世界が進むチカラになる。

経済産業省経済産業省 東北経済産業局 地域経済部 製造産業・情報政策課 御中

従来型半導体のサプライチェーン 強靭化に向けた製造装置市場等 の調査

三菱UFJリサーチ&コンサルティング株式会社 コンサルティング事業本部 戦略コンサルティング部 2024年3月27日

三菱UFJリサーチ&コンサルティング

目次

- I. エグゼクティブサマリー
- Ⅱ. 調査結果概要
- Ⅲ. 調査結果詳細
 - プロジェクトの全体像・進め方
 - 調査結果
 - 1. 中国・韓国の従来型半導体製造動向
 - 中国の工場一覧
 - 2. 国内従来型半導体製造事業の実施状況
 - 3. 半導体製造装置の状況
 - 半導体製造装置のウエハサイズ対応状況
 - 4. 中古装置市場・メンテ事業実施状況
 - 5. 独禁法・M&A阻害要因の精査
 - 調査結果を受けた提言

I. エグゼクティブサマリー

従来型半導体のサプライチェーン強靭化に資する施策提案を行い、報告書を作成

I. エグゼクティブサマリー

調査の背景

メモリ・ロジック等の先端半導体とともに、パワー・アナログ・マイコン等の従来型半導体は、デジタル社会の基盤として必要不可欠とされている。デジタル化に伴い半導体市場は更なる成長が期待されるが、各国による大規模な産業政策が展開され、中国・韓国等海外の半導体メーカーが台頭する中、日本メーカーは激化する国際競争を勝ち抜くことが必要。

一方で、日本国内における従来型半導体の製造実態としては、製造装置を長年稼働させているレガシー工場が多く、製造装置の老朽化が進んでいるが、製造装置の多くが生産・サポートを終了しており、製造設備のパフォーマンス維持に課題を抱えている。これには、中国・韓国等の半導体メーカーの台頭(製造装置購入への大規模な投資等)も影響しているところ。

調査の目的

日本の半導体産業の更なる競争力強化に向け、

- 従来型半導体メーカーが経営基盤強化を目的に業務提携やM&A等を行うことの独占禁止法上の位置づけ
- 製造装置の市場環境等の調査・整理を通して

半導体サプライチェーン強靱化及び競争力強化 に資する政策提案を行う

調査の目標

①中国・韓国等海外半導体メーカーの従来型半導体製造に係る投資(製造装置購入等)の動向及び設備パフォーマンス問題の状況についての把握②東北地域外の国内従来型半導体メーカーにおける、装置設備老朽化問題に対する認識・対応を中心とした半導体製造事業の実施状況(メンテナンス事業者・商社等の活用状況等)の把握
③半導体製造装置メーカーにおけるウエハサイズ200mm以下の製造装置(リニューアル品含む)の製造状況についての把握
④中古装置売買の市場(市場規模や需給の逼迫度合い等)やメンテナンス事業の実施状況(市場規模や売買パターン、課題等)についての把握
⑤半導体メーカーが経営基盤強化を目的に業務提携やM&A等を行うことによる独占禁止法上の位置づけ、製造装置の売買やメンテナンス事業における公正な競争を阻害する要因の有無

5つの観点で調査を実施し、従来型半導体サプライチェーン強靭化に向けた問題点の抽出を実施

I. エグゼクティブサマリー

1.中韓など従来 型半導体製造動 向

- 中国は、国レベルに留まらず、省・地方市レベルでの半導体製造への補助金を用意。特区を中心に半導体産業が勃興しており、300mmウエハラインを中心に、200mmウエハラインでも工場新設が進む
- 韓国では、特に従来型半導体製造装置において、大手デバイスメーカーのサードパーティによるエコシステムが形成されており、日本の企業も利用している

2.国内半導体 メーカー対応状況

- 古い装置の部品供給は途絶しており、現行設備の健全な維持は重要課題
- パワー半導体などに注力する一部のメーカーを除き、**自発的な大規模設備投資は難しい**
- 中堅以下のデバイスメーカーを中心に、従来型半導体製造設備の維持管理に対応できる人材が不足している
- 既存200mm以下ウェハ用装置のリニューアルや300mmウェハ用装置への刷新は、投資対効果やクリーンルームのスペース不足の観点から困難

3.半導体製造装置メーカー対応 状況

- 装置メーカー各社は300mmウエハ取扱装置に注力する一方で、依然として200mm以下ウエハ取扱装置の修理対応 や生産を実施している。近年では露光機などでリニューアル品の発売もみられる
- 装置メーカーは従来型装置の老朽化に対して、リニューアル品を含め製品を提供。また、サービス業取り扱い中の装置については、部品供給を継続。
- 従来型半導体デバイス工場の新規装置への刷新の推進を所望

4.中古装置市 場・メンテ事業実 施状況

- 中国企業からの需要により、中古装置は枯渇傾向にあり、価格も高騰
- 中古装置・中古装置部品は、納期面と価格面から根強い需要がある
- 従来型半導体製造装置のメンテナンス需要に対応できる人材は不足

5.独禁法·M&A 阴害要因

■ ほとんどの関連事業者は独禁法等、M&A阻害に関わる懸念を抱いていない

特に本調査の本質的な問題点を抱える「2.国内半導体メーカー対応状況」の改善に向け、施策案を検討(次ページ以降)

デバイスメーカーが抱える問題に対する関連プレイヤーの見解を基に、施策に求められる観点を抽出 I . エグゼクティブサマリー

地山された明顕占し明顕占に対する明連企業群の目級

扱い人材の育成サポート

	デノ	バイスメー	ヒト	モノ	カネ
	グで	へのヒアリン 抽出された さの 問題点	古い装置のメンテ人材・ノウハウの 不足	古い装置の部品供給が途絶	投資対効果の小さいレガシ―半導体 装置更新が困難
事業者が		デバイス メーカー コメント	メンテナンス人員が不足している高スキル人材の高齢化が問題となっている	■ 制御系(基板等)部品を中心に古い装置 の部品供給が途絶している	■ 投資対効果の観点から装置の刷新は難しい ■ 200mm以下設備を300mmにするには クリーンルーム建屋の建て替えを要する
考	#				
える問題点の	問題点に	装置 メーカー	 ■ EOL後の200mm以下装置のサービス対応は、要望に基づき対応可能な範囲で実施している ■ デバイスメーカーからの問い合わせはほとんどない(サードパーティメインでメンテナンスが行われている認識) ■ 生産終了後の装置メンテナンス人材は 	■ EOL前にラストバイを促す対応を実施している ■ サービス取り扱い中の装置に対する部 品供給は十分に行っている	■ 従来型半導体装置の購入ができるよう リニューアル品を含めた装置供給を行っ ている
分析	対		高齢化が進んでいる		
171	する 見 解	メンテナン ス事業者	■ メンテナンス人材は不足している■ ノウハウの継承ができていない	■ 特に電装系・駆動系部品が調達困難	_
	解	商社	■ 古い装置を知る人材は不足している	■ 国内での調達に限界があり、海外事業者を利用して調達している■ 特に電装系・駆動系部品が調達困難	■ リニューアル品は資金力がないメーカー にとっては高価な可能性がある
		やのための られる観点	■ デバイスメーカーやメンテナンス事業 者に対する従来型半導体装置の取り 扱い人材の育成サポート	■ デバイスメーカー・メンテナンス事業 者・商社に対する従来型半導体装置 部品の調達環境整備	■ デバイスメーカーの装置購入に対する インセンティブの付与

部品の調達環境整備

(出所) MURC作成

施策に求められる観点を考慮し、抽出された問題点を解決するために7つの施策案を検討 I. エグゼクティブサマリー

抽出された問題点に対して考え得る施策案

施策案 抽出された問題点 施策に求められる観点 メンテナンス講習会の実施 デバイスメーカーやメン 古い装置のメンテ テナンス事業者に対す 2 人材・ノウハウの る従来型半導体装置の 不足 取り扱い人材の育成サ 従来型半導体人材育成に向けたPR活動・教育環境整備 ポート 装置部品融通システムのエリア拡大(国内外) デバイスメーカー・メン 紫置/部品調達における国内エコシステム形成に向けた流通 古い装置の部品供 テナンス事業者・商社に / 給途絶 対する従来型半導体装 支援 置部品の調達環境整備 **サポート切れの従来型半導体装置部品供給を国策として支援** する企業の設立 6 国内メーカー向け従来型半導体製造装置購入に資する支援 投資対効果の小さデバイスメーカーの装 いレガシー半導体 置購入に対するインセ 装置更新が困難 ンティブの付与 7 従来型半導体メーカー・メンテナンス事業者の統合を促す施策

施策案について、具体的に以下の内容を想定

I. エグゼクティブサマリー

施策の狙い

具体的な実施事項

施策/取り組み事例

- メンテナンス講習会の実施
- 従来型半導体装置メンテナンス 技術の継承
- メンテンナンス人材の育成を狙いとし、デバイスメーカー/メンテナンス業者向けに従来型半導体装置のメンテナンス講習会を実施

(類似した施策/取り組み事例無)

- 従来型半導体人材育 成に向けたPR活動・教 育環境整備
- 従来型半導体産業への若手人材 の勧誘
- 展示会で従来型半導体魅力向上PRを行う等、若手人材の 従来型半導体産業への勧誘
- 大学/専門学校等での従来型半導体に係る教育の実施

「東北半導体・エレクトロニクスデザイン研究会」他、各ブロックの人材育成コンソーシアムによる取組等

[⇒P94に事例を記載]

- 装置部品融通システム のエリア拡大(国内外)
- 従来型半導体装置部品の取引効 率向上
- 現在東北エリアを中心に取り組まれている「デバイスメーカーとメンテナンス業者/部品商社間の従来型半導体装置部品のマッチングシステム」を全国展開。(必要に応じて韓国等の事業者にも展開を検討)

「半導体製造関連設備のパフォーマンス維持 のためのマッチングシステム」 [⇒ P95に事例を記載]

4

装置/部品調達における国内エコシステム形成に向けた流通支援

- 国内の従来型半導体装置/部品 エコシステムの構築促進
- 優先的に国内に中古装置/部品供給を行う等、国内調達エコシステムに資する取引をした事業者への減税・免税処置
- デバイスメーカーに対しては国内装置メーカー/商社への中 古装置売却実績に応じて、装置メーカー/商社は中古装置 を国内デバイスメーカーへ販売実績に応じてインセンティブ の付与を実施

中・韓政府は、部品輸入に対する関税免除や 海外企業の買収に対して法人税免除がなされ る等の施策を実施 [⇒P36~39に詳細を記載]

6

サポート切れの従来型 半導体装置部品供給を 政府管理の基で支援す る組織の設立

- 政府機関などによる部品情報の 厳格管理の基、IPの第三者によ るライセンス利用を可能とするこ とで、電装部品等の入手困難部 品の流通を促進
- 装置メーカーの最先端技術開発 へのリソース集中を促進
- 国内デバイスメーカーを顧客とする、政府機関管轄にて従来 型半導体装置/部品の供給を行う事業者を設立・運営
- 装置メーカーから提供のIP利活用を管理し、装置の修理を必要としているデバイスメーカー/メンテンナンス事業者へライセンス提供を実施

欧米で進む「修理する権利」の獲得に向けた 消費者運動 「⇒P96に事例を記載]

- 国内メーカー向け従来 型半導体製造装置購入 に資する支援
- 資金力に乏しいデバイスメーカー の装置刷新補助
- 装置メーカーの従来型半導体装 置販売促進
- デバイスメーカー向けに装置購入補助金を設定

令和3年度補正予算「サプライチェーン上不可 欠性の高い半導体の生産設備の脱炭素化・刷 新事業費補助金」 [⇒P97に事例を記載]

- で 従来型半導体メーカー・メンテナンス事業者の統合を促す施策
- 国外事業者との競争力向上
- 最終顧客との交渉力向上
- 分散したメンテ技術の集約化
- 既に実施されている半導体サプライチェーン強靭化に向けた 助成金施策内容の改編 or 従来型半導体産業での事業者統 合促進に向けた施策の検討

産業競争力強化法における事業再編計画の 認定要件と支援措置(事業再編計画認定) [⇒P98に事例を記載]

(出所) MURC作成

施策案に対する事業者からの意見聴取の結果、特に施策案2,4,6の施策案は有望性が見込まれた I. エグゼクティブサマリー

抽出された施策案とそれに対する事業者の評価

施策案	事業者の評価 1			
加東采	必要性	実現性	公平性	
メンテナンス講習会の実施	0	Δ	0	
② 従来型半導体人材育成に向けたPR活動・教育環境整備	0	0		
後子 装置部品融通システムのエリア拡大(国内外)		0	0	
会		Δ	0	
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立	0	Δ	Δ	
国内メーカー向け従来型半導体製造装置購入に資する支援	0	0	0	
	0	Δ	Δ	

施策案に対する事業者からの意見聴取にあわせ、施策案に対する懸念・要望を取得

I . エグゼクティブサマリー

抽出された施策案とそれに対する事業者の評価

冊出された施策楽とそれに対する事業者の評価 					
施策案	施策案に対する事業者からの意見 1				
	懸念点	要望			
メンテナンス講習会の実施	 教員・メンテンナンスマニュアル(場合によって図面)・講習に用いる設備の用意ができるかに懸念有(デバイスメーカー・装置メーカー・メンテンナンス事業者) 機種/装置種類が多様なため、一律の講習会の効果は薄い(装置メーカー) 	_			
② 従来型半導体人材育成に向けたPR 活動・教育環境整備	■ そもそも若手がメンテナンス等の魅力を感じることができるかが不明(メンテナンス事業者)	 産業への勧誘に留まらず、若手人材のキャリアパスや報酬面を充実させる等のオペレーションも必要と認識(装置メーカー) 保守メンテだけに留まらず従来型半導体産業全体を見越した目的での実施が望ましい(装置メーカー) 			
装置部品融通システムのエリア拡大(国内外)	 ■ 規模を拡大することにより粗悪品の流通可能性に懸念有(装置メーカー・メンテナンス事業者) ■ 調達スピードの向上が見込まれるが、競争環境の激化により商社への不利益発生懸念有(商社) ■ 実態はすでに世界市場での情報やり取り、流通が行われており政府介入の必要性はうすいのではないか(装置メーカー) 	 ■ 海外への拡大も検討し得るが、該非判定等、取引上生じる制約に対するケアは必要(装置メーカー) ■ 装置メーカーがレガシー部品を提供するケースもあるため競合懸念を抑える必要有(装置メーカー) 			
4 装置/部品調達における国内エコシステム形成に向けた流通支援	 ● 免税を目的とした買い占め等の発生懸念有(メンテンナンス事業者) ■ 減税施策があれば販売価格にも反映されデバイスメーカーの価格競争力が向上する可能性有(メンテンナンス事業者) 	■ 現時点では入札価格差により海外に目が向いており取り戻すだけのインセンティブを考慮する必要有 (デバイスメーカー)			

(前ページの続き)

I . エグゼクティブサマリー

抽出された施策案とそれに対する事業者の評価				
施策案	施策案に対する事業者からの意見 1			
	懸念点	要望		
サポート切れの従来型半導体装置部 品供給を国策として支援する企業の 設立	 ■ 装置メーカーからのデザイン・設計図・回路図面・IP に関わる情報の開示がなされるかに懸念有(デバイスメーカー・装置メーカー・商社) ■ 電気系/センサー系/基板系部品手配の難易度は高く、政府支援によるメリットがどの程度あるのかが不明(装置メーカー) 	_		
国内メーカー向け従来型半導体製造 装置購入に資する支援	■ 中長期的に見ると、デバイスメーカーのそもそもの 収益力を高めていかないと問題の解決には至らず、 公的資金を投入する事には違和感がある(装置メー カー)	 ■ 補助金による暫定的対応よりも競争力を高めるための事業者の統廃合施策を進めるべき(装置メーカー・商社) ■ 装置購入時に一定の基準(例:サポートの人手がかからない、環境対応部品、デジタル化対応等)をクリアしたら支給されることが望ましい(装置メーカー) ■ 日系の製造装置メーカーの準備ができてからのスタートを希望(装置メーカー) 		
で 従来型半導体メーカー・メンテナンス 事業者の統合を促す施策	 装置メーカーのケイパビリティやIPを考慮すると、メンテナンス事業者の統廃合を行っても、これまで同様のサポート範囲に限定されてしまう可能性が高い(装置メーカー) 国内のコスト競争が阻害される可能性があり、コストアップリスクへのケアが必要(デバイスメーカー) 	 □ ローカルの装置メーカーへサービスケイパビリティを集中させる方が機能すると想定(装置メーカー) ■ 分散型による協力体制の構築の方が効率的に機能する可能性が高い(メンテナンス事業者) ■ 調達が困難な部品に関してはデバイスメーカー間で協力購入を行い、そういった活動を金銭的補助により支援することも考え得る(商社) 		

Ⅱ.調査結果概要

プロジェクトの全体像・進め方

凡例:

ヒアリング以外の 推進事項 事業者へのヒアリング

調査項目

インタビューイ探索・デスクトップリサーチ

インタビュー実施・提言案作成

提言案まとめ・報告書作成

製造動向 来型半導体 を すなど従 中国・韓国を中心とした従来型半導体製造動向 デスクトップサーチ

> 中・韓事業者の聴取 候補先リスト化

中国・韓国などにおける従来型半導体デバイスメーカー等への設備パフォーマンス問題ヒアリング

対応 対応 状況 国内 半導体

デバイスメーカーの 聴取候補先リスト化 レガシー半導体製造装置の老朽化問題に 関するデバイスメーカーへのヒアリング

装置の 状況 料導体製造 半導体製造装置の200mm以下ウエハ取扱有無 デスクトップサーチ

装置メーカーの 聴取候補先リスト化 レガシー半導体製造装置の老朽化問題に関する半導体製造装置メーカーへのヒアリング

商社・メンテンナンス事業者の 聴取候補先リスト化 レガシー半導体製造装置の老朽化問題に関する中古 装置取扱商社・メンテナンス事業者へのヒアリング

1~5の調査項目について、計23件のインタビューを実施

	タビュー先 美者区分	インタビュー 実施件数
半導体・ メーカー	デバイス -	8
半導体	製造装置 -	7
	/テナンス/ り扱い商社	8
	合計	23

因の精査 M&A阻害要

デバイスメーカー・装置メーカー・商社・メンテナンス業 者等へのヒアリング

報告書 作成 根言案

提言案作成

提言案に対する事業者 からの意見聴取

報告書作成

(出所) MURC作成

中国・韓国は従来型半導体製造において手厚い支援がある

目的

■ 中国・韓国の従来型半導体製造動向を調査することにより、日本の従来型半導体製造にかかる諸問題解決への糸口とする

実施 事項

- 中国・韓国の半導体製造に関連する中央・地方の支援策・半導体特区を調査し、日本との対比を実施
- 中国・韓国の半導体デバイス製造工場を主にウエハロ径の観点からリストアップ
- 日本の事業者から中国・韓国事情をインタビューすると共に、韓国デバイスメーカーへのインタビューを実施

■ 中国

- 国家IC産業ファンド等大規模な補助金や法人税の免除が存在。最先端ノードへの投資が手厚く行われている
- 国レベルにとどまらず、地方政府も独自の支援策を講じており、半導体産業が勃興。特区の設置により半導体工場設立や研究が 進んでいる
- パワー半導体を中心に、200mmウエハ設備においても工場の新設が急ピッチで進む

■ 韓国

調査結果

- パワー半導体や車載半導体製造への補助金や、設備投資の税控除や素材企業買収時の税控除が存在
- 中古装置部品のハブ拠点となっている可能性有
- 修理ができずに困窮するということはあまり生じていない

■日本

- 税制優遇措置については議論が始まる予定
- パワー・マイコン・アナログ半導体について設備投資の補助があるも、条件付きかつ総額の1/3までに留まる
- 工場の老朽化は中国・韓国に比べ進行しており、費用対効果の観点から200mm以下ウエハ設備においてはパワー半導体を除き、設備投資が盛んではない

中国は国/地方政府両面の補助金などの後押しで工場新設進む。日本は設備老朽化が進行

補助金

■ 国:産業ICファンドによ

■地方政府:省、市レベ

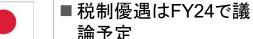
■パワー・車載半導体へ

■素材企業など買収時の

ルでの補助金

る投資

の補助


資金補助

従来型半導体産業への支援策

税制優遇

■ノード別の半導体製造 企業、素材企業などの 法人税の時限免除

- ■輸入関税免除
- ■設備投資への税控除 率引き上げ
- ■素材企業など買収時の 法人税控除
 - 諸外国と比べ日本は
 - 従来型半導体向け装置/部品の流通量が不足
 - 支援が小規模

■ パワー・マイコン・アナ ログ半導体の大規模 事業者に対し設備投資 補助(総額の1/3まで)

■各地の特区に半導体工場を設置

従来型半導体産業の現状

- ■近年、パワー半導体中心に工場新設。老朽化は進 んでいない
- ■中古含めた装置購入に意欲的
- ■200mm以下の工場新設はそこまで盛んではない
- ■中古装置部品のハブとなっている可能性あり
 - 諸外国と比べ日本は
 - 設備投資控えめ
 - 設備の老朽化が特に進んでいる
- ■パワー半導体中心に新設需要あり
- ■全般に工場の老朽化進む
- ■設備投資は控えめ

1.中韓など従来型半導体製造動向

近年、中国企業による装置の買い上げが活発化している。

日本企業は、韓国のサードパーティ経由で部品調達を行っているケース有

中・韓に関連するインタビューコメント要旨

要の現状中国における装置需

取り扱い市場の状況韓国における装置部品/中古装置の

■ 中国企業が装置一式で買い上げを行うことによる価格高騰が起きている

- 中国の購買需要は旺盛である実感があり、これまでの常識的な価格を大幅に上回る価格で購入されている。中国企業が高値で購入する目的は、助成金目当てで活用する気が無い装置を購入することや部品のコピーを行うため
- 日本企業から海外に販売することもあるが、出先が分からないと販売しないこともある。第三者機関から意図しないプレイヤーに流出する事を 懸念している。販売に際して一筆書いていただくこともある
- 企業を迂回して調達することができるため規制関係では中国に流れる動きを止めることができない認識

■ 韓国・台湾では大手デバイスメーカーがサードパーティを育成している

- 韓国でサードパーティが多い背景としては、90年代に大手デバイスメーカーが育てた企業で成長したエンジニアがスピンアウトして起業しているケースが多い
- 部品調達は、装置メーカーとの直接取引ができないため、取り扱いパーツを調べ直接やり取りができるメーカーを当たっている。それ以外だと<mark>韓</mark> 国や台湾のエージェントを通して部品調達している
- 韓国はサードパーティが多いが会社ごとに特定の装置メーカーの特定の装置に特化している状況であり、手広く全てのパーツを持っているわけではなくセグメントを分けての囲い込みがされている。そのため日本のマーケットにパーツが流通しにくい
- 中古品取引のデバイスメーカー側の需要としては韓国国内ではそれほど多くなく、主な顧客は日本や中国が多い
- 韓国の大手サードパーティは国に近い会社であり潤沢な資金を持っているため装置を買い集める&多くのパーツを保有することができる
- 部品調達は装置からの部品取り・オークション・顧客からの調達で行っている。海外からの調達はサードパーティが多い韓国からが多い
- 日本国内でコピー品の流通が拡大するためには、デバイスメーカーがセカンド品サード品を採用できるかが焦点。場合によっては製造装置の認可が必要であるが、品質保証の認可を得られるかの問題がある。海外はそのハードルが低いためコピー品を使える幅が広い。日本国内はハードルが高く流通拡大を阻害している。デバイスメーカー社内の承認に加え、製品のユーザーサイドの承認を取るにも時間がかかる
- 韓国・台湾の事業者から調達すると輸送費がかかってくる。加工品は日本国内で賄うこともできるため、国内で製造できる事業者を増やすことも 検討し得る

デバイスメーカーは、費用面・技術面などから、装置刷新が困難な場合があり、短期的には修繕で対応

目的

■ 国内の従来型半導体メーカーを調査することにより、日本の従来型半導体製造にかかる諸問題解決への糸口とする

実施 事項

調査結果

■ 主に200mm以下ウェハラインを有する、日本の従来型半導体メーカーから現状課題・対応などをインタビューにて実施

■ デバイスメーカーから見た設備老朽化問題の現状

- 長期間にわたって使用している<mark>従来型の装置部品の供給途絶が起こっており、設備の老朽化が進行している</mark>(特に不具合発生 箇所は制御系の基板などが多い)
- 従来使っている装置からの、300mmウェハ対応装置やリニューアルした200mmウェハ対応装置への刷新は進んでいない
 - 費用面…クリーンルームの建て替えが必要となる/費用対効果があわない
 - 技術面…化合物半導体(パワー半導体)・MEMS等で大口径での量産技術が確立していない/大口径を必要としていない
 - 品質保証面...顧客承認上、急な設備変更はできない
- デバイスメーカーの設備老朽化問題への対応
 - 中古装置の確保は費用面や中国の買い占めなどにより困難となってきている
 - メンテナンス事業者の後継者不足により古い装置のメンテナンスが困難となってきており、装置メーカーのメンテナンス対応継続が望まれている
 - 海外への装置流出を妨げる仕組みは一部の企業に留まる

2. 国内半導体メーカー対応状況

デバイスメーカーは、費用面・技術面などの点から、

装置の刷新が困難な場合があり、短期的には現行装置の修繕で対応予定である

国内半導体メーカー対応状況に関するインタビューコメント要旨

	老朽化 問題認識	■ 保守サービスの終了/部品供給途絶、両方ともに進んでいるが、 <mark>特に部品供給途絶が問題</mark>
設備老朽化問題の現状	装置刷新	 ■ 装置の刷新は進んでいない。自動車用途は特に刷新しにくい。一部大企業のみ8インチでの刷新を検討 ● 装置刷新(300mmウェハ化)が進まない理由 <費用面> グリーンルームのスペースが200mm以下設備用であり、300mmにするには建屋の建て替えを要する[全デバイス種共通] ・ 現時点では費用対効果の観点から、200mmウェハへのアップグレードも難しい[ディスクリートなど] 技術面> SiCは200mm以下、GaNは150mm以下サイズのウェハしか量産技術が確立していない[パワー] 耐電圧が求められる製品は125mm(5インチ)までが限界[ディスクリート・ダイオード・トランジスタ] 面内の均一性が得られないものは300mmで作製できないものもある[MEMS・アナログ] 200mmよりも150mmで作製した方が効率的な場合もある[MEMS] 品質保証面> 特に自動車用途向けでは、顧客承認が必要であり、設備変更は年単位以上の時間がかかるため急な全面刷新は困難[ASIC・ディスクリート・センサなど] 特に自動車用途向けでは、顧客承認が必要であり、設備変更は年単位以上の時間がかかるため急な全面刷新は困難[ASIC・ディスクリート・センサなど]
	不具合発生個所	■ プロセス全般で老朽化が進んでいる。エッチングや露光が特に進んでいる企業あり ■ 不具合になりやすい部品は制御系(基板等)
	定期メンテナンス 実施状況	■ 装置メーカーの定期メンテナンスを受けることができない装置は20~50%程度

デバイスメーカーは同業者間でも部品調達を実施しており、マッチングシステムの活用に前向き

国内半導体メーカー対応状況に関するインタビューコメント要旨

	装置確保可否	■ 200mm以下の製造装置は新品の調達は可能であるが、中古品は確保が困難。特に老朽化した装置を使用し続ける事業 規模が比較的小さい企業は困難度高い。投資余力のある企業は200mm設備の装置/部品入手ができている
	装置調達方法	■ メーカー・商社・同業他社経由で調達。リース品を使用するケースも多い
設 備	メンテナンス実施	■ 自社対応/メンテナンス業者活用の両方。従来型半導体領域は自社でのメンテナンススキルの確立ができているケースもある。サードパーティでも高度な技術を保有している
老朽	状況	■ 200mmは図面開示がされていないため対応が難しい
設備老朽化問題		■ メンテナンス事業者の後継者不足が問題。高スキル人材の高齢化が問題
•	マッチングシステムの活用可能性	■ 全国への展開が望ましい。リース利用をしている企業はサービス利用が難しい
の対応	中古装置の取り	■ 商社経由で装置/部品入手を実施する。大企業は装置入れ替えの際に売却を実施。海外への中古品流出を容認している企業がほとんどであるが、一部の企業は渡中しないよう制限を設けている
	扱い	■ 部品入手のために中古装置購入を行う企業が多い
	要求事項	■ 対装置メーカー:古い装置のメンテナンス対応の継続。装置延命処置の充実。サードパーティを活用した後の保証認可。メンテナンストレーニング環境の整備

3.半導体製造装置メーカー対応状況 ーパートサマリーー

装置メーカーは従来型装置の老朽化に対して、リニューアル品を含んだ製品提供及び長期のメンテナンス期間を設けている

目的

■ 国内・国外の半導体製造装置メーカーの状況を把握することにより、日本の従来型半導体製造にかかる諸問題解決への糸口とする

実施 事項

調査

結果

- 主に200mm以下ウエハ対応装置を有するかどうか、日・米・中・韓の半導体装置メーカーの状況をデスクトップサーチ
- 日本および米国の半導体装置メーカーへ現状課題・将来展望のインタビューを実施
- 装置メーカーの装置ラインナップ状況
 - 装置メーカー各社は、装置提供のバリエーションとして150mmサイズまでは概ねラインナップしている
- 設備老朽化問題・装置需要の現状
 - ◆ 装置需要のほとんどは新規の設備増強による引き合いであり、既存設備の刷新に伴う新規装置の供給はほとんど無い
- 装置メーカーとしての老朽化問題への対応
 - 装置/部品提供について
 - 150mm以下のウエハ用装置は200mmウエハ用装置をコンバージョンして使用するケースがほとんどであるため、200mmの装置ラインナップで装置メーカーは対応している(露光装置等、加工時に精密な平坦度が求められる装置に限り、150mm以下の専用装置をラインナップしている)
 - リリース後時間が経った装置については、重要機能部分は変更せずリニューアル装置をリリースしているケースがある
 - サービス取り扱い中の装置に対する部品の提供は問題なく行っている。EOLする装置の部品は非常に長くのリードタイムを取って顧客に伝達しラストバイを促す対応を行っている
 - 図面の開示は技術流出懸念から実施は不可能
 - メンテナンス対応について
 - 安全性(第三者が装置に手を加え、安全性が損なわれていないか)の確認を行った後にメンテナンスを実施しており、安全性 が確認できない場合にはメンテナンスは実施できない
 - リリース後時間が経った装置を取り扱うことができる技術者の高齢化は進んでおり、<mark>技術の伝承は必要</mark>な認識

装置メーカーは取扱中の装置への対応は十分に実施しており、新規装置への更新を推し進めたい

半導体製造装置メーカー対応状況に関するインタビューコメント要旨

設備老朽化問題	老朽化 問題認識	■ プロセス全体として老朽化が進展。電装系のチップ劣化による装置不具合が多い
を朽れ	装置刷新	■ デバイスメーカーの装置刷新はほとんど進んでいない認識。デバイスによって事情が異なり、300mmへの刷新ができない
規 規 援 装	装置需要状況	顧客には新しい装置への置き換えを勧めているが、装置需要のほとんどは設備増強によるものである足元ではパワーデバイス向けの需要が旺盛
装置需要	装置ラインナップ	■ 200mmがメインで150mm以下との併用仕様となっていることが多い。リリース後時間が経ったものはウエハ取り扱いに関わる重要部分は変えずにリニューアルを実施
	装置•部品供給	■ EOLする装置部品はかなりのリードタイムを取って顧客に伝達しラストバイを促している。サービス取り扱い中の装置向けの部品は問題なく提供している。在庫は必要最低限な分を確保
装置メーカーの対応	メンテナンス実施 状況	 安全性(サードパーティが触って安全性が損なわれていないか)の確認を行ったあとでメンテナンスを実施。安全性が担保できない場合にはメンテナンスは実施できない パートナー会社にライセンスベースでIP譲渡し、クリーニングなどは実施することもある。現在の技術につながるIPの譲渡は行わない 200mm以下装置メンテナンスは問題なく対応しており、疎かにしていることはない 古い装置を扱うことができる技術者の高齢化が進んでいる
	装置開発·図面 開示	■ SiCやGaNなど新しい技術についての開発は行っている。基本的には300mmの技術のスケールダウンであり技術的な障壁はない ■ 技術流出懸念から図面の開示は行わない
	中古装置リニュー アル	■ 中古品の流通量が少なく、装置クオリティも低いため、近年リファブは行っていない

近年、中古装置は海外に流出している事例が多く見られ、国内の流通が不足している

目的

■ 国内の中古装置市場、装置メンテナンスの状況を把握することにより、日本の従来型半導体製造にかかる諸問題解決への糸口と する

事項

実施 ■ 日本の従来型半導体メーカー・半導体製造装置メーカー・中古半導体装置商社・装置メンテナンス業者へ、中古装置市場・装置メン テナンスにかかる現状課題・将来展望のインタビューを実施

■ 部品/中古装置取引について

- 制御系部品や基板の流通が不足している(図面が無いことに加えサードパーティが新しく作ることができないため)
- 日本は純正品しか使わないユーザーからコピー品を受け入れ可能なユーザーまで存在しており、ユーザーによる要求事項が 様々であるため海外ほどコピー品の流通が進んでいない
- 200mmウェハ向け装置は150mm以下へのコンバージョンができるため、200mmウェハ向け装置が最も需要がある
- 韓国には中古装置/コピー品を取り扱うサードパーティが多く存在し、多くの装置を買い集める/多くのパーツを保有することが できるため、日本国内事業者は韓国のサードパーティをはじめとした海外から部品調達を行うことがある

調査 結果

■ メンテナンス事業の実施状況について

- メンテナンス需要は旺盛であり、装置メーカーのメンテナンスは対応までに1~2カ月程度かかる場合がある(保守契約を結ぶこと) で1週間程度で対応してもらえる例も存在)
- 特にメンテナンス事業者/中小規模デバイスメーカーを対象としてメンテ人材の後継者不足が問題。若い人材が古い装置を触る 機会が少ないため教育機会が不足している。古い装置になればなるほど顧客の方が詳しく、重度の故障の際しか第3者に声が かからない
- 大規模デバイスメーカーでは、現状メンテナンス人材の確保は問題なく対応できている模様

メンテナンス事業者・中小規模デバイスメーカーのメンテ人材後継者不足・教育環境未整備が問題

ンス人材の確保は問題なくできている

中古装記	置市場・メンテ	事業実施状況に関するインタビューコメント要旨
		■ 中国企業が装置一式で買い上げを行うことによる価格高騰は起きている
部品		■ パーツ関連は、図面が入手できれば、国内外含めたセカンドやサードパーティに作ってもらえる。為替影響があることから、できれば国内で実施したい
品		■ 制御系部品や基板の流通が不足している。図面が無いことに加えサードパーティが新しく作ることができないためである
中古装	現状	■ <mark>韓国・台湾の事業者を使うと輸送費が非常にかかる</mark> 。加工物は日本国内で賄うこともできるため、国内で製造できる事業者を増 やすことも考えたほうが良いと思う
中古装置取引市場の状況		■ 日本は純正品しか使わないユーザーからコピー品を受け入れ可能なユーザーまで存在しており、ユーザーによる要求事項が 様々であるため海外ほどコピー品の流通が進まない
市場		■ 装置メーカーとのパートナー関係があることでデバイスメーカーとしての立ち位置で商社として部品購入をすることが可能
物の出		■ 補助金は大企業に流れており中堅以下の企業には回ってきていない印象
· · · · · · · · · · · · · · · · · · ·	支援策へ の見解	■ 支援策として装置購入の金銭的サポートもあり得るが、メンテンナンス市場を支えている人材などインフラ面でのサポートも併せた、両面での支援が必要である
		■ 特高受電設備・電気料金に対するサポートがほしい
		■ 保守契約を結んでいない場合には、メンテナンス対応に1~2カ月程度かかる場合がある。特別保守契約を結ぶことで1週間程度で対応してもらうことができる
シ		■ メンテナンス価格/部品価格は数年前比で15%~2倍程度にまで上昇
テナ		■ 中古装置の売買は商社経由で実施。リファブ品の購入も行っている
ンス事	現状	■ 200mmの装置がメインの引き合いであるが、200mmは150mm以下へのコンバージョンができるため、200mm装置が手に入ればすべてに適用できるため最も人気がある
業 の 実	3000	■ 日本で中古・メンテナンス業界が発展しない理由は、装置メーカーの縛りが存在し各装置メーカーの製品ごとに精通するエンジニアを確保しなければならないことと、特定の地域中心で事業展開している企業が多く分散していること
メンテナンス 事業の実施状況		■ 技術者の不足は大きな問題。若い人材が古い装置を触る機会が少ないため教育機会が不足している。古い装置になればなるほど顧客の方が詳しく、重度の故障の際しか第3者に声がかからない
		■ メンテナンス事業者/中小規模デバイスメーカーのメンテ人材後継者不足が問題。大規模デバイスメーカーでは、現状メンテナ

従来型半導体製造に関わる独禁法等、M&Aの阻害要因を懸念している企業はほとんどない

目的

■ 半導体メーカー・半導体製造装置メーカーのM&Aを仮定した場合の独占禁止法に関する懸念事項や、製造装置売買やメンテナンスの公正な競争を阻害する要因の有無を把握することにより、日本の従来型半導体製造にかかる諸問題解決を阻む事項を明らかにする

実施 事項

■ 日本の従来型半導体メーカー・半導体製造装置メーカー・中古半導体装置商社・装置メンテナンス業者へインタビューを実施

■ 結果

- デバイスメーカー
 - 問題認識している企業はほとんどない
 - 一部の大規模なデバイスメーカーは会社の方針として独禁法に対する懸念は抱いている場合がある
- 装置メーカー
 - 問題認識している企業はほとんどない

調査 結果

- 200mm以下に限定した合併等はあまり考えられないことに加えて、各社が持っているIPのディスクローズなどが難しく現実的に実現は不可能
- メンテンナンス事業者
 - 国内のメンテンナンス事業者は規模感がそれほど大きくなく、問題認識している企業はほとんどない
- 商社
 - 問題認識している企業はほとんどない

独禁法に対し、大半のデバイスメーカー・装置メーカーは懸念を抱いていない状況

独禁法・M&A阻害要因に関するインタビューコメント要旨

	デバイスメーカー	■ 問題認識している企業はほとんどない■ 大規模なデバイスメーカーは会社の方針として独禁法に対する懸念は抱いている場合がある
独禁法の影	装置メーカー	■問題認識している企業はほとんどない■ 200mm以下に限定した合併等はあまり考えられない■ 合併などの可能性はゼロではないが、各社が持っているIPのディスクローズなどが難しく現実的に実現は不可能
の影響見解	メンテナンス業者	■ 国内のメンテンナンス事業者は規模感がそれほど大きくなく、問題認識している企業はほとんどない
	商社	■ 問題認識している企業はほとんどない■ M&Aが起きた場合、外為法の該非判定を判断する部署がなくなる可能性がある

【再掲】施策案について、具体的に以下の内容を想定

■ 国外事業者との競争力向上

■ 分散したメンテ技等の集約化

■ 最終顧客との交渉力向上

具体的な実施事項 施策の狙い 施策/取り組み事例 ■ メンテンナンス人材の育成を狙いとし、デバイスメーカー/メ メンテナンス講習会の実 ■ 従来型半導体装置メンテナンス ンテナンス業者向けに従来型半導体装置のメンテナンス講 (類似した施策/取り組み事例無) 技術の継承 習会を実施 從来型半導体人材育 ■ 展示会で従来型半導体魅力向上PRを行う等、若手人材の 「東北半導体・エレクトロニクスデザイン研究 ■ 従来型半導体産業への若手人材 会」他、各ブロックの人材育成コンソーシアム 成に向けたPR活動・教 従来型半導体産業への勧誘 による取組等 の勧誘 ■ 大学/専門学校等での従来型半導体に係る教育の実施 育環境整備 [⇒P94に事例を記載] (3) ■ 現在東北エリアを中心に取り組まれている「デバイスメーカー 「半導体製造関連設備のパフォーマンス維持 装置部品融通システム ■ 従来型半導体装置部品の取引効 とメンテナンス業者/部品商社間の従来型半導体装置部品 のためのマッチングシステム」 のエリア拡大(国内外) 率向上 のマッチングシステム」を全国展開。(必要に応じて韓国等の [⇒ P95に事例を記載] 事業者にも展開を検討) 4 ■ 優先的に国内に中古装置/部品供給を行う等、国内調達エ コシステムに資する取引をした事業者への減税・免税処置 装置/部品調達におけ 中・韓政府は、部品輸入に対する関税免除や 国内の従来型半導体装置/部品 ■ デバイスメーカーに対しては国内装置メーカー/商社への中 海外企業の買収に対して法人税免除がなされ る国内エコシステム形成 古装置売却実績に応じて、装置メーカー/商社は中古装置 る等の施策を実施 エコシステムの構築促進 に向けた流通支援 [⇒P36~39に詳細を記載] を国内デバイスメーカーへ販売実績に応じてインセンティブ の付与を実施 **(5)** ■ 政府機関などによる部品情報の 厳格管理の基、IPの第三者によ ■ 国内デバイスメーカーを顧客とする、政府機関管轄にて従来 サポート切れの従来型 型半導体装置/部品の供給を行う事業者を設立・運営 るライセンス利用を可能とするこ 欧米で進む「修理する権利」の獲得に向けた 半導体装置部品供給を とで、電装部品等の入手困難部 ■ 装置メーカーから提供のIP利活用を管理し、装置の修理を必 消費者運動 政府管理の基で支援す 「⇒P96に事例を記載] 品の流通を促進 要としているデバイスメーカー/メンテンナンス事業者へライ る組織の設立 ■ 装置メーカーの最先端技術開発 センス提供を実施 へのリソース集中を促進 ■ 資金力に乏しいデバイスメーカー 国内メーカー向け従来 令和3年度補正予算「サプライチェーン上不可 の装置刷新補助 欠性の高い半導体の生産設備の脱炭素化・刷 型半導体製造装置購入 ■ デバイスメーカー向けに装置購入補助金を設定 ■ 装置メーカーの従来型半導体装 新事業費補助金」 に資する支援 「⇒P97に事例を記載] 置販売促進

合促進に向けた施策の検討

■ 既に実施されている半導体サプライチェーン強靭化に向けた

助成金施策内容の改編 or 従来型半導体産業での事業者統

産業競争力強化法における事業再編計画の

認定要件と支援措置(事業再編計画認定)

「⇒P98に事例を記載]

の統合を促す施策 (出所) MURC作成

カー・メンテナンス事業者

₩ 従来型半導体メー

【再掲】施策案に対する事業者からの意見聴取の結果、2,3,6の施策案は有望性が見込まれた

抽出された施策案とそれに対する全事業者の総合評価

************************************	事業者の評価 ¹			
施策案	必要性	実現性	公平性	
メンテナンス講習会の実施	0	Δ	0	
② 従来型半導体人材育成に向けたPR活動・教 育環境整備	0	0		
3 装置部品融通システムのエリア拡大(国内 外)		0	0	
全 装置/部品調達における国内エコシステム 形成に向けた流通支援			0	
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立	0	Δ	Δ	
国内メーカー向け従来型半導体製造装置購入に資する支援	0	0	0	
グ 従来型半導体メーカー・メンテナンス事業者 の統合を促す施策	0	Δ	Δ	

デバイスメーカーからの評価では施策案2,3,6で有望性が見込まれた

抽出された施策案とそれに対するデバイスメーカーの評価

施策案	事業者の評価 ¹			
加東条	必要性	実現性	公平性	
メンテナンス講習会の実施	0	0	0	
② 従来型半導体人材育成に向けたPR活動・教 育環境整備	0	0	0	
3 装置部品融通システムのエリア拡大(国内 外)		0	0	
後置/部品調達における国内エコシステム 形成に向けた流通支援	0	Δ	0	
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立	0	Δ	Δ	
国内メーカー向け従来型半導体製造装置購入に資する支援		0	0	
び 従来型半導体メーカー・メンテナンス事業者 の統合を促す施策	Δ	Δ	Δ	

装置メーカーからの評価では実現性に懸念がありつつも施策案2で有望性が見込まれた

抽出された施策案とそれに対する装置メーカーの評価

*	事業者の評価 1		
施策案	必要性	実現性	公平性
メンテナンス講習会の実施	Δ	Δ	Δ
② 従来型半導体人材育成に向けたPR活動・教育環境整備	0	Δ	
3 装置部品融通システムのエリア拡大(国内 外)	Δ		Δ
全 装置/部品調達における国内エコシステム 形成に向けた流通支援	0	Δ	0
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立	Δ	Δ	Δ
国内メーカー向け従来型半導体製造装置購入に資する支援	0	0	0
グ 従来型半導体メーカー・メンテナンス事業者 の統合を促す施策	Δ	Δ	Δ

メンテンナンス事業者/商社からの評価では施策案4,6で有望性が見込まれた

抽出された施策案とそれに対するメンテナンス事業者/商社の評価

长华安	事業者の評価 ¹		
施策案	必要性	実現性	公平性
メンテナンス講習会の実施		Δ	Δ
② 従来型半導体人材育成に向けたPR活動・教 育環境整備		Δ	0
3 装置部品融通システムのエリア拡大(国内 外)			Δ
後置/部品調達における国内エコシステム 形成に向けた流通支援		0	0
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立		Δ	0
国内メーカー向け従来型半導体製造装置購入に資する支援		0	
		Δ	Δ

【再掲】施策案に対する事業者からの意見聴取にあわせ、施策案に対する懸念・要望を取得

抽出された施策案とそれに対する事業者の評価

施策案	施策案に対する事業者からの意見 1		
	懸念点	要望	
メンテナンス講習会の実施	■ 教員・メンテンナンスマニュアル(場合によって図面)・講習に用いる <mark>設備の用意ができるかに懸念有</mark> (デバイスメーカー・装置メーカー・メンテンナンス事業者)	_	
	■ 機種/装置種類が多様なため、一律の講習会の効果は薄い(装置メーカー)		
② 従来型半導体人材育成に向けたPR 活動・教育環境整備	■ そもそも若手がメンテナンス等の魅力を感じることができるかが不明(メンテナンス事業者)	 産業への勧誘に留まらず、若手人材のキャリアパス や報酬面を充実させる等のオペレーションも必要と 認識(装置メーカー) 保守メンテだけに留まらず従来型半導体産業全体 を見越した目的での実施が望ましい(装置メーカー) 	
装置部品融通システムのエリア拡大(国内外)	 ■ 規模を拡大することにより粗悪品の流通可能性に懸念有(装置メーカー・メンテナンス事業者) ■ 調達スピードの向上が見込まれるが、競争環境の激化により商社への不利益発生懸念有(商社) ■ 実態はすでに世界市場での情報やり取り、流通が行われており政府介入の必要性はうすいのではないか(装置メーカー) 	 ■ 海外への拡大も検討し得るが、該非判定等、取引上生じる制約に対するケアは必要(装置メーカー) ■ 装置メーカーがレガシー部品を提供するケースもあるため競合懸念を抑える必要有(装置メーカー) 	
4 装置/部品調達における国内エコシステム形成に向けた流通支援	 ● 免税を目的とした買い占め等の発生懸念有(メンテンナンス事業者) ■ 減税施策があれば販売価格にも反映されデバイスメーカーの価格競争力が向上する可能性有(メンテンナンス事業者) 	■ 現時点では入札価格差により海外に目が向いており取り戻すだけのインセンティブを考慮する必要有 (デバイスメーカー)	

(注) 1 カッコ内は該当コメントをした事業者区分 (出所) MURC作成

【再掲】(前ページの続き)

抽出された施策案とそれに対する事業者の評価

抽出された施策案とそれに対する事業者の評価 				
施策案	施策案に対する事業者からの意見 1			
	懸念点	要望		
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立	 基置メーカーからのデザイン・設計図・回路図面・IP に関わる情報の開示がなされるかに懸念有(デバイスメーカー・装置メーカー・商社) 電気系/センサー系/基板系部品手配の難易度は高く、政府支援によるメリットがどの程度あるのかが不明(装置メーカー) 	_		
国内メーカー向け従来型半導体製造装置購入に資する支援	 申長期的に見ると、デバイスメーカーのそもそもの 収益力を高めていかないと問題の解決には至らず、 公的資金を投入する事には違和感がある(装置メーカー) 	 補助金による暫定的対応よりも競争力を高めるための事業者の統廃合施策を進めるべき(装置メーカー・商社) 装置購入時に一定の基準(例:サポートの人手がかからない、環境対応部品、デジタル化対応等)をクリアしたら支給されることが望ましい(装置メーカー) 日系の製造装置メーカーの準備ができてからのスタートを希望(装置メーカー) 		
で 従来型半導体メーカー・メンテナンス 事業者の統合を促す施策	 装置メーカーのケイパビリティやIPを考慮すると、メンテナンス事業者の統廃合を行っても、これまで同様のサポート範囲に限定されてしまう可能性が高い(装置メーカー) 国内のコスト競争が阻害される可能性があり、コストアップリスクへのケアが必要(デバイスメーカー) 	 □ ローカルの装置メーカーへサービスケイパビリティを 集中させる方が機能すると想定(装置メーカー) □ 分散型による協力体制の構築の方が効率的に機能 する可能性が高い(メンテナンス事業者) ■ 調達が困難な部品に関してはデバイスメーカー間で 協力購入を行い、そういった活動を金銭的補助によ り支援することも考え得る(商社) 		

Ⅲ. 調査結果詳細

- プロジェクトの全体像・進め方
- 調査結果
 - 1. 中国・韓国の従来型半導体製造動向
 - 中国の工場一覧
 - 2. 国内従来型半導体製造事業の実施状況
 - 3. 半導体製造装置の状況
 - 半導体製造装置のウエハサイズ対応状況
 - 4. 中古装置市場・メンテ事業実施状況
 - 5. 独禁法・M&A阻害要因の精査
- 調査結果を受けた提言

プロジェクトの全体像・進め方

凡例:

ヒアリング以外の 推進事項 事業者へのヒアリング

調査項目

インタビューイ探索・デスクトップリサーチ

インタビュー実施・提言案作成

提言案まとめ・報告書作成

製造動向 来型半導体 を すなど従 中国・韓国を中心とした従来型半導体製造動向 デスクトップサーチ

> 中・韓事業者の聴取 候補先リスト化

中国・韓国などにおける従来型半導体デバイスメーカー等への設備パフォーマンス問題ヒアリング

対応 対応 状況 国内 半導体

デバイスメーカーの 聴取候補先リスト化 レガシー半導体製造装置の老朽化問題に 関するデバイスメーカーへのヒアリング

装置の 状況 料導体製造 半導体製造装置の200mm以下ウエハ取扱有無 デスクトップサーチ

装置メーカーの 聴取候補先リスト化 レガシー半導体製造装置の老朽化問題に関する半導体製造装置メーカーへのヒアリング

商社・メンテンナンス事業者の 聴取候補先リスト化 レガシー半導体製造装置の老朽化問題に関する中古 装置取扱商社・メンテナンス事業者へのヒアリング

1~5の調査項目について、計23件のインタビューを実施

_		
	インタビュー先 事業者区分	インタビュー 実施件数
	半導体デバイス メーカー	8
//	半導体製造装置 メーカー	7
- 1	装置メンテナンス/ 装置取り扱い商社	8
	合計	23

因の精査 M&A阻害要

デバイスメーカー・装置メーカー・商社・メンテナンス業 者等へのヒアリング

報告書 作成 根言案

提言案作成

提言案に対する事業者 からの意見聴取

報告書作成

(出所) MURC作成

Ⅲ. 調査結果詳細

- プロジェクトの全体像・進め方
- 調査結果
 - 1. 中国・韓国の従来型半導体製造動向
 - 中国の工場一覧
 - 2. 国内従来型半導体製造事業の実施状況
 - 3. 半導体製造装置の状況
 - 半導体製造装置のウエハサイズ対応状況
 - 4. 中古装置市場・メンテ事業実施状況
 - 5. 独禁法・M&A阻害要因の精査
- 調査結果を受けた提言

中国・韓国は従来型半導体製造において日本よりも手厚い支援がある

目的

■ 中国・韓国の従来型半導体製造動向を調査することにより、日本の従来型半導体製造にかかる諸問題解決への糸口とする

実施 事項

- 中国・韓国の半導体製造に関連する中央・地方の支援策・半導体特区を調査し、日本との対比を実施
- 中国・韓国の半導体デバイス製造工場を主にウエハロ径の観点からリストアップ
- 日本の事業者から中国・韓国事情をインタビューすると共に、韓国デバイスメーカーへのインタビューを実施

■ 中国

- 国家IC産業ファンド等大規模な補助金や法人税の免除が存在。最先端ノードへの投資が手厚く行われている
- 国レベルにとどまらず、地方政府も独自の支援策を講じており、半導体産業が勃興。特区の設置により半導体工場設立や研究が 進んでいる
- パワー半導体を中心に、200mmウエハ設備においても工場の新設が急ピッチで進む

■ 韓国

調査結果

- パワー半導体や車載半導体製造への補助金や、設備投資の税控除や素材企業買収時の税控除が存在
- 中古装置部品のハブ拠点となっている可能性有
- 修理ができずに困窮するということはあまり生じていない

■日本

- 税制優遇措置については議論が始まる予定
- パワー・マイクロ・アナログ半導体について設備投資の補助があるも、条件付きかつ総額の1/3までに留まる
- 工場の老朽化は中国・韓国に比べ進行しており、費用対効果の観点から200mm以下ウエハ設備においてはパワー半導体を除き、設備投資が盛んではない

近年、中国企業による装置の買い上げが活発化している。

日本企業は、韓国のサードパーティ経由で部品調達を行っているケース有

中・韓に関連するインタビューコメント要旨

要の現状 中国における装置需

取り扱い市場の状況韓国における装置部品/中古装置の

■ 中国企業が装置一式で買い上げを行うことによる価格高騰が起きている

- 中国の購買需要は旺盛である実感があり、これまでの常識的な価格を大幅に上回る価格で購入されている。中国企業が高値で購入する目的は、助成金目当てで活用する気が無い装置を購入することや部品のコピーを行うため
- 日本企業から海外に販売することもあるが、出先が分からないと販売しないこともある。第三者機関から意図しないプレイヤーに流出する事を 懸念している。販売に際して一筆書いていただくこともある
- 企業を迂回して調達することができるため規制関係では中国に流れる動きを止めることができない認識

■ 韓国・台湾では大手デバイスメーカーがサードパーティを育成している

- 韓国でサードパーティが多い背景としては、90年代に大手デバイスメーカーが育てた企業で成長したエンジニアがスピンアウトして起業しているケースが多い
- 部品調達は、装置メーカーとの直接取引ができないため、取り扱いパーツを調べ直接やり取りができるメーカーを当たっている。それ以外だと<mark>韓</mark> 国や台湾のエージェントを通して部品調達している
- 韓国はサードパーティが多いが会社ごとに特定の装置メーカーの特定の装置に特化している状況であり、手広く全てのパーツを持っているわけではなくセグメントを分けての囲い込みがされている。そのため日本のマーケットにパーツが流通しにくい
- 中古品取引のデバイスメーカー側の需要としては韓国国内ではそれほど多くなく、主な顧客は日本や中国が多い
- 韓国の大手サードパーティは国に近い会社であり潤沢な資金を持っているため装置を買い集める&多くのパーツを保有することができる
- 部品調達は装置からの部品取り・オークション・顧客からの調達で行っている。海外からの調達はサードパーティが多い韓国からが多い
- 日本国内でコピー品の流通が拡大するためには、デバイスメーカーがセカンド品サード品を採用できるかが焦点。場合によっては製造装置の認可が必要であるが、品質保証の認可を得られるかの問題がある。海外はそのハードルが低いためコピー品を使える幅が広い。日本国内はハードルが高く流通拡大を阻害している。デバイスメーカー社内の承認に加え、製品のユーザーサイドの承認を取るにも時間がかかる
- 韓国・台湾の事業者から調達すると輸送費がかかってくる。加工品は日本国内で賄うこともできるため、国内で製造できる事業者を増やすことも 検討し得る

中国は中央/地方政府両面での補助金などの後押しを受け工場新設が進む。近隣国と比べ、日本は特に設備の老朽化が進んでいる状況

A. 従来型半導体産業への支援策

税制優遇

- ■ノード別の半導体製造 企業、素材企業などの 法人税の時限免除
- ■輸入関税免除
- 設備投資への税控除 率引き上げ
- ■素材企業など買収時の 法人税控除

補助金

- 国: <u>産業ICファンド</u>による投資
- ■地方政府:省、市レベルでの補助金
- パワー・車載半導体へ の<mark>補助</mark>
- ■素材企業など買収時の 資金補助
- 諸外国と比べ日本は
 - 従来型半導体向け装置/部品の流通量が不足
 - 支援が小規模
- 税制優遇はFY24で議 論予定
- パワー・マイコン・アナログ半導体の大規模 事業者に対し設備投資 補助(総額の1/3まで)

B. 従来型半導体産業の現状

- ■各地の特区に半導体工場を設置
- ■近年、パワー半導体中心に工場新設。老朽化は進んでいない
- ■中古含めた装置購入に意欲的
- ■工場新設はそこまで盛んではない
- 中古装置部品のハブとなっている可能性あり
 - 諸外国と比べ日本は
 - 設備投資控えめ
 - 設備の老朽化が特に進んでいる
- ■パワー半導体中心に新設需要あり
- ■全般に工場の老朽化進む
- ■設備投資は控えめ

中国・韓国は税制優遇措置や補助金により自国半導体工場の強靭化を図っている

■中国・韓国はレガシー領域以外でも国家ファンド等各種の支援策を有している。

補助金・手続き迅速化 税制優遇 従来型半導体中心とした支援策 ■ 28nm以下/65nm以下/130nm以下、3つのノードレベル別に ■ 国家IC産業ファンド: YMTC, SMICに重点投資。第1期・ 半導体製造企業の法人税時限免除 第2期実施済、第3期(3000億元)も計画 ■ 設計、装置、素材、パッケージ、検査企業の法人税時限免除 ■ 地方政府支援:省単位・市単位での支援あり。こちらも 地方 ■ 半導体製造に関わる海外製の材料や生産設備について輸入関 YMTC.SMICへの重点投資 税免除 ■ 半導体関連企業の設備投資に対する税金控除率を引き上げる ■ パワー半導体・車載半導体に対する補助予算を設定 (最大25%控除)法案が可決 ■ 海外の素材・部品・装備専門企業の買収金額の補助 ■ 海外の素材・部品・装備専門企業の買収に関する企業の法人税 ■ 迅速な許認可を可能にする支援の実施 額控除 ■ 半導体の生産量に応じた税制優遇処置の導入を2024年度税制 ■ パワー半導体、マイコン、アナログ半導体を対象とした設 改正で議論予定 備投資や製造設備製造に関する**補助金**を設定(1/3まで)

■ 大手半導体製造企業は新工場建設を加速

- 捷捷微電子で6インチウエハエ場建設が進むなど、8インチ以下ではパワー半導体関連需要あり
- 奥松半導体ではCMOS、MEMS用の8インチウェハエ場計画あり
- GTA(ASMC)など一部の例外を除き、8インチ以下の半導体工場は日本ほど老朽化が進んではいない
- ⇒一方、生産拡大を狙って中古装置需要が増加する可能性あり
- DB Hitekが8インチ工場の設備増強を計画

中国・韓国はレガシー半導体を含めて広く支援。中国メーカーは積極的に投資拡大

中国

■ 中国/韓国政府はレガシー半導体領域に関して税制優遇を中心とした支援を実施

■ 28nm以下/65nm以下/130nm以下、と3つのノードレベルに分けて製造に関わる企業の法人税免除の優遇処置を実施

- 設計、製造装置、素材、パッケージ、検査に関わる企業の法人税免除の優遇処置を実施
- 半導体製造に関わる海外製の材料や生産設備について輸入関税を免除

ガシー半導体支援の各国動向

■ パワー半導体・車載半導体に対する補助予算を設定

- 半導体関連企業の設備投資に対する税金控除率を引き上げる(最大25%控除)法案が可決
- 海外の素材・部品・装備専門企業の買収金額の補助および買収に関する企業の法人税額控除
- 迅速な許認可を可能にする支援の実施

日本

- 半導体の生産量に応じた税制優遇処置の導入を2024年度税制改正で議論予定
- パワー半導体、マイコン、アナログ半導体を対象とした設備投資や製造設備製造に関する補助金を設定

■ 大手半導体製造の中国企業は政府の支援を受け、レガシー分野の設備拡大/開発を加速

半導体製造会社個社情報 CRMicro

- SiCパワー半導体を中心に近年売上を拡大
- GaN開発も進めており、6/8インチウエハの生産設備の拡張が見通される

- 米国の制裁処置により7nm以下のファブは実質的に拡張できない状況の中、近年は28nm~ノードの生産拠点を拡大
- 中国政府からの援助を受け、莫大な設備投資を継続的に実施

1.中韓など従来型半導体製造動向 -調査結果詳細-

中国/韓国ではレガシー半導体に係る税制優遇が複数実施されており、関連企業は設備投資や装置調達がしやすい状況

操業に係る税制優遇

装置調達に係る支援

- 線幅28ナノメートル未満の半導体製造にかかわる操業期間15 年超の企業は法人税を10年間免除
- 線幅65ナノメートル未満の半導体製造にかかわる操業期間15 年超の企業は法人税を5年間免除、その後の5年間は半額免除
- 線幅130ナノメートル未満の半導体製造にかかわる操業期間10 年超の企業は法人税を2年間免除、その後の3年間は半額免除
- 半導体の設計、製造装置、素材、パッケージ、検査にかかわる 企業は、法人税が2年間免除、その後2年間は半額免除

■「中国国内では生産ができない」または「中国産では十分な性能基準を満たせない」条件を満たす自社用生産性原材料・消耗品・浄化室専用建築材料・集積回路生産設備部品に対して輸入関税を免除(2021年開始・2030年まで実施される模様)

- パワー半導体技術の高度化に4,500億ウォン、車載半導体に 5,000億ウォンの予算確保
- 半導体関連等の設備投資に対し、大企業・中堅企業で8~15%、 中小企業では16~25%に税額控除率を引上げることなどを盛り 込んだ租税特例制限法改正案が可決(2023)
- 国内供給網の核心品目のうち技術確保が難しい分野は M&A買収資金(2.5兆ウォン以上)及び税制支援*
 - 技術革新型M&A支援対象に核心新技術を保有する素材・部品・装備専門企業を対象
 - 海外素材・部品・装備専門企業買収金額に対して法人税 税額控除
- 戦略品目(素材・装置等)に対して迅速な許認可、道路・電力など社会間接資本拡大を優先支援

■ 半導体の生産量に応じた税制優遇処置の導入を2024年度税制 改正で議論(2023) ■ 国内外の企業を問わず日本での設備投資を対象とし、パワー半導体、マイコン、アナログ半導体の設備投資補助率を最大3分の1、半導体製造装置や半導体部素材の設備投資補助率を最大3分の1、希ガスなど半導体原料を最大2分の1を補助

1.中韓など従来型半導体製造動向 -調査結果詳細-

CRMicroはSiCを中心に売上を拡大しており、加えてGaN開発にも注力。 今後ウエハ200mm以下を含む化合物半導体向けへの投資が加速すると見られる

- 1,200Vおよび650Vの工業用グレードのSiCダイオード製品を量産。2022年上半期にはSiCデバイス売上が前期比4倍に成長
- 2022年以降は研究開発の焦点がSiC MOSFETに移り、産業用制御/カーエレクトロニクスに焦点が当てられる模様
- 加えて、既存の6/8インチ設備を活用し、シリコンベースのGaNの研究開発にも着手

CRMicroの製造拠点の稼働状況と製造可能なウエハサイズ

#	工場所在	稼働状況	ウエハサイズ
1	中国国内		150mm
2	中国無錫	I 亞 伊山 中	200mm
3	中国国内	稼働中 	200mm
4	中国国内		(不明)
5	中国重慶	稼働中 (2022年後半に稼働開始)	300mm

(出所)各種公開情報よりMURC編集

1.中韓など従来型半導体製造動向 -調査結果詳細-

SMICは'25年の生産能力を'21年比で2倍に増やす計画の基、政府の支援を受け、 総額数兆円規模の設備投資を実施(直近建設中のファブは全て300mm)

- SMICは米国の制裁処置により7nm以下のファブは実質的に拡張できない状況の中、近年は28nm~ノードの生産拠点を拡大する方針
- 2023年も前期並みの投資(63億5000万ドル)水準を維持すると計画。投資の詳細は明らかにしていないものの「主に成熟分野の技術を採用した生産設備の能力拡大にあてる」としている

SMICの製造拠点の稼働状況と製造可能なウエハサイズ

#	工場所在	稼働状況	ウエハサイズ
1	中国 北京		300mm
2	中国 天津		200mm
3	中国 深セン	稼働中	200mm
4	山田 1.		200mm
5	中国上海		300mm
6	中国 北京	建設中	300mm
7	中国 上海	建設中	300mm
8	中国 深セン	建設中	300mm
9	中国 天津	建設中	300mm

中国は地方政府レベルでも支援を行っている

■中国は地方政府含め、半導体領域に関して補助金を中心とした支援が充実

■ 国家IC産業ファンド: YMTC,SMICに重点投資。第3期も計画されている

■ 地方政府支援: 省単位・市単位での支援がなされている。こちらもYMTC,SMICへの重点投資

■ 10億元(約200億円)以上の営業収入があるIC関係企業に対して奨励金を支給
■ 技術ライセンサーへの資金援助/外国企業からの技術導入への利息負担あり
■ 2023年に新しい施策を実施。IC企業に対して最大1億元(約20億円)を補助

■ 半導体産業について銀行貸付利息を負担

□ 2023年に300億元(約6000億円)規模の基金を設定

■中国の特区は各地に存在

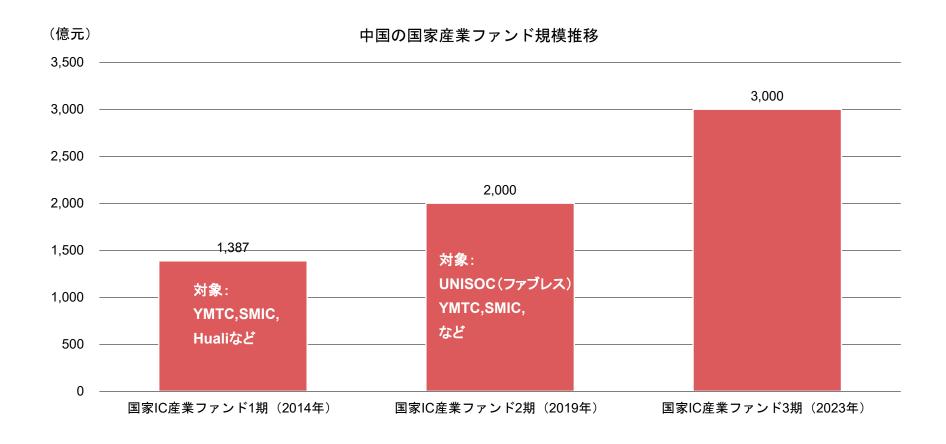
北京

■ 北京経済技術開発区:SMIC[ロジックなど]Fab2などが立地

上海

中国の特区工場立地

■上海張江高新技術産業開発区: GTA(ASMC), Huali, 中国南方集成電路製造[ロジックなど]などが立地


蘇州

■蘇州高新技術産業開発区/蘇州工業園区:Innoscience[パワー半導体GaN]などが立地

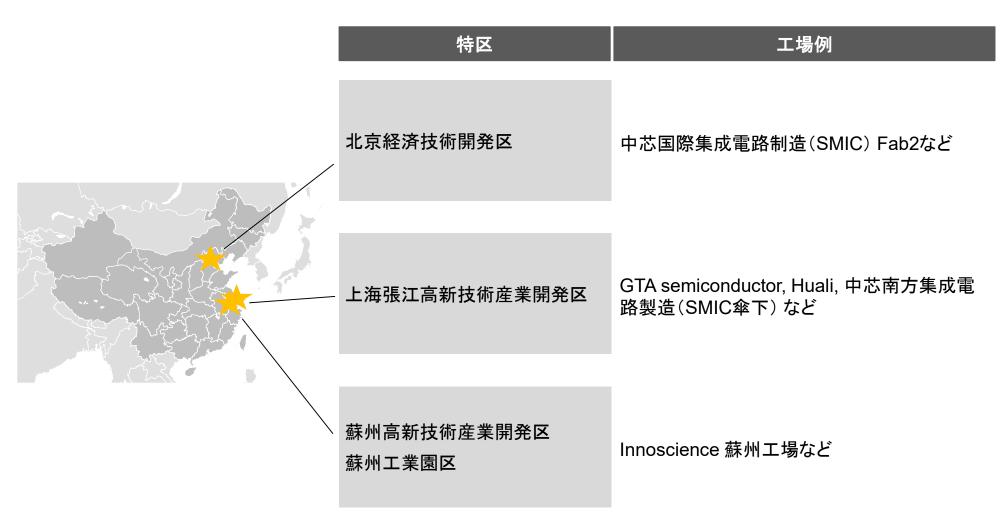
中国は国家IC産業ファンドを通じ、半導体産業を育成している

中国の国家IC産業ファンドは年々規模が拡大している

半導体関連企業が集中する上海・江蘇・広東地域は地方政府による大規模資金援助政策を実施

地方政府	操業に係る資金援助策
上海市	 ■ 奨励金・資金援助 企業育成促進(2017): 年度営業収入が一定額(10億元)を超えるソフトウェア企業、集積回路企業を対象に奨励金を拠出。さらに50億元、100億元、200億元と年度営業収入が大きいほどより大きな奨励金が得られる 研究開発奨励(2017): 研究開発を進め、革新的な知的財産権を形成、その使用を許諾するときに上海市から資金援助が受けられる。また、中国国内のソフトウェア企業、集積回路企業が外国企業から技術のライセンスを譲り受けるとき、その内容に従い、国の輸入製品にかかる利息に関して補助支援が受けられる 知財支援(2017):ソフトウェアおよび集積回路企業が発明特許などを実施する場合出願料および権利維持費について一定の資金援助がある 企業進出支援(2023):「新時期強化投資促進加快現代化産業体型政策措置」を発表。IC企業の進出には最大1億元を支給
江蘇省	 ■融資促進 ●融資支援(2012):金融機関の貸付を受ける戦略的新興産業(半導体産業含む)の重点プロジェクトについては、そのプロジェクトの期間内に生じた銀行貸付利息を基準として50~100%の利息に対応する補助金を拠出(当該補助金の適用期間は、一般に2年を超えないもの)
広東省	 大規模基金を設定・設備投資援助 2021年に第1期基金として310億元規模の基金を設定し102社に投資を実施 2023年に300億元規模の基金を設定で半導体分野への投資を強化。第2期基金は主に車載半導体や半導体部材設備に投資する予定であると報道

中国では国家IC産業ファンドに加え、地方政府の支援も大きい


中国の半導体産業支援の代表的なスキームである国家IC産業ファンド第2期では、国家IC産業ファンドからの出資に加え、地方政府のファンドによる出資が同程度の規模で行われ、トータルで先端ファブの設備投資に必要な資金の大部分をカバーSMICやYMTC, CXMTに集中投資。2023年9月には国家IC産業ファンド3期(3000億元)が計画されている

支援主体:国•地方	企業	場所	投資金額•目的
地方:上海市	上海華力集成電路制造 (Huali)	HH Fab6	2016年末に上海市による投資を決定、2019年、28/14nmロジックの量産ラインを立ち上げた。
地方:安徽省合肥市	长鑫儲科技(CXMT)	Hefei	Innotronとして開発していたが、合肥市政府の出資により2019年~DRAM量産開始。中華スマホメーカー向けにモバイルDRAMを供給している。
国:国家IC産業ファンド(1期) 地方:湖北省	長江存儲科技(YMTC)	Wuhan	2016年に国家IC産業ファンド(1期)が190億RMBを出資。XMCを買収、清華紫光の傘下で経営統合し、長江存儲科技となった。2016年、Wuhanの3D NANDラインに投資、2018年に立ち上げ、量産。2018年、湖北IC投資ファンドなどの出資により、64層3D-NANDのパイロットラインを導入、2019年~量産に移行。128層も開発、発表済。
地方:浙江省紹興市	中芯国際(SMIC)	Shaoxing	2018年、紹興市政府(紹興市工貿易国有資本経営)、盛洋集團、SMICの共同 出資により、中集成電路製造(紹興)有限公司を設立。2019年に8インチ MEMSファブを立ち上げた。既存工場の再編とアップグレードが主な目的。
国: 国家IC産業ファンド(1期)	中芯国際(SMIC)	Shanghai	2018年に国家IC産業ファンドの出資により、上海12インチfabで、14nm、2019年に14/10nmに投資。HisiliconのKirin710を上位顧客として14nm FinFETを19年後半から出荷。 20年内には7nmを目指しているが、プロセス開発に時間がかかり、現状では供給にいたっていない。
国: 国家IC産業ファンド(2期) 地方: 湖北省技投資集団、湖北省集成电路 基金	長江存儲科技(YMTC)	Wuhan	2020年に3D-NANDの第2期ファブ建設、128層の開発に200億RMB出資。 湖北省科技投資集団、湖北省集成電路基金も別途出資。
国:国家IC産業ファンド(2期)	中芯国際(SMIC)	Shanghai	2020年に上海12"fabの微細化(14nm)>に35億RMBを出資。
国:国開金融 地方:上海集成電路産業投資基金	中芯国際(SMIC)	Shanghaiほか	上海集成電路産業投資基金をはじめとしたその他公的ファンドも同fabの微細化に出資。 科創板上場に際しての新株発行資金合計約270億元を引き受けた。
国: 国家IC産業ファンド(2期) 地方: 上海集成電路産業投資基金	中芯南方集成电路(SMICグループ)	Shanghai	2020年に上海集成電路産業投資基金と合わせて160億RMBを出資。 上海12"fabの微細化(14nm)>資金。

北京・上海・蘇州で特区内に工場が建設されるなど、国家・地方政府からの支援大

特区の情報は得にくいものの、高新技術産業開発区や経済技術開発区にて工場建設が進んでいる

中国では8インチfabの新造はパワー半導体がメインとなっている

■ 大手半導体製造企業は新工場建設を加速

中国

半導体製造 工場概況

- 捷捷微電子で6インチウエハ工場建設が進むなど、8インチ以下ではパワー半導体関連需要あり
- 奥松半導体ではCMOS、MEMS用の8インチウエハエ場計画あり
- ■GTA(ASMC)など一部の例外を除き、8インチ以下の半導体工場は日本ほど老朽化が進んではいない
- ⇒一方、生産拡大を狙って中古装置需要が増加する可能性あり

韓国

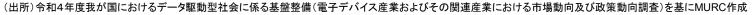
■ DB Hitekが8インチ工場の設備増強を計画

1.中韓など従来型半導体製造動向 - 中国の従来型半導体工場一覧-

ASMCは8インチ主体で、アナログメイン CRMicroは直近12インチfabを稼働させている

	※状況…R=稼働中、P=計画中 または建設中、- = 状況不明、C=中止										
企業名	状況	中国名	拠点	名称	テクノロジノード	半導体種別	投資	ウェハ (インチ)	処理能力 枚数/月	工場稼働年	備考
GTA Semiconductor (ASMC)	R	上海先進半導体製造	Shanghai, China 上海 (シャンハイ)	Fab 1	1.5-micron	アナログ、アナロ グ・デジタル混載		5	85,000	1992	キャパシティ削減し、8インチウエハへの移行を進める。8インチウエハ換算で6,000 ウエハ/月
GTA Semiconductor (ASMC)	R	上海先進半導体製造	Shanghai, China 上海 (シャンハイ)	Fab 2	0.5-micron	アナログ、アナロ グ・デジタル混載		6	155,000	1997	実際のキャパシティは8インチウエハ換算で71,000 ウエハ/月 上海張江高新技術産業開発区に設置
GTA Semiconductor (ASMC)	R	上海先進半導体製造	Shanghai, China 上海 (シャンハイ)	Fab 3	0.35-, 0.25-micron	アナログ、アナロ グ・デジタル混載		8	40,000	2004	マスクの枚数や工程を減らすことで、設備を追加することなく生産能力を向上
GTA Semiconductor (ASMC)	R	上海先進半導体製造	Shanghai, China 上海 (シャンハイ)	Fab 4	0.35-, 0.25-,0.18-micron	アナログ、アナロ グ・デジタル混載	12インチと合 わせて359 億元	8	60,000	2020	2020/6から量産開始
Guangzhou Aosong Electronic	R	广州奥松电子	Guangzhou, China 広州(コワンチョウ)			MEMSセンサー		6		2020	2020年から量産開始
Aosong Semiconductor	Р	奥松半导体	Zhuhai, China 珠海(チューハイ)			смоѕ		8		未	2021年に計画発表
Aosong Semiconductor	Р	奥松半导体	Chongqing, China 重慶(チョンチン)			CMOS、MEMS、 特殊半導体	35億元	8		未	2023年に計画発表
BYD	R	比亜迪	Nimbo, China 寧波(ニンポー)		Power Semiconductor	パワー		6		2004	2008年にSinoMOS(中緯積体電路:2004~)を買収
BYD	R	比亜迪	Changsha, China 長沙(チャンシャー)		Power Semiconductor	パワー		8		2020	2020年に着工
BYD	R	比亜迪	Jinan, China 済南(ジーナン)		Power Semiconductor	パワー		8	30,000	不明	2021年にJESC(富能半導体)を買収
BYD (ex.UNIGroup UNIS)	Р	成都空港国芯科技 (ex.成都紫光国芯存儲科技)	Chengdu, China 成都(チョントゥー)		NAND	メモリ(NAND)		12	100,000	未	成都空港国芯科技有限公司に名称変更、BYDが 買収
China Resources Microelectronics Ltd.	R	華潤微電子	Wuxi, China 無錫(ウーシー)	Fab 5	CMOS > 0.5-micron	CMOSなど		6	55,000	2005	Fab 5 に統合され、Fab 1に改名
China Resources Microelectronics Ltd.	R	華潤微電子	Wuxi, China 無錫(ウーシー)	Fab 1	0.5-, 0.4-0.35-micron	アナログ、パワー IC、パワーディスク リート、アナログ・ デジタル混載		6	210,000	1998	
China Resources Microelectronics Ltd.	R	華潤微電子	Wuxi, China 無錫(ウーシー)	Fab 2	0.35-, 0.25-, 0.13-micron	アナログ、パワー IC、パワーディスク リート、アナログ・ デジタル混載		8	65,000	2009	2009年に生産開始
China Resources Microelectronics Ltd.	R	華潤微電子	Beijing, China 北京(ペキン)	Fab 3	0.5-micron	-		6	20,000	1995	中国科学技術院と提携、2009年末に提携停止
China Resources Microelectronics Ltd.	R	華潤微電子/西永微電子の合弁 潤 西微細電子	Chongqing, China 重慶(チョンチン)		Power Semiconductor	パワー	75.5億元	12	30,000	2022	2022年末から稼働中
Suzhou Tongguan Micro-Electrons	R	蘇州同冠微電子	Zhangjiagang, China 張家港(ヂャンジャー ガン)			パワー、ダイオード		6	30,000	不明	2012年に会社設立 2017年にはISO 9001取得
Founder Microelectronics	Р	深圳方正微電子	Shenzhen, China 深圳(シェンチェン)		Power Semiconductor(SiC,GaN)	パワーIC(SiC, GaN)、パワーディ スクリート		6	60,000	未	2003年に会社設立

InnoscienceはGaN、赛微电子はMEMSなど特徴ある8インチfabを有する


企業名	状況	中国名	拠点	名称	テクノロジノード	半導体種別	投資	ウェハ (インチ)	処理能力 枚数/月	工場稼働年	備考
Huali Microelectronics Corporation	R	上海華力微電子	Shanghai, China 上海 (シャンハイ)	HH Fab 5	0.065-, 0.055-, 0.40- ,0.028-micron	ロジック、メモリ (NOR)、CMOSイ メージセンサー		12	35,000	2011	2011年稼働。上海張江高新技術産業開発区に設 置
Huali Microelectronics Corporation	R	上海華力微電子	Shanghai, China 上海 (シャンハイ)	HH Fab 6	0.028-, 0.022-, 0.014- micron	ロジック、メモリ (NOR)、CMOSイ メージセンサー		12	40,000	2018	2018年稼働
Wuhan Xinxin Semiconductor Manufacturing Corporation (XMC)	R	武漢新芯集成電路製造	Wuhan, China 武漢(ウーハン)	Fab 1 A	0.090, 0.065, 0.045 NOR Flash	メモリ(NOR)		12	30,000	2008	
Wuhan Xinxin Semiconductor Manufacturing Corporation (XMC)	-	武漢新芯集成電路製造	Wuhan, China 武漢(ウーハン)	Fab 1 B	NAND Flash	メモリ(NAND)		12	30,000	未	建物は建造されているものの、装置は設置されて いない
Huahong Grace Semiconductor	R	上海華虹宏力半導体制造	Shanghai, China 上海 (シャンハイ)	HH Fab 3	0.25-, 0.22-, 0.18-, 0.13- ,0.11-micron Logic	ロジック、メモリ、ア ナログ、パワー		8	53,000	2020	2020年から量産開始
Huahong Grace Semiconductor	R	上海華虹宏力半導体制造	Shanghai, China 上海 (シャンハイ)	HH Fab 1	0.35–0.18-micron	ロジック、メモリ、ア ナログ		8	70,000	2003	
Huahong Grace Semiconductor	R	上海華虹宏力半導体制造	Shanghai, China 上海 (シャンハイ)	HH Fab 2	CMOS 0.18–0.11-micron	ロジック、メモリ、ア ナログ、CMOS		8	60,000	2009	
Huahong Grace Semiconductor	R	華虹半導体(無錫)	Wuxi, China 無錫(ウーシー)	HH Fab 7	0.090-, 0.065-,0.055- micron	ロジック、メモリ		12	75,000	2019	
Huahong Grace Semiconductor	Р	華虹半導体(無錫)	Wuxi, China 無錫(ウーシー)			特殊IC,ディスク リート		12	83,000	未	2023年7月着工
Innoscience	R	英诺赛科	Zhuhai, China 珠海(チューハイ)		GaN	パワー(GaN)		8	4,000	2019	2015年会社設立 2019年生産開始
Innoscience	R	英诺赛科	Suzhou, China 蘇州(スーチョウ)		GaN	パワー(GaN)		8	6,000	2021	2021年完成 2025年に65,000ウエハ月を計画
Sai Micro Electronics	R	北京赛微电子	Beijing, China 北京(ペキン)	Fab3	MEMS	MEMS		8	10,000	2020	2021年に量産開始 2024年に30,000ウエハ/月を 計画
Sai Micro Electronics	R	北京赛微电子	Shenzhen, China 深圳(シェンチェン)	FabX	MEMS	MEMS		8		不明	
Nexchip Semiconductor Corporation	R	合肥晶合集成電路	Hefei, China 合肥(ホーフェイ)	Fab N1	0.150-, 0.11-, 0.09, 0.055-micron	マイコン、アナロ グ、液晶ドライ バー、CMOSイメー ジセンサー、ロジッ ク		12	50,000	2017	2017年量産開始
Nexchip Semiconductor Corporation	R	合肥晶合集成電路	Hefei, China 合肥(ホーフェイ)	Fab N2	0.11–0.028 micron	マイコン、アナロ グ、液晶ドライ バー、CMOSイメー ジセンサー、ロジッ ク	120億元	12	50,000	不明	
Hunan Sanan Semiconductor	R	湖南三安半導体	Changsha, China 長沙(チャンシャー)		Power Semiconductor(SiC, GaN)	パワー(SiC, GaN)		8	15,000	2021	2021年生産開始
SiEN	R	芯恩(青島)集成電路	Qingdao, China 青島(チンタオ)		0.35-0.11um	パワー		8	60,000	2021	2021年生産開始
SiEN	R	芯恩(青島)集成電路	Qingdao, China 青島(チンタオ)		40-28nm	パワー		12	40,000	2021	2021年生産開始

SMICは12インチfabがメインとなっているが、古い工場は8インチfabも存在

	※状況	?…R=稼働中、P=計画中 または建設中	、- =状況不明、C=中止								
企業名	状況	中国名	拠点	名称	テクノロジノード	半導体種別	投資	ウェハ (インチ)	処理能力 枚数/月	工場稼働年	備考
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Shanghai, China 上海 (シャンハイ)	Fab 1	0.35–0.09-micron	ロジック、パワー、 アナログ・デジタル 混載など		8	115,000	2002	上海張江高新技術産業開発区に設置
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Shanghai, China 上海 (シャンハイ)	Fab 8 P1 (Lab)	0.040-, 0.028-, 0.01- ,0.007-micron	ロジックなど		12	20,000	2012	2012/4Qから生産開始 2020年から500ウエハ/週で限定生産
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Shanghai, China 上海 (シャンハイ)	Fab 8 P2	0.014-, 0.01-, 0.007- micron	ロジック		12	70,000	不明	2016/4Qに着工。SMIC初のFinFET工場(SMSCと呼ばれるJVにて製造)
Semiconductor Manufacturing International Corporation (SMIC)	Р	中芯国際集成電路制造	Shanghai, China 上海 (シャンハイ)	-	-	ロジック		12	100,000	未	2022年頭に着工
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Beijing, China 北京(ペキン)	Fab 2 P1	0.09–0.04-micron	ロジックなど		12	60,000	2015	
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Beijing, China 北京(ペキン)	Fab 2 P2	0.055–0.028-micron	ロジックなど		12	100,000	2017	メタライゼーションおよびマスク工場
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Beijing, China 北京(ペキン)	Fab B2	0.040-, 0.028-micron	ロジックなど		12	35,000	2015	2015/4Qから生産開始
Semiconductor Manufacturing International Corporation (SMIC)	Р	中芯国際集成電路制造	Beijing, China 北京(ペキン)	Fab 3 P1	0.090-0.028-micron	ロジックなど		12	100,000	未	2021/1Qから建設開始、2024年から量産見込み
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Shenzhen, China 深圳(シェンチェン)	Fab 5	0.35-, 0.18-, 0.13-, 0.11- micron	ロジック、パワー、 アナログ・デジタル 混載など		8	70,000	2015	2015/2Qから開始
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Shenzhen, China 深圳(シェンチェン)	Fab 6	0.045-, 0.040-, 0.028- micron	ロジックなど		12	35,000	不明	2021年までに建設完了
Semiconductor Manufacturing International Corporation (SMIC)	Р	中芯国際集成電路制造	Shenzhen, China 深圳(シェンチェン)	Fab 6	0.028-micron	ロジックなど		12	40,000	未	2024年からの生産を見込む
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Tianjin, China 天津(ティエンチン)	TJ1 (Fab 7A)	0.35–0.15-micron	ロジック、パワー、 アナログ・デジタル 混載など		8	80,000	2004	
Semiconductor Manufacturing International Corporation (SMIC)	R	中芯国際集成電路制造	Tianjin, China 天津(ティエンチン)	TJ2 (Fab7B)	0.35–0.09-micron	ロジック、パワー、 アナログ・デジタル 混載など		8	100,000	不明	
Semiconductor Manufacturing International Corporation (SMIC)	Р	中芯国際集成電路制造	Tianjin, China 天津(ティエンチン)	TJ3	0.028-micron	ロジック	\$7.5B	12	100,000	未	2024年からの生産を見込む
NSI Ningbo Semiconductor International Corporation (SMIC)	R	宁波中芯国際集成電路制造	Ningbo, China 寧波市(ニンボー)			アナログ、パワー、高周波、光など		-		不明	創業者が2023年に訴追
SMEC (SMIC)	R	紹興中芯国際集成電路制造	Shaoxing, China 紹興(シャオシン)		Power Semiconductor, MEMS	パワー、MEMS	200億元	8	70,000	不明	Packaging Service(19億9500万個の封止検査ライン)はHuaweiが使用。2023年にパワー半導体投資拡大
Fujian JinHua Integrated Chircuit Co.JHICC	R	晋華集成電路	Jinjiang, China 晋江(ジンジャン)		0.32 micron	ロジック		12	60,000	2023	当初はDRAM工場だったが、米国制裁の影響で 2019年に頓挫。ファーウェイの支援を受け2023年 にロジック工場として再生
High Tech JIN S&T CHJS	Р	成都高真科技	Chengdu, China 成都(チョントゥー)		1Znm	-		12	30,000	未	2025年からは200,000ウエハ/月生産を狙う
SwaySure	Р	昇維旭技術	Shenzhen, China 深圳(シェンチェン)			メモリ	3000億元	12		未	2022年に会社設立
Cansemi	R	広州粤芯半導体技術	Guangzhou, China 広州(コワンチョウ)		0.18-0.1-micron	ロジック、パワー、 アナログ、ディスク リートなど		12	40,000	2019	
YDME	R	燕東微電子	Suining, China 遂寧(スイニン)		>0.35 micron	パワー、アナログ		6	60,000	2008	2008年生産開始、2018年買収によりライン拡充
YDME	R	燕東微電子	Beijing, China 北京(ペキン)		>0.09 micron	パワー、BCD		8	60,000	2019	2019年生産開始
YDME	Р	燕東微電子	Beijing, China 北京(ペキン)		0.065micron	パワー、アナログ		12	40,000	未	2021年建設開始

51 Mitsubishi UFJ Research and Consulting

捷捷半導体は6インチのパワー半導体工場を特区に建設中

	※状況	R=稼働中、P=計画中 または建設。	中、- =状況不明、C=中止								
企業名	状況	中国名	拠点	名称	テクノロジノード	半導体種別	投資	ウェハ (インチ)	処理能力 枚数/月	工場稼働年	備考
Hangzhou HFC Semiconductor	R	杭州积海半导体有限公司	Hangzhou, China 杭州(ハンチョウ)		55nm,28nm	ロジック、特殊IC		12	80,000	不明	2019年に会社設立、2021年に起工
Silan	R	士蘭微電子	Hangzhou, China 杭州(ハンチョウ)			パワー(Si, SiC, GaN)、MEMS、光 など		8	40,000	2017	
Silan	R	士蘭微電子	Hangzhou, China 杭州(ハンチョウ)			パワー(Si, SiC, GaN)、MEMS、光 など		8	20,000	不明	
Silan	R	士蘭微電子	Xiamen, China 厦門(アモイ)		Power Semiconductor	パワー		12	40,000	2022	
Silan	R	士蘭微電子	Xiamen, China 厦門(アモイ)		Special Material	特殊IC		4,6	220,000	不明	
Sino-Micro	R	吉林華微電子股分有限公司	Jilin, China 吉林(チーリン)		Power Semiconductor	パワー		8	20,000	不明	
Sino-Micro	R	吉林華微電子股分有限公司	Jilin, China 吉林(チーリン)		Power Semiconductor	パワー		4,5,6		不明	
Ynagtze Memory Technologies Co., Ltd(YMTC)	R	長江存儲科技	Wuhan, China 武漢(ウーハン)	Fab1	NAND	メモリ(NAND)		12	130,000	2008	
Ynagtze Memory Technologies Co., Ltd(YMTC)	Р	長江存儲科技	Wuhan, China 武漢(ウーハン)	Fab2	NAND	メモリ(NAND)		12	100,000	未	2021年に建設完了となっていたが、遅延中
Ynagtze Memory Technologies Co., Ltd(YMTC)	Р	長江存儲科技	Wuhan, China 武漢(ウーハン)	Fab3	NAND	メモリ(NAND)		12	100,000	未	2023年後期に建設完了を計画
UNIGroup UNIS	-	南京紫光国芯存儲科技	Nanjing, China 南京(ナンキン)		NAND	メモリ(NAND)		12	100,000	不明	
Chang Xin Memory Technology (CXMT)	R	長鑫存儲科技	Hefei, China 合肥(ホーフェイ)		19nm DRAM	メモリ(DRAM)		12	100,000	2019	2023年に第2工場建設を計画も米中摩擦で遅延
Chang Xin Memory Technology (CXMT)	R	長鑫存儲科技	Beijing, China 北京(ペキン)			メモリ(DRAM)		12	20,000	2022	
AMS	С	江蘇時代芯存半導体	Jiangsu, China 江苏淮安(ホワイアン)		PCM Memory	メモリ	130億元	12		中止	2023年に経営破綻
JieJie Microelectronics	R	捷捷半導体(南通)	Jiangsu, China 江苏南通(ナントン)		Power Semiconductor - 0.13-micron	パワー	6.5億元	8		不明	
JieJie Microelectronics	Р	捷捷半導体(南通)	Jiangsu, China 江苏南通(ナントン)		Power Semiconductor	パワー		6	83,333	未	2023/4建設中。蘇州·無錫·南通科学技術園区に 設置
Fuxin Mircroelectronics	R	杭州富芯半導体	Hangzhou, China 杭州(ハンチョウ)		Power Semiconductor	パワー(サイリスタ 等)	180億元	12	50,000	不明	
Rong Semiconductor	Р	荣芯半导体	Ningbo, China 寧波(ニンボー)		90-55nm	CMOSイメージセ ンサー、液晶デバ イス、パワーなど	229億元 (22.9BRMB)	12	80,000	未	30,000WLP製造設備と試験設備をもつ、徳准 半导体有限公司(破産済)を取得
AOS	R	重慶万国半導体科技	Chongqing, China 重慶(チョンチン)			パワー		12	20,000	2019	2019年試作開始、米系資本
Fujian Fushun Microelectronics	R	福順微電子 (福順集成電路)	Fuzhou, China 福州(フーヂョウ)			CMOS、オプト、 ディスクリートなど		6	62,500	1996	1996年設立

Wingtech (Nexperia)は12インチfabを建設中。STmicroは三安とJVでSiCを計画

	※状況	…R=稼働中、P=計画中 または建設中、	- =状況不明、C=中止								
企業名	状況	中国名	拠 点	名称	テクノロジノード	半導体種別	投資	ウェハ (インチ)	処理能力 枚数/月	工場稼働年	備考
TI	R	成芯半導体	Chengdu, China 成都(チョントゥー)	CFAB	0.35 - 0.13-micron	アナログ		8	80,000	不明	2010/4に成都市から買収 TIは8インチへも積極投資
Power Chip	R	力晶半導体	Hefei, China 合肥(ホーフェイ)		0.11-0.18micron	メモリ(DRAM)など		12		2017	台湾資本
SK hynix system ic	R	SK海力士半導体	Wuxi, China 無錫(ウーシー)	Fab S1	0.35-, 0.18-, 0.15-, 0.130-,0.11-, 0.090-, 0.057-micron	CMOSなど		8	115,000	2020	SKハイニックスから2017年にスピンアウト, SK hynix 8インチ M8 Fabから装置譲渡
SK hynix system ic	R	SK海力士半導体	Wuxi, China 無錫(ウーシー)	HC2	0.028 micron DRAM	メモリ(DRAM)		12	100,000		2006年に稼働始めた200mm fabはCSMC(CR micro子会社)に売却
SK hynix system ic	R	SK海力士半導体	Wuxi, China 無錫(ウーシー)	HC2	0.028 micron DRAM	メモリ(DRAM)		12	70,000	2007	
SK hynix system ic	R	SK海力士半導体	Wuxi, China 無錫(ウーシー)	HC2	0.01X micron DRAM	メモリ(DRAM)		12	200,000	2019	
SK hynix system ic	R	SK海力士半導体	Dalian, China 大連(ターリエン)		0.040, 0.020 - micron 3D NAND	メモリ(NAND)		12	100,000	2010	2021年にインテルから買収
Samsung	R	三星半導体(西安)	Xian, China 西安(シーアン)		3D NAND	メモリ(NAND)		12	275,000	2014	2012年に進出、西安高新技術産業開発区に設置
Taiwan Semiconductor Manufacturing Company Ltd. (TSMC)	R	台積電	Shanghai, China 上海 (シャンハイ)	Fab 10	0.35–0.13-micron	-		8	120,000	2003	2011年に微細化・増産
Taiwan Semiconductor Manufacturing Company Ltd. (TSMC)	R	台積電	Nanjing, China 南京(ナンキン)	Fab 16 P1, P2	0.016-micron	パワーなど		12	20,000	2018	
Taiwan Semiconductor Manufacturing Company Ltd. (TSMC)	Р	台積電	Nanjing, China 南京(ナンキン)	Fab 16 P1, P2	0.028-micron	パワーなど		12	40,000	未	2023中期を予定
United Microelectronics Corporation(UMC)	R	聯芯集成電路製造 (ex 和艦科技 Hajian)	Suzhou, China 蘇州(スーチョウ)	8N	0.35–0.11-micron	ディスプレイドライ バ、車載など		8	81,000	2003	HeJian Technologiesを買収
United Microelectronics Corporation(UMC)	R	聯芯集成電路製造(厦門)	Xiamen, China 厦門(アモイ)	Fab 12X P1, P2		ロジック、アナロ グ・デジタル混載、 高周波		12	50,000	2016	2016/4Qに生産開始
Nexperia (Wingtech)	Р	鼎泰匠芯科技(上海)	Shanghai, China 上海 (シャンハイ)			パワーIC、パワー ディスクリート	120億元	12	33,000	未	
ST micro & Sanan Optoelectronics	Р	三安意法半導体(重慶)	Chongqing, china 重慶(チョンチン)		Power Semiconductor(SiC)	パワー(SiC)		8	40,000	未	2023年に計画発表
GLOBALFOUNDRIES	Р	格芯(成都)集積電路製造	Chengdu, China 成都(チョントゥー)		DRAM(?)	メモリ(DRAM)と想 定	70億元	12		未	CHJS が買収し DRAM 工場への転換を計画

韓国ではオンセミ・DB Hitekが6,8インチの設備増強を計画

R=稼働中

企業名	状況	拠点	名称	テクノロジノード	投資	ウェハ (インチ)	処理能力 枚数/月	備考
オン・セミコンダクター	R	富川(プチョン)	富川工場	0.18-2micron Power Semiconductor	6,8インチ工場投資 (2016~2019) SiCの投資(2022)	6,8		
DB Hitek	R	富川(プチョン)	Fab1	0.15-0.35micron パ ワー・アナログ半導体等		8	合計140,000	
DB Hitek	R	陰城郡(ウムソン郡)	Fab2	0.35-90micron CMOSイメージセンサー等	15万枚/月への投資を計画 (2022)	8	合計140,000	
KEC Holdings	R	亀尾(クミ)	MOS Fab	MOSFETなど		6	20,000	
SK Hynix	R	利川(イチョン)	M14, M16	DRAM	2021年にM16完成。約1兆 5400億円を投資しM15X建 設を発表(2022)	12		
SK Hynix	R	清洲(チョンジュ)	M11, M12, M15	NAND	2018年にM15完成、 M17fab建設を延期(2022)	12		
Magnachip semiconductor	R	清洲(チョンジュ)	清洲工場	Power Semiconductor		8		
Key Foundry(SK Hynix)	R	亀尾(クミ)	Fab4 亀尾工場	Power Semiconductor	SKがMagnachip semiconductorから買収	8	90,000	
Samsung Electronics	R	華城(ファソン)	華城工場 (S3-Line, S4-Line, V1-Line)	研究開発, 7nm, 10nm, 65nm 先端半導体		12		
Samsung Electronics	R	龍仁(ヨンイン)	器興工場 (LSI:6-Line, S1- Line) (NAND:7,8,9,14- Line)	0.08-0.18micron センサー、パワー、ロジッ クなど		8,12		

Ⅲ. 調査結果詳細

- プロジェクトの全体像・進め方
- 調査結果
 - 1. 中国・韓国の従来型半導体製造動向
 - 中国の工場一覧
 - 2. 国内従来型半導体製造事業の実施状況
 - 3. 半導体製造装置の状況
 - 半導体製造装置のウエハサイズ対応状況
 - 4. 中古装置市場・メンテ事業実施状況
 - 5. 独禁法・M&A阻害要因の精査
- 調査結果を受けた提言

デバイスメーカーは、費用面・技術面などから、装置刷新が困難な場合があり、短期的には修繕で対応

目的

■ 国内の従来型半導体メーカーを調査することにより、日本の従来型半導体製造にかかる諸問題解決への糸口とする

実施 事項

調査結果

■ 主に200mm以下ウェハラインを有する、日本の従来型半導体メーカーから現状課題・対応などをインタビューにて実施

■ デバイスメーカーから見た設備老朽化問題の現状

- 長期間にわたって使用している<mark>従来型の装置部品の供給途絶が起こっており、設備の老朽化が進行している</mark>(特に不具合発生 箇所は制御系の基板などが多い)
- 従来使っている装置からの、300mmウェハ対応装置やリニューアルした200mmウェハ対応装置への刷新は進んでいない
 - 費用面…クリーンルームの建て替えが必要となる/費用対効果があわない
 - 技術面…化合物半導体(パワー半導体)・MEMS等で大口径での量産技術が確立していない/大口径を必要としていない
 - 品質保証面...顧客承認上、急な設備変更はできない
- デバイスメーカーの設備老朽化問題への対応
 - 中古装置の確保は費用面や中国の買い占めなどにより困難となってきている
 - メンテナンス事業者の後継者不足により古い装置のメンテナンスが困難となってきており、装置メーカーのメンテナンス対応継続が望まれている
 - 海外への装置流出を妨げる仕組みは一部の企業に留まる

2. 国内半導体メーカー対応状況 ー調査結果詳細ー

デバイスメーカーは、費用面・技術面などの点から、

装置の刷新が困難な場合があり、短期的には現行装置の修繕で対応予定である

国内半導体メーカー対応状況に関するインタビューコメント要旨

	老朽化 問題認識	■ 保守サービスの終了/部品供給途絶、両方ともに進んでいるが、特に部品供給途絶が問題
設備老朽化問題の現状	装置刷新	 ■ 装置の刷新は進んでいない。自動車用途は特に刷新しにくい。一部大企業のみ8インチでの刷新を検討 ■ 装置刷新(300mmウエハ化)が進まない理由 <
	不具合発生個所	■ プロセス全般で老朽化が進んでいる。エッチングや露光が特に進んでいる企業あり ■ 不具合になりやすい部品は制御系(基板等)
	定期メンテナンス 実施状況	■ 装置メーカーの定期メンテナンスを受けることができない装置は20~50%程度

デバイスメーカーは同業者間でも部品調達を実施しており、マッチングシステムの活用に前向き

国内半導体メーカー対応状況に関するインタビューコメント要旨

	装置確保可否	■ 200mm以下の製造装置は新品の調達は可能であるが、中古品は確保が困難。特に老朽化した装置を使用し続ける事業 規模が比較的小さい企業は困難度高い。投資余力のある企業は200mm設備の装置/部品入手ができている
	装置調達方法	■ メーカー・商社・同業他社経由で調達。リース品を使用するケースも多い
設備老朽化問題	メンテナンス実施	■ 自社対応/メンテナンス業者活用の両方。従来型半導体領域は自社でのメンテナンススキルの確立ができているケースもある。サードパーティでも高度な技術を保有している
老朽	状況	■ 200mmは図面開示がされていないため対応が難しい
化問		■ メンテナンス事業者の後継者不足が問題。高スキル人材の高齢化が問題
	マッチングシステムの活用可能性	■ 全国への展開が望ましい。リース利用をしている企業はサービス利用が難しい
の 対 応	中古装置の取り 扱い	■ 商社経由で装置/部品入手を実施する。大企業は装置入れ替えの際に売却を実施。海外への中古品流出を容認している企業がほとんどであるが、一部の企業は渡中しないよう制限を設けている
	1XC ·	■ 部品入手のために中古装置購入を行う企業が多い
	要求事項	■ 対装置メーカー: 古い装置のメンテナンス対応の継続。装置延命処置の充実。サードパーティを活用した後の保証認可。メンテナンストレーニング環境の整備

Ⅲ. 調査結果詳細

- プロジェクトの全体像・進め方
- 調査結果
 - 1. 中国・韓国の従来型半導体製造動向
 - 中国の工場一覧
 - 2. 国内従来型半導体製造事業の実施状況
 - 3. 半導体製造装置の状況
 - 半導体製造装置のウエハサイズ対応状況
 - 4. 中古装置市場・メンテ事業実施状況
 - 5. 独禁法・M&A阻害要因の精査
- 調査結果を受けた提言

3.半導体製造装置メーカー対応状況 ーパートサマリーー

装置メーカーは従来型装置の老朽化に対して、リニューアル品を含んだ製品提供及び長期のメンテナンス期間を設けている

目的

■ 国内・国外の半導体製造装置メーカーの状況を把握することにより、日本の従来型半導体製造にかかる諸問題解決への糸口とする

実施 事項

調査

結果

- 主に200mm以下ウエハ対応装置を有するかどうか、日・米・中・韓の半導体装置メーカーの状況をデスクトップサーチ
- 日本および米国の半導体装置メーカーへ現状課題・将来展望のインタビューを実施
- 装置メーカーの装置ラインナップ状況
 - 装置メーカー各社は、装置提供のバリエーションとして150mmサイズまでは概ねラインナップしている
- 設備老朽化問題・装置需要の現状
 - ◆ 装置需要のほとんどは新規の設備増強による引き合いであり、既存設備の刷新に伴う新規装置の供給はほとんど無い
- 装置メーカーとしての老朽化問題への対応
 - 装置/部品提供について
 - 150mm以下のウエハ用装置は200mmウエハ用装置をコンバージョンして使用するケースがほとんどであるため、200mmの装置ラインナップで装置メーカーは対応している(露光装置等、加工時に精密な平坦度が求められる装置に限り、150mm以下の専用装置をラインナップしている)
 - リリース後時間が経った装置については、重要機能部分は変更せずリニューアル装置をリリースしているケースがある
 - サービス取り扱い中の装置に対する部品の提供は問題なく行っている。EOLする装置の部品は非常に長くのリードタイムを取って顧客に伝達しラストバイを促す対応を行っている
 - 図面の開示は技術流出懸念から実施は不可能
 - メンテナンス対応について
 - 安全性(第三者が装置に手を加え、安全性が損なわれていないか)の確認を行った後にメンテナンスを実施しており、安全性 が確認できない場合にはメンテナンスは実施できない
 - リリース後時間が経った装置を取り扱うことができる技術者の高齢化は進んでおり、<mark>技術の伝承は必要</mark>な認識

装置メーカーは取扱中の装置への対応は十分に実施しており、新規装置への更新を推し進めたい

半導体製造装置メーカー対応状況に関するインタビューコメント要旨

設備老朽化問題	老朽化 問題認識	■ プロセス全体として老朽化が進展。電装系のチップ劣化による装置不具合が多い
朽の問	装置刷新	■ デバイスメーカーの装置刷新はほとんど進んでいない認識。デバイスによって事情が異なり、300mmへの刷新ができない
現 規 援 装 憲	装置需要状況	■ 顧客には新しい装置への置き換えを勧めているが、装置需要のほとんどは設備増強によるものである■ 足元ではパワーデバイス向けの需要が旺盛
装置需要	装置ラインナップ	■ 200mmがメインで150mm以下との併用仕様となっていることが多い。リリース後時間が経ったものはウエハ取り扱いに関わる重要部分は変えずにリニューアルを実施
	装置·部品供給	■ EOLする装置部品はかなりのリードタイムを取って顧客に伝達しラストバイを促している。サービス取り扱い中の装置向けの部品は問題なく提供している。在庫は必要最低限な分を確保
		■ 安全性(サードパーティが触って安全性が損なわれていないか)の確認を行ったあとでメンテナンスを実施。安全性が担保できない場合にはメンテナンスは実施できない
装置す	メンテナンス実施 状況	■ パートナー会社にライセンスベースでIP譲渡し、クリーニングなどは実施することもある。現在の技術につながるIPの譲渡は行わない
カ		■ 200mm以下装置メンテナンスは問題なく対応しており、を疎かにしていることはない
ー の 対 応		■ 古い装置を扱うことができる技術者の高齢化が進んでいる
応	装置開発·図面 開示	■ SiCやGaNなど新しい技術についての開発は行っている。基本的には300mmの技術のスケールダウンであり技術的な障壁はない
	ייינותן	■ 技術流出懸念から図面の開示は行わない
	中古装置リニュー アル	■ 中古品の流通量が少なく、装置クオリティも低いため、近年リファブは行っていない

半導体装置メーカーは150mmウエハまでは概ね対応しているが、

125mm以下ウエハ対応装置の取扱いは少ない

半導体製造プロセスごとの各ウエハサイズ対応装置を提供する企業

洗浄 成膜 露光 現像 ダイシング 研磨 エッチング イオン注入 **CMP** Canon SCREEN TEL TEL TEL ACCRETECH m **ACCRETECH ACCRETECH** ULVAC SIVEE HWATSING TEL SCREEN SHIBAURA (#) AMEC 以 下 ULVAC 装 Nikon 置 が SCREEN TEL 対 Canon APPLIED TEL TEL 応 TEL make possible APPLIED MATERIALS 可 ULVAC make possible 能 ACCRETECH Lam* **Lam** SCREEN DISCO APPLIED MATERIALS な ▲ Lam[®] DISCO SIVEE make possible ゥ ACM HWATSING **ACCRETECH ACCRETECH** ULVAC KINGSEMIII源 (#) AMEC 11 Nikon /\SH/3/UR/ KINGSEMIII源 ULVAC サ イズ SCREEN ASML TEL TEL TEL APPLIED MATERIALS Canon TEL 0 make possible APPLIED MATERIALS APPLIED MATERIALS **Lam** ULVAC DISCO 0 ▲ Lam[®] make possible make possible APPLIED MATERIALS SCREEN **ACCRETECH** DISCO ACM ▲ Lam make possible ACCRETECH m SIVEE /\\SH/3/UR/ ACCRETECH RESEARCH HWATSING NAURA **NAURA** HWATSING KINGSEMITH (#) AMEC KINGSEMI描源 Nikon (#) AMEC ULVAC

日本企業は125mm以下ウエハ対応装置であっても比較的取り扱っている

半導体製造装置メーカー(国内外問わず)における、ウェハーサイズ200mm以下の製造装置(リニューアル品を含む)の製造状況

国別状況

- 日本メーカーは50mmや75mmウエハの対応を行なっているなど、比較的小さな径にも依然として対応している
- 中国メーカーは200mm, 300mmウエハに注力しているが、一部小口径にも対応メーカーあり
- 米国メーカーは150mm~300mmウエハの対応となっている

		125mm以下ウエハ	150mmウエハ	200mmウエハ	300mmウエハ	
	Canon	0	0	0	0	
主要	Nikon	Ο	0	0	Ο	
主要装置メー	TEL	0	0	0	0	
!	SCREEN	0	0	0	0	
国内メーカナ	EBARA	不明	不明	0	0	
サイズ対	ULVAC	0	0	0	0	
1ズ対応状況	SH/3AURA	0	0	0	0	
25	DISCO	不明	0	0	0	
	X ACCRETECH	0	0	0	0	

63 Mitsubishi UFJ Research and Consulting

(前ページの続き)

半導体製造装置メーカー(国内外問わず)における、ウェハーサイズ200mm以下の製造装置(リニューアル品を含む)の製造状況

(海外メーカ→ 主要装置メーカーのウエハサイズ対応状況

	125mm以下ウエハ	150mmウエハ	200mmウエハ	300mmウエハ	
ASML	不明	不明	0	0	
APPLIED MATERIALS : make possible	不明	Ο	Ο	Ο	
Lam*	不明	Ο	0	Ο	
ACM	不明	0	0	0	
ΠΛυκΛ	不明	不明	0	0	
∌ AMEC	0	0	0	0	
SMEE	0	0	0	0	
KINGSEMI前源	不明	0	0	0	
HWATSING	0	0	0	0	

64 Mitsubishi UFJ Research and Consulting

キヤノン・ニコン共に150mm以下の装置取扱有

NO.	企業名	=	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
1	キヤノン	日本	露光	FPA-6300ES6a	0	0	×
2	キヤノン	日本	露光	FPA-6300ESW	0	×	×
3	キヤノン	日本	露光	FPA-3030EX6	×	0	100mm (4inch) / 125mm (5inch) / 150mm (6inch)
4	キヤノン	日本	露光	FPA-5550iZ2	0	0	×
5	キヤノン	日本	露光	FPA-5550iX	0	×	×
6	キヤノン	日本	露光	FPA-3030i5a	×	0	50mm (2inch) / 75mm (3inch) / 100mm (4inch) / 150mm (6inch)
7	キヤノン	日本	露光	FPA-3030iWa	×	0	50mm (2inch) / 75mm (3inch) / 100mm (4inch) / 150mm (6inch)
8	キヤノン	日本	露光	FPA-5520iV	0	×	×
9	キヤノン	日本	露光	FPA-8000iW	_	_	-
10	ニコン	日本	露光	NSR-S635E	0	×	×
11	ニコン	日本	露光	NSR-S622D	0	×	×
12	ニコン	日本	露光	NSR-S625E	0	×	×
13	ニコン	日本	露光	NSR-S322F	0	×	×
14	ニコン	日本	露光	NSR-S220D	0	×	×
15	ニコン	日本	露光	NSR-2205iL1	×	0	50mm (2inch) ~200mm (8inch)
16	ニコン	日本	露光	NSR-SF155	0	0	×
17	ニコン	日本	露光	OPTISTATION-3200/3100/3000	0	0	×
18	東京エレクトロン	日本	コータ/デベロッパ	CLEAN TRACK™ LITHIUS Pro™ AP	0	×	×
19	東京エレクトロン	日本	コータ/デベロッパ	CLEAN TRACK™ LITHIUS Pro™ Z	0	×	×
20	東京エレクトロン	日本	コータ/デベロッパ	CLEAN TRACK™ LITHIUS Pro™ V / LITHIUS Pro™ V-i	0	×	×
21	東京エレクトロン	日本	コータ/デベロッパ	CLEAN TRACK™ LITHIUS Pro™ / LITHIUS Pro™ —i	0	0	×
22	東京エレクトロン	日本	コータ/デベロッパ	CLEAN TRACK™ LITHIUS™ / LITHIUS™ i+	0	0	×
23	東京エレクトロン	日本	コータ/デベロッパ	CLEAN TRACK™ ACT™12 / ACT™12 SOD	0	0	×
24	東京エレクトロン	日本	コータ/デベロッパ	CLEAN TRACK™ ACT™8 / ACT™8 SOD	×	0	75mm (3inch) / 100mm (4inch) / 150mm (6inch)
25	東京エレクトロン	日本	コータ/デベロッパ	CLEAN TRACK™ ACT™ M	×	×	150mm (6inch)
26	東京エレクトロン	日本	エッチング	Episode™ UL	0	×	×
27	東京エレクトロン	日本	エッチング	Tactras™	0	×	×
28	東京エレクトロン	日本	エッチング	Certas LEAGA™	0	×	×
29	東京エレクトロン	日本	エッチング	UNITY™ Me+	×	0	100mm (4inch) / 150mm (6inch)

65 Mitsubishi UFJ Research and Consulting

(注)公開されている情報の範囲内での記載であり、各社の対応サイズ全ての情報を保証するものではない

東京エレクトロンは成膜装置を中心に150mm以下の取扱を豊富にラインラップ

NO.	企業名	<u>=</u>	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
30	東京エレクトロン	日本	洗浄	CELLESTA™ -i MD	0	×	×
31	東京エレクトロン	日本	洗浄	CELLESTA™ -i	0	×	×
32	東京エレクトロン	日本	洗浄	CELLESTA™ MS2	0	×	×
33	東京エレクトロン	日本	洗浄	EXPEDIUS™ -i	0	×	×
34	東京エレクトロン	日本	洗浄	NS300Z	0	×	×
35	東京エレクトロン	日本	洗浄	NS300+ 200mm Conversion	×	0	150mm (6inch)
36	東京エレクトロン	日本	洗浄	NS300+ HT	0	×	×
37	東京エレクトロン	日本	洗浄	NS300	0	×	×
38	東京エレクトロン	日本	洗浄	ANTARES™	0	0	×
39	東京エレクトロン	日本	洗浄	ZETA™+200/300/Semi-auto	0	0	150mm (6inch)
40	東京エレクトロン	日本	洗浄	MERCURY™+	×	0	100mm (4inch) / 150mm (6inch)
41	東京エレクトロン	日本	成膜	TELINDY PLUS™	0	×	×
42	東京エレクトロン	日本	成膜	TELINDY PLUS™ IRad™	0	×	×
43	東京エレクトロン	日本	成膜	TELFORMULA™	0	×	×
44	東京エレクトロン	日本	成膜	ALPHA-8SE™ i	×	0	150mm (6inch)
45	東京エレクトロン	日本	成膜	NT333™	0	×	×
46	東京エレクトロン	日本	成膜	Triase+™ EX-II™ TiN	0	×	×
47	東京エレクトロン	日本	成膜	Triase+™ Ti/TiN	0	×	×
48	東京エレクトロン	日本	成膜	Triase+™ W	0	×	×
49	東京エレクトロン	日本	成膜	Triase+™ SPAi	0	×	×
50	東京エレクトロン	日本	成膜	EXIM™	0	×	×
51	東京エレクトロン	日本	成膜	MRT300	0	×	×
52	東京エレクトロン	日本	成膜	MRT5000	0	0	100mm (4inch) / 150mm (6inch)
53	東京エレクトロン	日本	成膜	MRT200	×	0	100mm (4inch) / 150mm (6inch)
54	東京エレクトロン	日本	成膜	MATr	×	0	100mm (4inch) / 150mm (6inch)
55	東京エレクトロン	日本	成膜	MATrSM	×	0	100mm (4inch) / 150mm (6inch)
56	東京エレクトロン	日本	ウェーハボンダー/デボンダー	Synapse™ Si	0	×	×
57	東京エレクトロン	日本	ウェーハボンダー/デボンダー	Synapse™ V / Synapse™ Z Plus	0	×	×
58	東京エレクトロン	日本	ウェーハエッジトリミング	Ulucus™ L	0	×	×

66 Mitsubishi UFJ Research and Consulting

SCREENも洗浄装置等において150mm以下の装置取扱有

NO.	企業名	豆	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
59	東京エレクトロン	日本	SiCエピタキシャル	Probus-SiC™	×	0	75mm (3inch) / 100mm (4inch) / 150mm (6inch)
60	東京エレクトロン	日本	ガスクラスターイオンビーム	UltraTrimmer Plus™	×	0	100mm (4inch) / 150mm (6inch)
61	東京エレクトロン	日本	テスト	Cellcia™	0	×	×
62	東京エレクトロン	日本	テスト	Prexa™	0	0	×
63	東京エレクトロン	日本	テスト	Prexa™MS	0	0	×
64	東京エレクトロン	日本	テスト	WDF™ 12DP+	0	0	×
65	東京エレクトロン	日本	テスト	Precio™ XL	0	0	×
66	東京エレクトロン	日本	テスト	Precio octo™	×	0	150mm (6inch)
67	SCREEN	日本	ウェーハ洗浄装置(ウェットス テーション)	FC-3100	0	×	×
68	SCREEN	日本	ウェーハ洗浄装置(ウェットス テーション)	WS-620C/ WS-820C/ WS-820L	×	0	150mm (6inch)
69	SCREEN	日本	ウェーハ洗浄装置(ウェットス テーション)	FC-821L	×	0	×
70	SCREEN	日本	ウェーハ洗浄装置(ウェットス テーション)		×	0	50mm (2inch) ~150mm (6inch)
71	SCREEN	日本	ウェーハ洗浄装置(スピンプロ セッサ)		0	×	×
72	SCREEN	日本	ウェーハ洗浄装置(スピンプロ セッサ)		0	×	×
73	SCREEN	日本	ウェーハ洗浄装置(スピンプロ セッサ)		0	×	×
74	SCREEN	日本	ウェーハ洗浄装置(スピンプロ セッサ)		×	0	150mm (6inch)
75	SCREEN	日本	ウェーハ洗浄装置(スピンプロ セッサ)		×	0	76mm (3inch) ~ 150mm (6inch)
76	SCREEN	日本	ウェーハ洗浄装置(スピンスクラ バ)	SS-3300S	0	×	×
77	SCREEN	日本	ウェーハ洗浄装置(スピンスクラ バ)		0	×	×
78	SCREEN	日本	ウェーハ洗浄装置(スピンスクラ バ)		×	0	100mm (4inch) ~150mm (6inch)
79	SCREEN	日本	ウェーハ洗浄装置(スピンスクラ バ(ブラシ&薬液洗浄))	SB-3300	0	×	×
80	SCREEN	日本	コータ・デベロッパ	DT-3000	0	0	×
81	SCREEN	日本	コータ・デベロッパ	SK-60EX/SK-80EX	×	0	150mm (6inch)
82	SCREEN	日本	コータ・デベロッパ	SC-80EX	×	0	100mm (4inch) ~150mm (6inch)

ディスコはダイシングソーで150mm以下の装置取扱が豊富

	A ATE AN				((2) 1) 11-		and the state of the state
NO.	企業名		工程	品番	300mm (12inch) 対応	200mm (8inch) 対応 ×	200mm未満対応 ×
83	SCREEN	日本	熱処理装置	LA-3100	0	×	100mm (4inch) ~150mm
84	SCREEN	日本	熱処理装置	LT-3100	0	0	(6inch)
85	SCREEN	日本	計測装置	RE-3500	0	0	125mm (5inch) /150mm (6inch)
86	SCREEN	日本	計測装置	VM-2500/VM-3500	0	0	100mm (4inch) ~150mm (6inch)
87	SCREEN	日本	計測装置	VM-1200/VM-1300	0	0	100mm (4inch) ~150mm (6inch)
88	SCREEN	日本	計測装置	VM-1020	0	0	50mm (2inch) ~150mm (6inch)
89	SCREEN	日本	検査装置	ZI-3600	0	0	100mm (4inch) ~150mm (6inch)
90	SCREEN	日本	検査装置	ZI-2000	×	0	76mm (3inch) ~ 150mm (6inch)
91	荏原製作所	日本	CMP装置	F-REX200M2 F-REX300X/F-REX300XA	0	0	×
92	在原製作所	日本	めっき装置	UFP-AS	_	_	_
93	荏原製作所	日本	ベベル研磨	EAC300bi-hv	0	×	×
94	ディスコ	日本	(ダイシングソー)	DFD6240	×	0	×
95	ディスコ	日本	(ダイシングソー)	DFD6340	×	0	×
96	ディスコ	日本	(ダイシングソー)	DFD6341	×	0	×
97	ディスコ	日本	(ダイシングソー)	DFD6342	×	0	×
98	ディスコ	日本	(ダイシングソー)	DFD6361	0	×	×
99	ディスコ	日本	(ダイシングソー)	DFD6362	0	×	×
100	ディスコ	日本	(ダイシングソー)	DFD6363	0	×	×
101	ディスコ	日本	(ダイシングソー)	DFD6450	×	0	×
102	ディスコ	日本	(ダイシングソー)	DFD6560	0	×	×
103	ディスコ	日本	(ダイシングソー)	DFD6561	0	×	×
104	ディスコ	日本	(ダイシングソー)	DFD6760	0	×	×
105	ディスコ	日本	(ダイシングソー)	DAD323	×	×	150mm (6inch)
106	ディスコ	日本	(ダイシングソー)	DAD324	×	×	150mm (6inch)
107	ディスコ	日本	(ダイシングソー)	DAD3220	×	×	150mm (6inch)
108	ディスコ	日本	(ダイシングソー)	DAD3221	×	×	150mm (6inch)
109	ディスコ	日本	(ダイシングソー)	DAD3230	×	×	150mm (6inch)
110	ディスコ	日本	(ダイシングソー)	DAD3231	×	×	150mm (6inch)
111	ディスコ	日本	(ダイシングソー)	DAD3240	×	0	×
112	ディスコ	日本	(ダイシングソー)	DAD3241	×	0	×
113	ディスコ	日本	(ダイシングソー)	DAD3350	×	0	×
114	ディスコ	日本	(ダイシングソー)	DAD3351	×	0	×
115	ディスコ	日本	(ダイシングソー)	DAD3360	0	×	×
116	ディスコ	日本	(ダイシングソー)	DAD3361	0	×	×
117	ディスコ	日本	(ダイシングソー)	DAD3430	×	×	150mm (6inch)
118	ディスコ	日本	(ダイシングソー)	DAD3431	×	×	150mm (6inch)
119	ディスコ	日本	(ダイシングソー)	DAD3650	×	0	×
120	ディスコ	日本	(ダイシングソー)	DAD3651	×	0	×
121	ディスコ	日本	(ダイシングソー)	DAD3660	0	×	×
122	ディスコ	日本	(ダイシングソー)	DAD3661	0	×	×

⁽注)公開されている情報の範囲内での記載であり、各社の対応サイズ全ての情報を保証するものではない

東京精密は150mmや125mmに対応している装置取扱有

NO.	企業名	<u>=</u>	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
123	ディスコ	日本	(レーザソー)	DFL7160	0	×	×
124	ディスコ	日本	(レーザソー)	DFL7161	0	×	×
125	ディスコ	日本	(レーザソー)	DFL7341	×	0	×
126	ディスコ	日本	(レーザソー)	DFL7362	0	×	×
127	ディスコ	日本	(レーザソー)	DFL7560L	×	×	150mm (6inch)
128	ディスコ	日本	(グラインダ)	DFG8340	×	0	×
129	ディスコ	日本	(グラインダ)	DFG8540	×	0	×
130	ディスコ	日本	(グラインダ)	DFG8560	0	×	×
131	ディスコ	日本	(グラインダ)	DFG8640	×	0	×
132	ディスコ	日本	(グラインダ)	DFG8830	×	×	150mm (6inch)
133	ディスコ	日本	(グラインダ)	DGP8761	0	×	×
134	ディスコ	日本	(グラインダ)	DAG810	×	0	×
135	ディスコ	日本	(ポリッシャ)	DFP8140	×	0	×
136	ディスコ	日本	(ポリッシャ)	DFP8141	×	0	×
137	ディスコ	日本	(ポリッシャ)	DFP8160	0	×	×
138	ディスコ	日本	(ポリッシャ)	DGP8761	0	×	×
139	ディスコ	日本	(ウェーハマウンタ)	DFM2800	0	×	×
140	ディスコ	日本	(ダイセパレータ)	DDS2010	×	0	×
141	ディスコ	日本	(ダイセパレータ)	DDS2300	0	×	×
142	ディスコ	日本	(ダイセパレータ)	DDS2310	0	×	×
143	ディスコ	日本	(ダイセパレータ)	DDS2320	0	×	×
144	ディスコ	日本	(サーフェースプレーナ)	DAS8920	×	0	×
145	ディスコ	日本	(サーフェースプレーナ)	DAS8930	0	×	×
146	ディスコ	日本	(サーフェースプレーナ)	DFS8910	×	0	×
147	ディスコ	日本	(サーフェースプレーナ)	DFS8960	0	×	×
148	ディスコ	日本	(ウォータージェットソー)	DAW4110	_	_	_
149	東京精密	日本	(ダイシングマシン)	AD3000T-PLUS	0	×	×
150	東京精密	日本	(ダイシングマシン)	AD3000T-HC PLUS	0	×	×
151	東京精密	日本	(ダイシングマシン)	AD2000T/S	×	0	×
152	東京精密	日本	(ダイシングマシン)	AD20T/S	×	0	×
153	東京精密	日本	(ダイシングマシン)	SS10	×	×	150mm (6inch)
154	東京精密	日本	(ダイシングマシン)	SS20	×	0	×
155	東京精密	日本	(ダイシングマシン)	SS30	0	×	×
156	東京精密	日本	(ダイシングマシン)	ML301EXWH	0	×	×
157	東京精密	日本	(ダイシングマシン)	A-CS-300	0	0	125mm (5inch) / 150mm (6inch)
158	東京精密	日本	(ダイシングマシン)	AL3000	0	×	×

(注)公開されている情報の範囲内での記載であり、各社の対応サイズ全ての情報を保証するものではない

芝浦メカトロニクスはエッチング装置等で150mm以下装置の取扱有

NO.	企業名	E7	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
159	東京精密	日本	(プロービングマシン)	AP3000/AP3000e	不明	不明	不明
160	東京精密	日本	(プロービングマシン)	FP3000	0	0	×
161	東京精密	日本	(プロービングマシン)	UF2000	×	0	×
162	東京精密	日本	(プロービングマシン)	UF200R	×	0	125mm (5inch) / 150mm (6inch)
163	東京精密	日本	(プロービングマシン)	UF190R	×	0	100mm (4inch) ~ 150mm (6inch)
164	東京精密	日本	(プロービングマシン)	FP2000	×	0	125mm (5inch) / 150mm (6inch)
165	東京精密	日本	(プロービングマシン)	AltaProv	不明	不明	不明
166	東京精密	日本	(ポリッシュ・グラインダ)	PG3000RMX	不明	不明	不明
167	東京精密	日本	(高剛性研削盤)	HRG3000RMX	0	0	×
168	東京精密	日本	(高剛性研削盤)	HRG300/HRG300A	0	0	50mm (2inch) ~ 150mm (6inch)
169	東京精密	日本	(高剛性研削盤)	HRG200X	×	0	75mm (3inch) ~ 150mm (6inch)
170	東京精密	日本	(CMP装置)	ChaMP-232 ChaMP-332	0	0	100mm (4inch) / 150mm (6inch)
171	東京精密	日本	(CMP装置)	(ChaMP:小型CMP装置)	×	0	50mm (2inch) ~150mm (6inch)
172	東京精密	日本	(エッジグラインディングマシー ン)	W-GM-4200	×	0	50mm (2inch) ~ 150mm (6inch)
173	東京精密	日本	(エッジグラインディングマシー ン)	W-GM-5200	0	×	×
174	東京精密	日本	(エッジグラインディングマシー ン)	W-GM-6200	450mm	×	×
175	東京精密	日本	(ウェーハ剥離洗浄装置)	C-RW-345/C-RW-245	O 450mm	0	×
176	芝浦メカトロニクス	日本	前工程 (研磨後洗浄装置)	SC300-CC series	0	×	×
177	芝浦メカトロニクス	日本	前工程 (ファイナル洗浄装置)	SC300-FC series	0	×	×
178	芝浦メカトロニクス	日本	前工程 (高温リン酸エッチング装置)	SC300-HT series	0	×	×
179	芝浦メカトロニクス	日本	前工程 (フォトマスク洗浄装置)	MC150, ARTS	不明	不明	不明
180	芝浦メカトロニクス	日本	前工程 (フォトマスクエッチング装置)	ARES series	不明	不明	不明
181	芝浦メカトロニクス	日本	前工程 (ケミカルドライエッチング装置)	CDE	0	0	75mm (3inch) ~ 150mm (6inch)
182	芝浦メカトロニクス	日本	前工程 (低温アッシング装置)	ICE	0	0	×
183	芝浦メカトロニクス	日本	(半導体用スパッタリング装置)	SWN-5000	×	0	100mm (4inch) / 150mm (6inch)

アルバックはスパッタを中心に150mm以下装置の取扱有

NO.	企業名	<u>=</u>	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
184	アルバック	日本	(スパッタリング装置 ロードロッ ク式)	ENTRON™-EX W300	不明	不明	不明
185	アルバック	日本	(スパッタリング装置 ロードロッ ク式)		×	0	75mm (3inch) / 100mm (4inch) / 125mm (5inch) / 150mm (6inch)
186	アルバック	日本	(スパッタリング装置 ロードロッ ク式)	ULDiSシリーズ	不明	不明	不明
187	アルバック	日本	(スパッタリング装置 ロードロッ ク式)		×	0	125mm (5inch) / 150mm (6inch)
188	アルバック	日本	(スパッタリング装置 ロードロッ ク式)		×	0	×
189	アルバック	日本	(スパッタリング装置 ロードロッ ク式)	CS-200	-	-	-
190	アルバック	日本	(スパッタリング装置 ロードロッ ク式)	uGmni-200, 300	0	不明	不明
191	アルバック	日本	(スパッタリング装置 バッチ式)	SV-200 SV-4540 SV-6040 SV-9045	-	-	-
192	アルバック	日本	(スパッタリング装置 インライン 式)	SMD-950X SMD-1800X SMD-2400C	-	-	-
193	アルバック	日本	(スパッタリング装置 インライン 式)	SCH シリーズ	-	-	-
194	アルバック	日本	(スパッタリング装置 取巻式)	SPW-030 SPW-060 SPW-165 C1 SPW-165 C2	-	-	-
195	アルバック	日本	(エッチング装置)	NE-550EX	×	×	150mm(6inch) 不明
196	アルバック	日本	(エッチング装置)	NE-5700/NE-7800	不明	不明	不明
197	アルバック	日本	(エッチング装置)	NLD-570	不明	不明	不明
198	アルバック	日本	(エッチング装置)	NLD-5700	不明	不明	不明
199	アルバック	日本	(エッチング装置)	RISE™-300	0	×	×
200	アドバンテスト	日本	(SoCテスト・システム)	V93000	不明	不明	不明
201	アドバンテスト	日本	(SoCテスト・システム)	V93000 EXA Scale™	不明	不明	不明
202	アドバンテスト	日本	(SoCテスト・システム)	T2000	不明	不明	不明
203	アドバンテスト	日本	(SoCテスト・システム)	T6391	不明	不明	不明
204	アドバンテスト	日本	(SoCテスト・システム)	Т7912	不明	不明	不明

ACM Researchは一部を除き300mmに注力

NO.	企業名	■	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
205	アドバンテスト	日本	(メモリ・テスト・システム)	inteXcell	不明	不明	不明
206	アドバンテスト	日本	(メモリ・テスト・システム)	T5835	不明	不明	不明
207	アドバンテスト	日本	(メモリ・テスト・システム)	T5503HS2	不明	不明	不明
208	アドバンテスト	日本	(メモリ・テスト・システム)	T5851/T5851ES	不明	不明	不明
209	アドバンテスト	日本	(メモリ・テスト・システム)	H5620/H5620ES	不明	不明	不明
210	アドバンテスト	日本	(メモリ・テスト・システム)	B6700/B6700ES/B6700S	不明	不明	不明
211	アドバンテスト	日本	(メモリ・テスト・システム)	T5833/T5833ES	不明	不明	不明
212	アドバンテスト	日本	(メモリ・テスト・システム)	T5830/T5830ES	不明	不明	不明
213	アドバンテスト	日本	(メモリ・テスト・システム)	T5221	不明	不明	不明
214	アドバンテスト	日本	(メモリ・テスト・システム)	T5503HS	不明	不明	不明
215	アドバンテスト	日本	(メモリ・テスト・システム)	T5511	不明	不明	不明
216	アドバンテスト	日本	(SEMメトロロジー/レビュー)	WAFER MVM-SEM® E3310	0	0	150mm (6inch)
217	アドバンテスト	日本	(SEMメトロロジー/レビュー)	MASK DR-SEM E5620	不明	不明	不明
218	アドバンテスト	日本	(SEMメトロロジー/レビュー)	MASK MVM-SEM® E3630	不明	不明	不明
219	アドバンテスト	日本	(SEMメトロロジー/レビュー)	MASK MVM-SEM® E3640	不明	不明	不明
220	アドバンテスト	日本	(SEMメトロロジー/レビュー)	MASK MVM-SEM® E3650	不明	不明	不明
221	アドバンテスト	日本	(システム・レベル・テスト・シス テム)	ATS 7038	不明	不明	不明
222	アドバンテスト	日本	(システム・レベル・テスト・シス テム)	ATS 5030	不明	不明	不明
223	ACM Research	中国	(洗浄システム)	[Ultra C SAPS] SAPS II SAPS V SAPS VI	不明	不明	不明

ACM Researchは一部を除き300mmに注力

NO.	企業名	国	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
224	ACM Research	中国	(洗浄システム)	Ultra C TEBO	0	×	×
225	ACM Research	中国	(洗浄システム)	Ultra C Tahoe	0	×	×
226	ACM Research	中国	(洗浄システム)	Single Hot SPM	0	×	×
227	ACM Research	中国	(洗浄システム)	Bevel ETCH	不明	不明	不明
228	ACM Research	中国	(洗浄システム)	Ultra C b	0	0	×
229	ACM Research	中国	(スクラバーシステム)	Ultra C	0	0	×
230	ACM Research	中国	(洗浄システム)	Ultra C wb	0	0	×
231	ACM Research	中国	(めっきシステム)	Ultra ECP map	0	×	×
232	ACM Research	中国	(めっきシステム)	Ultra ECP 3d	0	×	×
233	ACM Research	中国	(ファーネスシステム)	Ultra Fn	0	×	×
234	ACM Research	中国	(ファーネスシステム)	Ultra FnA	0	×	×
235	ACM Research	中国	(ファーネスシステム)	Ultra FN Atmospheric Pressure Oxidation/Anneal	0	×	×
236	ACM Research	中国	(PECVDシステム)	Ultra Pmax™	不明	不明	不明
237	ACM Research	中国	(トラックシステム)	Ultra Lith Track	0	×	×
238	ACM Research	中国	(めっきシステム)	Ultra ECP ap	0	0	×
239	ACM Research	中国	(コーターシステム)	Ultra C ct	0	0	×

NAURAは対応ウエハサイズ不明が多いが、200,300mmメインと想定

NO.	企業名		工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
240	ACM Research	中国	(デベロッパーシステム)	Ultra C dv	0	0	×
241	ACM Research	中国	(ウェットエッチングシステム)	Ultra C we	0	0	×
242	ACM Research	中国	(湿式剥離システム)	Ultra C pr	0	0	×
243	ACM Research	中国	(洗浄システム)	Metal Lift Off	不明	不明	不明
244	ACM Research	中国	(ストレスフリー研磨システム)	Ultra SFP	不明	不明	不明
245	ACM Research	中国	(洗浄システム)	Post CMP Clean	0	0	150mm (6inch)
246	NAURA Technology Group	中国	(エッチング装置)	NMC508M 8インチアルミメタルエッチャー	×	0	×
247	NAURA Technology Group	中国	(エッチング装置)	NMC508C 8インチSiエッチャー	×	0	×
248	NAURA Technology Group	中国	(エッチング装置)	NMC612C 12インチSiエッチャー	0	×	×
249	NAURA Technology Group	中国	(エッチング装置)	NMC612D 12インチSiエッチャー	0	×	×
250	NAURA Technology Group	中国	(エッチング装置)	NMC612M 12インチTiNメタルハードマスクエッ チャー	0	×	×
251	NAURA Technology Group	中国	IC集積回路分野のメタル・アル ミエッチング工程、マイクロ OLED分野のメタル・ノンメタル エッチング工程 (エッチング装置)	NMC612G 12インチエッチャー	0	×	×
252	NAURA Technology Group	中国	(エッチング装置)	HSEシリーズ プラズマエッチャー HSE 200/230	0	0	O 不明
253	NAURA Technology Group	中国	(エッチング装置)	BMD P230 デスカム	不明	不明	不明
254	NAURA Technology Group	中国	(エッチング装置)	GSE C200シリーズ プラズマエッチャー	不明	不明	不明
255	NAURA Technology Group	中国	(エッチング装置)	ELEDE® 380G+/G380C エッチャー	不明	不明	不明
256	NAURA Technology Group	中国	(エッチング装置)	ELEDE® 380E PSSエッチャー	不明	不明	不明

NAURAは対応ウエハサイズ不明が多いが、200,300mmメインと想定

NO.	企業名	<u>=</u>	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
257	NAURA Technology Group	中国	 (エッチング装置) 	DSE200シリーズ プラズマエッチャー	不明	不明	不明
258	NAURA Technology Group	中国	(エッチング装置)	GDE C200シリーズ プラズマエッチャー	不明	不明	不明
259	NAURA Technology Group	中国	(エッチング装置)	GSE C200シリーズ プラズマエッチャー	不明	不明	不明
260	NAURA Technology Group	中国	(エッチング装置)	NMC508DTE 8インチSiトレンチエッチャー	不明	不明	不明
261	NAURA Technology Group	中国	(スパッタリング装置)	eVictor AX30 Al pad PVD System(eVictor AX30 AlパッドPVDシステム)	不明	不明	不明
262	NAURA Technology Group	中国	(スパッタリング装置)	exiTin H630 TiN Metal HardMask PVD System(exiTin H630 TiNメタルハードマスクPVDシステム)	不明	不明	不明
263	NAURA Technology Group	中国	(スパッタリング装置)	eVictor GX20 Series General Sputter System (eVictor GX20シリーズ 一般スパッタ装置)	不明	不明	不明
264	NAURA Technology Group	中国	(スパッタリング装置)	Promi series ALD system(PromiシリーズALDシステム)	不明	不明	不明
265	NAURA Technology Group	中国	(スパッタリング装置)	Polaris G620 Series General Sputter System(Booster A630 枚葉式アニール装置)	不明	不明	不明
266	NAURA Technology Group	中国	(スパッタリング装置)	Polaris G620 Series General Sputter System(ポラリスG620シリーズ 一般スパッタ装置)	×	0	×
267	NAURA Technology Group	中国	(スパッタリング装置)	Polaris T Series TSV PVD System(ポラリスTシリーズ TSV PVDシステム)	不明	不明	不明
268	NAURA Technology Group	中国	(スパッタリング装置)	Polaris B Series Bumping PVD(ポラリスBシリーズバンピングPVD)	不明	不明	不明
269	NAURA Technology Group	中国	(スパッタリング装置)	iTops i233 Sputter System (iTops i233スパッタシステム)	不明	不明	不明
270	NAURA Technology Group	中国	(スパッタリング装置)	iTops A230 AIN Sputter System(iTops A230 AIN スパッタシステム)	不明	不明	不明
271	NAURA Technology Group	中国	(CVD装置)	HORIS L6371 Multifunction LPCVD(HORIS L6371 多機能LPCVD)	不明	不明	不明

NAURAは対応ウエハサイズ不明が多いが、200,300mmメインと想定

NO.	企業名	<u> </u>	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
272	NAURA Technology Group	中国		SES680A Silicon APCVD System(SES680A シリコンAPCVD装置)	不明	不明	不明
273	NAURA Technology Group	中国	(CVD装置)	THEORIS 302 / FLOURIS 201 Vertical LPCVD(THEORIS 302 / FLOURIS 201 総型LPCVD)	不明	不明	不明
274	NAURA Technology Group	中国		Esther 200 Single Wafer Silicon Epitaxy System(Esther 200 枚葉式シリコンエピタキシー装置)	不明	不明	不明
275	NAURA Technology Group	中国	(CVD装置)	HORIS P8571A Tube type PECVD(HORIS P8571A チューブタイプPECVD)	不明	不明	不明
276	NAURA Technology Group	中国		EPEE550 PECVD System(EPEE550 PECVDシステム)	不明	不明	不明
277	NAURA Technology Group	中国		EPEE i800 PECVD System (EPEE i800 PECVDシステム)	不明	不明	不明
278	NAURA Technology Group	中国	(CVD装置)	APS Series SiC Crystal Growth System(APSシリーズ SiC結晶成長装置)	不明	不明	不明

ASMLは200mmと300mmに特化

NO.	企業名		工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
279	ASML	オランダ	露光	TWINSCAN NXE:3600D	0	×	×
280	ASML	オランダ	露光	TWINSCAN NXE:3400C	0	×	×
281	ASML	オランダ	露光	TWINSCAN NXT:2100i	0	×	×
282	ASML	オランダ	露光	TWINSCAN NXT:2050i	0	×	×
283	ASML	オランダ	露光	TWINSCAN NXT:2000i	0	×	×
284	ASML	オランダ	露光	TWINSCAN NXT:1980Di	0	×	×
285	ASML	オランダ	露光	TWINSCAN NXT:1470	0	×	×
286	ASML	オランダ	露光	TWINSCAN XT:1460K	0	×	×
287	ASML	オランダ	露光	TWINSCAN XT:1060K	0	×	×
288	ASML	オランダ	露光	TWINSCAN NXT:870	0	×	×
289	ASML	オランダ	露光	TWINSCAN XT:860N	0	0	×
290	ASML	オランダ	露光	TWINSCAN XT:860M	0	×	×
291	ASML	オランダ	露光	TWINSCAN XT:400L	0	0	×
292	Applied Materials	米国	フォトマスク形成	Alta® 4700DP Mask Writer	不明	不明	不明
293	Applied Materials	米国	成膜	Applied Picosun Sprinter	0	×	×
294	Applied Materials	米国	成膜	Applied Picosun Morpher F	×	0	不明
295	Applied Materials	米国	成膜	Applied Picosun Morpher P	×	0	不明
296	Applied Materials	米国	成膜	Applied Picosun Morpher T	×	0	×
297	Applied Materials	米国	コーティング/現像	Applied® SigmaMeltec® CTS Mask Coat Series	不明	不明	不明
298	Applied Materials	米国	洗浄	Applied® SigmaMeltec® MRC Mask Clean Series	不明	不明	不明
299	Applied Materials	米国	成膜	Applied® SigmaMeltec® SFB Mask Bake Series	不明	不明	不明
300	Applied Materials	米国	成膜	Axcela™ PVD	O +330mm	0	150mm (6inch)
301	Applied Materials	米国	エッチング	Centris® Sym3® Y Etch	不明	不明	不明
302	Applied Materials	米国	成膜	Centura® DxZ CVD	×	0	×
303	Applied Materials	米国	成膜	Centura® Epi 200mm	×	0	150mm (6inch)
304	Applied Materials	米国	エッチング	Centura® Etch	×	0	×
305	Applied Materials	米国	成膜	Centura® Prime® EPI	不明	不明	不明
306	Applied Materials	米国	エッチング	Centura® Silvia® エッチング装置	不明	不明	不明
307	Applied Materials	米国	エッチング	Centura® Tetra™ EUV Advanced Reticle Etch	不明	不明	不明
308	Applied Materials	米国	エッチング	Centura® Tetra™ Z PhotoMask Etch	不明	不明	不明
309	Applied Materials	米国	成膜	Centura® Ultima HDP CVD®	0	0	×
310	Applied Materials	米国	成膜	Centura® iSprint™SSW ALD/CVD	不明	不明	不明
311	Applied Materials	米国	成膜	Charger® UBM PVD	不明	不明	不明
312	Applied Materials	米国	成膜	Endura® ALPS® PVD (ALPS CO & NI)	不明	不明	不明
313	Applied Materials	米国	成膜	Endura® Amber™ PVD	不明	不明	不明
314	Applied Materials	米国	成膜	Endura® Avenir® RF PVD	不明	不明	不明
315	Applied Materials	米国	成膜	Endura® Cirrus™ HT CO PVD	不明	不明	不明
316	Applied Materials	米国	成膜	Endura® Cirrus™ HTX PVD	不明	不明	不明
317	Applied Materials	米国	成膜	Endura® Clover® MRAM PVD	不明	不明	不明
318	Applied Materials	米国	成膜	Endura® CuBS RF XT PVD	不明	不明	不明
319	Applied Materials	米国	成膜	Endura® ILB™ PVD/ALD	不明	不明	不明
320	Applied Materials	米国	成膜	Endura® Impulse™ PCRAM PVD	不明	不明	不明

AMATは150mm~300mmまで対応

NO.	企業名	<u>=</u>	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
321	Applied Materials	米国	成膜	Endura® Ioniq™ W PVD	不明	不明	不明
322	Applied Materials	米国	成膜	Endura® PVD	×	0	×
323	Applied Materials	米国	成膜	Endura® Ventura® PVD	不明	不明	不明
324	Applied Materials	米国	成膜	Endura® Versa™ XLR2 W PVD	不明	不明	不明
325	Applied Materials	米国	成膜	Endura® Volta® Cobalt CVD	不明	不明	不明
326	Applied Materials	米国	成膜	Endura® Volta® Selective W CVD	不明	不明	不明
327	Applied Materials	米国	成膜	Endura® Volta® W CVD	不明	不明	不明
328	Applied Materials	米国	検査	Enlight® 光学ウェーハ検査装置	不明	不明	不明
329	Applied Materials	米国	CMP	Mirra CMP 200mm	×	0	150mm (6inch)
330	Applied Materials	米国	成膜(めっき)	Nokota™ ECD	0	0	150mm (6inch)
331	Applied Materials	米国	成膜	Olympia® ALD	不明	不明	不明
332	Applied Materials	米国	CMP	Opta™ CMP	不明	不明	不明
333	Applied Materials	米国	成膜	Pika™ PVD	不明	不明	不明
334	Applied Materials	米国	検査	PrimeVision® 10 eBeam Inspection	不明	不明	不明
335	Applied Materials	米国	成膜	Producer® HARP	不明	不明	不明
336	Applied Materials	米国	成膜	Producer® Nanocure® 3 UV Cure	不明	不明	不明
337	Applied Materials	米国	アニーリング	Producer® Pyra® Anneal	不明	不明	不明
338	Applied Materials	米国	成膜	Producer® Avila® PECVD	不明	不明	不明
339	Applied Materials	米国	成膜	Producer® Black Diamond® PECVD	不明	不明	不明
340	Applied Materials	米国	成膜	Producer® BLOk™ PECVD	不明	不明	不明
341	Applied Materials	米国	成膜	Producer® CVD	不明	不明	不明
342	Applied Materials	米国	成膜	Producer® Celera™ PECVD	不明	不明	不明
343	Applied Materials	米国	成膜	Producer® Darc® PECVD	不明	不明	不明
344	Applied Materials	米国	エッチング	Producer® Etch	不明	不明	不明
345	Applied Materials	米国	成膜	Producer® Eterna® FCVD™	不明	不明	不明
346	Applied Materials	米国	成膜	Producer® XP Precision® CVD	不明	不明	不明
347	Applied Materials	米国	成膜	Applied Producer® XP Precision® Draco™ CVD	不明	不明	不明
348	Applied Materials	米国	測定	Provision® 3E 電子ビーム計測	不明	不明	不明
349	Applied Materials	米国	成膜(めっき)	Raider® ECD	0	0	150mm (6inch)
350	Applied Materials	米国	CMP	Reflexion® LK CMP	0	×	×
351	Applied Materials	米国	CMP	Reflexion® LK Prime® CMP	不明	不明	不明
352	Applied Materials	米国	検査	SEMVision® G10 Defect Analysis	不明	不明	不明
353	Applied Materials	米国	現像	Sculpta® パターンシェーピングシステム	不明	不明	不明
354	Applied Materials	米国	成膜	Topaz™ PVD	-	-	-

AMATは150mm~300mmまで対応

NO.	企業名		工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
355	Applied Materials	米国	イオン注入	VIISta® 900XP	不明	不明	不明
356	Applied Materials	米国	イオン注入	VIISta® 3000XP	不明	不明	不明
357	Applied Materials	米国	イオン注入	VIISta® 900 3D	×	0	150mm (6inch)
358	Applied Materials	米国	イオン注入	VIISta® HCP	不明	不明	不明
359	Applied Materials	米国	イオン注入	VIISta®PLAD	不明	不明	不明
360	Applied Materials	米国	アニーリング	Vantage® Astra™ DSA	不明	不明	不明
361	Applied Materials	米国	成膜	Vantage® Radox™ RTP	不明	不明	不明
362	Applied Materials	米国	アニーリング	Vantage® Radiance® Plus RTP	不明	不明	不明
363	Applied Materials	米国	イオン注入	VIISta® Trident™	不明	不明	不明
364	Applied Materials	米国	検査	Vera Optical Inspection	不明	不明	不明
365	Applied Materials	米国	測定	VeritySEM® 6C Critical Dimension (CD) Metrology	0	0	150mm (6inch)
366	Lam Research	米国	成膜	Concept Two® ALTUS®	不明	不明	不明
367	Lam Research	米国	成膜	ALTUS® Max	不明	不明	不明
368	Lam Research	米国	成膜	ALTUS® Max ExtremeFill™	不明	不明	不明
369	Lam Research	米国	成膜	ALTUS® DirectFill™ Max	不明	不明	不明
370	Lam Research	米国	成膜	ALTUS® Max ICEFill™	不明	不明	不明
371	Lam Research	米国	成膜	ALTUS® LFW	不明	不明	不明
372	Lam Research	米国	成膜	Pulsus™	不明	不明	不明
373	Lam Research	米国	成膜	Concept Two® ALTUS®	×	0	×
374	Lam Research	米国	成膜	Concept Two®SEQUEL®	×	0	150mm (6inch)
375	Lam Research	米国	成膜	Concept Two®SPEED®	×	0	×
376	Lam Research	米国	成膜	SPEED® Max	0	×	×
377	Lam Research	米国	成膜	VECTOR®	0	0	×
378	Lam Research	米国	成膜(めっき)	SABRE® 3D	不明	不明	不明
379	Lam Research	米国	成膜(めっき)	SABRE® 3D xT	不明	不明	不明
380	Lam Research	米国	成膜(めっき)	SABRE® Extreme	不明	不明	不明
381	Lam Research	米国	成膜(めっき)	SABRE® Max	不明	不明	不明
382	Lam Research	米国	成膜(めっき)	SABRE® Excel	不明	不明	不明
383	Lam Research	米国	アニーリング	SOLA® Excel	不明	不明	不明
384	Lam Research	米国	エッチング	Sense.i™	不明	不明	不明
385	Lam Research	米国	成膜	SPEED® NExT	不明	不明	不明
386	Lam Research	米国	成膜	SPEED® Max	不明	不明	不明
387	Lam Research	米国	成膜	Striker®	不明	不明	不明
388	Lam Research	米国	成膜	Striker® FE	不明	不明	不明

Lamは対応ウエハサイズ不明が多いが150mmのラインナップを確認

NO.	企業名	巨	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
389	Lam Research	米国	成膜	VECTOR®	不明	不明	不明
390	Lam Research	米国	成膜	VECTOR® TEOS	不明	不明	不明
391	Lam Research	米国	成膜	VECTOR® AHM®	不明	不明	不明
392	Lam Research	米国	成膜	VECTOR® MD	不明	不明	不明
393	Lam Research	米国	成膜	VECTOR® Strata®	不明	不明	不明
394	Lam Research	米国	パッケージング	Coronus®	不明	不明	不明
395	Lam Research	米国	パッケージング	Coronus® HP	不明	不明	不明
396	Lam Research	米国	パッケージング	Coronus® DX	不明	不明	不明
397	Lam Research	米国	エッチング	DSiE™ III	不明	不明	不明
398	Lam Research	米国	エッチング	DSiE™ F シリーズ	不明	不明	不明
399	Lam Research	米国	エッチング	DSiE™ G シリーズ	不明	不明	不明
400	Lam Research	米国	洗浄	DV-Prime®	不明	不明	不明
401	Lam Research	米国	洗浄	Da Vinci®	0	0	150mm (6inch)
402	Lam Research	米国	洗浄	EOS®	不明	不明	不明
403	Lam Research	米国	エッチング	Exelan® Flex®	不明	不明	不明
404	Lam Research	米国	エッチング	Exelan® Flex45™	不明	不明	不明
405	Lam Research	米国	エッチング	Flex® D Series	不明	不明	不明
406	Lam Research	米国	エッチング	Flex® E Series	不明	不明	不明
407	Lam Research	米国	エッチング	Flex® F Series	不明	不明	不明
408	Lam Research	米国	エッチング	Flex® G Series	不明	不明	不明
409	Lam Research	米国	洗浄	GAMMA® xPR	不明	不明	不明
410	Lam Research	米国	洗浄	GAMMA® GxT®	不明	不明	不明
411	Lam Research	米国	エッチング	Versys® Kiyo®	不明	不明	不明
412	Lam Research	米国	エッチング	Versys® Kiyo45™	不明	不明	不明

AMECは50mmの取扱い有

NO.	企業名	<u>=</u>	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
413	Lam Research	米国	エッチング	Versys® Metal	不明	不明	不明
414	Lam Research	米国	エッチング	Versys® Metal45™	不明	不明	不明
415	Lam Research	米国	エッチング	Versys® Metal L	不明	不明	不明
416	Lam Research	米国	エッチング	Versys® Metal M	不明	不明	不明
417	Lam Research	米国	エッチング	Kiyo® C シリーズ	不明	不明	不明
418	Lam Research	米国	エッチング	Kiyo® E シリーズ	不明	不明	不明
419	Lam Research	米国	エッチング	Kiyo® F シリーズ	不明	不明	不明
420	Lam Research	米国	測定	Metior® HX	不明	不明	不明
421	Lam Research	米国	測定	Metior® HXE	不明	不明	不明
422	Lam Research	米国	エッチング	Syndion® C	不明	不明	不明
423	Lam Research	米国	エッチング	Syndion® Fシリーズ	不明	不明	不明
424	Lam Research	米国	エッチング	Syndion® Gシリーズ	不明	不明	不明
425	Lam Research	米国	エッチング, ストリッピング,洗浄	SP203L	0	0	150mm (6inch)
426	Lam Research	米国	エッチング, ストリッピング,洗浄	SP223	0	0	150mm (6inch)
427	Lam Research	米国	エッチング, ストリッピング,洗浄	SP323	0	0	150mm (6inch)
428	AMEC	中国	エッチング	Primo DRIE®	0	×	×
429	AMEC	中国	エッチング	Primo AD-RIE®	不明	不明	不明
430	AMEC	中国	エッチング	Primo AD-RIE-e	不明	不明	不明
431	AMEC	中国	エッチング	Primo AD-RIE-cr	不明	不明	不明
432	AMEC	中国	エッチング	Primo SSC AD-RIE®	不明	不明	不明
433	AMEC	中国	エッチング	Primo iDEA	不明	不明	不明
434	AMEC	中国	エッチング	Primo HD-RIE®	不明	不明	不明
435	AMEC	中国	エッチング	Primo TSV300E® Primo TSV200E®	0	0	×
436	AMEC	中国	エッチング	Primo nanova®	0	×	×
437	AMEC	中国	エッチング	Primo Twin-Star®	0	×	×
438	AMEC	中国	成膜	Prismo D-BLUE®	×	0	〇(2,4,6インチ)
439	AMEC	中国	成膜	Prismo A7®	×	0	〇(4,6インチ)
440	AMEC	中国	成膜	Prismo HiT3®	×	×	O(2,4インチ)
441	AMEC	中国	成膜	Prismo UniMax®	×	0	〇(4,6インチ)
442	AMEC	中国	成膜	Preforma Uniflex™ CW	0	×	×

SMEEは100mm,150mmのラインナップ有

NO.	企業名	=	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
443	SMEE	中国	露光	SSA600/20	0	0	×
444	SMEE	中国	露光	SSC600/10	0	0	×
445	SMEE	中国	露光	SSB600/10	0	Ö	×
446	SMEE	中国	露光	SSB500/40	0	0	×
447	SMEE	中国	露光	SSB500/50	0	0	×
448	SMEE	中国		ATR500	0	0	×
449	SMEE	中国		APR500	0	0	×
450	SMEE	中国	検査	SOI500	0	0	O150mm
451	SMEE	中国		SOI510	0	Ō	○150mm
452	SMEE	中国	検査	SOI600	0	0	×
453	SMEE	中国		SOI610	0	Ō	×
454	SMEE	中国	その他	ATR500	0	0	×
455	SMEE	中国	その他	APR500	0	0	×
456	SMEE	中国	露光	SWEE200/25	0	0	×
457	SMEE	中国	露光	SSB225/10	×	0?	×
458	SMEE	中国	露光	SSB225/20	×	0?	×
459	SMEE	中国	露光	SSB245/10	×	0?	×
460	SMEE	中国	露光	SSB245/20	×	0?	×
461	SMEE	中国	露光	SSB260/10T	×	0?	×
462	SMEE	中国	露光	SSB260/20T	×	0?	×
463	SMEE	中国	パッケージング	SLS245/10	不明	不明	不明
464	SMEE	中国	パッケージング	SLS260/10	不明	不明	不明
465	SMEE	中国	その他	SPA245	不明	不明	不明
466	SMEE	中国	その他	SPA255	不明	不明	不明
467	SMEE	中国	測定	SOM245	不明	不明	不明
468	SMEE	中国	測定	SOM255	不明	不明	不明
469	SMEE	中国	測定	SOM260	不明	不明	不明
470	SMEE	中国	その他	STW260/10	不明	不明	不明
471	SMEE	中国	測定	SOC260	不明	不明	不明
472	SMEE	中国	露光	SSB300	×	×	O100,150mm
473	SMEE	中国	露光	SSB320	×	×	O100,150mm
474	SMEE	中国	露光	SSB380	×	×	O100,150mm
475	SMEE	中国	アニーリング	SLD500	不明	不明	不明
476	SMEE	中国	アニーリング	SLD300	不明	不明	不明
477	SMEE	中国	ボンディング	SWA200	0	×	×
478	SMEE	中国	ボンディング	SWA300	×	0	×
479	SMEE	中国	ボンディング	SWB200	0	×	×
480	SMEE	中国	ボンディング	SWB300	×	0	×
481	SMEE	中国	ボンディング	SWDB200/10	0	×	×
482	SMEE	中国	ボンディング	SWDB300/10	0	0	×
483	SMEE	中国	露光	SSA600/20	0	0	×
484	SMEE	中国	露光	SSC600/10	0	0	×
485	SMEE	中国	露光	SSB600/10	0	0	×
486	SMEE	中国	露光	SSB500/40	0	Ö	×
487	SMEE	中国	露光	SSB500/50	0	Ö	×
488	SMEE	中国	露光	SSB300	×	×	O100,150mm
489	SMEE	中国	露光	SSB320	×	×	O100,150mm
490	SMEE	中国	露光	SSB380	×	×	O100,150mm
430	SIVILL	十四	路儿	P0B000	^	^	0 100, 13011111

Kingsemiは150mm, Hwatsing Technologyは100mmの取扱有

NO.	企業名	E7	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
491	Kingsemi	中国	コーティング/現像	KS-FT200/300	0	0	×
492	Kingsemi	中国	コーティング/現像	KKS-C300	0	×	×
493	Kingsemi	中国	コーティング/現像	KS-S300	0	×	×
494	Kingsemi	中国	コーティング/現像	KS-S150	×	×	O150mm
495	Kingsemi	中国	その他	KS-M300	0?	×	×
496	Kingsemi	中国	コーティング	KS-S300-SP	0?	×	×
497	Kingsemi	中国	コーティング/現像	KS-C300	0	×	×
498	Kingsemi	中国	洗浄	KS-CF300/200-8SR	0?	0?	×
499	Kingsemi	中国	洗浄	KS-S300-SR	0?	×	×
500	Kingsemi	中国	洗浄	KS-S300-ST	0	0	X
501	Kingsemi	中国	洗浄	KS-S150-4ST	×	×	O150mm
502	Kingsemi	中国	洗浄	KS-S150-6ST	×	X	O150mm?
503	Kingsemi	中国	エッチング	KS-S300-E	0?	×	×
504	Hwatsing Technology	中国	CMP	Universal – 300 B	0	0	〇(4,6インチ)
505	Hwatsing Technology	中国	CMP	Universal – 300 E	0	×	×
506	Hwatsing Technology	中国	CMP	Universal – 300 Dual	0	×	×
507	Hwatsing Technology	中国	CMP	Universal – 300 X	0	×	×
508	Hwatsing Technology	中国	CMP	Universal – 300 T	0	×	×
509	Hwatsing Technology	中国	CMP	Universal – 200 Smart	×	0	×
510	Hwatsing Technology	中国	CMP	Universal – 200 D	×	0	×
511	Hwatsing Technology	中国	CMP	Universal – 200	×	0	〇(4,6インチ)
512	Hwatsing Technology	中国	CMP	Universal – 150 Smart	×	0	〇(6インチ)
513	Hwatsing Technology	中国	研磨	Versatile-GP300	不明	不明	不明
514	Hwatsing Technology	中国	研磨	Versatile-GM300	0	0	×
515	Hwatsing Technology	中国	検査	FTM-M300DA	不明	不明	不明
516	SEMES	韓国	洗浄	LOTUS	不明	不明	不明
517	SEMES	韓国	洗浄	BLUEICE PRIME	不明	不明	不明
518	SEMES	韓国	洗浄	BLUEICE SPM	不明	不明	不明
519	SEMES	韓国	洗浄	IRIS PRIME	不明	不明	不明
520	SEMES	韓国	洗浄	IRIS	不明	不明	不明
521	SEMES	韓国	洗浄	SUPER CRYSTAL	不明	不明	不明
522	SEMES	韓国	エッチング	MICHELAN C3	不明	不明	不明
523	SEMES	韓国	エッチング	MICHELAN O2	不明	不明	不明
524	SEMES	韓国	エッチング	MICHELAN C4	不明	不明	不明

SEMES, JUNSUNGは対応ウエハサイズ不明。KC techは300mm特化

NO.	企業名	<u> </u>	工程	品番	300mm (12inch) 対応	200mm (8inch) 対応	200mm未満対応
525	SEMES	韓国	エッチング	MICHELAN O3	不明	不明	不明
526	SEMES	韓国	マスク	OMEGA-S	不明	不明	不明
527	SEMES	韓国	露光	OMEGA-K PLUS	不明	不明	不明
528	SEMES	韓国	パッケージング	TEPAS (Sorter)	不明	不明	不明
529	SEMES	韓国	パッケージング	SW9000U (Sorter)	不明	不明	不明
530	SEMES	韓国	パッケージング	SDB-3000MD PRIME (Die Bonder)	不明	不明	不明
531	SEMES	韓国	パッケージング	SW6000 PLUS (Sorter)	不明	不明	不明
532	WonikIPS	韓国	成膜	WIDAS	不明	不明	不明
533	WonikIPS	韓国	成膜	NOA ALD	不明	不明	不明
534	WonikIPS	韓国	成膜	GEMINI HQ	不明	不明不明	
535	WonikIPS	韓国	成膜	GEMINI ALD (Kairos PE-ALD)	不明	不明	不明
536	WonikIPS	韓国	成膜	GEMINI ALD	不明	不明	不明
537	WonikIPS	韓国	成膜	НҮЕТА	不明	不明	不明
538	WonikIPS	韓国	成膜	NOA CVD	不明	不明	不明
539	WonikIPS	韓国	成膜	QUANTA	不明	不明	不明
540	KC tech	韓国	CMP	不明	不明	不明	不明
541	KC tech	韓国	洗浄	Wezen BF(Front Type)	0	×	×
542	KC tech	韓国	洗浄	Wezen BS(I Type)	0	×	×
543	KC tech	韓国	洗浄	K-3000	0	×	×
544	JUSUNG Engineering	韓国	成膜	Guidance Series (ALD & CVD)	不明	不明	不明
545	JUSUNG Engineering	韓国	成膜	SDP ALD (ALD & CVD)	不明	不明	不明
546	JUSUNG Engineering	韓国	成膜	SD CVD (CVD&ALD)	不明	不明	不明
547	JUSUNG Engineering	韓国	洗浄	UHV CVD	不明	不明	不明

Hanmi は後工程のためか、対応ウエハサイズはほぼ不明

NO.	企業名	Eri	工程	品番	300mm (12inch) 対応	200mm(8inch)対応	200mm未満対応
548	JUSUNG Engineering	韓国	エッチング	DRY ETCH	不明	不明	不明
549	Hanmi Semiconductor	韓国	ボンディング	DUAL TC BONDER 1.0 DORAGON	不明	不明	不明
550	Hanmi Semiconductor	韓国	ボンディング	DUAL TC BONDER 1.0 GRIFFIN	不明	不明	不明
551	Hanmi Semiconductor	韓国	ボンディング	DUAL TC BONDER 2.0 CW	不明	不明	不明
552	Hanmi Semiconductor	韓国	ボンディング	DUAL TC BONDER 2.0 CS	不明	不明	不明
553	Hanmi Semiconductor	韓国	ボンディング	FC BONDER 5.0	不明	不明	不明
554	Hanmi Semiconductor	韓国	ボンディング	FC BONDER 3.0	不明	不明	不明
555	Hanmi Semiconductor	韓国	ボンディング	MULTI DIE BONDER 2.0	不明	不明	不明
556	Hanmi Semiconductor	韓国	ボンディング	JUMBO PANEL FC BONDER 1.0	不明	不明	不明
557	Hanmi Semiconductor	韓国	ボンディング	BIG DIE FC BONDER 1.0	不明	不明	不明
558	Hanmi Semiconductor	韓国	切断	micro SAW W1121 α	不明	不明	不明
559	Hanmi Semiconductor	韓国	切断	micro SAW T2101	不明	不明	不明
560	Hanmi Semiconductor	韓国	切断	micro SAW T1121	不明	不明	不明
561	Hanmi Semiconductor	韓国	切断	micro SAW P2101	不明	不明	不明
562	Hanmi Semiconductor	韓国	切断	micro SAW PL1121	不明	不明	不明
563	Hanmi Semiconductor	韓国	切断	micro SAW PL1201	不明	不明	不明
564	Hanmi Semiconductor	韓国	切断	micro SAW PL1241	不明	不明	不明
565	Hanmi Semiconductor	韓国	切断	micro SAW GL2101	不明	不明	不明
566	Hanmi Semiconductor	韓国	パッケージング	VISION PLACEMENT6.0D	不明	不明	不明
567	Hanmi Semiconductor	韓国	パッケージング	VISION PLACEMENT6.0L	不明	不明	不明
568	Hanmi Semiconductor	韓国	パッケージング	VISION PLACEMENT6.5D	不明	不明	不明
569	Hanmi Semiconductor	韓国	パッケージング	VISION PLACEMENT6.5L	不明	不明	不明
570	Hanmi Semiconductor	韓国	パッケージング	VISION PLACEMENT6.0T FAST	不明	不明	不明
571	Hanmi Semiconductor	韓国	パッケージング	VISION PLACEMENT8.0UD	不明	不明	不明
572	Hanmi Semiconductor	韓国	パッケージング	VISION PLACEMENTS.OUL	不明	不明	不明
573	Hanmi Semiconductor	韓国	パッケージング	VISION PLACEMENT8.0PS	不明	不明	不明
574	Hanmi Semiconductor	韓国	パッケージング	EMI SHIELD VISION ATTACH 2.0 DORAGON	不明	不明	不明
575	Hanmi Semiconductor	韓国	パッケージング	EMI SHIELD VISION DETACH 2.0 DRAGON	不明	不明	不明
576	Hanmi Semiconductor	韓国	パッケージング	EMI SHIELD micro SAW & VISION PLACEMENT 2.0	不明	不明	不明
577	Hanmi Semiconductor	韓国	パッケージング	EMI SHIELD TAPE MOUNTER 1.0	不明	不明	不明
578	Hanmi Semiconductor	韓国	パッケージング	EMI SHIELD TAPE LASER CUTTING 1.0	不明	不明	不明
579	Hanmi Semiconductor	韓国	パッケージング	EMI SHIELD TAPE DEMOUNTER 1.0	不明	不明	不明
580	Hanmi Semiconductor	韓国	検査	3D VISION INSPECTION 5.0	不明	不明	不明
581	Hanmi Semiconductor	韓国	ボンディング	COVERLAY ATTACH 2000	不明	不明	不明
582	Hanmi Semiconductor	韓国	研削	META GRINDER 1.0	不明	不明	不明
583	Hanmi Semiconductor	韓国	研削	LASER MARK 3000S	不明	不明	不明
584	Hanmi Semiconductor	韓国	研削	LASER ABLATION 5.0	不明	不明	不明
585	Hanmi Semiconductor	韓国	研削	LASER CUTTING 3000	不明	不明	不明
586	Hanmi Semiconductor	韓国	パッケージング	PICK & PLACE 2.0	不明	不明	不明
587	Hanmi Semiconductor	韓国	ボンディング	COVERLAY ATTACH/DETACH 2000	不明	不明	不明
588	Hanmi Semiconductor	韓国	ボンディング	STRIP MOUNT 2000	不明	不明	不明

Ⅲ. 調査結果詳細

- プロジェクトの全体像・進め方
- 調査結果
 - 1. 中国・韓国の従来型半導体製造動向
 - 中国の工場一覧
 - 2. 国内従来型半導体製造事業の実施状況
 - 3. 半導体製造装置の状況
 - 半導体製造装置のウエハサイズ対応状況
 - 4. 中古装置市場・メンテ事業実施状況
 - 5. 独禁法・M&A阻害要因の精査
- 調査結果を受けた提言

近年、中古装置は海外に流出している事例が多く見られ、国内の流通が不足している

目的

■ 国内の中古装置市場、装置メンテナンスの状況を把握することにより、日本の従来型半導体製造にかかる諸問題解決への糸口と する

事項

実施 ■ 日本の従来型半導体メーカー・半導体製造装置メーカー・中古半導体装置商社・装置メンテナンス業者へ、中古装置市場・装置メン テナンスにかかる現状課題・将来展望のインタビューを実施

■ 部品/中古装置取引について

- 制御系部品や基板の流通が不足している(図面が無いことに加えサードパーティが新しく作ることができないため)
- 日本は純正品しか使わないユーザーからコピー品を受け入れ可能なユーザーまで存在しており、ユーザーによる要求事項が 様々であるため海外ほどコピー品の流通が進んでいない
- 200mmウェハ向け装置は150mm以下へのコンバージョンができるため、200mmウェハ向け装置が最も需要がある
- 韓国には中古装置/コピー品を取り扱うサードパーティが多く存在し、多くの装置を買い集める/多くのパーツを保有することが できるため、日本国内事業者は韓国のサードパーティをはじめとした海外から部品調達を行うことがある

調査 結果

- メンテナンス事業の実施状況について
 - メンテナンス需要は旺盛であり、装置メーカーのメンテナンスは対応までに1~2カ月程度かかる場合がある(保守契約を結ぶこと) で1週間程度で対応してもらえる例も存在)
 - 特にメンテナンス事業者/中小規模デバイスメーカーを対象としてメンテ人材の後継者不足が問題。若い人材が古い装置を触る 機会が少ないため教育機会が不足している。古い装置になればなるほど顧客の方が詳しく、重度の故障の際しか第3社に声が かからない
 - 大規模デバイスメーカーでは、現状メンテナンス人材の確保は問題なく対応できている模様

メンテナンス事業者・中小規模デバイスメーカーのメンテ人材後継者不足・教育環境未整備が問題

中古装置	置市場・メンテ	事業実施状況に関するインタビューコメント要旨
		■ 中国企業が装置一式で買い上げを行うことによる価格高騰は起きている
部品		■ パーツ関連は、図面が入手できれば、国内外含めたセカンドやサードパーティに作ってもらえる。為替影響があることから、できれば国内で実施したい
品		■ 制御系部品や基板の流通が不足している。図面が無いことに加えサードパーティが新しく作ることができないためである
中古装	現状	■ <mark>韓国・台湾の事業者を使うと輸送費が非常にかかる</mark> 。加工物は日本国内で賄うこともできるため、国内で製造できる事業者を増 やすことも考えたほうが良いと思う
中古装置取引市場の		■ 日本は純正品しか使わないユーザーからコピー品を受け入れ可能なユーザーまで存在しており、ユーザーによる要求事項が 様々であるため海外ほどコピー品の流通が進まない
市場		■ 装置メーカーとのパートナー関係があることでデバイスメーカーとしての立ち位置で商社として部品購入をすることが可能
0 0		■ 補助金は大企業に流れており中堅以下の企業には回ってきていない印象
状 況	支援策へ の見解	■ 支援策として装置購入の金銭的サポートもあり得るが、メンテンナンス市場を支えている人材などインフラ面でのサポートも併せた、両面での支援が必要である
		■ 特高受電設備・電気料金に対するサポートがほしい
		■ 保守契約を結んでいない場合には、メンテナンス対応に1~2カ月程度かかる場合がある。特別保守契約を結ぶことで1週間程 度で対応してもらうことができる
メン		■ メンテナンス価格/部品価格は数年前比で15%~2倍程度にまで上昇
テナ		■ 中古装置の売買は商社経由で実施。リファブ品の購入も行っている
メンテナンス 事業の 実施状況	現状	■ 200mmの装置がメインの引き合いであるが、200mmは150mm以下へのコンバージョンができるため、200mm装置が手に入ればすべてに適用できるため最も人気がある
業 の 実:	-50 DC	■ 日本で中古・メンテナンス業界が発展しない理由は、装置メーカーの縛りが存在し各装置メーカーの製品ごとに精通するエンジニアを確保しなければならないことと、特定の地域中心で事業展開している企業が多く分散していること
施 状 況		■ 技術者の不足は大きな問題。若い人材が古い装置を触る機会が少ないため教育機会が不足している。古い装置になればなるほど顧客の方が詳しく、重度の故障の際しか第3社に声がかからない
		■ メンテナンス事業者/中小規模デバイスメーカーのメンテ人材後継者不足が問題。大規模デバイスメーカーでは、現状メンテナンス人材の確保は問題なくできている


(出所) MURC作成

(ご参考)米国でも200mm対応装置を中心に中古半導体装置市場は活況となっている

- 米国の中古半導体装置販売ベンチャーである Moov Technologies のレポートによれば
 - 半導体製造装置の中古市場に対する認識と関心はこの2年間(2021年~2022年)で急速に高まっている
 - 世界の中古半導体製造装置市場推計値は、59億~118億ドルとされてきたが、124億~282億ドルと再推計
 - 半導体デバイスメーカーの多くが使用済み装置を売り出したいと考えており、中古装置への購入意向もある

Moovで流通している対応ウェハサイズ別中古半導体装置実績

- 200mm装置の売上が約半数を占め、次いで 300mm装置、150mm装置も2割を占めている
- 200mm装置, 150mm装置においても堅調な需要 があることを示唆
- 主な購買意欲としては、リードタイム短縮が挙げられている

Ⅲ. 調査結果詳細

- プロジェクトの全体像・進め方
- 調査結果
 - 1. 中国・韓国の従来型半導体製造動向
 - 中国の工場一覧
 - 2. 国内従来型半導体製造事業の実施状況
 - 3. 半導体製造装置の状況
 - 半導体製造装置のウエハサイズ対応状況
 - 4. 中古装置市場・メンテ事業実施状況
 - 5. 独禁法・M&A阻害要因の精査
- 調査結果を受けた提言

従来型半導体製造に関わる独禁法等、M&Aの阻害要因を懸念している企業はほとんどない

目的

■ 半導体メーカー・半導体製造装置メーカーのM&Aを仮定した場合の独占禁止法に関する懸念事項や、製造装置売買やメンテナンスの公正な競争を阻害する要因の有無を把握することにより、日本の従来型半導体製造にかかる諸問題解決を阻む事項を明らかにする

実施 事項

■ 日本の従来型半導体メーカー・半導体製造装置メーカー・中古半導体装置商社・装置メンテナンス業者へインタビューを実施

■ 結果

- デバイスメーカー
 - 問題認識している企業はほとんどない
 - 一部の大規模なデバイスメーカーは会社の方針として独禁法に対する懸念は抱いている場合がある
- 装置メーカー
 - 問題認識している企業はほとんどない

調査結果

- 200mm以下に限定した合併等はあまり考えられないことに加えて、各社が持っているIPのディスクローズなどが難しく現実的に実現は不可能
- メンテンナンス事業者
 - 国内のメンテンナンス事業者は規模感がそれほど大きくなく、問題認識している企業はほとんどない
- 商社
 - 問題認識している企業はほとんどない

独禁法に対し、大半のデバイスメーカー・装置メーカーは懸念を抱いていない状況

独禁法・M&A阻害要因に関するインタビューコメント要旨

	デバイスメーカー	■ 問題認識している企業はほとんどない■ 大規模なデバイスメーカーは会社の方針として独禁法に対する懸念は抱いている場合がある
独禁法の影	装置メーカー	■問題認識している企業はほとんどない■ 200mm以下に限定した合併等はあまり考えられない■ 合併などの可能性はゼロではないが、各社が持っているIPのディスクローズなどが難しく現実的に実現は不可能
の影響見解	メンテナンス業者	■ 国内のメンテンナンス事業者は規模感がそれほど大きくなく、問題認識している企業はほとんどない
	商社	■ 問題認識している企業はほとんどない■ M&Aが起きた場合、外為法の該非判定を判断する部署がなくなる可能性がある

Ⅲ. 調査結果詳細

- プロジェクトの全体像・進め方
- 調査結果
 - 1. 中国・韓国の従来型半導体製造動向
 - 中国の工場一覧
 - 2. 国内従来型半導体製造事業の実施状況
 - 3. 半導体製造装置の状況
 - 半導体製造装置のウエハサイズ対応状況
 - 4. 中古装置市場・メンテ事業実施状況
 - 5. 独禁法・M&A阻害要因の精査
- 調査結果を受けた提言

【再掲】施策案について、具体的に以下の内容を想定

■ 国外事業者との競争力向上

■ 分散したメンテ技等の集約化

■ 最終顧客との交渉力向上

具体的な実施事項 施策の狙い 施策/取り組み事例 ■ メンテンナンス人材の育成を狙いとし、デバイスメーカー/メ メンテナンス講習会の実 ■ 従来型半導体装置メンテナンス ンテナンス業者向けに従来型半導体装置のメンテナンス講 (類似した施策/取り組み事例無) 技術の継承 習会を実施 從来型半導体人材育 ■ 展示会で従来型半導体魅力向上PRを行う等、若手人材の 「東北半導体・エレクトロニクスデザイン研究 ■ 従来型半導体産業への若手人材 会」他、各ブロックの人材育成コンソーシアム 成に向けたPR活動・教 従来型半導体産業への勧誘 による取組等 の勧誘 ■ 大学/専門学校等での従来型半導体に係る教育の実施 育環境整備 [⇒P94に事例を記載] (3) ■ 現在東北エリアを中心に取り組まれている「デバイスメーカー 「半導体製造関連設備のパフォーマンス維持 装置部品融通システム ■ 従来型半導体装置部品の取引効 とメンテナンス業者/部品商社間の従来型半導体装置部品 のためのマッチングシステム」 のエリア拡大(国内外) 率向上 のマッチングシステム」を全国展開。(必要に応じて韓国等の [⇒ P95に事例を記載] 事業者にも展開を検討) 4 ■ 優先的に国内に中古装置/部品供給を行う等、国内調達エ コシステムに資する取引をした事業者への減税・免税処置 装置/部品調達におけ 中・韓政府は、部品輸入に対する関税免除や 国内の従来型半導体装置/部品 ■ デバイスメーカーに対しては国内装置メーカー/商社への中 海外企業の買収に対して法人税免除がなされ る国内エコシステム形成 古装置売却実績に応じて、装置メーカー/商社は中古装置 る等の施策を実施 エコシステムの構築促進 に向けた流通支援 [⇒P36~39に詳細を記載] を国内デバイスメーカーへ販売実績に応じてインセンティブ の付与を実施 **(5)** ■ 政府機関などによる部品情報の 厳格管理の基、IPの第三者によ ■ 国内デバイスメーカーを顧客とする、政府機関管轄にて従来 サポート切れの従来型 型半導体装置/部品の供給を行う事業者を設立・運営 るライセンス利用を可能とするこ 欧米で進む「修理する権利」の獲得に向けた 半導体装置部品供給を とで、電装部品等の入手困難部 ■ 装置メーカーから提供のIP利活用を管理し、装置の修理を必 消費者運動 政府管理の基で支援す 「⇒P96に事例を記載] 品の流通を促進 要としているデバイスメーカー/メンテンナンス事業者へライ る組織の設立 ■ 装置メーカーの最先端技術開発 センス提供を実施 へのリソース集中を促進 ■ 資金力に乏しいデバイスメーカー 国内メーカー向け従来 令和3年度補正予算「サプライチェーン上不可 の装置刷新補助 欠性の高い半導体の生産設備の脱炭素化・刷 型半導体製造装置購入 ■ デバイスメーカー向けに装置購入補助金を設定 ■ 装置メーカーの従来型半導体装 新事業費補助金」 に資する支援 「⇒P97に事例を記載] 置販売促進

合促進に向けた施策の検討

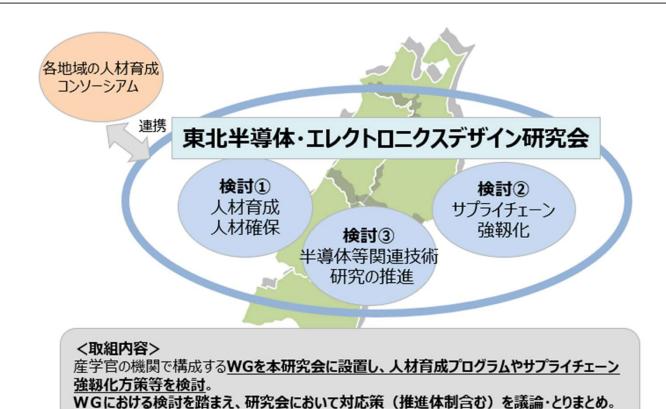
■ 既に実施されている半導体サプライチェーン強靭化に向けた

助成金施策内容の改編 or 従来型半導体産業での事業者統

産業競争力強化法における事業再編計画の

認定要件と支援措置(事業再編計画認定)

「⇒P98に事例を記載]

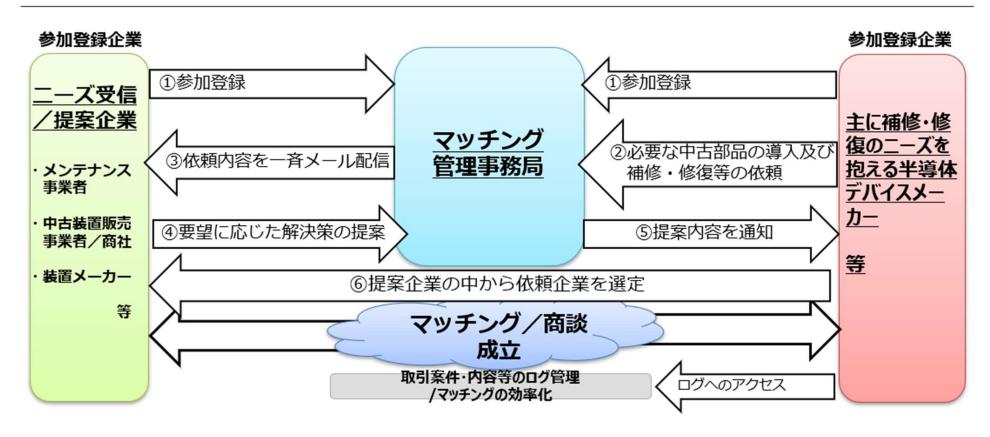

の統合を促す施策 (出所) MURC作成

カー・メンテナンス事業者

₩ 従来型半導体メー

(ご参考)東北半導体・エレクトロニクスデザイン研究会 一施策案2に係る事例ー

東北半導体・エレクトロニクスデザイン研究会の概要


我が国の半導体等産業基盤の強化【半導体・デジタル産業戦略の実現】

(ご参考)半導体製造関連設備のパフォーマンス維持のためのマッチングシステム

ー施策案3に係る事例ー

半導体製造関連設備のパフォーマンス維持のためのマッチングシステムのスキーム

マッチング事務局:東北経済産業局及び公益財団法人いわて産業振興センター

参加登録状況: デバイスメーカー18社、メンテナンス企業/商社24社 (2024年2月末時点)

(ご参考)欧米で広がる「修理する権利」 -施策案5に係る事例-

修理する権利についての欧米の動向

修理する権利とは

- ■「修理する権利」とは、メーカーから購入したパソコンや自動車、家電製品などを、メーカーを通さず消費者自身で 修理できるようにする権利のこと
- これまではメーカーか、メーカーが定めた修理業者しか修理できないことが多く、修理費が高いために廃棄して新品を購入する事例が頻発し、電子廃棄物が増える原因の一つになっていた。しかし、廃棄物をできるだけ出さないサーキュラーエコノミーを実現していくうえで「修理のしやすさ」が重要視されている。2020年ごろから欧米を中心に「修理する権利」を求める市民の声が高まり、それを受け、政府や企業が対応を進めており「修理する権利」という言葉が頻繁に使われるようになっている

欧米での動向

■ 欧米では、政府が支援を強化

- EUでは、2020年3月11日に採択した「循環型経済行動計画(Circular Economy Action Plan)」で、廃棄ではな く循環を前提とした製品設計・デザインに重点を置き、消費者の「修理する権利」を強化することを明言
- 米国では、2021年にバイデン政権が誕生してから、「修理する権利」への対策が強化。2021年7月にはバイデン大統領の命令により、アメリカ連邦取引委員会(FTC)が「修理する権利を制限するメーカーの慣行に対する法的措置を強化する」という声明を発表

Samsung

• Samsungは何年も前から修理用サービスマニュアルをオンライン上で公開(一部は有料)

■ Timbuk2

● サンフランシスコに本社を構える人気バックパックメーカーのTimbuk2は、消費者が修理できる修理ガイドを作成することを決定

bObsweep

• カナダの家庭用ロボット製品のトップメーカーであるbObsweepは、提携事業者のwebサイト上でロボット掃除機の修理ガイドを公開

欧米で修理する権利が 求めていること

■ 欧米の消費者運動の中で修理する権利が目指す3つの柱は、「適正価格でパーツが入手できること」、「サービスマニュアルが無料公開されていること」、「ソフトウェアツールや回路図などの修理情報が公開されていること」であり、今後この動きは世界に広がることが想定されている

(ご参考)サプライチェーン上不可欠性の高い半導体の生産設備の脱炭素化・刷新事業費補助金

一施策案6に係る事例ー

サプライチェーン上不可欠性の高い半導体の生産設備の脱炭素化・刷新事業費補助金の事業概要

【1. 事業概要】

1-1. 事業目的

本補助金は、民間事業者(以下「補助事業者」という。)が国民生活への影響や経済的な損失が大きく公益性が高い半導体(マイコン、パワー半導体、アナログ半導体)を安定的に供給するための製造設備を入替、増設する事業(以下「補助事業」という。)に要する経費等を補助することにより、今後到来する自動運転・IoT 時代に備え、半導体サプライチェーンの強靭化を実現し、安定供給に必要な体制を確保することを目的とします。

1-2. 事業スキーム

経済産業省 (申請)↑ ↓ (補助) 補助率: 1/3

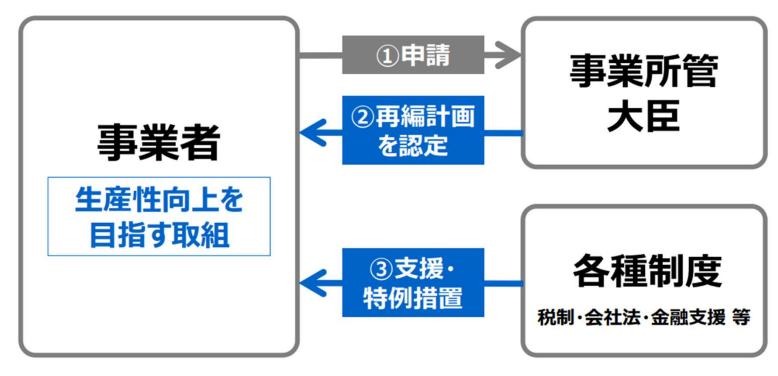
1-3. 事業内容

【1. 事業概要】の「1-1. 事業目的」に記載している半導体(マイコン、パワー半 導体、アナログ半導体)製造設備の入替、増設を行う事業です。(公募は予算の範囲内で 実施します。)

事業要件は以下のとおりです。

- (1)製造コストの低減、または、従来品よりも高付加価値な半導体の製造設備導入であること
- (2) サプライチェーン上の不可欠性があること
- (3) 設備刷新による生産プロセスの脱炭素化に資すること
- (4) 雷子申請への対応

上記の事業実施に当たり、補助金申請システム「Jグランツ」を使用し、電磁的記録による申請を受け付けるとともに、当該申請システムを通じて行われた申請に対しては原則として、当該申請システムで通知等の業務を行うものとする。



(ご参考)産業競争力強化法における事業再編計画の認定要件と支援措置 一施策案7に係る事例ー

産業競争力強化法における事業再編計画の認定要件と支援措置の事業概要

制度の概要

生産性向上を目指し事業再編を行う取組を再編計画として認定し 認定を受けた取組に対して、税制優遇や金融支援等の支援措置を講じる

【再掲】施策案に対する事業者からの意見聴取の結果、2,3,6の施策案は有望性が見込まれた

抽出された施策案とそれに対する全事業者の総合評価

施策案	事業者の評価 ¹					
加東采	必要性	実現性	公平性			
メンテナンス講習会の実施	0		0			
② 従来型半導体人材育成に向けたPR活動・教育環境整備	0	0				
3 装置部品融通システムのエリア拡大(国内 外)	0	0	0			
4 装置/部品調達における国内エコシステム 形成に向けた流通支援		Δ	0			
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立	0	Δ	Δ			
国内メーカー向け従来型半導体製造装置購入に資する支援		0	0			
び 従来型半導体メーカー・メンテナンス事業者 の統合を促す施策	0	Δ	Δ			

(注) 1 [必要性]:施策実施の必要性(必要有:3~必要無:1) [実現性]:施策の実現可能性(可能性有:3~可能性無:1) [公平性]:施策実施による関連事業者への不利益発生懸念(不益者が存在しない:3 場合によっては不益者が存在:2 不益者が存在:1) 事業者が評価した1~3の平均を取り、2.6点以上を◎、2.0点以下を△、それ以外を○と定義

【再掲】デバイスメーカーからの評価では施策案2,3,6で有望性が見込まれた

抽出された施策案とそれに対するデバイスメーカーの評価

施策案	事業者の評価 1					
加東条	必要性	実現性	公平性			
メンテナンス講習会の実施	0	0	0			
② 従来型半導体人材育成に向けたPR活動・教 育環境整備	0	0	0			
3 装置部品融通システムのエリア拡大(国内 外)		0	0			
4 装置/部品調達における国内エコシステム 形成に向けた流通支援	0	Δ	0			
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立	0	Δ	Δ			
国内メーカー向け従来型半導体製造装置購入に資する支援		0	0			
び 従来型半導体メーカー・メンテナンス事業者 の統合を促す施策	Δ	Δ	Δ			

(注) 1 [必要性]:施策実施の必要性(必要有:3~必要無:1) [実現性]:施策の実現可能性(可能性有:3~可能性無:1) [公平性]:施策実施による関連事業者への不利益発生懸念(不益者が存在しない:3 場合によっては不益者が存在:2 不益者が存在:1) 事業者が評価した1~3の平均を取り、2.6点以上を◎、2.0点以下を△、それ以外を○と定義

【再掲】装置メーカーからの評価では実現性に懸念がありつつも施策案2で有望性が見込まれた

抽出された施策案とそれに対する装置メーカーの評価

标华宏	事業者の評価 1						
施策案	必要性	実現性	公平性				
メンテナンス講習会の実施	Δ	Δ	Δ				
② 従来型半導体人材育成に向けたPR活動・教 育環境整備		Δ					
ま置部品融通システムのエリア拡大(国内 外)	Δ	Δ	Δ				
全 装置/部品調達における国内エコシステム 形成に向けた流通支援	0		0				
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立	Δ	Δ	Δ				
国内メーカー向け従来型半導体製造装置購入に資する支援	0	0	0				
	Δ	Δ	Δ				

(注) 1 [必要性]:施策実施の必要性(必要有:3~必要無:1) [実現性]:施策の実現可能性(可能性有:3~可能性無:1)[公平性]:施策実施による関連事業者への不利益発生懸念(不益者が存在しない:3 場合によっては不益者が存在:2 不益者が存在:1)事業者が評価した1~3の平均を取り、2.6点以上を◎、2.0点以下を△、それ以外を○と定義

【再掲】メンテンナンス事業者/商社からの評価では施策案4,6で有望性が見込まれた

抽出された施策案とそれに対するメンテナンス事業者/商社の評価

长华安	事業者の評価 1					
施策案	必要性	実現性	公平性			
メンテナンス講習会の実施		Δ	Δ			
② 従来型半導体人材育成に向けたPR活動・教 育環境整備		Δ	0			
3 装置部品融通システムのエリア拡大(国内 外)			Δ			
後置/部品調達における国内エコシステム 形成に向けた流通支援		0	0			
サポート切れの従来型半導体装置部品供給を国策として支援する企業の設立		Δ	0			
国内メーカー向け従来型半導体製造装置購入に資する支援		0				
		Δ	Δ			

(注) 1 [必要性]:施策実施の必要性(必要有:3~必要無:1) [実現性]:施策の実現可能性(可能性有:3~可能性無:1) [公平性]:施策実施による関連事業者への不利益発生懸念(不益者が存在しない:3 場合によっては不益者が存在:2 不益者が存在:1) 事業者が評価した1~3の平均を取り、2.6点以上を◎、2.0点以下を△、それ以外を○と定義

(ご参考)施策案に対する事業者からの評価結果

抽出された施策案とそれに対する各事業者の定量評価結果1

施策案No	施策案名						事業者に	よる評価					
		総1	合(全事業	皆)	ディ	ベイスメーカ		*	長置メーカー	-	商社・メ	ンテナンス	事業者
		必要性	実現性	公平性	必要性	実現性	公平性	必要性	実現性	公平性	必要性	実現性	公平性
1	メンテンナンス講習会の実施	2.40	1.90	2.10	2.50	2.25	2.50	2.00	1.33	1.67	2.67	2.00	2.00
2	従来型半導体人材育成に向けたPR活動・教育環 境整備	2.80	2.10	2.70	2.75	2.50	2.50	3.00	1.67	2.67	2.67	2.00	3.00
3	装置部品融通システムのエリア拡大(国内外)	2.60	2.40	2.10	2.75	2.50	2.50	2.00	1.67	2.00	3.00	3.00	1.67
4	装置/部品調達における国内エコシステム形成に 向けた流通支援	2.60	2.00	2.30	2.50	2.00	2.25	2.33	1.67	2.33	3.00	2.33	2.33
_	サポート切れの従来型半導体装置部品供給を国策 として支援する企業の設立		1.50	1.90	2.50	1.50	1.75	2.00	1.33	1.67	3.00	1.67	2.33
6	国内メーカー向け従来型半導体製造装置購入に資する支援	2.70	2.30	2.50	3.00	2.25	2.50	2.33	2.33	2.33	2.67	2.33	2.67
7	従来型半導体メーカー・メンテナンス事業者の統合 を促す施策	2.20	1.70	1.80	2.00	1.75	1.75	2.00	1.33	2.00	2.67	2.00	1.67

(注) 1 [必要性]:施策実施の必要性(必要有:3~必要無:1) [実現性]:施策の実現可能性(可能性有:3~可能性無:1) [公平性]:施策実施による関連事業者への不利益発生懸念(不益者が存在しない:3 場合によっては不益者が存在:2 不益者が存在:1) 事業形体別に事業者が評価した1~3の平均を取り集計

【再掲】施策案に対する事業者からの意見聴取の結果、施策案に対する懸念・要望を取得

抽出された施策客とそれに対する事業者の評価

施策案	施策案に対する事業者からの意見 1						
	懸念点	要望					
メンテナンス講習会の実施	■ 教員・メンテンナンスマニュアル(場合によって図面)・講習に用いる <mark>設備の用意ができるかに懸念有</mark> (デバイスメーカー・装置メーカー・メンテンナンス事業者)	_					
	■ 機種/装置種類が多様なため、一律の講習会の効果 は薄い(装置メーカー)						
② 従来型半導体人材育成に向けたPR 活動・教育環境整備	■ そもそも若手がメンテナンス等の魅力を感じることができるかが不明(メンテナンス事業者)	 産業への勧誘に留まらず、若手人材のキャリアパス や報酬面を充実させる等のオペレーションも必要と 認識(装置メーカー) 保守メンテだけに留まらず従来型半導体産業全体 を見越した目的での実施が望ましい(装置メーカー) 					
3 装置部品融通システムのエリア拡大 (国内外)	 ■ 規模を拡大することにより粗悪品の流通可能性に懸念有(装置メーカー・メンテナンス事業者) ■ 調達スピードの向上が見込まれるが、競争環境の激化により商社への不利益発生懸念有(商社) ■ 実態はすでに世界市場での情報やり取り、流通が行われており政府介入の必要性はうすいのではないか(装置メーカー) 	 ■ 海外への拡大も検討し得るが、該非判定等、取引 上生じる制約に対するケアは必要(装置メーカー) ■ 装置メーカーがレガシー部品を提供するケースもあるため競合懸念を抑える必要有(装置メーカー) 					
4 装置/部品調達における国内エコシ ステム形成に向けた流通支援	 ● 免税を目的とした買い占め等の発生懸念有(メンテンナンス事業者) ■ 減税施策があれば販売価格にも反映されデバイスメーカーの価格競争力が向上する可能性有(メンテンナンス事業者) 	■ 現時点では入札価格差により海外に目が向いており取り戻すだけのインセンティブを考慮する必要有 (デバイスメーカー)					

(注) 1 カッコ内は該当コメントをした事業者区分 (出所) MURC作成

【再掲】(前ページの続き)

I . エグゼクティブサマリー

施策案	施策案に対する事業者からの意見 1					
	懸念点	要望				
サポート切れの従来型半導体装置部 品供給を国策として支援する企業の設立	 ■ 装置メーカーからのデザイン・設計図・回路図面・IPに関わる情報の開示がなされるかに懸念有(デバイスメーカー・装置メーカー・商社) ■ 電気系/センサー系/基板系部品手配の難易度は高く、政府支援によるメリットがどの程度あるのかが不明(装置メーカー) 	_				
る 国内メーカー向け従来型半導体製造 装置購入に資する支援	■ 中長期的に見ると、デバイスメーカーのそもそもの 収益力を高めていかないと問題の解決には至らず、 公的資金を投入する事には違和感がある(装置メー カー)	 補助金による暫定的対応よりも競争力を高めるための事業者の統廃合施策を進めるべき(装置メーカー・商社) 装置購入時に一定の基準(例:サポートの人手がなからない、環境対応部品、デジタル化対応等)をクリアしたら支給されることが望ましい(装置メーカー) 日系の製造装置メーカーの準備ができてからのスタートを希望(装置メーカー) 				
7						
従来型半導体メーカー・メンテナンス 事業者の統合を促す施策	■ 装置メーカーのケイパビリティやIPを考慮すると、メンテナンス事業者の統廃合を行っても、これまで同様のサポート範囲に限定されてしまう可能性が高い(装置メーカー) ■ 国内のコスト競争が阻害される可能性があり、コスアップリスクへのケアが必要(デバイスメーカー)	 □ ローカルの装置メーカーへサービスケイパビリティを集中させる方が機能すると想定(装置メーカー) □ 分散型による協力体制の構築の方が効率的に機能する可能性が高い(メンテナンス事業者) ■ 調達が困難な部品に関してはデバイスメーカー間で協力購入を行い、そういった活動を金銭的補助により支援することも考え得る(商社) 				

三菱UFJリサーチ&コンサルティング株式会社 www.murc.jp/

