである ⁷⁵。一方、QPEA GT Menengai も Globeleq が 2021 年にマジョリティを取得したことにより、事業が進展すると報道されている ⁷⁶。

2020年5月、140MWのOlkaria VIプロジェクトの入札でOrmat Technologies Inc、伊藤忠商事、住友商事、Enel Green Power、および Engie Energy Services と豊田通商、キューデン・インターナショナル、DL Koisagat Tea Estate のコンソーシアムの計 5 者が最終候補者に選ばれたと報道されている。このプロジェクトの落札者は、BOOT スキームにて KenGen と JV 契約を締結し、発電所の資金調達から建設、運用を行うこととなっているが 77、その後の進展が発表されていない模様である。

KenGen および GDC は、自社で掘削リグを保有し、ケニア国内はもとより周辺各国への掘削サービスなどの技術協力やビジネス展開を図っている。

また、九州電力は2020年4月、国際協力機構(JICA)から海外コンサルティング案件「ケニア国 IoT 技術を活用したオルカリア地熱発電所の運営維持管理能力強化プロジェクト」を受託、2023年3月までの3年間で、KenGen に対し、特にUNIDOの資金で導入されたIoTシステムを活用した運転管理や発電原価を意識した低コストでの計画的な保修管理などの技能を提供し、KenGen 技術者のさらなる養成を支援している78。

(3) 太陽光発電

ケニアは国土が赤道直下にあり、年間を通じて一日あたり 4-6kWh/m²の直達日射量が得られ、 導入ポテンシャルは 15,000MW⁷⁹と推定されており、太陽光エネルギーの利用に適している。

2018 年 11 月、当時の REA(現 REREC)所有の大規模太陽光発電所(54.64MW)がガリッサ州において運転を開始した 80。東・中央アフリカ最大の規模で、発電した電力は全て FIT 制度の下 KPLC に売電されている。本プロジェクトは中国政府が資金(総建設費 130 億シーリング)を援助し、中国企業コンソーシアムが実施した。REREC はこの他、地方電化プログラムの下、マンデラ州、ガリッサ州、マルサビット州、ワジール州、トゥルカナ州の未電化地域において 25 の太陽光によるミニ

 $^{^{75}}$ https://www.afrik21.africa/en/kenya-construction-of-the-menengai-geothermal-power-plant-will-start-in-december/(2022 年 6 月 3 日アクセス)

https://www.thinkgeoenergy.com/menengai-geothermal-power-plant-set-to-operate-this-year/ (2022 年 6 月 3 日アクセス)

⁷⁶ https://www.world-energy.org/article/15853.html(2022 年 6 月 3 日アクセス)

 $^{^{77}}$ https://www.thinkgeoenergy.com/five-groups-shortlisted-for-140-mw-ppp-olkaria-vi-project-with-kengen-kenya/(2022 年 5 月 27 日アクセス)

⁷⁸ http://www.kyuden.co.jp/press_h200407-1.html(2022 年 5 月 27 日アクセス)

⁷⁹ https://renewableenergy.go.ke/technologies/solar-energy/(2022 年 5 月 27 日アクセス)

⁸⁰ https://www.rerec.co.ke/index.php?option=com_content&view=article&id=53&Itemid=234(2022 年 5 月 27 日アクセス)

グリッドプロジェクトを実施している。設備導入量は、2020年6月末で2.3MWであった。

IPP のプロジェクトとしては、2018 年運開のストラスモア(0.3MW)太陽光発電所の他、フランス Voltalia 社の Kopere 太陽光発電プロジェクト(50MW)、Selenkei 投資会社による Radiant および Eldosol ソーラーファームプロジェクト(各 40MW)、Ergon Solair Africa 社の Kisumu での 40MW の プロジェクトなどが計画されている。KPLC の 2020 年度のアニュアルレポートによると Radiant ソーラーファームは既に完成し、試験的に系統に接続されている模様である。

前述した LCPDP(2020-2040)では、2040 年までに太陽光発電の設備容量を 404MW にまで引き上げる計画を立てている。

一方、KenGen は、国内の太陽光モジュール製造を促進すべく、2020 年 3 月、Murang'a 地域の同社タナ発電所内に建設する太陽電池モジュール工場(10MW)の入札を開始し、同モジュールの国内製造の準備を進めている。

(4) 風力発電

2008 年、エネルギー省は風況マップを作成した。その結果、346W/m²の風力ポテンシャルが確認され、特に12の地区(Marsabit, Kajiado, Laikipia, Meru, Nyandarua, Kilifi, Lamu, Isiolo Turkana, Samburu, Uasin Gishu Narok, Kiambu) においては毎秒 6 メートル以上の平均風速が確認された ⁸¹。また、風況マップの情報拡充のため、同省は KenGen と共同で 60 以上の風況マストと記録装置を設置し、11 地点の風力ポテンシャルを確定した。さらに、Wind Force Management Services Pvt. Ltd により 2013 年に実施された調査によると技術的に利用可能な風力ポテンシャルは 4,600MW とされている ⁸²。

2022 年 3 月現在、3 カ所合計 436MW の風力発電設備が導入されている。1 カ所目は、1993 年 に稼働開始された Kajiado にある Ngong 風力発電所 (25.5MW)で、次いで 2019 年に、アフリカ最大の風力発電所として Marsabit にある Lake Turkana 風力発電所 (310MW) が稼働を開始した 83 。 3 カ所目は、Kipeto 風力発電所 (100MW) で、Kajiado の Ngong 高原に位置し、2021 年 1 月に稼働を開始した。

前述した LCPDP(2020-2040)では、2040 年までに風力発電の設備容量を 731MW にまで引き上げる計画を立てている。

日本企業の取り組みとしては、ユーラスエナジーが 2019 年 8 月、豪 Windlab 社と実施する太陽 光発電、風力発電、蓄電池を組み合わせた 80MW のハイブリッド発電プロジェクトについて、 TICAD の場において安倍首相とケニア外務大臣の前でメル郡 (Meru County) との覚書を交わした。

-

⁸¹ Ministry of Energy and Petroleum (Jun 16, 2015), "Draft National Energy and Petroleum Policy"

 $^{^{82}}$ https://www.decoalonize.org/wp-content/uploads/2021/03/LCPDP-2020-2040.pdf (2022 年 5 月 27 日アクセス) p70

⁸³ https://renewableenergy.go.ke/technologies/wind-energy/(2022年5月27日アクセス)

同プロジェクトの建設は2021年に開始されることが見込まれていた84。

(5) バイオマス(バイオガス)発電/コジェネレーション

ケニアにおいては、調理や暖房などの需要に用いられるバイオマス以外に、電力用として使われているのは、バガス(サトウキビの搾りかす)などの農業残渣であるが、現在、KPLC に売電しているのは、Gorge Farm Plant を運営する Biojoule Kenya の 2MW 発電システムのみであり、KPLC のアニュアルレポートには、コジェネレーションとして記録されている。かつては、Mumias 社も KPLC に売電していたが、同社は 2018 年度以降売電していない模様である 85。

前述した LCPDP(2020-2040)では、2040 年までにコジェネレーション発電の設備容量を 239.8MW にまで引き上げる計画を立てている。

(6) 系統安定化対策および水素

ケニアでは、以上述べてきたように 2021 年 6 月時点の系統に接続されている太陽光発電容量は、40.3MW とまだまだ少ないが、風力発電は 436MW であり、ここ数年容量を急激に増やしてきた。また、両者とも今後増加していく計画となっている。これら変動再エネの導入拡大に伴い、系統の安定化対策が必須となるが、既に停電も多発しており、送電ロスも相俟って、発電施設の増設以上に、系統設備の近代化や系統計画、系統運用能力の向上が喫緊の課題となっている。停電が多発する KPLC からの電力購入を避け、自家発電に切り替える大口顧客も多い模様であり、2021年4月現在の認可済み自家発電容量は140MW に上る。

2021年4月、東電設計と九州電力送配電は、KPLCとKETRACOなどに対して系統運用、系統保護、系統計画能力向上を支援するJICAプロジェクト(3年間)を実施すると発表した86。

一方、ケニア政府は地熱発電や変動再工ネを電源とするグリーン水素製造に興味を持っている 模様である。今後の地熱発電の開発状況によっては、余剰電力が発生したり、系統への接続が困 難な地域での開発促進といった課題が出てくる可能性があり、他方、変動再工ネや渇水による水 力の長期出力変動に対応するために、それら再工ネ電力による水素製造という方向性もありうる。

また水素は、電力利用のみならず、ケニアの GDP の 2 割を占めると言われる農業(紅茶、切り花、コーヒーなど)に使用する肥料製造時の低炭素化などにも貢献しうる 87。

【まとめ】

以上見てきたようにケニアでは、増加する電力需要に対応して、以前は水力発電を中心に、その後、渇水の影響緩和と豊富な地熱資源を活用するため、地熱発電を主力として電源開発を進め

-

⁸⁴ https://www.businessdailyafrica.com/corporate/companies/Meru-signs-deal-for-Sh15bn-green-power-project/4003102-5258254-13gg2i/index.html (2022 年 5 月 27 日アクセス)

 $^{^{85}}$ https://www.kplc.co.ke/img/full/KPLC%20Annual%20Report%20and%20Financial%20Statements%20for%20the%20 year%20ended%2030.6.2021.pdf(2022 年 5 月 27 日アクセス)

⁸⁶ http://www.tepsco.co.jp/topics/topics_20210421.html (2022 年 5 月 27 日アクセス)

⁸⁷ https://www.afr-h2-p.com/kenya(2022 年 6 月 13 日アクセス)

てきた。地熱発電に関しては、ケニア政府が法律を整備し、まずは政府系電力会社 KenGen が主導で開発し、次いで、リスクが比較的高い地熱源に関しては、政府が100%出資するGDCがリスクを取り開発、さらには、IPPが参入し易いよう PPPの枠組みも整備しつつあるため、制度的にはほぼ問題ないと言える。但し、Menengaiの IPP案件が3件とも滞っていたことに関しては、その理由を十分に分析する必要がある。また、地熱発電所の運転管理に関しては、日本企業は IoT など先進技術を活用し効率的に運営するノウハウを持っているため、KenGenのみならず GDCや政府関係者にも情報を共有することは、今後の日本企業の事業環境を整えることにも繋がる。

また、ケニア政府は、太陽光発電および風力発電を今後増加させる計画を立てている。これは、 勿論、世界的に太陽光発電と風力発電の発電コストが低減していることから当然の方向性である が、変動再エネの大量導入に備えた系統の安定化対策を含めた系統設備の近代化や系統計画、 系統運用能力の向上も課題として挙げられる。

将来的には、地熱をはじめとした再エネ電力による水素製造、そのグリーン水素による系統安定化や農業の低炭素化も今後の課題として挙げたい。

【当研修の目的】

当研修は、上述したケニアの課題解決に資するべく、下記のようなテーマで講演を実施し、ケニアの政策立案担当者や電力関係者との議論を深めることを目的として実施した。

- (1) 日本の地熱発電普及促進のための政策の紹介
- (2) 日本の政府系機関のケニア支援の方向性などに関する情報共有
- (3) 地熱蒸気の直接利用普及活動(GGA)の紹介
- (4) IoT 技術を活用した地熱発電所の運転管理の要諦およびメリットの紹介
- (5) シリカ回収およびレアメタル抽出技術の紹介
- (6) ケニア送配電網における課題とその対応策に関する情報共有
- (7) グリーン水素製造に関する情報共有

2.1.4. 招聘者

以下ケニア中央省庁などから計17名を招聘した。(日本側参加者を除く)

表 2.1-5 招聘者一覧

	招聘国	所属機関	参加数
1		エネルギー省(MoE)	5
2		原子力エネルギー庁(NuPEA)	2
3		地熱開発公社(GDC)	2
4	L _7	地方電化・再生可能エネルギー公団(REREC)	2
5	グニア	ケニア電力電灯公社(KPLC)	2
6		ケニア電力公社(KenGen)	2
7		ケニア送電公社(KETRACO)	2
		合計	17

2.1.5. 日程概要

表 2.1-6 日程概要

日程	実施内容
9/21 (水)	日本側および IRENA からの講義(8 件) カントリーレポート(3 件)

2.1.6. プログラム概要

日本側(IRENAを含む)からの講義:

- (1)「日本の再生可能エネルギー政策」
- (2)「グローバル地熱アライアンス」
- (3)「グリーン成長に向けたケニア・エネルギートランジション協力」
- (4)「地熱発電開発促進に向けた JOGMEC による技術開発の取り組み」
- (5)「地熱発電所の維持運営および IoT 技術の適用について」
- (6)「国内外における地熱発電を利用した水素製造から供給に係るサプライチェーン構築の取り組み」
- (7)「分散型電源の系統連系に向けた DAS/DMS による配電系統のデジタル化」
- (8)「地熱発電所の還元熱水からのリチウム回収技術」

カントリーレポート:

- (1)「ケニアの再生可能エネルギー政策」
- (2)「オルカリアにおける地熱探査および開発」
- (3)「ケニア電力系統の現状と課題」

2.1.7. 成果/展望

今回の研修では、ケニアの電力分野における幾つかの課題が明確になった。

電源開発に関しては、現状の地熱および水力を中心とする開発計画には揺るぎがないものの、 現状の電源構成では、給電側で問題が生じている点がまず挙げられる。地熱発電はオフピーク時 に対応する柔軟性が乏しく、蒸気をベントしなければならない場合があること、また、水力発電も気 候の影響を受けて水位が下がる場合があるため、設備容量と可用量が同じではない点が指摘され た。これに関しては、短周期および長周期の蓄電池の導入などが解決策となりうる。

また、天候が停電の一大要因であり、配電網の大半に木製の電柱が用いられているため、大雨時には停電が起きやすいということが報告されたが、配電網のデジタル化・自動化によって問題が解決しうるということも議論された。

一方、地熱水からのリチウム回収技術も、エネルギー省と KenGen の両者から大きな関心が寄せられた。

さらに、JOGMEC の新事業である日本への技術還流を目的とした海外での地熱探査への出資 事業の枠組みについても、今回ケニア政府や電力会社の地熱開発担当者に認知してもらった意 義は大きいと思われる。

特に今回は、エネルギー省 再生可能エネルギー局局長の Mwakina 氏に研修の冒頭から最後まで参加していただき、熱心に議論に参加していただいた。Mwakina 氏自身からも他の参加者からも、上述した分野を中心として、ケニアと日本の今後益々の協力関係を望む声が多く聞かれた。また、上述した分野は、日本の企業や研究者が技術的に優位に立つ分野でもあり、今後の具体的な技術協力関係の樹立が望まれる。

2.1.8. 講演要旨

講義1:「日本の再生可能エネルギー政策」

英題: Renewable Energy Policy in Japan

講演者: 経済産業省資源エネルギー庁

本講義は、日本の再生可能エネルギー政策に関する情報共有を通じて、ケニアにおける同分野関連施策への活用を目的としたものである。

講義では、日本の 2050 年カーボンニュートラル (CN) 達成に向けた施策、第 6 次エネルギー基本計画、グリーン成長戦略、さらに日本の地熱発電開発の現状と課題などに関する説明が行われた。

本講義後、水素の利活用分野や地熱発電技術などに関する質疑応答があった.

カントリーレポート 1:「ケニアの再生エネルギー政策」

英題: Kenya's Renewable Energy Related Policy

講演者:Ministry of Energy

【要旨】

本報告は、ケニアの地熱を中心とする再エネ政策とその課題に関する最新情報を、日本側およびケニア側参加者と共有することを目的としたものである。

報告では、ケニアのエネルギー政策の基盤となっている 2019 年エネルギー法 (Energy Act 2019) や、現在の電力政策の課題について説明が行われた。また、現在策定中の「Integrated National Energy Plan (INEP)」や「LCPDP2020-2040」の改訂についても言及があった。

講義2「グローバル地熱アライアンス」

英題:Global Geothermal Alliance

講演者:IRENA

【要旨】

本講義は、IRENA が主導するグローバル地熱アライアンス(GGA)の活動内容の共有を通じて、ケニアにおける地熱開発促進施策などへの活用を目的としたものである。

講義では、地熱の直接利用促進のための GGA の活動内容や、ケニアの地熱開発の分析など に関する説明が行われた。

講義 3:「グリーン成長に向けたケニア・エネルギートランジション協力」

英題: Cooperation on Energy Transition for Green Growth in Kenya

講演者:独立行政法人国際協力機構(JICA)

【要旨】

本講義は、JICA による海外の地熱開発支援の現状や課題、および具体的なプログラムなどに関する情報共有を通じて、ケニアにおける地熱開発関連施策への活用を目的としたものである。

講義では、地熱開発における課題と JICA による支援プログラム、およびケニアにおける技術協力と資金協力実績や今後の協力の方法性などに関する説明が行われた。

講義 4:「地熱発電開発促進に向けた JOGMEC による技術開発の取り組み」

英題: JOGMEC's Activities on Technology Research and Development to Facilitate Geothermal Power Development

講演者:独立行政法人石油天然ガス・金属鉱物資源機構(JOGMEC)

【要旨】

本講義は、JOGMEC の地熱開発支援プログラムに関する情報共有を通じて、ケニアにおける地熱開発関連施策への活用を目的としたものである。

講義では、JOGMEC の従来からの地熱開発支援プログラム、および 2023 年から開始される海外における地熱探査への出資事業などに関する説明が行われた。

本講義後、酸性流体の探査などに関する質疑応答があった。

講義 5:「地熱発電所の維持運営およびIoT技術の適用について」

英題: Overview of Geothermal Power Plant O&M and Application of IoT Technologies

講演者:株式会社キューデン・インターナショナル

【要旨】

本講義は、IoT を活用した地熱発電設備のメンテナンスに関する情報共有を通じて、ケニアにおける地熱関連施策への活用を目的としたものである。

講義では、九電グループが KenGen に対して実施している「IoT を活用したオルカリア地熱発電 所 O&M 能力強化プロジェクト」に関する説明が行われた。

講義 6:「国内外における地熱発電を利用した水素製造から供給に係るサプライチェーン構築の取り組み」

英題: Obayashi's Initiatives in Japan and Overseas to Establish Supply Chains for Hydrogen Produced from Geothermal Power Generation

講演者:株式会社大林組

【要旨】

本講義は、地熱発電を活用したグリーン水素製造およびサプライチェーン構築の実証事業に関する情報共有を通じて、ケニアにおける地熱関連施策への活用を目的としたものである。

講義では、大林組が大分県およびニュージーランドで実施している実証事業に関する説明が行われた。

本講義後、地熱発電による水素製造時に必要な水量などに関する質疑応答があった。

カントリーレポート2:「オルカリアにおける地熱探査および開発」

英題:Geothermal Exploration and Development in Olkaria

講演者:Kenya Electricity Generating Company (KenGen)

【要旨】

本報告は、ケニアにおける地熱発電開発に関する最新情報を、日本側およびケニア側参加者と共有することを目的としたものである。

報告では、ケニア電力公社(KenGen)が中心となって行ってきたケニアにおける地熱発電開発の歴史と現状、今後の方向性と課題などに関する説明が行われた。

カントリーレポート 3: 「ケニア電力系統の現況と課題」

英題:Grid Status and Challenges

講演者: The Kenya Power and Lighting Company (KPLC)

【要旨】

本報告は、ケニア電力系統の現状と課題に関する最新情報を、日本側およびケニア側参加者と共有することを目的としたものである。

報告では、ケニア電力電灯公社(KPLC)が管轄するケニア電力系統の現状と課題、現在策定中の新しいLCPDP(2021-2041)の策定方針などに関する説明が行われた。

本報告後、ベースロード電源である地熱発電の発電量を抑制しなければならない現状や停電の

原因などに関する質疑応答があった。

講義 7:「分散型電源の系統連系に向けた DAS/DMS による配電系統のデジタル化」

英題:Digitalization of Distribution Grids towards the Mass-integration of DER by DAS/DMS

講演者:株式会社東光高岳

【要旨】

本講義は、日本における高品質な電力を維持するための方策などに関する情報共有を通じて、 停電が頻発するケニアにおける電力施策への活用を目的としたものである。

講義では、日本で 1990 年代から本格導入されている配電自動化システム (DAS) および配電管 理システム (DMS) の基本機能に関する説明、さらに分散型電源の大量導入時における有効性などに関する説明が行われた。

講義 8:「地熱発電所の還元熱水からのリチウム回収技術」

英題:Lithium Extraction Technology from Reinjection Fluid of Geothermal Power Plant

講演者:北九州市立大学

【要旨】

本講義は、地熱水に含まれるリチウム回収技術などに関する情報共有を通じて、ケニアにおける地熱開発関連施策への活用を目的としたものである。

講義では、日本の地熱発電所で実施された還元熱水からのリチウム回収試験の結果とその実 用化に関する説明が行われた。

本講義後、実用化可能なリチウム濃度などに関する質疑応答があった。

ディスカッション

モデレーター:一般財団法人日本エネルギー経済研究所

このディスカッションセッションでは、当日の講義内容を基に、ケニアにおける地熱開発をはじめとする再エネ開発促進のために必要と思われる知識や技術、今後の日本とケニアの協力関係の方向性などに関する議論が行われた。

2.2. ベトナム洋上風力・系統柔軟性リモート研修

本年度のベトナムリモート研修は、①事前調査に関する小規模ミーティング、②ベトナムを対象と したワークショップ、③フォローアップ会議、の3構成で実施した。

2.2.1. 背景と目的

【ベトナムの一次エネルギー供給と電源構成】

IEA の統計による 2020 年における一次エネルギー供給構成と電源構成を図 2.2-1 に示す。

一次エネルギーの80%程度を化石燃料に負っており中でも石炭の比率が52%と最も高い。また、 再エネのほとんどはバイオマスであり、その多くが熱利用として使われている。

電源で一番多いのは石炭であり、全体の約半分を占める、次いで水力が約30%である。電源での水力以外の再エネ利用は5.1%であり、2019年度の3.5%から1.6ポイント増えている。特に太陽光発電は2.02%から3.99%とほぼ倍増している。



図 2.2-1 ベトナムの1次エネルギー供給構成及び電源構成(発電量ベース)(2020年)

(出所) International Energy Agency (IEA), World Energy Statistics and Balances 2022 より作成

【ベトナムのエネルギー/電力政策】

2020年2月、ベトナムの新しいエネルギー政策方針として、「2045年を見据えた2030年までの国家エネルギー開発戦略の方針(Orientation of National Energy Development Strategy through 2030, with a Vision to 2045)」(以下「国家エネルギー開発戦略方針」)が公布された。この新たな方針は、エネルギーセキュリティの確保に向けて、迅速で持続可能なエネルギー開発を重視し、包括的で競争力・透明性のあるエネルギー市場発展の加速化、所有権・ビジネスモデルの多様化を目指している。特に、民間部門のエネルギー開発への参加が促されている。エネルギー分野における長期的な目標が明記されており、目標達成に必要な策として、エネルギーの自主開発と供給源の多様化、備蓄システムや大規模中継港の整備などが挙げられている。再生可能エネルギーやクリーン・エネルギーの開発を行い、石炭火力発電の割合を抑制していくことも示されている。

またベトナム政府は5年ごとに電力マスタープランを策定し、安定した電力供給のために計画的

な電源開発を目指している 2021 年 2 月には「第 8 次国家電力マスタープラン(National Master Plan for Power Development for the 2021-2030 Period with the Vision to 2045)」(以下、PDP8) の第1次草案が公表され、数回にわたり見直しがされ、現在、承認を受ける最終段階に来ている。

【再生可能エネルギー政策】

検討中の PDP8 では、再生可能エネルギーの比率を大幅に増やしていく予定である。

ベトナムでは、風力、バイオマス、廃棄物、太陽光発電への支援について、再生可能エネルギー別にそれぞれ首相決定によって規定されている(表 2.2-1)。根拠となる首相決定は異なるが、固定価格買取制度(Feed-in Tariff, FIT)や優遇措置(法人税、輸入関税、土地使用料等)が共通した政策としてとられている。

発効日 首相決定 Decision No. 39/2018/QD-TTg, Providing the Mechanism to 風力 2018年11月1日 Support the Development of Wind Power Projects in Vietnam Decision No. 24/2014/QD-TTg, Support Mechanism for the バイオマス 2014年5月10日 Development of Biomass Power Projects in Vietnam Decision No. 31/2014/QD-TTg, Support Mechanism for the 廃棄物 Development of Power Generation Projects Using Solid Waste(s) in 2014年6月20日 2017年6月1日 Decision No. 11/2017/QD-TTg, Support Mechanisms for the 発効、2019年6 Development of Solar Power Projects in Vietnam 月30日終了 太陽光 2020年5月22日 Decision No. 13/2020/QD-TTg on the mechanism of 発効、2020年12

表 2.2-1 再生可能エネルギーに関する首相決定

(出所) 日本エネルギー経済研究所作成

月 31 日終了

encouraging development of solar power in Vietnam

再生可能エネルギー支援策の柱は FIT の適用であった。対象となる再生可能エネルギー発電事業者の発電量に対してベトナム電力グループ (Electricity Vietnam, EVN)が 20 年間に亘って全量買取ることが義務付けられていた。2018 年 11 月 1 日より風力発電の買取価格が引き上げられた。洋上風力は現行の\$0.098/kWh が維持されるが、陸上風力は、\$0.078/kWh から\$0.085/kWh となった。2021 年 11 月 1 日より前に商業運転を開始し、系統接続される風力発電に適用されることであったが、2020 年 6 月に首相は MOIT に対して、この買取価格を 2023 年 12 月末まで延長することを要求したが、2021 年 10 月で FIT は終了した。

2017 年 4 月に承認された太陽光発電に関する固定価格買取制度(首相決定 2017 年 11 号)は、2019 年 6 月 30 日までの時限立法となっていた。太陽光発電に関する固定価格買取制度は継

続の方向で検討され、2020 年 4 月 6 日に首相決定 13 号(Decision No. 13/2020/QD-TTg)に首相が署名し、同年 5 月 22 日に発効となり、同年 7 月 1 日~12 月 31 日に運転開始する太陽光発電設備からの電力買取価格が表 2.2-3 ように決定された。太陽光発電はこの FIT 制度により、2020年までは順調に拡大したが、それ以降、伸び悩んでいる(図 2.2-2)。

表 2.2-2 ベトナム FIT における買取価格

種別	買取価格	
E +	陸上 VND1,928/kWh (\$0.085/kWh)	
風力 	洋上 VND2,223/kWh (\$0.098/kWh)	
バイオマス 熱電併給: VND1,634/kWh (\$0.0703/kWh) 熱電併給以外: VND1,968/kWh (\$0.0847/kWh)		
序杂物	生だき: VND2,114/kWh (\$0.1005/kWh)	
廃棄物 	埋立場から回収した燃焼ガス: VND1,532/kWh(\$0.0728/kWh)	
太陽光 VND2,086/kWh(\$0.0935/kWh)2019 年 6 月末まで		

(注)付加価値税は除く。為替レート (VND/USD) の変動に応じて調整される。 (出所)日本エネルギー経済研究所作成

表 2.2-3 2019 年 7 月 1 日~2020 年 12 月 31 日の太陽光発電 FIT 価格

S-1	FIT		
Solar power technology	VND/kWh	US cent/kWh	
Floating solar power system	1,783	7.69	
Ground solar power project	1,644	7.09	
Grid-connected solar power project in Ninh Thuan province	2,086	9.35	
Rooftop solar power project	1,943	8.38	

(出所) 2020年4月6日にベトナム首相決定 (Decision No. 13/2020/QD-TTg)より日本エネルギー経済研究所作成

なお、2023 年 1 月にベトナム商工省は No. 21 QD-BCT で太陽光、風力発電の上限価格を以下のように決定した 88 。

_

⁸⁸ https://thuvienphapluat.vn/van-ban/Tai-nguyen-Moi-truong/Quyet-dinh-21-QD-BCT-2023-khung-gia-phat-dien-nha-may-dien-mat-troi-dien-gio-chuyen-tiep-549601.aspx

表 2.2-4 No. 21 QD-BCT での太陽光、風力の上限価格

No.	タイプ	上限価格(VND/kWh)
1	地上設置の太陽光発電	1,184.90
2	フローティング太陽光発電	1,508.27
3	陸上風力発電	1,587.12
4	洋上風力発電	1,815.95

この上限価格については、多くの発電事業者から、「FIT に比べ 3 割程度安い」といった失望の声が上がっており 89、商工省に対して見直しを要請する動きが起きている 90。商工省は、再工ネ価格決定の正当性を強調していたが 91、2023 年 3 月 24 日の報道によれば、太陽光や風力発電所の電力買い取り価格について、3 月中に再生可能エネルギー事業者と合意するよう指示した 92とのことである。

【変動再生可能エネルギーの導入状況】

IEAのデータによれば、2020年のベトナムの一次エネルギー供給に占める再生可能エネルギーの比率は、15.09%である。その内、固体木質が7.525%、水力が6.45%を占める。

発電電力量を見ると、2020 年の再生可能エネルギー(水力を含む)の比率は 35.44%と前年 (31.3%)よりも増加した。この主な要因は、太陽光発電が2019年では4,818GWhであったのが2020年には9,575GWhと大幅な伸びを示したためである。

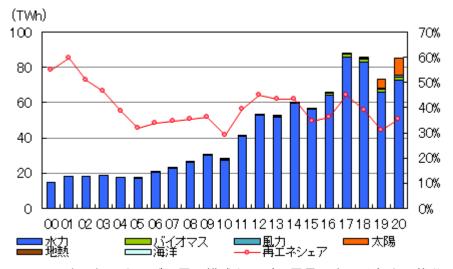


図 2.2-2 再生可能エネルギー電源構成および発電量に占める割合の推移

(出所) IEA, World Energy Statistics and Balances 2021 より作成

⁸⁹ NNA Asia (2023 年 1 月 18 日) 「ベトナム 再エネ価格上限決定、事業者からは失望の声」

⁹⁰ NNA Asia (2023年3月16日) 「再エネ買い取り価格、商工省案の見直し要請」

⁹¹ NNA Asia (2023 年 3 月 17 日) 「商工省、再工ネ価格決定の正当性強調」

⁹² NNA Asia (2023年3月24日) 「再エネの買い取り価格、今月中の合意を指示」

なお、2022 年度の研修でのベトナム EVN のプレゼンによれば、最近、2019 年から 2021 年にかけては太陽光発電が大きく伸びたが、FIT 終了の影響か 2022 年での伸びはほとんどない。一方で、風力発電は 2021 年から 2022 年にかけて大幅に増加している。

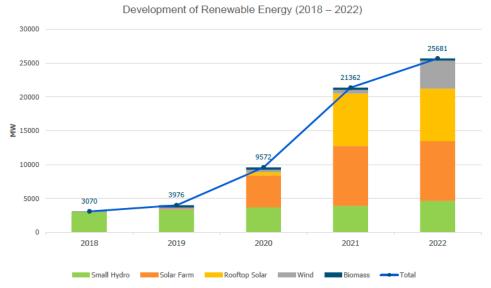


図 2.2-3 再生可能エネルギーの開発動向

(出所) 2022 年度ベトナム対象新エネ人材育成研修のベトナム EVN 資料抜粋

【まとめ】

ベトナムでは 2021 年の COP26 で 2050 年までのカーボンニュートラルを宣言したこともあり、現在、最終検討中の PDP8 でも大幅な再工ネ拡大目標が示される予定である。最近では太陽光発電に加え、風力発電、中でも洋上風力発電普及に向けた動きが活発である。

洋上風力発電は、再生可能エネルギーの中でも、太陽光発電と同様に大量導入が可能であり、また、コスト低減や経済波及効果も期待でき、我が国でも再エネ海洋利用法の創設、促進区域での入札の実施など、積極的に普及を進めつつある。ベトナムにおいても洋上風力は今後の普及が期待される電源であり、現在検討されている PDP8 では 2030 年に7GW という高い導入目標が示される模様である。また、日越の本分野における協力については、2022 年8月に、ベトナムのジエン商工大臣が訪日し、第5回日ベトナム産業・貿易・エネルギー委員会が開催された際に発出された閣僚声明・ファクトシートにおいて、洋上風力について関連制度構築支援の推進、日越企業による適地特定に向けた風況・地質調査申請における支援が合意された。このような背景を踏まえ、本年度のテーマとして、洋上風力発電を取り上げた。

また、太陽光発電、そして今後は洋上風力を含む風力発電など、変動再工ネ電源の普及が見込まれるベトナムにおいては、近い将来の系統安定化の課題が出てくると考えられる、ベトナム側との昨年度の情報交換においても、系統安定化の課題認識が度々挙がった。このような背景を受け、本年度のもう一つのテーマとして系統安定化(系統柔軟性)を取りあげた。

なお、本年度のベトナム研修は従来の新エネ人材研修のやり方とは異なり、日越のシンクタンク

(ベトナム: VIET、日本: 日本エネルギー経済研究所)で、先述した洋上風力発電に関しては、その海域利用に焦点を絞り、また系統安定化に関しては、その柔軟性などについて各国での現状などをまとめることからはじめた。その結果を受けて、冒頭でも記したように、①事前調査に関する小規模ミーティング、②ベトナムを対象としたワークショップ、③フォローアップ会議、の 3 構成で実施した。

【当研修の目的】

当研修は、上述した洋上風力の海域利用並びに系統柔軟性に関して、両国のシンクタンクの調査結果を中心に、①事前調査に関する小規模ミーティング、②ベトナムを対象としたワークショップ、③フォローアップ会議、の3構成で実施した。

各ミーティング・ワークショップ・会議での目的は以下のとおりである。

- (1)事前調査に関する小規模ミーティング
- ① 事前調査の内容を日越両国からベトナムの主要関係者に紹介し、ベトナムの専門家からの知見を得て、最終成果物に反映させる。
- ② ベトナム側とのワークショップに備え、ベトナム側の専門家からの意見・質問等も考慮して、ベトナムとのワークショップ参加者や、プログラム構成などを検討する。

(2)ベトナムを対象としたワークショップ

- ① 洋上風力に関しては、海域利用に関するベトナム側の問題意識とそれに対する日本側からの 提案を行う構成で、日越での本分野において協力できる分野を探求する。
- ② METI の助成事業を通し、風況調査など洋上風力の開発に取り組んでいる日本企業や、海外 投資を行っている JBIC にも参加して頂き、洋上風力のベトナムでの課題や将来性等につい て、ディスカッションを行い、両国での共通の理解を得られるようにする。
- ③ 系統柔軟性に関しては、より広く、ベトナム側はFIT終了以降、太陽光発電の普及が停滞していることも踏まえ、再エネ電源普及政策や企業のCO2削減意識の向上を背景としたDPPAの動向なども含め、多面的に再エネ電源普及と系統柔軟性に関して情報交換を行い、両国でのこの分野でも今後の協力できる分野を探った。

(3)フォローアップ会議

- ① これまでのベトナムとの洋上風力に関する打合せ、ワークショップなどを通して明らかになった 課題等をベトナムで洋上風力展開を図っていこうとしている企業と共有する。
- ② ベトナムでの洋上風力発電に取り組んでいる企業及び今後のプロジェクト形成には協力が必須となる金融機関・保険会社とクローズドな会議の場を設け、ベトナムでの洋上風力展開の諸課題についてディスカッションを行い、今後のベトナムとの協力や人材育成、さらには具体的な事業展開につなげていくことを目指す。

以下、上記3つの取り組みについて報告する。

2.2.2. 事前調査に関する小規模ミーティング

2.2.2.1. 日時•期間

2022年10月20日(木) 11:00~14:00(日本時間)

2.2.2.2. 形式、会場

形式:リモート(Webex)

会場:日本側:日本エネルギー経済研究所 11 階大会議室、ベトナム側:MOIT内会議室等 基本的に各自リモート接続

2.2.2.3. 参加者

表 2.2-5 小規模ミーティング参加組織

	招聘国	所属組織	参加人数
1		Ministry of Industry and Trede (MOIT)	4
2	ベトナム	Petro Vietnam (PVN)	1
3	ハトノム	Vietnam Initiative for Energy Transition (VIETSE)	2
4		合計	7

2.2.2.4. プログラム概要

日本側(IEEJ)からの発表

- (1)「日本の洋上風力の海域利用に関する法的枠組み」
- (2)「変動再エネの割合が高まる中で、如何に系統の柔軟性と混雑緩和を図るか 日本の経験と現状-」

ベトナム側(VIETSE)からの発表

- (1)「ベトナムの洋上風力の海域利用に関する法的枠組みのレビュー」
- (2)「変動再エネの割合が高まる中で系統の柔軟性を増強するための提言」

2.2.2.5. 挨拶要旨、講演要旨、質疑応答

開会挨拶1(経済産業省資源エネルギー庁)

洋上風力は、日越とも大きなポテンシャルを有し、第5回日ベトナム産業・貿易・エネルギー委員会において閣僚声明・ファクトシートにおいて、日越企業による適地特定等への支援に合意していることなどが紹介され、両国の再生可能エネルギー分野での協力強化への期待が述べられた。

開会挨拶 2(ベトナム MOIT)

Mr. Pham Nguyen Hung, Deputy Director General, EREA, MOIT

洋上風力は社会経済の発展やエネルギー安全保障の確保に繋がることから、重点的に開発に取り組んでおり、最新のPDP8においては洋上風力の発電量を2030年までに7GWの目標を示す予定であることなどが紹介された。

日本発表 1:「日本の洋上風力の海域利用に関する法的枠組み」

英題:Legal framework for the utilization of the sea areas for offshore wind in Japan

講演者:日本エネルギー経済研究所

【要旨】

本講義は、再エネ海域利用法が未整備のベトナムの参考になるように、日本の再エネ海域利用法をわかりやすくまとめ、今後のベトナム側の関連法策定の参考となることを目指したものである。

講義では、海洋再生可能エネルギー発電設備整備促進区域指定ガイドライおよび一般海域における占用公募制度の運用指針などの解説を行われた。また、洋上風力発電の開発は、大規模であり、多様な利害関係者が関与し、地域経済にも影響を与えるため、省庁間の連携や中央・地方政府の連携が重要であることも言及された。

ベトナム発表 1:「ベトナムの洋上風力の海域利用に関する法的枠組みのレビュー」

英題:Review legal framework on utilization of sea areas for offshore wind power in Vietnam 講演者:VIETSE

【要旨】

本報告は、ベトナムでの風力発電開発状況及び関連する法的枠組みについて日越間で共有することを目的としたものである。

報告では、ベトナムの風力発電計画などの紹介に加え、海域活用の法的枠組みの変遷が詳しく紹介され、海域割当ての基礎となる関連計画がまだ承認されていないことなどの課題が提起された。

日本発表 2:「変動再エネの割合が高まる中で、如何に系統の柔軟性と混雑緩和を図るか - 日本の経験と現状-」

英題:How to increase in grid flexibility and mitigate grid congestion as a result of higher share of VRE? - A Japanese experience and current status

講演者:日本エネルギー経済研究所

【要旨】

本講義は、再エネが急速に拡大しているベトナムにおいて、今後より重要な課題となる系統の柔軟件に関して、日本のこれまでの取り組みを共有することを目的とする。

講義では、再エネ電源の普及を図るために日本がこれまで取り組んできた、容量市場・調整力市場の設立、DR、アグリゲーターの確保、再エネ発電予測の精緻化および蓄電池の導入等の様々な施策を紹介した。

ベトナム発表 2:「変動再エネの割合が高まる中で系統の柔軟性を増強するための提言」

英題:Recommendation to increasing grid flexibility to accommodate higher shares of VRE in Vietnam

講演者: VIETSE

【要旨】

本報告は、ベトナムでの再エネ拡大に対応するための課題を日越間で共有し、今後、この分野で協力できる分野を検討することを目的としたものである。

報告では、技術的課題としては、再工ネ電源と給電センターとの空間的なミスマッチ、系統拡張に時間がかかること、スマートグリッドと蓄電池はベトナムではまだ導入されていないことなどが紹介され、その他、スマートグリッド開発へのインセンティブがないこと等の財政的課題や補助的なサービスに対する支援制度がないなどの制度的課題も報告された。

2.2.3. ベトナムを対象としたワークショップ

2.2.3.1 日時•期間

2022年12月6日(火)

2.2.3.2 形式、会場

形式:リモート(Webex)

会場:日本側:株式会社アイ・エス・エス(会議室・ITの外注先)会議室、

ベトナム側:MOIT内会議室等

その他、基本的に各自リモート接続

2.2.3.3 参加者

表 2.2-6 ベトナムとの WS 参加組織

	招聘国	所属組織			
1		Ministry of	Electricity and Renewable Energy Authority (EREA)	3	
2		Industry and	Electricity Regulatory Authority of Vietnam (ERAB)	1	
3		Trede (MOIT)	Coal, Oil and Gas Department	2	
4		Vietnam Electrici	ty (EVN)	2	
5		National Load Dis	spatch Center	9	
6		Northern Region	Load Dispatch Center	12	
7		Middle Regional	Middle Regional Load Dispatch Center		
8		Southern Region Load Dispat Center			
9	ベトナム	United Nations Developmet Prigramme (UNDP)			
10		Japan Intenational Cooperation Agency (JICA)			
11		WWF Vietnam			
12		Hanoi University of Science and Technology			
13		Electric Power University			
14		Climate Sense			
15		Pioneer			
16		VIETSE			
		合計			

2.2.3.4 プログラム概要

◆Session 1: Offshore wind power - Discussion on legal framework for offshore wind development and investment

日本側からの発表

- (1)「日本の洋上風力発電政策の紹介」(METI)
- (2)「日本の洋上風力の海域利用に関する法的枠組み」(IEEJ)
- (3) パネルディスカッション(各参加企業)

ベトナム側からの発表

- (1)「洋上風力発電のための海域利用のための法的枠組みの見直し」(VIET)
- (2) 「国の電源開発基本計画における洋上風力発電 -ロードマップと課題-」(MOIT)
- ◆Session 2: Promotion of RE and secure electricity grid Issue mapping -

日本側からの発表

- (1)「最近の再生可能エネルギーの状況と再生可能エネルギー拡大のための制度」(METI)
- (2)「VRE 導入による系統の柔軟性向上と混雑緩和の方法とは?-日本の経験と現状」(IEEJ)
- (3)「需要家主体の再生可能エネルギー投資を促進し、グリッドを安定化させる」(AMEICC) ベトナム側からの発表
- (1)「ベトナムの電力系統と再生可能エネルギーの開発」(EVN)
- (2)「ベトナムにおける VRE の高いシェアに対応するための送電網の柔軟性の見直し」(VIET)

2.2.3.5 挨拶要旨、講演要旨、質疑応答

開会挨拶1(経済産業省資源エネルギー庁)

【要旨】

アジア地域の実情に即した脱炭素化と経済成長という共通理念を掲げ、アジア地域全体の脱炭素化を目指す枠組みである「アジア・ゼロエミッション共同体構想」は、ベトナムからも賛同をいただいている。本日の研修で取り扱う洋上風力や系統の安定化は脱炭素化にとって重要であり、本ワークショップを通して、洋上風力や、エネルギートランジション全般での両国の協力関係が一層強まることを祈念する。

開会挨拶 2(ベトナム MOIT)

【要旨】

現在検討している PDP8 においては、2030 年までには洋上風力の設備容量 7GW を目標とする 等、化石燃料から再エネへの積極的な移行を目指している。2050 年には総エネルギーの 50%が再エネによって供給される見込み。日本が提案している「アジア・ゼロエミッション共同体構想」について、ベトナムとしては支持したいと考えている。本日のワークショップでの様々な課題・チャレンジについての意見交換によってもたらされる情報がベトナムのエネルギートランジションとエネルギー有効活用を目指す政策立案に大きく寄与することを確信している。

◆Session 1: Offshore wind power - Discussion on legal framework for offshore wind development and investment

日本発表 1:「日本の洋上風力発電政策の紹介」

英題:Introduction of Japan's offshore wind policy

講演者:経済産業省資源エネルギー庁

【要旨】

本講義は、日本の洋上風力産業ビジョンの紹介や洋上風力の開発状況をベトナム側と共有し、今後のベトナムでの洋上風力開発の参考としてもらうことを目的とする。

講義では、洋上風力産業ビジョンでの設備容量、コスト目標などを紹介し、再エネ海域利用法による着実な洋上風力の案件形成を進めていることなども紹介された。

ベトナム発表 1:「洋上風力発電のための海域利用のための法的枠組みの見直し」

英題:Review the legal framework for the utilization of sea areas for offshore wind power

講演者: VIETSE

【要旨】

本報告は、ベトナムでの最近10年間の電力系統が急速な発展や、風力発電開発状況及び洋上

95

風力に関連する法的枠組みについて日越間で共有することを目的としたものである。

報告では、ベトナムの風力発電計画などの紹介に加え、海域活用の法的枠組みの変遷が詳しく 紹介され、海域割当ての基礎となる関連計画がまだ承認されていないことや洋上風力に関する技 術的な規制・規格が十分に整備されていないこと等の課題が挙げられた。

日本発表 2:「日本の洋上風力の海域利用に関する法的枠組み」

英題:Legal framework for the utilization of sea areas for offshore wind in Japan

講演者:日本エネルギー経済研究所

【要旨】

本講義は、先のベトナム側との小規模会議での質問などに基づいて、特にベトナム側の関心が高い分野を改めて整理し、再エネ海域利用法やオークションについてベトナム側との情報共有の促進を図ることを目的とする。

講義では、一般海域における推進区域を指定した入札の仕組み、海洋再生可能エネルギー発電設備整備促進区域指定ガイドライおよび一般海域における占用公募制度の運用指針などをわかりやすく整理し紹介した。また、各促進区域における協議会の設置は地域のステークホルダーとの調整など、洋上風力発電の開発にあたって重要なポイントを言及した。

ベトナム発表 2:「国の電源開発基本計画における洋上風力発電 -ロードマップと課題-」

英題: Offshore wind power in the national power development master plan -Roadmap and challenges-

講演者: Ministry of Industry and Trade (MOIT)

【两台】

本報告は、ベトナムの電源開発のこれまでの状況や今後の見通しなどを共有し、再エネ普及が及ぼす影響等について両国間で共有することを目的とする。

報告では、電源別の設備容量推移や国内の送配電の実状などが紹介され、海底ケーブルのルート選定等、洋上風力への投資・開発における課題は多く、日本から共有された経験を解決に役立てたいことが言及された。

◆パネルディスカッション

モデレーター: 日本エネルギー経済研究所

【要旨】

ベトナムで洋上風力の FS を実施している企業や金融機関なども含めて、各企業の取り組みを簡単に紹介したうえで、ベトナムでの洋上風力開発の課題等についてディスカッションを行った。

◆Session 2: Promotion of RE and secure electricity grid - Issue mapping -

日本発表 7:「最近の再生可能エネルギーの状況と再生可能エネルギー拡大のための制度」

英題:Recent renewable energy status and institutions to expand renewables

講演者:経済産業省資源エネルギー庁

【要旨】

本講義は、最近の再エネの状況とその普及拡大のための様々な取り組みを共有し、今後、系統の柔軟性が課題となってくるベトナムの参考にしてもらうことを目的としたものである。

講義では、FIT から FIP にわたる日本の再エネ普及制度や PPA、日本版コネクト&マネージの取り組みなどについて紹介した。

ベトナム発表 3:「ベトナムの電力系統と再生可能エネルギーの開発」

英題:Development of Vietnam power system and renewable energy

講演者:EVN

【要旨】

本報告は、ベトナムの電力系統と再生可能エネルギーの開発について両国間で共有することを 目的とする。

報告では、地域別の再エネポテンシャルや電力系統の詳細が解説され、また、洋上風力について予見性のある法制度が必要であることなどが述べられた。

日本発表 8:「VRE 導入による系統の柔軟性向上と混雑緩和の方法とは?-日本の経験と現状」 英題:How to increase in grid flexibility and mitigate grid congestion as a result of higher share of VRE? -A Japanese experience and current status

講演者:日本エネルギー経済研究所

【要旨】

本講義は、再エネが急速に拡大しているベトナムにおいて、今後より重要な課題となる系統の柔軟性に関して、日本のこれまでの取り組みを共有することを目的とする。

講義では、再エネ電源の普及を図るために日本がこれまで取り組んできた、容量市場・調整力市場の設立、DR、アグリゲーターの確保、再エネ発電予測の精緻化および蓄電池の導入等の様々な施策を紹介した。

ベトナム発表 4:「ベトナムにおける VRE の高いシェアに対応するための送電網の柔軟性の見直し」 英題:Review the grid flexibility to accommodate higher shares of VRE in Vietnam

講演者: VIETSE

【要旨】

本報告は、ベトナムでの再エネ拡大に対応するための課題を日越間で共有し、今後、この分野で協力できる分野を検討することを目的としたものである。

報告では、再エネ導入の多い地域と需要の大きい地域が離れていること、系統増強は電源開発と比較して長い時間を要することなどの課題が述べられ、また、系統整備に膨大なコストを要するこ

と、スマートグリッド開発へのインセンティブが整備されていないことなどの資金的な課題についても言及された。

日本発表 9:「需要家主体の再生可能エネルギー投資を促進し、グリッドを安定化させる」

英題:Spur Energy User Oriented Renewable Investments with stabilizing grid

講演者: 日アセアン経済産業協力委員会(AMEICC)

【要旨】

本講義は、再エネ普及推進のための手段として PPA などによる調達方法を紹介し、ベトナム側の 参考としてもらうことを目指した。

講義では、需要家と協業して行うオフサイト PPA は、公的な支出を伴わずに再エネ新規投資を促進できること、需要家の最終商品がグリーンとみなされることなどのメリットを紹介した。

閉会挨拶 1(在ベトナム日本国大使館)

【要旨】

本日の議論を、ベトナムでの施策の立案・遂行にあたっての材料としてもらいたい。在ベトナム日本国大使館を含む日本政府としても、引き続き、日ベトナム共同プロジェクトの組成の後押しなどに取り組んでいきたい。

閉会挨拶 2(EREA)

【要旨】

ベトナムでは、再エネ、特に洋上風力を活用して、国家のエネルギートランジッション計画を実現 しようと取り組んでおり、そのためには、系統・蓄電設備の整備が必要となる。今後両国で更なる協力を出来ることを期待している。

- 2.2.4. フォローアップ会議
- 2.2.4.1 日時•期間

2023年3月9日(木)

2.2.4.2 形式、会場

形式:ハイブリッド(Teams)

会場:日本エネルギー経済研究所会議室、

2.2.4.3 参加者

日本企業:15名、金融機関等:5名

2.2.4.4 プログラム概要

表 2.2-7 プログラム概要

時間	プログラム内容
10:00~10:05	経済産業省資源エネルギー庁: METI のアジア戦略(AZEC)について
10:05~10:20	IEEJ:ベトナムで洋上風力関係の法整備状況、今後の課題、日本が貢献できる分野
	等に関する講演(ベトナムとの WS を踏まえて)
10:20~10:50	参加企業からの活動状況説明と課題提示(5 分×6社)
10:50~11:55	ディスカッション:
	① 現状のベトナムでの洋上風力開発でネックになっているものは何か? ・海洋利用法の未整備 ・主要官庁(MONRE)が動かない ・中央と地方行政とのコンフリクト ・技術展開を行っていく上での問題点 ・金融、保険面からの課題は何か など ② 上記の状況を改善していくために、今後、何をしていく必要があるか? ・MOE、MONREに働きかけることは何か ・G to G でどのような対話が必要か ・日本政府の支援として何が必要か ・新エネ人材の枠組みを通して何を期待するか など
11:55~12:00	経済産業省資源エネルギー庁:統括、クロージング

2.2.4.5 挨拶要旨、講演要旨、質疑応答

開会挨拶(経済産業省資源エネルギー庁)

【要旨】

先週末開催した「アジア・ゼロエミッション共同体(AZEC) 閣僚会議」は、AZEC パートナー国と、カーボンニュートラルに向けて「One Goal, Various Pathways」の認識に立った現実的なエネルギー・トランジションを進めることなどを共有することを目的とした。洋上風力を含む再エネのアジア地域への導入促進は、AZEC の下でも重要な取組の一つとして進めていく。本日の議論が官民一体となってアジア市場を開拓していくためのよい機会となることを期待。

エネ研報告:「これまでの経緯と今後の展開に向けた論点整理」

講演者:日本エネルギー経済研究所

【要旨】

本講義は、ベトナムとの洋上風力に関するこれまでの経緯を共有し、今後の課題に関する参考にしてもらうことを目的とする。

講義では、ここ数年のベトナムとの洋上風力に関する協議の詳細を紹介し、今後の課題や日本 が貢献できる分野について述べられた。

◆ディスカッション

モデレーター:日本エネルギー経済研究所

【要旨】

参加企業からの簡単な挨拶に続き、ベトナムでの洋上風力の展開に関しての課題や今後の取り 組みの方向性などについてディスカッションを行った。

統括、クロージング(経済産業省資源エネルギー庁)

ベトナムでの洋上風力の開発にあたって、どこが日本の強みかというところも、関係する企業の 皆さまの意見を取り入れながら進めていきたい。

2.2.5. 成果/展望

- ▶ 今回のベトナム研修は通常の研修事業と異なり、①事前調査に関する小規模ミーティング、 ②ベトナムを対象としたワークショップ、③フォローアップ会議、の構成で実施した。
- ▶ 事前調査に関する小規模ミーティングでは MOIT の洋上風力関係者を中心として、洋上風力 分野でかなり深い議論ができ、その後の調査のまとめなどにも参考となった。
- ➤ ベトナムを対象としたワークショップでは METI の補助事業を用いてベトナムで洋上風力の FS を実施している事業者や金融機関である JBIC も参加し、事前に実施したベトナム側の洋上 風力の法的枠組み等の調査内容の報告も含めて、日越間での討議を行い、ベトナムでの洋上風力の開発に関する諸課題(法的枠組みの早期の策定など)を明確にすることができた。
- ➤ フォローアップ会議は、FS 関係企業と金融・保険関係の会社に限ったクローズドの会議として 実施した。
- ▶ 継続的にベトナム政府と協議していくことの重要性は再確認できたため、ベトナム側との協議を引き続き進め、MOIT だけではなく、MONRE 等、洋上風力の関係機関にコンタクトし、日本の洋上風力の視察なども含め、日越間での洋上風力推進に向けた有効な取り組みを探求していく。

2.3. タイ対象再エネ現地/オンラインハイブリッド研修

2.3.1. 日時•期間

2022年12月15日11:00-19:00(日本時間)

2.3.2. 主会場

タイ会場(現地講師、参加者):Pathumwan Princess Hotel M 階 B Ballroom

事務局:フクラシア八重洲 J会議室

日本側講師及び一部参加者は、オンライン参加

2.3.3. 背景と目的

タイでは 2021 年 8 月に、国家エネルギー政策評議会 (NEPC) が、カーボンニュートラルを 2065 年~70 年に達成することを目指す国家エネルギー計画 (National Energy Plan) の大枠を承認した ⁹³。現在までの電源開発計画 2015-2036 (Power Development Plan 2015-2036, PDP2015)」、及び その改訂版の PDP2018 では 2036 年の再エネ導入目標を 20%としていたが、上記に目標のため エネルギー省はカーボンニュートラルを目指すために、今後 10 年程度の電力分野における必要 な取り組みとして下記を挙げている。

- ▶ 電力分野における再生可能エネルギー比率を50%以上に引き上げ
- ➤ 電気自動車(EV)利用の促進
- ▶ 電力グリッドの近代化
- ▶ 発電消費者(プロシューマ)を増やすための規制緩和

現在までの再エネの買取り制度は EGAT または PEA、MEA の電力網を利用する場合は事前契約による買取り(PPA: Power Purchase Agreement)を前提としており、日本で急速に進む自己託送制度を活用したオフサイト PPA 等の消費者主導による再エネ導入に至っていない。

これに対しタイ工業連盟(FTI)が 2022 年に 45 業種 220 社を対象に実施した調査によると「再生可能エネルギー振興のため、政府が実施するべき政策は何か」との質問では、75.5%が「製造業の事業者による発電を奨励」、60.5%が「発電、売電の手続き簡素化のため、ワンストップセンターを設置」、58.6%が「電気料金体系の改革」、58.6%が「民間企業による 1 メガワット以下の発電について、免許取得を免除して容認する」と回答したと報じられている 94。

他方、日本とタイの間では2021年5月タイスパッタナポン副首相兼エネルギー大臣と梶原経済

_

⁹³ https://www.jetro.go.jp/biznews/2021/08/dc2290a9449596a7 html

⁹⁴ バンコクポスト 2022 年 10 月 1 日 (「企業の 8 割、再生エネ奨励策を要望=FTI」) NNA Asia 2022-10-3)

産業大臣とのテレビ会談 ⁹⁵、エネルギー省と経済産業省の間でのカーボンニュートラルに向けた覚書、2022 年 1 月スパッタナポン副首相兼エネルギー大臣と萩生田経済産業大臣との AETI(Asia Energy Transition Initiative)を含む会談 ⁹⁶、5 月の AZEC(Asia Zero Emission Community、アジア・ゼロエミッション共同体構想)合意 ⁹⁷等の再エネ促進を含むカーボンニュートラルに向けた取組みに合意されている。

【当研修の目的】

本研修においてはアジア・ゼロエミッション共同体構想も視野に入れタイの事情に応じた再エネの売電制度、オフサイト PPA における託送制度、日本において太陽光の逆潮流を可能とする過去の実証事業や電力網接続制度の枠組み、電力会社の運営等の紹介、議論を通じて、タイの再エネ促進への貢献を目指す。

2.3.4. 招聘者

政府、電力会社、業界団体、大学等からオンライン、現地会場加合わせて約74名を招聘。

所属機関 参加者数 エネルギー省(DEDE) 1 16 2 エネルギー省(EPPO) 2 3 天然環境資源省(ONEP) 3 バンコク首都政府(BMA) 3 工業団地機構(IEAT) 2 5 電力会社(EGAT, MEA、PEA) 12 6 7 業界団体(PV協会、銀行協会) 9 8 大学関係者(委託先含む)等 27

表 2.3-1 招聘組織

2.3.5. セッション概要

表 2.3-2 セッション概要

日程	実施内容	
セッション 1 (PPA)	日本側からの講義(4件) カントリーレポート(2件)	
セッション2 (系統安定化/太陽光逆潮流)	日本側からの講義(4件) カントリーレポート(2件)	

⁹⁵ https://www.meti.go.jp/press/2021/05/20210521003/20210521003.html

102

⁹⁶ https://www.meti.go.jp/press/2021/01/20220113003/20220113003 html

⁹⁷ https://www.enecho.meti.go.jp/en/press/2022/0531_01 html

2.3.6. プログラム概要

日本側からの講義:

- (1)「再生可能エネルギーの最近の動向と再エネ導入の促進のための制度」
- (2)「日本の託送料金制度」
- (3)「再生可能エネルギー多発下における東京電力送電網の電力系統運用」
- (4)「日本における PPA 制度」
- (5)「NEDO 国際実証事業における工業団地での太陽光発電導入容量の最大化」
- (6)「配電網の電力システム管理」
- (7)「群馬県太田市家庭用 PV 集中連係実証試験」
- (8)「日本での電力網接続ルール」

カントリーレポート:

- (1)「タイの国家エネルギー政策における代替エネルギー開発計画とエネルギー効率化計画」
- (2)「カーボンニュートラル工業団地」
- (3) 「タイスマートグリッド行動計画 2022」
- (4)「配電ネットワークの電源管理」

2.3.7. 成果/展望

今回の研修はオフサイトPPTを念頭に置いて、講義のテーマはPPA、逆潮流での系統安定化に 焦点をあてて実施した。全般にタイ側関心が自己託送制度を取り入れる前のPV 余剰電力の逆潮 流を課題とする段階であると感じられた。本研修の継続にあたって、日本の託送制度導入までの 歴史を考えれば、まず商業用PVからの逆潮流(FIT)や電力市場の自由化などの講義項目も含ん だ上で、託送制度の講演を実施することが適切と思われる。

2.3.8. 講演要旨

セッション 1: PPA(電力販売契約)

カントリーレポート1 「タイの国家エネルギー政策における代替エネルギー開発計画とエネルギー 効率化計画」

講演者: Department of Alternative Energy Development and Efficiency (DEDE), Ministry of Energy 【要旨】

本報告は、タイにおける再工ネ導入計画に関する最新情報を、日本側を含む研修参加者と共有することを目的としたものである。

報告では、国家エネルギー政策(NEP)、BCG(バイオ・循環型・グリーン)モデルのエネルギー分野等に関する説明が行われた。

講義1「再生可能エネルギーの最近の動向と再エネ導入の促進のための制度」

講演者:経済産業省 資源エネルギー庁

【要旨】

本講義は、日本における再工ネ促進制度と導入動向等の共有を通じて、タイにおける再工ネ利用の促進を目的としたものである。

講義では、日本のエネルギー計画、FIT 制度、PPA 制度、また ASEAN での経済産業省の再エネ普及の取組み等が紹介された。

講義2「日本の託送料金制度」

講演者:経済産業省 電力・ガス取引監視等委員会事務局

【要旨】

本講義は、日本の託送料金制度の共有を通じて、タイにおける PPA の促進及び託送制度の開始を目的としたものである。

講義では、日本の電力自由化、託送制度の概要、将来の目標等が紹介された。

講義3「再生可能エネルギー多発下における東京電力送電網の電力系統運用」

講演者: 東京電力パワーグリッド株式会社

【要旨】

本講義は、日本の送電網における変動再エネ対策の共有を通じて、タイにおけるオフサイトPPA の開始を目的としたものである。

講義では、日本の電力安定化対策、既存の電力網の最大限活用化の手法等が紹介された。

カントリーレポート2「カーボンニュートラル工業団地」

講演者: Industrial Estate Authority of Thailand

本報告は、タイにおけるカーボンニュートラル工業団地に関する最新情報を、日本側を含む研修参加者と共有することを目的としたものである。

報告では、エコ工業団地の歴史と将来目標、カーボンニュートラルを達成するためのプログラム 等に関する説明が行われた。

講義4「日本におけるPPA制度」

講演者: 自然・インターナショナル(タイランド)株式会社

【要旨】

本講義は、日本における PPA 制度やそれを活用した具体的事例の共有を通じて、タイにおけるオフサイト PPA の開始を目的としたものである。

講義では、日本における PPA 制度の分類、またタイにはオフサイト PPA が規制されていること等が紹介された。

議論1「PPA について」

モデレーター:一般財団法人日本エネルギー経済研究所

【要旨】

本議論は、ここまでの内容についてのタイからのコメント及び質疑応答による理解促進を目的としたものである。

タイ参加者からタイのグリッドコード変更の必要性、ノンファーム型接続への対応、ネットメータリングに関する質問の他に、日本の慣性インバータの導入状況等について質疑がなされた。

セッション 2: Grid Stabilization(送電網安定化)/Reverse Flow(逆潮流)

カントリーレポート3 「タイスマートグリッド行動計画 2022」

講演者: Energy Policy and Planning Office (EPPO), Ministry of Energy

【要旨】

本報告は、タイスマートグリッド行動計画に関する最新情報を、日本側を含む研修参加者と共有することを目的としたものである。

報告では、スマートグリッドシステムの開発サポート、中期スマートグリッド効率化計画等を含むスマートグリッド開発行動計画の概要等に関する説明が行われた。

講義 5 「NEDO 国際実証事業における工業団地での最大級の太陽光発電容量導入」 講演者:関西電力株式会社

【要旨】

本講義は、タイ工業団地内の自営線における変動再エネ制御技術に関するNEDO 実証の共有を通じて、タイにおける太陽光発電の更なる導入拡大を目的としたものである。

講義では、同 NEDO 実証の取組み、今後の計画等が紹介された。

講義6「配電網の電力システム管理」

講演者: 東京電力パワーグリッド株式会社

【要旨】

本講義は、日本の配電網における変動再エネ対策の共有を通じて、タイにおける太陽光発電のより導入拡大を目的としたものである。

講義では、配電網に接続する際の課題と対応策のプロセス、ルール策定の重要性等が紹介された。

カントリーレポート4「配電ネットワークの電源管理」

講演者: Metropolitan Electricity Authority

【要旨】

本報告は、タイ配電公社における配電網への接続に関する最新情報を、日本側を含む研修参

加者と共有することを目的としたものである。

報告では、MEA の接続グリッドコードの概要、EV の電力網接続に関する取組等についての説明が行われた。

講義 7 「群馬県太田市家庭用 PV 集中連係実証試験」

講演者:株式会社関電工

【要旨】

本講義は、かつて日本の太陽光余剰買取制度及び太陽光 FIT 制度の開始にあたって技術的 裏付けとなった実証事業の共有を通じて、タイにおける太陽光発電のより導入拡大を目的としたも のである。

講義では、群馬県太田市で実施された NEDO 実証の概要及び成果等が紹介された。

講義8「日本の系統連携規程の進展」

講演者: 国際協力機構

【要旨】

本講義は、日本の電力網接続に対するルール設定手法の概要の共有を通じて、タイにおける 太陽光発電のより導入拡大を目的としたものである。

講義では、日本の分散型電源の系統連系規定の制定の歴史、規定改訂の関係者、改訂頻度 等が紹介された。

議論2「系統安定化、太陽光逆潮流について」

モデレーター:一般財団法人日本エネルギー経済研究所

【要旨】

本議論は、ここまでの内容についてのタイ側からのコメント及び質疑応答による理解促進を目的としたものである。

タイにおけるデマンドレスポンスに関する質疑、またタイが進めようとする将来のプロシューマ、 VPP/アグリゲーター支援等を進めるにあたって、系統連系規定の見直しの重要性が増すなどのコメントがなされた。

以上

2.4. エジプト対象水素・燃料電池専門家派遣(ハイブリッド)研修

2.4.1. 日時•期間

2023年2月20日、21日実施

2.4.2. 主会場

エジプト側: Steigenberger Hotel El Tahrir

日本側:アクセア半蔵門貸会議室

2.4.3. 背景と目的

【エジプトの再生可能エネルギー政策】

エジプトは北アフリカおよびアラブ世界で最も人口が多く、2020年時点で1億233万人となっている。世界的に見てもその増加率は高く、エネルギー需要急増の要因となっている。

エジプトにおけるエネルギー政策は、新国家再生可能エネルギー戦略 (New National Renewable Energy Strategy、2008 年 2 月承認)、持続可能開発戦略:ビジョン 2030 (Sustainable Development Strategy: Egypt Vision 2030⁹⁸(以下 Vision 2030)、2015 年 3 月発表)、および 2035 年までの包括的持続可能エネルギー戦略 (Integrated Sustainable Energy Strategy (ISES) to 2035⁹⁹(以下 ISES)、2016 年 10 月発表)などに基づいて立案、施行されている。

新国家再生可能エネルギー戦略は、エネルギー最高評議会(Supreme Council of Energy (以下 SCE))により立案されたもので、当初 2020 年までに発電量の 20%を再生可能エネルギー(以下、適宜再エネと表記)で賄う目標が設定されていたが、上述した ISES で、2022 年までと目標を後ろ倒しにした。20%の内訳は、風力 12%(7.2GW)、水力 6%(2.8GW)、太陽光 2%(1,320MW)と、風力発電を主力再エネ電源と位置付けている。

Vision 2030 では、エネルギー政策について下記のような基本方針が示されている。

- ➤ エネルギー部門では国が掲げる持続可能な開発のための要件を満たしつつ、従来のエネルギー源および再生可能エネルギー源を最大限、効率的に利用することにより、環境を保全しつつ社会正義の実現や経済成長に寄与する。
- ▶ 再エネとエネルギーの効率的な利用における指導的な役割を担い、革新的技術により、国内外の開発状況を予見し、持続可能な開発目標(Sustainable Development Goals, SDGs) に沿った開発を行う。

また、Vision 2030 では 2030 年までに必要なエネルギー関連プログラム、プロジェクトとして下記 9 項目が挙げられている。

⁹⁸ Green Growth Knowledge Platform, "Sustainable Development Strategy: Egypt vision 2030," https://www.greengrowthknowledge.org/national-documents/sustainable-development-strategy-egypt-vision-2030 (2022 年 8 月 31 日アクセス)

⁹⁹ http://nrea.gov.eg/test/en/About/Strategy (2022年8月31日アクセス)

- 1. 中長期の総合エネルギー戦略の策定
- 2. エネルギー部門の再構築
- 3. 現在の法的枠組みの改革
- 4. エネルギー補助金の効率改善
- 5. エネルギー部門におけるインフラ開発
- 6. エネルギー部門におけるイノベーションの促進
- 7. 環境基準と正確な尺度の導入
- 8. 専門技能開発の改善
- 9. ダバー(Dab'aa)における原子力発電所の設立

ISES は EU の支援 ¹⁰⁰により策定されたもので、SCE が幾つかのシナリオの内、技術的、経済的 (最小費用)視点からシナリオ 4B を採択したものである。これにより、2035 年の電源構成の目標である再エネ 42% (内、集光型太陽熱発電(CSP) 4%、太陽光 22%、風力 14%、水力 2%)、原子力 3.3%、火力発電 55% (内、石炭発電 16%)が設定された。2022 年の目標と異なり、再エネの内、太陽光発電が主力電源としていることが注目される。また、2014 年の EU の素案立案当時は電力の需給逼迫が問題となっており、輸入天然ガスの代替として安価な石炭の輸入を選択肢として計画に入れたことも考慮する必要がある。その後の天然ガス田の発見や環境問題に対する危機感、また、バイオマス発電の過小評価など、計画の定期的な見直しの必要性が指摘されている ¹⁰¹。

一方で、2022 年 11 月に COP27 をシャルム・エル・シェイクでホストしたエジプト政府は、同年 5 月、エジプト国家気候変動戦略 2050 (Egypt National Climate Change Strategy 2050)を発表した 102。同戦略は、5 つの目標 (Goals) とその詳細となる 22 の活動指針 (Objectives) とで構成されている。目標は以下の通りで、目標 1 と 2 を中核目標としている。

目標 1: 様々なセクターで持続可能で低炭素な経済成長を実現すること。

目標 2: 気候変動に対するレジリエンスと適応能力を強化し、関連するネガティブインパクトを緩和すること。

目標 3: 気候変動アクションのガバナンスおよびマネジメントを強化すること。

目標 4: 気候変動対策の財政支援基盤を強化すること。

目標 5: 気候変動と戦うための科学的調査、技術移転、ナレッジ・マネジメント、および 認識を強化すること。

【エジプトの再生可能エネルギー政策執行機関および関連機関】

100 https://sustainableenergyegypt.com/project/(2022年8月31日アクセス)、EUの他、ヨーロッパでは国レベル、例えばドイツの Egyptian — German Joint Committee on Renewable Energy, Energy Efficiency and Environmental Protection (JCEE)などの協力関係が存在する。

¹⁰¹ https://www.irena.org/-

[/]media/Files/IRENA/Agency/Publication/2018/Oct/IRENA_Outlook_Egypt_2018_En.pdf (2022 年 8 月 31 日アクセス)

¹⁰² https://www.eeaa.gov.eg/portals/0/eeaaReports/N-CC/EgyptNSCC-2050-Summary-En.pdf (2022 年 8 月 31 日アクセス)

再エネを含む電力・エネルギー政策は電力・再生可能エネルギー省(Ministry of Electricity and Renewable Energy, MoERE)が管轄しており、1986年に当時の電力エネルギー省傘下に新エネルギーや再エネを専門的に推進する機関として、新・再生可能エネルギー庁(New and Renewable Energy Authority, NREA)が設立された。

NREA の主な役割としては、以下が掲げられている。

- 1. 再エネ資源量の評価
- 2. 再エネ資源、特に太陽光、風力、バイオマスの資源開発に資する研究・開発・実証
- 3. 再エネプロジェクトの実施
- 4. 再エネ設備およびシステムに関する国内標準規格の開発、性能試験・評価、認証の供与
- 5. 再エネ分野におけるコンサルタントサービスの提供
- 6. 再エネ設備の国産化に向けた開発・技術移転
- 7. 上記に関わる情報提供と人材育成

水力発電の開発に関しては電力・再生可能エネルギー省傘下の水力発電庁 (Hydro Power Plants Executive Authority, HPPEA) が実施している。HPPEA は 1976 年に発足し、大・小規模の水力発電、また揚水を用いた発電および電力貯蔵に関する技術研開発や事業化可能性調査を実施してきた。

発電事業は国営エジプト電力持株会社(Egyptian Electricity Holding Company, EEHC)が担当している。EEHCの傘下にそれぞれ発電、送電、配電の事業会社があり、発電事業に関しては5地域に分割した地域発電会社と水力発電会社の発電会社6社、送電会社1社、地域別の配電会社9社を有する。

【エジプトの再生可能エネルギー導入状況】

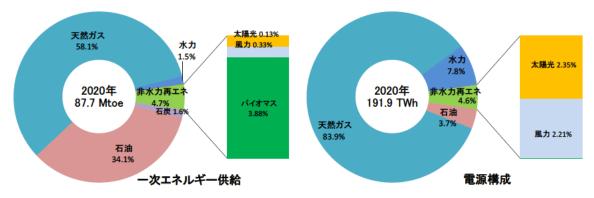


図 2.4-1 エジプトの1次エネルギー供給構成および電源構成(2020年)

(出所) IEA, World Energy Statistics and Balances 2022 より作成

図 2.4-1 の通り、最新の IEA の統計によると、エジプトの発電量ベースの電源構成は、天然ガスが 83.9%と大部分を占め、化石燃料の中では石炭発電がないのが特徴的である 103。また、水力発電が 7.8%を占め、再工ネ電源の中では第 1 位の発電量となっており、太陽光発電が 2.35%で第 2 位、風力発電が 2.21%で第 3 位となっている。尚、最新の 2020-2021 年 104の EEHC のアニュアルレポートによると、水力、風力および太陽光発電の設備容量は 2020 年度から増減なし、火力発電の設備容量は減少している。一方、発電量ベースでは、風力および太陽光発電量の増加により、再エネの発電量は、23,701GWhから 24,971GWh に増加している。ピークロードは 2020 年度の 32,000MW から 31,900MW に減少しているため、アニュアルレポートにおける記述は見当たらないが、新型コロナによる景気減速の影響によるものと推測される。

一方、この 20 年間の再エネの発電量の推移(図 2.4-2 参照)を見ると、一貫して水力発電が主力電源であることには変わりはないが、ここ 10 数年風力発電が増加してきていること、更に直近 2 年間の太陽光の増加により、再エネシェアを押し上げたのが見て取れる。

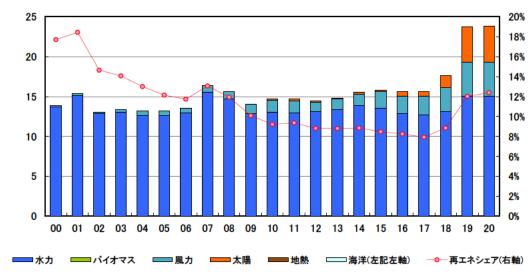


図 2.4-2 エジプトの再エネ電源構成および再エネシェアの推移 (発電量ベース)

(出所) IEA, World Energy Statistics and Balances 2022 より作成

新国家再生可能エネルギー戦略によると、風力発電の導入目標量の 1/3 は NERA が主体となり国際機関の支援を受けつつ公共事業として実施し、残りの 2/3 については民間事業として実現する見通しとなっている。民間事業として実施するプロジェクトについては、次の 3 ステップが想定されている。

- 1. 国際競争入札の実施
- 2. 国際競争入札の結果を踏まえて設定される固定価格買取制度(Feed-in Tariff, FIT)の実施

-

¹⁰³ 前述の通り、ISES to 2035 のシナリオ 4B では、石炭火力発電が含まれる。

¹⁰⁴ エジプトの会計年度は7月1日-6月30日である。

3. 余剰電力の電力系統への逆潮流・買取(EEHC 傘下の送電公社を経由し独自の顧客へ販売する第三者アクセススキーム)を含む再エネ発電事業の実現

尚、再エネ発電事業の開発に必要な土地については、砂漠地域から 7,600 平方キロメートル以上が割り当てられており、NREA は既に 2014 年時点でその土地の譲渡を受けている。また、環境影響評価後の 2016 年には大統領令 2016 年第 113 号により、約 7,600 平方キロメートルの土地において NREA が再エネプロジェクトを進めることが決められた。

上記の方針に基づいて2013年から国家入札が開始され、2014年9月から太陽光発電と風力発電を対象にFITが導入された。さらに、2015年には電力小売市場の第三者アクセススキームが導入された。参加できるのは独立系発電事業者(Independent Power Producer, IPP)の民間投資家であり、発電事業のエネルギーは問わない。FITに関しては、2016年10月に買取価格改訂が行われている。

しかしながら、IRENAの "Renewable Energy Outlook EGYPT"によると、IPP 側からは、様々な障害が指摘されている模様である。例えば、風力や太陽光資源の詳細な調査の不在、また、風力や太陽光発電開発申請時の煩雑さや、PPAの実行に関しての EETC の支払い義務や能力に対する疑念などである。また、同レポートは、再エネ関連機器の国内製造に関してもマスタープランが不在で、政府のリーダーシップが発揮されていないとしている。こうした事態は、再エネの高い導入目標にも関わらず、その導入にブレーキを掛ける可能性があることを示唆している。

【エジプトの水素・燃料電池関連政策および導入計画状況】

2021年10月、El Sisi 大統領の指示の下、電力・再生可能エネルギー大臣 Mohamed Shaker 氏は、ISES to 2035 にグリーン水素を盛り込むと言明した 105 。さらに大統領は、関連する他の省庁と協力し、水素戦略を策定するよう指示し 106 、2022年2月、同戦略を策定するために電力・再生可能エネルギー省および石油・鉱物資源省 (Ministry of Petroleum and Mineral Wealth, MoPMW)を主体とする委員会が組織された模様である 107 。

2022 年 3 月、上記 2 省は、国家低炭素-水素戦略の策定支援のための MOU を欧州復興開発銀行(EBRD)と締結した。同戦略は 400 億ドルの投資と 1.4GW 規模の生産能力を目標とするとされている ¹⁰⁸。

¹⁰⁵ https://www.egypttoday.com/Article/3/109052/Green-hydrogen-to-be-introduced-in-Egypt-s-2035-Energy (2022 年 8 月 31 日アクセス)

¹⁰⁶ https://energynews.biz/egypt-sisi-takes-strategic-approach-to-green-hydrogen/(2022 年 8 月 31 日アクセス)

¹⁰⁷ https://www.sis.gov.eg/Story/162235/Gov't-Egypt-among-countries-that-started-hydrogen-strategy?lang=en-us (2022 年 8 月 31 日アクセス)

¹⁰⁸ https://www.power-technology.com/comment/egypt-hydrogen-strategy/https://hsfnotes.com/africa/2022/05/03/egypt-a-greener-future-with-hydrogen/、及びhttps://hydrogen-central.com/cop27-egypt-40bn-green-hydrogen-economy-foreign-investment/ (2022 年 8 月 31 日アクセス)尚、

また、2022 年 4 月、エジプト政府は、グリーン水素およびグリーンアンモニアプロジェクトが、同国の投資法(Investment Law No. 72 of 201)の税優遇を含む広範囲な国の支援を受けられるよう改正法案を成立させた ¹⁰⁹。

2022 年 11 月、COP27 をホストしたエジプト政府は、国家グリーン水素戦略のエグゼクティブサマリーを発表し、世界一安価なグリーン水素の製造、国際水素サプライチェーンのハブを目指すとしている 110。

一方、上述した欧州復興開発銀行との MOU の他にも、2021 年以降、欧州各国や中東の UAE およびサウジアラビアをはじめとして、エジプトと協力関係を締結する動きが急となっている。

日本企業では、2022年6月、三菱重工業が、エジプトのオイル&ガス企業大手であるアレキサンドリア石油精製・化学社(ANRPC: Alexandria National Refining & Petrochemicals Company)と、ANRPC に脱炭素化の目標達成に向けた高度な水素燃料転換技術のソリューションを提供するフルターンキー契約を締結した。

また、豊田通商は、2022 年 8 月、チュニジアで開催された TICAD8 において、スエズ運河庁およびスエズ運河経済特区庁と、それぞれ「クリーン水素・アンモニアなどのカーボンニュートラル分野における新規案件の共同検討、および実行可能性調査の実施」を含む MOU を締結した。

なお、Hydrogen Europe は、エジプトの豊富な太陽光・風力エネルギーを活用した水素の欧州への輸出に関し試算結果を発表している。太陽光・風力発電の余剰電力を活用してエジプトで水素を製造し、専用パイプライン(エジプトからギリシャを経由してイタリアまで全長 2,500km、66GW キャパシティ相当、 2×48 インチで投資額 1,600 百万ユーロ)にて水素を輸出するものである。4,500 時間/年の稼働率を前提にした場合、300TWh/年または 7.6 百万トン/年の水素が輸送可能であり、その平準化コストは 0.005 ユーロ/kWh(0.2 ユーロ/kg H2)と試算した 111 。

【当研修の目的】

以上見てきたように、エジプトは、資源国でありながら再エネの導入に早くから取り組んで来ている。今後、NREAが確保している用地を中心に、太陽光や風力発電を大量に導入する既存の再エネ戦略と、そこに水素を加えた戦略を準備中である。そこで製造する水素は、国内需要のみならず、ヨーロッパに地続きで近接するという地の利を活かし、パイプラインでヨーロッパに供給するという計画がある。EU やドイツをはじめとするヨーロッパ各国は、以前からエジプトに対し再エネ分野で協力関係を確立しており、水素分野でも同様な動きが目立つ。

 $^{^{109}}$ https://www.globalcompliancenews.com/2022/04/08/egypt-green-hydrogen-and-green-ammonia-projects-to-benefit-from-state-support240322/ (2022 年 8 月 31 日アクセス)

¹¹⁰ Ahram Online (November 5, 2022), "Egypt to announce national green hydrogen strategy at COP27," https://english.ahram.org.eg/NewsContent/10/1252/479175/COP/Climate-change/Egypt-to-announce-national-green-hydrogen-strategy.aspx (2023 年 1 月 31 日アクセス)

¹¹¹ https://dii-desertenergy.org/wp-content/uploads/2020/04/2020-04-01_Dii_Hydrogen_Studie2020_v13_SP.pdf (2022 年 8 月 31 日アクセス)

当研修は、水素分野における日本とエジプトの関係構築の契機となるべく、政府並びに電力関係者への日本の水素・燃料電池関連政策の共有と、日本企業のエジプト市場への参入を容易にする環境整備を目的として実施するものとする。

2.4.4. 課題および研修での対応

これまで述べたエジプトにおける再エネ、水素および燃料電池普及のための課題と研修での対応についてまとめる。

課題 1 2035 年再生可能エネルギー導入目標 42%に関する課題

エジプトの現状の 2035 年再エネ導入目標は、2014 年当時の電力事情に基づくもので、石炭発電を今後大量に導入していくといった低炭素化とは逆行した計画となっており、今後も含め、定期的な計画の見直しが必要である。現状のガス火力発電偏重の電源構成から、再エネにさらにシフトするためには、ガス火力発電における水素・アンモニア混焼やバイオマス発電も含めた再エネ電源の多様化と、IPP が容易に参入しやすい環境整備が必要である。

課題2 水素導入戦略に関する課題

エジプトでは、電力、エネルギー分野での水素の利活用が中心となっている模様である。電力・エネルギーセクターのみならず、産業、運輸セクターをはじめとした関連セクター、およびそれら監督省庁(投資・国際協力省、通商産業省、運輸省など)も巻き込んだ水素導入支援策が必要である。

したがって、電力業界に限らず、他産業界も巻き込んだ日本の取組みや直面している課題など を紹介することにより、エジプトにおける今後の水素導入施策の立案に寄与することを心掛ける。

課題3 国際水素サプライチェーンに関する課題

安価な再工ネ電源を活用し、エジプトはグリーン水素の国際サプライチェーンのハブとなることを 目標としている。現状では、欧州への輸出が念頭にある模様であるが、今後のインフラ開発次第で は、日本への輸出も視野に入れるべきである。そこで、水素国際サプライチェーンの実証事業で先 行している日本の知見の共有を図ると共に、企業間の情報交換の機会を提供することは有益であ ると思われる。

2.4.5. 招聘者

以下エジプト中央省庁などから42名を招聘した。(日本側参加者を除く)

表 2.4-1 招聘者一覧

	招聘国	所属機関	参加数
1		電力・再生可能エネルギー省(MoERE)および再生可	8
		能エネルギー庁(NREA)	
2		石油·鉱物資源省(MoPMW)	2
3		運輸省(MoT)	9
4		環境省(MoE)	3
5		フリーゾーン庁(GAFI)	1
6	エジプト	スエズ運河経済特区庁(SCZone)	1
7		経済産業省(MoTI)	5
8		国営エジプト電力持株会社(EEHC)	2
9		国営エジプト送電会社(EETC)	3
10		国営エジプト天然ガス持株会社 EGAS	5
11		国営エジプト国際ガス技術会社 Gastec	1
12		再エネ・省エネ地域センター(RCREEE)	2
		合計	42

2.4.6. 日程概要

表 2.4-2 日程概要

日程	実施内容
2/20(月)	日本側講義(4件) カントリーレポート(3件)
2/21 (火)	日本側講義(4 件) カントリーレポート(3 件)

2.4.7. プログラム概要

日本側からの講義:

- (1)「水素経済に向けた日本の展望と施策」
- (2)「水素社会実現に向けた東レの取組」
- (3)「液化水素サプライチェーンの構築に向けた取組」
- (4)「日本郵船のグリーンビジネスについて」
- (5)「三菱重工の水素ガスタービン」
- (6)「LOHC-MCH によるグローバル水素サプライチェーン構築に向けて」
- (7)「アンモニアバリューチェーン構築に向けた IHI グループの取組」
- (8)「日本における水素ステーション関連技術と基準、規制について」

カントリーレポート:

- (1)「エジプトにおける再生可能エネルギーとグリーンエネルギーへの移行」
- (2)「低炭素水素: ブルー水素とCCS」
- (3)「運輸省」
- (4)「水素燃料-燃料の未来」
- (5)「エジプト、潜在能力を解き放つ」
- (6)「スエズ運河経済特区」

2.4.8. 成果/展望

エジプトは既に EU や欧州各国との水素、クリーンエネルギー分野における協力関係や、国際的企業とも同分野における23のMOUを締結している。グリーン水素製造のFSも行われているが、サプライチェーンに関しては、政府は基本関与せず、水素オフテイカー主導でサプライチェーンを構築していくという。政府としては産業誘致も含めて国内の水素インフラ整備に主眼を置いて取り組んでいるという水素戦略の概要が明らかになった。

研修では、水素の国際認証制度の整備には時間が掛かり、二国間での協定を締結していくの が協力関係樹立のためには近道なのではないかという提案もあった。

EU は、エジプトおよび北アフリカからの水素輸入量について目標を設定しており、エジプトはそれに対応する形で EU との協力を深化させているとの指摘もあった。

エジプトは、グリーン水素供給のハブを目指すとしており、日本にとってグリーン水素の有望な調達先となりうるが、まだまだ日本国内での認知度が低い。エジプト政府からも日本との協力関係を望む声があり、日本、エジプト政府間、あるいは民間レベルの協力関係の深化の余地は十分にあると思われる。

2.4.9. 講演要旨

1 日目(2月20日)

講義1「水素経済に向けた日本の展望と施策」

英題: Japan's Vision and Actions toward Hydrogen Economy

講演者:経済産業省資源エネルギー庁

【要旨】

本講義は、日本の水素・燃料電池関連政策に関する情報共有を通じて、エジプトにおける同分野関連施策への活用を目的としたものである。

講義では、日本の水素関連政策である「水素基本戦略」、FCV および水素ステーションの普及状況、水素発電、国際水素サプライチェーンに関する日本の取り組みなどが説明された。

講義後、日本におけるグリーン水素の定義などに関する質疑応答があった。

カントリーレポート 1:「エジプトにおける再生可能エネルギーとグリーンエネルギーへの移行」

英題: Transition to Renewable Energy and Green Hydrogen in Egypt

講演者:Ministry of Electricity and Renewable Energy (MoERE)

【要旨】

本報告は、エジプトの水素関連政策を含む再エネ政策とその課題に関する最新情報を日本側およびエジプト側参加者と共有することを目的としたものである。

報告では、ISESの修正作業の方向性や国際協力に基づくグリーン水素プロジェクト、およびアフリカ大陸初の水素混焼ガスタービン実証事業などに関する説明が行われた。

カントリーレポート 2:「低炭素水素: ブルー水素と CCS」

英題:Low Carbon Hydrogen: Blue Hydrogen & CCS

講演者: Egyptian Natural Gas Holding Company (EGAS)

【要旨】

本報告は、石油・鉱物資源省および国営エジプト天然ガス持株会社の立場から、現状の天然ガスおよび水素関連政策とその課題に関する最新情報を日本側およびエジプト側参加者と共有することを目的としたものである。

報告では、エジプトは天然ガス輸送の世界的なハブであること、また、既に天然ガスからグレー 水素を生産していることなど、エジプトのグリーンおよびブルー水素生産拠点としてのポテンシャル に関する説明が行われた。

講義2「水素社会実現に向けた東レの取組」

英題:Toray's Initiatives for the Realization of a Hydrogen Society

講演者:東レ株式会社

【要旨】

本講義は、日本の水素製造技術に関する情報共有を通じて、エジプトにおける水素関連施策への活用を目的としたものである。

講義では、水素の製造・輸送・貯蔵・利用のあらゆる段階に対応する東レの先端技術などに関する説明が行われた。

講義3「液化水素サプライチェーンの構築に向けた取組」

英題:International Liquefied Hydrogen Supply Chain Development

講演者:川崎重工業株式会社

【要旨】

本講義は、日本の国際的な水素サプライチェーン構築計画や水素を活用した火力発電技術の 共有を通じて、エジプトにおける水素および低炭素化関連施策への活用を目的としたものである。 講義では、オーストラリアの褐炭および CCS 技術を活用した CO2 フリー水素サプライチェーン 構築の実証事業、並びに水素ガスタービンのコジェネプラントなどに関する説明が行われた。 講義後、水素コジェネの経済性などに関する質疑応答があった。

カントリーレポート 3:「運輸省」

英題:Ministry of Transport

講演者:Ministry of Transport (MoT)

【要旨】

本報告は、運輸省の立場から、輸送部門および港湾施設の低炭素化政策とその課題に関する最新情報を日本側およびエジプト側参加者と共有することを目的としたものである。

報告では、エジプトの輸送部門(鉄道やバスなどの E-モビリティー化)や港湾施設(タグボート、バンカー、インフラ)における水素を含む低炭素化の方向性に関する説明が行われた。

講義4「日本郵船のグリーンビジネスについて」

英題:I NYK's Green Business 講演者:日本郵船株式会社

【要旨】

本講義は、日本の海運業界における水素・アンモニアを活用した脱炭素化努力のみならず、港 湾インフラも含めた水素・アンモニアバリューチェーンに関する情報共有を通じて、水素サプライチェーンのハブを目指しているエジプトにおける関連施策への活用を目的としたものである。

講義では、日本郵船のアンモニアバリューチェーン戦略、日本におけるアンモニアサプライチェーン計画とその規模や課題、並びに日本および世界の海運業界全体の低炭素化目標などに関する説明が行われた。

講義後、日本郵船の中東・アフリカでのプロジェクトの対象国や日本政府のGI基金の対象プロジェクトなどに関する質疑応答があった。

ディスカッション 1

モデレーター:一般財団法人日本エネルギー経済研究所

本ディスカッションセッションでは、当日の講義内容を基に、エジプトと輸入国との間の国際水素 サプライチェーン構築における政策課題、特に、水素のカーボンフットプリントに関する証書制度な どについて議論が行われた。

2 日目(2月21日)

カントリーレポート 4:「水素燃料-燃料の未来」

英題:HYDROGEN FUEL - THE FUTURE OF FUEL

講演者: Ministry of Environment (MoE))

【要旨】

本報告は、環境省の低炭素化政策とその課題に関する最新情報を日本側およびエジプト側参加者と共有することを目的としたものである。

報告では、同省が策定した国家気候変動戦略(National Climate Change Strategy (NCCS))の5つの目標(Goals)とその達成のための課題などに関する説明が行われた。

本報告後、NCCS の罰則規定などに関する質疑応答があった。

カントリーレポート 5: 「エジプト、潜在能力を解き放つ」

英題:EGYPT Unleash its potential

講演者:General Authority for Investment (GAI)

【要旨】

本報告は、GAI が管轄する投資優遇施策に関する最新情報を日本側およびエジプト側参加者と共有することを目的としたものである。

報告では、ゾーン毎に異なる優遇措置やエジプトに投資するメリットなどに関する説明が行われた。

カントリーレポート 6:「スエズ運河経済区」

英題:Suez Canal Economic Zone

講演者:Suez Canal Economic Zone (SCZone)

【要旨】

本報告は、スエズ運河経済特区(SCZone)の立地や投資優遇施策に関する最新情報を日本側およびエジプト側参加者と共有することを目的としたものである。

報告では、SCZone が国際貿易の要衝スエズ運河に立地し、6 か所の港と 4 か所の工業団地を 擁し、税、ローカライゼーション、輸出入における規制緩和の 3 種の優遇策があることなどの説明が 行われた。

講義5「三菱重工の水素ガスタービン」

英題:MHI's H₂ Gas Turbine

講演者:三菱重工業株式会社

【要旨】

本講義は、日本の水素ガスタービン技術に関する情報共有を通じて、エジプトにおける水素混焼・専焼技術導入施策などへの活用を目的としたものである。

本講義では、三菱重工の水素混焼・専焼ガスタービン技術、および欧米諸国との水素関連共同 プロジェクトなどに関する説明が行われた。 講義 6「LOHC-MCH によるグローバル水素サプライチェーン構築に向けて」

英題: Connecting Global Hydrogen Supply Chains with LOHC-MCH

講演者:千代田化工建設オランダ会社

【要旨】

本講義は、千代田化工建設のメチルシクロヘキサン(MCH)による大容量の水素貯蔵・輸送の取り組みに関する情報共有を通じて、国際的な水素サプライチェーンのハブを目指しているエジプトにおける関連施策への活用を目的としたものである。

講義では、MCH の優位性や、ダイレクトに MCH を合成する新技術の開発などプロセスの効率 化、コスト削減努力、また、ブルネイとの国際水素サプライチェーン実証事業、および今後のアジア と欧州における商用化計画などに関する説明が行われた。

講義 7「アンモニアバリューチェーン構築に向けた IHI グループの取組」

英題:IHI Group's Efforts to Build an Ammonia Value Chain

講演者:株式会社 IHI

【要旨】

本講義は、既存インフラを活用可能なアンモニアを利用した水素輸送とグリーンアンモニア混焼 技術などの共有を通じて、エジプトにおける水素・アンモニア関連施策や研究開発計画への活用 を目的としたものである。

講義では、アンモニアを利用した水素輸送の利点、日本やアジアにおけるアンモニア混焼技術を中心としたグリーンアンモニア関連技術開発の現状と今後の展望などに関する説明が行われた。

講義8「日本における水素ステーション関連技術と基準、規制について」

英題:Status on Hydrogen Station related Technologies, Standards and Regulations in Japan 講演者:一般社団法人水素供給利用技術協会

【要旨】

本講義は、日本の水素ステーションに関する規制・基準や関連技術などの情報共有を通じて、 エジプトにおける同分野関連施策への活用を目的としたものである。

講義では、日本の水素ステーションに関する規制・基準、また、同分野の技術水準などに関する 説明が行われた。

本講義後、サプライチェーンに対する ISO 規格の有無に関する質疑応答があった。

ディスカッション2

モデレーター:一般財団法人日本エネルギー経済研究所

本ディスカッションセッションでは、当日の講義内容を基に、エジプトにおける水素ビジネスにおける投資機会と、日本とエジプトの間の協力関係の方向性に関する議論が行われた。

以上

2.5. インド対象エネルギー・トランジション専門家派遣(オンライン)研修

2.5.1. 日時•期間

2023年3月10日(金)12:30-19:40(日本時間)

2.5.2. 主会場

現地側:各自リモート参加

日本側:インターグループ東京本社スタジオ(但し、講演者はリモート参加)

2.5.3. 背景と目的

【インドのエネルギー政策】

インドの人口は 13 億 9,341 万人 (2021 年、世銀資料) で世界第二位であることは知られているが、国連によると 2023 年には中国を抜いて世界第一位となり、2063 年のピーク (16 億 9,698 万人) まで人口が増え続けると予想されている。GDP に関しても 2011 年以降 2019 年まで年率 6.4%で伸びており (2020 年はコロナの影響により-6.6%となった。)、IMF によると今後も 2027 年まで年率 6.2%のペースで伸び続けると予想されている 112。

一次エネルギー消費に関しては、コロナの影響により 2019 年より落ち込み 2020 年時点で 871.8Mtoe であったが(図 2.5-1 参照)、IEA の予測 ¹¹³によると 2040 年には現在の 1.7 倍になり、米国と拮抗する規模になると見られている。

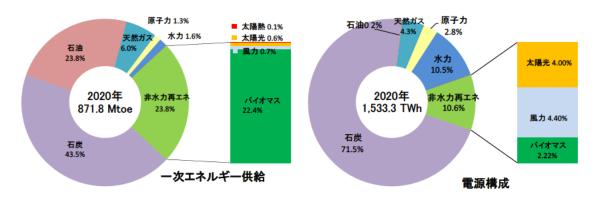


図 2.5-1 インドの1次エネルギー供給構成および電源構成(発電量ベース)(2020年) (出所) IEA World Energy Statistics and Balances 2022より作成

-

¹¹² https://www.imf.org/en/Publications/WEO/Is

sues/2022/10/11/world-economic-outlook-october-2022 (2022年11月1日アクセス)

¹¹³ https://www.iea.org/reports/india-energy-outlook-2021(2022 年 11 月 1 日アクセス)

一方、一人当たりの電力消費は 1,161kWh (2020 年度) と先進国と比べて著しく低く、世界平均 3,265kWh (2019 年) と比べても差が大きい。また、その伸びもコロナの影響のなかった 2017 年度 から 2019 年度の 2 年間の平均が+2.5% (2020 年度は前年比-3.9%) 114とそれ程大きくはなく、電力インフラの整備は、インド国民の生活の質を向上させる上で喫緊の課題となっている。

【インドの電力および再生可能エネルギー政策】

電力政策に関しては、インド政府は 2003 年施行の電力法(Electricity Act 2003 (以下、EA 2003))に基づき、一連の電力改革を断行してきた。即ち、中央政府は、各州政府に対する州電力庁(State Electricity Board (SEB))の垂直統合事業の分割(発送電分離)の要請、各州政府に対する州電力規制局(State Electricity Regulatory Commission (SERC))の設置義務付け、発電部門の免許制度廃止(但し、大規模水力を除く)=発電事業の自由化、自家発電の自由化、送電および配電へのオープンアクセス、発電事業者と最終需要者との電力売買(電力取引)の自由化などを法制化し、電力部門への民間事業者の参入を推進してきた。

さらにこの EA 2003 に基づき 2005 年に策定された国家電力政策(National Electricity Policy 2005)や 2006 年に策定された国家電力価格政策(National Tariff Policy 2006)は、

- 1. 売電価格 (Tariff)の決定 (FITの導入)
- 2. RPOs (Renewable Purchase Obligations)制度の導入
- 3. 市場開発の促進
- 4. 系統連系の促進

などの規制的措置を規定し、その後も必要に応じ下記のような修正を加え、再生可能エネルギー (以下、再エネ)導入を促進してきた。

1. 国家電力価格政策(2016年改定)

需要家にとっての電力価格の低価格化、供給側にとっての透明性や一貫性、および収益予見性の向上を図り、一方で、RPOや廃棄物発電などの DISCOM による購入義務を含む。

- 2. 系統接続太陽光発電入札規定(2017年8月制定) 太陽光発電をFITの対象から外し、より競争力のある価格での導入促進を図っている。
- 3. 系統接続風力発電入札規定(2017年12月制定) 上記2に続き、風力発電に関しても同様の措置をとっている。

114 https://cea.nic.in/wp-

nttps://cea.mc.m/wpcontent/uploads/irp/2022/09/DRAFT_NATIONAL_ELECTRICITY_PLAN_9_SEP_2022_2-1.pdf (2022 年 11 月 1 日アクセス)

4. 州間送電料免除規定(太陽光発電、風力発電(2016年9月制定、およびその後2021年6月まで数回改定)、およびそれらを70%以上利用した揚水発電、蓄電池が対象(2021年6月制定))。

特定の州に適地が偏在する太陽光発電、風力発電、および蓄電施設から需要地への州間 送電の促進を図っている。

5. 水力発電セクターの推進策 (Measures to promote hydro power sector) (2019 年 3 月策定)

25MW 超の大規模水力発電も再エネに含め、揚水発電も含めて水力発電開発促進を図っている。

6. RPOs(太陽光発電および非太陽光発電対象(2016年7月制定および2018年改定)、水力発電購入義務(HPO)(2019年3月改定、上記水力発電セクターの推進策に含まれる。)、HPO Trajectoryを含む RPO Trajectory(目標)の修正(2021年1月改定))、風力発電および蓄電池(年間ベースで再エネ由来の電力が85%以上の場合)からの電力購入義務(2022年7月改定)(表 2.5-1 および表 2.5-2 参照)

2022 年 7 月の改定では、太陽光発電 RPO を廃し、風力発電 RPO と蓄電池 RPO を新たに加え、さらに 2029 年度まで Trajectory を延ばした。

			ajectory (2022 4	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
年	風力 RPO	4. 4. DDO	風力・水力り	合計	
+		水力 RPO	太陽光 RPO	その他 RPO	百亩
2019-20			7.25%	10.25%	17.50%
2020-21			8.75%	10.25%	19.00%
2021-22		0.18%	10.50%	10.50%	21.18%
2022-23	0.81%	0.35%	23.44%		24.61%
2023-24	1.60%	0.66%	24.81%		27.08%
2024-25	2.46%	1.08%	26.37	29.91%	
2025-26	3.36%	1.48%	28.17	33.01%	
2026-27	4.29%	1.80%	29.86	35.95%	
2027-28	5.23%	2.15%	31.43%		38.81%
2028-29	6.16%	2.51%	32.69	41.36%	
2029-30	6.94%	2.82%	33.57	43.33%	

表 2.5-1 RPO Trajectory (2022 年 7 月改定)

注1:風力 RPO とは、2022年4月1日以降運開した風力発電プロジェクトから購入する電力を指す。 注2:水力 RPO とは、2019年3月8日以降運開し2030年まで稼働する揚水発電を含む25MW超の大 規模水力発電から購入する電力を指す。

注3:太陽光 RPO は2022 年度以降廃止された。

注 4:2022 年度以降のその他 RPO は、上記風力 RPO と水力 RPO 以外の再エネから購入する電力を指す。

出所(Ministry of Power ORDER dated 22 July, 2022 より作成)

表 2.5-2 蓄電池 RPO Trajectory (2022 年 7 月制定)

年	蓄電池
2023-24	1.0%
2024-25	1.5%
2025-26	2.0%
2026-27	2.5%
2027-28	3.0%
2028-29	3.5%
2029-30	4.0%

注1:年間ベースで再エネ由来の電力が85%以上蓄電された場合に適用される。

出所(Ministry of Power ORDER dated 22 July, 2022 より作成)

7. DISCOMs 改革関連各種政策 (Ujwal DISCOM Assurance Yojana (UDAY) (2015 年制定) および Atmanirbhar package for State Power Distribution Companies (2020 年 5 月制定) など)

経営難に陥っている州営 DISCOM やコロナ禍で経営が悪化した DISCOM の救済策を実施している。

8. "Go Electric" Campaign (2021 年 2 月開始)をはじめとする各種 EV 導入促進策 再エネに直接関連する施策ではないが、EV 充電施設の拡充などにより、EV の普及促進 を図っている。

この流れに加え、インド政府は、モディ首相のリーダーシップの下、2015 年 10 月、国連気候変動枠組み条約 (UNFCCC) 事務局に対してインドの INDC (India's Intended Nationally Determined Contribution: Working Towards Climate Justice)を提出した。これは同年 12 月の COP21 において合意されたパリ協定の下でのインドの温室効果ガス排出削減の国際的公約となるものであり、大きく二つの目標からなる。一つは 2030 年までに GDP 排出原単位を 2005 年レベルの 33-35%を削減すること。もう一つは、2022 年 3 月までに太陽光 100GW、風力 60GW、バイオマス 10GW、小水力 5GW の合計 175GW の再工ネ発電設備を導入し、さらに 2030 年までに非化石発電設備総容量を約 40%とすることである。

さらに、モディ首相は 2021 年 11 月 COP26 において、2030 年までに再エネ設備容量 500GW (大規模水力を含む)、非化石電源比率 50%、GDP 排出原単位を 45%に拡大、さらに 2070 年までにカーボンニュートラル (CN)を達成すると発表した 115。

2022 年 3 月期限の再工ネ発電設備 175GW 導入という目標は達成できなかったが(2022 年 3 月末時点の大規模水力を除く再工ネ設備容量計:109.9GW¹¹⁶)、2022 年 8 月、インド政府は上記案をアップデートした INDC を期限から 2 年遅れで提出し、2030 年までに GDP 排出原単位を2005 年レベルの45%削減することと、2030 年までに非化石発電設備総容量を約50%とそれぞれの目標を上方修正した。但し、他国からの技術移転や資金調達次第と条件付きとしている。また、このアップデートした INDC は、COP26 でモディ首相が発表した「2070 年までにネットゼロ

2021年4月、電力省(Ministry of Power、以下、MOP)は、国家電力政策案(Draft National Electricity Policy 2021)を公表した。今回の改訂で強調された主な項目は下記の通りである。

1. 地方電化における 24x7 電力供給の強化。

エミッション達成」のためのステップだと位置付けている。

- 2. DISCOMs の財務体質、特に電力価格体系および AT&C Losses (送配電網の技術および 商業的損失)の改善の必要性。
- 3. 2022 年までの再エネ 175GW目標、および 2030 年までの非化石電源容量比率 40%目標 達成。
- 4. 調整力としての石炭火力発電の再評価。
- 5. 最適発電ミックスとして、揚水発電を含む蓄電池や水素貯蔵などの最新技術の導入の必要性、ピーク/オフピーク時の変動電力価格制度導入の必要性、さらに電源としては、既に政府として目標を明確にしている太陽光および風力発電の他に(より厳しい環境基準に適合する必要があるものの)石炭火力発電の増設の必要性、並びに、(環境および森林保護基準関連審査による建設の遅れが生じている)水力発電の開発促進(特にポテンシャルに比べて開発が進んでいない北東部地域)の必要性を特に強調。

次いで2021年5月、MOPは、石炭火力発電所の低炭素化に向けて、「石炭火力発電所におけるバイオマス使用に関する国家的ミッション(National Mission on use of Biomass in coal based thermal power plants)」を発表し、同年10月、「石炭火力発電所におけるバイオマス混焼のための修正政策(Revised Policy for Biomass Utilisation for Power Generation through Co-firing in Coal

-

¹¹⁵ https://www.bloomberg.co.jp/news/articles/2021-11-01/R1WNMMDWRGG301 (2022年11月1日アクセス)

¹¹⁶ https://powermin.gov.in/sites/default/files/uploads/MOP_Annual_Report_Eng_2021-22.pdf (2022 年 11 月 1 日アクセス)

based Power Plants)」を制定した。これにより、全ての石炭火力発電所の2022年10月以降のバイオマスペレット5%混焼、さらに一部発電所(ボール&チューブミル形式)以外の石炭火力発電所の2023年10月以降の同7%混焼を義務化した。

2022年9月、中央電力庁(Central Electricity Authority (CEA))は上述の国家電力政策案に基づき、それまでの国家電力計画 2018 (National Electricity Plan 2018)を改訂すべく、国家電力計画(発電編)案(National Electricity Plan (Draft) Generation Vol-1)(以下、国家電力計画案)を発表した。その骨子は下記の通りである。

2021 年度末(2022 年 3 月末)時点のインドの総発電容量は 399.5GW で、うち、火力発電計 236.1GW(石炭火力発電 204.1GW、褐炭火力発電 6.6GW、ガス火力発電 24.9GW、ディーゼル 発電 0.5GW)、原子力発電 6.8GW、大規模水力発電 46.7GW、再エネ 109.9GW であった。

また、今後 10 年間の電力需要は年率約 6% (過去 10 年間は約 4.1%)で伸びるとし、2026 年度のインド全体の電力需要見込みは 1,874TWh、ピークデマンドは 272GW、2031 年度はそれぞれ、2,538TWh および 363GW とし、これらの数値を今後 10 年間の計画のベースとした。

電源構成では、石炭火力発電の発電比率を下げつつも、設備容量自体は増加させ、再エネでは、特に太陽光発電と風力発電の変動再エネを中心に増設し、大規模水力発電および揚水発電も増設する計画となっている。2031年度末(2032年3月末)の設備容量では太陽光発電が333.5GW(全体の38.5%)で石炭火力発電の248.8GW(全体の28.7%)を抜き第一位となる計画である。但し、発電量ベースでは石炭火力発電が1,333.8TWh(全体の49.9%)で首位を維持する。

さらに、上述した変動再エネの増加に対応し、揚水発電の他に(5 時間放電)蓄電池 51.55GW を 2031 年度末までに導入する計画となっている(表 2.5-3 参照)。

表 2.5-3 国家電力計画案における 2031 年度までの再エネ導入目標(設備容量および発電量)

	2021 年度末	2022-2026 年	2026 年度末	2026 年度	2027-2031 年度	2031 年度末	2031 年度
	設備容量(GW)	度導入量(GW)	設備容量(GW)	発電量(TWh)	導入量(GW)	設備容量(GW)	発電量(TWh)
石炭	204.1	33.3	239.3	1,158.8	9.4	248.8	1,333.8
褐炭	6.6	აა.ა	239.3	(内褐炭 25.8)	9.4	248.8	(内褐炭 30.8)
ガス	24.9	0.3	25.3	35.3	1	25.3	35.4
原子力	6.8	7.0	13.8	82.1	8.7	22.5	134.3
ディーゼル	0.5	_	_	_	_	_	-
大規模水力	46.7	10.9	52.9	188.9	10.9	63.8	231.8
太陽光	54.0	132.1	186.1	326.0	147.4	333.5	624.4
風力	40.4	40.5	80.9	169.8	53.1	133.9	305.7
<u> </u>					(内洋上風力 10.0)	(内洋上風力 10.0)	
小水力	4.8	_	4.8	7.7	1	4.8	0.6
バイオマス	10.7	2.3	13.0	1.1	1.5	14.5	8.6
 揚水		2.1	6.8		12.0	18.8	
石炭廃止分		(-4.6)					
計	399.5	228.5	622.9	1,968.6	243.0	865.9	2,674.0

*参考:CO2	910	1,030		1,180	
排出量(Mt)					1

*水力発電ベースの輸入電力は上記導入量には含まず、発電量には含む。2022-2026 年度導入量計に廃止分は含まない。また、この計画案では揚水発電も設備容量の合計に含めていることに留意 (出所) "国家電力計画案 (2022)"より作成

上述した通り、インド政府は今後も石炭火力発電を増設する計画であるが、国家電力計画案では具体的なバイオマス混焼推進施策に関する記述はなく、その実効性が危惧される。同計画案では、逆に、米国、オーストラリア、英国、中国や日本と比較し、インドの人ロー人当たりの二酸化炭素排出量の低さ、また、ここ数年の燃焼効率のよい石炭発電所の導入により、発電量当たりの加重平均二酸化炭素排出量は減少していると強調している。

また、インド政府は水力発電の増設も推進しており、2031 年度までに 21.8GW の大規模水力発電所と 14.1GW の揚水発電所を新設する計画であるが、それらの建設地の殆どが森林の開拓を前提としていると言われている。環境保護団体などは、インド政府が環境基準を緩和し建設を促進させており、それにより環境破壊、さらには森林による二酸化炭素の吸収が損なわれると警鐘を鳴らしている 117。

さらに、インド政府は太陽光および風力発電の変動再エネを大量に導入する方針であるが、それを可能にするためには、同時に送電線網や変電所などの増設・増強、電圧対策、調整電源、並びに揚水発電や蓄電池など電力貯蔵施設の確保、さらには調整力市場の整備など、様々な系統安定化対策を実施しなければならない。

送電線網や変電所の増設・増強に関しては、州内では州営送電会社が担い、州を跨ぐ全国レベルの送電網は国営送電会社 Power Grid Corporation of India Limited (PGCIL)が担っている。また、PGCIL は、特に太陽光や風力の大規模開発に対応するため、州内および州間の送電線の増強や再エネマネジメントセンター、蓄電施設などを含む Green Energy Corridors 計画 ¹¹⁸や、大規模ソーラーパークに特化した Green Energy Corridors - II 計画の実施主体でもある。

しかしながら、現地メディアの報道によると、中央電力庁(CEA)は、2022年度末(2023年3月末)までに 225.7GW のピークロードデマンドに対応するため、11万 ckm の送電線と38万 MVA の変電所の増設が必要との試算を明らかにする一方、2018年度の新設送電線は2.2万 ckm で、過去4年間で最低の水準であり、また、同年度に運用が開始された変電所の総容量も7.2万 MVA で、過去3年間で最低であったと発表した。同様に Green Energy Corridors 計画も必要な財源が投入されておらず、計画通りに進んでいない模様である119。

-

¹¹⁷ https://www.carbonbrief.org/qa-what-does-indias-updated-paris-agreement-pledge-mean-for-climate-change/(2022 年 11 月 1 日アクセス)

¹¹⁸ https://mnre.gov.in/green-energy-corridor (2022年11月1日アクセス)

 $^{^{119}}$ 前掲および https://www.financialexpress.com/industry/power-transmission-capacity-addition-hits-4-yr-low-in-fy19/1543410/ (2022 年 11 月1日アクセス)

経済産業省の 2017 年度委託事業である「インド・系統安定化に関する専門家会議にかかる事業調査」報告書 ¹²⁰によると、インド政府の認識としては、①電圧対策、②調整電源の確保、③調整力市場の 3 点が最も優先度の高い課題だとしている。特に②の調整電源に関しては、現状インドでは発電応答速度の遅い石炭火力発電で賄っていることとインド各地で多数の揚水発電の建設計画があることから、揚水発電所に可変速発電機を導入することが効果的であるとしている。

【インドのエネルギー・トランジション(ET)の方向性】

インドは人口増やさらなる経済発展に伴い、エネルギー消費量が現在の世界第三位から今後数十年で第一位を窺う規模になると予想されており、温暖化ガス排出に関しては、発展途上国の中でも特にその動向が注目されている。また、IEAの India Energy Outlook 2021¹²¹における「インドのエネルギーの未来は、今あるものではなく、今後 20 年で作られる建物、工場、輸送機関および機器の脱炭素化に懸かっている。」という指摘は、今後のインドの発展規模が如何に大きく、その政策が如何に重要であるかということを示唆している。

インドでは、図 2.5-2 の通り、電力セクターの二酸化炭素排出量が突出して多いのが特徴的である。

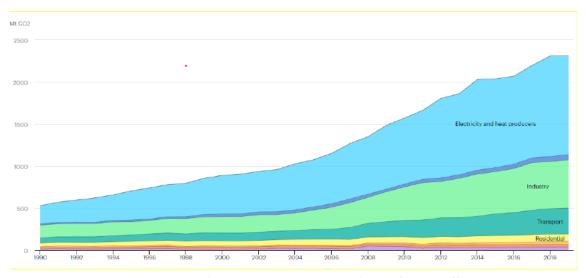


図 2.5-2 インドにおけるセクター別二酸化炭素排出量推移

(出所) IEA (https://www.iea.org/countries/india)

電力セクターにおいては、インド政府は2031年度までの計画では変動再エネを大量導入する ものの、石炭火力発電に関しては増設という現実的な路線をとる計画を立てている。したがって、 石炭火力発電のバイオマス混焼やアンモニア混焼など、その実効性の担保や混焼比率の拡大を

.

¹²⁰ https://www.meti.go.jp/meti_lib/report/H29FY/000248.pdf (2022 年 11 月1日アクセス)

 $^{^{121}}$ 前掲(https://www.iea.org/reports/india-energy-outlook-2021(2022 年 11 月 1 日アクセス))

促すための政策が肝要となる。また、変動再工ネ電源の稼働率を高めるための各種蓄電施設の導入拡大や送電網の整備などを促すための政策も必要となる。

また、再エネ電源の導入拡大のために RPO 政策を重視している模様であるが、その義務を履行しなければならない多くの DISCOMs は経営難で苦しんでおり、実効性を担保するためには政府からの支援も視野に入れる必要があると思われる。

一方、輸送セクターおよび産業セクターにおいては、インド政府は電化やバイオ燃料・バイオエタ ノール、グリーン水素・グリーンアンモニアの導入拡大、および省エネルギーにより脱炭素化を進め ていく方針としている。

石油・天然ガス省 (Ministry of Petroleum and Natural Gas (MoPNG)) は 2018 年 6 月、国家バイオ燃料政策 2018 (National Policy on Biofuels 2018) を制定し、プラスチック、都市廃棄物や農業残渣などを含む再生可能バイオマスから製造するバイオ燃料、バイオエタノール、バイオガスなどを輸送セクターや産業セクターにおいて活用促進しようとしており(2022 年 5 月に改定し、導入速度を早めようとしている。)、他方で、圧縮 CNG 車や水素混合ガス車の実証事業にも取り組んでいる。

また、重工業省の発表 ¹²²によると、インドでは 2022 年 8 月 3 日現在、544,643 台の電気二輪車、793,370 台の電気三輪車、54,252 台の電気自動車(四輪以上)の計 1,392,265 台の EV が登録されており、「Faster Adoption and Manufacturing of Electric and Hybrid Vehicles in India」(FAME-India Scheme)により、特に電気二輪車や電気三輪車の導入が進んでいるのが特徴的である。上述した通り、MOPでも EV の充電施設の拡充を図っている。

新・再生可能エネルギー省 (Ministry of New and Renewable Energy (MNRE)) は、国家水素ミッション (National Hydrogen Mission 2021) (2021 年 8 月) やグリーン水素政策 (Green Hydrogen Policy 2022) (2022 年 2 月) を策定し、セクターを問わずグリーン水素やグリーンアンモニアの利活用の推進、さらにはインドを水素・アンモニアの国際的なハブとする目標を掲げている。

The Energy and Resources Institute (TERI)の調査によると、2021 年のインドにおける水素需要は、約6.9 百万トンであり、うち、石油精製業界が53%、肥料業界が44%消費している模様であり、Singh 電力兼新・再生可能エネルギー大臣は、インドの水素需要の半分近くを占める肥料業界におけるグリーン水素消費義務制度の導入も含め、関係省庁に呼び掛けるとしている123。また、鉄鋼業界における水素利用も将来的な課題である。

¹²² https://pib.gov.in/Pressreleaseshare.aspx?PRID=1848751 (2022年11月1日アクセス)

¹²³ https://www.livemint.com/news/india/-govt-will-invite-bids-for-green-ammonia-projects-in-6-months-11608001104873.html(2022 年 11 月 1 日アクセス)

他方で、MNRE は廃棄物発電プログラム(Waste to Energy Program)に関する一連の政策の策定・改定を行い、都市廃棄物や農業残渣などの処理と共に廃棄物の有効活用を図ろうとしている。

上述した脱炭素化のための様々な政策や計画を実行に移すためには、修正 INDC でも言及されている通り、インド政府は先進国からの技術移転や金融支援が不可欠であるとしている。それぞれのセクター、あるいはセクターを横断した具体的な国際協力の取り組みが求められる。

【当研修の目的】

当研修では、電力セクターを主対象として、日本のET関連政策や技術に関する知識の共有と、日本企業のインド市場への参入を容易にする環境整備を目的として実施するものとする。

2.5.4. 課題および研修での対応

これまで述べたインドの電力セクターにおける ET の課題と研修での対応についてまとめる。

- 1. 今後も増設予定である石炭火力発電の低炭素化、特にバイオマス、水素およびアンモニア 混焼などの導入促進。
- 2. 変動再エネの大量導入を中心とする再エネ導入施策において必須となる様々な系統安定 化対策の推進。
 - 1) 送電線網や変電所などの増設・増強
 - 2) 調整電源(インド政府はレスポンス速度の遅い石炭火力発電で対応しようとしているが、 実際には、ガス火力発電や可変速揚水発電、蓄電池などレスポンス速度の速い電源設 備による調整が必要。)
 - 3) 電圧対策
- 3. インドにおける新しいエネルギー分野であるグリーン水素、グリーンアンモニアなどの導入促進。

2.5.5. 招聘者

以下、関係省庁、国営企業など、計35名を招聘した。(日本側参加者、およびインド側事務局 TERIを除く(但し、TERIの講演者およびモデレーターの2名のみカウントした。))

表 2.5-4 招聘者一覧

	招聘国	所属機関	参加数
1		中央政府(MNRE、MOP、MoPNG)	6
2		地方政府(APSECM)	1
3	インド	国営企業(NTPC、IREDA)	8
4		大学·研究機関(IIT Delhi、PDPU、SCGJ、TERI)	5
5		民間企業(BSES、TATA、ReNew Power など)	15
		計	35

2.5.6. 日程概要

表 2.5-5 日程概要

日程	実施内容
3/10 (金)	日本側からの講義(7件)、カントリーレポート(4件)

2.5.7. プログラム概要

日本側からの講義:

- (1)「日本とアジアにおけるカーボンニュートラルに向けた日本の取り組み」
- (2)「石炭火力発電所におけるバイオマス混焼技術」
- (3)「揚水可変速技術」
- (4)「再生エネルギー電源に対する配電網の管理手法」
- (5)「低温・低圧での分散型アンモニア合成」
- (6)「地域バイオマスによる分散型クリーンエネルギーと CCU」
- (7)「アンモニアバリューチェーン構築に向けた IHI の取り組み」

カントリーレポート:

- (1)「インドにおけるエネルギー・トランジション関連政策(電力省)」
- (2)「NTPC におけるエネルギー・トランジション」
- (3)「インドにおけるエネルギー・トランジション関連政策(インド再生可能エネルギー開発庁)」
- (4)「クリーンエネルギーに向けたトランジション」

2.5.8. 成果/展望

インドは現在、2070年CN達成を長期目標とし、2030年までに再エネ設備容量500GW(大規模水力を含む)、非化石電源比率50%を中期目標としている。地上設置型の太陽光発電、ルーフトップ型太陽光発電、陸上風力発電、洋上風力発電など、変動再エネの大量導入のみならず、水力発電も導入を加速し、さらに変動再エネの調整電源として、まずは揚水発電、価格が低減すれば蓄電池の導入を考えている。また、送電線網の増強や電圧対策も十分に対応できているとして

いる。

一方、今後も増設する予定の石炭火力発電における低炭素化については、CEA のカントリーレポートでも、様子を見ながら実施するとし、新興国と先進国とでは低炭素化の具体的施策は異なり、条件付きの低炭素化施策を進めなければならないという指摘もあった。

ディスカッションなどでも明らかになった通り、再エネ関連設備、水素・アンモニア関連先進技術、 資金計画など、まだまだ課題が多く、特に先進技術の導入や資金計画では、インド側も他国の支援が必要不可欠であるとし、日本との協力関係を望んでいる。

インドは、今後ますます増大するであろうその市場規模も注目を集めており、政府のみならず民間レベルでも、持続可能な協力枠組みの確立が求められる。

2.5.9. 講演要旨

セッション 1:政策

講義 1 「日本とアジアにおけるカーボンニュートラルに向けた日本の取り組み」

英題: Japan's initiatives towards Carbon Neutrality in Japan and Asia

講演者: 経済産業省資源エネルギー庁

【要旨】

本講義は、日本の CN 関連政策に関する情報共有を通じて、インドにおける同分野関連施策への活用を目的としたものである。

講義では、日本の 2050 年 CN 実現に向けた「グリーン成長戦略」、「第 6 次エネルギー基本計画」、「GX 実現に向けた基本方針」、および「水素基本戦略」などの政策、さらには、水素および燃料アンモニアの導入を推進する日本の取り組みなどが説明された。

講義後、日本におけるグリーン水素の利用の義務付けの有無などに関する質疑応答があった。

カントリーレポート1「インドにおけるエネルギー・トランジション関連政策(中央電力庁)」

英題: Energy Transition related policy in India

講演者: Central Electricity Authority

本報告は、インドの再エネ政策並びに電力計画とその課題に関する最新情報を日本側およびインド側参加者と共有することを目的としたものである。

報告では、2030 年再エネ 500GW を達成するための政府の政策、並びに電力計画の方向性と 課題に関する説明が行われた。

セッション 2:日本のエネルギー・トランジション関連技術(1)

講義2「石炭火力発電所におけるバイオマス混焼」

英題:Biomass Co-firing in Coal-fired Plant

講演者:三菱重工業株式会社

【要旨】

本講義は、石炭火力発電所におけるバイオマス混焼技術に関する情報共有を通じて、インドにおける石炭火力発電所の低炭素化推進施策などへの活用を目的としたものである。

講義では、三菱重工のバイオマス混焼技術、および日欧などにおける実用事例に関する説明 が行われた。

講義後、バイオマスペレットの供給に関する課題などに関する質疑応答があった。

講義3「揚水可変速技術」

英題: Adjustable Speed Pumped Storage Technologies of TEPCO RP

講演者:東京電力リニューアブルパワー株式会社

【要旨】

本講義は、日本の再エネ関連技術に関する情報共有を通じて、インドにおける再エネ関連施策などへの活用を目的としたものである。

講義では、東京電力リニューアブルパワーの可変速揚水技術、およびその調整電源としての有用性などに関する説明が行われた。

講義4「再生エネルギー電源に対する配電網の管理手法」

英題:Grid Management for Distribution network against Renewable Power

講演者:東京電力パワーグリッド株式会社

【要旨】

本講義は、日本の再エネ関連技術に関する情報共有を通じて、インドにおける再エネ関連施策などへの活用を目的としたものである。

講義では、東京電力パワーグリッドの変動再エネ、特にルーフトップ型太陽光発電による配電網への影響とその対策などに関する説明が行われた。

講義後、ルーフトップ型太陽光発電用ハイブリッドインバータなどに関する質疑応答があった。

セッション 3:インドのエネルギー・トランジション関連技術

カントリーレポート2「NTPC のエネルギー・トランジション」

英題:NTPC in Energy Transition

講演者:NTPC Renewable Energy Limited

【要旨】

本報告は、インド国営発電会社 NTPC の ET 関連施策に関する最新情報を、日本側及びインド側参加者と共有することを目的としたものである。

報告では、風力発電と太陽光発電に特化した再エネ導入策と、それら電力を活用したグリーン水素、グリーンメタノール、およびグリーンアンモニア製造に関する計画、並びに既設石炭火力発電所におけるバイオマス混焼などに関する説明が行われた。

講義後、NTPCの石炭火力発電所におけるバイオマス混焼の実施状況などに関する質疑応答が

あった。

カントリーレポート3:「IREDA のエネルギー・トランジションの状況」

英題:Energy transition status of IREDA

講演者:IREDA

【要旨】

本報告は、インド国営ノンバンク系金融機関 IREDA による資金支援、政策立案・実施支援などに関する最新情報を、日本側及びインド側参加者と共有することを目的としたものである。

報告では、IREDAの民間再エネデベロッパーに対する資金支援、グリーン税制などの政策支援などに関する説明が行われた。

報告後、インドのプロジェクトファイナンスの金利水準などに関する質疑応答があった。

カントリーレポート 4 「クリーンエネルギーへの公正なトランジション: 責任ある再生可能エネルギーシステム構築への行動」

英題:A Just Transition to Clean Energy: Actions to Build a Responsible Renewable Energy System 講演者:The Energy and Resources Institute (TERI)

【要旨】

本報告は、再エネ開発における環境・社会・ガバナンス面でのリスクとその管理・統制に関する 最新情報を、日本側及びインド側参加者と共有することを目的としたものである。

報告では、インドの研究機関などが主導し、再エネセクターの行動原則の共同設定などを志向する「責任あるエネルギー・イニシアティブ (Responsible Energy Initiative)」に関する説明が行われた。

報告後、同イニシアティブの今後の国際展開などに関する質疑応答があった。

セッション 4:日本のエネルギー・トランジション関連技術(2)

講義5「低温・低圧による分散型アンモニア合成」

英題:Decentralized Ammonia Synthesis at Low Temperature and Low Pressure

講演者:つばめ BHB 株式会社

【要旨】

本講義は、日本のアンモニア製造に関する最新技術などの共有を通じて、インドにおける水素・アンモニア関連施策や研究開発計画への活用を目的としたものである。

講義では、低温・低圧環境下での高効率のアンモニア製造技術と、内陸部のオンサイト型肥料製造などインドにおける同技術の導入可能性などに関する説明が行われた。

講義 6「地域バイオマスによる CO2 ニュートラルエネルギーとカーボンシンク」

英題:CO2 Neutral Energy + Carbon Sink Using Local Biomass

講演者:フォレストエナジー株式会社

【要旨】

本講義は、地産地消型バイオマス発電のビジネスモデルなどの共有を通じて、インドにおける分散型再エネ電源開発施策などへの活用を目的としたものである。

講義では、地域バイオマスを活用し、ガス化技術を用いた小規模高効率 CHP(熱電併給)システム、およびその副産物である「バイオ炭」による炭素回収などに関する説明が行われた。

講義 7「アンモニアバリューチェーン構築に向けた IHI グループの取組」

英題: IHI Group's Efforts to Build an Ammonia Value Chain

講演者:株式会社 IHI

【要旨】

本講義は、既存インフラを活用可能なアンモニアを利用した水素輸送とグリーンアンモニア混焼技術などの共有を通じて、インドにおける水素・アンモニア関連施策や研究開発計画への活用を目的としたものである。

講義では、アンモニアを利用した水素輸送の利点、日本やアジアにおけるアンモニア混焼技術を中心としたグリーンアンモニア関連技術開発の現状と今後の展望などに関する説明が行われた。

ディスカッション

モデレーター: TERI

本ディスカッションセッションでは、当日の講義内容を基に、インドの ET における課題と、日本とインド間の協力関係の方向性に関する議論が行われた。

以上

二次利用未承諾リスト

報告書の題名: 令和4年度新エネルギー人材育成事業報告書

委託事業名:令和4年度 新興国等におけるエネルギー使用合理化等に資する事業(新エネルギー人材育成事業)

受注事業者名:一般財団法人 日本エネルギー経済研究所

頁	図表番号	タイトル
7	図1.1-3	アルゼンチンの太陽光発電ポテンシャル分布図
8	図1.1-4	アルゼンチンの平均風速分布図(m/s、高度100m)
10	図1.1-5	アルゼンチンにおける水素ハブのマッピング
15	図1.1-7	チリの電力供給システム
17	図1.1-8	RENOVAの仕組み
21	図1.1-10	チリの再エネポテンシャル
22	図1.1-11	チリの太陽エネルギー資源量(GHI)
23	図1.1-12	風力資源量
25	図1.1-13	チリにおける輸出向けグリーン水素プロジェクトのマッピング
25	図1.1-14	チリにおける国内需要向けグリーン水素プロジェクトのマッピング
26	図1.1-15	チリにおけるグリーンアンモニア関連プロジェクトのマッピング
61	図1.3-2	ASEANにおける最終エネルギー消費量(ベースラインシナリオ)
71	表2.1-1	最少費用電源開発計画における総発電設備容量ー最適化更新計画
72	表2.1-2	FIT価格(第三次改訂、2021年11月レビュー後価格)
73	表2.1-3	オークション基準価格
73	表2.1-4	地熱発電基準価格
88	表2.2-4	No. 21 QD-BCTでの太陽光、風力の上限価格
89	図2.2-3	再生可能エネルギーの開発動向
122	表2.5-1	RPO Trajectory(2022年7月改定)
123	表2.5-2	蓄電池RPO Trajectory(2022年7月制定)
125	表2.5-3	国家電力計画案における2031年度までの再エネ導入目標(設備容量および発電量)
127	図2.5-2	インドにおけるセクター別二酸化炭素排出量推移