経済産業省委託事業

令和5年度化学物質規制対策 (化審法におけるリスク評価が高難度な物質等 に関する調査) 報告書

令和6年3月

令和5年度化学物質規制対策 (化審法におけるリスク評価が高難度な物質等に関する調査) 概要

平成 21 年に化学物質の審査及び製造等の規制に関する法律(以下、「化審法」という)が改正され、既存化学物質「を含む一定数量以上の製造・輸入数量がある化学物質について国がリスク評価を行う仕組みが導入された。平成 23 年度から一般化学物質に対するスクリーニング評価が行われ、令和5年4月1日時点で、218 物質が優先評価化学物質 2に指定されている。優先評価化学物質に対しては、リスク評価(一次)評価 I、評価 II、評価 III と段階的なリスク評価が行われている。

この内、評価 III の段階であったポリ(オキシエチレン)=ノニルフェニルエーテル(以下、「NPE」という)は、令和 5 年 9 月の 3 省合同審議会 3 において、第二種特定化学物質に指定するとともに、NPE 及び NPE を使用する水系洗浄剤について、環境の汚染を防止するために必要な措置を講じることが適当とされた。

リスク評価は、段階的に必要な情報を事業者等から収集しながら進められる。暴露評価においては、化審法届出情報を用いることを基本とするが、より精緻なリスク評価を可能とするため、特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律(以下、「化管法」という)に基づく PRTR 4届出排出量等の情報、環境モニタリングデータ、その他事業者から自主的に提供された情報等も積極的に活用されている。これらの情報から、一定の仮定に基づいて環境中濃度、人の摂取量、水生生物等の暴露濃度等を推計して暴露評価を行う。リスク評価の結果は、化審法上の「第二種特定化学物質 5の指定」及び「優先評価化学物質の指定取消し」等の必要性を判断するために用いられる。これらの判断の際には、経年変化の状況や残留性の評価等も含めて総合的に評価される。

以上のように、リスク評価の結果は、規制行使の判断材料になることから、評価の不確実性を低減させるため、評価対象物質の排出源や排出量等の情報は、できる限り正確かつ多いことが望ましく、既存の情報の

[「]昭和 48 年の化審法の公布の際、現に業として製造又は輸入されていた化学物質(試験研究のために製造され又は輸入されていた化学物質及び試薬として製造され又は輸入されていた化学物質を除く)であり、化審法の規定により名称が公示された化学物質

² 人又は生活環境動植物への長期毒性を有しないことが明らかであるとは認められず、かつ相当広範な地域の環境中に相当程度残留しているか、又はその状況に至る見込みがあり、人又は生活環境動植物への被害を生ずるおそれがないと認められないため、そのおそれがあるかどうかについての評価(リスク評価)を優先的に行う必要がある物質で、化審法の規定に基づき公示された物質

^{3 (}経済産業省) 化学物質審議会安全対策部会、(厚生労働省) 薬事・食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会、(環境省) 中央環境審議会環境保健部会化学物質審査小委員会

⁴ PRTR: Pollutant Release and Transfer Register (化学物質排出移動量届出制度)

⁵ 人又は生活環境動植物に対する長期毒性を有するおそれがあり、かつ相当広範な地域の環境中に相当程度残留しているか、又は近くその状況に至ることが確実であると見込まれることにより、人又は生活環境動植物への被害を生ずるおそれがあると認められる化学物質で、政令(化学物質の審査及び製造等の規制に関する法律施行令)により定められた物質

みでは評価が困難なケースがある。また、一般・優先評価化学物質には、構造・組成が複雑で評価単位の設定や有害性試験の被験物質の選定が難しい物質(UVCB物質 6)や、排出源や環境モニタリング等のより詳細な情報がないと必要な規制措置の判断が困難な物質等が多く残されている。

本事業では、そのようなリスク評価の難易度が高い物質のスクリーニング評価・リスク評価を進めること、さらに、リスク評価を踏まえ第二種特定化学物質への指定が検討されている物質を含む製品の取扱実態などを把握することを目的とし、以下の調査・検討等を実施した。

スクリーニング評価・リスク評価の合理化・加速化のための調査・検討等

リスク評価結果を行政・読者が正しく理解するための解説「リスク評価書 Outline と Point」への事例追記による拡充、11 物質の PRTR 排出量・移動量の分析、NPE を含む製品の取扱実態等の整理を行った。

また、UVCB 物質の評価単位の検討、これまでの検討結果を踏まえた「評価単位設定に関するガイドライン」(案)の作成、被験物質検討等のために必要な組成情報の整理、令和6年度届出対象3物質の添付書類様式の作成を行った。

▶ 一般化学物質等製造数量等届出のデータ整理

令和5年度に製造・輸入事業者から書面により届出のあった一般化学物質2,150件、優先評価化学物質258件、監視化学物質77件の届出書に記載された製造・輸入・出荷数量等の情報について、パンチ入力及びPDFデータ化を実施した。また、一般化学物質等製造数量等届出書に含まれていた不明瞭情報等の照会手続を行うために必要な、事業者ごとに切り分けた不明瞭情報等リスト(事業者照会票)の作成を行った。さらに、構造・組成に係る添付書類と届出書の整合確認を行った。

➤ 化審法のリスク評価等に関する検討会の開催及び資料の作成等 2回開催された「化審法のリスク評価等に用いる物理化学的性状、 分解性、蓄積性等のレビュー会議」(以下、「物化性状等レビュー会議」 という) について、資料の作成、Web 会議の運営、議事録作成等を行った。

7 監視化学物質は、難分解性かつ高濃縮性であり、人又は高次捕食動物に対する 長期毒性が明らかでないもので、化審法の規定に基づき公示された物質

ii

⁶ UVCB 物質: Substances of Unknown or Variable composition, Complex reaction products or Biological materials (構造・組成が複雑なため評価単位や評価対象物質が決められない物質)

令和5年度化学物質規制対策 (化審法におけるリスク評価が高難度な物質等に関する調査) 報告書

目 次

1.	事業の背景及び目的	1
	1.1 化審法リスク評価の進捗	1
	1.2 リスク評価が高難度な物質について	2
	1.3 本事業の目的	
2.	スクリーニング評価・リスク評価の合理化・加速化のための調査	
	検 討 等	3
	2.1 リスク評価のための情報収集・分析	3
	2.1.1 はじめに	3
	2.1.2 「リスク評価書 Outline と Point」の拡充	3
	2.1.3 PRTR 届出に基づく環境排出状況等の調査・分析	
	2.1.4 第二種特定化学物質指定検討物質を含む製品等の取扱実	
	について	
	2.2 UVCB 物質の構造・組成等に関する評価単位等の検討	
		. 54
	2.2.2 令和4年度添付書類対象物質の評価単位検討と被験物質	、検
	計等のための資料取りまとめ	. 55
	2.2.3 令和5年度添付書類対象物質の整理及び排出量推計	
	2.2.4 添付書類様式の提案 2.2.5 「評価単位設定に関するガイドライン(仮称)」(案)の作	. &⊃ : ⊨}:
	2.3 優先評価化学物質のリスク評価に関する課題等に関する検討.	. o >
	2.3.1 はじめに	
	2.3.2 海外動向調査	
	2.3.3 NPE 等の欧米における規制動向	
	2.3.4 優先評価化学物質の他法令規制の整理	
	2.3.5 暴露評価モデルの精緻化検討	
3.	一般化学物質等製造数量等届出のデータ整理	161
	3.1 一般化学物質等製造数量等届出書のパンチ入力及び PDF データ	
	化作業	
	3.1.1 はじめに	161
	3.1.2 一般化学物質等製造数量等届出書のパンチ入力及び PDF デ	
	タ化1	
	3.1.3 構造添付書類の一覧表作成	
	3.2 一般化学物質等製造数量等届出に係る事業者照会票の作成	
	3.2.1 はじめに	
	3.2.2 事業者照会票の作成	
	3.3 構造・組成に係る添付書類と届出書の整合確認	
	3.3.1 はじめに	164
4	3.3.2 構造添付書類と届出書の整合確認	
4.		生 1.67
	等のレビュー会議」の開催及び事務補助業務	
	4.1 会議の開催14.2 外部専門家の招集及び謝金の支払い1	165
	4.3 物化性状等レビュー会議の会議資料及び議事録の作成	
	4.4 3省合同審議会での審議・報告に係る資料作成補助	165

1. 事業の背景及び目的

1.1 化審法リスク評価の進捗

平成 21 年に化審法が改正され、既存化学物質を含む一定数量以上の製造・輸入数量がある化学物質について国がリスク評価を行う仕組みが導入された。

一般化学物質等を対象に、事業者等から届出のあった製造・輸入・出荷数量及び用途分類並びにスクリーニング評価用の排出係数から推計される全国合計排出量に、分解性を加味して付与した「暴露クラス」と、長期毒性に係る有害性情報に基づいて付与した「有害性クラス」からスクリーニング評価を行い、リスクが十分に低いと判断できない化学物質を優先評価化学物質に指定した上で、リスク評価が実施される。

平成 23 年度より毎年度、一般化学物質に対するスクリーニング評価が行われ、令和5年4月1日現在、218 物質が優先評価化学物質に指定されている。優先評価化学物質に対しては、リスク評価(一次)評価I、評価II、評価III等、数次のリスク評価を行うこととしている。

この内、評価 III の段階であった NPE については、令和 5 年 9 月の 3 省合同審議会において、第二種特定化学物質に指定するとともに、NPE 及び NPE を使用する水系洗浄剤について、環境の汚染を防止するために必要な措置を講じることが適当とされた(図 1-1)。

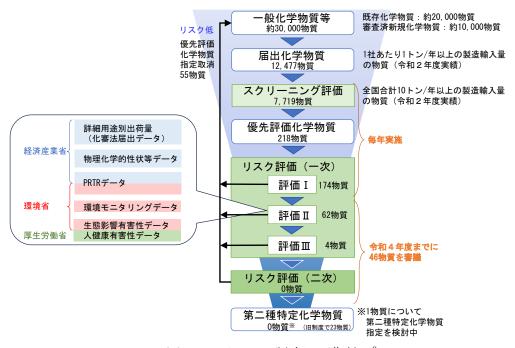


図 1-1 リスク評価の進捗 8

⁸ 経済産業省(2023)化審法の施行状況(令和4年度) <u>https://www.meti.go.jp/policy/chemical_management/kasinhou/information/sekou_R4 230901.pdf</u>

1.2 リスク評価が高難度な物質について

リスク評価は、段階的に必要な情報を事業者等から収集しながら進められる。暴露評価においては、化審法届出情報を用いることを基本とするが、より精緻なリスク評価を可能とするため、化管法に基づく PRTR 届出排出量等の情報、環境モニタリングデータ、その他事業者かららに提供された情報等も積極的に活用されている。これらの情報から、一定の仮定に基づいて環境中濃度、人の摂取量、水生生物等の暴露濃度等を推計して暴露評価を行う。リスク評価の結果は、化審法上の「第二種特定化学物質の指定」及び「優先評価化学物質の指定取消し」等の必要性を判断するために用いられる。これらの判断の際には、経年変化の状況や残留性の評価等も含めて総合的に評価される。

以上のように、リスク評価の結果は、規制行使の判断材料になることから、評価の不確実性を低減させるため、評価対象物質の排出源や排出量等の情報は、できる限り正確かつ多いことが望ましく、既存の情報のみでは評価が困難なケースがある。また、一般・優先評価化学物質には、構造・組成が複雑で評価単位の設定や有害性試験の被験物質の選定が難しい物質(UVCB 物質)や、排出源や環境モニタリング等のより詳細な情報がないと必要な規制措置の判断が困難な物質等が多く残されている。

1.3 本事業の目的

このため、本事業では、そのようなリスク評価の難易度が高い物質のスクリーニング評価・リスク評価を進めることを目的とし、以下の調査・検討等を実施した。

- ①スクリーニング評価・リスク評価の合理化・加速化のための調査・検 計等(2章)
- ・リスク評価結果を行政・読者が正しく理解するための解説「リスク評価書 Outline と Point」への事例追記による拡充を行った (2.1.2)。
- ・環境排出状況を把握するための評価 II・III 実施予定となっている 11 物質の PRTR 排出量・移動量の分析、NPE を含む製品の取扱実態等の整理を行った (2.1 節)。
- ・UVCB 物質の評価単位の検討、被験物質検討等のために必要な組成情報の整理、令和6年度届出対象3物質の添付書類様式の作成及びこれまでの検討結果を踏まえた「評価単位設定に関するガイドライン」(案)の作成を行った(2.2節)。
- ・欧米の化学物質管理に関する動向調査、NPE等の欧米における規制動向の調査、優先評価化学物質の他法令による規制の整理、暴露評価モデルの精緻化検討を行った(2.3節)。
- ②一般化学物質等製造数量等届出データのパンチ入力及び PDF データ 化、不明瞭情報等リストの作成等を行った (3章)。
- ③「化審法のリスク評価等に用いる物理化学的性状、分解性、蓄積性等のレビュー会議」(以下、「物化性状等レビュー会議」という)の開催及び事務補助業務等を行った(4章)。

2. スクリーニング評価・リスク評価の合理化・加速化のための 調査・検討等

2.1 リスク評価のための情報収集・分析

2.1.1 はじめに

令和2年度化学物質安全対策(化審法におけるリスク評価の加速化等に関する調査)事業の「化審法のリスク評価等検討会」(非公開)において取りまとめられた「リスク評価書 Outline と Point」を基に、ある物質のリスク評価を通じて、専門家等との議論を踏まえ、特に暴露評価について、より具体的な評価手法を検討し、「リスク評価書 Outline と Point」を拡充した。

2.1.2 「リスク評価書 Outline と Point」の拡充

(1) 本編及び事例集の関係について

本編においては、「化審法における優先評価化学物質に関するリスク評価の技術ガイダンス」にある評価手法を、過去に作成されたリスク評価書の形式を参考とし、項目ごとに「項目の位置付け」「記載事項」「記載のポイント」等を簡潔に整理した。その例示として、「記載事項」と紐づく形で事例集への記載を行った。事例集における記載内容は「記載のポイント」等の内容をできるだけ満たすよう記載した。

なお、今後リスク評価が進んだ際に、「リスク評価書 Outline と Point」への追記について検討を行うことが望ましいと考えられる項目については、その旨記載した。

(2) 本編及び事例集への追記

今年度追加した内容は表 2.1.2-1 に示すとおりである。

排出源ごとの暴露シナリオによる評価の事例は、「優先評価化学物質のリスク評価(一次) 人健康影響に係る評価 II リスク評価書簡易版 テトラメチルアンモニウム=ヒドロキシド」(令和6年1月、厚生労働省・経済産業省・環境省)を参考とした。

また、将来的に記載される事例が増えていくことを想定し、当該改訂履歴を本編の冒頭に記載した。

表 2.1.2-1 追記事項及び記載内容(テトラメチルアンモニウム=ヒドロキシド(優先評価化学物質通し番号 17))

例 12-2 暴露評価手法の例

【優先評価化学物質のリスク評価(一次)人健康影響に係る評価 II リスク評価書簡易版テトラメチルアンモニウム=ヒドロキシド】

・本物質の推計環境排出量の各環境媒体への排出先比率と環境中分配比率に基づくと吸入経路からの暴露は非常に小さいと想定されることから、経口経路を対象にリスク推計を行った。

例 13-8 排出源ごとの暴露シナリオによる評価の例

(1)

- ・令和2年度の化審法届出情報を用いて、排出源ごとの暴露シナリオの推計モデル(PRASNITE Ver.1.1.2)により、仮想的排出源ごとのリスク推計を行った。
- ・化審法届出情報を用いた結果では、一般毒性の経口経路で2箇所のリスク懸念箇所があった。
- ・化審法届出情報に基づく推計結果は付属資料 7-2-2 に収載。

表 化審法届出情報に基づく一般毒性におけるリスク推計結果

暴露経路	リスク推計の対象 となる排出量	リスク懸念箇所数	リスク懸念影響面積 [km²]		
経口経路	大気・水域排出分	2 / 117	628		

例 13-8 排出源ごとの暴露シナリオによる暴露評価とリスク推計の例 (2)

- ・化審法届出情報に基づく評価を行うため、排出量について整理された。
- ・リスク推計結果として、一般毒性の経口経路について HQ が上位 10 箇所のリスク推計結果を表に示す。排出源から 1 km 以内の HQ の最大値は一般毒性の経口経路で 2.8 であった。

表 化審法届出情報 (令和2年度) に基づく仮想的排出源ごとの 排出量(合計排出量上位10箇所)

					詳細	ライフサイ	製造	出荷			+= o O	水域への	合計排
No.	都道府県	用途分類名	詳細用途分類名	用途 番号	用途番号	クル ステージ	数量 [t/year]	数量 [t/year]	大気排出 係数	水域排出 係数	排出量 [t/year]	排出量 [t/year]	出量 [t/year]
1	A県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使 用段階	0	1,800	0.0001	0.025	0.18	45	45
2	B県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使 用段階	0	1,000	0.0001	0.025	0.10	25	25
3	C県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使 用段階	0	570	0.0001	0.025	0.057	14	14
4	D県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使 用段階	0	460	0.0001	0.025	0.046	11	12
5	E県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使 用段階	0	380	0.0001	0.025	0.038	9.4	9.5
6		レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使 用段階	0	250	0.0001	0.025	0.025	6.2	6.3
7	G県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使用段階	0	120	0.0001	0.025	0.012	2.9	2.9
8	H県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使 用段階	0	110	0.0001	0.025	0.011	2.7	2.7
9	I県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使用段階	0	98	0.0001	0.025	0.0098	2.4	2.5
10	J県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶性 処理薬剤、レジス ト剥離剤	124	h	工業的使 用段階	0	89	0.0001	0.025	0.0089	2.2	2.2

表 化審法届出情報 (令和2年度) に基づく一般毒性(経口経路)に おけるリスク推計結果(HQ上位10箇所)

都道府県	用途分類	詳細用途分類	用途番号		ライフサ イクルス テージ	大気への 排出量 [t/year]	水域への 排出量 [t/year]	合計排出 量[t/year]	HQ (~1km)	HQ (~2km)	HQ (~3km)	HQ (~4km)	HQ (~5km)	HQ (~6km)	HQ (~7km)	HQ (~8km)	HQ (~9km)	HQ (~10km)
A県	レジスト材料、 写真材料又は 印刷版材料		124	h	工業的 使用段 階	0.18	45	45	2.8	2.8	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
B県	写真材料又は	現像剤、水溶 性処理薬剤、 レジスト剥離剤	124	h	工業的 使用段 階	0.10	25	25	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
C県	レジスト材料、 写真材料又は 印刷版材料		124	h	工業的 使用段 階	0.057	14	14	0.89	0.88	0.88	0.88	0.88	0.88	0.88	0.87	0.87	0.87
D県	レジスト材料、 写真材料又は 印刷版材料	現像剤、水溶 性処理薬剤、 レジスト剥離剤	124	h	工業的 使用段 階	0.046	11	12	0.72	0.71	0.71	0.71	0.71	0.71	0.70	0.70	0.70	0.70
E県	写真材料又は	現像剤、水溶 性処理薬剤、 レジスト剥離剤	124	h	工業的 使用段 階	0.038	9.4	9.5	0.59	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
F県	レジスト材料、 写真材料又は 印刷版材料		124	h	工業的 使用段 階	0.025	6.2	6.3	0.39	0.39	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
G県	写真材料又は	現像剤、水溶 性処理薬剤、 レジスト剥離剤	124	h	工業的 使用段 階	0.012	2.9	2.9	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
H県	レジスト材料、 写真材料又は 印刷版材料		124	h	工業的 使用段 階	0.011	2.7	2.7	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
I県	レジスト材料、 写真材料又は 印刷版材料		124	h	工業的 使用段 階	0.0098	2.4	2.5	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
J県	写真材料又は	現像剤、水溶 性処理薬剤、 レジスト剥離剤	124	h	工業的 使用段 階	0.0089	2.2	2.2	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14

例 15-1 様々な排出源の影響を含めた暴露シナリオによる評価

(1)

- ・令和2年度の化審法届出情報と排出係数から推計した排出量を用いて、様々な排出源の影響を含めた暴露シナリオによる推計モデル(G-CIEMS ver.1.2)により、水質濃度の計算を行い、水域における評価対象地点 3,705 流域のリスク推計を行った。
- ・推計結果は以下の表のとおり。この結果、HQ≥1となるのは 20 流域であった。

表 G-CIEMS による濃度推定結果に基づく HQ 区分別地点数

ハザード比の区分	経口経路				
ハリート比の区分	一般毒性				
1≦HQ	20				
0. 1≦HQ<1	207				
HQ < 0. 1	3, 478				

例 15-2 様々な排出源の影響を含めた暴露シナリオにおける暴露評価とリス (2) ク推計

・環境中濃度等の空間的分布の推計における推計条件及び推計結果 (G-CIEMS の評価対象地点における水質濃度に基づく経口摂取量 及びハザード比(HQ)のパーセンタイル値、環境中分配比率等の 推計結果)を表に示した。

表 G-CIEMSの計算に必要なデータのまとめ

項目	単位	採用値	詳細
ヘンリー係数	Pa·m³/mol	4. 50 × 10 ⁻¹¹	25℃温度補正値
水溶解度	mol/m³	1. 18 × 10 ⁴	25°C温度補正値
蒸気圧	Pa	1. 01 × 10 ⁻⁴	25℃温度補正値
オクタノールと水との間の分配係数	-	3. 98 × 10 ⁻²	10 ^{logPow}
大気中分解速度定数(ガス)	s ⁻¹	2. 67 × 10 ⁻⁶	大気における機序別分解半減期の 総括値3日の換算値
大気中分解速度定数 (粒子)	s ⁻¹	2. 67 × 10 ⁻⁶	大気における機序別分解半減期の 総括値3日の換算値
水中分解速度定数(溶液)	s ⁻¹	1. 60 × 10 ⁻⁶	水中における機序別分解半減期の 総括値5日の換算値
水中分解速度定数(懸濁粒子)	s ⁻¹	1. 60 × 10 ⁻⁶	水中における機序別分解半減期の 総括値5日の換算値
土壌中分解速度定数	s ⁻¹	1. 60 × 10 ⁻⁶	土壌中における機序別分解半減期 の総括値5日の換算値
底質中分解速度定数	s ⁻¹	4. 01 × 10 ⁻⁷	底質中における機序別分解半減期 の総括値 20 日の換算値
植生中分解速度定数	s ⁻¹	2. 67 × 10 ⁻⁶	大気における機序別分解半減期の 総括値3日の換算値

表 化審法届出情報に基づく全国推計排出量の内訳

化審法届出データ使用年度	令和 2 年度
	全推計分の排出量を以下に示す。
	〇全国排出量合計:138,444 kg/年
排出量	G-CIEMS 用大気排出量: 588 kg/年
	G-CIEMS 用水域排出量:137,857 kg/年
	G-CIEMS 用土壌排出量: 0 kg/年

表 用途分類別全国排出量のメッシュ展開方法

田途分類 詳細用途分類		_ , • , , , ,	
原料、ブレボリマ - 「工業的使用段階】化学工業の従業者数(都道府県別、メッシュ別) (家庭等使用段階) 一(使用を想定せず) [製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階) 一(使用を想定せず) [製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階) 一(使用を想定せず) [製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階) 一(使用を想定せず) [製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階) 一(使用を想定せず) [製造・調合段階] で子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) [文庭等使用段階] で子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) [文庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [文庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [文庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [文度等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [文度等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] 化学工業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] 世学工業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] で学のは業者数(都道府県別、メッシュ別) [家庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [文庭等使用段階] で学工業の従業者数(都道府県別、メッシュ別) [文庭等使用段階] 一(使用を想定せず)	用途分類	詳細用途分類	
「家庭等使用段階] ― (使用を想定せず) 「家庭等使用段階] ― (使用を想定せず) 「製造、調合段階] 化学工業の従業者数(都道府県別、メッシュ別) 「工業的使用段階] ― (使用を想定せず) 「設造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] ― (使用を想定せず) 「設造・調合段階] 小学工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] ― (使用を想定せず) 「設造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] ― (使用を想定せず) 「政事的使用段階] ― (使用を想定せず) 「工業的使用段階] ― (使用を想定せず) 「工業的使用段階] 製造業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] ― (使用を想定せず) 「業店等使用段階] ― (使用を想定せず) 「業店等使用段階] ― (使用を想定せず) 「業店等時期後間 電子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] ― (使用を想定せず) 「業店等時期後間 東京の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] ― (使用を想定せず) 「実店等時期後間 来者数(都道府県別、メッシュ別) 「家庭等使用段階] ― (使用を想定せず) 「工業的使用段階] ― (使用を想定せず) 「実際等使用段階] ― (使用を想定せず) 「実際等使用段階] ― (使用を想定せず) 「工業的使用段階] ― (使用を想定せず) 「工業的使用段階] ― (使用を想定せず) 「工業的使用段階] — (使用を想定せず) 「工業的使用段階] — (使用を想定せず) 「工業の使用段階] — (使用を想定せず) 「工業の性用段階] — (使用を想定せず) 「工業的使用段階] — (使用を想定せず) 「工業的使用段階] — (使用を想定せず) 「実際等等者数(都道府県別、メッシュ別) 「実際等等者数(都道府県別、メッシュ別) 「実際等等者数(都道府県別、メッシュ別) 「実際等等者数(都道府県別、メッシュ別) 「実際等等者数(部道府県別、メッシュ別) 「実際等等者数(部道府県別、メッシュ別) 「実際等等 「使用を想定はず) 「実際等等数(部道府県別、メッシュ別) 「実際等等を開発的 「使用を想定はず) 「使用を開発的 「使用を想定はず) 「使用を想定はず) 「使用を想定はず) 「使用を関すを可能は対します。 「使用を開催を用きます。 「使用を用きますを用きます。 「使用を用きますを用きますを用きますを用きますを用きますを用きますを用きますを用きま	101:中間物	a:合成原料、重合	【製造・調合段階】化学工業の従業者数(都道府県別、メッシュ別)
10:化学プロセス a: 触媒、触媒担体 [製造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別) [実施使用段階] 製造業の従業者数(都道府県別、メッシュ別) [実施存使用段階] 製造業の従業者数(都道府県別、メッシュ別) [実施存使用段階] 製造業の従業者数(都道府県別、メッシュ別) [実施を使用段階] 型・部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) [実施存用段階] 電子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) [実施等使用段階] 電子部品・デバイス・電子回路製造業の従業者数(和道府県別、メッシュ別) [実施等使用段階] 一(使用を想定せず) [実施等使用段階] 一(使用を想定せず) [実施等使用段階] 一(使用を想定せず) [実施等使用段階] (実施等使用段階] (実施等使用段階] (実施等使用段階] (実施等使用段階] (実施等使用段階] (実施等使用段階] (表述者数(都道府県別、メッシュ別) [実施等使用段階] (表述者数(都道府県別、メッシュ別) [実施等使用段階] (表述者数(都道府県別、メッシュ別) [実施等使用段階] (表述者数(都道府県別、メッシュ別) [実施等使用段階] (表述者数(都道府県別、メッシュ別) (実施等使用段階] (表述者数(都道府県別、メッシュ別) (表述等使用段階] (表述者数(都道府県別、メッシュ別) (表述等使用段階] (表述者数(都道府県別、メッシュ別) (表述等使用段階] (表述者数(都道府県別、メッシュ別) (表述等使用段階] (表述者数(都道府県別、メッシュ別) (表述等使用段階] (表述者数(都道府県別、メッシュ別) (表述等使用段階] (使用を想定せず) (表述等等使用段階] (表述者数(都道府県別、メッシュ別) (表述等) (表述等) (表述的用段階) (表述者数(都道府県別、メッシュ別) (表述等) (表述的用程序) (表述者数(都道府県別、メッシュ別) (表述的用程序) (表述者数(都道府県別、メッシュ別) (表述者数(都道府県別、メッシュ別) (表述者数(知道府県別、メッシュ別) (表述者述者数(知道府県別、メッシュ別) (表述者数(知道府県別、メッシュ別) (表述者数(知道府県別、メッシュ別) (表述者数(知道府県別、メッシュ別) (表述者数(知道府県別、メッシュ別) (表述者述者数(知道府県別、メッシュ別) (表述者述者数(知道府県別、対域の用用用用用用用用用用用用用用用用用用用用用用用用用用用用用用用用用用用用		原料、プレポリマ	【工業的使用段階】化学工業の従業者数(都道府県別、メッシュ別)
調節剤		ı	【家庭等使用段階】- (使用を想定せず)
「家庭等使用段階] 一(使用を想定せず) 「家庭等使用段階] 一(使用を想定せず) 「製造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別 「製造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別 「実庭等使用段階] 一(使用を想定せず) 「製造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別 「家庭等使用段階] 一(使用を想定せず) 「設造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別 「工業的使用段階] 電子部品・デバイス・電子回路製造業の従業者数 (都道府県別、メッシュ別) 「家庭等使用段階] で子部品・デバイス・電子回路製造業の従業者数 (都道府県別、メッシュ別) 「家庭等使用段階] で子部品・デバイス・電子回路製造業の従業者数 (都道府県別、メッシュ別) 「家庭等使用段階] と「企業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] と「本の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] で「工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] で「使用を想定せず」 「業の後期別、メッシュ別) 「家庭等使用段階] で「使用を想定せず」 「業の機可解別、メッシュ別) 「家庭等使用段階] 一(使用を想定せず) 「家庭等使用段階] 一(使用を想定せず) 「家庭等使用段階] 一(使用を想定せず) 「家庭等使用段階] 一(使用を想定せず) 「工業的使用段階] で「工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] 一(使用を想定せず) 「製造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階] 一(使用を想定せず) 「工業的使用段階] 一(使用を想定せず) 「工業的使用段階] 一(使用を想定せず) 「工業的使用段階] 一(使用を想定せず) 「文字の代業者数(都道府県別、メッシュ別) 「家庭等使用段階] 一(使用を想定せず) 「文字の代業者数(都道府県別、メッシュ別) 「家庭等使用段階] 一(使用を想定せず) 「大学工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階」 (使用を想定せず) 「文字の代業者数(都道府県別、メッシュ別) 「家庭等使用段階」 (使用を想定せず) 「文字の代業者数(都道府県別、メッシュ別) 「家庭等使用段階」 (使用を想定せず) 「文字の代業者数(都道府県別、メッシュ別) 「家庭等使用段階」 (使用を想定せず) 「文字の代業者数(都道府県別、メッシュ別) 「文字の代業者数(都道府県別、メッシュ別) 「文字の代業者数(都道府県別、メッシュ別) 「文字の代業者数(都道府県別、メッシュ別) 「文字の代業者数(都道府県別、メッシュ別) 「文字の代表) 「文字の代表)	110: 化学プロセス	a:触媒、触媒担体	【製造・調合段階】化学工業の従業者数(都道府県別、メッシュ別)
112: 水系洗浄剤 (工業用のものに 機成・有機酸、漂白剤 (工業的をものに 機成・有機酸、漂白剤 (工業的をものに 機成・有機酸、漂白剤 (工業的使用段階) 電子部品・デバイス・電子回路製造業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) 一 (使用を想定せず) (工業的使用段階) 電子部品・デバイス・電子回路製造業の従業者数 (新道府県別、メッシュ別) (家庭等使用段階) 一 (使用を想定せず) (工業的使用段階) 電子部品・デバイス・電子回路製造業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) 一 (使用を想定せず) (工業的使用段階) 電子部品・デバイス・電子回路製造業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) 一 (使用を想定せず) (家庭等使用段階) 一 (使用を想定せず) (家庭等使用段階) 製造業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) 製造業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) 製造業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) 一 (使用を想定せず) (家庭等使用段階) 一 (使用を想定せず) (家庭等使用段階) 一 (使用を想定せず) (家庭等使用段階) 一 (使用を想定せず) (家庭等使用段階) (家庭等使用段階) (家庭等使用段階) (家庭等使用段階) (家庭等使用段階) (家庭等使用段階) (学工業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) 化学工業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) 化学工業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) (学工業の従業者数 (都道府県別、メッシュ別) (家庭等使用段階) 一 (使用を想定せず)	調節剤		【工業的使用段階】製造業の従業者数(都道府県別、メッシュ別)
(工業用のものに 関係) 有機アルカリ、無 機酸 有機酸、漂白 剤 (和速度・ 1941) (大学・ 1942) (大学・ 1943) (大学・ 1943) (大学・ 1944) (大学・ 1			【家庭等使用段階】- (使用を想定せず)
限る。) 機酸、有機酸、漂白 剤 数 (都道府県別、メッシュ別) [家庭等使用段階] — (使用を想定せず) (家庭等使用段階] 一(使用を想定せず) [製造業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] 電子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] 電子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) [家庭等使用段階] (本)	112: 水系洗浄剤	b:無機アルカリ、	【製造・調合段階】化学工業の従業者数(都道府県別、メッシュ別)
124: レジスト材 124: レジスト材 13年	(工業用のものに	有機アルカリ、無	【工業的使用段階】電子部品・デバイス・電子回路製造業の従業者
124: レジスト材 h: 現像剤、水溶性 [製造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別) (工業的使用段階) 電子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階] 一(使用を想定せず) (家庭等使用段階] 一(使用を想定せず) (家庭等使用段階] 一(使用を想定せず) (家庭等使用段階] 製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階] 製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階] 製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階] (家庭等使用段階] (家庭等使用段階] (本) (家庭等使用段階] (本) (家庭等使用段階] (本) (家庭等使用段階] (使用を想定せず) (家庭等使用段階] (家庭等使用段階] (使用を想定せず) (家庭等使用段階] (使用を想定せず) (家庭等使用段階] (使用を想定せず) (家庭等使用段階] (家庭等使用段階] (家庭等使用段階] (家庭等使用段階] (使用を想定せず) (家庭等使用段階] (家庭等使用段階] (使用を想定せず) (家庭等使用段階] (使用を想定せず) (家庭等使用段階] (家庭等使用段階] (使用を想定せず) (家庭等使用段階] (家庭等度是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是是	限る。)	機酸、有機酸、漂白	数(都道府県別、メッシュ別)
料、写真材料又は		剤	【家庭等使用段階】- (使用を想定せず)
印刷版材料 ト剥離剤 数 (都道府県別、メッシュ別) 「家庭等使用段階】 - (使用を想定せず) 「沙虚・盟合段階】 - (使用を想定せず) 「沙虚・関合段階】 - (使用を想定せず) 「沙虚・関合段階】 - (使用を想定せず) 「家庭等使用段階】製造業の従業者数 (都道府県別、メッシュ別) 「家庭等使用段階】製造業の従業者数 (都道府県別、メッシュ別) 「家庭等使用段階】 - (使用を想定せず) を設定します。 「本記・調合段階】 - (使用を想定せず) 「本記・調合段階】 - (使用を想定せず) 「本記・調合段階】 - (使用を想定せず) を設定します。 「本記・調合段階】 - (使用を想定せず) 「本記・調合段階】 - (使用を想定せず) 「本記・ディス・電子の経業者数 (都道府県別、メッシュ別) 「本記・調合段階】 - (使用を想定せず) 「本記・調合段階】 - (使用を想定せず) 「本記・調合段階】 - (使用を想定せず)	124: レジスト材	h:現像剤、水溶性	【製造・調合段階】化学工業の従業者数(都道府県別、メッシュ別)
【家庭等使用段階】 - (使用を想定せず) 127: ブラスチック 「製造・調合段階】化学工業の従業者数(都道府県別、メッシュ別)	料、写真材料又は	処理薬剤、レジス	【工業的使用段階】電子部品・デバイス・電子回路製造業の従業者
127: ブラスチック、ブラスチック、ブラスチック (工業的使用段階) 化学工業の従業者数(都道府県別、メッシュ別) (工業的使用段階) 製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階) 一(使用を想定せず) (家庭等使用段階) 展籍材 (報道府県別、メッシュ別) (家庭等使用段階) 電子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) (本語の新川、乳化剤、分散剤、摩擦調整剤、光が発動剤、摩擦調整剤、潤滑剤等) (ご来的使用段階) 電子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) (家庭等使用段階) 一(使用を想定せず) (最近時期、東海調整剤、潤滑剤等) (第三エッチング処理業剤、スパッタリング処理薬剤、スパッタリング処理薬剤、スパッタリング処理薬剤、ブ	印刷版材料	ト剥離剤	数(都道府県別、メッシュ別)
ク、ブラスチック 添加利取はブラス テック加工助剤 132: 研削砥石、研磨剤、摩擦材又は 固体潤滑剤 (製造・調合段階) 化学工業の従業者数(都道府県別、メッシュ別) 【実度等使用段階] (製造・調合段階) 化学工業の従業者数(都道府県別、メッシュ別) 【業施・調合段階] 化学工業の従業者数(都道府県別、メッシュ別) 【実施・調合段階] 化学工業の従業者数(都道府県別、メッシュ別) 【求施・調合段階] ルで・東京の従業者数(都道府県別、メッシュ別) 【家庭等使用段階] 一(使用を想定せず) 第134: 表面処理剤 第:エッチング処理薬剤、スパッタリング処理薬剤、スパッタリング処理薬剤、スパッタリング処理薬剤、スクルの実剤、ブースに乗り使用段階] 化学工業の従業者数(都道府県別、メッシュ別) 【家庭等使用段階】(で生工業の従業者数(都道府県別、メッシュ別)【家庭等使用段階】(使用を想定せず)			【家庭等使用段階】一(使用を想定せず)
添加剤又はプラス チック加工助剤 132:研剤砥石、研 磨剤、摩擦材又は 固体潤滑剤	127: プラスチッ	n:硬化促進剤	【製造・調合段階】化学工業の従業者数(都道府県別、メッシュ別)
チック加工助剤 132: 研削砥石、研磨 剤・摩擦材 又は 固体潤滑剤 (バインダー、増粘剤、 分散剤、摩擦額 類、乳化剤 (バインダー、増粘剤、 分散剤、摩擦額整 剤、潤滑剤等) 134: 表面処理剤 裏: エッチング処理 薬剤、スパッタリ ング処理薬剤、ブ			【工業的使用段階】製造業の従業者数(都道府県別、メッシュ別)
132: 研削砥石、研磨剤・摩擦材又は 原列・摩擦材・固体剤 「製造・調合段階」化学工業の従業者数(都道府県別、メッシュ別) 【製造・調合段階】光ッシュ別 【実的使用段階】電子部品・デバイス・電子回路製造業の従業者数(都道府県別、メッシュ別) 【家庭等使用段階】ー(使用を想定せず) 「家庭等使用段階】ー(使用を想定せず) 「家庭等使用段階】 「家庭等使用段階」 「表面処理剤 「家庭等使用段階」と「実施を関する。 「製造・調合段階」化学工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階」化学工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階」化学工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階」 「使用を想定せず) 「家庭等使用段階」 「家庭等使用段階」 「東の使来者数(都道府県別、メッシュ別) 「家庭等使用段階」 「使用を想定せず) 「家庭等使用段階」 「使用を想定せず) 「家庭等使用段階」 「使用を想定せず) 「家庭等使用段階」 「使用を想定せず) 「家庭等使用段階」 「使用を想定せず) 「家庭等使用段階」 「使用を想定せず) 「表面を表面を表面を表面を表面を表面を表面を表面を表面を表面を表面を表面を表面を表	添加剤又はプラス		【家庭等使用段階】- (使用を想定せず)
磨剤、摩擦材又は 割・摩擦材・固体潤滑剤の添加剤 (バインダー 場別の添加剤 (バインダー 場別の添加剤 (バインダー 場別の添加剤 (バインダー 場別の添加剤 (ボインダー 場別) (家庭等使用段階] 一 (使用を想定せず) 研磨助剤、乳化剤、分散剤、摩擦調整剤、潤滑剤等) 8:エッチング処理薬剤、スパッタリング処理薬剤、スパッタリング処理薬剤、ブ (家庭等使用段階) 化学工業の従業者数(都道府県別、メッシュ別) 【工業的使用段階】化学工業の従業者数(都道府県別、メッシュ別) 【家庭等使用段階】 一 (使用を想定せず)	チック加工助剤		
固体潤滑剤 滑剤の添加剤 (パインダ、、増粘剤、研酪助剤、乳化剤、分散剤、厚搾調整剤、潤滑剤等) 134:表面処理剤 まで、エッチング処理薬剤、スパッタリング処理薬剤、スパッタリング処理薬剤、ブ (家庭等使用段階) 化学工業の従業者数(都道府県別、メッシュ別) 【工業的使用段階】化学工業の従業者数(都道府県別、メッシュ別) 【で、変度等使用段階】 (使用を想定せず)	132:研削砥石、研	b:研削砥石・研磨	【製造・調合段階】化学工業の従業者数(都道府県別、メッシュ別)
インダー、増粘剤、 研磨助剤、現化剤、 分散剤、摩擦調整 剤、潤滑剤等) 8:エッチング処理 薬剤、スパッタリ ング処理薬剤、プレダルの発育化学工業の従業者数(都道府県別、メッシュ別) 【工業的使用段階】化学工業の従業者数(都道府県別、メッシュ別) 【の変形を発表する。(都道府県別、メッシュ別) (変度等使用段階) (使用を想定せず)	磨剤、摩擦材又は	剤・摩擦材・固体潤	【工業的使用段階】電子部品・デバイス・電子回路製造業の従業者
研磨助剤、乳化剤、 分散剤、摩擦調整 剤、潤滑剤等) 134:表面処理剤 (製造・調合段階) 化学工業の従業者数(都道府県別、メッシュ別) 薬剤、スパッタリ ング処理薬剤、ブ 【家庭等使用段階】 (使用を想定せず)	固体潤滑剤	滑剤の添加剤(バ	数(都道府県別、メッシュ別)
分散剤、摩擦調整剤、潤滑剤等) 134:表面処理剤 [製造・調合段階] 化学工業の従業者数(都道府県別、メッシュ別) [工業的使用段階] 化学工業の従業者数(都道府県別、メッシュ別) ング処理薬剤、ブ [家庭等使用段階] - (使用を想定せず)		インダー、増粘剤、	【家庭等使用段階】- (使用を想定せず)
利、潤滑利等) 8:エッチング処理 薬剤、スパッタリ ング処理薬剤、ブ (家庭等使用段階) ー (使用を想定せず)		研磨助剤、乳化剤、	
134:表面処理剤 8:エッチング処理 薬剤、スパッタリ ング処理薬剤、ブ 【製造・調合段階】化学工業の従業者数(都道府県別、メッシュ別) 「工業的使用段階】化学工業の従業者数(都道府県別、メッシュ別) 「家庭等使用段階】 - (使用を想定せず)		分散剤、摩擦調整	
薬剤、スパッタリ 「工業的使用段階】化学工業の従業者数(都道府県別、メッシュ別) ング処理薬剤、ブ 【家庭等使用段階】 - (使用を想定せず)		剤、潤滑剤等)	
ング処理薬剤、ブ 【家庭等使用段階】 - (使用を想定せず)	134:表面処理剤	g:エッチング処理	
		薬剤、スパッタリ	【工業的使用段階】化学工業の従業者数(都道府県別、メッシュ別)
ラスト処理薬剤			【家庭等使用段階】- (使用を想定せず)
		ラスト処理薬剤	

表 G-CIEMS の評価対象地点における水質濃度に基づく経口摂取量 及びハザード比(HQ)のパーセンタイル値

		0.42		
パーセン		①経口摂取量 (局所+広域)	経口 一般	毒性
タイル	順位	「周別+広域) [mg/kg/day]	②有害性評価値	HQ
		Lilig/ Ng/ day]	[mg/kg/day]	(=1)/2)
0	1	3.0×10^{-5}	0. 001	0. 030
0. 1	5	3.0×10^{-5}	0. 001	0. 030
1	38	3.0×10^{-5}	0. 001	0. 030
5	186	3.0×10^{-5}	0. 001	0. 030
10	371	3.0×10^{-5}	0. 001	0. 030
25	927	3.0×10^{-5}	0. 001	0. 030
50	1853	3.0×10^{-5}	0. 001	0. 030
75	2779	3. 4 × 10 ⁻⁵	0. 001	0. 034
90	3335	6. 2 × 10 ⁻⁵	0. 001	0. 062
95	3520	1. 2 × 10 ⁻⁴	0. 001	0. 12
99	3668	5.9×10^{-4}	0. 001	0. 59
99. 9	3701	0. 0026	0. 001	2. 6
99. 92	3702	0. 0039	0. 001	3. 9
99. 95	3703	0. 004	0. 001	4. 0
99. 97	3704	0. 0045	0. 001	4. 5
100	3705	0. 013	0. 001	13

[%]HQ の項目中の網掛けのセルは 0.1 以上 1 未満、白抜きのセルは 1 以上を表す。

表 各環境媒体への排出先比率と G-CIEMS で計算された 環境中分配比率

		割合
1.46 . 1 . 44	大気	<1%
┃排出先 ┃比率	水域	100%
5	土壌	0%
	大気	<1%
環境中	水域	79%
分配比率	土壌	<1%
	底質	20%

※ 排出先比率 : 化審法届出情報に基づき、G-CIEMSの入力データとして用いた推計排出量を環境媒体ごとの比率で示したもの環境中分配比率: G-CIEMSの計算結果(大気・水域・土壌・底質のメッシュ別/流域別濃度)を各媒体中の化学物質量として合算し、環境媒体ごとの比率を示したもの

(3) 追加を検討する事項について(N-[3-(ジメチルアミノ)プロピル]ステアルアミド(優先評価化学物質通し番号 153))

N-[3-(ジメチルアミノ)プロピル]ステアルアミドにおいては、生態影響に係るリスク評価 <math>(-次) 評価 II が進められている。

「優先評価化学物質「N-[3-(ジメチルアミノ)プロピル] ステアルアミド」の生態影響に係るリスク評価(一次)評価 II の進捗報告(令和6年1月、厚生労働省・経済産業省・環境省)」を参考とし、以下の事例に追記した。

1) 有害性評価の事例について

予測無影響濃度 (PNEC) に設定について、現状の「リスク評価書 Outline と Point」においては、底生生物関して信頼性のある有害性データは得られなかったことから、 PNEC $_{sed}$ を PNEC $_{water}$ と K_{oc} からの平衡分配法による換算にて導出した値の例についての記載が示されている。 N- [3- (ジメチルアミノ) プロピル] ステアルアミドにおいても、信頼できる有害性データは得られなかったとしているが、 K_d を用いての導出について検討されているため、新規の記載事例として参考となる可能性がある。

< 参考: PNEC_{sed} の K_{oc} を用いた導出事例>

4-2 予測無影響濃度 (PNEC)

表 6 有害性情報のまとめ

	水生生物	底生生物 K _d を用いて算出					
PNEC	0.00044 mg/L	0.18 mg/kg-dw					
キースタディの毒性値	0.022 mg/L	_					
UFs	50	10%					
(キースタディの エンドポイント)	生産者(藻類)の生長阻害 に対する無影響濃度	※当該物質は底質への強い吸着性を有し、経口摂取による暴露経路も考慮すべきと判断し、水生生物に対する PNECwater と K _d からの平衡分配法による換算値をさらに「10」で除す					

注) PNEC 値は有効数字 2 桁として記載している。

生産者に対する慢性毒性値(0.022~mg/L)を種間外挿の係数「5」及び室内試験から野外への不確実係数(UF)「10」で除し、N-DPS の PNECwater として 0.00044~mg/L($0.44~\mu g/L$)が得られた(表 6)。

また、底生生物の信頼できる有害性データが得られなかったことから、PNECsed は、水生生物に対する PNECwater から土壌吸着係数 (K_d) を用いて平衡分配法により、乾重量換算で 0.18 mg/kg-dw と算出された (表 6) 。なお、算出には UF「10」を適用したが、これは K_d 及び有機炭素補正土壌吸着係数 (K_{oc}) が、それぞれ 4.3×10^3 (L/kg) 及び 1.5×10^5 (L/kg)と大きな値となっており、 $\log K_{ow} \ge 5$ の物質と同等の吸着性を有する可能性があることから、底質に吸着した物質の摂取を考慮すべきと判断したためである。

2) リスク推計結果 (様々な排出源の影響を含めた暴露シナリオによる 評価) について

N-[3-(ジメチルアミノ)プロピル]ステアルアミドの評価においては、リスク推計の1つの内容として、化審法届出情報と排出係数から推計した排出量を用いた暴露シナリオによる推計モデル(G-CIEMS ver.1.2)による推計が行われている。「リスク評価書 Outline と Point」においては、テトラメチルアンモニウム=ヒドロキシドの事例を記載することとしたが、人健康影響に係る評価 <math>II としてのリスク評価書の記載であることから II として評価する結果の事例となっている。II のでジメチルアミノ)プロピル」ステアルアミドにおいては、生態影響に係るリスク評価であり、結果についても II の記載を示すこととなるため、新規の記載事例として参考となる可能性がある。

< 参 考 : PEC/PNEC 比 を 用 い た 評 価 事 例 >

5-3 様々な排出源の影響を含めた暴露シナリオによる評価

- ・令和2年度の化審法届出情報と排出係数から推計した排出量を用いて⁵、様々な排出源の影響を含めた暴露シナリオによる推計モデル (G-CIEMS ver.1.2) により、水質濃度及び底質濃度の計算を行い、水域及び底質における評価対象地点3,705 流域のリスク推計を行った。
- ・推計結果は以下の表 9 のとおり。この結果、PEC/PNEC 比 ≥ 1 となる流域が水域及び底質で多数見られた。

表 9 G-CIEMS による濃度推定結果に基づく PEC/PNEC 比区分別地点数

PEC/PNEC 比の区分	水生生物	底生生物
1≦PEC/PNEC	1, 220	1, 992
0. 1≦PEC/PNEC<1	1, 767	1, 349
PEC/PNEC < 0. 1	718	364

3) 不確実性事項の精査における検討内容について

現状のリスク評価(一次)評価 II の課題として、実測濃度に比べモデル推計濃度の方が高く、両者が整合していないことが挙げられており、主な不確実性項目として整理されている。今後の精査・検討において議論された内容や、その検討結果としてリスク評価書へ取りまとめられる内容については、「リスク評価書 Outline と Point」においても重要な参考事例となり得ることから、追記について検討を行うことが望ましいと考えられる。

2.1.3 PRTR 届出に基づく環境排出状況等の調査・分析

2.1.3.1 はじめに

リスク評価の難易度が高い物質のスクリーニング評価・リスク評価を 進めるために必要な情報収集・分析等の一環として、化学物質の暴露評 価の材料となる環境排出量の推移を明らかにし、環境排出量についての 不確実性を低減するため、対象物質の PRTR 届出状況を整理するととも に、一部の対象物質については大気及び水域におけるモニタリング状況 を整理して地図情報と結合させ、対象物質のリスク評価 II スケジュール (再審議のタイミング)等の検討材料となる資料を作成することを目的 とした。

2.1.3.2 調査対象

評価 II 実施予定となっている以下の 8 物質について PRTR 排出量・移動量の経年変化を調査した。また、アクリロニトリル及びフタル酸ビス(2 - エチルヘキシル)については、環境モニタリングデータとの比較も行った。

- ✓ 優先評価化学物質通し番号 39: アクリロニトリル
 - ·評価 II 段階(人健康影響)、令和7年度以降再審議予定
- ✓ 優先評価化学物質通し番号 66:フタル酸ビス(2-エチルヘキシル)
 - ・評価 II 段階(人健康影響)、令和7年度以降審議予定
- ✓ 優先評価化学物質通し番号 64:2,6-ジーtertーブチルー4 -メチルフェノール(以下、「BHT」という)
 - ·評価 II 段階(生態影響)、第二種特定化学物質非該当、追加情報収集中
- ✓ 優先評価化学物質通し番号 75: 4, 4' (プロパン-2, 2-ジ イル)ジフェノール(以下、「ビスフェノールA」という)
 - ・評価 II 段階(生態影響)、第二種特定化学物質非該当、追加情報収集中
- ✔ 優先評価化学物質通し番号 125: キシレン
 - ・評価 II 段階(生態影響)、第二種特定化学物質非該当、追加情報収集中
- ✓ 優先評価化学物質通し番号 129:3 ジイソシアナト(メチル)ベンゼン(以下、「TDI」という)
 - ·評価 II 段階(人健康影響)、第二種特定化学物質非該当、追加情報 収集中
- ✓ 優先評価化学物質通し番号 169: N, N-ジメチルアルカン-1-アミン=オキシド(C=10, 12, 14, 16, 18、直鎖型)、(Z)-N, N-ジメチルオクタデカ-9-エン-1-アミン=オキシド又は(9Z, 12Z)-N, N-ジメチルオクタデカ-9, 12-ジェン-

- 1-アミン=オキシド(以下、「アミンオキシド」という)
- · 評価 II 段階 (生態影響)、令和7年度以降再審議予定
- ✓ 優先評価化学物質通し番号 170: デカン-1-オール
 - ・評価 II 段階(生態影響)、第二種特定化学物質非該当、追加情報収集中

評価 II・III 実施予定となっている以下の3物質について、令和3年度のPRTR 大気排出量及び経済産業省一低煙源工場拡散モデル(METI-LIS)を用いて、各物質の拡散状況を推測した。

- ✓ 優先評価化学物質通し番号1:二硫化炭素
 - ・評価 II 段階(人健康影響・生態影響)、第二種特定化学物質非該当、 追加情報収集中
- ✓ 優先評価化学物質通し番号2:ヒドラジン
 - ・評価 III 段階 (人健康影響・生態影響)
- ✓ 優先評価化学物質通し番号 11:1,2-ジクロロエタン
 - ·評価 II 段階(人健康影響)、令和7年度以降再審議予定

2.1.3.3 PRTR 届出排出量・移動量の経年変化の調査

PRTR 情報については、経産省 Web サイトより事業者から届出された個別事業所データ(化学物質の排出量・移動量)をダウンロードし、同 Web サイトから入手した PRTR データ集計ソフト「PRTR けんさくん」を用いて PRTR データを集計した。また、同 Web サイトにおいて、省令に基づく集計表以外の推定値を同様に集計し、併せて経年変化を比較した。

PRTRデータについては、事業所ごとに集計して経年変化を比較した。また、優先評価化学物質情報(指定日やリスク評価の実施に関するもの)は NITE の化審法データベースから引用し、審議会に関する情報は経産省 Web サイトの「化審法におけるスクリーニング評価・リスク評価」「リスク評価の実施状況」に記載の情報も参考にした。

アクリロニトリル及びフタル酸ビス(2-エチルヘキシル)については、モニタリング状況についても調査した。モニタリング情報については、環境省 Web サイトより国が実施した大気及び水域のモニタリング調査結果を入手し、整理した。大気については、有害大気汚染物質モニタリング調査、水域については、化学物質環境実態調査及び、要調査項目等存在状況調査の結果を入手し、調査年ごとに調査地点別の測定結果を整理した。指針値等が定められた調査物質については、指針値等を超えた測定結果を整理した。また、PRTR データとモニタリングデータを地図情報と結合させ、PRTR 排出事業者とモニタリング結果の関連性を整理した。

2.1.3.3.1 アクリロニトリル

(1) 化審法におけるリスク評価の進捗状況

アクリロニトリルの構造等の情報を表 2.1.3.3.1-1 に示す。アクリロニトリルは、アクリル系合成繊維、炭素繊維、合成ゴム、ABS 樹脂、AS 樹脂、接着剤、塗料、有機合成原料として使用される。その他、天然樹脂の変成剤などにも使用される 9,10。

リスク評価の進捗状況は、令和5年4月時点でリスク評価(一次)評価 II 段階(人健康)、優先評価化学物質非該当(生態)であり、令和7年度以降に再審議が予定されている。

化学物質名称(PRTR)	アクリ	ロニトリル				
化審法通し番号	39	化審法官報整理番号	2-1513			
化管法管理番号	9	化管法政令番号	1-009(H20)			
			1-011(R3)			
構造式	CH ₂ ===CHC===N					
分子式	C ₃ H ₃ N					
CAS登録番号	107-13	-1				

表 2.1.3.3.1-1 アクリロニトリルの構造等の情報

(2) PRTR データの 整理

平成 28 年 3 月に開催された審議会では、人健康影響に係るリスク評価 (一次) 評価 II の審議に際して、平成 16~25 年度の PRTR データが使用された。ここでは、直近 11 年間である平成 23 年度から令和 3 年度までの PRTR 制度に基づく排出量・移動量の経年変化を整理し、図 2.1.3.3.1-1 及び表 2.1.3.3.1-2 に示した。

届出・推計を含めた排出量・移動量の中では、大気への届出排出量が廃棄物移動量に次いで多く、全体の15~49%を占める年間80~168トンであった。大気排出量は平成28年度以降減少し、令和3年度は対象期間中で最も排出量が多い平成25年度の半分以下の排出量であった。水域排出量は年間3.4~8.3トンであり、全体の0.6~2.2%であった。

⁹ 今後の有害大気汚染物質対策のあり方について(第七次答申)別添 2-1 アクリロニトリルに係る健康リスク評価について中央環境審議会大気環境部会健康リスク総合専門委員会 https://www.env.go.jp/council/toshin/t07-h1503/mat_02-1.pdf

¹⁰ 平成 11年-12年度たばこ煙の成分分析について(厚生労働省) https://www.mhlw.go.jp/topics/tobacco/houkoku/seibun.html

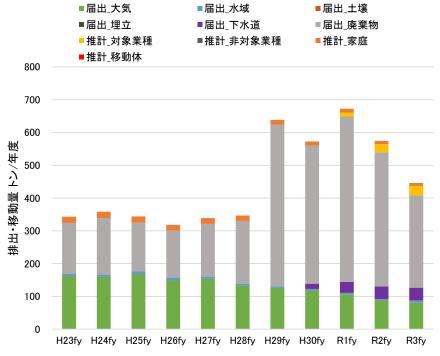


図 2.1.3.3.1-1 アクリロニトリルの PRTR 制度に基づく排出量・移動量 (トン/年度)

表 2.1.3.3.1-2 アクリロニトリルの PRTR 制度に基づく排出量・移動量 の経年変化 (トン/年度)

	H23fy	H24fy	H25fy	H26fy	H27fy	H28fy	H29fy	H30fy	R1fy	R2fy	R3fy
推計_移動体	-	-	-	-	-	-	-	-	-	-	-
推計_家庭	19	19	19	17	18	16	14	13	11	9	9
推計_非対象業種	-	-	-	-	-	-	-	-	-	-	-
推計_対象業種	0.019	0.005	0.001	0.001	0.002	0.002	0.014	0.021	12	25	29
届出_廃棄物	156	174	149	144	162	192	494	421	505	409	282
届出_下水道	0.047	0.009	0.014	0.021	0.019	0.022	0.026	16	33	38	38
届出_埋立	0	0	0	0	0	0	0	0	0	0	0
届出_土壤	0	0	0	0	0	0	0	0	0	0	0.012
届出_水域	5.5	6.6	7.6	6.7	5.4	5.1	5.0	4.9	4.4	3.4	8.3
届出_大気	162	159	168	150	153	133	126	118	106	89	80

-:推計値なし

(3) モニタリング状況について

化学物質のリスク評価を進める上では、当該物質の環境中における濃度に関する情報を可能な限り収集することが必須である。ここでは、国が実施した大気及び水域の全国モニタリング調査を調査対象として、公開されているデータを入手し、調査状況を整理するとともに、年度ごとのデータをモニタリング地点別に整理した。

1) 大気モニタリングの状況

アクリロニトリルは、有害大気汚染物質の優先取組物質に選定され、毎年大気環境モニタリングが実施されている。また、アクリロニトリルには指針値(年平均値が 2 μg/m³以下)が設定されており、その達成状況の評価等が行われる ¹¹。アクリロニトリルは、平成 10 年度から大気モニタリングが実施されている。ここでは、アクリロニトリルの PRTR データと同じ平成 23 年度から令和 3 年度のモニタリング結果を収集し、整理した。情報源には、環境省が公表している有害大気汚染物質モニタリング調査の結果 ¹²を使用した。

平成 23 年度から令和 3 年度の 11 年間に延べ 536 地点において大気モニタリングが実施されており、この間にアクリロニトリルの指針値(年平均値が 2 μ g/m³以下)を超えたのは、平成 27 年度調査における 1 地点のみであった。

2) 水域モニタリングの状況

アクリロニトリルは、平成 10 年度に要調査項目に選定され ¹³、全国モニタリング調査が不定期に実施されている(直近は平成 28 年度)。また、これと交互して公共用水域における化学物質環境実態調査(通称:黒本調査)も不定期に全国規模で実施されている(直近は平成 24 年度)。ただし、アクリロニトリルが平成 26 年度に要調査項目からはずれて以降は、平成 28 年度を最後に全国調査が行われていない ¹⁴。アクリロニトリルについては、入手可能な調査結果が限定されていることから、入手可能な全てのデータを収集整理した。情報源には、環境省が公表している化学物質環境実態調査(昭和 52 年度、昭和 62 年度、平成 4 年度、平成 24 年度)及び、要調査項目等存在状況調査(平成 12 年度、平成 28 年度)の結果を使用した。

公共用水域におけるアクリロニトリルの検出率(検出地点数/調査地点数)は、平成24年度の化学物質環境実態調査が最も高く(8/23:34.8%)、ついで平成12年度(11/76:14.5%)及び平成28年度(1/47:2.1%)の要調査項目等存在状況調査の順で高く、その他の調査においてはゼロであった。

https://www.env.go.jp/air/osen/monitoring/index.html

¹¹ アクリロニトリルの指針値について(第七次答申)平成 15 年 7 月

https://www.env.go.jp/council/toshin/t07-h1503/mat_02.pdf

¹² 有害大気汚染物質モニタリング調査結果

^{13 「}水環境保全に向けた取組のための要調査項目リスト」について、平成 10 年 6 月 https://www.env.go.jp/press/2343.html

¹⁴ 「水環境保全に向けた取組のための要調査項目リスト」の改訂について(お知らせ) https://www.env.go.jp/press/17989.html

2.1.3.3.2 フタル酸ビス (2-エチルヘキシル)

(1) 化審法におけるリスク評価の進捗状況

フタル酸ビス(2-エチルヘキシル)の構造等の情報を表 2.1.3.3.2-1 に示す。フタル酸ビス(2-エチルヘキシル)は、主に塩化ビニル樹脂の可塑剤として使用されている 15。リスク評価の進捗状況は、令和5年4月時点でリスク評価(一次)評価 II 段階(人健康)、リスク評価(一次)評価 I 段階(生態)であり、令和7年度以降に審議が予定されている。

及 2.1.3.3.2-1 ノグル酸 Lハ (2 エ ナル・ハインル) の 併 担 寺 の 旧 報								
化学物質名称(PRTR)	フタル酉	フタル酸ビス (2-エチルヘキシル)						
化審法通し番号	66	化審法官報整理番号	3-1307					
化管法管理番号	355	化管法政令番号	1-355(H20)					
			1-396(R3)					
構造式	0	H ₂ H ₂ C C H ₃						
分子式	C ₂₄ H ₃₈ O ₄ , Unspecified							
CAS登録番号	117-81-	7, 68515-48-0						

表 2.1.3.3.2-1 フタル酸ビス (2-エチルヘキシル)の構造等の情報

(2) PRTR データの 整理

直近の 10 年間である平成 23 年度から令和 3 年度までの PRTR 制度に基づく排出量・移動量の経年変化を整理し、図 2.1.3.3.2-1 及び表2.1.3.3.2-2 に示した。

届出・推計を含めた排出量・移動量の中では廃棄物の届出量が最も多く、概ね 2,200~3,400 トンで推移している。平成 23 年度の大気排出量は 66 トンであり、以降毎年減少が続き、令和 3 年度の大気排出量は 21 トンであった。水域排出量は年間 0.2 トン未満であり、平成 29 年以降は横ばいであった。

平成23年度から令和3年度の間に、フタル酸ビス(2-エチルヘキシル)について0キロ/年度を超える大気排出量のPRTR届出があった事業所のうち、令和3年度の大気排出量が1トンを超える上位3事業所で、令和2年度と比較して排出量が増加した事業所は10事業所、減少した事業所は7事業所であった。

15 フタル酸ビス(2-エチルヘキシル)のリスク管理の現状と今後のあり方(2005年1月)独立行政法人製品評価技術基盤機構フタル酸エステル類リスク評価管理研究会、https://www.nite.go.jp/data/000010068.pdf

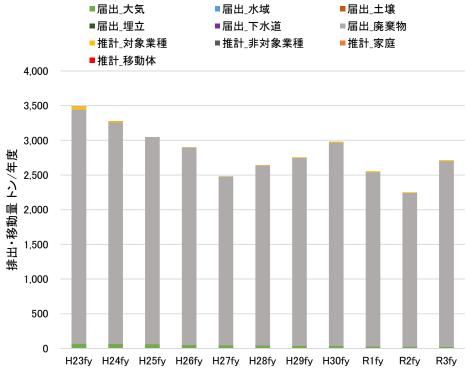


図 2.1.3.3.2-1 フタル酸ビス (2 - エチルヘキシル) の PRTR 制度に基づく排出量・移動量 (トン/年度)

表 2.1.3.3.2-2 フタル酸ビス (2-x チ ル へ キ シ ル) の PRTR 制度に基づく排出量・移動量の経年変化 (トン/年度)

	H23fy	H24fy	H25fy	H26fy	H27fy	H28fy	H29fy	H30fy	R1fy	R2fy	R3fy
推計_移動体	-	-	-	-	-	-	-	-	-	1	-
推計_家庭	-	-	-	-	-	-	-	-	-	1	-
推計_非対象業種	1.4	1.5	1.4	1.2	1.3	-	-	1	-	1	-
推計_対象業種	42	19	3	6	6	7	7	12	12	12	14
届出_廃棄物	3,382	3,195	2,983	2,843	2,429	2,598	2,712	2,932	2,515	2,216	2,679
届出_下水道	0.003	0.003	0.003	0.003	0.019	0.003	0.017	0.018	0.020	0.022	0.026
届出_埋立	0	0	0	0	0	0	0	0	0	0	0
届出_土壤	0.026	0.025	0.019	0.022	0.017	0.018	0.017	0.017	0.013	0.012	0.014
届出_水域	0.18	0.18	0.085	0.099	0.086	0.11	0.062	0.058	0.068	0.069	0.069
届出_大気	66	61	60	49	45	40	37	37	27	24	21

-:推計値なし

(3) モニタリング状況について

化学物質のリスク評価を進める上では、当該物質の環境中における濃度に関する情報を可能な限り収集することが必須である。ここでは、国が実施した大気及び水域の全国モニタリング調査を調査対象として、公開されているデータを入手し、調査状況を整理するとともに、年度ごとのデータをモニタリング地点別に整理した。

1) 大気モニタリングの状況

フタル酸ビス(2-エチルヘキシル)は、有害大気汚染物質に該当する可能性がある物質に選定され、平成 30 年度から毎年大気環境モニタリングが実施されている。PRTR データとの比較をするため、平成 30 年度から令和 3 年度までのモニタリング結果を収集し、整理した。情報源には、環境省が公表している有害大気汚染物質モニタリング調査結果(優先取組物質以外の物質) ¹⁶を使用した。大気のモニタリング結果が公表されていた地点としては、全国で 1 地点のみであった。

2) 水域モニタリングの状況

フタル酸ビス (2-エチルヘキシル)は、平成 16年度に人の健康に保 護に係る項目として公共用水域における要監視項目に選定され、指針値 (0.06 mg/L以下)が設定されている 17。環境基準項目は、水質汚濁防 止法に基づき常時監視(環境モニタリング)が実施される。原則として 1年に1回、環境中濃度が測定され、環境基準値の達成状況の評価等が 行われる。フタル酸ビス(2-エチルヘキシル)については、平成 16 年 度より毎年モニタリング調査が実施されているが、令和3年度までの間、 指針値を超えて検出されていない。ただし、地点ごとの測定データが入 手できなかったため、ここでは整理対象から除外した。一方、フタル酸 ビス (2-エチルヘキシル) は、昭和 49 年度より公共用水域における化 学物質環境実態調査(通称:黒本調査)が不定期に全国規模で実施され ている(直近は令和2年度)。また、この調査と交互して要調査項目等存 在状況調査も、平成17年度から全国規模で不定期に実施されている(直 近は平成30年度)。また、フタル酸ビス(2-エチルヘキシル)の生物に 対 す る 内 分 泌 か く 乱 作 用 (い わ ゆ る 環 境 ホ ル モ ン) が 問 題 と な っ た 平 成 11 年 度 に は 、 水 環 境 中 に お け る 実 態 調 査 が 実 施 さ れ て い る が 、 地 点 ご と の測定データが入手できなかったため、調査対象から除外した。

フタル酸ビス(2-エチルヘキシル)については、入手可能な調査結果が限定されていることから、入手可能な全てのデータを収集整理した。情報源には、環境省が公表している化学物質環境実態調査(昭和 50 年度、昭和 57 年度、平成 8 年度、平成 24 年度、令和 2 年度)及び、要調査項目等存在状況調査(平成 17 年度、平成 30 年度)の結果を使用した。

整理した全ての調査において指針値(0.06 mg/L)を超える地点はなかった。

¹⁶ 有害大気汚染物質モニタリング調査結果(優先取組物質以外の物質)

https://www.env.go.jp/air/osen/monitoring/materials.html

17 水質汚濁に係る人の健康の保護に関する環境基準等の施行等について(通知)
平成 16 年 3 月 https://www.env.go.jp/hourei/05/000107.html

2.1.3.3.3 BHT

(1) 化審法におけるリスク評価の進捗状況

BHTの構造等の情報を表 2.1.3.3.3-1 に示す。リスク評価の進捗状況は、令和 5 年 4 月時点でリスク評価(一次)評価 II 段階(二特非該当・追加情報収集中)(生態影響)である。前回審議時(平成 27 年 7 月)では、平成 22~24 年度の PRTR データが使用された。

化学物質名称(PRTR)	2,6-ジーターシャリーブチルー4ークレゾ							
	ール							
化審法通し番号	64	化審法官報整理番号	3-540, 9-1805					
化管法管理番号	207	化管法政令番号	1-207(H20)					
			1-232(R3)					
構造式	H ₃ C CH ₃ H ₃ C CH ₃ CH ₃ CH ₃							
分子式	C ₁₅ H ₂₄ O							
CAS 登録番号	128-37-	0	·					

表 2.1.3.3.3-1 BHT の構造等の情報

(2) PRTR データの整理

過去 10 年分として平成 24 年度から令和 3 年度までの PRTR 制度に基づく排出量・移動量の経年変化を図 2.1.3.3.3-1 及び表 2.1.3.3.3-2 に示した。

届出・推計を含めた排出量・移動量の中では廃棄物の届出量が 43~64トンと最も多く、各年度で全体の 71~84%を占めた。次に大気排出量が多く、概ね 3~10 トンで推移しており、各年度で全体の 5.4~16%を占め、平成 30 年度以降はほぼ横ばいであった。水域排出量は年間 0.1~0.3トンであり、全体の 0.4%以下であった。

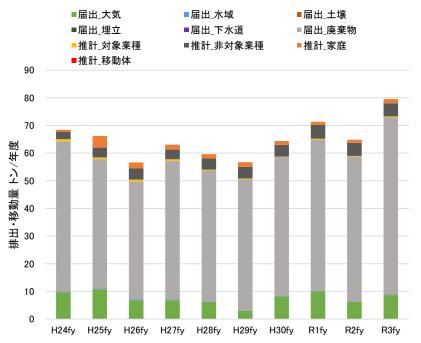


図 2.1.3.3.3-1 BHT の PRTR 制度に基づく排出量・移動量(トン/年度)

表 2.1.3.3.3-2 BHT の PRTR 制度に基づく排出量・移動量の経年変化 (トン/年度)

	H24fy	H25fy	H26fy	H27fy	H28fy	H29fy	H30fy	R1fy	R2fy	R3fy
推計_移動体	-	-	-	-	-	-	-	-	-	-
推計_家庭	0.68	4.1	2.2	1.8	1.6	1.6	1.4	1.2	1.2	1.5
推計_非対象業種	2.7	3.6	4.0	3.5	4.0	4.2	4.2	5.0	4.7	4.7
推計_対象業種	0.73	0.62	0.72	0.58	0.29	0.23	0.12	0.36	0.19	0.30
届出_廃棄物	54	47	43	50	47	47	50	55	52	64
届出_下水道	0.001	0.004	0.011	0.010	0.007	0.009	0.009	0.002	0.003	0.003
届出_埋立	0	0	0	0	0	0	0	0	0	0
届出_土壌	0.001	0.001	0	0	0	0	0	0	0	0
届出_水域	0.24	0.25	0.25	0.20	0.13	0.14	0.13	0.14	0.12	0.21
届出_大気	9.7	11	6.8	6.8	6.2	3.0	8.2	10	6.2	8.6

-:推計値なし

2.1.3.3.4 ビスフェノール A

(1) 化審法におけるリスク評価の進捗状況

ビスフェノール A の構造等の情報を表 2.1.3.3.4-1 に示す。リスク評価の進捗状況は、令和 5 年 4 月時点でリスク評価 (一次) 評価 II 段階 (二特非該当・追加情報収集中) (生態影響) である。前回審議時 (平成 26年 6 月) では、平成 18~23 年度の PRTR データが使用された。

化学物質名称(PRTR)	4, 4, -	4, 4'-イソプロピリデンジフェノール						
	(別名:ビ	(別名:ビスフェノール A)						
化審法通し番号	75	化審法官報整理番号	4-123					
化管法管理番号	37	化管法政令番号	1-037(H20)					
			1-055(R3)					
構造式	но Сн3							
分子式	$C_{15}H_{16}O_{2}$							
CAS登録番号	80-05-7							

表 2.1.3.3.4-1 ビスフェノール A の構造等の情報

(2) PRTR データの整理

過去 10 年分として平成 24 年度から令和 3 年度までの PRTR 制度に基づく排出量・移動量の経年変化を図 2.1.3.3.4-1 及び表 2.1.3.3.4-2 に示した。

届出・推計を含めた排出量・移動量の中では廃棄物の届出量が最も多く、平成 26 年度を除き概ね 100~200 トンで推移しており、各年度で98%以上を占めた。平成 26 年度に一時的にみられた廃棄物届出量の増加は、ほぼ1事業所の廃棄物届出量の増加(平成 25 年度: 22 トン、平成 26 年度: 530 トン)に由来した。大気排出量は平成 25 年度に 1.6 トン、他の年度は年間 0.5 トン以下であった。水域排出量は年間 0.4 トン未満であり、対象期間中に大きな変動はなかった。

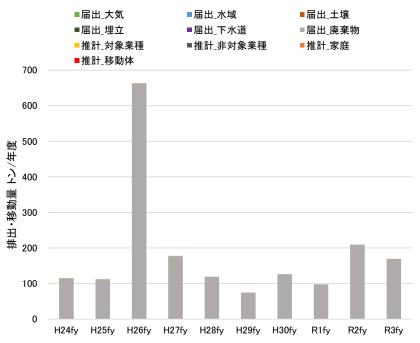


図 2.1.3.3.4-1 ビスフェノール A の PRTR 制度に基づく排出量・移動量 (トン/年度)

表 2.1.3.3.4-2 ビスフェノール A の PRTR 制度に基づく排出量・移動量 の経年変化 (トン/年度)

	H24fy	H25fy	H26fy	H27fy	H28fy	H29fy	H30fy	R1fy	R2fy	R3fy
推計_移動体	-	-	-	-	-	-	-	-	-	-
推計_家庭	-	-	-	-	-	-	-	-	-	-
推計_非対象業種	-	-	-	-	-	-	-	-	-	-
推計_対象業種	0.84	0.57	0.65	0.74	0.59	0.53	0.50	0.17	0.14	0.14
届出_廃棄物	114	110	662	176	118	74	125	97	209	169
届出_下水道	0.54	0.023	0.030	0.32	0.21	0.13	0.17	0.083	0.013	0.016
届出_埋立	0	0	0	0	0	0	0	0	0	0
届出_土壌	0	0	0	0	0	0.005	0	0	0	0
届出_水域	0.21	0.21	0.21	0.25	0.35	0.37	0.38	0.33	0.23	0.24
届出_大気	0.53	1.6	0.41	0.51	0.057	0.066	0.41	0.30	0.13	0.14

-: 推計値なし

2.1.3.3.5 キシレン

(1) 化審法におけるリスク評価の進捗状況

キシレンの構造等の情報を表 2.1.3.3.5-1 に示す。リスク評価の進捗状況は、令和 5 年 4 月時点でリスク評価(一次)評価 I 段階(人健康影響)及び評価 II 段階(生態影響)である。前回の生態影響に係るリスク評価(一次)評価 II 審議時(平成 29 年 3 月)では、平成 24~26 年度の PRTR データが使用された。

		= 1	
化学物質名称(PRTR)	キシレン		
化審法通し番号	125	化審法官報整理番	3-3, 3-60
		号	
化管法管理番号	80	化管法政令番号	1-080(H20)
			1-103(R3)
構造式	H ₃ C CH ₃	CH ₃	
分子式	C_8H_{10}		
CAS登録番号	95-47-6,	106-42-3, 108-38-3, 13	30-20-7

表 2.1.3.3.5-1 キシレンの構造等の情報

(2) PRTR データの整理

過去 10 年分として平成 24 年度から令和 3 年度までの PRTR 制度に基づく排出量・移動量の経年変化を図 2.1.3.3.5-1 及び表 2.1.3.3.5-2 に示した。

届出・推計を含めた排出量・移動量の中では、大気への届出排出量が年間 20,031~30,116 トンであり全体の 34~39%と最も多く、平成 27 年度以降緩やかに減少している。水域排出量は年間 4.2~6.0 トンであり、全体の 0.01%以下であった。排出量全体は平成 29 年度以降緩やかに減少している。

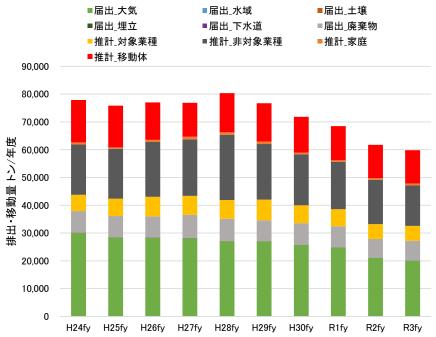


図 2.1.3.3.5-1 キシレンの PRTR 制度に基づく排出量・移動量 (トン/年度)

表 2.1.3.3.5-2 キシレンの PRTR 制度に基づく排出量・移動量の経年変化 (トン/年度)

	H24fy	H25fy	H26fy	H27fy	H28fy	H29fy	H30fy	R1fy	R2fy	R3fy
推計_移動体	15,283	14,996	13,466	12,186	14,095	13,770	12,891	12,277	11,993	11,936
推計_家庭	689	516	735	937	837	900	614	600	595	745
推計_非対象業種	18,151	17,939	19,749	20,346	23,494	19,988	18,326	16,998	15,926	14,507
推計_対象業種	5,846	6,249	6,996	6,800	6,748	7,482	6,437	6,169	5,312	5,323
届出_廃棄物	7,787	7,713	7,643	8,378	8,096	7,534	7,790	7,569	6,833	7,241
届出_下水道	7.5	8.9	10	9.7	6.0	6.4	10	5.6	4.0	4.9
届出_埋立	0	0	0	0	0	0	0	0	0	0
届出_土壤	0	0	0	0	0	0	0	0	0	0
届出_水域	5.5	5.8	6.0	5.4	5.4	4.2	5.0	4.9	5.0	5.7
届出_大気	30,116	28,407	28,380	28,180	27,045	27,022	25,770	24,845	21,066	20,031

2.1.3.3.6 TDI

(1) 化審法におけるリスク評価の進捗状況

TDIの構造等の情報を表 2.1.3.3.6-1 に示す。リスク評価の進捗状況は、令和 5 年 4 月時点でリスク評価(一次)評価 II 段階(二特非該当・追加情報収集中)(人健康)である。前回審議時(令和 2 年 10 月)では、平成 24~28 年度の PRTR データが使用された。

化学物質名称 (PRTR)	トリレンミ	ジイソシアネート	
化審法通し番号	129	化審法官報整理番号	3-2214
化管法管理番号	298	化管法政令番号	1-298(H20)
			1-345(R3)
構造式	OC N	CH ₃ H ₃ C NCO NCO NCO	CH ₃ CH ₃
分子式	$C_9H_6N_2O_2$		·
CAS 登録番号	91-08-7,	584-84-9, 1321-38-6,	14219-05-7,
	26102-02-3	3, 26471-62-5	

表 2.1.3.3.6-1 TDIの構造等の情報

(2) PRTR データの整理

過去 10 年分として平成 24 年度から令和 3 年度までの PRTR 制度に基づく排出量・移動量の経年変化を図 2.1.3.3.6-1 及び表 2.1.3.3.6-2 に示した。

届出・推計を含めた排出量・移動量の中では廃棄物の届出量が年間 53~165 トンと最も多く、各年度で全体の 94%以上を占めた。大気への届出排出量は年間 1.2~3.2 トンであり、平成 30 年度以降は減少傾向にある。水域への届出排出量は平成 24~26 年度まで年間 0.002 トンであり、以降は 0 トンであった。

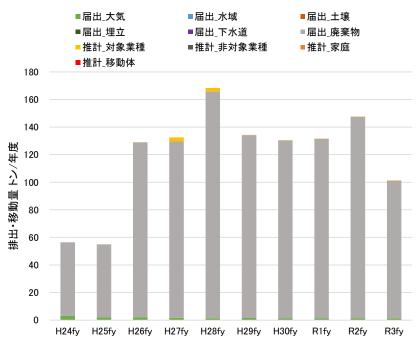


図 2.1.3.3.6-1 TDIの PRTR 制度に基づく排出量・移動量 (トン/年度)

表 2.1.3.3.6-2 TDIの PRTR 制度に基づく排出量・移動量の経年変化 (トン/年度)

	H24fy	H25fy	H26fy	H27fy	H28fy	H29fy	H30fy	R1fy	R2fy	R3fy
推計_移動体	-	-	-	-	-	-	-	-	-	-
推計_家庭	-	-	-	-	-	-	-	-	-	-
推計_非対象業種	-	-	-	-	-	-	-	-	-	-
推計_対象業種	0	0.16	0.16	2.9	2.4	0.22	0.18	0.18	0.16	0.24
届出_廃棄物	53	53	127	128	165	133	129	130	146	100
届出_下水道	0	0	0	0	0	0.018	0.001	0.001	0.001	0
届出_埋立	0	0	0	0	0	0	0	0	0	0
届出_土壌	0	0	0	0	0	0	0	0	0	0
届出_水域	0.002	0.002	0.002	0	0	0	0	0	0	0
届出_大気	3.2	2.0	2.1	1.6	1.4	1.5	1.3	1.3	1.2	1.2

-:推計値なし

2.1.3.3.7 アミンオキシド

(1) 化審法におけるリスク評価の進捗状況

アミンオキシドの構造等の情報を表 2.1.3.3.7-1 に示す。リスク評価の 進 捗 状 況 は 、 令 和 5 年 4 月 時 点 で リ ス ク 評 価 (一 次) 評 価 II 段 階 (生 態 影響)である。化審法優先評価物質通し番号 169 には 12 種の CAS 登録 番号の物質が該当し 18炭素鎖数には幅があるが、平成30年に実施され たリスク評価の進捗報告では、炭素鎖数 12 の CAS「1643-20-5」が化審 法届出における出荷量の大半を占めると記載されている ¹⁹。当該物質は、 化 管 法 で も 第 一 種 指 定 化 学 物 質 「 N , N - ジ メ チ ル ド デ シ ル ア ミ ン = N - オキシド」として指定されており 19,20、以降に示す PRTR 届出情報は 当該物質のものである。前回審議時(平成30年3月)では、平成22~ 26 年度の PRTR データが使用された。

公 2.1.3.3.7 1 / (
化学物質名称	$N, N-\widetilde{\upsilon}$ メチルドデシルアミン= $N-$ オキシド						
(PRTR)							
化審法通し番号	169	化審法官報整理番号	2-198				
化管法管理番号	224	化管法政令番号	1-224(H20)				
			1-253(R3)				
構造式	CH ₃ - + (CH ₂) ₁₁ CH ₃ CH ₃						
分子式	$C_{14}H_{31}NO$	·					
CAS登録番号	1643-20-5						

表 2.1.3.3.7-1 アミンオキシドの構造等の情報

(2) PRTR データの 整理

過去 10年分として平成 24年度から令和3年度までの PRTR 制度に基 づく排出量・移動量の経年変化を図 2.1.3.3.7-1 及び表 2.1.3.3.7-2 に示し

届出・推計を含めた排出量・移動量の中では家庭からの推計排出量が 年間 531~1,028 トンと最も多く、各年度で全体の 65~89% を占めた。 水域への届出排出量は年間 0.8~2.2 トン、全体の 0.1~0.3%であり、令 和 2 年 度 以 降 は 減 少 傾 向 に あ る 。 大 気 へ の 届 出 排 出 量 は こ の 期 間 中 0.1

https://www.nite.go.jp/chem/jcheck/list5.action?category=230&tno=169&request 1

https://www.meti.go.jp/policy/chemical management/law/pdf/211015reflist.pdf

¹⁸ 独立行政法人製品評価技術基盤機構 化審法データベース(J-CHECK)優先評価 物質 169 検索結果より引用

ocale=ja (2024/2/28 調査)

19 優先評価化学物質「N, N-ジメチルア 1 ルカン-1-アミン=オキシド 価 (一次) 評価IIの進捗報告 p1, p3

https://www.meti.go.jp/policy/chemical management/kasinhou/files/information/ra /180323 No.169 01 progress report.pdf

²⁰ 化管法管理番号リスト(2024/2/28調査)

トン未満であった。

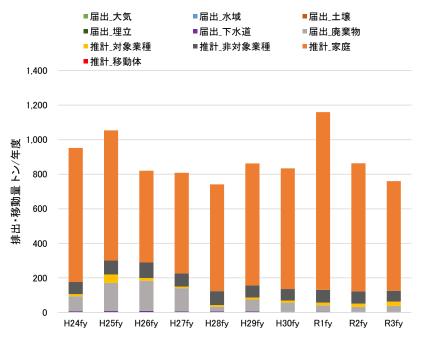


図 2.1.3.3.7-1 アミンオキシドの PRTR 制度に基づく排出量・移動量 (トン/年度)

表 2.1.3.3.7-2 アミンオキシドの PRTR 制度に基づく排出量・移動量の 経年変化 (トン/年度)

	H24fy	H25fy	H26fy	H27fy	H28fy	H29fy	H30fy	R1fy	R2fy	R3fy
推計_移動体	-	-	-	-	-	-	-	-	-	-
推計_家庭	776	753	531	582	618	707	698	1,028	740	635
推計_非対象業種	70	80	89	76	80	69	66	74	72	62
推計_対象業種	12	49	16	9	10	11	12	16	19	25
届出_廃棄物	86	163	175	135	26	69	53	37	29	35
届出_下水道	6.3	7.1	6.9	3.8	5.1	5.6	3.1	2.9	2.6	2.4
届出_埋立	0	0	0	0	0	0	0	0	0	0
届出_土壌	0	0	0	0	0	0	0	0	0	0
届出_水域	1.3	1.1	2.2	2.1	1.9	1.0	0.81	1.6	1.1	1.0
届出_大気	0.018	0.048	0.048	0.064	0	0	0	0	0.003	0.017

-:推計値なし

2.1.3.3.8 デカン-1-オール

(1) 化審法におけるリスク評価の進捗状況

デカンー1ーオールの構造等の情報を表 2.1.3.3.8-1 に示す。リスク評価の進捗状況は、令和5年4月時点でリスク評価(一次)評価 II 段階(二特非該当・追加情報収集中)(生態影響)である。優先評価化学物質通し番号 170 は直鎖で末端の炭素の位置に水酸基があるものに限られるのに対して、化管法対象物質は炭素鎖が分岐鎖・直鎖の区別なく、水酸基の位置に特定はないことから、化管法対象物質の方が対象となる物質の範囲が広く ²¹、以降に示す PRTR 届出情報は優先評価化学物質通し番号 170 以外の物質の届出情報も含む。前回審議時(平成 29 年度 11 月)では、平成 22~27 年度の PRTR データが使用された。

Z Transfer T , , , , and T T , and T T T T T T T T T T T T T T T T T T T						
化学物質名称	アルカノール(炭素数が10のものに限る。)(別					
(PRTR)	名:デカノール)					
化審法通し番号	170	化審法官報整理番号	2-217			
化管法管理番号	257	化管法政令番号	1-257(H20)			
			1-034(R3)			
構造式	н _з с он					
но(сн ₂) ₅ сн ₃ etc.						
分子式	C ₁₀ H ₂₂ O, Unspecified					
CAS登録番号	112-30-1, 36729-58-5, 66455-17-2, 67762-41-8,					
	68551-07-5, 68603-15-6, 93821-11-5, 160611-14-3					

表 2.1.3.3.8-1 デカン-1-オールの構造等の情報

(2) PRTR データの整理

過去 10 年分として平成 24 年度から令和 3 年度までの PRTR 制度に基づく排出量・移動量の経年変化を図 2.1.3.3.8-1 及び表 2.1.3.3.8-2 に示した。

届出・推計を含めた排出量・移動量の中では非対象業種の推計排出量が最も多く、平成24~令和2年度までは年間84~116トンで全体の57~70%を占め、令和3年度は前年度の94トンから180トン(全体の79%)に増加した。非対象業種の推計排出量は、ほぼ農薬(畑に使用)に係る届出外排出量であるが、令和3年度において排出量が推計された35都道府県のうち31都道府県において、農薬に係る届出外排出量は前年度の1.2~2.8倍であった。同年には対象物質(デシルアルコール)を含む

²¹ 優先評価化学物質のリスク評価 (一次) 生態影響に係る評価Ⅱ リスク評価書簡易版 デカン-1-オール p8

 $[\]frac{https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=29229\&ppk=581\&kin_ou=370\&type=ja$

植物成長調整剤の新規農薬登録 ²² や既存農薬の適用拡大登録 ²³ が実施されており、推計に影響した可能性がある。次に廃棄物の届出量が多く、年間 47~70 トンで全体の 21~42%を占めた。大気への届出排出量は年間 0.3~0.8 トン、全体の 0.2~0.5%でほぼ横ばいであった。水域への届出排出量は年間 0.1 トン未満~0.24 トン、全体の 0.1%未満~0.2%であったが、排出量が年間 0.1 トン未満であった平成 24~26 年度に比べ、27 年度以降は排出量が増加している。

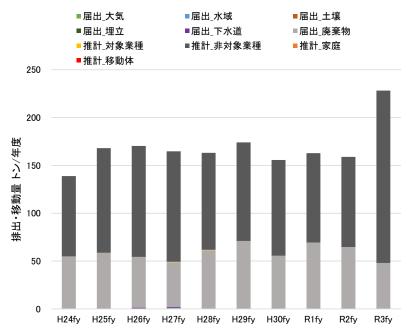


図 2.1.3.3.8-1 デカン-1-オールの PRTR 制度に基づく排出量・移動量 (トン/年度)

²² 農薬登録情報提供システム、登録番号 24510

https://pesticide.maff.go.jp/agricultural-chemicals/details/24510

²³ 植物成長調節剤「イエローリボン S」適用拡大登録に関するお知らせ https://ssl4.eir-parts.net/doc/4952/announcement3/67962/00.pdf

表 2.1.3.3.8-2 デカン-1 - オールの PRTR 制度に基づく排出量・移動量の経年変化(トン/年度)

	H24fy	H25fy	H26fy	H27fy	H28fy	H29fy	H30fy	R1fy	R2fy	R3fy
推計_移動体	-	-	-	-	-	-	-	-	-	-
推計_家庭	-	-	-	0.001	0.001	0.001	0	0	0	0
推計_非対象業種	84	109	116	115	101	103	100	93	94	180
推計_対象業種	0.008	0.001	0	0.35	0.38	0.010	0.009	0.015	0.019	0.019
届出_廃棄物	54	58	53	47	61	70	55	69	64	47
届出_下水道	0.002	0.001	0.89	0.98	0.037	0.032	0.038	0.048	0.048	0.068
届出_埋立	0	0	0	0	0	0	0	0	0	0
届出_土壤	0	0	0	0	0	0	0	0	0	0
届出_水域	0.049	0.022	0.019	0.12	0.24	0.18	0.24	0.23	0.17	0.16
届出_大気	0.33	0.48	0.47	0.77	0.41	0.45	0.44	0.42	0.43	0.45

-: 推計値なし

2.1.3.4 PRTR データを用いた事業所周辺への拡散状況の推計

化審法リスク評価 (一次) 評価 II 及び評価 III の結果として、引き続き排出状況等を把握することが課された二硫化炭素、ヒドラジン、1,2-ジクロロエタンの3物質について、経済産業省-低煙源工場拡散モデル(METI-LIS) を用いて、大気中の濃度の推計等を行った。また、モデルに入力する大気排出量を減少させて大気中濃度を推計し、排出量減少による大気中濃度の低減効果を調査した。推計に用いたデータ、条件は表2.1.3.4.1-1 のとおりである。

PRTR 情報については、経産省 Web サイトより事業者から届出された個別事業所データ(化学物質の排出量・移動量)をダウンロードし、同Web サイトから入手した PRTR データ集計ソフト「PRTR けんさくん」を用いて PRTR データを集計した。また、大気排出量が多い事業所の直近5年間の PRTR データを事業所ごとに集計し、大気排出量の経年変化を整理した。

表 2.1.3.4-1 濃度推計に用いたパラメータ

項目	項目詳細	入力条件
排出量	令和3年度 PRTR 届出データ	各事業場の大気への排出量
	及びその 1/2、1/4、1/6、1/8、	[mg/h]に換算。
	1/10 の 6 条件	
気象デー	気象庁気象データ((一社)産	(平成 28年4月1日~平成 29年
タ	業環境管理協会 Web サイト	3月31日の気温、風向・風速、
	²⁴ から入手したデータ)	日照率、日照量データ)
稼働パタ	終日稼働、休日の設定なし	-
ーン		
発 生 源	煙 突 高 さ	20 m ^{*, **} (点源の位置は事業所中
(点源)		央とした。)
建屋	工場建屋高さ	10 m*(建屋形状:敷地が広大な場
		合は中央部の建屋を長方形で、建
		屋が限られる場合は、全体をカバ
		ーする長方形とした。)
	標高	各事業所の標高
	地理院地図で断面図ツールを	
	用いて工場敷地の標高データ	
	を出力し、平均値を算出。敷	
	地境界は事業所 Web サイト又	
	は地図上で確認した。	
計算点	グリッド	100 m×100 m**
	計算点高さ	1.5 m**

- *: 一般社団法人 産業環境管理協会の Web サイトで公開されている「取扱に関する動画」で使用されている値をデフォルト値として採用した。 (http://www.jemai.or.jp/tech/meti-lis/download.html)
- **: みずほ情報総研、経済産業省委託事業 化学物質管理セミナー キャラバン 2017 「METI-LIS ver3.4 使用手順書」で使用されている値をデフォルト値として採用した。(http://www.meti.go.jp/policy/chemical_management/law/inform_ation/seminar2017/caravan2017_sds_01.pdf)

2.1.3.4.1 二硫化炭素

(1) PRTR 届出排出量の傾向

二硫化炭素は平成 30 年 9 月にリスク評価 II の審議が行われ、「環境の汚染により広範な地域での人の健康及び生活環境動植物の生息若しくは生育に係る被害を生ずるおそれがあるとは認められないと考えられる」とされたが、PRTR 情報を用いたリスク評価の結果、暴露濃度が有害性評価値を超えた地点が確認されたことから、PRTR 情報による排出量上位事業者に対して自主的な取組を促すこと等とされるとともに、その結果による排出状況の改善や、生態影響についてはリスク懸念地点の水質モニタリングデータを確認した上で、優先評価化学物質の指定の取消しを行うものとするとされた 25。

https://www.jemai.or.jp/tech/meti-lis/download.html

²⁴ 一般社団法人産業環境管理協会, METI-LIS モデルプログラム,

F生労働省、経済産業省、環境省 (2018) リスク評価 (一次) 評価IIにおける 二硫化炭素の評価結果について (人健康影響及び生態影響)、平成 30 年度第 5 回薬事・食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会 平成 30 年度化学物質審議会第 2 回安全対策部会 第 187 回中央環境審議会環境保健部会化学物質審査小委員会、https://www.meti.go.jp/policy/chemical_management/kasinhou/files/information/ra/180921 No.1 01 summary.pdf

二硫化炭素は主に大気へ排出されている。直近5年間の大気への合計 排出量は、横ばい又は減少傾向である。二硫化炭素については上位3事 業所を対象とした。

(2) 工場周辺大気中二硫化炭素濃度の推計方法

推計結果は二硫化炭素の吸入経路(呼吸)における腓骨運動神経伝導速度の低下を指標とした有害性評価値(0.054 mg/m³) を超える地域を地図上に赤色で表示した。

(3)推計結果

3事業所とも、事業所の半径1kmより離れた場所においても、有害性評価値を超える場所が確認された。また、二硫化炭素の排出量が1/10となっても敷地外の最高濃度が有害性評価値を下回らないが、排出量が1/4未満程度となれば懸念地域面積が1km²未満となると推計された。

2.1.3.4.2 ヒドラジン

(1) PRTR 届出排出量の傾向

ヒドラジンは平成 29 年 1 月にリスク評価 II の審議が行われ、PRTR 排出量を用いて暴露評価が行われリスク懸念箇所が複数確認されたが、大気の環境モニタリングは行われていないこと、現在の暴露評価モデルがヒドラジンのような解離性を有する物質の動態を考慮しきれていないこと等から、排出実態の把握、環境中濃度の調査、暴露評価モデルの検討等を行った上で、評価 III の再評価が行われることとなった ²⁶。

ヒドラジンは大気及び水域に排出されている。直近5年間の大気への合計排出量は、横ばい又は減少傾向である。ヒドラジンについては上位3事業所を対象とした。

(2) 工 場 周 辺 大 気 中 ヒ ド ラ ジ ン 濃 度 の 推 計 方 法

推計結果はヒドラジンの吸入経路(呼吸)における発がん性を指標とした有害性評価値($9.8\times10^{-6}~mg/m^3$) を超える地域を地図上に赤色で表示した。

(3)推計結果

3事業所とも、事業所の半径 1 km より離れた場所においても、有害性評価値を超える場所が確認された。ヒドラジンの排出量が 1/10 となっても敷地外の最高濃度が有害性評価値を下回らないが、排出量が $1/2\sim1/8$ 未満程度となれば懸念地域面積が 1 km^2 未満となると推計された。

²⁶ 厚生労働省、経済産業省、環境省 (2017) 優先評価化学物質「ヒドラジン」人健康影響及び生態影響に係るリスク評価 (一次) 評価 II の進捗報告、平成 30 年度第5 回薬事・食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会 平成 30 年度化学物質審議会第2 回安全対策部会 第187 回中央環境審議会環境保健部会化学物質審査小委員会、https://www.meti.go.jp/policy/chemical_management/kasinhou/files/information/ra/20170131 01 00.pdf

2.1.3.4.3 1,2 - ジクロロエタン

(1) PRTR 届出排出量の傾向

1,2-ジクロロエタンは令和4年9月にリスク評価 II の審議が行われ、「現在得られる情報・知見の範囲では、環境の汚染により人の健康に係る被害を生ずるおそれがないとはいえないと考えられる」とされたが、PRTR 排出量を用いた暴露評価で確認されたリスク懸念地点周辺の環境モニタリングが行われていないため、「評価 II の判断の根拠に足る暴露評価結果が得られていない」と判断された。このため、PRTR 排出量上位事業者に対してリスク評価の状況を周知しつつ、環境モニタリングによる実測データ収集等を検討することとされた 27。

1,2-ジクロロエタンは主に大気へ排出されている。直近5年間の大気への合計排出量は横ばい又は減少傾向である。1,2-ジクロロエタンについては上位7事業所を対象とした。

(2) 工場周辺大気中1,2ージクロロエタン濃度の推計方法

推計結果は $1,2-ジクロロエタンの吸入経路(呼吸)における発がん性を指標とした有害性評価値(<math>1.6\,\mu g/m^3$)を超える地域を地図上に赤色で表示した。

(3)推計結果

7事業所とも、事業所の半径 1 km より離れた場所においても、有害性評価値を超える場所が確認された。また、4事業所については、1,2-ジクロロエタンの排出量が 1/10 となっても敷地外の最高濃度が有害性評価値を下回らないが、排出量が 1/2~1/8 未満程度となれば懸念地域面積が 1 km²未満となると推計された。1事業所は、1,2-ジクロロエタンの排出量が 1/10 となれば敷地外の最高濃度が有害性評価値を下回り、排出量が 1/4 未満程度となれば懸念地域面積が 1 km²未満となると推計された。2事業所は、1,2-ジクロロエタンの排出量が 1/6 となれば敷地外の最高濃度が有害性評価値を下回り、排出量が 1/2 未満程度となれば懸念地域面積が 1 km²未満となると推計された。

²⁷ 厚生労働省、経済産業省、環境省 (2022) リスク評価 (一次) 評価 II における 1,2-ジクロロエタンの評価結果について (人健康影響)、令和4年度第5 回薬事・食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会 令和4年度化学物質審議会第2回安全対策部会 第227回中央環境審議会環境保 健部会化学物質審査小委員会、https://www.meti.go.jp/policy/chemical_managem ent/kasinhou/files/information/ra/220916 No.11 01 summary.pdf

2.1.4 第二種特定化学物質指定検討物質を含む製品等の取扱実態について

2.1.4.1 はじめに

令和5年9月15日に開催された3省合同審議会において、NPEを第二種特定化学物質に指定するとともに、NPE及びNPEが使用されている製品(以下、「NPE含有製品」という)の取扱事業者に対して講じる措置及び対応が検討された。

この検討を行うため、令和 5 年 3 ~ 4 月に、経済産業省にて化審法届出事業者と PRTR 届出事業者を合わせた約 200 事業者、関係団体約 30 団体を通じて、NPE 取扱いに係る実態調査を行い、約 250 事業者から回答が得られた。

本事業においては、本 NPE 取扱い実態調査の回答を集計し、NPE 含有製品等の取扱実態、NPE 取扱事業者の排水処理実態の整理を行った。また、公表されている統計情報を用いた NPE 含有水系洗浄剤輸入量の推計及び輸入製品の調査、NPE 第二種特定化学物質指定に係る技術上の指針の検討にあたる情報整理を行った。

2.1.4.2 NPE 含有製品等の取扱実態等について

NPE 取扱いに係る実態調査では、NPE の取扱い用途として、水系洗浄剤、塗料・インキ、プラスチック添加剤・ゴム添加剤・接着剤及び合成繊維処理剤等がある旨回答があった。その内、取扱い用途が特に多かった水系洗浄剤と塗料についての概要は以下のとおり。

(1) 水系洗净剂用途

NPE 含有水系洗浄剤の原料を製造している事業者からは、製造時に出る高濃度の NPE 廃液を廃棄物として処理する等しており排水として NPE を環境中には排出していないとの回答があった。

NPE 含有水系洗浄剤の製造、又は NPE 含有水系洗浄剤の使用者には、一部、公共用水域への排出を行っていると回答をした者もいたが、その中には、排水処理として生物処理法を用いている者も含まれた。

(2)塗料用途

NPE 含有乳化剤を製造している事業者からは、製造時に出る高濃度のNPE 廃液を廃棄物として処理する等しており、排水として NPE を環境中には排出していないとの回答があった。

NPE 含有塗料原料・塗料の製造、また塗料を使用する事業者には、公共用水域への排出を行っていると回答をした者もいたが、その中には、排水処理として生物処理法を用いている者も含まれた。

塗料は塗装、乾燥されると塗布面で固化し塗膜となる。NPE は水系塗料のアクリルエマルジョン樹脂を乳化させるために使われているとの回答があったが、塗料を乾燥させると水の蒸発とともに、樹脂同士が融着し、最終的に均質な塗膜が形成される。乳化剤は樹脂粒子から遊離、溶

出するものもあるが、重合性も併せ持ち粒子と一体化するものの利用が普及しているとされている ²⁸。実際に国内でも NPE を原料とした重合性乳化剤が販売されている。

なお、化審法届出で NPE 取扱いの主要な用途の 9 割を占める用途について、NPE 取扱事業者の排水処理実態を整理したところ、公共用水域又は下水道に排水を排出している事業者は約 60 事業者であった。このうち、生物処理を行って公共用水域に排出、廃棄物として処理、下水道にのみ排出している事業者は 50 事業者 (82%) であった。

2.1.4.3 NPE 含有水系洗浄剤輸入量の推計及び輸入製品の調査

一般消費者が Web サイト、ホームセンター等で購入できる洗浄剤の輸入製品に、NPE が含有されているものがないか確認した。洗浄剤としては、洗濯用洗浄剤、住宅用洗浄剤、自動車用洗浄剤、業務用洗浄剤を調査した。また、統計データを用いた NPE 含有水系洗浄剤輸入量の推計も行った。

(1) 国内で販売されている海外メーカー製の洗濯用洗浄剤の成分確認大手のショッピングサイトに掲載されている海外製の洗濯用洗剤、柔軟剤等について、成分を確認した。海外製品の国内シェアについては、Webの売れ筋ランキング等を整理した。成分は、海外メーカーのWebサイト等から成分一覧又は、SDSに記載されている情報を調査した。また、海外製品を多く取り扱うスーパーマーケットの製品も調査した。

統計情報は確認できていないが、Web サイト上の情報では売れ筋商品の上位はいずれも国内メーカーであった。海外製品のシェアはそれほど大きくないと考えられる。

大手のショッピングサイトに掲載されている海外製の洗濯用洗剤、柔軟剤等を調査したところ、少なくとも 10 社 49 製品が確認された。一部商品については、国内事業者の販売 Web サイトがあったため、そちらの情報を収集した。全ての製品において、NPE の含有は確認されなかった。

(2) 国内で販売されている海外メーカー製の住宅用洗浄剤の成分確認大手のショッピングサイトに掲載されている海外製の住宅用洗剤(食器用、トイレ用、浴室用、床用等)について、成分を確認した。海外製品の国内シェアについては、Webの売れ筋ランキング等を整理した。成分は、海外メーカーのWebサイト等から成分一覧又は、SDSに記載されている情報を調査した。また、海外製品を多く取り扱うスーパーマーケットの製品も調査した。

統計情報は確認できていないが、Webサイト上の情報では、食洗器用

36

²⁸ 川口春馬. (2005). 乳化重合. 日本画像学会誌, 44(5), 369-374. https://www.jstage.jst.go.jp/article/isj/44/5/44 5 369/ pdf/-char/ja

の洗剤、浴室、トイレ、排水口、ガラス、床用の洗剤の売れ筋商品の上位に海外メーカーが入っていた。洗浄剤の種類によっては、海外製品のシェアは大きい可能性がある。

大手のショッピングサイトに掲載されている海外製の住宅用洗剤を調査したところ、少なくとも 10 社 62 製品が確認された。Web で公開されている情報から成分を確認したところ、全ての製品において NPE の含有は確認されなかった。

(3) 国内で販売されている海外メーカー製の自動車用洗浄剤の成分確 認

カーケア製品市場の分析レポートでピックアップされているメーカーについて、国内の一般消費者が容易に入手できるルートがある製品の成分を、Webで公開されている SDS により確認した。

統計情報は確認できていないが、公表されている自動車用洗浄剤の売上を基にしたランキングでは、海外製品は1社のみが上位であり、海外製品のシェアはそれほど大きくないと考えられる。

10 社 41 製品について、Web で公開されている情報から、成分を確認したところ、全ての製品において、NPE の含有は確認されなかった。

(4) 国内で販売されている海外メーカー製の業務用洗浄剤の成分確認大手のショッピングサイトに掲載されている海外製の業務用洗浄剤について、成分を確認した。海外製品の国内シェアについては、Webの売れ筋ランキング等を整理した。成分は、海外メーカーのWebサイト等から成分一覧又は、SDSに記載されている情報を調査した。また、海外製品を多く取り扱うスーパーマーケットの製品、ビルメンテナンス用洗浄剤の輸入代理店の製品、海外清掃機具メーカーの占用洗浄剤も調査した。

清掃業等で用いられる業務用洗浄剤の統計情報は確認できていないが、「世界の業務用清掃機器の市場規模は 100 億ユーロ(約 1 兆 3000 億円)ほどだ。その中で日本市場は米国、中国に次いで 3 番目の大きさを持つ。日本では国内勢や海外勢など様々な清掃機器メーカーが競争している」 ²⁹と言及のある記事があり、海外メーカーのシェアもそれなりにあると考えられる。

6 社 57 製品について、Web で公開されている情報から、成分を確認したところ、全ての製品において、NPE の含有は確認されなかった。

²⁹ 日本経済新聞 (2022) ケルヒャージャパン社長「清掃業を DX」 AI で最適化. https://www.nikkei.com/article/DGXZQOUC25DWW0V21C21A1000000/

(5) 統計データを用いた NPE 含有水系洗浄剤輸入量の推計

NPE含有水系洗浄剤を含む統計品目の国内販売量を経済産業省生産動態統計調査 ³⁰の結果から、NPE含有水系洗浄剤を含む統計品目の輸入量及び輸出量を財務省貿易統計 ³¹から調査し、次式を用いて国内使用量に対する輸入量の割合を算出した。

NPE 含有水系洗浄剤を含む統計品目の国内使用量 = 生産動態統計の販売量+貿易統計輸入量-貿易統計輸出量

NPE 含有水系洗浄剤を含む統計品目は、生産動態統計と貿易統計で定義が異なっているため、両者を比較し、対象製品が整合するように選定した。比較結果を表 2.1.4.3-1 及び 2.1.4.3-2 に示す。

³⁰ 経済産業省. 生産動態統計調査確報.

https://www.meti.go.jp/statistics/tyo/seidou/result/ichiran/08 seidou.html

³¹ 財務省. 貿易統計, 貿易統計検索ページ, 統計品別表. https://www.customs.go.jp/toukei/srch/index.htm?M=29&P=0

表 2.1.4.3-1 生産動態統計品目と貿易統計品目の比較による NPE 含有の可能性のある品目の特定 (1)

	生産動態	統計					貿易統計						
(6171) 油脂製品	、石けん・合成洗剤等及び界面活	性剤	34類 せっけん、有機界面活性剤、洗剤、調製潤滑剤、人造ろう、調製ろう、 磨き剤、ろうそくその他これに類する物品、モデリングベースト、 歯科用ワックス及びブラスターをもととした歯科用の調製品										
脂肪酸	直分脂肪酸	動植物油脂を直接分解した脂肪酸及び動植物油	-	 -	 -	<u> </u>							
	硬化脂肪酸	脂に水素添加した硬化油を分解した脂肪酸 「直分脂肪酸」のうち油脂を硬化分解した脂肪酸、また、未硬化の「直分脂肪酸」に水素添加 したもの		-	-	-	-						
	分別・分留脂肪酸	脂肪酸のアルキル基組成を分別、分留などにより意図的に変えたもの。例えば、オレイン酸、ステアリン酸、ラウリン酸、カプリン酸、ミリスチン酸、パルミチン酸、ベヘン酸などが主成分となるように調整した脂肪酸		-	-	-							
<u>精製グリセリン</u> 石けん	浴用・固形	<u>粗製グリセリンを蒸留(精製)したもの。</u> 固形の浴用石けん・化粧石けんで、薬用、透明、浮石けんなどを含みます	3401	- せつけん、有機界面活性剤 及びその調製品(せつけん として使用するもので、棒 状にし、ケーキ状にし又は 成型したものに限るものと	3401. 11	キ状にし又は成型したものに限る。)並びにせつけん又は洗 浄剤を染み込ませ、塗布し又は被覆した紙、ウォッディン	- これらには、化粧用又は洗浄用の物品及び調製品で、活性成分の全部又は一部が合成界面活性剤であるもの(せつけんの含有率を問わない。)を含む。ただし、これらは、棒状にし、ケーキ状にし又は成型したもの(すなわち、同様の用途に供するせつけんの普通の形状のもの)に限る。また、この種の物品には、上記の物品に、砂、シリカ、軽石粉等を加えて研磨性を与えた物品及び調製品を含むが、これも上記の形状にしたものに限られる。						
	手洗用・液体	手洗用のカリ石けんなど(ベースト状その他を			3401. 19	日の せつけん、有機界面活性剤及びその調製品(棒状にし、ケーキ状にし又は成型したものに限る。)並びにせつけん又は洗浄剤を染み込ませ、塗布し又は被覆した紙、ウォッディング、フェルト及び不織布 その他のもの							
	その他の石けん	上記以外の石けん。洗濯用、工業用(固形、液状を問わず、ゴム、合成樹脂、金属仕上げ(伸線用)、潤滑油、沈澱防止などの工業用及び網の精練、原毛洗浄など繊維工業で用いられる石けん。農薬展着剤用など。)、台所用、特殊用途用(研磨剤入り石けん)など。		るもので、流状又はたり、はかり、はなり、はなり、はなり、はなり、はなり、はないでから、はないでは、ないでは、ないでは、からない。) 剤を発養した紙、ウォッ様布 と マディン を がった マディン なび不 様布	3401. 20	せっけん(その他の形状のもの)	これらには、せつけん又は洗浄剤を染み込ませ、塗布し又は被覆した紙、ウォッティング、フェルト及び不職布を含む(芳香を付けてあるかないか又は小売用のものであるかないかを問わない。)。これらは通常、手又は顔の洗浄に使用する。上記の除外例のほか、この項には、次の物品を含まない。 (a) ソープストック (15.22) (b) カルシウムせっけんその他の金属せっけんのように、化学的な意味においてはせっけんに属するにもかかわらず水に不溶性の物品及び調製品 (場合により 29 類、30 類、38 類等)(c) 紙、ウォッディング、フェルト及び不総布で単に芳香を付けたもの(33 類)(d) シャンプー(33.05) 及び歯磨き(33.06) (e) 34.02 項の有機界面活性剤(せっけんを除く。)、調製界面活性剤及び調製洗剤(せっけんを含有するかしないかを問わない。)並びにせっけんを有機溶剤に溶かし又は分散したもの。 (f) せっけん又は洗浄剤を染み込ませ、塗布し又は被覆した多泡性のプラスチック、多泡性のゴム、紡織用繊維(ウォッディング、フェルト及						
洗顔・ボディ用身	体洗浄剤	上記の石けんに分類されない身体洗浄剤 (「化 粧品月報」の洗顔クリーム・フォームに記入される製品は除いてください)			3401.30		パス絵本を除く						
合成洗剤	洗濯用・粉末洗濯用・液体・中性	家庭用品品質表示法に従い品質表示された家庭 用合成洗剤(洗濯用、台所用、住宅又は家具 用)及び業務用合成洗剤。洗濯に使用される身 末のもの。高密度品(コンパクトタイプ)を含 む。 家庭用品品質表示法に従い品質表示された家庭 用合成洗剤(洗濯用、台所用、住宅又は家具		有機界面活性剤(せつけんを除く。)並収1調製界面活性剤、調製洗剤、調製洗剤、調製洗剤、調製洗剤、調製洗剤、調製洗剤のはサウけんを含すするかしないかを問わるいものといいま34、01項のものを除	3402. 50. 090	調製品(小売用にしたものに限る。) 2 その他のもの	(B) 調製洗剤、補助的調製洗剤及び清浄用調製品(せっけん又はその他の有機界面活性剤をもととしたものに限る。) この節囲の物品には、調製洗剤、補助的調製洗剤及びある種の清浄用調製品を含む。これら各種の調製品は、一般に本質的な構成成分及び一以上 の副次的な構成成分を含有する。そして、この副次的な構成成分の存在により、この種の物品を上記(A)に記載されている物品と特に区別する ことができる。本質的な構成成分は、合成有機界面活性剤、せっけん又はこれらの混合物である。副次的な構成成分は、次のような物品である。 (1) ピルダー (例えば、ポリりん酸ナトリウム、炭酸ナトリウム、けい酸ナトリウム、ほう酸ナトリウム、ニトリロ三酢酸 (NTA) の塩) (2) ブースター (例えば、アルカノールアミド (alkanolamides)、脂肪酸アミド、脂肪族アミンオキシド) (3) 増量剤(例えば、硫酸ナトリウム、塩化ナトリウム)						
	洗濯用・液体・中性以外のもの	用)及び業務用合成洗剤。洗濯に使用される粉末のもの。洗濯用に使用される液体(ベースト状子の他を含む)のもののうち中性のもの。家庭用品品質表示法に従い品質表示された家庭用合成洗剤(洗濯用、台所用、住宅又はな家具用)及び業務用合成洗剤。洗濯に使用される粉末のもの。洗濯用に使用される液体(ベースト		(·)			(4) 補助剤(例えば、漂白剤、蛍光白色染料、沈殿防止剤、腐食防止剤、静電防止剤、着色料、香料、殺菌剤及び酵素) これらの調製品は、物の表面に付いているよごれを溶液又は分解液の状態にする働きをもつ。界面活性剤をもととした調製洗剤は"detergent"とも称される。この種の調製品は衣類、食器類又は合所用品の洗浄に使用する。これらの物品は、液状、粉状又はペースト状であり、家庭用又は工業用に供する。棒状にし、ケーキ状にし又は成型した化粧用又は洗浄用の物品は、34.01 項に属する。補助的調製洗剤は、衣類、家庭用リネン等の浸せき(前洗い)、ずすぎ又は混白に使用する。清浄用調製品は、床、客その他の表面の清浄に使用する。この種の物品には少量の香気性物質を含有するものもある。(C) せっけんその他の有機界面活性剤をもととしない清浄用調製品又は調製除脂剤。						
	台所用	状その他を含む)の上記以外のもの。 家庭用品品質表示法に従い品質表示された家庭 用合成洗剤(洗濯用、台所用、住宅又は家具 用)及び業務用合成洗剤。洗濯に使用される粉 末のもの。食器、野菜、果実などに使用される もの。高濃度品を含む。					これらの物品には次の物品を含む。 (i)酸又はアルカリ洗浄剤は、衛生用備付品、フライパン等の清浄のために特に処方されたものである。これらは、例えば、硫酸水素ナトリウム又は次亜塩素酸ナトリウムとオルトりん酸三ナトリウムとの混合物を含有している。 (ii)酪農業又はビール醸造業等において使用する調製除脂剤及び清浄用調製品で、次の物質をもととするもの炭酸ナトリウム、かせいソーダその他のアルカリ性物質をもととするもの又は溶剤及び乳化剤をもととするものこの種のものには、少量のせっけんその他の界面活性剤を含有するものがある。この項には、次の物品を含まない。						
		家庭用品品質表示法に従い品質表示された家庭用合成洗剤(洗濯用、台所用、住宅用され家具用)及び業務用合成洗剤。洗濯に使用される粉末のもの。ガスレンジ、床、家具、ガラス、浴室、ホウロウ、ブラスチック製品などに使用されるもの。					(a) シャンプー及びフォームバス用調製品(せつけんその他の界面活性剤を含有しているかいないかを問わない。) (33 類) (b) 洗浄剤を染み込ませ、塗布し、被覆した紙、ウォッディング、フェルト及び不織布 (34.01) (c) 界面活性剤を含有する調製品で、界面活性作用を必要としないもの又は界面活性作用が補助的なもの(場合によって、34.03、38.08、38.09、38.24 等) (d) 界面活性剤を含有する研磨性調製品(擦り磨き用のペースト及び粉) (34.05) (e) 水に不溶性のナフテン酸塩、石油のスルホン酸塩その他の界面活性剤及び調製界面活性剤						
柔軟仕上げ剤		家庭用の繊維用柔軟仕上げ剤及び業務用の繊維用柔軟仕上げ剤。高濃度品を含む。	1										
漂白剤	酸素系	家庭用品品質表示法に従い品質表示された漂白 剤(衣料用、台所用など)及び業務用漂白剤	1										
酸・アルカリ洗浄	塩素系 剤	家庭用品品質表示法に従い品質表示された住宅	ł										
クレンザー		用又は家具用の洗浄剤及び業務用の洗浄剤。 家庭用品品質表示法に従い品質表示されたクレ ンザー及び業務用クレンザー	1		-	-	-						

薄赤色:NPE含有の可能性のある水系洗浄剤の品目、青字:貿易統計の当該項目に含まれる製品、赤字:貿易統計の当該項目に含まれない製品

表 2.1.4.3-2 生産動態統計品目と貿易統計品目の比較による NPE 含有の可能性のある品目の特定 (2)

	生産動態	总統計					貿易統計
(6171) 油脂製品、	石けん・合成洗剤等及び界面活	性剤	34類 せっけん、	有機界面活性剤、洗剤	刊、調製潤滑剤	、人造ろう、調製ろう、 磨き剤、ろうそくその他これに類	する物品、モデリングペースト、 歯科用ワックス及びプラスターをもととした歯科用の調製品
陰イオン活性剤	硫酸エステル型	油脂・脂肪酸・硫酸エステル、アルキルサルフェート、アルキルエーテルサルフェート	を除く 活性剤 調製洗 (せつ	面活性剤(せつけん。) 並びに調製界面 は、調製洗剤用・補助製品 けんを含めた。 を問わないものと		陰イオン(アニオン)系の有機界面活性剤 (小売用にしてある かないかを問わない。) _その他のもの	る 水溶液中で電離して負に帯電した有機イオンが界面活性を示す物質である。例えば、脂肪、植物油(トリグリセリド)又は樹脂酸の硫酸エステル 塩及びスルホン酸塩、脂肪族アルコールより得られる硫酸エステル塩及びスルホン酸塩、石油のスルホン酸塩(例えば、アルカリ金属のもの(あ る程度の割合の鉱物油を含有するものも含む。)、アンモニウムのもの又はエタノールアミンのもの)、アルキルポリエーテル硫酸塩、アルキル スルホン酸塩、アルキルフェニルエーテルスルホン酸塩、アルキル硫酸塩、アルキルアリールスルホン酸塩(例えば、工業的品質のドデシルペン ゼンスルホン酸塩) この種の界面活性剤には、製造工程に由来する不純物として、少量の脂肪族アルコール、アルキレートその他の硫酸塩化又はスルホン酸塩化を免
	スルホン酸型・アルキル(ア リル)スルホネート	アルキルスルホネート、α-オレフィンスルホネート、アルキルベンゼンスルホネート				陰イオン(アニオン)系の有機界面活性剤(小売用にしてある かないかを問わない。)_直鎖アルキルベンゼンスルホン酸 及びその塩	るがれた疎水性の原材料を含有することがある。また、少量の硫酸ナトリウムその他の残留無機塩(無水塩として計算した場合に、通常 15%以
	その他のスルホン酸型	アルキルナフタリンスルホネート、ナフタリンスルホネートのホルマリン縮合物、Nーアシルメチルタウリン、メラミンスルホネートのホルマリン縮合物、アルキルスルホコハク酸及びの塩、脂肪酸メチルエステルのスルホネート、その他のスルホン化された石油製品及びその塩、スルホン化された石油製品及びその塩、ポリスチレンスルホネート、アルキルスルホヤセテート、アルキル(アリル)エーテルスルホ			3402. 39. 000	版イナン(アニオン)系の有機界面活性剤 (小売用にしてあるかないかを問わない。) _その他のもの	<u>8</u>
	その他の陰イオン活性剤	本一ト、その他のスルホネート アルキルりん酸エステル及びその塩、ポリオキ シエチレンアルキル(アリル)エーテルりん酸 エステル及びその塩(ただし、トリエステルを 除く)、Nーアシルアミノ酸及びその塩、アル キルエーテルカルボン酸及びその塩、モノグリ サルフェート、その他の陰イオン活性剤				陰イオン(アニオン)系の有機界面活性剤 (小売用にしてある かないかを問わない。) _その他のもの	
陽イオン活性剤		脂肪族アミン塩、第4級アンモニウム塩、その 他の陽イオン活性剤			3402. 41. 000	その他の有機界面活性剤(小売用にしてあるかないかを問すない。) 陽イオン(カチオン)系のもの	か 水溶液中で電離して陽に帯電した有機イオンが界面活性を示す物質である。例えば、脂肪族アミンの塩又は第四アンモニウム塩基の塩
非イオン活性剤	POEアルキルエーテル	ポリオキシエチレンアルキルエーテル			3402. 42. 000		わ 水溶液中においてイオンを生じない界面活性剤である。水に溶解する性質は、分子中に親水性の強い官能基を有することによるものである。例えば、脂肪族アルコール、脂肪酸又はアルキルフェノールとエチレンオキシドとの縮合物、脂肪酸アミドのエトキシレート
	POEアルキルアリルエーテル	ポリオキシエチレンアルキルフェニルエー テル、その他のポリオキシエチレンアルキルア リルエーテル					
	その他のエーテル	ポリオキシエチレンポリオキシブロピレングリ コールエーテル、ポリオキシエチレンポリオキ シブロピレンアルキルエーテル、ポリオキシエ チレンポリオキシブロピレンアルキルアリル エーテル、その他のポリアルキレングリコール エーテル					
	エステル・エーテル型	ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸酸エスステル、ポリオキシエチレングリセリン脂肪酸硬化とマシ油、その他のポリオキシエチレングリコール脂肪酸エステル、ポリアルキレングリコール脂肪酸エステル、ポリアルキレングリコール脂肪酸エステル、その他のエステル・エーテル型					
	多価アルコールエステル その他の非イオン活性剤	ペンタェリスリトール脂肪酸エステル、しょ糖脂肪酸エステル、ソルピール脂肪酸エステル、ステルルのリカリン脂肪酸エステル、ブロピレングリコール脂肪酸エステル、その他の多価アルコール脂肪酸エステル、ポリオキシエチレン脂肪酸アミド、ポリオキシボリオキシエチレン脂肪酸アミド、ポリオキシ					
工业ノ土、江州和		エチレンアルキルアミン、アルキロールアミド、その他の非イオン活性剤			2400 40 000	7.0 M.O.大楼里天江楼刻(J. 本田/- L. 女女 7.4 A. J. 4 大田-	
両性イオン活性剤		カルボン酸型及びスルホン酸型両性イオン活性 剤、アミンオキシド、その他の両性イオン活性 剤			3402. 49. 000	てい他の有機が興活性剤(小売用にしてあるかないかを向れない。)_その他のもの	り 媒体の条件によっては、水溶液中でイオン化することができ、陰イオン活性剤又は陽イオン活性剤の性質を示す界面活性剤である。このイオン挙動は、広義の両性化合物のそれに類似する。これらには、例えば、アルキルベタイン(alkylbetaine)又はスルホベタイン(sulphobetaine)を含有するたんぱく質、その分解物、アミノカルボン酸系、アミノスルホン酸系、アミノ硫酸系又はアミノりん酸系の置換化合物がある。
調合界面活性剤		界面活性剤を含む調合品で染料固着剤、キャリアなど			3402. 50. 010	調製品 (小売用にしたものに限る。) 1 調製界面活性剤	(A) 調製界面活性剤
					3402. 90. 010	その他のもの 1 調製界面活性剤	次の物品を含む。 (1) 上記(I) の界面活性剤相互の混合物(例えば、スルホリシノレート(sulphoricinoleates)とスルホン化アルキルナフタレン又は脂肪族アルコール硫酸エステル塩との混合物() (2) 上記(I) の界面活性剤を有機溶剤に溶かし又は分散させたもの(例えば、脂肪族アルコール硫酸エステル塩のシクロヘキサノール溶液又はテトラヒドロナフタリン溶液) (3) 上記(I) の界面活性剤をもととするその他の混合物(例えば、アルキルベンゼンスルホン酸塩とステアリン酸ナトリウムとの混合物のようなある割合でせっけんを含有する調製界面活性剤) (4) せっけんをシクロヘキサノール等の有機溶剤に溶かし又は分散させたもの(せっけんの水溶液(少量(通常5%以下)のアルコール又はグリセリンが添加されていることもある)は、34、01項の液状せっけんである。) 調製界面活性剤は、それらの洗浄性、湿潤性、乳化性又は分散性のために、例えば、次のように使用される。 (i) 繊維工業の製造工程及び仕上げ工程において繊維に付着した脂肪や汚れを除去するための繊維工業用の洗浄剤 (ii) 披維工業用の湿潤剤、乳化剤、膨潤助剤及びつや出し剤 (iii) 皮革工業用又は毛皮工業用の原皮用侵せき剤、脱脂剤、染色用湿潤剤、均染剤又は色調調整剤 (iv) 下記(B) の調製洗剤製造用の基礎的材料(例えば、調製陰イオン界面活性剤。この種の界面活性剤には、残留物又は目的を持った添加物としてかなりの量の硫酸ナトリウムその他界面活性剤の製造工程において生成する種類の無機塩を含有することがある。) (v) 製紙工業用又は合成ゴム工業用の分散剤 (vi) 医薬品又は化粧品の調製に使用する乳化剤。このグループには、皮膚の洗浄用の有機界面活性剤及びその調製品のうち、その活性成分の一部又は全部が合成有機界面活性剤(せっけんの含有量を問わない。) からなる物品で、液状又はクリーム状で、小売用にしてあるものを含まない (34.01)。

薄赤色:NPE含有の可能性のある水系洗浄剤の品目、赤字:NPE

貿易統計の NPE 含有水系洗浄剤を含む統計品目は、第 34 類「せっけん、有機界面活性剤、洗剤、調製潤滑剤、人造ろう、調製ろう、磨き剤、ろうそくその他これに類する物品、モデリングペースト、歯科用ワックス及びプラスターをもととした歯科用の調製品」のうち以下の品目とした。

- ・ 非イオン系のもの
- ・ 調製品(小売用にしたものに限る。
- · 調製品(小売用にしたものに限る。)-2 その他のもの

生産動態統計の NPE 含有水系洗浄剤を含む統計品目は、「油脂製品、石けん・合成洗剤等及び界面活性剤」のうち以下の品目 ³²とした。

- ・ 洗濯用粉末:洗濯に使用される粉末のもの。高密度品(コンパクトタイプ)を含む。
- ・ 洗濯用液体(中性):洗濯用に使用される液体(ペースト状その他を含む)のもののうち中性のもの。
- · 洗濯用液体(中性以外のもの):洗濯用に使用される液体(ペースト状その他を含む)の上記以外のもの。
- · 台所用合成洗剤:食器、野菜、果実などに使用されるもの。高濃度 品を含む。
- ・ 住宅・家具用合成洗剤:ガスレンジ、床、家具、ガラス、浴室、ホウロウ、プラスチック製品などに使用されるもの。
- ・ 柔軟仕上げ剤:家庭用の繊維用柔軟仕上げ剤及び業務用の繊維用 柔軟仕上げ剤。高濃度品を含む。
- · 漂白剤(酸素系):家庭用品品質表示法に従い品質表示された漂白剤(衣料用、台所用など)及び業務用酸素系漂白剤
- · 漂白剤(塩素系):家庭用品品質表示法に従い品質表示された漂白剤(衣料用、台所用など)及び業務用塩素系漂白剤
- ・ 酸・アルカリ洗浄剤:家庭用品品質表示法に従い品質表示された 住宅用又は家具用の洗浄剤及び業務用の洗浄剤。
- ・ POE アルキルエーテル:ポリオキシエチレンアルキルエーテル
- POE アルキルアリルエーテル:ポリオキシエチレンアルキルフェニルエーテル、その他のポリオキシエチレンアルキルアリルエー

³² 経済産業省大臣官房調査統計グループ鉱工業動態統計室. (2023) 化学工業関係月報記入要領

テル

- その他のエーテル:ポリオキシエチレンポリオキシプロピレング リコールエーテル、ポリオキシエチレンポリオキシプロピレンア ルキルエーテル、ポリオキシエチレンポリオキシプロピレンアル キルアリルエーテル、その他のポリアルキレングリコールエーテ ル
- エステル・エーテル型:ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンヒマシ油及び硬化ヒマシ油、その他のポリオキシエチレン多価アルコール脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリアルキレングリコール脂肪酸エステル、ポリアルキレングリコール脂肪酸エステル、テル型
- ・ 多価アルコールエステル:ペンタエリスリトール脂肪酸エステル、 しょ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ソルビタン 脂肪酸エステル、グリセリン脂肪酸エステル、プロピレングリコー ル脂肪酸エステル、その他の多価アルコール脂肪酸エステル
- ・ その他の非イオン活性剤:ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、アルキロールアミド、その他の非イオン活性剤
- ・ 調合界面活性剤: 界面活性剤を含む調合品で染料固着剤、キャリアなど

また、貿易統計の有機界面活性剤に該当する生産動態統計の品目は、NPE含有水系洗浄剤を含む統計品目に以下を加えたものであった。

- ・ クレンザー:家庭用品品質表示法に従い品質表示されたクレンザー ー及び業務用クレンザー
- ・ 陰イオン活性剤 硫酸エステル型:油脂・脂肪酸・硫酸エステル、 アルキルサルフェート、アルキルエーテルサルフェート
- 陰イオン活性剤 アルキル(アリル)スルホネート:アルキルスルホネート、αーオレフィンスルホネート、アルキルベンゼンスルホネート
- 陰イオン活性剤 その他のスルホン酸型:アルキルナフタリンスルホネート、ナフタリンスルホネートのホルマリン合物、N-アシルメチルタウリン、メラミンスルホネートのホルマリン合物、アルキルスルホコハク酸及びその塩、脂肪酸メチルエステルのスルホネート、その他のスルホン化された芳香族化合物及びその塩、スルホン化された石油製品及びその塩、ポリスチレンスルホネート、アルキルスルホアセテート、アルキル(アリル)エーテルスルホネート、

その他のスルホネート

- その他の陰イオン活性剤:アルキルりん酸エステル及びその塩、ポリオキシエチレンアルキル(アリル)エーテルりん酸エステル及びその塩(ただし、トリエステルを除く)、N-アシルアミノ酸及びその塩、アルキルエーテルカルボン酸及びその塩、モノグリサルフェート、その他の陰イオン活性剤
- 陽イオン活性剤
- 両性イオン活性剤

表 2.1.4.3-3 に NPE 含有水系洗浄剤を含む統計品目及び有機界面活性剤について、直近 5 年間の国内使用量に対する輸入量の割合及び国内使用量に対する小売用製品の輸入量の割合を示す。国内使用量に対する輸入量の割合の直近 5 年間平均値は、有機界面活性剤で 8.5%、NPE 含有水系洗浄剤を含む統計品目で 7.1%であった。また、小売用品の国内使用量に対する輸入量の割合の直近 5 年間平均値は、有機界面活性剤で 3.7%、NPE 含有水系洗浄剤を含む統計品目で 4.2%であった。

NPE 含有水系洗浄剤を含む統計品目の範囲を貿易統計に整合させる必要があったため、明らかに過大評価となっているが、多めに見積もった場合でも、NPE 含有水系洗浄剤の国内使用量に対する割合は数%であると考えられた。

表 2.1.4.3-3 NPE 含有水系洗浄剤を含む統計品目及び有機界面活性剤の国内使用量に対する輸入割合

		貿易統計輸	入量(トン)	生産動態統計販売量	貿易統計輸出量	国内使用量(トン)	国内使用量に対す	国内使用量に対する
		小売用に したもの に限る (A)	「小売用にし たものに限 る」以外 (B)	(トン) (C)	(トン) (D)	(E= A+B+C-D)	る輸入割合 (A+B)/E	輸入割 合 (小 売用) A/E
	5 年平均	104,825	137,404	2,784,367	172,642	2,853,954	8.5%	3.7%
	令和4年度	96,697	152,671	2,796,115	163,142	2,882,341	8.7%	3.4%
有機界面活	令和3年度	99,916	148,527	2,862,000	189,286	2,921,157	8.5%	3.4%
性剤	令和2年度	109,616	131,858	2,750,820	177,440	2,814,853	8.6%	3.9%
	令和元年度	101,691	133,542	2,744,589	168,082	2,811,740	8.4%	3.6%
	平成 30 年度	116,204	120,423	2,768,309	165,258	2,839,678	8.3%	4.1%
	5年平均	104,825	69,722	2,440,933	142,355	2,473,125	7.1%	4.2%
NPE が	令和4年度	96,697	81,845	2,479,026	135,541	2,522,027	7.1%	3.8%
含まれる可能	令和3年度	99,916	74,833	2,516,105	154,712	2,536,142	6.9%	3.9%
性のあ	令和2年度	109,616	64,726	2,419,353	146,578	2,447,116	7.1%	4.5%
る項目	令和元年度	101,691	66,654	2,411,939	138,882	2,441,402	6.9%	4.2%
	平成 30 年度	116,204	60,554	2,378,241	136,061	2,418,938	7.3%	4.8%

2.1.4.4 NPE 第二種特定化学物質指定に係る技術上の指針の検討

これまでに第二種特定化学物質に指定されている化学物質については、以下のとおり「環境汚染防止措置に関し公表する技術上の指針」が策定されている。

- トリクロロエチレン若しくは化学物質の審査及び製造等の規制に関する法律施行令第九条に定める製品でトリクロロエチレンが使用されているもの又はテトラクロロエチレン(クリーニング営業者に係るものを除く。)若しくは同条に定める加硫剤、接着剤(動植物系のものを除く。)、塗料(水系塗料を除く。)、洗浄剤(クリーニング営業者に係るものを除く。)若しくは繊維製品用仕上加工剤でテトラクロロエチレンが使用されているものの環境汚染防止措置に関し公表する技術上の指針(平成22年7月15日厚生労働省・経済産業省・環境省告示第14号)33
- ▶ クリーニング営業者に係るテトラクロロエチレン又は化学物質の審査及び製造等の規制に関する法律施行令第九条に定める洗浄剤でテトラクロロエチレンが使用されているものの環境汚染防止措置に関し公表する技術上の指針(平成22年7月15日厚生労働省・経済産業省・環境省告示第15号) 34
- 四塩化炭素の環境汚染防止に関する技術上の指針(平成 22 年 7 月 15 日厚生労働省・経済産業省・環境省告示第 1 号) 35
- ▶ トリフェニルスズ化合物の環境汚染防止措置に関し公表する技術上の指針(平成22年7月15日厚生労働省・経済産業省・環境省告示第16号) ³⁶
- ▶ トリブチルスズ化合物又は化学物質の審査及び製造等の規制に 関する法律施行令第九条に定める製品でトリブチルスズ化合物 が使用されているものの環境汚染防止措置に関し公表する技術 上の指針(平成22年7月15日厚生労働省・経済産業省・環境省 告示第17号) 37

³³ 経済産業省.第二種特定化学物質等に係る技術上の指針に関する告示. https://www.meti.go.jp/policy/chemical_management/kasinhou/files/about/laws/laws/s h300330403_1.pdf

³⁴ 経済産業省.第二種特定化学物質等に係る技術上の指針に関する告示. https://www.meti.go.jp/policy/chemical_management/kasinhou/files/about/laws/laws/1aws/1300330404 1.pdf

³⁵ 経済産業省.第二種特定化学物質等に係る技術上の指針に関する告示. https://www.meti.go.jp/policy/chemical_management/kasinhou/files/about/laws/laws_mhlw_maff_meti_moe_kokul_100715.pdf

³⁶ 経済産業省.第二種特定化学物質等に係る技術上の指針に関する告示. https://www.meti.go.jp/policy/chemical_management/kasinhou/files/about/laws/law s_mhlw_meti_moe_koku16_100715.pdf

³⁷ 経済産業省.第二種特定化学物質等に係る技術上の指針に関する告示. https://www.meti.go.jp/policy/chemical_management/kasinhou/files/about/laws/laws/laws/1300330407_1.pdf

(1) トリクロロエチレン及びテトラクロロエチレンの技術上の指針に ついて

図 2.1.4.4-1 にトリクロロエチレン及びテトラクロロエチレンの技術上の指針策定までの当時の状況 ³⁸を示す。トリクロロエチレン及びテトラクロロエチレンが化審法の第二種特定化学物質に指定されたのは平成元年4月である。同時期に水質汚濁防止法の有害物質への指定が行われ排水基準が設定された。同年7月に、「クリーニング営業者に係るテトラクロロエチレンの環境汚染防止措置に関する技術上の指針」及び「トリクロロエチレン又はクリーニング営業者以外の事業者に係るテトラクロエチレンの環境汚染防止措置に関する技術上の指針」が告示された。

トリクロロエチレンの国内における規制の検討は、昭和 49 年に米国ニューオリンズで水道水から検出されたことを契機に、各国及び WHO において情報収集、安全性の検討が行われ、昭和 59 年に WHO がトリクロロエチレン等の飲料水質に関する暫定ガイドライン値を提示した時期に始められていた。昭和 59 年 2 月に厚生省(現厚生労働省)が水道水中のトリクロロエチレン等の暫定水質基準を設定し、通産省(現経済産業省)が業界団体に、トリクロロエチレン等の適正な生産、貯蔵、使用、処理を要請した。同年 12 月には、通産省(現経済産業省)がトリクロロエチレン等適正使用等検討委員会を設置し、昭和 60 年に「トリクロロエチレン等適正利用マニュアル」が作成され、業界団体に管理の徹底について協力要請が行われた。

昭和 60 年には、通産省(現経済産業省)化学品審議会安全対策部会で化審法改正の検討が始められた。この際の論点が、トリクロロエチレン等による地下水汚染問題対策と化学物質規制の国際的協調への対応であった。改正化審法は昭和 61 年 5 月に公布、昭和 62 年 4 月に施行された。難分解性、慢性毒性の疑いのある化学物質が指定化学物質に指定され、さらに環境汚染のおそれがあると判断された場合に、第二種特定化学物質に指定される等の内容が含まれた。昭和 62 年にトリクロロエチレン及びテトラクロロエチレンは化審法の指定化学物質に指定され、平成元年に第二種特定化学物質に指定された。

以上により、当該物資に係る技術上の指針を検討する際には、昭和 60 年に作成された「トリクロロエチレン等適正利用マニュアル」が参照されていると考えられる。NPE の技術上の指針策定の参考とするため、「トリクロロエチレン等適正利用マニュアル」とトリクロロエチレン等の技術上の指針の内容を比較、整理した。

46

³⁸ 通商産業省基礎産業局(1985)トリクロロエチレン等の適正使用のあり方_環境 と測定技術 12(9),日本環境測定分析協会.

```
【国外】
昭和 49年
         米国ニューオリンズで水道水からトリクロロエチレン等が検出。
昭和 59年
         WHO が ト リ ク ロ ロ エ チ レ ン 等 の 飲 料 水 質 に 関 す る 暫 定 ガ イ ド ラ イ ン 値 提 示 。
【国内】
昭和 56年
         八王子、川崎、府中等で水道水源用井戸水からトリクロロエチレン等が検出。
         環境庁が全国主要都市の地下水調査を実施。トリクロロエチレン等を検出。
昭和 57-58 年
昭和 59年 2月
         厚生省ー水道水中のトリクロロエチレン等の暫定水質基準設定。
         環境庁一地下水汚染対策の一層の取組み実施の要請。
         通産省ー業界団体に、トリクロロエチレン等の適正な生産、貯蔵、使用、処理を要請。
      8月 通産省ートリクロロエチレン等の暫定排水濃度目標の設定。
         環境庁ートリクロロエチレン等の排出に係る暫定指導指針を設定。
         (地下浸透防止、公共用水域への排出抑制のための管理目標設定)
         建設省ートリクロロエチレン等の排出に係る暫定指導等。
         (下水道への排出濃度の管理目標設定)
         厚 生 省 - 「 ド ラ イ ク リ ー ニ ン グ に お け る テ ト ラ ク ロ ロ エ チ レ ン 等 の 使 用 管 理 に 係 る 暫 定 的 措 置 等 に つ い て 」
     12月 通産省ートリクロロエチレン等適正使用等検討委員会設置。
       → 昭和 60年「<mark>トリクロロエチレン等適正利用マニュアル</mark>」作成、業界団体に管理の徹底について協力要請。
昭和 60年 7月 通産省「トリクロロエチレン等の適正使用等の推進について」
     10月 通産省化学品審議会安全対策部会で化審法改正の検討開始。
         (地下水汚染問題対策+化学物質規制の国際的協調への対応) 40
昭和 61 年 4 月 化審法改正案が衆議院の審議で可決。
      5月 化審法改正の公布。※昭和62年4月1日施行。
         トリクロロエチレンとテトラクロロエチレンを化審法の指定化学物質に指定。
昭和 62 年
        トリクロロエチレンとテトラクロロエチレンを第二種特定化学物質に指定。
平成元年 4月
         トリクロロエチレンとテトラクロロエチレンを水濁法の有害物質に指定。排水基準設定。
      4月 廃掃法、海防法、下水道法の施行令改正。
      7 月 「 ク リ ー ニ ン グ 営 業 者 に 係 る テ ト ラ ク ロ ロ エ チ レ ン の 環 境 汚 染 防 止 措 置 に 関 す る 技 術 上 の 指 針 L を 告 示 。
         「トリクロロエチレン又はクリーニング営業者以外の事業者に係るテトラクロロエチレンの環境汚染防止措
         置に関する技術上の指針」を告示。
      9月 トリクロロエチレン又はテトラクロロエチレンの適正使用マニュアルを出版。
```

図 2.1.4.4-1 トリクロロエチレン及びテトラクロロエチレンの技術上の指針策定までの状況 38

³⁹ 日本環境衛生センター (1984) ドライクリーニングにおけるテトラクロロエチレン等の使用管理に係る暫定的措置等について、生活と環境 29(10)

⁴⁰ 對馬一修(1986) 化学物質対策と化審法の改正,産業と環境,15(7).

(2) トリクロロエチレン等適正利用マニュアルと技術上の指針の比較トリクロロエチレン等適正利用マニュアル 38 と技術上の指針の比較結果を図 2.1.4.4-2~2.1.4.4-5 に示す。多くの項目、表現が類似しており、技術上の指針を作成する上で、トリクロロエチレン等適正利用マニュアルが参照されていると考えられる。一方で相違点も確認され、化審法の枠組みにおける指針として記載すべき事項に限定されたと考えられる。トリクロロエチレン等適正利用マニュアルと技術上の指針の主な相違点は以下のとおりであった。

- ▶ 作業場所の構造:技術上の指針では、漏出させない構造を具体化。
- 貯蔵、使用作業:受入、点検管理、排水処理に関する内容はトリクロロエチレン等適正利用マニュアルのみ。作業要領策定は技術上の指針のみ。
- ▶ 回収、再生作業:廃棄物処理、排水処理、廃棄物の最終処分の記載はトリクロロエチレン等適正利用マニュアルのみ。
- ▶ 漏出時の措置 :要領策定の記載は指針のみ。
- 廃棄物、排水の処理:廃棄物処理、排水処理の記載はトリクロロエチレン等適正利用マニュアルのみ。排水中濃度の確認による構造、作業の見直しについては、同様の記載。

化審法の技術上の指針では「取扱い」に関する留意点に限定しており、 廃棄物処理は廃棄物処理法、排水処理は水質汚濁防止法による規制、 管理に委ね、他法令の規制との重複を避けるために指針に記載されなか ったと考えられる。また、労働安全衛生法の内容である、局所排気装置 の記載について、「(参考)」と記載のある理由も、他法令での管理内容で あるためと考えられる。なお、化審法と他法令に関係や技術上の指針に ついては、化審法逐条解説 ⁴¹に以下のように書かれている。

廃棄物規制、排出規制との関係

本法においては、第一種特定化学物質等の廃棄等に関して何ら規定が設けられていないが、これらは例えば、廃棄に際して「廃棄物」として「廃棄物の処理及び清掃に関する法律」等の関連法令の適用が想定されている。

技術上の指針

本法の昭和六十一年改正は、水質汚濁防止法、大気汚染防止法、廃棄物の処理及び清掃に関する法律等の既存の環境汚染防止に関する法令の効果に何ら変更を及ぼすものではなく、むしろそれらの規制法との連携を前提としており、要すれば、第二種特定化学物質がそれらの法規の規制対象物質となることも十分考えられ、これにより環境放出の相当部分を規制できよう。

 $\frac{https://www.meti.go.jp/policy/chemical_management/kasinhou/files/about/laws/laws_exposition.pdf}{s_exposition.pdf}$

⁴¹ 経済産業省.化審法逐条解説(平成 29 年改正版).

トリクロロエチレン等 1.トリクロロエチレン等を取り扱う施設・場所については、次 の事項に留意した構造とすること。 適正利用マニュアル 1.1 各施設・場所に共通する事項について (1) 床面は、トリクロロエチレン等の地下浸透を適切に防止で 本マニュアルは、トリクロロエチレン、テトラクロロエチレンおよび1.1.1ートリク ロロエタン等を含む排水の地下浸透および公共用水域への排水に関する排水濃度目標を きるコンクリート等の材質とすること。また、そのひび割れ等 踏まえて、実施すべきトリクロロエチレン等の取り扱い方法、施設・設備の整備等に係 が心配される場合には、トリクロロエチレン等に耐性をもつ合 同様の記載 る暫定的指針として作成したものである。 成樹脂による床面の被覆、容器等の下へのステンレス鋼の受け 皿の設置等浸透防止措置を講ずること。 1. トリクロロエチレン等の地下浸透の抑制 棄物を貯蔵する施設・場所の構造は、次のこと (2) 必要な場合には、取り扱うトリクロロエチレン等の量及び および排水系への流入防止に関する施設・ に留意して整備すること。 作業に対応して、施設・場所の周囲に防液堤、側溝又はためま |1||貯蔵する場所は次のことに留意して選定する 場所の床面等の材質および構造について すを設置する等トリクロロエチレン等の流出を防止する措置を 250 (1) トリクロロエチレン等を取扱う施設・場所に ① 直射日光が当たらないこと。 講ずること。 共通する事項について ② 雨水がかからないこと。 また、雨水のかかる施設・場所及び水を使用する施設・場所の 施設・場所の床面等の材質および構造は、次 ③ 換気が良いこと。 周囲には、上記の措置に加えてトリクロロエチレン又はテトラ のことに留意して整備すること。 (2)貯蔵場所を屋外とする場合には、屋根をかけ クロロエチレンと水を適切に分離する分離槽を設置すること。 (1)床面は、トリクロロエチレン等の地下浸透を る、容器カバーをかける等の適切な対策を講 (3) 施設(配管等を含む。)は、地上に設置すること。やむを 適切に防止できるコンクリート等の材質とす じて, 直射日光及び雨水がかかることを適切 得ず、地下とする場合には、地下ピット(床面及び壁面は浸透 に防止すること。 ① 床面を耐塩素系有機溶剤用の合成樹脂で被覆す |防止ができるコンクリートが適当である。)内に置くこと。 (3)貯蔵場所を屋内とする場合には、できるだけ る等浸透防止処理を行うこと。 1.2 貯蔵施設・場所に関する事項について 通風の良い冷暗所とすること。 ② 施設・場所の周囲に防液堤、側溝、溜ます等を 2. 作業場所の床面等の材質および構造は次の点 ドラム缶等の容器で貯蔵する場合は、次のことに留意し、直射 同様の記載 設置すること。 に留意して整備すること。 日光による温度上昇及び雨水による容器の腐食を防止すること。 ③ 雨水のかかる場所および水を使用する場所は、 (1)必要な場合には、作業および設備に対応して (1) 貯蔵場所は、屋内の冷暗所とすることが望ましいこと。 ②の構造に加えてトリクロロエチレン等と水を 次に示すいずれかの適切な材質及び構造とす (2) 貯蔵場所をやむを得ず屋外とする場合には、屋根を付ける、 適切に分離する分離槽を設置すること。 容器にカバーをかける等の措置を講ずること。 ① 溶剤槽または装置の下に受皿を設置すること。 (II) トリクロロエチレン等を取扱う各施設・場所 1.3 作業施設・場所に関する事項について なお、受風の材質としては、ステンレス等が適 に関する事項について 当である。 (1) 原則としてトリクロロエチレン又はテトラクロロエチレン 1. トリクロロエチレン等またはそれらを含む廃 ② 溶剤槽または装置を地下ビット (コンクリー) の蒸気の発散源を密閉できる構造とするか、又は局所排気装置 を設置すること。 類)内に設置すること。なお、必要に応じてビ 出典:日本環境測定分析協会(1985)トリク ット内に溜ますを設置すること。 ロロエチレン等の適正使用のあり方. 環境と <u>2) 洗浄装置の開口部や溶剤の露出面積は、できる限り小さく</u> 局所排気装置の記載 ③ 溶剤槽または装置の周囲に防液堤を設置するこ 測定技術 12(9), 18-22 以外は異なる 3) 洗浄装置のフリーボード比は、できる限り大きくすること (2)トリクロロエチレン等を加熱して使用する作 • 床材質構造、蒸気 業場所には,必要に応じてトリクロロエチレ 検知機はマニュアル ン等の蒸気検知機を設置すること。 のみ 3)換気扇または必要に応じて局所排気装置を設 洗浄装置について は指針のみ

図 2.1.4.4-2 トリクロロエチレン等適正利用マニュアルと技術上の指針の比較結果(1)

図 2.1.4.4-3 トリクロロエチレン等適正利用マニュアルと技術上の指針の比較結果 (2)

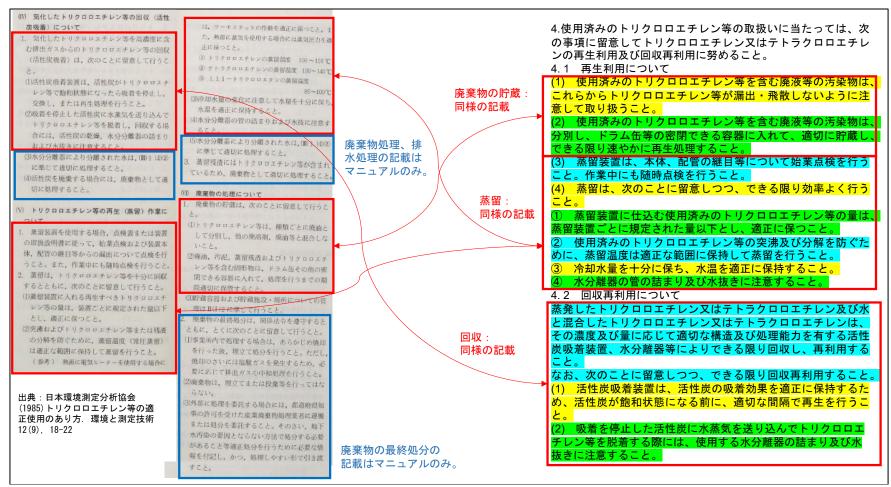


図 2.1.4.4-4 トリクロロエチレン等適正利用マニュアルと技術上の指針の比較結果 (3)

図 2.1.4.4-5 トリクロロエチレン等適正利用マニュアルと技術上の指針の比較結果 (4)

(3) NPE の技術上の指針を策定する上での検討事項

- ➤ トリクロロエチレン及びテトラクロロエチレンの事例のように、 廃棄物処理や排水処理に関する内容は、過去の経緯や化審法逐条 解説等を踏まえると、化審法で策定する技術上の指針では記載し ない方が適切であり、必要に応じて、廃掃法や水濁法で対応する ことが適切か。
- トリクロロエチレン及びテトラクロロエチレンでは、『(参考)』として、労働者の安全と健康の確保に関する主な事項を記載しているが、令和8年4月1日以降に労働安全衛生法上で NPE を 0.1%以上含むものを取り扱う場合に求められる「暴露濃度をなるべく低くする措置を講じる義務」、「保護具の使用義務」についても、同様に記載する必要はあるか。その場合、厚生労働省が公表している「モデル SDS」 42から「ばく露を防止するため、装置の密閉化又は局所排気装置を設置すること」、「適切な保護具を着用すること」を引用することが適切か。
- ➤ 多くの項目、記載内容について過去の技術上の指針を参考にできると考えられるが、トリクロロエチレン、テトラクロロエチレン、四塩化炭素はいずれも有機溶剤として用いられる揮発性が高い化学物質であり、NPEとは物理化学的性状が異なる。NPEは有機溶剤のように合成樹脂を溶解、腐食等をさせることはなく、水によく溶解する。これらの事項を踏まえて技術上の指針を策定する必要があるのではないか。

⁴² 厚生労働省 職場のあんぜんサイト. 安全データシート. ポリ (オキシエチレン) = ノニルフェニルエーテル.

2.2 UVCB 物質の構造・組成等に関する評価単位等の検討

2.2.1 はじめに

UVCB 物質の評価単位を設定することなどを目的に、平成 30 年 8 月 31 日に化審法施行規則が改正され、平成 31 年度の一般化学物質及び優先評価化学物質の製造数量等の届出から、必要に応じて届出対象物質に関しての構造・組成について参考となる事項を記載した書類(以下、「添付書類」という)を添付することとなった。

本年度は、まず、令和 4 年度の添付書類の対象となっていた一般化学物質 2 物質(官報整理番号 2-184: N,N,N,N-テトラアルキル(又はアルケニル,アルキル又はアルケニルの 1 個以上は $C=8\sim2$ 4 で他は $C=1\sim5$)第 4 級アンモニウム塩、官報整理番号 9-1971: 脂肪族アルキル(少なく 1 個は C 8 \sim 2 4,他は C 1 \sim 5)第 4 級アンモニウム塩、 優先評価化学物質 2 物質(優先通し番号 171: アルカノール(C=1 0 \sim 1 6)(C=1 1 \sim 1 4 のいずれかを含むものに限る。)、優先通し番号 223: α - (アルキル(C=1 0 \sim 1 6)) $-\omega$ - (スルホオキシ)ポリ $-\omega$ - (スルホオキシ)ポリ $-\omega$ - (スルホオキシ)のオニウム塩又はナトリウム塩(繰り返し単位の繰り返し数の平均が $-\omega$ 1 $-\omega$ 2 $-\omega$ 2 $-\omega$ 2 $-\omega$ 2 $-\omega$ 2 $-\omega$ 2 $-\omega$ 3 $-\omega$ 2 $-\omega$ 2 $-\omega$ 3 $-\omega$ 2 $-\omega$ 3 $-\omega$ 4 $-\omega$ 4 $-\omega$ 5 $-\omega$ 6 $-\omega$ 6 $-\omega$ 6 $-\omega$ 7 $-\omega$ 6 $-\omega$ 7 $-\omega$ 6 $-\omega$ 7 $-\omega$ 8 $-\omega$ 9 $-\omega$ 6 $-\omega$ 7 $-\omega$ 8 $-\omega$ 9 $-\omega$ 9 $-\omega$ 1 $-\omega$ 9 $-\omega$ 1 $-\omega$ 9 $-\omega$ 1 $-\omega$ 2 $-\omega$ 1 $-\omega$ 2 $-\omega$

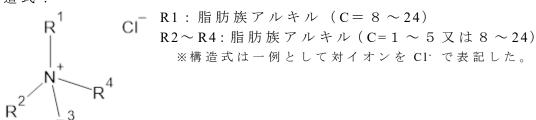
2.2.2 令和4年度添付書類対象物質の評価単位検討と被験物質検討等のための資料取りまとめ

令和4年度に事業者より提出のあった一般化学物質2物質(官報整理番号2-184: N, N, N, Nーテトラアルキル(又はアルケニル,アルキル又はアルケニルの1個以上は $C=8\sim2$ 4で他は $C=1\sim5$)第4級アンモニウム塩、官報整理番号9-1971: 脂肪族アルキル(少なく1個は $C8\sim2$ 4, 他は $C1\sim5$)第4級アンモニウム塩)について評価単位の検討を行った。

また、優先評価化学物質 2 物質 (優先通し番号 171: アルカノール (C = 1 0 ~ 1 6) (C = 1 1 ~ 1 4 のいずれかを含むものに限る。)、優先通し番号 223: α - (アルキル (C = 1 0 ~ 1 6)) - ω - (スルホオキシ) ポリ [(オキシエチレン) (又はオキシエチレン/オキシ (メチルエチレン))] のオニウム塩又はナトリウム塩 (繰り返し単位の繰り返し数の平均が 1 ~ 4 のものに限る。)) について、被験物質の検討等を行うための組成情報整理を行った。

官報整理番号 2-184

名称: N, N, N, Nーテトラアルキル (又はアルケニル, アルキル又はアルケニルの1個以上は $C=8\sim24$ で他は $C=1\sim5$)第4級アンモニウム塩


構造式:

 R^{1} CI^{-} $R1: アルキル又はアルケニル(<math>C=8\sim24$) $R2\sim R4: アルキル又はアルケニル(<math>C=1\sim5$ 又は $8\sim24$) **構造式は一例として対イオンを CI^{-} で表記した。

官報整理番号 9-1971

名称:脂肪族アルキル(少なく1個はC8~24,他はC1~5)第4 級アンモニウム塩

構造式:

優先通し番号 171

名称: \mathbb{C} アルカノール ($\mathbb{C} = 1 \ 0 \sim 1 \ 6$) ($\mathbb{C} = 1 \ 1 \sim 1 \ 4 \ 0$ いずれかを含むものに限る。)

構造式:

$$C_nH_{2n+1}-OH$$

ただし、 $n=10\sim16$ (11~14のいずれかを含む)。

優先通し番号 223

名称: α - (アルキル (C = 10 ~ 16)) - ω - (スルホオキシ) ポリ [(オキシエチレン) (又はオキシエチレン/オキシ (メチルエチレン))] のオニウム塩又はナトリウム塩 (繰り返し単位の繰り返し数の平均が 1~4のものに限る。)

構造式:

 $\alpha-(アルキル(C=10~16))-\omega-(スルホオキシ)ポリオキシエチレンのナトリウム塩の例$

Na⁺ O⁻
$$= \frac{0}{S} + OC_2H_4 + O-R$$

 $\alpha-$ (アルキル (C = 1 0 ~ 1 6)) $-\omega-$ (スルホオキシ) ポリオキシ (メチルエチレン) のナトリウム塩の例

なお、官報整理番号 2-184 及び 9-1971 はいずれも第 4 級アンモニウム 塩であり、アルキルの炭素数範囲が重複している。そのため、これら 2 つの官報整理番号の届出物質を合わせて、評価単位を検討した。

優先評価化学物質 (2 物質) については、被験物質の検討等を行うための組成情報整理を行った。

2.2.3 令和 5 年度添付書類対象物質の整理及び排出量推計

3.3 で後述するように、添付書類と届出書の記載内容に齟齬がないことを確認した後、用途及び出荷数量を元に「化審法における優先評価化学物質に関するリスク評価の技術ガイダンス」 43に従って、水域への排出量の算出を行った。

また、対象の優先評価化学物質(官報整理番号 7-155、優先通し番号 214 及び 250)の物化性状(表 2.2.3-1~2.2.3-3、2.2.3-4~2.2.3-10 及び 2.2.3-11~2.2.3-12)及び有害性情報(表 2.2.3-13~2.2.3-15、2.2.3-16~2.2.3-22 及び 2.2.3-23~2.2.3-26)の収集・整理を行った。対象物質に限らず、J-Check ⁴⁴の各優先評価化学物質のリストをもとに物理化学的性状並びに有害性情報の収集を行った。既存情報が得られなかった場合は、CAS 登録番号(CAS RN®)より EPI Suite ⁴⁵を用いて推計値を求めた。

※物化性状情報の出典一覧:

- · Chemicals Dashboard
- · EnviChem
- EPI Suite KOWWIN v1.68
- EPI Suite WSKOWWIN v1.43
- · ECHA Registered substances
- · ICSC
- · INERIS-PSC
- · J-Check
- JCIA BIGDr
- PubChem (HSDB)
- · OCED HPV
- · Japan チャレンジプログラム
- ・ 環境省化学物質環境リスク評価結果:化学物質の生態リスク初期

https://www.nite.go.jp/chem/jcheck/top.action?request locale=ja

⁴³ 化審法における優先評価化学物質に関するリスク評価の技術ガイダンス https://www.meti.go.jp/policy/chemical_management/kasinhou/information/ra_140 6_tech_guidance.html

⁴⁴ J-Check (化審法データベース)

⁴⁵ US EPA が提供している物理化学的性質及び環境動態の Windows 用予測プログラム, https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface

評価

※有害性情報の出典一覧:

- · CCR (Canada chemicals)
- · Chemicals Dashboard
- · CompTox Dashboard
- · ECHA Registered substances
- · EnviChem
- EPI Suite ECOSAR v1.11
- · GHS-J
- · HSNO CCID
- · INERIS-PSC
- · OECD HPV
- · PubChem
- USEPA ECOTOX
- · NITE-Chrip 化管法
- · 安全性要約書 (JCIA BIGDr)
- ・ 環境省化学物質の環境リスク評価結果:第8巻
- · Japan チャレンジプログラム

表 2.2.3-1 一般化学物質(官報整理番号 7-155)物化性状

No.	物質名称	CAS RN	SMILES	logP	Wat sol	MP	BP	рКа	半減期	分解性	出典: 備	講考
140.	120 & 41111	0/10 1111	SWILES		mg/L	°C	°C					# 7
										分解性の良 好な物質	J-Check 化審法データベース(公表情報): https://www.nite.go.jp/chem/jcheck/detail.action?cno=3088-31- 1&mno=7-0155&request_locale=ja 化学物質安全性点検結果等(分解性)《経済産業省》: https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=265 63&ppk=4457&kinou=100&type=ja	
1	ナトリウム=2-[2-(ドデシルオキシ) エトキシ] エチル=スルファート	3088-31-1	CCCCCCCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]	2.63	3.91e-3 (mol/L) [376.5g/mol] 1472(mg/L換算值)	139	368				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID0 027519	
				-0.602 (39°C)	1000000 (39°C)	7.5	113.439	4.3e-18(39°C)			dossier/-/registered-dossier/12097	Ka: 0.0000000000000000022051(20°C)
				1.873	146.3						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
2	ナトリウム=2- (ドデシルオキシ) エチル	15826-16-1	CCCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]							分解性の良 好な物質	J-Check 化審法データベース(公表情報): https://www.nite.go.jp/chem/jcheck/detail.action?cno=15826-16- 1&mno=7-0155&request_locale=ja 化学物質安全性点検結果等(分解性)(経済産業省》: https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=265 63&ppk=4457&kinou=100&type=ja	
	= スルファート			2.81	3.93e-3 (mol/L) [332.43g/mol] 1306.4(mg/L換算值)	142	317				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID7 0274019	
				2.147	156.3						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
3	ナトリウム=2-(2-プトキシエトキシ) エチル=スルファート	22031-09-0	CCCCOCCOCCOS(=0)(=0)[0-].[Na+]	-0.148	0.314 (mol/L) [264.27g/mol] 82980(mg/L換算值)	171	270				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID3 0176500	
4	ナトリウム=2-{2-[2-(トリデシルオキシ)エトキシ]エトキシ]エトキシ]エトキン	25446-78-0	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC							分解性の良 好な物質	J-Check 化審法データベース(公表情報): https://www.nite.go.jp/chem/jcheck/detail.action?cno=25446-78- 0&mno=7-0155&request_locale=ja 化学物質安全性点検結果等(分解性) (経済産業省): https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=265 63&ppk=4457&kinou=100&type=ja	
4	77-1	23440-76-0	cccccccccccccccccccccccccccccccccccccc	3.93	2.50e-3(mol/L) [434.6g/mol] 1086.5(mg/L換算值)	115	453				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID2 036457	
				2.09	42						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
5	$\{2-(2-\text{L}+2)\text{L}+2)\text{L}+2$ の $2"-[\text{P} \text{L}+2]$ ($C=12\sim15$ 、直鎖型及び分校型) オキシ] 誘導体 $\}=$ 水素= スルファートのナトリウム塩	91648-56-5	-							分解性の良 好な物質	J-Check 化審法データベース(公表情報): https://www.nite.go.jp/chem/jcheck/detail.action?cno=91648-56- 5&mno=7-0155&request_locale=ja 化学物質安全性点検結果等(分解性) (経済産業省): https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=265 63&ppk=4457&kinou=100&type=ja	
6	α-ヒドロ-ω-スルホキシボリ [オキシ (メチルエチレン)] のアルキル (C=8~ 12) エーテルのナトリウム塩	2172642-87-2	-								検索ヒットなし	
7	-	116726-95-5	-								データなし	
8	α - ヒドロ - ω - $($ スルホオキシ $)$ ポリ $($ オ キシエチレン $)$ のアルケニル $($ C = 1 2 \sim 1 8 $)$ エーテルのナトリウム塩	72379-18-1	-								データなし	
9	ナトリウム = α - [(Z) -オクタデカ - 9 -エン - 1 - イル] - ω - (スルホナトオキシ) ポリ (オキシエチレン)	27233-34-7	ccccccc=cccccccccccccccccccccccccc.[o-]S(=0)(=0)[O-].[Na+].[Na+]								データなし	
10	ナトリウム = α - オクタデシル - ω - (スル ホナトオキシ)ポリ(オキシエチレン)	34431-26-0									データなし	
11	ナトリウム = α -	65104-74-7	cccccccccccccccccccccccccccccccccccccc								データなし	
12	α - ヒドロ - ω - (スルホオキシ)ポリ(オ キシエチレン)のアルキル(C = 1 $2 \sim 1$ 3)エーテルのアンモニウム塩	68649-53-6	-								データなし	
13	ナトリウム=α-イソトリデシル-ω-(ス ルホナトオキシ)ポリ(オキシエチレン)	150413-26-6	-								データなし	

表 2.2.3-2 一般化学物質(官報整理番号 7-155)物化性状(つづき)

			4X 2.2.3-2	/2/13 ;	初貝 (日刊定							
No.	物質名称	CAS RN	SMILES	logP	Wat sol mg/L	MP °C	BP °C	pKa	半減期	分解性	出典:	備考
14	α - スルホー ω - ヒドロキシポリ(オキシエ チレン)のアルキル(C = $12 \sim 14$)エー テルのナトリウム塩	68891-38-3	-	0.3(23°C)	280 (g/L) 20°C 280000 mg/L	> 300	> 400	2(20°C)			eChemPortal_ECHA REACH: https://echa.europa.eu/registration- dossier/-/registered-dossier/15887	
15	α - ヒドロ - ω - (スルホオキシ) ポリ(オ キシエチレン)のアルキル(C = 1 6 \sim 1 0)エーテルのナトリウム塩	73665-22-2	-								データなし	
16	$[\alpha - \text{ヒドロ} - \omega - スルホオキシボリ (オキシエチレン) のsec-アルキル (C=12~14) エーテル] のナトリウム塩$	125736-54-1	-								検索ヒットなし	
17	α - スルホ - ω - ヒドロキシポリ(オキシエチレン)のアルキル($C=16\sim18$ 及び不飽和 $C=18$)エーテルのナトリウム塩	157627-95-7	-	-0.2 (20°C)	112.8 (g/L) 20°C	>= -2 - <= 96	204				eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/-/registered-dossier/17691	
18	[α-ヒドロ-ω- (スルホオキシ) ポリ (オキシエチレン) のアルキル (C=10~ 16) エーテル] のナトリウム塩	68585-34-2	-			-2.5 20 -0.6				容易に生分解される	NITE-CHRIP_安全性要約書(JCIA BIGDr): https://www.jcia- bigdr.jp/jcia-bigdr/material/icca_cas_list#68585-34-2	エマール 227HP: https://www.jcia-bigdr.jp/jcia-bigdr/doc/gps_jips_paper/63680974 7415786495_EMAL_227HP_JP_final_20181214.pdf エマール 270J: https://www.jcia-bigdr.jp/jcia-bigdr/doc/gps_jips_paper/63527769 3333613975_2014_02_12_EMAL_270 J_GPS_SS_JP_final.pdf
19	ナトリウム = α - ドデカン - 1 - イル - ω - (スルホナトオキシ) ポリ (オキシエチレン)	9004-82-4	CCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]	2.35	60.62					substance: 100 mg/l sludge: 30 mg/l (MITI 1992)	eChemPotal_EnviChem: http://wwwp.ymparisto.fi/scripts/Kemrek/Kemrek_uk.asp?M ethod=MAKECHEMdetailsform&txtChemId=2481 ECOSAR Version 1.11: Log_EP Suite Kowwin v1.68, WatSol_ EP Suite WSKowwin v1.43	
20	C12-15 (分枝&直鎖) アルコール・ポリエ チレンオキシド付加物・ポリプロビレンオキ シド付加物・モノ硫酸エステルのアンモニウ ム塩	1246447-57-3	-								データなし	
21	α - ヒドロ - ω - (スルホオキシ)ポリ(オ キシエチレン)のアルキル($C=12\sim1$ 8)エーテルのアンモニウム塩	68610-22-0	-								データなし	
22	ナトリウム = α - オクチル - ω - (スルホナトオキシ) ポリ (オキシエチレン)	34431-25-9	-								データなし	
23	[(2-エチルオキシラン・オキシラン重合物=水素=スルファート)の3-メチルブタ -3-エン-1-イルエーテル]の一アンモニウム塩	438527-53-8	-								検索ヒットなし	
24	[α-ヒドローω-スルホオキシボリ(オキシエチレン)のアルキル(C=14~18) エーテル]のナトリウム塩	68187-52-0	-								データなし	
25	α $ \lambda$	219756-63-5	-								データなし	

表 2.2.3-3 一般化学物質(官報整理番号 7-155)物化性状(つづき)

NI-	Num Fift of Str	CAC DAL	CANLEC	logP	Wat sol	MP	BP	pKa	半減期	分解性	ulum -	備考
No.	物質名称	CAS RN	SMILES		mg/L	°C	°C				出典:	1佣考
26	α - ヒドロー ω - (スルホオキシ) ボリ(オ キシエチレン)のモノイソアルキル(C = 9 \sim 11、C = 10を高含有)エーテルのホス ファート	78330-26-4	-								データなし	
27	α - ヒドロ - ω - (スルホオキシ)ポリ(オ キシエチレン)のアルキル($C=10\sim1$ 6)エーテルのアンモニウム塩	67762-19-0	-								データなし	
28	ナトリウム=α-ヘキサデシル-ω- (スル ホナトオキシ) ポリ (オキシエチレン)	27028-83-7	CCCCCCCCCCCCC.[0-]S(=0)(=0)[0-].[Na+].[Na+]								データなし	
29	α-スルホ-ω-(テトラデシルオキシ)ポ リ(オキシエチレン)の一ナトリウム塩	27731-62-0	-	3.45(C10EO8), 4.53(C12EO8), 5.61(C14EO8), 5.91(C14EO14), 5.01(C14EO14)	>10,000 (C12EO40)	16 °C (C12EO3), 25 °C (C14EO3), 32 °C(C16EO3), 42°C(C18EO3), 26°C(C12EO6), 35°C(C14EO6), 37°C(C16EO6)	182°C(C12EO4), 186°C(C12EO5), 230°C(C12EO6), 283°C(C12EO9), 183°C(C14EO4), 193°C(C16EO4), 214°C(C18EO4)		0.40~4.0 時間	好気的分解	NITE CHRIP_環境省化学物質の環境リスク評価結果:第8巻: 化学物質の生態リスク初期評価(追加実施分) https://www.env.go.jp/chemi/report/h22-01/pdf/chpt1/1-2- 3-07.pdf	生物分解性 好気的分解(分解性が良好と判断される物質) 分解率(C12EO40): BOD 74%、TOC 44%、UV-VIS 62%(試験期間:4週間、被験物 質濃度:100 mg/L、活性汚泥濃度: 30 mg/L) 化学分解性 OH ラジカルとの反応性(大気中) 反応速度定数:160×10-12 cm3 /(分子·sec)(AOPWINにより計算) 半減期:0.40~4.0 時間(OH ラジカル 濃度を3×106~3×105分子/cm3と仮 定し計算)
30	ナトリウム=α-スルホナト-ω-(トリデ シルオキシ)ポリ(オキシエチレン)	54116-08-4	CCCCCCCCCCCCCCCS(=O)(=O)[O-].[Na+]								データなし	
31	$[\alpha - ヒドロ - \omega - $	68081-91-4	-	≤ -1.08(20°C)	> 300 (g/L) 20°C	>= -30 - <= 150	206	2.36(20°C)			eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/-/registered- dossier/12822	
32	Poly(oxy-1,2-ethanediyl), .alphasulfo- .omegahydroxy-, C11-14-isoalkyl ethers, C13-rich, sodium salts	78330-30-0	-							分解性の良 好な物質	J-Check_化学物質安全性点検結果等(分解性·蓄積性)《経済産業省》: https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=360 00&ppk=9114&kinou=100&type=ja	
33	{2-(2-エトキシエトキシ) エタノールの2"-[アルキル(C=12~15、直鎖型及び分枝型) オキシ] 誘導体} = 水素 = スルファートのナトリウム塩	91648-56-5	-	-0.02(C10), 0.46(C11), 0.95(C12), 1.4(C13), 1.9(C14), 2.4(C15), 2.9(C16)	4367(C10), 1363(C11), 425(C12), 133(C13), 41(C14), 13(C15), 4.0(C16)	287(C10), 293(C11), 298(C12), 304(C13), 309(C14), 315(C15), 320(C16)	661(C10), 672(C11), 684(C12), 695(C13), 707(C14), 719(C15), 730(C16)			良分解性物 質 分解性の良	NITE-CHRIP_安全性要約書(JCIA BIGDr): https://www.jcia-bigdr.jp/jcia-bigdr/material/icca_cas_list#91648-56-5 https://jsda.org/w/01_katud/jsda/jsda_AES_201112.pdf	
										好な物質	者》: https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=286 53&ppk=5576&kinou=100&type=ja	

表 2.2.3-4 優先評価化学物質(優先通し番号 214)物化性状

No.	物質名称	CAS RN	SMILES	logP	Wat sol	MP	BP	рКа	半減期	分解性	出典:	備考
INO.	彻莫在你	CASINI	SWILLS		mg/L	°C	°C				山央・	開ち
					>=100(mg/mL) 68°F		205-219				PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/23662383	
1	ナトリウム=2-エチルヘキシル=スルファート	126-92-1	CCCCC(CC)COS(=0)(=0)[0-].[Na+]	0.831	8.82e-2 (mol/L) [232.28g/mol] 20487(mg/L換算值)	146	282				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID1026033	
				-0.248 (25°C)	>500(g/L) 20°C	> 181	191				eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/- /registered-dossier/14397	
				0.384	1.82E+04						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
2	ナトリウム=7-エチル-2-メチルウンデカ ン-4-イル=スルファート	139-88-8	CCCCC(CC)CCC(CC(C)C)OS(=0)(=0)[0-].[Na+]	3.03	1.46e-3 (mol/L) [316.43g/mol] 462(mg/L換算值)	133	320				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID3041530	
				3.184	25.27						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
				4.13	5.90e-3 (mol/L) [415.6g/mol] 2452(mg/L換算值)	120	302				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID4027076	
3	ドデシル=水素=スルファートと2, 2', 2"	139-96-8	CCCCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0	2.55		139.5				易生分解性	eChemPortal_INERIS-PSC : https://substances.ineris.fr/fr/substance/2654	
	- ニトリロトリエタノールの化合物(1:1)	133 30 0		2.55	16*(25°C)	72-122.5 310*	709				eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=DEDC7674-D501-4515-A7F6-8F03B2E72D5D	
				0.549	844.5						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
				1.19	6.65e-2 (mol/L) [232.28g/mol] 15447(mg/L換算值)	195	277				eChemPortal_Chemicals Dashboard(Predicted median, MP Experimental average): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID9036226	
4	ナトリウム=オクチル=スルファート	142-31-4	CCCCCCCOS(=0)(=0)[0-].[Na+]	<= -2.31 (20°C)	> 450(g/L)	210	218				eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/- /registered-dossier/12701	
				-0.27	50570	182				易生分解性	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2655	
				-0.27	50570(25°C)*	181-183 232*	542*				eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=6A702973-B269-41D6-AD27-C15075CD941C	
				0.457	1.58E+04						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
5	ナトリウム=デカン-1-イル=スルファート	142-87-0	CCCCCCCCCS(=0)(=0)[0-].[Na+]	2.01	1.73e-2 (mol/L) [260.33g/mol] 4504(mg/L換算值)	167	298				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID4036229	
		112 01 0	55555555555555555555555555555555555555	1.72(25°C)	> 330 (g/L)20°C	> 168	215	0.91(20°C)			eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/- /registered-dossier/14294	
				0.71	5133	197				易生分解性	eChemPortal_INERIS-PSC : https://substances.ineris.fr/fr/substance/2656	
6	ドデシル=水素=スルファートと2, 2'-イミ ノジエタノールの化合物(1:1)	143-00-0	CCCCCCCCCCCS(=0)(=0)O.C(CO)NCCO	4.13	0.404 (mol/L) [371.5g/mol] 150086(mg/L換算值)	166	291				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID20883332	
				2.975	13.38						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	

表 2.2.3-5 優先評価化学物質(優先通し番号 214)物化性状(つづき)

				logP	Wat sol	MP	BP	рКа	半減期	分解性	
No.	物質名称	CAS RN	SMILES		mg/L	°C	°C	<u> </u>			出典: 備考
										好な物質	J-Check 化審法データベース(公表情報): https://www.nite.go.jp/chem/jcheck/detail.action?cno=151-21-3&mno=2- 1679&request_locale=ja 化学物質安全性点検結果等(分解性) 《経済産業省》: https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=19010&ppk=2490 &kinou=100&type=ja
				1.6 1.69 約0-0.5	約150(g/L)20°C 100(g/L)20°C 可溶性(1000-10000 mg/L)	204 204-207					Japanチャレンジプログラム: https://www.nite.go.jp/chem/jcheck/tempfile_list.action?tpk=19011&ppk=6301 &kinou=100&type=ja
				1.6	100000	399 - 405(°F) 205.5 204					PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/3423265
7	ナトリウム=ドデカン-1-イル=スルファート	151-21-3	CCCCCCCCCCCS(=0)(=0)[0-].[Na+]	1.6	4.61e-3 (mol/L) [288.38g/mol] 1329.4(mg/L換算值)	206	312				eChemPortal_Chemicals Dashboard(Predicted median, log/MP Experimental average): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID1026031
				<= -2.03 (20°C)	> 130(g/L) 20°C	205	216	1.31(20°C)			eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/- /registered-dossier/2126
						204 204-207 207					eChemPortal_EnviChem: http://wwwp.ymparisto.fi/scripts/Kemrek/Kemrek_uk.asp?Method=MAKECHE Mdetailsform&txtChemId=168 Biodegradation: 85% by BOD period: 14d substance: 100 mg/l sludge: 30 mg/l (MITI 1992) Biodegradation (17 mg/l): no degradation after 30 days (Verschueren 1983).
				1.6	15(g/100mL) 20°C	204				1	eChemPortal_ICSC: https://www.ilo.org/dyn/icsc/showcard.display?p_card_id=0502
				1.6	150000 (20°C)	205.5					eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/1694
				1.6	196000 (20°C) 617*	193 - 207 254*	589*				eChemPortal_OECD HPV: *: value calculated by EPI Suite v. 3.12 (2005) https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=A6FFE5F3-0FC7-4394- 8BFA-E5D50DB648FD *: value calculated by EPI Suite v. 3.12 (2005) 617mg/L:Calc. water solubility, 196000mg/L:Exp. solubility in distilled water
				2.422	163.7						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
				1.62	4.80e-2 (mol/L) [246.3g/mol] 11822.4(mg/L換算值)	155	291				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID7047487
8	ナトリウム=ノニル=スルファート	1072-15-7	CCCCCCCCS(=0)(=0)[O-].[Na+]	0.22	180 (g/L) 20°C	181	decomposition already during melting (at 181 °C)	0.91			eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/- /registered-dossier/10738
				-0.27		192					eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2658
				0.948	5056						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
9	ナトリウム=ウンデシル=スルファート	1072-24-8	CCCCCCCCCCS(=0)(=0)[0-].[Na+]	2.46	6.71e-3 (mol/L) [274.35g/mol] 1841(mg/L換算值)	209	305				eChemPortal_Chemicals Dashboard(Predicted median, MP Experimental average) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID70147936
			CCCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]	5.02	1.20e-3 (mol/L) [344.5g/mol] 413.4(mg/L換算值)	190	347				eChemPortal_Chemicals Dashboard(Predicted median, MP Experimental average) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID0042400
10	ナトリウム=ヘキサデシル=スルファート	1120-01-0		3.66	300(30°C)	193					eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2659
					5.0 300(30°C)						eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=9FC26BA3-2CF5-45AB-94EC-8D637623DC8D 5.0mg/L:Calc. water solubility, 300mg/L:Exp. solubility in distilled water
				4.386	1.625						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
11	ナトリウム=オクタデシル=スルファート	1120-04-3	CCCCCCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]	5.99	1.46e-3 (mol/L) [372.5g/mol] 543.9(mg/L換算值)	189	420				eChemPortal_Chemicals Dashboard(Predicted median, MP Experimental average) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID6047103
11		1120 01 0		4.64	0.49	286					eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2660
				5.368	0.16						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_EPISuite WSKowwin v1.43

表 2.2.3-6 優先評価化学物質(優先通し番号 214)物化性状(つづき)

						145	55	1 ,,	AL Selle	O ATIM	
No.	物質名称	CAS RN	SMILES	logP	Wat sol	MP	BP	pKa	半減期	分解性	出典: 備考
					mg/L 1.10e-3 (mol/L)	°C	°C				
				3.89	[316.43g/mol]	188	308				eChemPortal_Chemicals Dashboard(Predicted median, MP Experimental average)
					348(mg/L換算值)						: https://comptox.epa.gov/dashboard/chemical/properties/DTXSID4042416
4.0				2.67	5.13	196				易生分解性	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2661
12	ナトリウム=テトラデシル=スルファート	1191-50-0	CCCCCCCCCCCCS(=0)(=0)[0-].[Na+]		51						eChemPortal_OECD HPV: 51mg/L: Calc. water solubility, 2370mg/L: Exp.
					2370(25°C)						https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=251A605B-C657-4EBB-solubility in distilled water, 5.13mg/L: Exp. solubility in reconstituted water (Dyer et al., 1997)
				0.404	5.13			 	1		ECOSAR Version 1.11: Log_EPISuite Kowwin v1.68, WatSol_EPISuite
				3.404	16.38						WSKowwin v1.43
				4.13	5.90e-3 (mol/L) [283.43g/mol]	112	302				eChemPortal_Chemicals Dashboard(Predicted median):
				4.13	1672(mg/L換算值)	112	302				https://comptox.epa.gov/dashboard/chemical/properties/DTXSID2027462
10	アンモニウム=ドデカン-1-イル=スル	0005 54 0	200000000000000000000000000000000000000	3.42	18	218				易生分解性	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2657
13	ファート	2235-54-3	CCCCCCCCCCS(=0)(=0)[0-].[NH4+]							1	eChemPortal_OECD HPV:
				3.42	18	218	512				https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=F831FCB3-CDC0- 458A-AD43-3226107998B0 value calculated by EPI Suite v. 3.12 (2005)
				2.422	163.7				<u> </u>		ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite
				2.122	3.27e-3 (mol/L)			-	<u> </u>		WSKowwin v1.43
				3.43	[302.41g/mol]	187	319				eChemPortal_Chemicals Dashboard(Predicted median, MP Experimental average)
1/	ナトリウム=トリデシル=スルファート	3026-63-9	CCCCCCCCCCCCS(=0)(=0)[0-].[Na+]		989(mg/L換算值)						: https://comptox.epa.gov/dashboard/chemical/properties/DTXSID4042418
14		3020-03-9		-0.27		194				易生分解性	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2662
				2.913	51.84						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_EPISuite
15	ナトリウム=8-エチル-2-メチルウンデシ										WSKowwin v1.43
15	ル=スルファート	3026-64-0	-								検索ヒットなし
	ドデシル=水素=スルファートとプロパン-2				5.90e-3 (mol/L)						eChemPortal_Chemicals Dashboard(Predicted median):
16	- アミンの化合物(1:1)	3032-58-4	CCCCCCCCCCCCS(=0)(=0)0.CC(C)N	4.13	[325.5g/mol]	103	302			1	https://comptox.epa.gov/dashboard/chemical/properties/DTXSID2062799
					1920(mg/L換算值) 5.68e-4 (mol/L)			-	-		
	ナトリウム=4-エチル-1-(3-エチルペ			4.44	[358.51g/mol]	128	350				eChemPortal_Chemicals Dashboard(Predicted median):
17	ンチル) オクチル=スルファート	3282-85-7	-		204(mg/L換算值)						https://comptox.epa.gov/dashboard/chemical/properties/DTXSID1041552
				4.657	0.7873						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
	-1				1.88e-3 (mol/L)						
18	テトラデシル=水素=スルファートと 2, 2', 2"-ニトリロトリエタノールの化合物	4492-78-8	CCCCCCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0	5.1	[443.6g/mol]	121	297				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID00963303
	2 ニドリロドリエスノ かのに日初				834(mg/L換算值)						maps // compressions and an entimous properties/ bit not be obtained.
10	ヘキサデシル=水素=スルファートと 2, 2',	4492-79-9	CCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0	6.37	1.12 (mol/L)	158	319				eChemPortal_Chemicals Dashboard(Predicted median):
19	2"-ニトリロトリエタノールの化合物	4492-79-9		0.57	[471.7g/mol] 528304(mg/L換算值)	130	319				https://comptox.epa.gov/dashboard/chemical/properties/DTXSID60963304
	2, 2', 2"-ニトリロトリエタノールとオク				1.45 (mol/L)						
20	タデシル=水素=スルファートの化合物(1:	4492-80-2	CCCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0	7.33	[499.7g/mol]	158	335				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID50884079
	1)				724565(mg/L換算值)						
				7.33	2.83e-3 (mol/L) [367.6g/mol]	128	378			1	eChemPortal_Chemicals Dashboard(Predicted median) :
21	アンモニウム=オクタデシル=スルファート	4696-46-2	CCCCCCCCCCCCCCCCS(=0)(=0)0.N	7.55	1040(mg/L換算值)	120	310				https://comptox.epa.gov/dashboard/chemical/properties/DTXSID1063562
				6.368	0.01765						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite
					2.21e-3 (mol/L)			1	-		WSKowwin v1.43
				6.37	[339.5g/mol]	128	333			1	eChemPortal_Chemicals Dashboard(Predicted median):
22	アンモニウム=ヘキサデシル=スルファート	4696-47-3	CCCCCCCCCCCCCCS(=0)(=0)[0-].[NH4+]		750(mg/L換算值)						https://comptox.epa.gov/dashboard/chemical/properties/DTXSID6063563
				5.386	0.18						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
	0 75/76/ 115 511 25 11 25				1.12 (mol/L)			1			
23	2-アミノエタノールとヘキサデシル=水素= スルファートの化合物(1:1)	4696-48-4	CCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)N	6.37	[383.6g/mol]	124	319				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID00963707
	/ 1 210 177 (1 - 1)				429632(mg/L換算值)						
24	2 - アミノエタノールとオクタデシル=水素=	4696-49-5	000000000000000000000000000000000000000	7.33	1.45 (mol/L)	124	335				eChemPortal_Chemicals Dashboard(Predicted median):
24	スルファートの化合物(1:1)	4030-43-3	CCCCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)N	1.33	[411.6g/mol] 596820(mg/L換算值)	124	333				https://comptox.epa.gov/dashboard/chemical/properties/DTXSID60963708
	クニマミ / エカ / コレドニショールキー・				5.90e-3 (mol/L)			1			
25	2-アミノエタノールとドデシル=水素=スルファートの化合物(1:1)	4722-98-9	CCCCCCCCCCCS(=0)(=0)0.C(C0)N	4.13	[327.48g/mol]	103	302			1	eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID0063573
					1932(mg/L換算值)						

表 2.2.3-7 優先評価化学物質(優先通し番号 214)物化性状(つづき)

				logP	West and	MP	ВР	рКа	半減期	分解性	
No.	物質名称	CAS RN	SMILES	logP	Wat sol			pna	干減期	分件注	出典: 備考
					mg/L	°C	°C				
26	ナトリウム=ヘプタデシル=スルファート	5910-79-2	cccccccccccccs(=0)(=0)[0-].[Na+]	5.53	2.01e-3 (mol/L) [358.5g/mol] 721(mg/L換算值)	189	356				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID30880478
				5.476	0.1959						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
27	アンモニウム=デシルスルファート	13177-52-1	CCCCCCCCCS(=0)(=0)0.N	3.31	1.48e-2 (mol/L) [255.38g/mol] 3780(mg/L換算值)	107	294				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID8065375
				2.44	182.2						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
				4.56	1.12e-3 (mol/L) [330.5g/mol] 370(mg/L換算値)	179	317				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID90874030
28	ナトリウム=ペンタデシル=スルファート	13393-71-0	CCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]	3.17	0.4	186				易生分解性	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2663
20	,,,,,	10030 71 0			16 0.4						eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=C1DB557B-0B95-4E5D-B188-0A763EF3D531 l6mg/L: Calc. water solubility, 0.4mg/L: Exp. solubility in reconstituted water (Dyer et al., 1997)
				4.494	1.973						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
29	1-アミノプロパン-2-オールとドデシル= 水素=スルファートの化合物(1:1)	21142-28-9	CCCCCCCCCCCS(=0)(=0)0.CC(CN)0	3.413	8.482						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
30	ナトリウム=2-ヘキシルデシル=スルファー ト	25542-86-3	CCCCCCCC(CCCCCC)COS(=0)(=0)[O-].[Na+]	5.68	1.06 (mol/L) [344.5g/mol] 365170(mg/L換算值)	155	337				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID60948439
31	ナトリウム=イソノニル=スルファート	26856-96-2	CC(C)CCCCCOS(=0)(=0)[0-].[Na+]	1.1	6.23e-2 (mol/L) [246.3g/mol] 15344(mg/L換算值)	155	289				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID7042431
				0.875	5842						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
32	2, 2', 2"-ニトリロトリエタノールとオク チル=水素=スルファートの化合物(1:1)	30862-34-1	CCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0	2.13	4.32e-2 (mol/L) [359.48g/mol] 15530(mg/L換算值)	115	272				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID8067579
33	2 - アミノエタノールとオクチル=水素=スルファートの化合物(1:1)	30862-35-2	CCCCCCCOS(=0)(=0)0.C(CO)N	2.13	4.32e-2 (mol/L) [271.38g/mol] 11724(mg/L換算值)	98.4	272				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID7067580
34	ナトリウム=デカン-2-イル=スルファート	32687-84-6	CCCCCCCC(C)OS(=0)(=0)[0-].[Na+]	2.81	-1.79e-2 (mol/L) [260.329g/mol] -4660(mg/L換算值)	162	289				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID60954373
35	アンモニウム=トリデシル=スルファート	34506-45-1	CCCCCCCCCCCS(=0)(=0)[0-].[NH4+]	4.68	0.587 (mol/L) [297.46g/mol] 174609(mg/L換算值)	144	285				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID00956038
36	3 - [(4 - アミノ - 2 - メチルビリミジン - 5 - イル) メチル] - 5 - (2 - ヒドロキシエ チル) - 4 - メチルチアゾール - 3 - イウム = ドデシル=スルファート	39479-63-5	-	0.864	6.03e-3 (mol/L) [797.14 g/mol] 4807(mg/L換算值)	141	333				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID20192618
37	デシル=水素=スルファートと2,2',2"- ニトリロトリエタノールの化合物(1:1)	39943-70-9	CCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0	3.31	1.48e-2 (mol/L) [387.5g/mol] 5735(mg/L換算值)	118	294				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID3068207
				1.57	168	299				易生分解性	eChemPortal_INERIS-PSC:https://substances.ineris.fr/fr/substance/2664
38	2-アミノ $-$ 2 $-$ (ヒドロキシメチル)プロパン $-$ 1, $3-$ ジオールとドデシル $=$ 水素 $=$ スルファートの化合物($1:1$)	50996-85-5	CCCCCCCCCCS(=0)(=0)0.C(C(C0)(C0)N)0	3.31	3.34e-2 (mol/L) [387.5g/mol] 12900(mg/L換算值)	161	290				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID90965270
39	ヘキサデシル=水素=スルファートと 2, 2'ーイミノジエタノールの化合物(1:1)	51541-51-6	CCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)NCCO	6.37	1.12 [427.6g/mol] 478912(mg/L換算值)	166	319				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID20965869
				5.998	0.01956						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43

表 2.2.3-8 優先評価化学物質(優先通し番号 214)物化性状(つづき)

	7, 2.2.0						140					Т
No.	物質名称	CAS RN	SMILES	logP	Wat sol	MP	BP °C	pKa	半減期	分解性	出典:	備考
					mg/L 1.88e-3 (mol/L)	°C	°C					
				5.1	[311.48g/mol]	114	297				eChemPortal_Chemicals Dashboard(Predicted median):	
40	アンモニウム=テトラデシル=スルファート	52304-21-9	CCCCCCCCCCCCS(=0)(=0)0.N		586(mg/L換算值)						https://comptox.epa.gov/dashboard/chemical/properties/DTXSID5068736	
				4.404	1.823						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
	Thiazolium, 3-[(4-amino-2-methyl-5-										WSKOWWIN VI.43	
41	pyrimidinyl)methyl]-5-(2-hydroxyethyl)-4-	56595-19-8	$ \begin{array}{l} \texttt{CCCCCCCCCCCCCCCCCCS}(=0)(=0)0.\texttt{CC1} = \texttt{C}(\texttt{SC} = [\texttt{N}+]\texttt{1CC2} = \\ \texttt{CN} = \texttt{C}(\texttt{N} = \texttt{C2N})\texttt{C})\texttt{CC0}.[\texttt{CI}-] \end{array} $								検索ヒットなし	
	methyl-, dodecyl sulfate (1:1)		CN=C(N=C2N/C/CCO.[CI-]									
42	ナトリウム= (R) -デカン-2-イル=スル	57689-21-1	CCCCCCCC(C)OS(=0)(=0)[0-].[Na+]								検索ヒットなし	
	ファート				2.83e-3 (mol/L)			-				
43	2, 2'-イミノジエタノールとオクタデシル= 水素=スルファートの化合物(1:1)	64346-13-0	CCCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)NCC0	7.33	[455.7g/mol]	138	378				eChemPortal_Chemicals Dashboard(Predicted median):	
					1290(mg/L換算值)						https://comptox.epa.gov/dashboard/chemical/properties/DTXSID0070073	
	2- (ジエチルアミノ) エタノールとドデシル = 水素 = スルファートの化合物 (1:1)	65104-49-6	CCCCCCCCCCCS(=0)(=0)0.CCN(CC)CCO	4.13	5.90e-3 (mol/L)						eChemPortal_Chemicals Dashboard(Predicted median) :	
44					[383.6g/mol]	121	302				https://comptox.epa.gov/dashboard/chemical/properties/DTXSID7070214	
					2260(mg/L換算值) 0.765 (mol/L)							
	2, 2'ーイミノジエタノールとテトラデシル= 水素=スルファートの化合物(1:1)	65104-61-2	CCCCCCCCCCCCCS(=0)(=0)0.C(C0)NCC0	5.1	[399.6g/mol]	166	285				eChemPortal_Chemicals Dashboard(Predicted median):	
45					305694(mg/L換算值)						https://comptox.epa.gov/dashboard/chemical/properties/DTXSID50983652	
				3.958	1.285						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite	
					3.34e-2 (mol/L)			-	-		WSKowwin v1.43	
46	デシル=水素=スルファートと2,2'-イミノ ジエタノールの化合物(1:1)	65121-82-6	CCCCCCCCCS(=0)(=0)0.C(C0)NCC0	3.31	[343.48g/mol]	166	290	290			eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID20885932	
					11500(mg/L換算值)						III.tps://comptox.epa.gov/dashibbard/chemical/properties/DTA3iD20003532	
47	N-シクロヘキシルジエチルアミンとデシル=	65121-83-7	CCCCCCCCCCS(=0)(=0)0.CCN(CC)C1CCCCC1								データなし	
	水素=スルファートの化合物(1:1)							-				
48	ドデシル=水素=スルファートと1, 1'-イミ ノビス(プロパン-2-オール)の化合物	66161-59-9	CCCCCCCCCCCS(=0)(=0)0.CC(CNCC(C)0)0								データなし	
40	(1:1)										7 740	
	2, 2'-イミノジエタノールとオクチル=水素 =スルファートの化合物(1:1)	67633-87-8	CCCCCCCCS(=0)(=0)0.C(C0)NCCO	2.13	4.32e-2 (mol/L)						eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID9070537	
49					[315.43g/mol]	119	272					
					13600(mg/L換算值)							
50	アンモニウム=オクチル=スルファート	67633-88-9	CCCCCCCOS(=0)(=0)[0-].[NH4+]	2.13	4.32e-2 (mol/L) [227.32g/mol]	98.8	272				eChemPortal_Chemicals Dashboard(Predicted median) :	
30				2.13	9820(mg/L換算值)	30.0	212				https://comptox.epa.gov/dashboard/chemical/properties/DTXSID60891279	
	アンモニウム=アルキル (C=10~16) = スルファート	68081-96-9	-							易生分解性	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2665	2235-54-3(PubChem)
51				3.422	18.32						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite	
	ナトリウム=アルキル (C=8~18) =スル							1			WSKowwin v1.43	
52	ファート	68130-43-8	CCCCCCCCCCCS(=0)(=0)[0-].[Na+]								データなし	
					1.38e-2 (mol/L)						Chambartal Chambartal Dathbartal/Dathbartal and tank	
F2		60200 17 2	[, u][, o](o, \/o, \/o, o)(o,	1.39	[260.329g/mol]	166	296				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID2042430	
53	ナトリウム=イソデシル=スルファート	68299-17-2	CC(C)CCCCCCOS(=0)(=0)[0-].[Na+]		3590(mg/L換算值)						ECOCAD Variation 111 along EDIC the Variation 1 CO. Warden EDIC the	
				1.366	1868			<u> </u>	<u> </u>		ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
54	ナトリウム=アルキル (C=10~16) =ス ルファート	68585-47-7	C.CCCCCCCCCCCC(=0)(=0)[0-].[Na+]							易生分解性	eChemPortal_INERIS-PSC : https://substances.ineris.fr/fr/substance/2667	
				2.913	51.84						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
	アルキル (C=12~15) =水素=スル			-				1			WONUWWIII VI.40	
55	ファートと2, 2, ', 2"-ニトリロトリエタ	68815-25-8	-								データなし	
	ノールのエステル											
E.E	硫酸モノアルキル (C=12~15) エステル	68890-70-0									eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2668	
56	のナトリウム塩	00030-10-0		2.422	163.7						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
				≤ -2.1	> 250 (g/L)20°C	36 - 183	208	2.15(20°C)			eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/-	
	硫酸モノアルキル (C=12~18) =エステ			(20°C)	≥ 230 (8/ L/20 C	30 - 103	200	2.13(20 0)			/registered-dossier/15009	
57	ルのナトリウム塩	68955-19-1	CCCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]								eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2669	
				2.422	163.7						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
F0	ナトリウム=アルキル (C=16~18) =ス ルファート	68955-20-4	CCCCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]	-0.44	1.5// (4/1.)	-34 - 183	232	1			eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/-	
				(20°C)	1.54 (g/L)	-34 - 103	232				/registered-dossier/11581	
58											eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2670	
				4.386	1.625						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
		ı						1			TOTOWWIN 11.73	

表 2.2.3-9 優先評価化学物質(優先通し番号 214)物化性状(つづき)

No	物質名称	CAS RN	SMILES	logP	Wat sol	MP	BP	рКа	半減期	分解性	出典:	備考
No.	初負名称	CAS KIN	SIMILES		mg/L	°C	°C				四典 .	1用考
				1.42	-0.272 (mol/L) [227.32g/mol] -61800(mg/L換算值)	126	268				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID70887244	
59	アンモニウム = 2 - エチルヘキシル = スルファート	70495-37-3	CCCCC(CC)COS(=0)(=0)[O-].[NH4+]	<= -3.66 (20°C)	3350 (g/L) 25°C	>= 180	>= 180				eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/-/registered-dossier/29325	OECD Guideline 107 (Partition Coefficient (noctanol / water), Shake Flask Method) OECD Guideline 105 (Water Solubility) OECD Guideline 102 (Melting point / Melting Range) OECD Guideline 103 (Boiling Point)
				1.384	2070						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
60	デシル=水素=スルファートとプロパン-2-アミンの化合物(1:1)	71317-58-3	CCCCCCCCCS(=0)(=0)0.CC(C)N	3.31	1.48e-2 (mol/L) [297.46g/mol] 4400(mg/L換算值)	101	294				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID3072321	
61	2, 2', 2"-ニトリロトリエタノールとトリデシル=水素=スルファートの化合物(1:	71371-60-3	CCCCCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0	4.68	0.587 (mol/L) [429.6g/mol] 252000(mg/L換算值)	158	285				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID80991705	
				4.505	0.3583						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
62	ナトリウム=アルキル($C = 9 \sim 13$)=スルファート	72906-11-7	-	0.948	5056						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
63	2-アミノエタノールとトリデシル=水素=ス ルファートの化合物 (1:1)	73003-73-3	CCCCCCCCCCCCS(=0)(=0)O.C(CO)N	4.68	0.587 (mol/L) [341.5g/mol] 200000(mg/L換算值)	124	285				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID60993767	
				3.487	7.341						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
64	ナトリウム=アルキル (C=12~16) =スルファート	73296-89-6	-	<= -2.1 <= -2.42 (20°C)	> 250 (g/L) > 400 (g/L) 20°C	5 - 183	187 - 208	1.73 , 2.15 (20 °C)			eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/-/registered-dossier/13301	
				2.422	163.7						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	
65	ナトリウム=3, 7-ジメチルオクチル=スルファート	78204-56-5	-								検索ヒットなし	
66	ナトリウム=12-メチルトリデカン-1-イル=スルファート	78204-57-6	-								検索ヒットなし	
67	2-エチルヘキシル=水素=スルファートと 2, 2', 2"-ニトリロトリエタノールの化合 物 (1:1)	78568-66-8	CCCCC(CC)COS(=0)(=0)[O-].C(CO)[N+](=CCO)CCO								データなし	
68	2-アミノエタノールと5-メチルヘプチル= 水素=スルファートの化合物(1:1)	80867-10-3	CCC(C)CCCCOS(=0)(=0)[O-].C(CO)[NH3+]	1.42	-0.272 (mol/L) [271.38g/mol] -73800(mg/L換算值)	125	268				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID901001602	
69	アンモニウム=ベンタデシル=スルファート	81628-41-3	CCCCCCCCCCCCCS(=0)(=0)[0-].[NH4+]	5.95	0.941 (mol/L) [325.5g/mol] 306000(mg/L換算值)	146	315				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID401002100	
70	ドデシル=水素=スルファートと4-メチルピ リジンの化合物(1:1)	84176-63-6	-								データなし	
71	ナトリウム=イソトリデシル=スルファート	84681-74-3	CC(C)CCCCCCCCS(=0)(=0)[0-].[Na+]	3.25	5.98e-3 (mol/L) [302.41g/mol] 1810(mg/L換算值)	129	304				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID00233659	
72	アルキル(C = 1 2~1 6) = 水素 = スル ファートと 2 , 2', 2" - ニトリロトリエタ ノールの化合物	85252-21-7	-								検索ヒットなし	
73	オクチル=水素=スルファートとプロバン-2 -アミンの化合物(1:1)	85409-85-4	CCCCCCCOS(=0)(=0)[0-].CC(C)[NH3+]	2.13	-0.294 (mol/L) [269.4g/mol] -79200(mg/L換算值)	124	268				eChemPortal_Chemicals Dashboard(Predicted median): https://comptox.epa.gov/dashboard/chemical/properties/DTXSID601005912	

表 2.2.3-10 優先評価化学物質(優先通し番号 214) 物化性状(つづき)

							_					1
No.	物質名称	CAS RN	SMILES	logP	Wat sol mg/L	MP °C	BP °C	pKa	半減期	分解性	出典:	備考
74	硫酸モノアルキル (C=14~18、不飽和C=16~18) エステルのナトリウム塩	85681-68-1	-								データなし	
75	アンモニウム=イソデシル=スルファート	85909-50-8	CC(C)CCCCCCS(=0)(=0)[0-].[NH4+]	2.13	-1.81e-2 (mol/L) [255.38g/mol] -4620(mg/L換算值)	136	289				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID801006504	
76	ナトリウム=アルキル ($C = 13 \sim 15$) =スルファート	86014-79-1	-							易生分解性	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2681	
77	アンモニウム=アルキル $(C=12\sim16)=$ スルファート	90583-12-3	-							易生分解性	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2673	
78	アンモニウム=アルキル ($C = 12 \sim 18$) = スルファート	90583-13-4	-							易生分解性	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2683	
79	ナトリウム=アルキル($C=6\sim12$)=スルファート	90583-25-8	-								データなし	
80	硫酸アルキル($C = 10 \sim 14$)エステルのナトリウム塩	90583-28-1	-								データなし	
81	2-アミノエタノールとテトラデシル=水素= スルファートの化合物(1:1)	93859-02-0	CCCCCCCCCCCCCS(=0)(=0)0.C(C0)N	5.1	0.765 (mol/L) [355.5g/mol] 272000(mg/L換算值)	124	285				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID90917395	
82	2-アミノエタノールとデシル=水素=スルファートの化合物(1:1)	94086-82-5	CCCCCCCCCCS(=0)(=0)0.C(CO)N	3.31	1.48e-2 (mol/L) [299.43g/mol] 4430(mg/L換算值)	101	294				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID10240399	
83	2-アミノエタノールとペンタデシル=水素= スルファートの化合物(1:1)	94107-62-7	CCCCCCCCCCCCCS(=0)(=0)0.C(C0)N	5.95	0.941 (mol/L) [369.6g/mol] 348000(mg/L換算值)	124	315				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID50916480	
84	ジエチルアミンとオクタデシル=水素=スルファートの化合物 (1:1)	94110-17-5	CCCCCCCCCCCCCCCCCS(=0)(=0)0.CCNCC	7.33	1.45 (mol/L) [423.7g/mol] 614000(mg/L換算值)	134	335				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID50916420	
85	ジエチルアミンとヘキサデシル=水素=スルファートの化合物(1:1)	94110-18-6	CCCCCCCCCCCCCCS(=0)(=0)0.CCNCC	6.37	1.12 (mol/L) [395.6g/mol] 443000(mg/L換算值)	134	319				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID40916419	
86	ジエチルアミンとオクチル=水素=スルファートの化合物(1:1)	94133-50-3	CCCCCCCOS(=0)(=0)0.CCNCC	2.13	-0.294 (mol/L) [283.43g/mol] -83300(mg/L換算值)	134	268				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID00916394	
87	ナトリウム=2-ブチルオクチル=スルファー	94200-74-5	CCCCCC(CCCC)COS(=0)(=0)[O-].[Na+]	3.49	0.353 (mol/L) [288.38g/mol] 102000(mg/L換算值)	161	284				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID90916166	
				2.077 (25°C)	> 400 (g/L) 20°C	> 176	189				eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/- /registered-dossier/12206	
88	ナトリウム=sec-ノニル=スルファート	98735-06-9	-								検索ヒットなし	
89	2-エチルヘキシル=水素=スルファートと2 -アミノエタノールの化合物	99948-85-3	CCCCC(CC)COS(=0)(=0)O.C(CO)N	1.42	-0.272 (mol/L) [271.38g/mol] -73800(mg/L換算值)	125	268				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID80912374	
90	アルキル(C = 10~16)=水素=スル ファートと2, 2', 2"ーニトリロトリエタ ノールの化合物	117875-77-1	-	3.04	67.8						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43	

表 2.2.3-11 優先評価化学物質(優先通し番号 250)物化性状

	11 55 6 11	040 BN	0.00.50	logP	Wat sol	MP	BP	pKa	半減期	分解性	J
No.	物質名称	CAS RN	SMILES		mg/L	°C	°C				- 出典:
1	2 - (ヘキサデシルオキシ) エタ ノール	2136-71-2	ccccccccccccc	7.17	1.82e-6 (mol/L) [286.5g/mol] 0.52(mg/L換算值)	6.71	354				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID00858846
				6.46	0.1448						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
2	2 - (オクタデシルオキシ)エタノール	2136-72-3	cccccccccccccc	8.2	1.15e-6 (mol/L) [314.5g/mol] 0.36(mg/L換算值)	40.4	389				eChemPortal_Chemicals Dashboard(Predicted median) : https://comptox.epa.gov/dashboard/chemical/properties/DTXSID60858842
				7.442	0.0144						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
3	α - ヘキサデシル - ω - ヒドロキシボリ(オ キシエチレン)	9004-95-9	000000000000000000000000000000000000000	> 6.06 (25°C) 6.67 (20°C)	2.15 - 910.5 (μg/L) (20°C)	> 5 - < 43	> 346				eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/-/registered-dossier/25379
				5.362	0.1055						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
4	α-ヒドロ-ω- { [(Z) -オクタデカ- 9-エン-1-イル] オキシ} ポリ (オキシ	9004-98-2	-	> 6.44 (25°C) 7.15	< 40 (μg/L) (20°C) 0.4 (μg/L)(25°C)	-4	255				eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/-/registered-dossier/18582
	エチレン)			6.129	0.01594						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
5	α - ヒドロ - ω - (オクタデシルオキシ)ポ リ(オキシエチレン)	9005-00-9	ccccccccccccccc	7.3 7.07	< 0.1 0.05 (μg/L) (20°C)	>= -3 - <= 53 47.9 43	> 371				eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/-/registered-dossier/14213
				6.344	0.01014						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
6	α-ヒドロ-ω-(オクタデセニルオキシ) ポリ(オキシエチレン)	9040-05-5	-								検索ヒットなし
7	α-ヒドロ-ω- (オクタデカ-9-エン- 1-イルオキシ) ポリ (オキシエチレン)	25190-05-0	00000000=000000000								データなし
8	α - ヒドロ - ω - (イソオクタデシルオキシ) ポリ (オキシエチレン)	52292-17-8	cc(c)cccccccccccccccccc								データなし
9	α - (2 - ヘキシルデシル) - ω - ヒドロキ シポリ(オキシエチレン)	52609-19-5	-	6.26 6.05 6.16	9.402 (25°C) 0.25984(25°C) 5.043 (g/L)20°C	-40 - 23 -37	329				eChemPortal_ECHA REACH : https://echa.europa.eu/registration-dossier/-/registered-dossier/10572
10	エトキシ化ココーアルコール	61791-13-7	-	3.398	11.31						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
11	エトキシ化鯨油アルコール	61791-21-7	-								検索ヒットなし
12	エトキシ化牛脂アルコール	61791-28-4	-	6.129	0.01594						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
13	$\alpha - \triangle + \forall \vec{r} \Rightarrow r$	64415-24-3	-								データなし
14	$α - \triangle + \forall \vec{r} \forall v - 1 - (\vec{r} + \vec{r} + $	65104-72-5	-								データなし
15	アルコール (C=10~16) エトキシ化物	68002-97-1	CC1(C2CCC1(C(C2)OCC(C)(C)[N+](=O)[O-])C)C	2.69	125.3						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
16	エトキシ化アルコール (C=14~18)	68154-96-1	ccccccccccccc			59 °F					PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/109643
				6.942	0.03067						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
1 17	エトキシ化アルコール (C = 16及び不飽和 C = 18)	68155-01-1	-	8.692	0.0004858						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
18	アルコール (C = 1 2~1 8)エトキシ化物	68213-23-0	-	5.16 (25°C) 4.2(24°C) 5.17 5.14 2.03 - 7.72	20 (24°C)	-7 - 18	274				eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/-/registered-dossier/12325
				4.38	1.095						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43

表 2.2.3-12 優先評価化学物質(優先通し番号 250) 物化性状(つづき)

Na	₩ww.ch. クキー	CAC DN	CAMILEC	logP	Wat sol	MP	BP	рКа	半減期	分解性	ulum .
No.	物質名称	CAS RN	SMILES		mg/L	°C	°C				- 出典:
19	エトキシ化アルコール (C=16~18)	68439-49-6	-	7.07 (25°C)	110 (μg/L) (20°C)	46.9	345 >= 330 - 400				eChemPortal_ECHA REACH DRAFT: https://echa.europa.eu/registration-dossier/-/registered-dossier/13418
				7.925	0.0031						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
20	エトキシ化アルコール(C=12~20)	68526-94-3	-	5.469	0.9301						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
21	アルコール (C=12~16) エトキシ化物	68551-12-2	-	5.96	0.2995						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
22	エトキシ化アルコール(C = 1 2~1 9)	68603-20-3	ccccccccccc			61°F					PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/96386
22	1	00003-20-3		5.96	0.2995						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
	エトキシ化アルコール(C=16~18及び 不飽和C=18)	68920-66-1	ccc=cccccccccccccc	> 6.75 (25 °C) 6.61 7.01 >=3.8 6.81 (25 °C)	>= 5 - <= 20 (μ g/L) 20°C	-67 - 18	369				eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/-/registered-dossier/15961
				6.129	0.01594						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
24	エトキシ化アルコール(C = 7~2 1)	68991-48-0	-	3.505	108.3	-68.3					ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43, MP_PhysProp DB exp value for Wat Sol est
25	エトキシ化アルコール(C = 8~22)	69013-19-0	ссосс	0.89	6.04X10+4 (25°C) 6.9g/100ml(20°C)	-177.3 °F -116.3,-123.3 -116 -177 °F	94.3 °F 34.6 35 94 °F	-3.59			PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/3283 (CAS:60-29-7)
				3.996	26.96						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
26	エトキシ化アルコール(C=16~22)	69227-20-9	ccocc	0.89	6.04X10+4 (25°C) 6.9g/100ml(20°C)	-177.3 °F -116.3,-123.3 -116 -177 °F	94.3 °F 34.6 35 94 °F	-3.59			PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/3283 (CAS:60-29-7)
				7.925	0.0031						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
27	α - ヒドロ - ω - イソヘキサデシルオキシボ リ (オキシエチレン)	69364-63-2	cccccccccccccc	4.995	0.2174						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
28	エトキシ化アルコール(C=14~26)	71011-10-4	ccocc	0.89	6.04X10+4 (25°C) 6.9g/100ml(20°C)	-177.3 °F -116.3,-123.3 -116 -177 °F	94.3 °F 34.6 35 94 °F	-3.59			PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/3283 (CAS:60-29-7)
				6.942	0.03067						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
29	エトキシ化アルコール(C=8~16)	71243-46-4	ccccccccccc	3.996	26.96						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
30	エトキシ化アルコール(C=13~18)	72905-87-4	cccccccccccc	6.451	0.09603						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
31	ポリオキシアルキレン($C = 2 \sim 4$ 、8)の モノアルキル($C = 1 \sim 24$)エーテル	73398-63-7	-								データなし
32	エトキシ化アルコール(C = 9~1 6)	97043-91-9	-	4.487	8.832						ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_ EPISuite WSKowwin v1.43
33	エトキシ化アルコール($C = 1.4 \sim 1.8$ 及び 不飽和 $C = 1.6 \sim 1.8$)	126646-02-4	-								データなし
34	α - \wedge + シルデシル - ω - ヒドロキシポリ (オキシエチレン)	127162-58-7	-								検索ヒットなし
35	α - 2 - α + νω + νω - ω - ω - ω + νω + νω + νω +	135454-69-2	-								検索ヒットなし

表 2.2.3-13 一般化学物質(官報整理番号 7-155)有害性情報

				藻類					甲殼類					魚類					CCR
				Green	aquatic	aquatic	aquatic	aquatic		Daphnia	Nitocra	Daphnia	Daphnia						
No.	物質名称	CAS RN	SMILES	Algae	algae	algae	algae	algae	Daphnid	magna	spinipes	magna	magna	Fish	Fish	Fish	Fish	Fish	Pivotal 出典: 編考:
				96h EC50			72h EC50		48h LC50		96h LC50			96h LC50	48h LC50 [mg/L]	28d NOEC [mg/L]			value for iT
				[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[IIIg/L]	[IIIg/L]	[mg/L]	[mg/L]	[mg/L]
1 (オキシアルキレンアルキル(又はアルケニル) = 4 ~ 2 4)エーテルの硫酸エステル及びその塩 , Na, Ca)	=																	
2 +	リウム= 2 - [2 - (ドデシルオキシ)エトキ エチル=スルファート	3088-31-1	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC																eChemPortal_CCR(\$\frac{1}{4}\) Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Protal value for IT (mg/l)12,3596 1.2369
							115												https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID0027519?deepLink=1
							115.072		86.09			20.059		25 102.59	46	36.507			eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/-/registered-dossier/12097
				150.811					212.515					378.689					ECOSAR v1.11 Class-specific Estimations
- 3	リウム=2-(ドデシルオキシ)エチル=スル -ト	15826-16-1	ccccccccccccs(=0)(=0)[0-].[Na+]																eChemPortal_CCR(\$F##B): Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Photal value for IT (mg/l)1.9181 Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g166.339 Toxicity to fish (LC50 in mg/l) as predicted by PNN1.9181 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g9.863 Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g9.863 Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g9.863 Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g9.863
				85.283					108.225					188.025					ECOSAR v1.11 Class-specific Estimations
	リウム=2- (2-プトキシエトキシ) エチル= ファート	22031-09-0	CCCCOCCOCCOS(=0)(=0)[0-].[Na+]																データなし
	リウム= 2 - 〔2 - 〔2 - 〔トリデシルオキシ〕 キシ〕エトキシ}エチル=スルファート	25446-78-0	cccccccccccccccccccccccccccccccccccccc																eChemPortal_CCR(\$#\text{iii}: Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=3DFD2594- E128-4887-84AC-D28772EC8181 1.25922 Toxicity to fish (LC50 in mg/) as predicted by Aster2.885734 Toxicity to fish (LC50 in mg/) as predicted by PNN1_25922 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/) as predicted by Ecosar v0.99462.514 Toxicity to fish (LC50 in mg/) as predicted by Neutral Organics QSAR in Ecosar v0.9992.52E+002
				124.258					161.195					281.55					ECOSAR v1.11 Class-specific Estimations
6 [- (2-エトキシエトキシ) エタノールの2"- ルキル (C=12~15、直鎖型及び分枝型) オ :] 誘導体) = 水素=スルファートのナトリウム塩	91648-56-5	-																データなし
7 +		2172642-87-2	-																検索ヒットなし
8 -		116726-95-5	-																データなし
9 レ: ト	ヒドロ $-\omega$ - (スルホオキシ) ポリ (オキシエチ) のアルケニル (C=12 \sim 18) エーテルのナ ウム塩	72379-18-1	-																データなし
10 1 x	リウム = α - [(Z) - オクタデカ - 9 - エン - イル] - ω - (スルホナトオキシ) ポリ (オキシ レン)	27233-34-7	CCCCCCC=CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC																データなし
11 +	リウム = α - オクタデシル - ω - (スルホナトオ ・) ポリ (オキシエチレン)	34431-26-0	200000000000000000000000000000000000000																データなし
ル	リウム = α - ヘキサデセン - 1 - イル - ω - (ス ナトオキシ) ポリ (オキシエチレン) ヒドロ - ω - (スルホオキシ) ポリ (オキシエチ	65104-74-7	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC																データなし
13 V) のアルキル (C=12~13) エーテルのアン ウム塩	68649-53-6	-																データなし
才:	$ \begin{array}{l} -1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 \end{array} $ $ \begin{array}{l} -1 & -1 \\ -1 & -1 \\ -1 & -1 \end{array} $ $ \begin{array}{l} -1 & -1 \\ -1 & -1 \\ -1 & -1 \end{array} $ $ \begin{array}{l} -1 & -1 \\ -1 & -1 \\ -1 & -1 \end{array} $	150413-26-6	-										0.07						データなし
15 の 塩	スルホ-ω-ヒドロキシボリ (オキシエチレン) ルキル (C=12~14) エーテルのナトリウム	68891-38-3	-				27.7	0.95		7.4		0.27	0.37 0.4 0.52	7.1		0.14			eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/- /registered-dossier/15887
16 レ:	ヒドロ $-\omega$ - (スルホオキシ) ポリ (オキシエチ) のアルキル (C=16~10) エーテルのナト ム塩	73665-22-2	-																データなし
17 ン) ル]	のナトリウム塩	125736-54-1	-																検索ヒットなし
18 o	スルホ $-\omega$ $ +$ ω $ +$ ω $ +$ ω $ +$ ω $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	157627-95-7	-				3.19 9.31 0.386	0.066		1.4				7.1	4.3				eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/- /registered-dossier/17691

表 2.2.3-14 一般化学物質(官報整理番号 7-155)有害性情報(つづき)

_																				
			•	藻類 Green	aquatic	aquatic	aquatic	aquatic	甲殼類	Daphnia	Nitocra	Danhnia	Daphnia	魚類				CCR		
ı	No. 物質名称	CAS RN	SMILES	Algae	algae	algae	algae	algae D.	aphnid			magna	magna		Fish	Fish	Fish	Fish Pivotal	出典:	備考:
				96h EC50	96h EC50	96h NOEC	72h EC50	72h NOEC 48		48h EC50	96h LC50 2	21d NOEC	21d EC50			[mg/L]		35d NOEC value for iT [mg/L]		
-				[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]		[mg/L]	[mg/L]	[mg/L]	[mg/L]	tg/ =3		[8 =]	[B. =3	[]		eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hide
																			eChemPortal_CCR:	Details)
	[α - ν	68585-34-2																	https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=8909CCE2-012E-4DDE-8452-E13B1B0ABB08	Pivotal value for iT (mg/l)3.43 Comment iTgroup approach
	ナトリウム塩	00303-34-2																	012E-49DE-043Z-E13B1BUMBB08	Robust Study Summary IT 68585342-AT-EC50-I-cerdub.rtf
																			eChemPortal_CompTox Dashboard:	甲殼類(Water Flea)48時間 EC50=3.43 mg/L
ŀ		9004-82-4																	https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID2028725 NITE-CHRIP_化管法:	
																			https://www.nite.go.jp/chem/chrip/chrip_search/dt/pdf/RJ_02_001/prtr200	0 ネコゼミジンコ属の一種 48 時間 EC50=3.12mg/L
																			9_1-409.pdf	
																				eChemPortal_CCR (詳細):Underlying data regarding inherent toxicity to aquatic organisms (Hide Details)
																				Pivotal value for iT (mg/l)3.12
																				Experimental result iT (mg/l)3.12
																				Test species iT (Latin)Ceriodaphnia dubia
																			eChemPortal_CCR:	Test species iT (Common)Water flea Final EndPoint iTEC50
	カトリウム=αードデカン-1-イル-ω- (スルホ		000000000000000000000000000000000000000																https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=674680F1- 3EB1-402C-AFBC-B1CACD8F0741	Exposure duration iT (hours)48
	20 ナトオキシ) ポリ (オキシエチレン)		CCCCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]																	Comment iTHC GPE; need to prepare RSS Group: Sub-Groups of polyoxyethylene
																				surfactants: Polyoxyethylene monoethers of C12-C14 liner alkyl sulfates [26183-44-8; 32612-48-9; 62755-21-9; 9004-82-4; 27731-61-9]
																				Reference iTWarne, M.S.T., and A.D. Schifko, Toxicity of Laundry Detergent Components
																				to a Freshwater Cladoceran and Their Contribution to Detergent Toxicity,
																				Ecotoxicol.Environ.Saf. 44(2):196-206, 1999
																			eChemPortal_GHS-J: https://www.nite.go.jp/chem/english/ghs/08-meti- 0063e.html	甲殼類(Ceriodaphnia)48 時間 EC50=3.12mg/L
																			eChemPortal_CompTox Dashboard:	甲殼類 (Water Flea) 48時間 EC50=3.12 mg/L
				36.226					38.715					3.353					https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID2029298 ECOSAR Version 1.11 : Log_EPISuite Kowwin v1.68, WatSol_EPISuite WSKowwin	
F				30.220				,	36.713					3,353					v1.43	_
	C12-15 (分枝&直鎖) アルコール・ポリエチレンオキ 21 シド付加物・ポリプロピレンオキシド付加物・モノ硫	1246447-57-3	_																検索ヒットなし	
	酸エステルのアンモニウム塩	1210111 01 0																	N/NC / 1 460	
F	α-ヒドロ-ω- (スルホオキシ) ポリ (オキシエチ																			-
	22 レン) のアルキル (C=12~18) エーテルのアン	68610-22-0	-																データなし	
L	モニウム塩																			
	プラム=α-オクチル-ω- (スルホナトオキ																			
	シ)ポリ(オキシエチレン)	34431-25-9	-																データなし	
H	5 (0 - 2 - 1 b) =																			+
	[(2-エチルオキシラン・オキシラン重合物=水素 24 = スルファート)の3-メチルブタ-3-エン-1-	438527-53-8	-																検索ヒットなし	
	イルエーテル]の一アンモニウム塩																			
	[α-ヒドロ-ω-スルホオキシボリ(オキシエチレ																			
	25 ン) のアルキル (C=14~18) エーテル] のナト	68187-52-0	-																データなし	
	リウム塩																			
	α-スルホ-ω- (ウンデシル (直鎖型及び分枝型)																			
	オキシ) ポリ (オキシエチレン) のナトリウム塩	219756-63-5	=																データなし	
F																				-
	$\alpha - \text{EFD} - \omega - (\lambda \nu + \lambda + \nu) \text{#J} (\lambda + \nu + \nu) \text{#J} (\lambda + \nu + \nu) \text{#J} \text{#J} \text{#J} $	78330-26-4	_																データなし	
	を高含有) エーテルのホスファート																			
ı																			データなし	
	α-ヒドロ-ω- (スルホオキシ) ポリ (オキシエチ																			
	28 レン) のアルキル (C=10~16) エーテルのアン モニウム塩	67762-19-0	-																	
	C-/A-																			
H	+							+			+									+
	29 ナトリウム=α-スルホナト-ω- (ウンデシルオキ	9014-91-9	-																データなし	
	シ) ボリ (オキシエチレン)																			
丨			000000000000000000000000000000000000000																	
	30 ナトリウム = α - ヘキサデシル - ω - (スルホナトオ キシ)ボリ(オキシエチレン)	27028-83-7	CCCCCCCCCCCCCCO.[O-]S(=0)(=0)[0-].[Na+].[Na+]																データなし	
L	. , . ,		2.000											060/						
	α-スルホ-ω- (テトラデシルオキシ) ポリ (オキ						10000~			460(μg/L)				960(μg/L) 1000(μg/L)					NITE CHRIP_環境省化学物質の環境リスク評価結果:第8巻:化学物質の生態	態 藻類:48h EC50 2000~4000, 4000~8000, 5000~10000, 10000 (μg/L)
	31 シエチレン)の一ナトリウム塩	27731-62-0	-				50000(μ	24	-0(μg/L) 5	590(μg/L) 740(μg/L)	2	240(μg/L)		1300(μg/L)	8	820(μg/L)			リスク初期評価(追加実施分) https://www.opy.go.in/chomi/roport/b22_01/pdf/chpt1/1_2_2_07_pdf	甲殼類:96h LC50 Daphnia magna 1140 (µg/L)
-							g/L)			. /υ(μg/L)	-			1500(μg/L)					https://www.env.go.jp/chemi/report/h22-01/pdf/chpt1/1-2-3-07.pdf	+
	ナトリウム=α-ヘキサデシル-ω- (スルホナトオ	36348-64-8	_																データなし	
	キシ) ポリ (オキシエチレン)	300.0 07 0																		
H																				+
	ナトリウム=α-スルホナト-ω-(トリデシルオキシ) ポリ (オキシエチレン)	54116-08-4	CCCCCCCCCCCCCCCCCC(=0)(=0)[0-].[Na+]																データなし	
L	27 37 (332+742)																			
-					. — —									. — —						: -

表 2.2.3-15 一般化学物質(官報整理番号 7-155)有害性情報(つづき)

				藻類				甲殼類					魚類					CCR	
				Green	aquatic aquatic	aquatic	aquatic		Daphnia	Nitocra	Daphnia	Daphnia							
No.	物質名称	CAS RN	SMILES	Algae	algae algae	algae	algae	Daphnid	magna	spinipes	magna	magna	Fish	Fish	Fish	Fis		Pivotal	出典:
				96h EC50				48h LC50		96h LC50	21d NOEC	21d EC50					NOEC 35d NOEC va		
				[mg/L]	[mg/L] [mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg	g/L] [mg/L]	[mg/L]	
34	ナトリウム = α - デシル-ω-(スルホナトオキシ) ポリ(オキシエチレン)	63428-87-5	-																データなし
35	{ [(2-メチルオキシラン・オキシラン重合物) = 水素 = スルファート] のドデシル = エーテル} のナト リウム塩	65423-83-8	-																データなし
36	$\begin{bmatrix} \alpha - \text{ヒドロ} - \omega - \text{スルホオキシボリ (オキシエチレン)} & \text{のアルキル (C = 1 2 \sim 18) エーテル\end{bmatrix} のナトリウム塩$	68081-91-4	-			27 27.7	0.93 0.95		7.2 7.4		0.27	0.37 0.4 0.52	7.1		0.14				eChemPortal_ECHA REACH: https://echa.europa.eu/registration-dossier/- /registered-dossier/12822
	$\left[\alpha - \text{ヒドロ} - \omega - \left(\text{スルホオキシ} \right) $	68585-40-0	-																データなし
38	{[(2-メチルオキシラン・オキシラン重合物)= 水素=スルファート]のトリデシル=エーテル}のナ トリウム塩	70850-90-7	-																データなし
	α - ヒドロ - ω	78330-29-7	-																データなし
	Poly(oxy-1,2-ethanediyi), .alphasulfoomega hydroxy-, C11-14-isoalkyl ethers, C13-rich, sodium salts	78330-30-0	-																データなし
41	$\{2-(2-x)+2+2+2+2+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+$	91648-56-5	-			32	0.72 0.9				0.27 0.72 0.34		1.5 3.9	5.7	0.10 0.12				NTE-CHRIP_安全性要约需(JCIA BiGDr): https://www.jcla-bigdr.jp/jcia-bigdr/material/icca_cas_list#91648-56-5 Ceriodaphnia dubio 3,24 6,3 2,7, 0,34, 0,31 (mg/L), 96h EC50 1.17 (mg/L), 7d NOEC Chattps://jsda.org/w/01_katud/jsda/jsda_AES_201112.pdf
42	α - スルホ - ω - ヒドロキシボリ(オキシエチレン) のアルキル(C = 1 2 \sim 1 3)エーテルのナトリウム 塩	110392-50-2	-																データなし
43	$ \begin{bmatrix} (2-メチルオキシラン・オキシラン重合物) = モ \\ / (水素=スルファート) \end{bmatrix} のアルキル (C=9~1 \\ 1) エーテルのナトリウム塩$	113133-73-6	-																データなし
44	[α-ヒドロ-ω-スルホオキシポリ(オキシエチレン)のsec−アルキル(C=12~14)エーテル]のナトリウム塩	125736-54-1	-																検素ヒットなし
45	α - (2 - ヘキシルデシル) - ω - スルホオキシボリ (オキシエチレン)のナトリウム塩	128482-64-4	-																検索ヒットなし
	ナトリウム=α-イソトリデシル-ω-(スルホナト オキシ)ポリ(オキシエチレン)	150413-26-6	-																データなし
	α – スルホ – ω – ヒドロキシボリ(オキシエチレン) のアルキル(C = 1 2 \sim 1 6)エーテルのナトリウム 塩	161074-78-8	-																データなし
48	$\begin{bmatrix} \alpha - \text{ヒドロ} - \omega - \text{スルホオキシボリ (オキシエチレン) のアルキル (\text{C} = 8 \sim 16) エーテル\end{bmatrix} のナトリウム塩$	1184178-80-0	-																検素ヒットなし

表 2.2.3-16 優先評価化学物質(優先通し番号 214)有害性情報

				藻類					甲殼類	D1 :	NIA	-b-i- D	hair D. I.	魚類				CCR		
No. 物質名称	7	CAS RN	SMILES	Green Algae 96h EC50 [mg/L]		algae	algae 72h EC50	aquatic algae 72h NOEC [mg/L]	Daphnid 48h LC50 [mg/L]	Daphnia magna 48h EC50 [mg/L]	96h LC50 21d	agna ma NOEC 21d I	ohnia Daphnia magna LOEC 21d EC50 g/L] [mg/L]	Fish 96h LC50 [mg/L]	Fish 48h LC50 [mg/L]	Fish 33d NOEC [mg/L]	Fish 42d NOEC [mg/L]		出典:	偏考:
1 ナトリウム=2-エチルヘキシバ	ル=スルファート	126-92-1	CCCCC(CC)COS(-O)(-O)[O-].[Na+]	[mg/L]	[IIIg/L]	[mg/L]	[mg/L]	imgrej		(mg/L)	(mg/L)	18/-13	grtj (mgrtj					1500	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=3C97DA83-81CF-4577-83F2-E5A0FE58995A	eChemPortal_CCR(SEME): Underlying data regarding inherent toxicity to aquatic organisms (Hic Details) Details) Pivotal value for iT (mg/1)1500 Toxicity to fathead minnow (LC50 in mg/1) as predicted by Topkat v6.11,500 Toxicity to fish (LC50 in mg/1) as predicted by Ecosar v0.99g5.195.406 Toxicity to fish (LC50 in mg/1) as predicted by Secosar v0.99g5.195.405 Toxicity to fish (LC50 in mg/1) as predicted by Asers [183856 Toxicity to fish (LC50 in mg/1) as predicted by PNN31.596 Toxicity to fish (LC50 in mg/1) as predicted by PNN31.596 Toxicity to fish (LC50 in mg/1) as predicted by PNN31.596 Toxicity to fish (LC50 in mg/1) as predicted by MSN31.596 Toxicity to fish (aphnia, algae or myrid shrims (EC50 or LC50 in mg/1) as predicted by Ecosar v0.99g2.834.731 Chronic toxicity to disphin or algae (EC50 in mg/1) as predicted by Ecosar v0.99g2.584.6566
							511					3	32				>=1.357		eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID1026033	
							> 511	199		483		1.4		> 100			>=1.357		eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/-/registered- dossier/14397	
				960.249					2389.094					4884.711					ECOSAR v1.11 Class-specific Estimations	
2 ナトリウム=7-エチル-2-> -イル=スルファート	メチルウンデカンー 4	139-88-8	CCCCC(CC)CCC(CC(C)C)OS(=0)(=0)[0-].[Na+]															10	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=6C3C286F- 2794-4225-AF07-3AC88F192720	a ChemPortal, CCR (IFIB): Underlying data regarding inherent toxicity to aquatic organisms (Hid Details) Pixotal value for IT (mg/1)10 Toxicity to faithed minnow (LCS0 in mg/1) as predicted by Topkat v6.110 Toxicity to fish (LCS0 in mg/1) as predicted by Ecosar v0.99g.fs.975 Toxicity to fish (LCS0 in mg/1) as predicted by Oasis Forecast M v1.1027.5138 Toxicity to fish (LCS0 in mg/1) as predicted by Assex.201934 Toxicity to fish (LCS0 in mg/1) as predicted by PNNS.72226 Toxicity to fish (LCS0 in mg/1) as predicted by Assex.201934 Toxicity to fish depends algae or mysid shiring (CCS0 or LCS0 in mg/1) as predicted by Secure v0.99g.109 Chronic toxicity to daphnia or algae (ECS0 in mg/1) as predicted by Lecsar v0.99g.109 Chronic toxicity to fish (LCS0 in mg/1 as ordicted by Next Diographic Space Nicesor v0.99g.109
				15.513					13.255					20.927					ECOSAR v1.11 Class-specific Estimations	
ドデシル=水素=スルファートと 3 リロトリエタノールの化合物(1		139-96-8	CCCCCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0															2.063965	eChemPortal_CCR: https://cnandachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=64969441- CC4A-4D59-8571-18C58227F245	aChemPortal, CCR (IFIB): Collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for IT (mg/l)2.063905 Toxicity to fish (LCS0 in mg/l) as predicted by Aster/2.063905 Toxicity to fish (LCS0 in mg/l) as predicted by PNNA.13017 Toxicity to fish, daphnia, algae or mysid shrimp (ECS0 or LCS0 in mg/l) as predicted by Ecosar vi.0.99(1).199.074 Toxicity to fish, fich (LCS0 in mg/l) as predicted by Neutral Organics QSAR in Ecosar vi0.99g7.96E+0
				1455.1					3399.137					6844.691					ECOSAR v1.11 Class-specific Estimations	Toxicity to that (2000 in high) as predicted by reducial organics Quart in 2003 to 35g1,302-70
4 ナトリウム=オクチル=スルフ)	7-6	142-31-4	ccccccos(-o)(-o)[o-].[Na+]															23.62642	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=C06645F6- 5286-41A8-AD64-3E.CAC0E47836	cChemPortal, CCR (IFIB): collapse Underlying data regarding inherent toxicity to aquatic organisms. (Hole Details) Pivotal value for IT (mg/1/23.62642 Toxicity to fish (LCS0 in mg/l) as predicted by Ecosar v0.99e/3.89 376 Toxicity to fish (LCS0 in mg/l) as predicted by Dosis Forecast M v1.1011.790.1846 Toxicity to fish (LCS0 in mg/l) as predicted by Natar24.389502; Toxicity to fish (LCS0 in mg/l) as predicted by Natar26.6542 Toxicity to fish (LCS0 in mg/l) as predicted by PNRV3.65642 Toxicity to fish (LCS0 in mg/l) as predicted by PNRV3.65642 Toxicity to fish (LCS0 in mg/l) as predicted by PNRV3.65642 Chronic toxicity to daphnia or algae (EC50 in mg/l) as predicted by Ecosar v0.99g110.057 Chronic toxicity to daphnia or algae (EC50 in mg/l) as predicted by Ecosar v0.99g4.787+0
4) [9 9 4 - 3 9] 10 - 2 10 7)	,	142-31-4	CCCCCCCCS(=0)(=0)[0-].[Na+]				511			100							>= 1.357		eChemPortal_Chemicals Dashboard:	Daphnia magna:24h-EC50 4350mg/L
							> 511	199		> 100		1.4		> 100			>= 1.357		https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID9036226 eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/-/registered-	
																			dossler/12/01 eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2655	甲殼類:LC50 4350mg/L, 魚類:LC50 172mg/L
															172				eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=6A702973-B269-41D6-	Daphnia magna:24 h-EC50 4350mg/l(static system), >900mg/l(static system), >144 (lowest test concentration with effect = 200 mg/l)
				854.097					2066.19					4195.933					AD27-C15075CD941C ECOSAR v1.11 Class-specific Estimations	test concentration with effect = 200 mg/l)
5 ナトリウム=デカン-1-イル。	= スルファート	142-87-0	cccccccccs(=0)(=0)[0-].[Na+]	094831					2000.13					413000				13	eChemPortal_CCR: thtps://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=68ED4650-D9D0-482C-808A-27f687333682	eChemPortal_CCR (IHIB): Underlying data regarding inherent toxicity to aquatic organisms (Hid Details) Details) Experimental result IT (mg/l)13 Experimental result IT (mg/l)13 Ext species IT (LantinCyprinus carpio Test species IT (Common)Common, mirror, colored, carp Final EndPoint ITLCS0 Exposure duration IT (hours)48 Reference IT Ann. Rep. Tokyo Metrop. Res. Inst. Environ. Prot 57-69 Robust Study Summary IT 142870-XT-LC591-F-Oypea.doc Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g593.752 Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g593.752 Toxicity to fish (LC50 in mg/l) as predicted by Section 125903 Toxicity to fish (LC50 in mg/l) as predicted by Section 125903 Toxicity to fish (LC50 in mg/l) as predicted by Section 125903 Toxicity to fish (LC50 in mg/l) as predicted by Section 125903 Toxicity to fish (aphalia or aligne (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g25.91 Chronic toxicity to daphala or aligne (EC50 in mg/l) as predicted by Ecosar v0.99g25.91 Chronic toxicity to daphala or aligne (EC50 in mg/l) as predicted by Ecosar v0.99g25.91 Chronic toxicity to daphala or aligne (EC50 in mg/l) as predicted by Ecosar v0.99g25.91
							0.328			>100		3	32				>= 1.357		eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID4036229	藻類:5d-EC50 5.35 mg/L, 5d-NOEC50 1.5 mg/L, 甲殼類:calanoid copepod:72h-EC50 8.64mg 0.328mg/L, 21.5mg/L, 4.02mg/L, 73.16mg/L, daphnia magna: 24h-EC50 800mg/L, 4350mg/L,
							8.64	0.95		>100		1.4			13		>= 1.357		eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/-/registered-	>900mg/L, 470mg/L
																			dossier/14294 eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2656	藻類:LC50 470mg/L, NOEC 5.2mg/L, 魚類:LC50 13mg/L
														177	13				eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=3382F271-9215-44C3-	Daphnia magna:24h-EC50 800mg/l(static system) , 470mg/l(static system) , Hydra attenuata : 21d-NOEC 5.2mg/l.
							1								13				9E1B-6A6A07EDAED9 eChemPortal_U.S. EPA ECOTOX :	※類: 5d-EC50 5.35(2.66~7.17)Al mg/L, 5d-NOEC 1.5 Al mg/L, 魚類: 24h-LC50 180 Al mg/L
ドデシル=水素=スルファートと 6 タノールの化合物(1:1)	と2,2'-イミノジエ	143-00-0	CCCCCCCCCCCCS(=0)(=0)0.C(00)NCC0															2.063965	https://cfpub.epa.gov/ecotox/explore.c/m/Cas=142870 eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=EFAF4407-B503-49D8-B8SC-CSE063C01DE	acknew Carlos (1974) and the Carlos (1974) a

表 2.2.3-17 優先評価化学物質(優先通し番号 214) 有害性情報(つづき)

## 1	-44mg/L, 95mg/L, 10.1mg/L, 25.mg/L, 95mg/L, 95
March Marc	-44mg/L, 95mg/L, 10.1mg/L, 25.mg/L, 95mg/L, 95
Fig.	-44mg/L, 95mg/L, 10.1mg/L, 25.mg/L, 95mg/L, 95
10-12-22-3-1-3-12-3-3-3-3-3-3-3-3-3-3-3-3-	-44mg/L, 95mg/L, 10.1mg/L, 25.mg/L, 95mg/L, 95
1.7(ppm) 1.8(mg/L換算值) 1.7(ppm) 1.7(ppm) PubChem: https://pubchem.ncbi.ml.mini.gov/compound/342265 學競 : Mynid 96h-LC50 3.2ppm. 4.2ppm. Ceriodaphnia	
### ChemPortal_CCR (###): Underlying data regarding inh Details Phytotal value for IT (mg/10.55	herent toxicity to aquatic organisms (Hide
Tockety to first (LCSD in might as predicted by Costa no. Tockety to first (LCSD in might as predicted by Costa no. Tockety to first (LCSD in might as predicted by Next 2.06: Tockety	0.99g 79.567 orecast M v1.10301.6567 63965 0017 or LCS0 in mg/l) as predicted by Ecosar predicted by Ecosar v0.99g5.409
4.29	EC50 43mg/L, 18mg/L, 29mg/L, 96h-LOEC mg/L, ceriodaphnia dubia 6d-EC50 EC 2mg/L, ceriodaphnia dubia 6d-NOEC g/L, 魚類: 48h-EC50 56.6mg/L, 33.8mg/L, xcelファイルに情報あり。
> 120 30 29 29 30 4 136 ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du desirer/2126 48h-ECSIO = 5.55 mg/L (freshwater) for Ceriodaphina du	water) for Artemia salina (acute toxicity
8.1 eChemPortal_EnviChem: 8 http://www.p.mparisto.fi/scripts/Kemrek/Kemrek_uk.asp?Method=MAKECHEMdet LOEC values to algae, mg/l : 0.02 rpd, schr, Scenedesm 4.6 alisform&txtChemid=168 藻類:(淡水) LC50 3.75mg/L, NDEC 1.45mg/L, (海水)	
eChemPortal_INERIS-PSC: https://substances.ineris.fr/tr/substance/1694 1.35mg/L、(海水) LC50 0.72mg/L、無: >=2.24mg/L、(海水) 1.48mg/L	A類:(淡水)LC50 1.39mg/L, NOEC
2.120	C50 5.55mg/L, 7d-LOEC 0.88mg/L, 魚類: 4.6 - 9.2 mg/L, 8d-NOEC 2.3~4.6 mg/L,
8.6. 9.46。 13-7.1。 12-5(A) 15,18.8 (A) 117.9.4。 12-4(A) 15,18.8 (A) 117.9.4。 12-4(A) 15,19.4 (A) 17.9.4 (A) 17.9.4 (A) 18.8 (A) 18.8 (A) 18.8 (A) 18.8 (A) 18.8 (A) 18.9 (A) 18.8 (A) 18.8 (A) 18.9 (A) 18.8 (A) 18.8 (A) 18.9 (A) 18.8 (A)	02 Am mg/L 2691288 Al mg/L, 平縣類: Img/L, 5.1 Am mg/L, 9.5 Al mg/L, 24 Al 3.2 Al mg/L, 12 Al mg/L, 78 Al mg/L, 41 Al 7.4 Al mg/L, 12 Al mg/L, 78 Al mg/L, 3.3 Al mg/L, 12.5 Al mg/L, 17 Al mg/L, 17.3 Al Mmg/L, 25.5 Al mg/L, 27.7 Al mg/L, 7.7 Al g/L, 18.2 Al mg/L, 22.4 Al mg/L, 7.7 Al g/L, 45.898 Al mg/L, 10.4 mg/L, 14 Al mg/L, 9.4 mg/L, 48-NOEC 7.9 Al mg/L, 5.5 Al mg/L, 62.9 Al mg/L, 9.4 Go. 15.4 Al Mmg/L, 62.0 Co. 15.4 mg/L, 9.4 Go. 0.5 Al Mmg/L, 62.0 Co. 15.4 mg/L, 9.4 Go. 0.5 Al Mmg/L, 10.5 Al mg/L, 9.4 Go. 0.5 Al mg/L, 9.4 Go. 0.5 Al
47.257 54.004 91.477 ECOSAR v1.11 Class-specific Estimations	
511 >100 32 >=1.357 eChemPortal_Chemicals Dashboard:	
17 1.8 > 100 1.4 21 >= 1.357 eChemPortal_ECHA: https://echa.europa.eu/registration-dossler/-/registered-dossler/10738 dossler/10738	
00SSIet/1U/38	
8	İ
8 ナトリウム=ノニル=スルファート 1072-15-7 CCCCCCCCS(=0)(=0)[0-1](Na+] 9の53897/101-39 (CCCCCCCCS(=0)(=0)[0-1](Na+] 1072-15-7 (CCCCCCCCCCS(=0)(=0)[0-1](Na+] 1072-15-7 (CCCCCCCCCS(=0)(=0)[0-1](Na+] 1072-15-7 (CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	

表 2.2.3-18 優先評価化学物質(優先通し番号 214) 有害性情報(つづき)

					1				.2.3-10	ДЕНТ І Е	410 1	1/4 5/3	(1)2	7625		./ 11 11		K (-					
				藻類 Green	aquatic	aquatic	aquatic	aquatic	甲殼類	Daphnia	Nitocra	Daphnia	Daphnia	Daphnia	魚類						CCR		
No	物質名称	CAS RN	SMILES	Algae	algae	algae	algae	algae	Daphnid 48h LC50	magna	spinipes	magna	magna	magna	Fish	Fish	Fish	Fish 33d NOEC	Fish	Fish	Pivotal	出典:	備考:
				96h EC50 [mg/L]		96h NOEC [mg/L]	72h EC50 [mg/L]	72h NOEC [mg/L]	48n LC50 [mg/L]	48h EC50 [mg/L]	96h LC50	21d NOEC [mg/L]	21d LOEC	21d EC50 [mg/L]	96h LC50 [mg/L]	48h LC50 [mg/L]		[mg/L]					
10	ナトリウム=ヘキサデシル=スルファート	1120-01-0	CCCCCCCCCCCCCCCC(-0)(-0)[0-].[Na+]	1000	[mg/c]	(mg/c)		[5]		V1190 - C4	1000	1119	English Care	5.19							0.69	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=7064D819- 099A-4C4F-BF33-C7111BD56DB7	aChemPortal_CCR (IFIB): collapse Underlying data regarding inherent toxicity to aquatic organisms. (Hido Detail). 39 Experimental result T1 (mg/10.59 Experimental result T1 (mg/10.69 Test species IT1 (LishiCopyrinus carplo Test species IT1 (Common/Common, mirror, colored, carp Final EndPort IT1 (Es) Exposure duration IT (hours).24 Exposure duration IT (hours).24 Reference ITAnRep.Tokyo Metrop.Res.Inst.Environ.Prot:57-69 Robust Study Summary IT 1120010-AT-LC50-F-Crypcar-2.doc Toxicity to fish (LC50 in mg/1) as predicted by Ecosar v0.59g.1.355 Toxicity to fish (LC50 in mg/1) as predicted by FoxN4.81047 Toxicity to fish (LC50 in mg/1) as predicted by FoxN4.81047 Toxicity to fish (LC50 in mg/1) as predicted by FoxN4.81047 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/1) as predicted by Ecosar v0.59g.0.71
																						eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID0042400	Chronic toxicity to daphnia or algae (EC50 in mg/l) as predicted by Ecosar v0.99g0.25 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g1.36E-002 魚類: 3.0833d-EC50 1.6 mg/L
																						eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2659	甲穀類: (淡水) LC50 0.15mg/L, NOEC 0.2mg/L, 魚類: (淡水) LC50 0.5mg/L
																0.61, 0.50, 0.69, >250						eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=9FC26BA3-2CF5-45AB- 94EC-8B637623DC8D	甲穀類:Ceriodaphnia dubia 48h-EC50 0.15, 7d-NOEC 0.204, Daphnia magna 24h-EC50 >480, Hydra attenuata 21d-NOEC ≥ 688, 魚類:96h-EC50 >1.6
																0.5, 0.69, 0.61, 0.5						eChemPortal_U.S. EPA ECOTOX : https://cfpub.epa.gov/ecotox/explore.cfm?cas=1120010	魚類: 24h-LC50 0.69mg/L, 0.78mg/L
11	ナトリウム=オクタデシル=スルファート	1120-04-3	CCCCCCCCCCCCCCCC(-0)(-0)[0-].[Na+]	2.499					1.349						1.906						0.181	ECOSAR v1.11 Class-specific Estimations eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx/ChemicalID=B453ADC3-563F-460B-BF68-1DAF7F5DA6E4	eChemPortal_CCR (IFIEI): collapse Underlying data regarding inherent toxicity to aquatic organisms. (Hide Details) Protoal value for I'f (mg/l) 0,811 Toxicity to fish (LC50 in mg/l) as predicted by PNN5.71333 Toxicity to fish (LC50 in mg/l) as predicted by ENN5.71333 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g.0.84 Chronic toxicity to daphnia or algae (EC50 in mg/l) as predicted by Ecosar v0.99g.0.64 Toxicity to fish (LC50 in mg/l) as predicted by Meutral Organics (SSAR in Ecosar v0.99g.6.4E-0.03
																						eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2660 eChemPortal_OECD HPV:	甲榖類:(淡水)LC50 > 0.69mg/L, NOEC 0.6mg/L, 魚類:(淡水)LC50 > 270mg/L
																>270, 0.78						https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=EDAC0FFD-76E9-4059- AF78-4B15A44B6720	甲殼類:Ceriodaphnia dubia 48h-EC50 > 0.69mg/L(no mortality), 7d-NOEC 0.602mg/L, Daphnia magna 24h-EC50 > 98mg/L
				0.568					0.211						0.272							ECOSAR v1.11 Class-specific Estimations	eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hide
12	ナトリウム=テトラデシル=スルファート	1191-50-0	CCCCCCCCCCCCS(=0)(=0)[0-].[Na+]																		0.42	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=5473045E- BEFC-4E08-BF8E-C0C7542A7C18	Details) Pictal value for if (mg/l)0.42 Experimental result IT (mg/l)0.42 Experimental result IT (mg/l)0.42 Test species IT (Latin)Bachlonus calycillorus Test species IT (Common/Bottler Test species IT (Common/Bottler Test Species IT (Common/Bottler Test EncPoint IT ECS0 Exposure duration IT (hours/48) Reference IT Environ.Toxicol.Chem. 16(5):1051-1058 Robust Study Summery IT 1191500-AT-LC30-1-breand.doc Toxicity to fish LC50 in mg/l) as predicted by Ecosar v0.99g10.544 Toxicity to fish LC50 in mg/l) as predicted by Dasis Forecast W1.10654.8039 Toxicity to fish LC50 in mg/l) as predicted by Mais Forecast W1.10654.8039 Toxicity to fish LC50 in mg/l) as predicted by Mais Forecast W1.10654.8039 Toxicity to fish LC50 in mg/l) as predicted by Ecosar v0.99g.113
																5, 2.5						eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID4042416	Chronic toxicity to daphnia or algae (EC50 in mg/l) as predicted by Ecosar v0.99g1.178 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g1.05E-001 無類:24h-LC50 5.9mg/L, 5mg/L, 3.3mg/L
																						eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2661	甲稜類:(淡水)LC50 0.42mg/L, NOEC < 0.06mg/L, 魚類:(淡水)LC50 2.9mg/L
																2.5, 5.9, 5.0, 3.2						eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=251A605B-C657-4EBB- B89A-736DD8BB51FB	甲酸類:Ceriodaphnia dubia 48h-EC50 1.58mg/L, 0.59mg/L, 7d-NOEC <0.062mg/L, Daphnia magna 24h-EC50 37mg/L, Hydra attenuata 21d-NOEC63mg/L, 魚類:96h-EC50 2.9mg/L
																5, 2.5						eChemPortal_U.S. EPA ECOTOX : https://cfpub.epa.gov/ecotox/explore.cfm?cas=1191500	魚類: 24h-LC50 5 Al mg/L, 5.9 Al mg/L, 3.3 Al mg/L
				10.916					8.574						13.264							ECOSAR v1.11 Class-specific Estimations	eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic
13	アンモニウム=ドデカン-1-イル=スルファート	2235-54-3	cccccccccs(-0)(-0)[0-].[NH4+]																		27.19	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx/ChemicalID=AC1C7253- F457-489D-A65A-528DF9F3C592	organisms (Hide Details) Prototal value for IT (mg/I)27.19 Experimental result IT (mg/I)27.19 Fest a pecies IT (Latin/Scolelepis fullginosa Test a pecies IT (Latin/Scolelepis fullginosa) Test a pecies IT (Lomomo/Spoind polycheate Final EndPoint TTLCS0 Exposure duration IT (hours):96 Reference IT Tethys 4(3):975-644 (FRE) (ENG ABS) (Author Communication Used) Robust Study Summary IT 2295543, AT_LCS0, guppydoc Todicity to fish (LCS0 in mg/) as predicted by Ecosar v0.99g79:567 Toxicity to fish (LCS0 in mg/) as predicted by Oasis Forecast M v1.101,120.4667 Toxicity to fish (LCS0 in mg/) as predicted by Nosis Forecast M v1.101,120.4667 Toxicity to fish (LCS0 in mg/) as predicted by Toxic Vision in mg/) as predicted by Cosar v0.99g79:57 Toxicity to fish (LCS0 in mg/) as predicted by Marine (ECS0 in mg/) as predicted by Ecosar v0.99g7.409 Toxicity to fish (LCS0 in mg/) as predicted by Mg/I as predicted by Ecosar v0.99g7.96E-001 Chronic toxicity to daphnia or algae (ECS0 in mg/) as predicted by Ecosar v0.99g7.96E-001
L				47.257					54.004						91.477							ECOSAR v1.11 Class-specific Estimations	
14	ナトリウム=トリデシル=スルファート	3026-63-9	CCCCCCCCCCC(=0)(=0)[0-].[Na+]																		1.985876	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=DF243F1D-DBC0-4AFD-8F00-798941401F0E «ChemPortal_INERGS-PSC: https://substances.ineris.fr/h/substance/2662	aChemPortal_CCR (詳細といめerlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for if (mg/ll).1985876 Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g29.001 Toxicity to fish (LC50 in mg/l) as predicted by Materl.1985876 Toxicity to fish (LC50 in mg/l) as predicted by Materl.1985876 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC55) in mg/l) as predicted by Ecosar v0.99g4.258 Chronic toxicity to daphnia or algae (EC50 in mg/l) as predicted by Ecosar v0.99g2.527 Toxicity to fish, LC50 in mg/l) as predicted by Ecosar v0.99g2.527 Toxicity to fish LC50 in mg/l as predicted by Ecosar v0.99g2.901+001 PRM: (3k%) LC50 4.2mg/l., 条册: (3k%) LC50 2.1mg/L
															-	2.1						eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=5B991330-B46C-4930-	甲殼類:Daphnia magna 24h-EC50 42mg/L,4.2mg/L
	<u> </u>			22.741	L	L			21.545						34.877			\pm				8E95-54E1D2A15DB3 ECOSAR v1.11 Class-specific Estimations	
15	ナトリウム=8-エチル-2-メチルウンデシル=ス ルファート	3026-64-0	-																			検索ヒットなし	
16	ドデシル=水素=スルファートとプロパン-2-アミンの化合物(1:1)	3032-58-4	CCCCCCCCCCCS(=0)(=0)0.CC(C)N																			データなし	
Щ	といじ日切(1・1)		L	1	1	1					·	I .	1			I	1	1				1	

表 2.2.3-19 優先評価化学物質(優先通し番号 214) 有害性情報(つづき)

			藻類					甲殼類					魚類						CCR		
N 64-00-014-	040 PN	0.441.50	Green		aquatic	aquatic	aquatic	Daphnid	Daphnia			phnia Daphn	ia Fish	Fish	Fish	Fish	Fish	Fish	Pivotal	出典:	偏考:
No. 物質名称	CAS RN	SMILES	Algae 96h EC50					48h LC50 [mg/L]	magna 48h EC50	96h LC50 21d	NOEC 21d		50 [mg/L]	48h LC50 [mg/L]	28d NOE	EC 33d NOE [mg/L]	C 35d NOE	42d NOEC [mg/L]	value for iT	山央:	颁考:
17 ナトリウム = 4 - エチル - 1 - (3 - エチルペンチル) オクチル=スルファート	3282-85-7		[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	trigi 2	[mg/L]	[mg/L] [m	ng/L] [m	ng/L] [mg/L		1000 21	[High C.	i jing ci	[mg/c]	ping/ E3		eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=C69ADD27- 50E0-4DE4-9F8D-FFEE52131209	aChemPortal_CCR (IFE): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Proteal value for IT (mg/10,6762 Toxicity to fathead minrow (LC50 in mg/1) as predicted by Topkat v6.10.6762 Toxicity to fish (LC50 in mg/1) a spredicted by Locoar v0.996,0788 Toxicity to fish (LC50 in mg/1) as predicted by Consort MV.1103.889 Toxicity to fish (LC50 in mg/1) as predicted by Dasi Forecast M VI.103.889 Toxicity to fish (LC50 in mg/1) as predicted by Dasi Forecast M VI.103.891 Toxicity to fish (LG50 in mg/1) as predicted by Toxicity to fish (LG50 in mg/1) as predicted by Ecosar
																					v0.99g0.034 Chronic toxicity to daphnia or algae (EC50 in mg/l) as predicted by Ecosar v0.99g0.167 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g7.88E-00
10 テトラデシル=水素=スルファートと2, 2', 2"-		CCCCCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC	1.694					0.825					1.136							ECOSAR v1.11 Class-specific Estimations	
18 ニトリロトリエタノールの化合物 10 ヘキサデシル=水素=スルファートと2, 2', 2"-	4492-78-8	0 CCCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)																		データなし	
19 ニトリロトリエタノールの化合物	4492-79-9	cco																		データなし	
20 2, 2', 2"-ニトリロトリエタノールとオクタデシル=水素=スルファートの化合物(1:1)	4492-80-2	CCCCCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)N(CC 0)CC0	C																	データなし	
21 アンモニウム=オクタデシル=スルファート	4696-46-2	ccccccccccccccs(+0)(+0)0.N																	0.181	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=CA189630- 9069-4FC0-A0DC-8EA05DC31E62	eChemPortal, CCR (ISIB): Collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Protal value for IT (mg/l)0.181 Toxicity to fish (LCS0 in mg/l) as predicted by PNNS.71333 Toxicity to fish, daphnia, algae or mysid shrimp (ECS0 or LC50 in mg/l) as predicted by Ecosar v0.99g0.181 Chronic toxicity to daphnia or algae (ECS0 in mg/l) as predicted by Ecosar v0.99g0.054 Toxicity to fish (LCS0 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g6.46E-00
			0.121					0.031					0.036							ECOSAR v1.11 Class-specific Estimations	eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hi
22 アンモニウム=ヘキサデンル=スルファート	4696-47-3	CCCCCCCCCCCCCCCC(=0)(=0)[0-].[NH4+]																	1.355	eChemPortal. CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=B8868D0A-62D1-4E5B-465B0-785002566EB1	Details) Picutal value for IT (mg/l)1.355 Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g1.355 Toxicity to fish (LC50 in mg/l) as predicted by PNN4.81047 Toxicity to fish (LC50 in mg/l) as predicted by PNN4.81047 Toxicity to fish, daphina, algae or mg/sishming (EC50 in CE00 in mg/l) as predicted by Ecosar v0.99g0.071 Chronic toxicity to disphinia or algae (EC50 in mg/l) as predicted by Ecosar v0.99g0.25
			0.534					0.197					0.254							ECOSAR v1.11 Class-specific Estimations	Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g1.36E-00
23 2-アミノエタノールとヘキサデシル=水素=スルファートの化合物(1:1)	4696-48-4	CCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)N																		データなし	
24 2-アミノエタノールとオクタデシル=水素=スルファートの化合物(1:1)	4696-49-5	CCCCCCCCCCCCCCCCCCCC(=0)(=0)O.C(CO)N																		データなし	
2 - アミノエタノールとドデシル=水素=スルファー トの化合物 (1:1)	4722-98-9	CCCCCCCCCCCS(=0)(=0)0.C(C0)N																		データなし	
26 ナトリウム=ヘプタデシル=スルファート	5910-79-2	CCCCCCCCCCCCCCCCCC(-0)(-0)[0-].[Na+]	4.373					1.557					1.99							ECOSAR v1.11 Class-specific Estimations	
27 アンモニウム=デシルスルファート	13177-52-1	CCCCCCCCCS(=0)(=0)0.N	44.034					49.981					84.523							ECOSAR v1.11 Class-specific Estimations	
28 ナトリウム=ベンタデシル=スルファート	13393-71-0	CCCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]												15						eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=C1DB557B-0B95-4E5D- B188-0A763EF3D531	甲穀類:Ceriodaphnia dubia 48h-EC50 0.59mg/L, 7d-NOEC 0.23mg/L, Daphnia magna 24h-E 70 mg/L(with solvent)
20 71774 37774 3777	15555 11 5	555555555555555555(-5)(-5)[5][[[[1]]]]	19.092					9.892					13.839							eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2663 ECOSAR v1.11 Class-specific Estimations	甲殼類: (淡水) LC50 0.59mg/L, 魚類: (淡水) LC50 15mg/L
29 1-アミノプロパソー2-オールとドデンル=水素= スルファートの化合物 (1:1)	21142-28-9	CCCCCCCCCCS(=0)(=0)0.CC(CN)0																	2.063965	aChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=3A129F20- 2817-4C0E-9644-7EBDF37ESC9B	eChemPortal_CCR (I#III): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for IT (mg/I)2.063965 Toxicity to fish (LCS0 in mg/I) as predicted by Aster 2.063965 Toxicity to fish (LCS0 in mg/I) as predicted by PNN4.13017 Toxicity to fish, displinia, algae or mysid shirms (ECS0 or LCS0 in mg/I) as predicted by ECS0 or LCS0 in mg/I) as predicted by Toxicity to fish (applinia, algae or mysid shirms (ECS0 or LCS0 in mg/I) as predicted by Ecosar Vio.99g7.112 Toxicity to fish (LCS0 in mg/I) as predicted by Neutral Organics QSAR in Ecosar Vi0.99g7.96E-4
			12.48					9.769					15.1							ECOSAR v1.11 Class-specific Estimations	
30 ナトリウム=2-ヘキシルデシル=スルファート	25542-86-3	CCCCCCCC(CCCCCC)COS(=0)(=0)[0-].[Na+]																		データなし	
31 ナトリウム=イソノニル=スルファート	26856-96-2	CC(C)CCCCCOS(=0)(=0)[0-].[Na+]																		gChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=5F6DC100- B0E4-4EC6-AEZB-CC6818935913	chembertal, CCR (IFIB): collapse Underlying data regarding inherent toxicity to aquatic organisms (filed Details) Pivotal value for IT (mg/l1)1.38899 Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g.1.877.86 Toxicity to fish (LC50 in mg/l) as predicted by Oasis Forecast M v1.104.408.9424 Toxicity to fish (LC50 in mg/l) as predicted by Nater I1.72897 Toxicity to fish (LC50 in mg/l) as predicted by Nater I1.72897 Toxicity to fish (LC50 in mg/l) as predicted by PNL13050 in mg/l) as predicted by Ecosar v0.99g.1.08159 Toxicity to fish, disphinia, algae or mysid shiring (EC50 or LC50 in Eg/l) as predicted by Ecosar v0.99g.58.514 Toxicity to fish, (LC50 in mg/l) as predicted by Neutral Organics (SAR in Ecosar v0.99g.58.514
32 2, 2', 2"-ニトリロトリエタノールとオクチル=			468.261					965.858					1887.234							ECOSAR v1.11 Class-specific Estimations	
32 水素=スルファートの化合物 (1:1) 22 アミノエタノールとオクチル=水素=スルファー	30862-34-1	CCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0																		データなし	
53 トの化合物 (1:1)	30862-35-2	CCCCCCCOS(=0)(=0)0.C(CO)N																		データなし	
34 ナトリウム=デカン・2・イル=スルファート	32687-84-6	CCCCCCCC(C)OS(=0)(=0)[0-].[Na+]																		データなし	
35	34506-45-1 39479-63-5	CCCCCCCCCCCS(-0)(-0)[0-].[NH4+]																		データなし データなし	
ファート デシル=水素=スルファートと2, 2', 2"-ニトリ	39943-70-9	CCCCCCCCCS(=0)(=0)0.C(C0)N(CC0)CC0																		₹_ Ø↑1	
37 ロトリエタノールの化合物 (1:1) 2-アミノ-2- (ヒドロキシメチル) プロパン- 38 1, 3-ジオールとドデシル=水素=スルファートの	50996-85-5	CCCCCCCCCCCCC(=0)(=0)0.C(C(0))(C(0))(0)																		データなし データなし	
化合物(1:1)ヘキサデシル=水素=スルファートと2, 2'ーイミノジエタノールの化合物(1:1)	51541-51-6	ccccccccccccs(-o)(-o)o.c(co)Ncco	0.244					0.071					0.087						0.181	eChemPortal_CCR: https://caradachemicals.oecd.org/ChemicalDetails.aspr/ChemicalID=F48C075F- 2344-4855-8598-T5928500118E ECOSAR vl.11 Class-specific Estimations	chemPortal_CCR (IFIE): Underlying data regarding inherent toxicity to aquatic organisms (I Details) Pivotal value for iT (mg/10.181 Toxicity to fish (LCS0 in mg/1) as predicted by PNN4.81047 Toxicity to fish daphnia, algae or mysid shrimp (ECS0 or LCS0 in mg/1) as predicted by Ecose vg 99g.181 Toxicity to fish (LCS0 in mg/1) as predicted by Neutral Organics QSAR in Ecosar vg.99g.136E-
	L	ļ	0.244	.				0.071		1			0.087			_		1		ECOGAN VI.II Class-specific Estimations	

表 2.2.3-20 優先評価化学物質(優先通し番号 214) 有害性情報(つづき)

			藻類 Green	aquatic	aquatic	aquatic	甲殼類	Daphnia	Nitocra Daphnia Daphni	ia Daphnia	魚類					CCR		
No. 物質名称	CAS RN	SMILES	Algae	algae	algae 96h NOEC	algae	algae 48h LC50	magna	spinipes magna magna		Fish 96h LC50	Fish 48h LC50	Fish Fish 28d NOEC 33d NOE	Fish C 35d NOEC	Fish 42d NOEC	Pivotal value for iT	出典:	偏考:
			96h EC50 [mg/L]		[mg/L]	[mg/L]	[mg/L] [mg/L]	[mg/L]	96h LC50 21d NOEC 21d LOE [mg/L] [mg/L] [mg/L]		[mg/L]	[mg/L]	[mg/L] [mg/L]	[mg/L]	[mg/L]	[mg/L]		
40 アンモニウム=テトラデシル=スルファート Thiazolium, 3-[(4-amino-2-methyl-5-	52304-21-9	CCCCCCCCCCCCCS(=0)(=0)0.N	2.346				1.258				1.774						ECOSAR v1.11 Class-specific Estimations	
41 pyrimidinyl) methyl]-5-(2-hydroxyethyl)-4-methyl-,	56595-19-8	CCCCCCCCCCCCCCCCCS(=0)(=0)0.CC1=C(SC=[N+]1CC2=CN=C(N=C2N)C)CC0.[CI-]															検索ヒットなし	
dodecyl sulfate (1:1) ナトリウム= (R) -デカン-2-イル=スルファー	F7000 01 1																検索ヒットなし	
42 ト 2, 2'ーイミノジエタノールとオクタデシル=水素=	57689-21-1	CCCCCCCC(C)OS(=0)(=0)[0-].[Na+] CCCCCCCCCCCCCCCCCCCS(=0)(=0)0.C(C0)NCC															快楽とットなし	
43 スルファートの化合物 (1:1)	64346-13-0	0															データなし	
44 2- (ジエチルアミノ) エタノールとドデシル=水素 = スルファートの化合物 (1:1)	65104-49-6	CCCCCCCCCCCS(=0)(=0)0.CCN(CC)CCO															データなし	
																		eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hide Details)
2, 2'-イミノジエタノールとテトラデシル=水素=																4.25186	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=1ACA1E8F-	Pivotal value for iT (mg/l)4.25186 Toxicity to fish (LC50 in mg/l) as predicted by PNN4.25186
45 スルファートの化合物(1:1)	65104-61-2	CCCCCCCCCCCCCCS(=0)(=0)0.C(C0)NCC0															0DEC-4E5D-AB02-C565EE770E7C	Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g10.531
			6.13				3.898				5.729						ECOSAR v1.11 Class-specific Estimations	Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g1.05E-001
46 デシル=水素=スルファートと2,2'ーイミノジエタ	65121-82-6	CCCCCCCCCCS(=0)(=0)0.C(C0)NCC0															データなし	
/ールの化合物 (1:1) A7 N-シクロヘキシルジエチルアミンとデシル=水素=	65121-83-7	CCCCCCCCCOS(=0)(=0)0.CCN(CC)C1CCCCC1															データなし	
47 スルファートの化合物 (1:1) 40 ドデシル=水素=スルファートと1, 1'ーイミノビス																		
48 (プロパン-2-オール) の化合物 (1:1)	66161-59-9	CCCCCCCCCCCS(=0)(=0)0.CC(CNCC(C)0)0															データなし	
49 2, 2'-イミノジエタノールとオクチル=水素=スルファートの化合物(1:1)	67633-87-8	CCCCCCCCS(=0)(=0)0.C(C0)NCC0															データなし	
50 アンモニウム=オクチル=スルファート	67633-88-9	CCCCCCCOS(=0)(=0)[0-].[NH4+]															データなし	Charles CCD (##im) and the addition of the annual includes the ann
																	01. 0. 1.1.000	eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for iT (mg/i)2.8
アンモニウム=アルキル (C=10~16) =スル	68081-96-9															2.8	aChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=46515F37- 6528-4344-844A-E27359FCE02C	Experimental result iT (mg/l)2.8
51 ファート																	0028-4344-844A-E27309F-CEU2C	Comment iTExperimental result for: Sulfuric acid, mono-C10-16-alkyl esters Robust Study Summary iT 88081:96-9_225CVDS.doc
			10.214				7.968				12.306						ECOSAR v1.11 Class-specific Estimations	68081-96-9_ZZ5CVDS.doc
52 ナトリウム=アルキル (C=8~18) =スルファー	68130-43-8	CCCCCCCCCCCCS(=0)(=0)[0-].[Na+]															データなし	
																		eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hide Details)
																	eChemPortal_CCR:	Pivotal value for iT (mg/l)6.15259 Toxicity to fish (LC50 in mg/l) as predicted by Ecosar v0.99g690.884
53 ナトリウム=イソデシル=スルファート	68299-17-2	CC(C)CCCCCCCS(=0)(=0)[0-].[Na+]														6.15259	https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=17CDFB31- 9B90-4CF8-9B3C-392953330A96	Toxicity to fish (LC50 in mg/l) as predicted by PNN6.15259
																	3630-40-6-362333330430	Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g312.396
																		Chronic toxicity to daphnia or algae (EC50 in mg/l) as predicted by Ecosar v0.99g27.593 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g6.91E+002
			227.453				388.948				726.292						ECOSARv1.11 Class-specific Estimations eChemPortal_CCR:	eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hide
																2.063965	https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=B0F61CEA- 02A1-4D1C-95BE-41A72414A356	Details) Pivotal value for iT (mg/l)2.063965
																	eChemPortal_Chemicals Dashboard :	Comment iTQSAR result for: Sulfuric acid, mono-C10-16-alkyl esters 魚類: 0.25d-LC50 7.8mg/L, 49.1mg/L
54 ナトリウム=アルキル (C=10~16) =スル	68585-47-7	C.CCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]															https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID7028726 eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2667	藻類: (淡水) LC50 3.5mg/L, 甲殼類: (淡水) LC50 1.37mg/L
ファート						60	1										eChemPortal_OECD HPV: https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=DE523B86-99A4-4263-	甲蒰賴:Ceriodaphnia dubia 48h-EC50 1.37mg/L
						3.5~6.2											BC98-061CC124C56F eChemPortal_U.S. EPA ECOTOX:	甲發類: Ceriodaphnia dubia 48h-EC50 1.37 (1.18-2.21) Al mg/L, 魚類: 0.25d-LC50 7.8mg/L,
			22.741				21.545				34.877						https://cfpub.epa.gov/ecotox/explore.cfm?cas=68585477 ECOSAR v1.11 Class-specific Estimations	49.1mg/L
			22.712				22010				01.011							
55 アルキル (C=12~15) =水素=スルファートと 2, 2, ', 2"-ニトリロトリエタノールのエステル	68815-25-8																データなし	
																	01. 0. 1. 1.000	eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic
56 硫酸モノアルキル (C=12~15) エステルのナト	68890-70-0															2.063965	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=8CE05861- 5704_PJ7_0001_FAIRA3DERAFD	organisms (Hide Details) Pivotal value for iT (mg/l)2.063965
リウム塩			47.257				54.004	-			91.477						570A-4D78-9901-F41BA3DCB46D ECOSAR v1.11 Class-specific Estimations	Comment iTQSAR result for: Sulfuric acid, mono-C12-15-alkyl esters
											**							eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details)
																0.2	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=E236BA68-	Organisms (Nide Details) Pivotal value for iT (mg/l)9.3 Experimental result iT (mg/l)9.3
																	0E99-4E50-B966-6D068A43E1D0	Comment iTExperimental result for: Sulfuric acid, mono-C12-18-alkyl esters Robust Study Summary iT
硫酸モノアルキル (C=12~18) =エステルのナ								40										68955-19-1_302CVDS.doc
57 トリウム塩	68955-19-1		38			14 20	3	12 15	3.7						>1.357		eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID9028918	甲蒰類:daphnia magna 24h-EC50 15mg/L, 魚類:35d-EC50 >371ug/L, 34d-LOEC 0.35mg/L
								2.8						-			https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID9028918 eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/-/registered-	-
						20	7.6	2.8	0.419		1.3				> 1.357		eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2669	業績・(水小) I CED 28mm/ 仏籍・(水小) I CED 2 2//
			47.257				54.004	+			91.477						eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2bb9 ECOSAR v1.11 Class-specific Estimations	藻類: (淡水) LC50 38mg/L, 魚類: (淡水) LC50 9.3mg/L
								1										eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details)
																5.2	https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=D1064B64-	Pivotal value for iT (mg/l)5.2 Experimental result iT (mg/)5.2
																3.2	E2AC-4FD6-A0C9-0EDFA78B7128	Comment iTExperimental result for: Sulfuric acid, mono-C16-18-alkyl esters Robust Study Summary iT
			57.6			30		15	55.5								oChamPartal Chamicals Dashboard	68955-20-4_305CVDS.doc
58 ナトリウム=アルキル (C=16~18) =スル	68955-20-4	CCCCCCCCCCCCCCCCCS(=0)(=0)[0-].[Na+]	57.6			34		2.8	100								eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID8029523	藻類:14d-EC50 28.6mg/L, 魚類:14d-NOEC 1.65mg/L, 1.7mg/L, 14d-LOEC 5.5mg/L
77-1		-1 -21 -21-32				34	19	2.8			5.2						eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/-/registered- dossier/11581	甲殼類:Ceriodaphnia dubia 7d-NOEC 0.204mg/L, 魚類:14d-NOEC 1.65mg/L
										1	5.2						eChemPortal_GHS-J: https://www.nite.go.jp/chem/english/ghs/08-meti-0071e.html	
																	eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2670 eChemPortal_OECD HPV :	甲殼類: (淡水) LC50 34mg/L, 無類: (淡水) LC50 5.2mg/L
						34				4.2	5.2						https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=8D8EE2CE-031F-47A6- 9E15-1F1D95F2A5A4	無類:14d-NOEC 1.65 mg/L, 5.5 mg/L (mortality), 16.5 mg/L(sublethal effects)
			2.499				1.349				1.906						ECOSAR v1.11 Class-specific Estimations	

表 2.2.3-21 優先評価化学物質(優先通し番号 214) 有害性情報(つづき)

			藻類			甲殼類				魚類	CCR	I	
			Green		aquatic	aquatic Daphnid	Daphnia			hnia Fish	Fish Fish Fish Fish Pivotal	1	
No. 物質名称	CAS RN	SMILES		96h EC50 96h NOEC 72	algae 2h EC50	72h NOEC 48h LC50	magna 48h EC50		EC 21d LOEC 21d	gna 96h LC50 EC50 [mg/L]	48h LC50 28d NOEC 33d NOEC 35d NOEC 42d NOEC value for iT [mg/L] [mg/L] [mg/L] [mg/L] [mg/L] [mg/L]	出典:	備考:
			[mg/L]		[mg/L]	[mg/L] 12.5	[mg/L]	[mg/L] [mg/l	.] [mg/L] [m	g/L] [IIIg/E]	ing/E1 ting/E1 ting/E1 ting/E1	eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/-/registered-	
59 アンモニウム=2-エチルヘキシル=スルファート	70495-37-3	CCCCC(CC)COS(=0)(=0)[0-].[NH4+]		:	> 100	57.1	> 100					dossier/29325	甲殼類: 48h-NOEC 29.6mg/L, 48h-LOEC 44.4mg/L
co デシル=水素=スルファートとプロパン-2-アミン	71317-58-3	00000000000(, 0)(, 0)0 00(0)N	210.865			358.141				667.666		ECOSAR v1.11 Class-specific Estimations	
の化合物 (1:1)	/131/-56-3	CCCCCCCCCS(=0)(=0)0.CC(C)N										データなし	eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hide
61 2. 2', 2"-ニトリロトリエタノールとトリデシル -水素-スルファートの化合物 (1:1)	71371-60-3	CCCCCCCCCCCS(-0)(-0)0.C(C0)N(CC0)CC0									1.985876	eChemPortal_CCR: https://canadachemicals.secd.org/ChemicalDetails.aspx?ChemicalID=29AA0683- 58E8-448C-AE85-723ED7818622	Details) Pivotal value for IT (mg/l)1.985876 Toxicity to fish (LCS0 in mg/l) as predicted by Aster1.985876 Toxicity to fish (LCS0 in mg/l) as predicted by PNN4.12169 Toxicity to fish, daphnia, algae or emysid shrimin (ECS0 to LC50 in mg/l) as predicted by Ecosar vd.0.98g.8691 Toxicity to fish (LCS0 in mg/l) as predicted by Neutral Organics QSAR in Ecosar vd.0.99g.20E+001
			2.652			1.368				1.912		ECOSAR v1.11 Class-specific Estimations	
62 ナトリウム=アルキル (C=9~13) =スルファート	72906-11-7										8.54365	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=51DCAF38- CCDC-4CED-B989-B24FF7BDD6E0	eChemPortal_CCR (斯德): Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for iT (mg/l)8.54365 Comment ITQSAR result for: Sulfuric acid, mono-C9-13-alkyl esters
			416.497			835.315				1621.121		ECOSAR v1.11 Class-specific Estimations	eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hide
63 2-アミノエタノールとトリデンル=水素=スルファートの化合物 (1:1)	73003-73-3	CCCCCCCCCCCCS(+O)(-O)O.C(CO)N									2.21623	eChemPartal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=B05E9605- D850-430D-9CA6-C73DFAE5298D	Detaills Photal value for IT (mg/l)2.21823 Toxicity to fish (LC50 in mg/l) as predicted by Aster2.753884 Toxicity to fish (LC50 in mg/l) as predicted by PNN2.21823 Toxicity to fish (LC50 in mg/l) as predicted by PNN2.21823 Toxicity to fish, daphnia, algae or mysid shrime (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g2.31 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g2.22E+002
			11.101			8.449				12.971		ECOSAR v1.11 Class-specific Estimations	
											2.063965	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=08FC0729- 1182-451B-993F-688E6D374FF4	eChemPortal_CCR (Iffial): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Privotal value for IT (mg/I)2.063965 Comment ITQSAR result for: Sulfuric acid, mono-C12-16-alkyl esters
64 ナトリウム=アルキル (C=12~16) =スル					14		15 2.8		3.7		>1.357	eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID40104773	甲酸類:24h-EC50 18mg/L, 48h-NOEC 2.5mg/L, 魚類:34d-LOEC 0.35mg/L, 35d-EC50 >371μg/L, 96h-NOEC 1.8mg/L
64 77-h	73296-89-6	-			>20	5.4	2.8			1.3	=<1.357	eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/-/registered- dossier/13301	Long-term toxicity to aquatic invertebrates: On the basis of a QSAR-model a NOEC for the substance is calculated to be 0.479 mg/L
												eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2671 eChemPortal_OECD HPV:	甲殼類: (淡水) LC50 18mg/L, 魚類: (淡水) LC50 3.6mg/L
											3.6	https://hpvchemicals.oecd.org/UI/SIDS_Details.aspx?id=E93CCC27-9A08-4C9C- 8477-6BFB3C186913	甲殼類: 24h-EC50 18mg/L
ナトリウム=3, 7-ジメチルオクチル=スルファー			47.257			54.004				91.47		ECOSAR v1.11 Class-specific Estimations	
65	78204-56-5	-										検索ヒットなし	
カトリウム=12-メチルトリデカン−1-イル=スルファート	78204-57-6											検索ヒットなし	
67 2-エチルヘキシル=水素=スルファートと2, 2', 2"-ニトリロトリエタノールの化合物(1:1)	78568-66-8	CCCCC(CC)COS(-0)(-0)[0-].C(CO)[N+](-CCO)CCO										データなし	
68 2-アミノエタノールと5-メチルヘプチル=水素= スルファートの化合物 (1:1)	80867-10-3	CCC(C)CCCCOS(=0)(=0)[0-].C(C0)[NH3+]										データなし	
69 アンモニウム=ベンタデシル=スルファート	81628-41-3	CCCCCCCCCCCCCCS(=0)(=0)[0-].[NH4+]										データなし	
70 ドデシル=水素=スルファートと4-メチルビリジン の化合物(1:1)	84176-63-6	-										データなし	
71 ナトリウム=イソトリデシル=スルファート	84681-74-3	CC(C)CCCCCCCCCS(=0)(-0)[0-].[Na+]										データなし	
72 アルキル(C=12~16) =水素=スルファートと 2, 2', 2"-ニトリロトリエタノールの化合物	85252-21-7											データなし	
73 オクチル=水素=スルファートとプロパン-2-アミンの化合物(1:1)	85409-85-4	CCCCCCCCS(=0)(=0)[0-].CC(C)[NH3+]										データなし	
74 硫酸モノアルキル (C=14~18、不飽和C=16 ~18) エステルのナトリウム塩	85681-68-1	-										データなし	
75 アンモニウム=イソデシル=スルファート	85909-50-8	CC(C)CCCCCCOS(=0)(=0)[0-].[NH4+]										データなし	
76 ナトリウム=アルキル (C=13~15) =スルファート	86014-79-1	-										データなし	
77 アンモニウム=アルキル (C=12~16) =スルファート	90583-12-3	-										データなし	
78 アンモニウム=アルキル(C=12~18)=スルファート	90583-13-4	-								2.8		eChemPortal_INERIS-PSC: https://substances.ineris.fr/fr/substance/2683 eChemPortal_OECD HPV: https://bpvchemicals.oecd.org/U/SIDS_Details.aspx?id=75FE8C85-A739-4236- 8IC6-94008863A67	甲粉類: 魚類: (淡水) LC50 2.8mg/L
79 ナトリウム=アルキル(C=6~12)=スルファート	90583-25-8	-										81Co-9U9UBBOSAOA/ データなし	
80 流酸アルキル(C=10~14)エステルのナトリウ ム塩	90583-28-1	-										データなし	

表 2.2.3-22 優先評価化学物質(優先通し番号 214) 有害性情報(つづき)

No. 物質名称	CAS RN	SMILES	Algae algae	algae alga 0 96h NOEC 72h E	C50 72h NOEC	甲殼類 Daphnid 48h LC50 [mg/L]	magna	spinipes magna	Daphnia Daphnia magna magna 21d LOEC 21d EC5 [mg/L] [mg/L]	無類 Fish 96h LC50 [mg/L]	Fish 48h LC50 [mg/L]	DEC 35d NOEC	Fish Pivotal 42d NOEC value for [mg/L] [mg/L]	T 出典:	撰号:
81 2-アミノエタノールとテトラデシル=水素=スルファートの化合物(1:1)	93859-02-0	CCCCCCCCCCCCS(-0)(-0)0.C(C0)N												データなし	
82 2-アミノエタノールとデシル=水素=スルファート の化合物(1:1)	94086-82-5	CCCCCCCCCS(-0)(-0)0.C(C0)N												データなし	
83 2-アミノエタノールとベンタデシル=水素=スルファートの化合物(1:1)	94107-62-7	CCCCCCCCCCCCCCS(=0)(=0)0.C(C0)N												データなし	
84 ジエチルアミンとオクタデシル=水素=スルファートの化合物(1:1)	94110-17-5	CCCCCCCCCCCCCCCCCS(-0)(-0)0.CCNCC												データなし	
85 ジエチルアミンとヘキサデシル=水素=スルファート の化合物(1:1)	94110-18-6	CCCCCCCCCCCCCCS(-0)(-0)0.CCNCC												データなし	
86 ジェチルアミンとオクチル=水素=スルファートの化合物 (1:1)	94133-50-3	CCCCCCCOS(=0)(=0)0.CCNCC												データなし	
87 ナトリウム=2-ブチルオクチル=スルファート	94200-74-5	CCCCCC(CCCC)COS(-0)(-0)[0-].[Na+]		53									>=1.357	eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID90916166	甲殼類:daphnia magna 40d-NOEC 2mg/L
01 71774-2 37743774-742771	34200-14-3	CCCCCC(CCCC)CSS(-0)(-0)(0-),(Na+)	117							29 4.1			>= 1.357	eChemPortal_ECHA: https://echa.europa.eu/registration-dossler/-/registered-dossler/12206	甲酸類:Ceriodaphnia dubia 48h-EC50 5.55mg/L, 7d-NOEC 0.88mg/L, Artemia salina 48h-LC50 3.15mg/L
88 ナトリウム=sec-ノニル=スルファート	98735-06-9	-												-	
89 2-エチルヘキシル=水素=スルファートと2-アミノエタノールの化合物	99948-85-3	CCCCC(CC)COS(=0)(=0)0.C(CO)N												-	
90 アルキル (C=10~16) =水素=スルファートと 2, 2', 2"-ニトリロトリエタノールの化合物	117875-77-1	-											1232.65	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=49E1AC13-6DEF-4C63-9273-98D4EA1EC88B	eChemPortal_CCR (評額): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pilvotal value for IT (mg/l))232.657 Toxicity to fish, daphinia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar

表 2.2.3-23 優先評価化学物質(優先通し番号 250) 有害性情報

				藻類					甲殼類					魚類					CCR		
N-	#4= 1995 dz 24+	CAC DN	CMILE	Green	aquatic	aquatic	aquatic	aquatic algae	Daphnid	Daphnia	Nitocra	Daphnia	Daphnia	Fish	Fish	Fish	Fish	Fish	Pivotal	出典:	備考:
No.	物質名称	CAS RN	SMILE	Algae 96h EC50	algae 96h EC50	algae 96h NOEC	algae 72h EC50	72h NOEC	48h LC50	magna 48h EC50	spinipes 96h LC50	magna 21d NOEC	magna 21d EC50	96h LC50				35d NOEC	value for iT	四典 ·	1佣·考 ·
				[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]	[mg/L]		
	サデシルオキシ) エタノール	2136-71-2	cccccccccccccc	0.081					0.02					0.023						ECOSAR v1.11 Class-specific Estimations	
	x=2-[2-(ドデシルオキシ)エトキ v=スルファート	2136-72-3	cccccccccccccccc	0.019					0.003					0.003						ECOSAR v1.11 Class-specific Estimations	
																			0.736	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=A8 8D5A63-AC40-46D5-978F-87A7D73FC3E4	Comment iTgroup approach;
3 α-ヘキサ レン)	ナデシルーωーヒドロキシポリ(オキシエチ	9004-95-9	000000000000000000000000000000000000000							>= 0.125~<= 40				>= 0.423~<= 8.211						eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/- /registered-dossier/25379	瀛類: $72h$ -NOELR >= 100 mg/L, 甲殼類: $Short$ -term toxicity, read-across based on grouping of substances (category approach), Long-term toxicity, $21d$ -NOELR 0.32 mg/L, 100 mg/L, 0.32 m
			CCOCCO				0.000539(0.0 00387~0.000 791)mM 0.000976 mM	0.000421 mM 0.000303 mM												eChemPortal_U.S. EPA ECOTOX : https://cfpub.epa.gov/ecotox/search.cfm	甲殼類:Crangon crangon(Sand Shrimp) 48h-LC50 330~1000 Al mg/L, 96h-LC50 100~330 Al mg/L
				0.757					0.281					0.363						ECOSAR v1.11 Class-specific Estimations	
																					m ±0.4%
	I-ω- { [(Ζ) -オクタデカ-9-エン √] オキシ} ポリ (オキシエチレン)	9004-98-2	-							>= 0.125~<= 40				>= 0.423~<= 8.211						eChemPortal_ECHA : https://echa.europa.eu/registration-dossier/- /registered-dossier/18582	甲殼類: read-across based on grouping of substances (category approach) 魚類: read-across based on grouping of substances (category approach)
				0.235					0.065					0.079						ECOSAR v1.11 Class-specific Estimations	
																			0.109	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=F5 C53D59-2619-4749-B8F9-7E4DD938DDA2	cChemPortal_CCR (E#B): Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Prototal value for IT (mg/I)0.109 Comment iTgroup approach; Robust Study Summary iT 9004982-9004993-9005009-AT-relativetoxicity-duglug.doc
5 α-ヒドロ シエチレン	1 - ω - (オクタデシルオキシ)ポリ(オキ ')	9005-00-9	cccccccccccccccc				> 100 >= 0.044~<= 14			>= 0.125~<= 40		0.77 1.75 >= 0.973~<= 107 (μg/L) >= 0.632~<= 730 (μg/L)		108						eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/- /registered-dossier/14213	遠稿: migrated information: read-across from supporting substance (structural analogue or surrogate), 甲殻類: read-across based on grouping of substances (category approach), 魚類: 30d-NOEC > 0.33 mg/L key study, 0.11—0.28 mg/L migrated information: read-across based on grouping of substances (category approach)
				0.168					0.043					0.051						ECOSAR v1.11 Class-specific Estimations	
c α-ヒ۴□	I-ω- (オクタデセニルオキシ) ポリ (オ	9040-05-5		0.100					0.043					0.031						ECOUNTY 1.11 Class appeared Estimations	
キシエチレ		9040-05-5																			
	I-ω- (オクタデカ-9-エン-1-イル パリ (オキシエチレン)	25190-05-0	000000000000000000000000000000000000000																	-	
										1.9(PPM) 290(PPM)				290 (PPM) 98 (PPM) 300(PPM)						PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/10991978#section=Toxicity	
8 α-ヒドロ (オキシエ	i-ω-(イソオクタデシルオキシ)ポリ チレン)	52292-17-8	cc(c)cccccccccccccccc																1.5	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=C8 8451D0-2C6A-4379-B98D-A0A65EF43277	eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for IT (mg/l)1.5 Comment iTPesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)); Group: Sub-Groups of polyoxyethylene surfactants: Polyoxyethylene/propylene monoesters of C18 alkenyls [9004-96-0; 37281-78-0; 31394-71-5; 68186-34-5]
																				eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID3034828	魚類:96h-NOEL 64mg/L, <22mg/L
										1.9(1.4~2.4)Al mg/L, 290(250~2 50)Al mg/L				300(Al mg/L) 290(250~390)Al mg/L, 98(71~150)Al mg/L						eChemPortal_U.S. EPA ECOTOX : https://cfpub.epa.gov/ecotox/explore.cfm?cas=52292178	魚類:72h-LC50 0.03Al mg/L
9 α- (2- (オキシエ	· ヘキシルデシル) - ω - ヒドロキシポリ ・チレン)	52609-19-5	-				>100					0.77 1.75		108						eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/- /registered-dossier/10572	漢類: migrated information: read-across from supporting substance (structural analogue or surrogate), 甲殼類: migrated information: read-across based on grouping of substances (category approach), 魚類: 30d-NOEC > 0.33 mg/L, 0.11-0.28 mg/L migrated information: read-across based on grouping of substances (category approach)
10 エトキシ化	, ココーアルコール	61791-13-7	-																11.31	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=4D A54FB9-AFE2-4E54-A93C-C0B149D6A1EA	eChemPortal_CCR (##Bi): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Privotal value for if (mg/l)11.31 Comment TGroup: Individual; Subgroup: Alcohols, coco; Toxicitus, Fig. 0. (FGD laws of) on good-field by Actor 1.3.3
				15.224					11.986					18.553						ECOSAR v1.11 Class-specific Estimations	
11 エトキシ化	ど鯨油アルコール	61791-21-7	-																	-	
			+	1													1				+

表 2.2.3-24 優先評価化学物質(優先通し番号 250) 有害性情報(つづき)

																					1
				藻類	agust's	aquoti-	2004:-		甲殼類	Danha!-	Nitoors	Danha!-	Danhe:-	魚類					CCR		
No.	物質名称	CAS RN	SMILE	Green Algae	aquatic algae	aquatic algae	aquatic algae	aquatic algae	Daphnid	Daphnia magna	Nitocra spinipes	Daphnia magna	Daphnia magna	Fish	Fish	Fish	Fish	Fish	Pivotal	出典:	備考:
				96h EC50	96h EC50	96h NOEC	72h EC50	72h NOEC [mg/L]	[mg/L]	48h EC50	96h LC50	21d NOEC	21d EC50	96h LC50 [mg/L]	48h LC50 [mg/L]	28d NOEC 3 [mg/L]	33d NOEC [mg/L]	35d NOEC [mg/L]	value for iT [mg/L]		
12	Cトキシ化牛脂アルコール	61791-28-4	-	[mg/L]	[mg/L]	[mg/L]	[mg/L]		(118)	[mg/L]	[mg/L]	[mg/L]	[mg/L]	(11)	[6, -]	((110) 2)	[6]	0.166	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=10 3387BF-D921-432D-AE4C-E6C15B10F029	eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for iT (mg/i)0.166 Comment iTGroup: individual; Subgroup: Alcohols, tallow; Robust Study Summary iT 61791284-AT-22hrLOEC-mytedu.doc Toxicity to fish (LC50 in mg/l) as predicted by PNN1.04166 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g.0.166 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g.1.666-001
	x - ヘキサデカジエン - 1 - イル - ω - ヒドロキシポ			0.235					0.065					0.079						ECOSAR v1.11 Class-specific Estimations	
13	J (オキシエチレン)	64415-24-3	-																	-	
14	α - ヘキサデセン - 1 - イル - ω - ヒドロキシポリ (オキシエチレン)	65104-72-5	-																	-	
15	アルコール (C = 10~16) エトキシ化物	68002-97-1	CC1(C2CCC1(C(C2)OCC(C)(C)[N+](=0)[O-])C)C																0.6	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=56 712F73-E0EA-46E0-9BFE-F829248187EA	eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for if (mg/I)0.6 Experimental result IT (mg/I)0.6 Toxicity to fish (LCS0 in mg/I) as predicted by PNN0.7102 Toxicity to fish, daphnia, algae or mysid shrimp (ECS0 or LC50 in mg/I) as predicted by Ecosar v0.99g.6.645 Toxicity to fish (LC50 in mg/I) as predicted by Neutral Organics QSAR in Ecosar v0.99g2.60E-002
				38.697					39.919					65.964						ECOSAR v1.11 Class-specific Estimations	eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to
16	□トキシ化アルコール(C = 1 4 ~ 1 8)	68154-96-1	000000000000000000000000000000000000000																0.736	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=AC B2CBFA-6623-409A-8375-2A57B2D0A0DA	aquatic organisms (Hide Details) Pivotal value for iT (mg/l)0.736
				0.032					0.006					0.007						ECOSAR v1.11 Class-specific Estimations	
17	C トキシ化アルコール(C = 1 6及び不飽和C = 1 3)	68155-01-1	-																0.166	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=9C 0AB731-B0B3-4B85-BD39-D44B59FDF9C5	eChemPortal_CCR (\$##): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for IT (mg/l)0.166 Robust Study Summary IT 68155011-CT-90dsublethal-invertsverts.doc 68155011-Z01CVDS.doc 68155011-Z01CVDS.doc 68155011-AT-LCSLC50LC95-tilmosbrasow.doc Toxicity to fish (LC50 in mg/l) as predicted by PNN1.04166 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g.0.166 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g.166E-001
				0.002					0.000251					0.000238						ECOSAR v1.11 Class-specific Estimations	
18	『ルコール(C = 1 2~1 8)エトキシ化物	68213-23-0	-																0.736	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=3F 8744EF-3BDA-44F5-B630-FDA01CBAA735	eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for if (mg/l)0.736 Toxicity to fish (LC50 in mg/l) as predicted by PNN0.86098 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g0.736 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g7.36E-003
										2.7										eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID5041934	
							0.41 0.19	0.31 0.078		2.7		0.77 1.75		1.2 0.876						eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/- /registered-dossier/12325	無類:30d-NOEC >0.33mg/L, 0.28mg/L, 0.11 - 0.28 mg/L, migrated information: read-across based on grouping of substances (category approach)
				3.401					1.84					2.602					66.7	ECOSAR v1.11 Class-specific Estimations eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=E4 373EED-B328-487A-AF0D-543F3698C240	eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for iT (mg/l)66.7 Experimental result iT (mg/l)66.7 Robust Study Summary iT (8439-49-6_211CVDS.doc 68439-49-6_211CVDS.doc 68439-49-6_255CVDS.doc Toxicity to fish (LC50 in mg/l) as predicted by PNN0.99988 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar v0.999.0736 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.999.736E-001
19	にトキシ化アルコール (C=16~18)	68439-49-6	-												3.5 4.6 4.5					eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID0041939	
							>100			>= 0.125~<= 40		0.77 1.75		108 >= 0.423~<= 8.211						eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/- /registered-dossier/13418	熟題: 30d-NOEC > 0.33 mg/L, 0.28mg/L, 0.11-0.28 mg/L migrated information: read-across based on grouping of substances (category approach)
															3.5					eChemPortal_HSNO CCID: https://www.epa.govt.nz/database- search/chemical-classification-and-information-database- ccid/view/8F1E8DA5-FD17-4E62-A6EA-C647E1195D76	
					0.05~50										4.5 AI mg/L 4.6 AI mg/L 3.5 AI mg/L					eChemPortal_U.S. EPA ECOTOX : https://cfpub.epa.gov/ecotox/explore.cfm?cas=68439496	
				0.007					0.00104					0.00106						ECOSAR v1.11 Class-specific Estimations	

表 2.2.3-25 優先評価化学物質(優先通し番号 250) 有害性情報(つづき)

No. 物質名 20 エトキシ化アルコール(C =		CAS RN	SMILE	藻類 Green Algae 96h EC50 [mg/L]	algae 96h EC50	aquatic algae 96h NOEC	aquatic algae 72h EC50	aquatic algae D	Sh I C50 ma	ohnia Nitocr agna spinipe		Daphnia magna	魚類 Fish	Fish	Fish	Fish	CCR	出典:	備考:
		CAS RN	SMILE	Algae 96h EC50	algae 96h EC50	algae 96h NOEC	algae		Sh I C50 ma								Pivotal	出典:	備考:
20 エトキシ化アルコール (C=	:12~20)			96h EC50	96h EC50	96h NOEC		72h NOEC 48	8h I C50 I										
20 エトキシ化アルコール(C=	= 1 2~2 0)					[mg/L]	[mg/L]	[mg/L] [[mg/L] 48h	EC50 96h LC g/L] [mg/L		21d EC50 [mg/L]	96h LC50 [mg/L]	48h LC50 [mg/L]	28d NOEC 3 [mg/L]	[mg/L]	ralue for iT [mg/L]		
		68526-94-3 -															0.736	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=28 64704C-FE9F-4A31-8A9D-00829F19B5B4	eChemPortal_CCR (詳細): Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivtoal value for iT (mg/l)0.736 Robust Study Summary iT 68526-94-3, 246CVDS.doc Toxicity to fish (LC50 in mg/l) as predicted by PNN0.86098 Toxicity to fish, daphnia, algae or mysid shrimp (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g.0736 Toxicity to fish. (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g7.36E-003
				0.276					0.099				0.126					ECOSAR v1.11 Class-specific Estimations	
21 アルコール (C=12~16)	i)エトキシ化物	68551-12-2 -															0.6	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=06 B3366B-7E6F-44CA-9901-46A0DC7D6CA3	eChemPortal_CCR (\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$
				0.7					0.04				1.4 1.2~1.5 0.049					eChemPortal_HSNO CCID: https://www.epa.govt.nz/database- search/chemical-classification-and-information-database- ccid/wiew/TJ907F8-94645-4378-8716-FE89E7360097 ECOSAR v1.11 Class-specific Estimations	甲殼類:Ceriodaphnia dubia 48h-EC50 0.39mg/L, 0.37~0.43 mg/L
22 エトキシ化アルコール(C=	12~19)	68603-20-3	000000000000000000000000000000000000000	0.135					0.04				0.049					ECOSAR v1.11 Class-specific Estimations	
23 ^{エトキシ} 化アルコール (C==18)	: 1 6~1 8及び不飽和 C	68920-66-1	000-00000000000000000000000000000000000														0.35	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=AB A54B30-D439-402A-AF8E-2FBD36F191A1	eChemPortal_CCR (\$\frac{\pmathbm{s}}{1}\): Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for iT (mg/i)0.35 Experimental result iT (mg/i)0.35 Robust Study Summary iT 68920-66-1_279CVDS.doc 68920-66-1_280CVDS.doc Cosicity to fish (LC50 in mg/l) as predicted by PNN1.04166 Toxicity to fish (LC50 in mg/l) as predicted by Experimental Experimental Study Study Study (EC50 or LC50 in mg/l) as predicted by Ecosar v0.99g.0.166 Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g.166E-001
																		eChemPortal_Chemicals Dashboard : https://comptox.epa.gov/dashboard/chemical/hazard/DTXSID8041587	魚類:24h-LC50 108mg/L
							>100		0.125	>= 5~<= 40	0.77 1.75		108					eChemPortal_ECHA: https://echa.europa.eu/registration-dossier/- /registered-dossier/15961	魚類: $30d$ -NOEC > 0.33 mg/L $_1$ $_2$ 0.28 mg/L $_3$ $0.11~0.28$ mg/L migrated information: read-across based on grouping of substances (category approach)
				0.235					0.065				0.079					ECOSAR v1.11 Class-specific Estimations	
24 エトキシ化アルコール(C=	7~21)	68991-48-0 -															0.736	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=1F A8313A-DBE9-4292-A3E8-D35E6E0F6DCA	eChemPortal_CCR (\$F#B): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for IT (mg/I)0.736 Toxicity to fish (LC50 in mg/I) as predicted by PNN0.86098 Toxicity to fish (LC50 in mg/I) as predicted by PCS0 or LC50 in mg/I) as predicted by Ecosar v0.99g0.736 Toxicity to fish (LC50 in mg/I) as predicted by Neutral Organics QSAR in Ecosar v0.99g7.36E-003
				4.555					3.443				5.277					ECOSAR v1.11 Class-specific Estimations	010 50 00 7
													2560					PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/3283	CAS: 60-29-7 甲酸類: Daphnia magna 24h-EC50 165 mg/L, 魚類: 14d-LC50 2134 mg/L, 96h-EC50 2260 mg/L, eChemPortal_CCR (詳細): collapse Underlying data regarding inherent
25 エトキシ化アルコール(C=	= 8~22)	69013-19-0	ccocc															eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=7A 9753F6-2CD5-448A-886E-9B17D52E00BF	toxicity to aquatic organisms (Hide Details) Pivotal value for iT (mg/l)0.736
				2.285					1.432				2.097					ECOSAR v1.11 Class-specific Estimations	
													2560					PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/3283	CAS: 60-29-7 甲殼類: Daphnia magna 24h-EC50 165 mg/L, 魚類: 14d-LC50 2134 mg/L, 96h-EC50 2260 mg/L,
26 エトキシ化アルコール(C=	= 16~22)	69227-20-9	ccocc														0.736	eChemPortal_CCR: https://canadachemicals.oecd.org/ChemicalDetails.aspx?ChemicalID=FE 0ADFBF-1228-413D-800A-6FEB960C930A	eChemPortal_CCR (\$\text{\$\tinx{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$
																			Toxicity to fish (LC50 in mg/l) as predicted by Neutral Organics QSAR in Ecosar v0.99g/3.36E-001

表 2.2.3-26 優先評価化学物質(優先通し番号 250) 有害性情報(つづき)

				藻類					甲殼類					魚類				CCR	
No.	物質名称	CAS RN	SMILE	Green Algae 96h EC50 [mg/L]	algae 96h EC50	aquatic algae 96h NOEC [mg/L]	aquatic algae 72h EC50 [mg/L]	aquatic algae 72h NOEC [mg/L]	Daphnid 48h LC50 [mg/L]	Daphnia magna 48h EC50 [mg/L]	Nitocra spinipes 96h LC50 [mg/L]	magna	Daphnia magna 21d EC50 [mg/L]	Fish	Fish 48h LC50 [mg/L]	Fish 28d NOEC [mg/L]	Fish 35d NOEC [mg/L]	Pivotal	出典: 備考:
27	α-ヒドロ-ω-イソヘキサデシルオキシポリ(オキ シエチレン)	69364-63-2	ccccccccccccccc	1.359					0.582					0.777					ECOSAR v1.11 Class-specific Estimations
28	エトキシ化アルコール(C = 1 4~2 6)	71011-10-4	ccocc											2560					CAS: 60-29-7 甲酸類: Daphnia magna 24h-EC50 165 mg/L, 魚類: 14d-LC50 2134 mg/L, 96h-EC50 2260 mg/L,
				0.032					0.006					0.007					ECOSAR v1.11 Class-specific Estimations
29	エトキシ化アルコール (C=8~16)	71243-46-4	ccccccccccc																eChemPortal_CCR: eChemPortal_CCR (詳細): collapse Underlying data regarding inherent toxicity to aquatic organisms (Hide Details) Pivotal value for IT (mg/)0.39 Troxicity to fish (LC50 in mg/) as predicted by PNN0.80316 Toxicity to fish (LC50 in mg/) as predicted by PNN0.80316 Toxicity to fish (LC50 in mg/) as predicted by PNN0.80316 Toxicity to fish (LC50 in mg/) as predicted by PNN0.80316 Toxicity to fish (LC50 in mg/) as predicted by Neutral Organics QSAR in Ecosar v0.99g5.22E-002
				2.285					1.432					2.097					ECOSAR v1.11 Class-specific Estimations
30	エトキシ化アルコール(C = 1 3~1 8)	72905-87-4	ccccccccccccc	0.066					0.016					0.019					ECOSAR v1.11 Class-specific Estimations
31	ポリオキシアルキレン(C = 2 ~ 4 、8)のモノアル キル(C = 1 ~ 2 4)エーテル	73398-63-7	-																-
32	エトキシ化アルコール (C=9~16)	97043-91-9	-	1.137					0.591					0.827					ECOSAR v1.11 Class-specific Estimations
33	エトキシ化アルコール(C = 1 4~1 8及び不飽和 C = 1 6~1 8)	126646-02-4	-																-
34	α - ヘキシルデシル - ω - ヒドロキシポリ(オキシエ チレン)	127162-58-7	-												_		 _		-
35	α - 2 - ヘキシルドデシル - ω - ヒドロキシポリ(オ キシエチレン)	135454-69-2	-																-

2.2.4 添付書類様式の提案

表 2.2.4-1 添付書類様式の提案(官報整理番号 9-1988)

構造・組成等についての情報

The Chemical Structure and Composition

一般化学物質 官	報整理番号 9-	1988
----------	----------	------

General Chemical Substance Class reference No. in Gazette list (MITI No.) 9-1988
2-アルキル(又はアシルオキシアルキル) (C7~23)-1, 1-ジアルキル(アミノアルキル又はアシルアミノアルキル若しくはヒドロキシアルキル又はポリオキシエチレン) (C1~5) イミダイリニウム塩

2-Alkyl (or acyloxyalkyl C7-23)-1,1-dialkyl-(aminoalkyl or acylaminoalkyl orhydroxyalkyl or polyoxyethylene)(C 1-5)imidazolium salt

1. 届出者情報	
届出者の氏名又は名称	
法人番号	
2. 物質情報	
届出書2. (1)③、④に記載した情報を転記してください。	
物質名称	
CAS登録番号(CAS RN)	
官報公示名称1	2-アルキル(又はアシルオキシアルキル)(C7~23)-1,1-ジアルキル(アミノアルキル又はアシルアミノアルキル若しくはヒドロキシアルキル又はポリオキシエチレン)(C1~5) イミダ・ソリニウム塩
官報整理番号1	9-1988

しくはヒドロキシアルキル又はポリオキシエチレン)(C 1~5) イミダゾリニウム塩の構造式の例	
D	(01 5)
R_1 ; アルキル(アミノアルキル又はアシルアミノアルキル若しくはヒドロキシアルキル又はポリオキシエチレン)	$(C1\sim5)$
$R_1^{\ \prime}$; アルキル(アミノアルキル又はアシルアミノアルキル若しくはヒドロキシアルキル又はポリオキシエチレン)	$(\texttt{C1}\!\sim\!5)$
R_2 ; アルキル又はアシルオキシアルキル($C.7 \sim 2.3$)	

2 - アルキル(又はアシルオキシアルキル)(C7~23) - 1,1 - ジアルキル(アミノアルキル又はアシルアミノアルキル若

3	/ 造海	3 11 1	24	の情報

構造・組成等の情報
 Information on chemical structure and composition 日本語又は英語のいずれかで記載してください。

官報公示名称2

官報整理番号2

官報公示名称3 官報整理番号3 高分子化合物の該当の有無(該当する場合は〇印を記入)

Please fill in eit	her Japanese o	r English.								
用途番号	出荷数量 ^{※1} (t)	製造数量 (t)	輸入数量 (t)	R ₁ :アルキル (アミ/アルキル又はアシルアミ/アルキル若しくはと 1~5) 構造について (ポリオキシエチレンの場合は繰り返 R ₁ :Alkyl-(aminoalkyl or acylaminoalkyl or hydroxylskyl (In the case of polyoxyethylene, specify th	C Lし数を明記する) or polyoxyethylene) structure (C 1~5)	R ₁ ':アルキル(アミ/アルキル又はアシルアミ/アルキル若しくけ (C1〜5) 構造につい (ポリオキシエチレンの場合は繰り返 R ₁ ':Alkyl-(aminoalkyl or acylaminoalkyl or hydroxylkyl (In the case of polyoxyethylene, specify th	いて EL数を明記する) or polyoxyethylene) structure (C 1~5)	R ₂ :アルキル(又はアシルオキシアルキル)(C7~23)構造について R ₂ :Alkyl (or acyloxyalkyl) (C 7~23)		
Usage number	Shipment quantity	Manufacture quantity	Import quantity	構造式 Structure	構造式の記載が困難な場合、 構造が分かる内容を記載 When it is difficult to describe the structural formula, please describe based on the actual state of the structure.	構造式 Structure	構造式の記載が困難な場合、 構造が分かる内容を記載 When it is difficult to describe the structural formula, please describe based on the actual state of the structure.	構造式 Structure	構造式の記載が困難な場合、 構造が分かる内容を記載 When it is difficult to describe the structural formula, please describe based on the actual state of the structure.	

※1 全体の出荷数量を、単物質の製造数量もしくは輸入数量の割合で按分して記載してください。

*1 Please enter the overall shipment quantity proportionally divided by the percentage of the manufacture or import quantity of the single substance.

☆提出前の確認事項(当てはまる項目があれば、チェックボックスに図をお願いします)
□ 構造別にした際に全ての用途別出荷数量が1:未満になりますので、1. と2. のみ記載します。
□ 用途別の出荷数量について届出書と差異があるのは、構造別の用途別出荷数量において1:未満を記載していないためです。

- <提出方法>

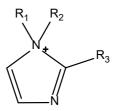
 電子・光ディスクによる届出の場合はExcelファイル

 書面届出の場合は横向きで印刷した書面

連絡担当者	
所属:	氏名:
電話番号:	メールアドレス:

表 2.2.4-2 添付書類様式の提案(官報整理番号 9-1989)

構造・組成等についての情報


The Chemical Structure and Composition

届出者の氏名又は名称

Substance Class reference No. in Gazette list (MITI No.) 9-1989 2-アルキル(又はアルケニル) ($C7\sim23$) -1-アルキル(ヒドロキシアルキル又はアシルアミノアルキル、 $C1\sim5$) -1-[アルキル($C8\sim15$)又はアルケニル($C7\sim23$)] -1($C7\sim23$) -1($C7\sim23$

2-Alkyl(or alkenyl C7-23)-1-alkyl(hydroxyalkyl or acylaminoalkyl,C1-5)-1-[alkyl(C8-15)or alkenyl(C7-23)]imidazolium salt

2. 物質情報 届出書2. (1)③、④に記載した情報を転記してください。	
物質名称	
CAS登録番号(CAS RN)	
官報公示名称1	2-アルキル(又はアルケニル)(C7~23)-1-アルキル(ヒドロキシアルキル又はアシルアミノアルキル,C1~5)-1-[アルキル(C8~15)又はアルケニル(C7~23)] イミダゾリウム塩
官報整理番号1	9-1989
官報公示名称2	
官報整理番号2	
官報公示名称3	
官報整理番号3	
高分子化合物の該当の有無(該当する場合は〇印を記入)	x

2-アルキル(又はアルケニル)(C7~23)-1-アルキル(ヒドロキシアルキル又 はアシルアミノアルキル, C1~5) -1- [アルキル (C8~15) 又はアルケニル (C7~22)]イミダゾリウム塩の構造式の例

 R_1 ; アルキル($C8\sim15$)又はアルケニル($C7\sim22$) R_2 ; アルキル(ヒドロキシアルキル又はアシルアミノアルキル,C 1 \sim 5)R₃; アルキル (又はアルケニル) (C7~23)

3. 構造・	りいずれか	cal structure いで記載してくた e or English.	and composition どさい。							
				R ₁ : [アルキル (C8~15) 又はアルケニル (C R ₁ : [Alkyl(C 8-15) or alkenyl(C 7-		R_2 : アルキル (ヒドロキシアルキル 又はアシルアミノア R_2 : Alkyl (hydroxyalkyl or acylaminoalky		R_3 :アルキル (又はアルケニル) ($C7\sim23$) 構造について R_3 :Alkyl (or alkenyl) structure ($C7\sim23$)		
用途番号 Usage number	(t) Shipment quantity	製造数量 (t) Manufacture quantity	輸入数量 (t) Import quantity	構造式 Structure	構造式の記載が困難な場合、 構造が分かる内容を記載 When it is difficult to describe the structural formula, please describe based on the actual state of the structure.	構造式 Structure	構造式の記載が困難な場合、 構造が分かる内容を記載 When it is difficult to describe the structural formula, please describe based on the actual state of the structure.	構造式 Structure	構造式の記載が困難な場合、 構造が分かる内容を記載 When it is difficult to describe the structural formula, please describe based on the actual state of the structure.	

※1 全体の出荷数量を、単物質の製造数量もしくは輸入数量の割合で按分して記載してください。

*1 Please enter the overall shipment quantity proportionally divided by the percentage of the manufacture or import quantity of the single substance.

☆提出前の確認事項(当てはまる項目があれば、チェックボックスに図をお願いします) 構造別にした際に全ての用途別出荷数量が1t未満になりますので、1、と2、のみ記載します。 用途別の出荷数量について届出書と差異があるのは、構造別の用途別出荷数量において1t未満を記載していないためです。

- 出方法>

 電子・光ディスクによる届出の場合はExcelファイル

 書面届出の場合は横向きで印刷した書面

絡担当者	
所属:	氏名:
電話番号:	メールアドレス:

表 2.2.4-3 添付書類様式の提案(優先通し番号 175)

構造・組成等についての情報 The Chemical Structure and Composition

優先評価	心学物	歷活1	- 来-旦1	7

|個化子物頁週上番方1/5 ion No.175 of Priority Assessment Chemical Substances =アルケンスルホナート(C=14~16)又はナトリウム=ヒドロキシアルカンスルホナート(C=14~16)

Sodium alkenesulfonate(C=14-16) or sodium hydroxyalkanesulfonate(C	i=14−16)
1. 届出書情報	
届出者の氏名又は名称	
法人番号	
2. 物質情報	
届出書2. (1)③、④,⑤に記載した情報を転記してください。	
官報公示名称1	ナトリウム=アルケンスルホナート(C=14~16)又はナトリウム=ヒドロキシアルカンスルホナート(C=14~16)
物質管理番号	175
官報整理番号1	
物質名称	
CAS登録番号(CAS RN)	
官報公示名称2	
官報整理番号2	
官報公示名称3	
它報整理番号3	

3. 構造・組成等の情報
nation on chemical structure and composition
日本語又は英語のいずれかで記載してください。

高分子化合物の該当の有無(該当する場合は〇印を記入)

								Fル(C=14~16)構造にAlkyl structure (C=14~1						左記項目の記載が困難 な場合、構造が分かる	
用途番号 Use category	詳細用途番号 Sub use category	出荷数量 ^{※1} (t) Shipment amount	製造数量 (t) Manufacture amount	輸入数量 (t) Import amount	(1) アルケン又はアルカン の別	(2) アルケンの場合 二重結合の位置	(3) 直鎖·分岐鎖	(4) 主鎖の炭素数 Carbon number of the	(i 分岐鎖の場合、側鎖 Substitution position an side chain wh	真の置換位と炭素数 id carbon number of the	(6) 主鎖と分岐鎖の合計炭 素数 Total number of	スルホ基の結合位置 Bonding position of the sulfo group	1.12コナンサの什人仕里	内容を記載 If items on the left are not applicable, please describe based on the	(参考) 各成分の重量割合 ^{※2} Weight % of each component ^{*5}
					Alkene or alkane	Position of the double bond if alkene	Normal or branched	main chain	置換位 Substitution position	炭素数 Carbon number	carbons of main and side chain (C=14~16)			actual state of the structure.	

※1 全体の出荷数量を、単物質の製造数量もしくは輸入数量の割合で接分して記載してください。
*1 Please enter the overall shipment amount proportionally divided by the percentage of the manufacture or import amount of the single substance.
※2 わかる場合のみ、各成分の重量割合の合計が100%になるように記載してください。
*2 Please describe the weight % of each component where the total is defined as 100%, if known.

☆提出前の確認事項(当てはまる項目があれば、チェックボックスに図をお願いします)
構造別にした際に全ての用途別出荷数量が1.未満になりますので、1. と2. のみ記載します。
用途別の出荷数量について届出書と差異があるのは、届出書の都道府県別用途別出荷数量において1t未満を記載していないためです。
用途別の出荷数量について届出書と差異があるのは、構造別の用途別出荷数量において1t未満を記載していないためです。

<提出方法>
■ 電子・光ディスクによる届出の場合はExcelファイル
■ 書面届出の場合は横向きで印刷した書面

連絡担当者	
所属	氏名:
電話番号	メールアドレス:

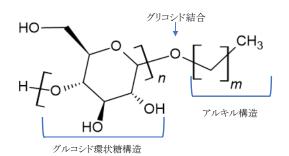
2.2.5 「評価単位設定に関するガイドライン (仮称)」(案) の作成

令和2年~5年度事業において、UVCB 物質である一般化学物質について、その取り扱い実態に基づき、スクリーニング評価単位の検討を行ってきた。検討の過程で、評価単位の設定に係る考え方の共通項、また個別対応が必要な事項が見えてきたため、評価単位の考え方を取りまとめた。

2.2.5.1 これまでの検討物質

① 官報整理番号 7-60: N, N-ジポリオキシアルキレン-N-アルキル (又はアルケニル) (C6~28) アミン

構造式:


② 官報整理番号 7-97: ポリオキシアルキレン(C2~4,8) モノアルキル(又はアルケニル)(C1~24)エーテル(n=1~150) 構造式:

$$R-(OC_mH_{2m})_n-OH$$

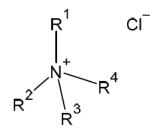
 $R=1\sim 2\ 4$ $m=2\sim 4$, 8 $n=1\sim 1\ 5\ 0$

③ 官報整理番号 7-141: 脂肪酸 (C8~24) とポリオキシアルキレンアルキル (又はアルケニル) (C1~24) エーテルとのエステル構造式:

$$R_1 = 7 \sim 23$$
 $R_2 = 1 \sim 24$ $n = 1 \sim 100$

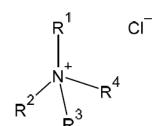
 ① 官報整理番号 5-3641: アルキル (C=1~25) グルコシド 官報整理番号 5-6337: アルキル (C=8~18) - D - グルコピラノ シド及びアルキル (C=8~18) - モノ (ジ、トリ又はテトラ) -D - グルコピラノシル-D - グルコピラノシドの混合物 構造式:

5-3641 $n=1 \text{ 以 } \text{ \psi}, m=0 \sim 24$ 5-6337 $n=1 \sim 5, m=7 \sim 17$


※構造式は一例として直鎖型アルキルの構造を表記している。いずれの官報整理番号も、グルコピラノースは α 体・ β 体を区別せず、また、アルキルは直鎖型と分枝型を区別しない。

⑤ 官報整理番号 2-184: N, N, N, Nーテトラアルキル (又はアルケニル, アルキル又はアルケニルの 1 個以上は $C=8\sim2$ 4 で他は $C=1\sim5$) 第 4 級アンモニウム塩

官報整理番号 9-1971:脂肪族アルキル(少なく1個はC8~24,他はC1~5) 第4級アンモニウム塩


構造式:

2-184

R1: アルキル又はアルケニル ($C=8\sim24$) R2 \sim R4: アルキル又はアルケニル ($C=1\sim5$ 又は $8\sim24$)

9-1971

R1:脂肪族アルキル ($C = 8 \sim 24$)

 $R2 \sim R4$: 脂肪族アルキル (C=1~5又は8~24)

※構造式は一例として対イオンを CI で表記した。

2.2.5.2 評価単位の設定の考え方の共通事項

以下に、評価単位の設定について、考え方を示す。

① 対イオン(又は対となる酸)の別

対イオン(又は対となる酸)は「化学物質の審査及び製造等の規制に関する法律の運用について ⁴⁶」の「3 - 2 優先評価化学物質又は一般化学物質の製造数量等の届出に関する取扱い」において「優先評価化学物質又は一般化学物質の法第 9 条又は第 8 条に定める製造数量等の届出に関する取扱いは、化合物ごとに 1 区分とすることを原則とし」と規定されていること、また、対イオンの特性も別途検討が必要

⁴⁶ 化学物質の審査及び製造等の規制に関する法律の運用について https://www.meti.go.jp/policy/chemical_management/kasinhou/files/about/laws/lawsh30120351 0.pdf

となることから、現時点では塩と塩以外の評価単位は別とするとともに、対イオン(又は対となる酸)が異なる塩は評価単位を別にし、対イオンの官報整理番号別に評価する。

なお、今後評価を進めるに当たり、対イオン(又は対となる酸)が 異なるそれぞれの塩やそれらと塩以外を合わせて評価することが適 当と判断される場合は評価単位を見直すこととする。

【届出情報からの判断方法】

CAS名称及び物質名称から判断する。

② 単一物質と混合物の別

単一物質と混合物は「化学物質の審査及び製造等の規制に関する法律の運用について」の「3.2優先評価化学物質又は一般化学物質又は一般化学物質又は一般化学物質の法第9条又は第8条に定める製造数量等の届出に関する取扱いは、化合物ごとに1区分とすることを原則とし、内容が不詳なもの又は分離等できないものについては製法、性状、混合状態等に基づいて区分する。」と規定されている。さらに、有害性情報は単一物質に紐づいている可能性があることを踏まえ、スクリーニング評価の加速化の観点から、単一物質と混合物の評価単位は別とする。

【届出情報からの判断方法】

CAS名称及び物質名称から判断する。

③ ポリオキシアルキレンの繰り返し数(n)の別

化審法では低分子化合物と高分子化合物では必要な試験等や運用が 異なる。そのため、数平均分子量 1,000 未満 (=低分子化合物)と数平 均分子量 1,000 以上 (=高分子化合物) に評価単位を分ける。

数平均分子量 1,000 以上の高分子化合物については別途評価方法等 を今後検討することとする。

【届出情報からの判断方法】

高分子化合物のフラグやCAS名称及び物質名称から判断する。

④ ポリオキシアルキレンの炭素鎖長の別

ポリオキシアルキレンの炭素鎖長は、原料のエチレンオキシド、プロピレンオキシド等の組み合わせの別によるため、原料別に評価単位を分ける。

【届出情報からの判断方法】

CAS名称及び物質名称から判断する。

例:【エチレンオキシド】ethoxylated、Poly(oxy-1,2-ethanediyl)

【プロピレンオキシド】 propoxylated、 Poly[oxy(methyl-1,2-ethanediyl)]

【エチレンオキシドとプロピレンオキシドの組み合わせ】 ethoxylated propoxylated ⑤ アルキル (又はアルケニル) 【あるいはモノアルキル (又はアルケニル)】の直鎖・分枝の別

アルキル鎖は直鎖構造より分枝構造の方が分解しにくいことが既知であるため、直鎖と分枝で評価単位を分ける。直鎖と分枝の混合物の場合は、分解しにくい分枝構造に区分する。

【届出情報からの判断方法】

CAS名称及び物質名称から判断する。

例:【直鎖】 dodecyl

【分枝】C12-14-tert-alkyl、2-ethylhexyl、isodecyl

【判断不可】Alcohols, C10-16

※物質名称に直鎖型か分枝型か記載してもらう必要がある。

⑥ アルキル (又はアルケニル)【あるいはモノアルキル (又はアルケニル)】の飽和と不飽和の別

不飽和構造は飽和構造より反応性が高いことが既知であるため、飽和と不飽和で評価単位を分ける。飽和と不飽和の混合物の場合は、反応性が高い不飽和に区分する。

【届出情報からの判断方法】

CAS名称及び物質名称から判断する。

例:【飽和】coco alkyl、hydrogenated tallow alkyl、C14-18-alkyl 【不飽和】tallow alkyl、C8-18 and C18-unsaturated alkyl

⑦ 脂肪酸の直鎖・分岐の別

脂肪酸のアルキル鎖は直鎖構造より分枝構造の方が分解しにくいことが既知であるため、直鎖と分枝で評価単位を分ける。直鎖と分枝の混合物の場合は、分解しにくい分枝構造に区分する。

⑧脂肪酸の飽和と不飽和の別

不飽和構造は飽和構造より反応性が高いことが既知であるため、 飽和と不飽和で評価単位を分ける。飽和と不飽和の混合物の場合 は、反応性が高い不飽和に区分する。

⑨ アルキル (又はアルケニル)【あるいはモノアルキル (又はアルケニル)】と脂肪酸の炭素鎖長の別

アルキル (又はアルケニル)【あるいはモノアルキル (又はアルケニル)】と脂肪酸の炭素鎖長は原料が単一物質の場合、混合物の場合等、様々であるため、混合実態等から総合的に判断して評価単位を区分する必要がある。

⑩ 単一物質の混合物との構造の重複の有無

上記①~⑨に則って整理した上で、単一物質の構造が混合物と重複する場合、その単一物質は混合物の評価単位に包含することとした。

2.2.5.3 評価単位検討の個別事例 (2.2.5.2 の共通事項に含まれないもの)

◆ 令和4年度検討物質(2.2.5.1 ④)
 官報整理番号5-3641:アルキル(C=1~25)グルコシド
 官報整理番号5-6337:アルキル(C=8~18)-D-グルコピラノシド及びアルキル(C=8~18)-モノ(ジ、トリ又はテトラ)-D-グルコピラノシル-D-グルコピラノシドの混合物

上記2つの官報整理番号はいずれもグルコシド環状糖にアルキルが結合した構造であり、アルキルの炭素数や環状糖の数の範囲が重複しているため、これら2つの官報整理番号の届出物質を合わせて、評価単位を検討することとした。

当該検討物質の構造・組成情報として、グルコシド環状糖の詳細(環状糖の数、1個の場合は α 体・ β 体の別)、アルキルの詳細(直鎖・分岐の別、主鎖の炭素数、分岐の場合の側鎖の置換位と炭素数)、各成分の重量割合を届出者から得た。得られた構造・組成情報に基づくと、グルコシド環状糖に関しては、環状糖 1個又は 1個以上でしか分類できなかった。また、環状糖が 1個の届出物質は、糖の構造がいずれも α 体であり、かつ、アルキルもそれぞれ 1種類に限定されたため、全て単一物質であった。したがって、当該検討物質の評価単位検討においては、グルコシド環状糖の構造・組成的な特徴ではなく、3.②の「単一物質と混合物の別」の観点からまず区分し、さらに、3.⑤の「アルキルの直鎖・分岐の別」、3.⑨の「アルキルの炭素鎖長の別」の観点から区分することした。

2.2.5.4 今後の課題

- ▶ 構造組成による区分だけでなく、水域への推計排出量及び製造輸入 数量等、使用実態に整合した評価単位を設定すること。
- ▶ 有害性の観点を考慮した評価単位を検討すること。有害性情報が明らかである物質は限られており、海外では有害性予測ソフトウェアによる情報が活用されている。また、混合物は毒性予測が困難である。

2.3 優 先 評 価 化 学 物 質 の リ ス ク 評 価 に 関 す る 課 題 等 に 関 す る 検 討

2.3.1 はじめに

評価I又はII段階において評価が滞留している物質の中には、相対的にリスク懸念が低いため評価の優先順位が上がらないか、リスク評価又は規制判断に必要な情報が不十分であるものなどがある。更なるリスク評価の合理化・加速化を促進するための改善策を検討するため、最新の諸外国(主に欧州、米国)のリスク評価等に関する検討状況及び、国内の化学物質関連法制度の情報収集を行った。また、リスク評価結果の不確実性を減らすため、精緻な暴露評価モデルの活用が必要とされていることから、暴露評価モデルの精緻化に向けた検討を行った。

2.3.2 海外動向調査

(1) リスク評価に基づく規制の実施状況

米国有害物質規制法(TSCA)では、リスク評価により不合理なリスクがあると判断された場合に、製造・使用禁止等のリスク管理措が実施されている。欧州 REACH 規則では、規制の必要性の評価では定量的な暴露評価が必要とされていない。制限プロセスが進み、リスクスクリーニングの段階で、関連する用途についての定量的なリスク評価が実施され、許容できないリスクが確認された場合に制限文書案が作成される。ただし、発がん性、変異原性、生殖毒性の区分 1A 又は 1B と分類される物質(CMR)の単体、混合物又は消費者が使用する可能性のある成形品に合まれる物質は、REACH 第 68 条 (2)に基づき、簡易な手順(制限プロセスを開始するための文書作成、パブリックコンサルテーション、RAC及び SEAC による意見、フォーラムによる協議)で制限対象物質に指定される。このため、CMR 物質はハザード評価に基づき規制が行われる。化審法リスク評価における課題を解決するために有用な情報を収集するため、令和 5 年度に米国、欧州で規制が検討された化学物質の情報を整理したものを表 2.3.2-1 に示す。

表 2.3.2-1 米国及び欧州で令和 5年度に規制が検討された化学物質

衣 2.	3.2-1 米国及び欧州で令和5年度に規制	か使引された化子物質
	米国 (US EPA)	欧州 (ECHA)
令 和	TSCAに基づくフタル酸エステル系化学物	REACH 認可のために8物質
5 年	質の累積リスク評価に関する文書案の	を勧告
5 月	SACC レビューのための仮想準備会議を開	
- / -	催生なるというなっての選集を立は、ほして	
	塩化メチレンの全ての消費者向け、ほとんどの工業用及び商業用用途の禁止	
	原子力発電のサプライチェーン継続確保の	
	ため DecaBDE 規制の遵守期限を延長	
6 月	全消費者用途及び多くの商業用途における	-
	テトラロロエチレンの使用禁止を提案	
	TSCA に基づく 1,4-ジオキサンのリスク評	
	価に関する補足案の臨時レビュアー候補者に関するペブリックススント系は	
	に関するパブリックコメント受付 TSCA に基づく <mark>アスベスト</mark> 第2部リスク評	
	価に使用される白書のレター・ピアレビュ	
	ーへの推薦要請	
	EPA リスク評価を支援する難燃剤の重要な	
	新規使用規則を提案	
7 月	労働者の健康とフェンクラインコミュニティなウスをは、関係など思索の労働を企業	-
	ィを守るため、 <mark>四塩化炭素</mark> の労働安全要件 を提案	
8 月	で 促 采 アスベスト 第 2 部 リスク 評 価 を 進 め 、 白 書	-
0 /1	に関するピアレビューを求める	
9 月	安全な化学物質成分リストを更新	制限に関する動向
		・クレオソート
		·PFAS(泡消火剤)、水素化タ
		ーフェニル、N,N-ジメチル アセトアミド(DMAC);1-エ
		ノセトノミト (DMAC); 1-エーチルピロリジン -2-オン
		(NEP)
		・クロロアルカン C14-C17
		· PFAS
		・リン酸トリキシリル
		・意図的に添加されたマイ
	TCEPのリスク評価草案の査読者の推薦を	クロプラスチック の制限 認可に関する動向
	募集	i
	24.25	必要な規制の評価
10月	労働者と地域社会を保護するための TSCA	化学物質群評価のアプロー
	リスク評価プロセスを強化する規則の提案	チに関する Webinar 開催
	トリクロロエチレンの禁止を提案	欧州委員会がプラスチック
		ペレットによる マイクロプ ラスチック 汚染を削減する
		プラックな楽を削減する ための措置を提案
11月	セーファーチョイス基準の強化に向けた更	PFAS規制案の施行可能性に
11/1	新を提案	関する執行フォーラムの助
		言
		有害化学物質規制のための
12 7	プラスチック容器から溶出する PFAS の規	研究ニーズを特定
12 月	ファステック谷希から俗田する PFAS の規制	-
	TSCA に基づくリスク評価対象化学物質 5	
	物質(アセトアルデヒド、アクリロニトリ	
	ル、アニリン、4,4'-メチレンビス(2-クロロ	
	アニリン)、塩化ビニル)の優先順位決定プ	
	ロセスを開始	
∆ <i>τ</i>	難燃剤 TCEP のリスク評価案を発表 不活性 PFAS の商業再流入を防止する規則	継 燃 刈 の 更 か え 調 木 ナ . 亜 誌
令和	不活性 PFAS の商業再流入を防止する規則 を最終決定	難燃剤の更なる調査を要請
6 年	C MX IN IN AL	
1月		

①米国 TSCA におけるリスク評価

米国では、表 2.3.2-2 に示す 5 物質について、不合理なリスクがあると 判断され、リスク管理措置が提案されている。アスベストは第1部とし てクリソタイルについては既にリスク管理措置が実施されているが、そ の他のアスベスト繊維等を第2部として評価を開始した。四塩化炭素、 塩化メチレン、テトラクロロエチレン、トリクロロエチレンについては、 ほとんどの用途での製造、輸入、加工、流通、使用を禁止するリスク管 理措置が提案された。これらの化学物質は、国内でも規制が行われてお り、四塩化炭素、テトラクロロエチレン、トリクロロエチレンは第二種 特定化学物質に指定されている。アスベストは化審法の対象外、塩化メ チレンは優先評価化学物質の指定取消となっている。国内では、職業暴 露管理の観点(労働安全衛生法、建築基準法、建設リサイクル法)、環境 排出量を制限する観点(化管法、環境基本法、大気汚染防止法、水質汚 濁防止法、下水道法、土壤污染対策法、廃棄物処理法、海洋汚染防止法)、 消費者暴露管理の観点(水道法、有害家庭用品規制法)から他法令でも 規制が行われている。国内ではリスク評価に基づいた職業暴露管理、消 費者暴露管理、環境排出量の管理を行いながら、これらの化学物質を使 用している。

表 2.3.2-3 に、不合理なリスクがあると判断され、リスク管理措置が検討中、又は使用禁止とは異なるリスク管理措置が実施されている化学物質を示す。国内では化審法の第一種特定化学物質に指定されている化学物質や、優先評価化学物質も含まれるが、顔料(C.I.ピグメントバイオレット 29)、難燃剤(リン酸トリス(2-クロロエチル))は一般化学物質である。優先評価化学物質のリスク評価や、一般化学物質のスクリーニング評価において、米国で実施されたリスク評価の内容は参考になると考えられる。

物質名	リスク評価・リスク管理の状況	国内におけるリスク管理の状況
アスベスト (第1部 クリソタイル) Asbestos, Part 1: Chrysotile Asbestos	令和2年12月最終リスク評価改訂版公表。 TSCAは、EPAに対し、TSCAリスク評価で特定された全ての不合理なリスクに対処するための要件を規則で定めることを義務付けている。 EPAは、化学物質のリスク評価においてEPAが特定した6つの使用区分について、クリソタイルアスベストの製造(輸入を含む)、加工、商業流通、商業使用を禁止することを提案している。令和5年3月、EPAはリスク管理規則案に関連する追加データを公表し、パブリックコメントを求めた。これらの追加データは、クロールアルカリ産業で使用されるクリソタイルアスベストダイアフラムと、化学製品製造に使用されるクリソタイルアスベスト含有シートガスケットに関するものである。 令和4年12月最終リスク評価改訂版公表。	律)、労働安全衛生法、大気汚染防止法、廃棄
Carbon Tetrachloride	不合理なリスクに対処するために EPA が取り得る措置はいくつかあり、該当する場合、この化学物質の <mark>製造(輸入を含む)、加工、市場での流通、商業的使用又は廃棄を禁止又は制限</mark> する規制が含まれる。令和5年7月、四塩化炭素の製造(輸入を含む)、加工、及び四塩化炭素の国内生産量の実質的な全量を占めるその他の工業用又は商業用の用途について、吸入暴露制限と経皮保護を含む厳格な管理による職場化学物質保護プログラムが義務付けられることになるリスク管理措置を提案。	他法令:化管法、環境基本法、大気汚染防止法、水質汚濁防止法、下水道法、土壌汚染対策法、廃棄物処理法、オゾン層保護法、水道法、海洋汚染防止法、労働安全衛生法、毒劇法、消防法においても管理。
塩化メチレン(ジクロロメタン) Methylene Chloride	令和4年11月最終リスク評価改訂版公表。 EPA が評価した53の使用条件のうち52の条件で不合理なリスク判定がなされた。令和5年5月、EPA は有害物質規制法(TSCA)に基づき、人の健康を守るために塩化メチレンの禁止と職場保護を提案した。 ・全ての消費者用途における塩化メチレンの製造、加工、流通の禁止 ・塩化メチレンのほとんどの工業用及び商業用用途の禁止 ・塊りの用途について、労働者が塩化メチレンの使用によって損害を受けないようにするための厳格な職場保護を設ける。 ・製造業者(輸入業者を含む)、加工業者、販売業者に対し、塩化メチレンの出荷先企業への禁止事項の通知と記録の保存を義務付ける。これらの変更のほとんどは、規則が確定してから15か月以内に完全に実施され、TSCAの対象となる最終用途の年間生産量の推定52%が禁止されることになる。EPA が禁止を提案している塩化メチレンのほとんどの用途について、EPA の分析によると、塩化メチレン製 品と同様の費用と効果を有する代替製品が一般的に入手可能であることが判明した。EPA が不合理なリスクに対処できると判断した、禁止を提案していない工業用製造、工業用加工、及び連邦政府の用途について、EPA は、労働者を保護するための強力な暴露制限を有する職場化学物質保護プログラム(WCPP)を提案している。	化審法:リスク評価 II の結果、平成 29 年 3 月に優先評価化学物質の指定取消。 他法令:化管法、環境基本法、大気汚染防止 法、水質汚濁防止法、下水道法、土壌汚染対 策法、廃棄物処理法、水道法、海洋汚染防止 法、労働安全衛生法においても管理。
テトラクロロエチレン Perchloroethylene (PCE)	令和4年12月最終リスク評価改訂版公表。 EPA が評価した61の使用条件のうち60の条件で不合理なリスク判定がなされた。 令和5年6月、EPA は以下の規制措置を提案した。 ・PCE のほとんどの工業用途及び商業用途を禁止する。 ・残りの用途について、労働者が PCE の使用によって有害な影響を受けないようにするため、厳格な職場保護を設ける。 ・製造業者(輸入業者を含む)、加工業者、及び販売業者に対し、PCE の出荷先企業に禁止事項を通知し、記録を保管することを義務付ける。 これらの変更のほとんどは、24 か月以内に完全に実施される。EPA は、ドライクリーニングにおける PCE の使用について 10 年間の段階的廃止を提案している。 ・EPA は、禁止することを提案していない PCE の工業用製造、工業用加工、及びその他の用途について、作業員の保護を確保するために、厳格な吸入暴露限界値と皮膚暴露防止要件を備えた WCPP を提案している。 ・実験室での使用については、EPA は、ヒュームフードと皮膚を保護するための化学的不浸透性手袋の使用を義務付けることを提案している。	
トリクロロエチレン Trichloroethylene (TCE)	令和5年1月最終リスク評価改訂版公表。 令和5年10月、EPA は以下の規制措置を提案した。 ・全ての用途について TCE の製造、加工、流通、使用を迅速に段階的に禁止するもので、そのほとんどは1年で完全に禁止される。 ・より長い期間が必要な用途については、EPA は強固な労働者保護を提案している。例えば、バッテリセパレータ製造の工程溶媒としての TCE 使用に代わるものは現在存在しない。経済とインフラにとって重要なこの用途について、EPA は、電池セパレータ製造の継続と代替溶媒を調査・採用するための十分な時間を確保するために、10年間の TSCA 第6条(g)禁止除外を提案している。期間限定の免除期間中、企業は職場の化学物質保護計画を遵守しなければならない。 ・連邦政府機関によるロケットブースターノズル製造における TCE の使用に関する 10年間の段階的使用禁止期間や、国防総省の船舶における重要又は不可欠な脱脂に関する期限付き追加的使用禁止除外を含む、その他の段階的使用禁止及び使用禁止除外も提案している。 ・追加の期限付き適用除外は、TCE の廃棄や必要不可欠な活動のための研究所での使用など、過去の TCE 汚染の継続的浄化活動を支援するものである。これらの長い段階的削減と適用除外はまた、暫定的に職場の化学物質保護計画を要求し、場合によっては代替物質の試験を要求する。	規制法、海洋汚染防止法、労働安全衛生法に

表 2.3.2-3 米国 有害物質規制法 (TSCA) に基づくリスク評価において不合理なリスクがあると判断された化学物質のリスク管理措置の検討状況及び国内におけるリスク管理の状況

物質名	リスク評価・リスク管理の状況	国内におけるリスク管理の状況
1-ブロモプロパン 1-Bromopropane (1-BP)	令和4年12月最終リスク評価改訂版公表。 不合理なリスクに対処するために EPA が取りうる措置はいくつかあり、該当する場合には、この化学物質の製造(輸入を含む)、加工、市場での 流通、商業的使用、又は廃棄を禁止又は制限する規制が含まれる。EPA は現在、1-BP がもはや健康に対する不合理なリスクを示さないように規制 するための措置を講じるための規則案を作成中である。	
1,4-ジオキサン 1,4-Dioxane	令和4年12月最終リスク評価改訂版公表。 令和5年7月、1,4-ジオキサンに対するリスク評価の補足草案を公表したのに続き、化学物質全体としての1,4-ジオキサンに対する改訂リスク決定 案を公表した。改訂されたリスク決定案には、フェンスライン地域(工場近傍)を含む一般市民への暴露経路と、副産物として発生する1,4-ジオ キサンからの暴露経路が追加されている。 全体として、改訂されたリスク判定に基づき、EPAの予備的所見には、4つの職業的使用条件を除く全てから労働者が1,4-ジオキサンに暴露され ることが、1,4-ジオキサンによる不合理なリスクに寄与することが含まれている。また、工業施設(副産物として生産される場合を含む)から排出 される1,4-ジオキサンで汚染された地表水を水源とする飲料水による一般住民とフェンスライン地域社会に対するリスクも、不合理なリスクに寄 与するものとして含めることを提案している。 リスクに対処するために EPA が取り得る措置には、本化学物質の製造、加工、市場での流通、使用、又は廃棄を禁止又は制限する規制、あるいは 該当する TSCA に規定されているその他の選択肢など、いくつかある。EPA は現在、特定された不合理なリスクに対処する方法を策定中。	水質汚濁防止法、下水道法、廃棄物処理法、水 道法、有害家庭用品規制法、海洋汚染防止法、 労働安全衛生法、消防法においても管理。
C.I.ピグメントバイオレット 29 C.I. Pigment Violet 29 (PV29)	令和4年8月最終リスク評価改訂版公表。全体として、評価された14の使用条件のうち10の使用条件が、人の健康に対するリスクが特定されたため、PV29全化学物質が不合理なリスクであると決定した。 これらのリスクに対処するためにEPAが取り得る措置はいくつかあり、該当する場合、この化学物質の製造、加工、商業流通、商業使用、廃棄を禁止又は制限する規制が含まれる。EPAは現在、特定された不合理なリスクに対処する方法を策定中である。	化審法:一般化学物質(既存化学物質) 他法令:対象外。
環状脂肪族臭化物 クラスター Cyclic Aliphatic Bromide Cluster (HBCD)	令和4年6月最終リスク評価改訂版公表。HBCDがその使用条件下で評価された場合、人の健康及び環境に対して不合理なリスクを示すと判断した。 これらのリスクに対処するために EPAが取り得る措置はいくつかあり、該当する場合には、この化学物質の製造、加工、商業流通、商業使用、又は廃棄を禁止又は制限する規制が含まれる。EPAは現在、特定された不合理なリスクに対処する方法を策定中である。	化審法:第一種特定化学物質(ヘキサブロモシクロドデカン) 他法令:環境基本法(水質要調査項目)
n-メチルピロリドン n-Methylpyrrolidone (NMP)	令和4年12月最終リスク評価改訂版公表。 不合理なリスクに対処するために EPA が取りうる措置はいくつかあり、該当する場合、この化学物質の製造、加工、市場での流通、商業的使用、 又は廃棄を禁止又は制限する規制が含まれる。EPA は現在、NMP が健康に対する不合理なリスクを示さなくなるように規制するための措置を講じ るための規則案を作成中である。	化審法:優先評価化学物質 他法令:化管法、環境基本法、大気汚染防止法、 海洋汚染防止法、労働安全衛生法、食品衛生法、 消防法においても管理。
リン酸トリス(2-クロロエチル) Tris(2-chloroethyl) Phosphate (TCEP)	令和2年8月、危険有害性、暴露、使用条件及びリスク評価において EPA が考慮すると予想される潜在的に暴露又は感受性のある部分集団の概要を示す最終的な範囲文書を公表した。EPA は令和2年4月に適用範囲案を公表し、パブリックコメントを募集した。令和5年6月、EPA の完全な審査とリスク判定なしにこの化学物質の重要な新規使用を開始できないようにする、重要新規使用規則(SNUR)を提案した。令和5年12月、EPA は本化学物質のリスク評価案を公開し、パブリックコメントと書簡によるレビューを求めた。	他法令:化管法、環境基本法、大気汚染防止法(有
パーフルオロアルキル 及びポリフルオロアル キル化合物 Per- and polyfluoroalkyl	製造業及び消費者製品に含まれる PFAS 物質に対処するため、以下に示すような様々な規制措置を講じている。 ・平成 27 年までに排出物や製品からこれらの化学物質を排除することを目標に、グローバル・スチュワードシップ・プログラムを策定し、産業界はこれを実施した。 ・令和4年3月、製造業者(輸入業者を含む)、加工業者、流通業者、使用者及びフッ素化高密度ポリエチレン(HDPE)容器や類似のプラスチッ	性。 化審法:第一種特定化学物質(PFOS、PFAS、 PFHxS) 他法令: ・PFOS
Substances (PFAS)	ク(フッ素化ポリオレフィン)を廃棄する者に対し、これらの品目から PFAS が生成・移行する可能性に関する情報を提供した。EPA は、令和 3年3月の試験により、特定の PFAS がこれらの品目から生成・移行していることを認識、判断した。 ・令和4年1月、EPA は、重要な新規用途に関する EPA の審査なしにインアクティブ PFAS の製造や加工を再開することを防止することで、PFAS の規制を強化する重要な新規用途規則 (SNUR) を確定した。インアクティブ PFAS とは、長年製造 (輸入を含む) 又は加工されていない PFAS 化学物質である。この SNUR は、有害物質規制法 (TSCA) インベントリに「インアクティブ (Inactive)」と記載され、既に SNUR の対象となっていない PFAS に適用される。このインアクティブ指定は、平成 18年6月21日以降、その化学物質が米国内で製造 (輸入を含む) 又は加工されていないことを意味する。 ・令和5年12月、EPA は Inhance Technologies LLC に対し、フッ素化高密度ポリエチレンプラスチック容器の製造過程で発生する化学物質である PFAS を製造しないよう命じる命令を出した。TSCA の権限に基づき実施されたこの措置は、様々な家庭用品、殺虫剤、燃料、自動車、その他の工業製品に使用される容器に含まれる危険な PFAS 化学物質への暴露から一般市民を保護するのに役立つ。	濁防止法、水道法 • PFOA 化管法、環境基本法、水質汚濁防止法、水道法、 労働安全衛生法 • PFHxS 環境基本法、水道法

②欧州 REACH におけるリスク評価

表 2.3.2-4、2.3.2-5 に欧州 REACH 規則の制限物質、制限が検討されている物質を示す。令和 5 年度に制限が検討された物質のうち、リン酸トリキシリルは制限提案の準備段階、パーフルオロアルキル物質 (PFAS)、中鎖塩素化パラフィン (MCCP) 及び炭素鎖長が C14~C17 のクロロアルカンを含む物質、クレオソート及びクレオソート関連物質は、意見作成段階 (Opinion development)、泡消火剤の PFAS、水素化テルフェニル、N,N-ジメチルアセトアミド (DMAC)、1-エチルピロリジン-2-オン (NEP)は意見採択段階 (Opinion adapted)、マイクロプラスチックは欧州委員会で採択された段階である。

クレオソートとその関連物質は、発がん性、難分解性、生物蓄積性、毒性の観点で、PFAS は難分解性である可能性が高く、移動性、毒性、生物濃縮性が知られているものもあるという観点で、水素化テルフェニルは非常に難分解性かつ非常に生物濃縮性が高く、MCCP 及びクロロアルカンは難分解性、生物蓄積性、毒性及び非常に難分解かつ非常に生物濃縮性が高いという観点で制限対象物質とすることが検討されている。マイクロプラスチックは難分解性で、体内に容易に取り込まれるという観点で制限が検討されている。DMAC、NEP、リン酸トリキシリルは、生殖毒性が高いことから制限対象物質とすることが検討されている。このように、制限が検討されている化学物質は、マイクロプラスチックを除き、PBT(難分解性、生物濃縮性、毒性)、vPvB(非常に難分解性、非常に生物濃縮性)、CMR(発がん性、変異原性、生殖毒性)のいずれかに該当する化学物質である。

国内では、水素化テルフェニルはヒト又は高次捕食動物に対する長期毒性が明らかでないため監視化学物質となっている。欧州 REACHでも、vPvB 特性によって制限を行うことを検討しており、毒性は考慮されていない。このため、参考となる情報は少ない。クレオソート及び MCCP は優先評価化学物質であるが、UVCB でありリスク評価が困難な化学物質である。欧州 REACH のリスク評価における評価対象物質の考え方を参考にできると考えられる。ただし、MCCP は PBT/vPvB 特性に基づく制限であり、事実上、ハザード評価である。クレオソートの有害性は、含まれている多環芳香族炭化水素 (PAHs) の発がん性に起因しているため、リスク評価においても、用途ごとの暴露マージン(MoE)算出が行われている。また、PEC/PNEC 比による生態リスク評価も行われている。UVCBであっても、組成と有害性を明らかにしてリスク評価を行っており、参考になると考えられる。

表 2.3.2-4 欧州 REACH における制限対象物質・物質群

制限プロセス	対象物質・物質群
Commission decided	・クリソタイル【Entry 6 】
(欧州委員会の決定)	・水銀【Entry 18a】
	・カドミウム及びその化合物【Entry 23】
	・ 4 - ノニルフェノール(分岐及び直鎖)及び 4 - ノニルフェノール(分岐及び直鎖)エトキシレート【Entry 46】
	• 6 価クロム化合物【Entry 47】
	・多環芳香族炭化水素(PAH)(粒状物及び充填材としてのマルチは混合物とする) 【Entry 50】
	・フタル酸ジイソブチル (DIBP)、フタル酸ジブチル (DBP)、フタル酸ブチルベンジル (BBP)、フタル酸ビス (2
	-エチルヘキシル)(DEHP) 【Entry 51】
	・フマル酸ジメチル【Entry 61】
	・フェニル水銀化合物【Entry 62】
	・鉛及びその化合物【Entry 63】
	・1,4-ジクロロベンゼン【Entry 64】
	・無機アンモニウム塩【Entry 65】
	・4,4'-イソプロピリデンジフェノール【Entry 66】
	・ビス(ペンタブロモフェニル)エーテル【Entry 67】
	・パーフルオロオクタン酸(PFOA)及びその塩並びに PFOA 関連物質【Entry 68】
	・ペルフルオロノナン酸 (PFNA)、ノナデカフルオロデカン酸 (PFDA)、ヘニコサフルオロウンデカン酸(PFUnDA);
	トリコサフルオロデカン酸(PFDoDA)、ペンタコサフルオロトリデカン酸 (PFTrDA)、ヘプタコサフルオロテトラ
	デカン酸(PFTDA)、これらの塩及び前駆体を含む 【Entry 68】
	・メタノール【Entry 69】
	・オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5) (通常の使用状態で洗い流
	されるパーソナルケア製品) 【Entry 70】
	・1-メチル-2-ピロリドン【Entry 71】
	・(3,3,4,4,5,5,6,7,7,8,8-トリデカフルオロオクチル)シラントリオール及びそのモノ-、ジ-又はトリ-O-(ア
	ルキル)誘導体【Entry 73】
	・ジイソシアネート【Entry 74】
	・タトゥーインクやパーマネントメイクに含まれる物質【Entry 75】
	・N,N-ジメチルホルムアミド【Entry 76】
	・ホルムアルデヒド及びホルムアルデヒド放出剤【Entry 77】
	・炭酸コバルト、酢酸コバルト、塩化コバルト、硝酸コバルト、硫酸コバルト

表 2.3.2-5 欧州 REACH における制限が検討されている物質・物質群

制限プロセス	対象物質・物質群
Intention (意図の届出)	1,4-ジオキサン
Opinion development	・パーフルオロアルキル物質(PFAS) (PFAS の製造、上市及び使用の制限)
(意見作成)	・中鎖塩素化パラフィン(MCCP)及び炭素鎖長が C14~C17 のクロロアルカンを含む物質
	・クレオソート及びクレオソート関連物質(クレオソート及び関連物質で処理された木材の再利用、二次利用)
	・環境に対する内分泌かく乱作用を有するビスフェノール類及びその塩
Opinion adopted	・パーフルオロヘキサン-1-スルホン酸、その塩及び関連物質
(意見採択)	・オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキ
	サシロキサン(D6) (パーソナルケア製品、その他消費者・業務用製品に残留)
	・マイクロプラスチック ※令和 5 年 9 月 25 日、制限措置決定
	・皮膚感作性、刺激性、腐食性物質
	・シアナミドカルシウム
	・ベビー用紙おむつに含まれる物質
	・ウンデカフルオロヘキサン酸(PFHxA)及びその塩並びに関連物質
	・1,6,7,8,9,14,15,16,17,17,18,18-ドデカクロロペンタシクロ[12.2.1.16,9.02,13.05,10]オクタデカ-7,15-ジエン
	("デクロランプラス" TM)
	・2,4-ジニトロトルエン
	・鉛及びその化合物
	・多環芳香族炭化水素(PAH)(射撃用クレーターゲット中の PAH)
	・N,N-ジメチルアセトアミド(DMAC)、1-エチルピロリジン-2-オン(NEP)
	・パーフルオロアルキル物質(PFAS)(消火用発泡スチロールに含まれる PFAS)
	・水素化テルフェニル

(2) New Approach Methodologies の活用について

欧米においては、動物愛護の観点から動物実験代替の動きが加速しており、様々な試験管内試験(in vitro 試験)やこれまでに取得されたデータに基づく計算による推計手法(in silico 手法)の開発、化学物質規制への適用検討が進められている。これらの技術は、New Approach Methodologies (NAMs) と呼ばれているが、必ずしも新しく開発された方法というわけではなく、規制上の意思決定への適用や、従来の試験要件の置き換えという点で新しい方法ということである 47。また、「化審法に基づく優先評価化学物質のリスク評価の基本的な考え方【改訂第3版】」48にも記載されているように、第二種特定化学物質の指定に向けたリスク評価をすべき優先順位の高い物質から、可能な限り早くリスク評価を進める必要があるため、定量的構造活性相関(QSAR)やカテゴリーアプローチなどの有害性を推計する手法を、国内外の適用実績等を踏まえて積極的に活用することとされている。そこで、QSAR等を含む NAMs の欧米等における取組状況について情報収集、整理した。

①米国における検討の動向

表 2.3.2-6 に欧米等における NAMs 検討に関する動向を示す。米国で は、USEPAが、ハイスループットスクリーニングで取得された数千化学 物質に対する数十~数百の in vitro 試験データ (生理活性を示す濃度デ ータ)を活用した in silico 手法のツールを公開している 49。49,000 以上 の化学物質と 16,000 種類の消費者製品における用途や機能情報のデー タベース「CPDat」、暴露評価に関連する化学物質データを公開文書から 収集しデータベース化した「ChemExpo Knowledgebase」、化学構造、物理 化学的性状、環境動態情報、適切にリンクされた毒性データなどをデー タベース化した「Chemoinformatics analysis モジュール」、査読付き論文 等 か ら 収 集 さ れ た 100 万 件 を 超 え る 生 態 毒 性 値 の デ ー タ ベ ー ス 「ECOTOX Knowledgebase」、ハイスループットスクリーニングアッセイ (in vitro 試験)のデータを公開する「ToxCast」、化学物質の毒性発現メ カニズムを示した「有害性発現経路(AOP: Adverse Outcome Pathway)の データベース」、再現性のあるリード・アクロス毒性予測を行うためのア ルゴリズムによる自動化アプローチを用いたツール「GenRA」、研究者や 規制当局が種を越えて毒性情報を外挿(生物種におけるタンパク質標的 の類似性を活用)できるようにする、高速のオンライン・スクリーニン グ・ツール「SeqAPASS」などのデータベース、Web ツールがある。 また、

⁴⁷ Stucki, A. O., et al. (2022) Use of new approach methodologies (NAMs) to meet regulatory requirements for the assessment of industrial chemicals and pesticides for effects on human health. Frontiers in Toxicology, 4, 964553. https://www.frontiersin.org/articles/10.3389/ftox.2022.964553/full

⁴⁸ 厚生労働省、経済産業省、環境省 (2022) 化審法に基づく優先評価化学物質のリスク評価の基本的な考え方【改訂第 3 版】、 https://www.meti.go.in/nolicy/chemical_management/kasinhou/files/information/ra

https://www.meti.go.jp/policy/chemical_management/kasinhou/files/information/ra/riskassess_kangaekata.pdf

⁴⁹ US EPA (2024) NAMs Tools Training Workshop 2024. https://www.epa.gov/chemical-research/nams-tools-training-workshop-2024

日常生活で遭遇する化学物質から人々が受ける暴露を推定できる確率論的モデル「SHEDS-HT」、 $in\ vitro$ 試験データと汎用モデルを組み合わせ $in\ vivo$ データのない化学物質の体内動態(吸収、分配、代謝、排泄)を推測する「httk モデル」などのシミュレーションモデルも含まれる。これらのデータベース等の情報を統合するハブとして「 $CompTox\ Chemical\ Dashboard\ Resource\ Hub」がある。US\ EPA は、膨大な既存情報を活用して情報の少ない化学物質の予測を行い、予測結果の不確実性を定量化した上で、潜在的なリスクによる化学物質の優先順位付けに使用しようとしている <math>^{50}$ 。

②欧州における検討の動向

欧州においても、欧州化学物質庁(ECHA)が NAM に関するワークショップを開催し、動物実験で得られたデータへの規制当局の依存を減らすために NAMs を利用できる可能性のある分野について、さらに規制当局の受け入れを加速する方法について議論された 51 。 ECHA は、代替物質の促進において積極的な役割を果たし続け、代替物質開発のために利用可能なデータを増やし、QSAR ツールボックスをさらに発展させ、ECHA の利害関係者や OECD におけるガイダンスやガイドラインを作成するとしている。また、米国の APCRA (Accelerating the Pace of Chemical Risk Assessment: 化学物質リスク評価加速化)、EUの PARC (Partnership for the Assessment of Risks from Chemicals: 化学物質リスク評価パートナーシップ)、EPAA (European Partnership for Alternative Approaches to Animal Testing: 動物実験代替法のための欧州パートナーシップ)と国際レベルでの協力関係も継続していくとしている。ワークショップでの議論の成果は以下のように総括されている。

- ▶ 動物実験を伴わない化学物質安全性評価への全ての利害関係者の 強いコミットメントが必要
 - どのような準備ができ、どのようなスピードで進められるかに ついての期待の違い
 - 前進するためには目標を持つことが重要
- ➤ 全ての毒性学的エンドポイントではないが、いくつかの毒性学的エンドポイントではニューアプローチ手法の利用が進んでいる。 例えば、対象となるケーススタディを用いるなどして、NAMs の信頼性を高める必要がある。
- ▶ NAM が規制当局に受け入れられやすくなるよう、的を絞った投資が必要 (バリデーションを含む)。

⁵⁰ Ring, C., K. Phillips, J. Wambaugh, AND K. Isaacs. US EPA's ExpoCast program: New approach methodologies for exposure (ACTRA). Australasian College of Toxicology & Risk Assessment, Melbourne, N/A, AUSTRALIA, August 24 - 25, 2022

https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=CCTE&dirEntryId=355

ECHA (2023) New approach methodologies workshop: Towards an animal-free regulatory system for industrial chemicals. https://echa.europa.eu/-/new-approach-methodologies-workshop-towards-an-animal-free-regulatory-system-for-industrial-chemicals

- ▶ 規制上の背景が NAMs を適用する準備態勢を定義する
 - 世界的に受け入れられるためには、データの相互受け入れが不可欠である。
 - 全てに適合するレシピはない。
 - 法的・科学的確実性が重要。
- ▶ 分野や地域を超えた全てのステークホルダーからの対話へのイン プットが必要。

表 2.3.2-6 欧米等における NAMs の検討に関する動向

	· ·		
	米国(US EPA)	欧州 (ECHA)	その他
令和 5年			NURA(New Approach Methodology (NAM) Use for Regulatory Application:規制適用のためのニューア
2-3月			プローチメソッドの活用) の発がん性評価ウェビ ナー開催
4月	GenRA (リードアクロスのツール) トレーニン グウェビナー開催		
5月		OECD QSAR Toolbox の新バージョンが利用可能 になる	
6月		NAM に関するワークショップ開催	
7月		REACH 情報要求事項の改訂に関する議論の状況	
10 月		新しい QSAR 評価フレームワーク	
11月	httk モデル(in vitro データから in vivo 体内暴露 量の推計)のトレーニングウェビナー開催		OECD QSAR 評価フレームワークのウェビナー開催
12 月	Chemical Exposure Knowledgebase (ChemExpo)トレーニングウェビナー開催		
令和	新規化学物質の眼刺激性を評価する新たな枠組		
6年	みを発表		
1月			

③発がん性評価への活用に関する検討の動向

PCRM (Physicians Committee for Responsible Medicine: 責任ある医療のための医師委員会)が、発がん性評価への NAMs 活用に関する Webinar を開催している。現在の 2 年間を要するげっ歯類を用いた動物試験から、より予測性の高い、ヒトに関連した発がん性評価へと移行する必要があるという専門家のコンセンサスが高まっており、この目標を達成するために活動している規制当局、産業界、学界の国際的な専門家により講演が行われた。 US EPA の講演では、発がん性試験の NAMs による代替について以下のようにまとめられている。

- ▶ 2年間の生物試験から脱却するためには、in vivo での短期暴露試験と in vitro での影響評価の両方が必要。
- 遺伝子発現の発がん性試験への統合は、予測精度や使用背景がわかっているバイオマーカーを使用することで促進される。
- ▶ ラットを使ったスクリーニングのためのバイオマーカーにより不必要な試験を削減。
 - 作用機序の同定
 - ・がんを引き起こすと思われる化学物質の投与量の特定
- ハイスループット転写プロファイリングで、Tier1 スクリーニングのためのヒトバイオマーカーの数が増えている。
 - ・ ER、AhR、TGx-DDI、CCPバイオマーカー
- ▶ スクリーニング戦略では、以下の点を考慮する必要
 - 複数細胞株(器官型組織モデル)
 - ・ 反応モデリングを可能にする濃度範囲
 - ・ 分子、細胞イベント(細胞運命)を捕らえるための暴露時間範囲

発がん性予測手法については、令和3年度に開催された「化審法のリスク評価等検討会」においても議論された 52が、現状、予測精度が低いため、発がん性の定量評価に使用できないとされている。上記の内容も踏まえると、in silico 手法のみでの活用ではなく、短期間の in vivo 試験、in vitro 試験を組み合わせた手法を検討していく必要があると考えられる。また、令和3年度には、発がん性試験に代わる試験系についても議論されたが、確立された手法がなく、定量性の担保されている in vivo 試験から、発がん性の定量的な強弱を評価する研究が必要とされている。

④QSARの信頼性確保のための取組

OECD が、ECHA とイタリア国立衛生研究所(ISS)を中心とする専門家グループにより作成された QSAR 評価の枠組みを公表した 53 。この枠

⁵² 経済産業省 令和3年度化学物質安全対策 (化審法におけるリスク評価が高難度な物質等に関する調査)報告書、

https://www.meti.go.jp/meti_lib/report/2021FY/000054.pdf

OECD (2023) (Q)SAR Assessment Framework: Guidance for the regulatory assessment of (Quantitative) Structure Activity Relationship models, predictions, and results based on multiple predictions

https://www.oecd.org/chemicalsafety/risk-assessment/qsar-assessment-framework.pdf

組みは、規制当局が QSAR の結果を評価する際の指針となり、化学物質の危険有害性評価の代替手法を受け入れる際の信頼性を高めるものであるとしている。新たな枠組みでは OECD QSAR Model Principles に基づき、QSAR 予測及び複数の予測に基づく結果の評価の 4 つの原則が新たに定義された。

- 1) 正しい入力
- 2) モデルの適用領域内における物質の適合性
- 3) 予測の信頼性
- 4) 特定された目的に対する結果の適合性

また、評価を効率化するため、各原則は評価で考慮すべき要素(評価 要素:AE)に細分化されている。各 AE は3つのチェックリスト (モデ ルチェックリスト、予測チェックリスト、結果チェックリスト)を用い て、満たす、満たさない、文書化されていない、該当しないのいずれか で評価される。予測チェックリスト及び結果チェックリストは、それぞ れ個別のQSAR予測及び複数の予測に基づく結果を評価するために使用 される。チェックリストは OECD の QSAR 予測原則に基づく AE で構成 され、評価における重要性に応じて重み付けが異なる。重みのデフォル ト値は、予測と結果のチェックリストに記載されているが、評価者は自 国の規制の枠組みやパラダイムに合わせて重みを変更することができる。 さらに、評価者は、このガイダンスとチェックリストの例に従って、各 評価要素に半定量的不確実性値(低、中、高)を割り当てることができ る。最後に、各AEに関連する不確実性と評価におけるその重みを考慮 することにより、予測の総合的な不確実性が決定される。使用目的と個々 の予測の不確実性のレベルに基づいて、評価者は評価の結果(すなわち、 予測が意図された使用目的に対して許容できるかどうか)を結論付ける ことができる。

OECD が開催した Webinar 54では、QSAR を受け入れるかどうかは各国の規制当局に委ねられており、それぞれの目的に応じた評価ができるよう、規制当局がガイダンスを作成する作業が必要という趣旨の説明があった。また、UVCBへの適用や AI の活用について、以下のような質疑がなされた。

<UVCB 等への適用>

- <UVCB 寺への週用。 ・IIVCB たどの多成。
- ・UVCB などの多成分物質の評価への適用については、複数の QSAR モデルで予測された複数の成分の評価となるが、現状、これに対応できる単一のテンプレートはないため、どのように対処すべきか質問があった。
- ・モデルごとに QPR (QSAR Prediction Report) を作ると膨大な数の文書 となる可能性もあるため、予測結果を構成要素でグループ化すること で作業が楽になるはず、という回答があった。

OECD (2023) WEBINAR ON THE NEW OECD (Q)SAR ASSESSMENT FRAMEWORK: GUIDANCE FOR ASSESSING (Q)SAR MODELS AND PREDICTIONS. https://www.oecd.org/chemicalsafety/oecd-qsar-toolbox.htm

・ECHA の担当者は、遠くない将来、このようなケースもカバーできる テンプレートも提供できるだろう、とも話していた。

<AIモデルの扱い>

- ブラックボックスのモデルを規制の観点で許容してよいかという質問があった。
- ・予測が信頼できるもので、文書化されたものを規制当局がチェックで きればよいとのことであった。
- ・例として、ニューラルネットワークを用いた QSAR である VEGA を挙げて、非常に複雑なアルゴリズムを記述することは困難であるが、 QPRF(QSAR Prediction Reporting Format)で予測が何を示しているのかを、明確に示すことは可能とのことであった。

(3) その他の欧米における新たな取組

欧州では、CLP規則が改訂され、内分泌かく乱性、移動性などの新たな有害性区分が追加された。欧州は、これを国際的な有害性区分のシステムである GHS に反映させる動きをみせている。化審法におけるこれらの有害性の取り扱いについても検討する必要があると考えられる。

有機フッ素化合物 PFAS の規制については、欧州では制限物質への指定に向けて進められているが、パブリックコンサルテーションで非常に多くのコメントが挙げられた他、執行フォーラムが規制執行の可能性を評価し、コンプライアンスチェックで必要となる PFAS の分析法や試料調製法の開発・標準化が必要と指摘している 55。現実的な規制を行うに当たって、どのような範囲、条件での制限となるか注視する必要がある。米国では、リスク評価に向けて有害性情報の取得等を進めているが、並行して、事業者に排出量を報告させるとともに、新たな用途で PFAS を使用する際に届出、評価 (SNUR) が必要となるようにし、事業者の自主的な取組を促す措置を実施している。

INC3(プラスチック汚染に関する法的拘束力のある国際文書(条約)への策定に向けた第3回政府間交渉委員会)では、各国の提案全てが盛り込まれた条文案が「ゼロドラフト」に追加することに主眼が置かれ、内容の議論は進んでいない。ゼロドラフトでは、「懸念される化学物質やポリマー」、「問題のある製品や回避可能な製品」について、ストックホルム(POPs)条約やバーゼル(PIC)条約の他、既存の多国間環境協定の対象物質が該当すると書かれている。一方で、UNEPの報告書 56では、ハザードの観点から懸念される物質群として 10 種類の化学物質グループが挙げられており、見通しは立っていない。日本政府のステートメン

https://echa.europa.eu/documents/10162/c77815fb-d3b8-38f3-ca2d-de7fdd155e60

56 UNEP (2023) Global governance of plastics and associated chemicals.

https://www.basel.int/Implementation/Plasticwaste/Cooperationwithothers/tabid/83

35/Default.aspx

⁵⁵ ECHA (2023) Forum for Exchange of Information on Enforcement, Advice on enforceability of the Annex XV restriction proposal regarding: "Per-and polyfluoroalkyl substances (PFAS)".

ト ⁵⁷にあるとおり、科学的根拠に基づく議論の必要性、既存の枠組みとの重複回避、各国の評価システムとの慎重な調整が必要となると考えられる。

第5回国際化学物質管理会議(ICCM 5)において GFC(化学物質に関するグローバル・フレームワーク)が採択され、製品や廃棄物を含む化学物質のライフサイクルを対象に、安全で健康的かつ持続可能な未来のために化学物質と廃棄物による害のない地球を目指すこととなった。米国 TSCA ではライフサイクル全体を対象にリスク評価が行われており、欧州では、ESPR(Ecodesign for Sustainable Products Regulation(持続可能な製品のためのエコデザイン規則)など新たな規則で補完するなどで対応されるものと考えられる。現状、化審法リスク評価では、廃棄物まで含めたライフサイクル全体を対象とできていないため、国内でどの法規制で対応していくのか等の整理が必要である。このような議論を行うに当たって、欧米における新たな取組に関する動向は参考となると考えられる。

(4) まとめ

米国 TSCA、欧州 REACH 規則、CLP 規則に関連する情報を中心に収集し、化審法のリスク評価において、リスク評価が困難な UVCB の評価で参考となりそうな情報、化審法リスク評価の加速化のために今後不可欠と考えられる NAMs の活用及び検討動向、化学物質管理に関する新たな取組について整理した。

米国 TSCA のリスク評価は、化審法リスク評価と異なり、ライフサイクル全体を対象としている。また、個別化学物質のリスク評価方法、リスク管理方法だけでなく、NAMs の活用や類似物質を含めた累積リスク評価など新たな考え方が参考になると考えられる。

欧州 REACH の制限物質指定プロセスでは、PBT、vPvB、CMR といったハザードに基づく評価が行われるため、必ずしも定量的なリスク評価が行われているわけではない。しかし、毒性データとシナリオごとの推定暴露量に基づくリスク評価が行われる物質や、UVCB の評価方法については参考になると考えられる。

NAMs のリスク評価への活用は、欧米等では検討が進められており、不確実性を定量化する方法や、QSAR の信頼性を確保するための枠組み作りが検討されている。国内では QSAR 等のデータは依然として参考扱いとしているが、欧米等における取組を参考として、化審法リスク評価においてどのように活用できるか、検討していく必要がある。

国際的な化学物質管理の動き(GHSへの有害性区分追加、GFC、プラスチック汚染に関する法的拘束力のある国際文書(条約))への対応を検討するに当たり、化学物質管理体系が国内とは異なることを踏まえた上で、欧米における取組動向を参考とすることができると考えられる。

Japan (2023) Japan Statement 13 November 2023 under agenda item 4. https://resolutions.unep.org/resolutions/uploads/japan_1.pdf

表 2.3.2-7 欧米等におけるその他の化学物質管理に関する動向

	米国(US EPA)	欧州 (ECHA)	その他
令和	令和3年の有害物質排出目録	物質及び混合物の新しい危険有害	
5年	データでは化学物質排出量が	性クラス	
5月	コロナ禍前のレベルを下回る		
	Chemical Data Reporting		
	National Review」で国内化学物		
	質の生産と輸入の動向をより		
	わかりやすく公開		
	バイデン-ハリス政権 公衆衛 生を保護し、効率性と一貫性		
	全促進するために、新しい化		
	学物質審査プロセスの改革を		
	提案		
	PFAS 9物質の排出及び廃棄		
	物管理に関する報告を義務付		
	ける最終規則を発表		
	プラスチック廃棄物を原料と		
	する燃料から地域社会を守る		
	ための新たな保護を提案 TSCA における透明性の向上		
	と報告の近代化を目的とした		
	規則を最終決定		
7月		CLP 規則改訂を受けた GHS 改訂	_
		の動向	
		CLP 規則改訂を受けた REACH 規	
		則の変更	
		「1物質1評価」のための規則の	
8月	新たな企業秘密情報手続規則	提案 保育用品における CMR の存在に	
0月	新にな近美松名情報手続規則 に基づく要件の一部を一時的	探育用品における CMR の存住に 関する調査報告書(案)について	
	に盛りて安日の 間を 時間		
	化学製造に使用される PFAS	電池の安全性を高める ECHA の新	
	に関する国家試験戦略の下、	たな課題	
	次の試験命令を発出		
9月	永遠の化学物質から地域社会	 -	_
	をよりよく守るため PFAS デ		
	ータの報告を義務付ける規則 を最終決定		
10月	有害物質排出目録(Toxics	_	_
10 / 1	Release Inventory) への PFAS		
	報告強化を義務付ける規則を		
	最終決定		
11月	難分解性・生物蓄積性・有毒化	ECHA が育児用品中の有害化学物	INC3(プラスチック汚
	学物質の暴露から人々を保護	質を調査	染に関する法的拘束力
	するためのより強力な規則を		のある国際文書(条約)
	提案		の策定に向けた第3回
12 月	<u> </u>	欧州委員会、プロセスの迅速化、	政府間交渉委員会) GHS45
14 /7		簡素化、透明化に向けた「1物質	GILLD
		1評価」の化学物質評価改革を提	
		案	
令和	7種の PFAS の追加について	5つの有害化学物質を SVHC 候補	
6年	有害物質排出インベントリ報	リストに追加	
1月	告を要求	・持続可能な化学物質戦略(CSS)	
		の進捗評価のための指標、評価の	
		ための枠組みについて ・PFAS 制限案に対するパブリッ	
		クコメントの整理結果について	
		・リスク評価委員会(RAC)、社会	
		経済性評価委員会(SEAC)、加盟	
		国会議(MSC)の状況	

2.3.3 NPE 等の欧米における規制動向

2.3.3.1 NPE

NPE は、欧州 REACH 規則の認可対象物質となっており、事業者は適用除外となっていない用途で使用したい場合、認可を取得しなければならない。令和 5 年度は、新たに 7 件の認可申請が、「規則(EC) No 1907/2006の第 60 条(4)に従い、社会経済的便益が物質の使用による人の健康と環境へのリスクを上回り、適切な代替物質又は代替技術がない」との理由から承認され、NPE の 14 用途が認可された。令和 4 年度に認可されたものも含めて、20 用途となる。表 2.3.3.1-1 及び 2.3.3.1-2 に認可された用途、年度、用途の詳細情報を示す。合わせガラス用中間膜の製造に用いる高分子添加剤 1 件、航空宇宙分野の接着剤・硬化剤・樹脂 3 件、分析試薬の製造や使用に関するものが 16 件と、医薬品、ライフサイエンス分野の研究試薬に関する用途が多い。

表 2.3.3.1-1 欧州 REACH 規則で認可された NPE の用途

	1 2.	3.3.1-1
用途	年度	認可された用途の詳細
高分子添加剤	R4	合わせガラス用中間膜の製造における 4-NPnEO の高分子添加剤としての工業利用
接着剤	R4	航空宇宙用二液型ポリスルフィド接着剤における4-NPnEOを含む硬化剤成分の調合
硬 化 剤	R4	航空宇宙分野及び関連サプライチェーンにおいて、規則 (EC) No 1907/2006 の第 56 条 (6)項 (a) の下で認可が免除される航空宇宙用途の、ポリスルフィド接着剤ベースの成分と 4 -NPnEO 含有硬化剤を混合して得られる、 4 -NPnEO を 0.1 % w/w 未満に含む混合物
樹脂	R 5	重要な複合ヘリコプター部品用のガラス繊維成形品の製造のための、0.1 重量%未満の 4 -NPnEO を含有する混合物をもたらす 4 -NPnEO 含有エポキシ樹脂の混合
乳化剤	R4	バイオ医薬品、食品、飲料、学術分野で使用されるクロマトグラフィー樹脂の製造に使用される 4 -NPnEO 含有乳化剤の工業的使用について
分析試薬(洗浄剤)	R4	ゲル電気泳動におけるアイソザイムの決定に基づく in vitro 診断検査結果の解釈のために必要な特定タンパク質の位置決めを確実に行うという観点から、緩衝液及び試薬の製造における洗剤特性を有する 4-NPnEO の工業的使用
	R 5	ウイルス(HIV、HCV、デング熱)及び寄生虫感染症の診断に特化した、高特異的かつ高感度な in vitro 免疫測定法の製造に必要な反応及びクロマトグラフィーのサポート飽和度を制御する観点から、非イオン性洗浄剤の特性を持つ 4-NPnEO の工業的使用。
分析試薬(製造等)	R5	タンパク質の製造及びラテックスビーズのコンジュゲーションで、いずれも in vitro 診断(IVD)アッセイ、研究用又は品質管理用製品及びその他の分析用途の成分として又は成分製造用に使用される 4-NPnEO
	R 5	ラボラトリー製品として使用する4-NPnEO溶液の欧州拠点での調合。ラボラトリー製品は、最終ラボラトリー製品(完成品)の調製のための中間溶液として、又は工程内で使用。
	R 5	In vitro 診断用医薬品(IVD)アッセイの製剤化及び充填における 4 -NPnEO
	R 5	In vitro 診断用医薬品(IVD)アッセイにおける 4 -NPnEO
	R 5	サンプル調製、PCR、シークエンシング製品群の in vitro 診断用及 びライフサイエンス用キットの製造に使用する、4-NPnEO を含 む緩衝液の調合及び充填。
	R5	サンプル調製、PCR及びシーケンシング製品群の in vitro 診断用及びライフサイエンス用キットにおける生体物質の精製及び非特異的結合のブロッキングにおける 4-NPnEO の工業的使用。

表 2.3.3.1-2 欧州 REACH 規則で認可された NPE の用途 (つづき)

用途	年度	認可された用途の詳細
分析試	R 5	4-NPnEO を緩衝液の成分とした、以下の目的での使用:(1)抗
薬(製		原製造用(細胞抽出、細胞溶解、生物学的抗原の成形品へのコー
造 等)		ティング、標的抗原を産生する微生物の不活化、溶媒交換を達成
		するため)、(2)科学的研究開発及び in vitro 診断用途において、
		獣医学的及びヒト衛生学的実験試薬として使用することを意図
		した抗原の工程中及び最終品質管理の実施。
分析、	R4	4-NPnEO 動物用 in vitro 診断用医薬品 (SNAP 検査及び ELISA
精製、		Plate 検査)の洗浄液、検体希釈液、コントロール液、コンジュゲー
実験等		ート液、SNAP洗浄液、組織浸漬緩衝液及び検出液の成分として
での使		の使用
用	R 5	臨床化学、免疫学、血液学、フローサイトメトリーの専用検査機
		器やアッセイで使用するために設計された、各国の保健当局により
		る登録、ライセンス、承認、監視を必要とする 4-NPnEO 含有臨床
		検査製品の川下での使用。
	R 5	品質管理及び研究開発用のフローサイトメトリー、ゲノミクス、
		粒子特性評価実験装置及びアッセイに使用するために設計され
		た 4 - NPnEO 含有実験用製品の川下使用。
	R 5	生体物質の精製及び非特異的結合の阻害における 4-NPnEO の専
	D. 5	門的な下流での使用。
	R 5	製品群のサンプル調製、PCR及びシーケンシングの規制上の影響
		のない、バイオマテリアルの精製及びライフサイエンスキットの
		非特異的結合のブロッキングに下流工程での 4 - NPnEO の専門的
	D.5	な使用。
	R 5	4 - NPnEO を緩衝液の成分として、以下の目的での使用:(1)精
		製タンパク質の製造(細胞抽出、クロマトグラフィー精製、溶媒
		交換を達成するため)、(2)工程中及び最終品質管理試験、科学
		的研究開発及び in vitro 診断用途の実験室試薬としての意図的な
		使 用 。

令和 5 年度に認可された、各認可の情報を表 $2.3.3.1-3\sim2.3.3.1-11$ に示す。なお、4-tert-オクチルフェノールエトキシレート(4-tert-OPnEO) と合わせた申請がされているものについては、4-tert-OPnEO の認可用途を灰色網掛けで示している。認可申請はこれまでに 24 件申請されているが、2 件が取り下げ、2 件がリスク評価委員会(RAC)、社会経済性委員会(SEAC)の意見作成中である 58。

⁵⁸ ECHA, Adopted opinions and previous consultations on applications for authorization, https://echa.europa.eu/applications-for-authorisation-previous-consultations (令和6年3月4日確認)

113

表 2.3.3.1-3 欧州 REACH 規則における NPE の認可取得者、用途、決定の理由等(1)

Reference of the decision 決定事項の 参照先	Date of decision 決定日	Substance name 物質名	Holder of the authorisation 認可取得者	Authorisation number 認可番号	Authorised use 認可された用途	Date of expiry of review period 審査期間終 了日	Reasons for the decision 決定の理由
C(2023) 4320	3 July 2023	4-(1,1,3,3- tetramethylbutyl)phenol, ethoxylated ('4-tert- OPnEO') EC No; CAS No 4-Nonylphenol,	Roche Diagnostics GmbH, Sandhoferstrasse 116, 68305 Mannheim, Germany	REACH/23/16/0 REACH/23/16/1	附属書表 1 に定める体外診断用 医薬品の製剤及び充填における 4-tert-OPnEO 附属書表 1 に定める体外診断用 医薬品 (IVD) アッセイの製剤化 及び充填における 4-NPnEO	4 January 2028	規則(EC) No 1907/2006 の第 60 条(4)に従い、 社会経済的便益が 物質の使用による 人の健康と環境へ
		branched and linear, ethoxylated (4-NPnEO) EC No; CAS No	Germany	REACH/23/16/2	附属書表 2 に定める体外診断用 医薬品 (IVD) アッセイにおける 4-tert-OPnEO		のリスクを上回り、適切な代替物質又は代替技術がない。
				REACH/23/26/3 REACH/23/16/4	附属書表 2 に定める体外診断用医薬品 (IVD) アッセイにおける4-NPnEO附属書表 3 に定めるタンパク質		,7, ,°
					の製造及びラテックスビーズのコンジュゲーションで、いずれも体外診断(IVD)アッセイ、研究用又は品質管理用製品及びその他の分析用途の成分として又は成分製造用に使用される4-tert-OPnEO		
				REACH/23/16/5	附属書表3に定めるタンパク質の製造及びラテックスビーズのコンジュゲーションで、いずれも体外診断(IVD)アッセイ、研究用又は品質管理用製品及びその他の分析用途の成分として又は成分製造用に使用される4-NPnEO		

表 2.3.3.1-4 欧州 REACH 規則における NPE の認可取得者、用途、決定の理由等 (2)

Reference of the decision 決定事項の 参照先	Date of decision 決定日	Substance name 物質名	Holder of the authorisation 認可取得者	Authorisation number 認可番号	Authorised use 認可された用途	Date of expiry of review period 審査期間終了日	Reasons for the decision 決定の理由
C(2023) 1771	20 March 2023 4-(1,1,3,3- tetramethylbutyl)phenol, ethoxylated ('4-tert- OPnEO') EC No; CAS No 4-Nonylphenol, branched and linear, ethoxylated (4-NPnEO)	tetramethylbutyl)phenol, ethoxylated ('4-tert-OPnEO') EC No; CAS No 4-Nonylphenol, branched and linear, ethoxylated (4-NPnEO) EC No; CAS No Boulevard Raymond Poincaré, 92430 Marnes-la-Coquette, France Coquette, France	REACH/23/9/0	ウイルス(HIV、HCV、デング熱) 及び寄生虫感染症の診断に特化 した、特異性が高く感度の高い in vitro イムノアッセイの製造に必 要な反応及びクロマトグラフィ ーのサポート飽和を制御する観 点から、非イオン性洗浄剤の特性 を持つ 4 -tert-OpnEO の工業的使 用。	4 January 2033	規則(EC) No 1907/2006 の第 60 条 (4) に 従い、社会経 済的使用によ る人のの 環境への り クを上回り、	
				REACH/23/9/1	ウイルス(HIV、HCV、デング熱) 及び寄生虫感染症の診断に特化 した、高特異的かつ高感度な in vitro 免疫測定法の製造に必要な 反応及びクロマトグラフィーの サポート飽和度を制御する観点 から、非イオン性洗浄剤の特性を 持つ4-NPnEO の工業的使用。	4 January 2033	適切な代替物 質又は代替技 術がない。
				REACH/23/9/2	マイクロプレート又は磁性粒子上に担持された高性能の微生物学的及び免疫学的アッセイ専用のinvitro試薬の製剤化における、非イオン性洗浄剤としての特性を持つ4-tert-OPnEOの工業的使用。	4 January 2033	
				REACH/23/9/3	生物学的物質の抽出、ウイルス不活性化、精製に使用され、さらに製剤化された、又は体外診断用医薬品にコーティングされた 4-tert-OPnEO の洗浄特性を利用した工業的使用。	4 January 2033	
				REACH/23/9/4	動物用体外診断用医薬品のタン パク質安定化に使用される 4 - tert-OPnEO を含む原料の工業的 使用。	4 January 2028	

表 2.3.3.1-5 欧州 REACH 規則における NPE の認可取得者、用途、決定の理由等 (3)

Reference of the decision 決定事項の 参照先	Date of decision 決定日	Substance name 物質名	Holder of the authorisation 認可取得者	Authorisation number 認可番号	Authorised use 認可された用途	Date of expiry of review period 審査期間終 了日	Reasons for the decision 決定の理由
C(2023) 3532	5 June 2023	4-(1,1,3,3- tetramethylbutyl)phenol, ethoxylated ('4-tert- OPnEO') EC No; CAS No 4-Nonylphenol, branched and linear, ethoxylated (4-NPnEO) EC No; CAS No	Beckman Coulter Ireland Inc, Lismeehan, O'Callaghan's Mills, Clare, Ireland 他 Immunotech S.R.O., Radiova 1, 10227 Prague 10, Czech Republic 他 Immunotech S.A.S, 130, Avenue de Lattre de Tassigny 13009 Marseille, France 他 BC Distribution B.V., Bijsterhuizen 3140 6604 LV Wuchen, The Netherlands 他	REACH/23/15/0~ REACH/23/15/42	ラボラトリー製品ととでは、 を は、	4 January 2033 4 January 2033 4 January 2033 4 January 2028 4 January 2028	規則(EC) No 1907/2006 の第 60 条 (4) にの第 60 条 (4) にがしている。 経済のは、がる。 社会質の健康とと代表。 がある。 り、又はい。

表 2.3.3.1-6 欧州 REACH 規則における NPE の認可取得者、用途、決定の理由等 (3) (つづき)

Reference of the decision 決定事項の 参照先	Date of decision 決定日	Substance name 物質名	Holder of the authorisation 認可取得者	Authorisation number 認可番号	Authorised use 認可された用途	Date of expiry of review period 審査期間終 了日	Reasons for the decision 決定の理由
					ラボラトリー製品として使用する 4-NPnEO 溶液の欧州拠点での調合。ラボラトリー製品は、最終ラボラトリー製品(完成品)の調製のための中間溶液として、又は工程内で使用。	4 January 2033	
					臨床化学、免疫学、血液学、フローサイトメトリーの専用検査機器やアッセイで使用するために設計された、各国の保健当局による登録、ライセンス、承認、監視を必要とする4-NPnEO含有臨床検査製品の川下での使用。	4 January 2033	
					品質管理及び研究開発用のフローサイトメトリー、ゲノミクス、粒子特性評価実験装置及びアッセイに使用するために設計された4-NPnEO含有実験用製品の川下使用。	4 January 2028	

表 2.3.3.1-7 欧州 REACH 規則における NPE の認可取得者、用途、決定の理由等 (4)

Reference of the decision 決定事項の 参照先	Date of decision 決定日	Substance name 物質名	Holder of the authorisation 認可取得者	Authorisation number 認可番号	Authorised use 認可された用途	Date of expiry of review period 審査期間終 了日	Reasons for the decision 決定の理由
C(2023) 3517	6 Jun 2023	4-(1,1,3,3- tetramethylbutyl)phenol, ethoxylated ('4-tert- OPnEO') EC No; CAS No 4-Nonylphenol,	QIAGEN GmbH, Qiagenstr. 1, 40724, Hilden, Germany; STAT-Dx Life S.L., Carrer de Baldiri	REACH/23/17/0 REACH/23/17/1	サンプル調製、PCR、シークエンシング製品群の体外診断用及びライフサイエンス用キットの製造及び使用に用いる、4-tert-OPnEO を含む緩衝液の調合及び充填。	4 January 2031	規則(EC) No 1907/2006 の第 60 条(4)に従い、 社会経済的便益が 物質の使用による 人の健康と環境へ
	branched and linear, ethoxylated (4-NPnEO) EC No; CAS No	Reixac 4, 08028, Barcelona, Spain; QIAGEN Distribution B.V.,	REACH/23/17/2	サンプル調製、PCR、シークエンシング製品群の体外診断用及びライフサイエンス用キットの製造に使用する、4-NPnEOを含む緩衝液の調合及び充填。	4 January 2031	のリスクを上回 り、適切な代替物 質又は代替技術が ない。	
			Hulsterweg 82, 5912 PL, Venlo, Netherlands.	REACH/23/17/3	サンプル調製、PCR、シーケンシング製品群の体外診断用及びライフサイエンス用キットの製造及び使用のための生体物質の精製及び非特異的結合のブロックにおける 4 -tert-OPnEO の工業的使用。	4 January 2031	
				REACH/23/17/4	サンプル調製、PCR 及びシーケンシング製品群の in-vitro Diagnostic and Life Sciences キットにおける生体物質の精製及び非特異的結合のブロッキングにおける 4 -NPnEO の工業的使用。	4 January 2031	
				REACH/23/17/5 REACH/23/17/6 REACH/23/17/7	生体物質の精製及び非特異的結合のブロックにおける 4 -tert-OPnEO の専門的な下流での使用。	4 January 2031	
				REACH/23/17/8 REACH/23/17/9	生体物質の精製及び非特異的結合の阻害における4-NPnEOの専門的な下流での使用。	4 January 2031	

118

表 2.3.3.1-8 欧州 REACH 規則における NPE の認可取得者、用途、決定の理由等(4)(つづき)

Reference of the decision 決定事項の 参照先	Date of decision 決定日	Substance name 物質名	Holder of the authorisation 認可取得者	Authorisation number 認可番号	Authorised use 認可された用途	Date of expiry of review period 審査期間終 了日	Reasons for the decision 決定の理由
				REACH/23/17/10 REACH/23/17/11	生体物質の精製及び非特異的結合のブロッキングにおける 4-tert-OPnEO の専門的な下流での使用(製品群の規制上の影響がないライフサイエンスキット用)、サンプル調製、PCR、シークエンシング。	4 January 2026	
				REACH/23/17/12 REACH/23/17/13	製品群のサンプル調製、PCR及びシーケンシングの規制上の影響のない、バイオマテリアルの精製及びライフサイエンスキットの非特異的結合のブロッキングに下流工程での4-NPnEOの専門的な使用。	4 January 2026	

表 2.3.3.1-9 欧州 REACH 規則における NPE の認可取得者、用途、決定の理由等 (5)

Reference of the decision 決定事項の 参照先	Date of decision 決定日	Substance name 物質名	Holder of the authorisation 認可取得者	Authorisation number 認可番号	Authorised use 認可された用途	Date of expiry of review period 審査期間終 了日	Reasons for the decision 決定の理由
C(2023) 7574	November 2023	4-(1,1,3,3- tetramethylbutyl)phenol, ethoxylated ('4-tert- OPnEO') EC No; CAS No 4-Nonylphenol, branched and linear, ethoxylated (4-NPnEO) EC No; CAS No	Phadia GmbH, Munzinger Strasse 7, 79111 Freiburg, Germany Thermo Fisher Scientific Baltics UAB V.A.Graiciuno 8, LT-02241 Vilnius, Lithuania Thermo Fisher Scientific Baltics UAB V.A.Graiciuno 8, LT-02241 Vilnius, Lithuania	REACH/23/32/0 REACH/23/32/1	4-tert-OPnEO を緩衝液の成分として、以下の目的での使用。 (1)精製タンパク質の製造(細胞抽出、クロマトグラフィー粉製を達成するた質で大力を達成するた質で大力をでして、以下の目のな使用。 4-NPnEO を緩衝液の成分として、以下の目質のでは、としての影響での使用には、クロマトグラフィーの制造の関連のでは、以下の目質の関連(制制、クロマトグラフィーの制制、クロマトグラフィーの制制、クロマトグラフィーの制制、クロマトグラフィーの制制、クロマトグラフィーの制制、クロマトグラフィーの制制、クロマトが表別では、 は、アクリンの関係を表別では、 は、アクリンの表別では、 クリンの表別では、アクリンの表別では、 は、アクリンの表別では、アクリンの表別では、 は、アクリンの表別では、 は、アクリンの表別では、 は、アクリンの表別では、 は、アクリンの表別では、アクリンの表別では、 は、アクリンの表別では、アクリ	4 January 2033	規則(EC) No 1907/2006 の第 60 条(4)に従い、 社会経済的便用に境益る 人の健康と実理 り、適切な代替が 質又は代替が ない。
			Phadia GmbH, Munzinger Strasse 7, 79111 Freiburg, Germany Brahms GmbH, Neuendorfstrasse 25, 16761 Hennigsdorf, Germany	REACH/23/32/3 REACH/23/32/4	4-tert-OPnEO を用いた甲状腺刺激ホルモン受容体の体外診断用試薬へのコーティング		

120

表 2.3.3.1-10 欧州 REACH 規則における NPE の認可取得者、用途、決定の理由等 (6)

Reference of the decision 決定事項の 参照先	Date of decision 決定日	Substance name 物質名	Holder of the authorisation 認可取得者	Authorisation number 認可番号	Authorised use 認可された用途	Date of expiry of review period 審査期間終 了日	Reasons for the decision 決定の理由
C(2023) 8143	December 2023	4-(1,1,3,3- tetramethylbutyl)phenol, ethoxylated ('4-tert- OPnEO') EC No; CAS No 4-Nonylphenol, branched and linear, ethoxylated (4-NPnEO) EC No; CAS No	Prionics Lelystad B.V., Platinastraat 33, 8211AR, Lelystad, Flevoland, the Netherlands	REACH/23/34/0 REACH/23/34/1	4-tert-OPnEO を緩衝でのDEO を緩衝での使用とした、抗原とした、抗原製物学がの使用の使用の使抽の的抗療の使抽の的抗療の使力が、不够性力が、不够性力が、不够性力が、不够性力が、不够性力が、不够性力が、不够性力がである。 「1)溶解、一定では、一定では、一定では、一定では、一定では、一定では、一定では、一定では	4 January 2033	規則(EC) No 1907/2006 の第 60 条(4)に従い、 社会経済的便用に環立 があるのは はなり、 があるの り、 では では では では では では では でする では でする でする でする でする でする でする でする でする でする でする

表 2.3.3.1-11 欧州 REACH 規則における NPE の認可取得者、用途、決定の理由等 (7)

Reference of the decision 決定事項の 参照先	Date of decision 决定日	Substance name 物質名	Holder of the authorisation 認可取得者	Authorisation number 認可番号	Authorised use 認可された用途	Date of expiry of review period 審査期間終 了日	Reasons for the decision 決定の理由
C(2024) 8	8 January 2024	4-Nonylphenol, branched and linear, ethoxylated (4-NPnEO) EC No; CAS No	PFysol S.A.S., 130 avenue des Follaz, 73000, Chambéry, France	REACH/23/40/0	重要な複合へリコプター部品用 のガラス繊維成形品の製造のた めの、0.1 重量%未満の 4 - NPnEO を含有する混合物をも たらす4-NPnEO 含有エポキシ 樹脂の混合	31 December 2025	規則(EC) No 1907/2006 の第 60 条 (4) に従い、 社会経済的便益が 物質の使用による 人の健康と環境へ のリスクを上回 り、適切な代替物 質又は代替技術が ない。

2.3.3.2 ビスフェノール A

2.3.3.2.1 欧州における規制

(1) 欧州におけるビスフェノール類の用途

ビスフェノール類は、ポリマーや樹脂の製造に使用され、それらはプラスチック材料の製造に使用される。類似した化学構造と用途を持つ多くの物質がある。最もよく知られているものに、ビスフェノール A(BPA)とビスフェノール S(BPS)がある。ビスフェノール類は何十年もの間、ポリカーボネートプラスチックやエポキシ樹脂に使用されてきた。ポリカーボネートプラスチックで作られた製品には、再利用可能なプラスチック食器や飲料用ボトル、スポーツ用品、CDや DVD などの一般消費財がある。エポキシ樹脂は、水道管や食品・飲料缶の内側のコーティングに使用され、保存期間を延ばし、金属味を出さないようにしている。また、床材、自動車のボディ・コーティング、接着剤にも使用されている。ビスフェノール類は、感熱紙、インク、織物、紙、板紙にも使用されている。

しかし、ビスフェノール類には生殖毒性や内分泌かく乱作用を有するものがあり、皮膚アレルギーを引き起こす可能性もあることから、EUは、人々の健康と環境を守るために、一部のビスフェノール類の使用を制限、又は制限に向けた準備をしている 59。

(2) 高懸念物質への指定

SVHC 候補リストには、3 種類のビスフェノール類 (BPA、BPB、2,2 ービス (4'ーヒドロキシフェニル) ー 4 ーメチルペンタン) が含まれている。BPA と BPB は、環境及び人体に対する内分泌かく乱物質として特定されている。BPA には生殖毒性もある。2,2 ービス (4'ーヒドロキシフェニル) ー 4 ーメチルペンタンは、生殖毒性が特定されている。成形品の製造者と輸入者は、成形品が SVHC を含む場合、ECHA に通知しなければならない。

(3)調和された分類と表示

BPAは、EUでは以下の物質として分類されている。

- 生殖能力に有害な影響を与える(Repr.1B)
- ・重篤な眼障害を引き起こす (Eye Dam. 1)
- 呼吸器刺激性 (STOT SE 3)
- ・皮膚アレルギーを引き起こす可能性がある (Skin Sens. 1)
- 水生生物に非常に有毒(Aquatic Acute 1) 令和5年11月より適用開始
- ・水生生物に非常に毒性があり、長期的な影響がある(Aquatic Chronic1) 令和5年11月より適用開始

ECHA のリスクアセスメント委員会 (RAC) は、BPS とビスフェノー

122

⁵⁹ ECHA, Bisphenol, https://www.echa.europa.eu/hot-topics/bisphenols

ル AF (BPAF) を生殖毒性に分類する提案を支持した(Repr.1B)。BPS のこの分類は令和 5 年 11 月から適用されている。BPAF に関する RAC の意見は欧州委員会で決定される。2,2 - ビス(4'-ヒドロキシフェニル) - 4 - メチルペンタンは、生殖能力を損なう可能性があり、水生生物に非常に有毒である。また、この物質は眼に深刻な炎症を起こす。さらに、多くのビスフェノール類は皮膚感作性物質に分類され、一部は水生生物に有毒である。EU 域内で、調和のとれた分類を持つビスフェノール類を供給する企業は、それらを含む混合物と同様に、それに応じて分類し、表示しなければならない。これは、潜在的な危険性を反映した一貫性のある表示を通じて、人と環境を確実に保護し、安全な取り扱いと使用を支援するためである。

(4) ビスフェノール類のグループ評価

ECHA と加盟国は、ある有害なビスフェノール類が、同様に有害である可能性のある別のビスフェノール類に置き換えられる事態を避けるとめ、148 種類のビスフェノール類をグループとして評価している。スフェノール類が、内分泌系を阻害し生殖に影響を及ぼす可能性があることがら、REACH の下で規制する必要の可能性があるとした 60。これらのビスフェノール類については、SVHC として特定するか、分類と表での調和(CLH)を図ることが、リスク管理の第一歩として提案されのでスフェノールについて、より多くの情報が得られるにつれて変わる可能性がある。内分泌かく乱作用や生殖毒性が疑われていないビスフェノールにある。これらのビスフェノール類は、そのほとんどがある。内分泌かく乱作用や生殖毒性に関する可能性がある。後種類ある。これらのビスフェノール類は、そのほとんどがある。とも種類ある。これらのビスフェノール類は、そのほとんどがある。のでスフェノール類は、カ分泌かく乱作用や生殖毒性に関する可能性を評価する前に、より多くのデータが必要である。

生態影響の観点では、表 2.3.3.2.1-1 の 34 物質のうち 25 物質について、水生毒性が既知又は潜在的に有害性があると考えられている。現状、 9 物質に水生毒性の有害性区分が付与されている。(下線の物質は、水生急性毒性と水性慢性毒性の両方の区分があるもの)

- · 水生急性毒性 区分 1: <u>BPA</u>、1,1-bis(4-hydroxyphenyl)-1-phenylethane、 <u>4,4'-ethylidenediphenyl</u> <u>dicyanate</u> <u>2,2-bis(4'-hydroxyphenyl)-4-methylpentane</u>
- · 水生慢性毒性 区分 1: <u>BPA</u>、<u>4,4'-ethylidenediphenyl dicyanate</u>、9,9-bis(4-hydroxyphenyl)fluorene、<u>2,2-bis(4'-hydroxyphenyl)-4-methylpentane</u>
- · 水生慢性毒性 区分 2: 4-(4-isopropoxyphenylsulfonyl)phenol、4,4'-(1,3-phenylene-bis(1-methylethylidene))bis-phenol 、 4,4',4''-(ethan-1,1,1-triyl)triphenol
- · 水生慢性毒性 区分 3 : 4,4'-methylenebis(2,6-dimethylphenyl cyanate)

⁶⁰ ECHA (2021) Assessment of regulatory needs, Group name: Bisphenols, https://echa.europa.eu/documents/10162/c2a8b29d-0e2d-7df8-dac1-2433e2477b02

表 2.3.3.2.1-1 REACH 規制で制限が必要と評価されたビスフェノール類と規制に向けた活動状況

EC No.及び物質名	人健康影響	生態影響	関連用途と暴露の可	予想される規制	規制に向けた活動状況
上0.10.人0.10.人	八世派が首	上心水百	能性	1 15 C 4 6 . 9 Wellin	/yulpat = [*at7 / = 1 #/a/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
201-025-1 (BPB) 201-240-0 (BPC) 201-245-8 (BPA) 201-250-5 (BPS) 201-618-5	生殖毒性及び/又 は内分泌かく乱 作用の既知又は 潜在的有害性:	知又は潜在的有害性: 全ての物質	201-025-1, 217-121-1, 278-305-5, 425-060-9, 469-080-6, 479-100-5, 500-086-4, 500-263-6,	EU リスク管理規制のニーズ: 制限 マ根拠> ・内分泌かく乱作用(環境)を有す	・BPS、TBMD(204-279-1)、405-520-5(D8; CORAP 2023)、BPAF とその塩(216-036- 7、278-305-5、479-100-5、947-368-7、943- 265-6)について CLH 継続中。リスク評価
204-279-1 (TBMD) 210-658-2 (BPF) 216-036-7 (BPAF) 217-121-1 (DAB) 227-033-5 (TMBPA) 242-895-2	全ての物質	PBT/vPvB に対する既 知又は潜在的有害性: 204-279-1,201-618-5 水生毒性の既知又は潜 在的有害性:	500-607-5, 904-653-0, 926-571-4, 931-252-8, 941-992-3 を除く多く の物質について、作業 者 (専門家及び産業 界)、消費者及び/又は	るビスフェノール類の排出は、環境へのリスクにつながる可能性がある。 ・内分泌かく乱作用(人健康)及び/又は生殖毒性を有するビスフェノール類への暴露は、労働者及	委員会が意見公表。 ・BPS、BPC、TMBA、201-618-5 の内分泌かく乱作用及び/又は生殖毒性を明確にするため、物質評価を継続中。 ・204-279-1、201-685-5 の PBT/vPvB を明確にするため、物質評価を実施中。
248-607-1 277-962-5 278-305-5 (BPAF-salt) 401-720-1 (4,4'-Isobutylet hylidenediphenol) 405-520-5 (D8) 411-570-9 (TG-SA) 425-060-9 (BPAF-salt) 443-330-4 (BPAF-salt) 468-740-0 (BPAF-salt) 469-080-6 (BPAF-salt) 479-100-5 (BPAF-salt) 500-086-4		201-025-1, 201-250-5, 201-240-0, 201-245-8, 201-618-5, 204-279-1, 210-658-2, 216-036-7, 217-121-1, 227-033-5, 248-607-1, 278-305-5, 401-720-1, 411-570-9, 425-060-9, 443-330-4, 468-740-0, 469-080-6, 479-100-5, 500-607-5, 701-362-9, 931-252-8, 943-265-6, 943-503-9,	環境への暴露の可能性がある広範な用途で使用されている。 242-895-2, 248-607-1, 701-362-9 については、歯科用シーラント及び接着剤に使用され、専門家及び消費者が暴露される可能性がある。	び消費者のリスクにつながる可能性がある。 ・内分泌かく乱作用(環境)を有するビスフェノール類の環境への排出制限は、ドイツ所轄庁により検討中である。・ドイツの規制案の範囲と保護レベル、及びBPAFとその塩の用途に影響を及ぼす可能性のあるPFAS規制の範囲によっては、内分泌かく乱作用(人健康)/生殖毒	<規制前の最初のステップ>
500-263-6 500-607-5 701-362-9 904-653-0 908-912-9 926-571-4 931-252-8 941-992-3 943-265-6 (BPAF-salt) 943-503-9 947-368-7 (BPAF-salt)		947-368-7		性に基づくヒトの健康に対する規制、及び/又は感熱紙におけるBPA規制の他のビスフェノール類への拡大など、更なる規制措置が検討される可能性がある。 ・204-279-1、201-618-5 については、PBT/vPvBに基づく規制が考えられる。	 ードが確認され次第、CLH 及び/又は候補リストに掲載) 〈次のステップ〉 ・内分泌かく乱作用(環境)及び内分泌かく乱作用(人健康)又は生殖毒性(Repr. IB)を有する全物質の制限 ・EC 204-279-1 及び 201-618-5 に対するPBT/vPvBのためのSVHC同定は、内分泌かく乱作用(環境)に基づく制限が明確になった時点で検討する。

(5) REACH 規制

BPA は、平成 30 年 3 月以降、EU において消費者使用を意図した物質単体及び混合物での使用が制限されている。感熱紙への使用は令和 2 年 1 月から制限されている。しかし、企業は感熱紙において BPA の代わりに BPS を使用するのが一般的である。BPS はヒトの生殖系や内分泌系にダメージを与える疑いもあるため、懸念事項とされている。フランスとスウェーデンの当局は、衣料品、履物、その他皮膚と接触する可能性のある物品に含まれる 1,000 以上の皮膚感作性化学物質を規制することを提案している。欧州委員会がこの制限を採用することを決定した場合、皮膚感作性物質として特定されたビスフェノール類もこの制限に含まれることになる。

(6) その他の規制

EU では、BPA を食品接触材料に使用することができる。しかし、材料から食品に溶出する量は制限されている(0.05~mg/kg)。BPA は、平成 23年 6 月から EU 全域で乳児用哺乳瓶への使用が禁止され、平成 30年 9 月からは乳幼児及び 3 歳未満の子供用の食品を含むプラスチックボトル及び包装材への使用が禁止されている。令和 5 年 4 月、欧州食品安全機関(EFSA)は、食品中の BPA に関する公衆衛生へのリスクについて新たな再評価を発表した。評価された全ての新たな科学的証拠に基づき、EFSA の専門家は、耐容一日摂取量(TDI)を 4 $\mu g/kg/day$ から 0.2~ng/kg/day に大幅に引き下げた 61。

また、 3 歳までの子供用玩具及び子供の口に入れることを意図した玩具に含まれる BPA の溶出量には制限がある。この移行限度は 0.04~mg/L である。

2.3.3.2.2 米国における規制

(1) 米国におけるビスフェノール A の用途

BPA は、ほとんど全ての産業で使用されるポリカーボネートプラスチックやエポキシ樹脂の製造に広く使用される高生産量(HPV)化学物質である。ヒトは主に BPA を使用して製造された食品包装を通して暴露されているようであるが、これらの製品は米国内で使用されている BPA の5%未満である。食品包装は、EPA ではなく食品医薬品局(FDA)の管轄下にあり、最近、BPA に対処するための措置について説明している ⁶³。環境への BPA の放出量は年間 100 万ポンドを超える。

61 EFSA (2023) Bisphenol A, https://www.efsa.europa.eu/en/topics/topic/bisphenol

⁶² US EPA, Risk Management for Bisphenol A (BPA), https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-management-bisphenol-bpa

⁶³ US FDA, Bisphenol A (BPA): Use in Food Contact Application, https://www.fda.gov/food/food-packaging-other-substances-come-contact-food-information-consumers/bisphenol-bpa-use-food-contact-application

(2) ビスフェノール A の有害性評価

BPA は動物実験において生殖毒性、発育毒性、全身毒性を示し、弱いエストロゲン作用があるため、特に子供の健康や環境への潜在的な影響について疑問視されている。規制当局の意思決定に世界的に使用されている標準化された毒性試験を用いた研究によると、ヒト及び環境中のBPA 濃度は、悪影響が懸念されるレベル以下であることが示されている。しかし、新たな低用量アプローチを用い、異なるエンドポイントを検討した最近のいくつかの研究結果では、実験動物において非常に低濃度での微妙な影響が報告されている。影響が確認された濃度レベルは、感受性の高い水生生物が暴露される可能性のある現在の環境レベルと類似しているため、これらの低用量研究の中には、環境に対する懸念の可能性があるものもある。

一方で、米国の水域における BPA 濃度に関する情報は限られており、入手可能な環境モニタリング結果のほとんどは、水域における BPA 濃度が $1 \mu g/L$ 未満(中央値 $0.14 \mu g/L$ で算出された PNEC を下回る)であった。また、これらの環境測定結果が時間的なスナップショットに過ぎず、PNEC 値や懸念濃度を超える可能性のある地域がどの程度あるのか、そのような濃度を超える頻度や期間はどの程度あるのか、製造、加工、商業流通、使用、廃棄から環境中に BPA が存在する経路はどのようなものなのかを示すものではなく、このような不確実性を解消するためには、追加的な情報が必要であるとしている 64。

これらの低用量研究をレビューしている世界中の規制当局は、研究デザインの一部に様々な欠陥があること、報告された影響の健康への関連性に関する科学的不確実性、標準化された研究で他の研究者が影響を再現できないことなどから、一般的にリスク評価に使用するには不十分であると結論付けている。しかし、低用量暴露研究では疑問や懸念が提起されているため、影響を受けやすい集団、特に乳幼児を保護するための措置を講じている当局もある。例えば、カナダでは、科学的に暴露レベルが健康への影響の可能性があるレベル以下であることを認めながら、下防措置として哺乳瓶へのBPAの使用を禁止する措置をとっている。平成22年1月15日、米国保健社会福祉省(HHS)は、更なる研究が進められている間、保護者や家族がBPAへの暴露を低減する方法に関する暫定的な勧告を提示した。

(3) US EPA のリスク管理措置

EPAは、低用量試験の不確実性を含む、有害性及び暴露情報のスクリーニングレベルのレビューに基づき、以下の行動計画を作成している。

1) 有害物質規制法 (TSCA) 第5条(b)(4) に基づき、BPA を、環境中に存在する濃度と同程度の濃度で 水生生物の成長、生殖及び発達に長期的な悪影響を及ぼす可能性があるとして、環境に対する不合理なリスクを示す可能性がある物質として懸念物質リストに指定する

⁶⁴ US EPA (2010) Bisphenol A Action Plan,

ための規則制定を検討する。

- 2) BPA が環境に悪影響を及ぼす不合理なリスクを示すか示さないかを さらに判断するために、TSCA 第 4 条(a)に基づき、環境影響に関する データを作成するための規則制定を開始することを検討する。これに は、BPA が地表水、地下水、飲料水など、特に環境生物、妊婦、子供 にとって懸念されるレベルで環境中に流入する可能性を判断するた めの、埋立地、製造施設、又は同様の場所の周辺における試験やモニ タリングデータが含まれる可能性がある。EPA は、平成 23 年 7 月 26 日にこの規則案事前通知(ANPRM)を発表した。
- 3) BPA の排出量と暴露量の削減を促すため、環境配慮設計代替アセスメントプログラムの下で、協働による代替アセスメント活動を開始している。平成 26 年に発表されたこれらの活動の 1 つでは、レジのレシートなどに使用される感熱紙コーティング剤における BPA の代替物質について取り上げた。この最終報告書は、Design for the Environment Alternatives Assessments(環境配慮設計代替アセスメント)の ウェブサイト 65で入手可能である。

US EPA は、現時点では人の健康に対するリスクに基づいて TSCA に基づく規制措置を開始する予定はないとしている。しかし、引き続き人の健康保護に取り組んでおり、FDA、疾病管理予防センター(CDC)、及び国立環境保健科学研究所(NIEHS)と緊密に協議・調整し、BPA の潜在的な健康影響をより適切に判断・評価するとしている。

(4) その他の規制

FDAは、食品接触用接着剤、コーティング剤、ポリマーへの BPA の使用を許可しているが、子供向け製品用に設計された食品接触材料へのBPA の使用を禁止するために、以下の 2 つの食品添加物規制の改正を行った 66。

- ✓ 平成 24 年 7 月、米国化学工業協会 (ACC) による食品添加物に関する請願書を受け、BPA ベースのポリカーボネート樹脂を哺乳瓶やシッピーカップに使用することを禁止した。
- ✓ 平成 25 年 7 月、マサチューセッツ州のエドワード・マーキー下院 議員が提出した食品添加物に関する請願を受けて、BPA ベースのエポキシ樹脂を乳児用粉ミルクの包装にコーティングとして使用することを禁止した。

https://www.epa.gov/sites/default/files/2015-08/documents/bpa final.pdf

⁶⁵ US EPA (2015) BISPHENOL A ALTERNATIVES IN THERMAL PAPER,

⁶⁶ FDA, Bisphenol A (BPA): Use in Food Contact Application,
https://www.fda.gov/food/food-packaging-other-substances-come-contact-foodinformation-consumers/bisphenol-bpa-use-food-contact-application

また、EFSA が TDI を大幅に引き下げる提案をした段階で、FDA の推定暴露量(平均値 200 ng/kg/day、90%値 500 ng/kg/day)が、TDI の 5,000倍以上となることを受け、米国の医師や科学者、消費者、環境・公衆衛生団体(環境保護基金、乳がん予防パートナーズ、クリーンウォーターアクション、コンシューマーレポート、内分泌学会、環境ワーキンググループ、健康な赤ちゃんの明るい未来団体、マリセル・マフィニ博士、リンダ・ビーンバウム博士)が FDA に食品中濃度が 0.5 ng-BPA/kg を超える可能性のある全ての食品包装使用を制限するよう請願書を提出している 67。

2.3.3.2.3 まとめ

欧州及び米国における BPA 又はビスフェノール類の規制動向を調査 したところ、以下のような状況であった。

- ✓ 欧州、米国ともに、食品包装材から食品を経由したビスフェノール類の暴露(特に子供への暴露)を懸念しており、人の健康影響のリスク管理のために、食品包装材中濃度の規制を行っている。
- ✓ 感熱紙への BPA 含有は、欧州では REACH 規則の制限物質として規制され、米国では有害性の低い物質への代替が促されている。
- ✓ 欧州では、生態影響の観点で有害性が既知又は潜在的に有害性があると考えられるビスフェノール類について、REACH規則で制限することを検討している。しかし、物質選定は内分泌かく乱作用の有害性に基づいており、リスク評価の結果に基づくものではない。
- ★国では、感受性の高い水生生物が暴露される可能性のある現在の環境濃度と、同程度の非常に低濃度で有害性が報告されているものもあり、環境に対する懸念の可能性があるとしつつ、BPAの暴露評価、リスク評価の不確実性を解消するためには、追加的な情報が必要であるとしている。

1-27-22.docx.pdf

⁶⁷ EDF (2022) New food additive petition asking FDA to remove or restrict its approvals of bisphenol A (CASRN 80-05-7) pursuant to 21 USC § 348 with expedited review, <a href="https://blogs.edf.org/health/wp-content/blogs.dir/11/files/2022/01/EDF-et-al-BPA-Food-Additive-Petition-FINAL-entropy description-FINAL-entropy description-FINAL-entropy description-FINAL-entropy description-FINAL-entropy description-FINAL-entropy description-FINAL-entropy description-entropy description-entr

2.3.3.3 TDI

2.3.3.3.1 欧州における規制

(1) 欧州におけるジイソシアネート類の用途 68

ジイソシアネートとそのオリゴマーは主にポリウレタン産業で使用され、発泡体、断熱パネル、塗料、ラッカー、コーティング剤、接着剤などのポリウレタン製品として製造されている。ポリウレタン製品は、自動車、鋳造、建築・建設、電気、塗料、プラスチック、印刷、家具、繊維など、様々な産業分野で使用されている。

芳香族ジイソシアネートとそのオリゴマーは、硬質及び軟質フォーム、エラストマー、接着剤、コーティング剤、シーリング剤などを製造するための重要な原料である。MDI(メチレンジフェニルジイソシアネート)とTDI(トリレンジイソシアネート)は、欧州で最も一般的に使用されているジイソシアネートである。MDIの主な用途は、建築産業における断熱用ポリウレタン硬質フォームの製造であり、TDIは主にマットレス、椅子張り、輸送用シート用の軟質フォーム製造に使用される。MDIとTDIはどちらも C.A.S.E. (コーティング剤、接着剤、シーリング剤、エラストマー)用途に使用されている。

脂肪族ジイソシアネートは、芳香族ジイソシアネートを主成分とするポリウレタンに比べ、高い紫外線安定性と耐久性、化学的・機械的耐性を示す高耐性のポリウレタン材料を製造するために使用される。脂肪族ジイソシアネートの主な用途は、耐薬品性、耐摩耗性、耐候性に不力、下であるが、接着剤、シーリング剤、ポリウレタントストマーの製造にも使用されている。さらに、脂肪族ジイソシアネートトトトトトトトリーである。最も関連性の高い脂肪族ジイソシアネート)、IPDI(イス・シングインシアネート)、IPDI(イス・インジインシアネート)、IPDI(イス・インジインシアネート)、HMDI(イス・インシクロへキシルメタンバスリシアネート)である。HDIは有害性が高く、揮発性が高いまとソシアネート)である。HDIは有害性が高く、揮発性がある。がよりなポリインシアネートを使用している。このようなポリインシアネートには、ジインシアネートモノマーが残存しており、暴露の可能性がある。

ジイソシアネートの生産量は多く、産業及び専門職の労働者、そして多くの場合、消費者においても吸入及び経皮暴露の可能性が高い。特にMDIとそのオリゴマー、ポリウレタンは消費者製品に使用されている。なお、モノイソシアネートは、主に医薬品や農薬の製造に使用される。ほとんどのモノイソシアネートは中間体として登録されており、厳密に管理された条件下で使用されることが明記されている。しかし、コーティング剤や接着剤など、中間体以外の用途で完全登録されているモノイソシアネートが2種類あり、産業及び専門職の作業者が経皮及び吸入暴露を受ける可能性が高い(EC 223-810-8 及び EC 947-972-06)。モノイソシアネートの消費者用途は、EC 223-810-8 のみが報告されている。トリ

68 ECHA (2023) Assessment of regulatory needs, Group Name: Isocyanates.

https://echa.europa.eu/documents/10162/75c47034-cb07-7ae2-0166-04f340daeab8

イソシアネートに関しては、2つの芳香族トリイソシアネート(EC 219-351-8 と 223-981-9)が特定されている。これらの物質は、ポリマーの製造、接着剤、シーラント、充填剤、パテの製造に使用され、産業及び専門職の労働者の吸入及び経皮暴露の可能性が高い。これら2つの物質の消費者用途は特定されていない。

(2) REACH 規則 ANNEX XVII (制限物質) への指定

令和 2 年 8 月 3 日に以下で定義されるジイソシアネートが、Entry No.74 として制限物質に指定された 69 。

O = C = N - R - N = C = O

Rは不特定の長さの脂肪族又は芳香族炭化水素単位

令和5年8月24日以降、以下の場合を除き、工業用及び業務用として、物質単体、 他の物質の構成成分、又は混合物としての使用が禁止された。

- (a)ジイソシアネートの濃度が、単独及び組み合わせで、0.1 重量%未満である。
- (b)使用者又は自営業者は、産業用又は業務用の使用者が、当該物質又はその混合物を使用する前に、ジイソシアネートの安全使用に関する研修を修了していることを保証しなければならない。

ECHA の「Substances restricted under REACH」のリスト 70 には、表 2.3.3.3.1-1 の 14 物質が掲載されている。

023&utm_source=LinkedIn.com&utm_medium=Facelift.com

To ECHA. Substances restricted under REACH. https://echa.europa.eu/substances-restricted-under-reach

130

⁶⁹ EU (2020) COMMISSION REGULATION (EU) 2020/1149, amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards diisocyanates. https://eurlex.europa.eu/eli/reg/2020/1149/oj?utm-campaign=Diisocyanates+decision+Aug+2

表 2.3.3.3.1-1 制限物質に指定されているジイソシアネート化合物

EC No.	CAS No.	物質名
202-039-0	91-08-7	2-methyl-m-phenylene diisocyanate; toluene-
		2,4-di-isocyanate
202-112-7	91-97-4	3,3'-dimethylbiphenyl-4,4'-diyl diisocyanate
202-966-0	101-68-8	4,4'-methylenediphenyl diisocyanate;
202-700-0	101-00-0	diphenylmethane-4,4'-diisocyanate
209-544-5	584-84-9	4-methyl-m-phenylene diisocyanate; toluene-
209-344-3	304-04-9	2,6-di-isocyanate
212-485-8	822-06-0	hexamethylene-di-isocyanate
218-485-4	2162-73-4	2,4,6-triisopropyl-m-phenylene diisocyanate
219-799-4	2536-05-2	2,2'-methylenediphenyl diisocyanate;
219-799-4		diphenylmethane-2,2'-diisocyanate
220-474-4	2778-42-9	1,3-bis(1-isocyanato-1-methylethyl)benzene;
220-4/4-4		[m-TMXDI]
221-641-4	3173-72-6	1,5-naphthylene diisocyanate
222-852-4	3634-83-1	1,3-bis(isocyanatomethyl)benzene; [m-XDI]
223-861-6	4000 71 0	3-isocyanatomethyl-3,5,5-trimethylcyclohexyl
223-801-0	4098-71-9	isocyanate; isophorone di-isocyanate
225-863-2	5124-30-1	4,4'-methylenedi(cyclohexyl isocyanate);
223-803-2		dicyclohexylmethane-4,4'-di-isocyanate
227 524 0	5072 51 1	o-(p-isocyanatobenzyl)phenyl isocyanate;
227-534-9	5873-54-1	diphenylmethane-2,4'-diisocyanate
247-722-4	26471-62-	m talvlidana diigaayanata: talvana diigaayanata
241-122-4	5	m-tolylidene diisocyanate; toluene-diisocyanate

(3)調和された分類と表示

TDI(EC No. 247-722-4、CAS No. 26471-62-5)は、EU では以下の有害性区分がされている ⁷¹。

- ·皮膚刺激性 (Skin Irrit. 2)
- ・眼刺激性 (Eye Irrit. 2)
- ·皮膚感作性 (Skin Sens. 1)
- · 急性毒性 (Acute Tox. 2)
- 呼吸器刺激性 (STOT SE 3)
- · 呼吸器感作性 (Resp. Sens. 1)
- ・発がん性 (Carc. 2)
- · 慢性水生毒性 (Aquatic Chronic 3)

⁷¹ ECHA. Summary of Classification and Labelling. https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/109310

(4) イソシアネート、ジイソシアネート、トリイソシアネートのグループ評価 72

ECHA は、以下に示すイソシアネート、ジイソシアネート、トリイソシアネート部位の存在に基づいて、構造的に類似した物質をグループ化している。

$R-N=C=O R'(N=C=O)_2 R''(N=C=O)_3$

ここで、R、R'及び R''は、(1つ又は複数の) 脂肪族鎖、(1つ又は複数の) 環式基、あるいは (1つ又は複数の) 芳香族基、又はそれらの組み合わせ、及びそれらのオリゴマーを表す。

このグループは、オリゴマーや反応生成物中のイソシアネートと導入された化学官能基(ウレトジオン、ビウレット、アロファネート、イソシアヌレート、オキサジアジントリオンなど)の同一性に基づいて 11 のサブグループに分かれている。その内容は以下のとおりである。

- 1. 芳香族ポリイソシアネートとそのオリゴマー
- 2. MDI ポリウレタン
- 3. 脂肪族ポリイソシアネートとそのオリゴマー
- 4. アルコールとのジイソシアネート反応生成物
- 5. アクリレート官能化モノイソシアネート
- 6. シロキサン官能基化モノ-及びジ-イソシアネート
- 7. 芳香族モノイソシアネート
- 8. 脂肪族モノイソシアネート
- 9. 塩素化芳香族モノイソシアネート
- 10. スルホモノイソシアネート
- 11. その他のモノ及びジイソシアネート

パーフルオロモノイソシアネートは、OECD の PFAS (Per-and Poly Fluoro Alkyl Substances) の定義に合致しており、現在検討中の PFAS 規制の対象にもなりうるため、グループから除外されている。

リスク管理措置の必要性について評価された結果を表 2.3.3.3.1-2~2.3.3.3.1-5 に示す。現在入手可能な情報に基づくと、更なる EU 規制によるリスク管理が必要とされている。現行の制限項目 (Restriction Entry) 56 及び 74 の見直しと、皮膚及び呼吸器感作性に基づき、その範囲をグループ内の全てのイソシアネート、すなわちサブグループ 1~11 に拡大する職業暴露限界値 (OEL) の提案が必要であるとされている。

また、生態影響や環境中での挙動について以下のように評価されている。

・モノイソシアネートは、環境的に不均質な条件下でアミンやモノ尿

⁷² ECHA (2023) Assessment of regulatory needs, Group Name: Isocyanates. https://echa.europa.eu/documents/10162/75c47034-cb07-7ae2-0166-04f340daeab8

素を生成する可能性がある。水生毒性試験を実施する際に推奨される均一条件下では、ポリイソシアネートとモノイソシアネートの両方で、アミンの形成が優勢となる。これらのアミンの多くは、生分解性が低く、P/vPとしてスクリーニングされ、水生生物に対する毒性がある(水生環境有害性のハザードカテゴリーに分類されるが、Tの基準はまだ満たしていない)。

- ・アミンは、それぞれの親化合物よりも疎水性が低いため、生物蓄積性が低い。しかし、環境 pH ではイオン化した形で存在する可能性があるため、log Kow だけでは生物蓄積性が低いと判断できない。難分解性が確認された場合、アミン類のグループ評価で利用可能な情報を考慮し、これらのアミン類の更なる生物蓄積性評価が必要になる可能性がある。
- ・共有結合を形成し、環境マトリックスに存在する陰イオン (腐植物質など)と結合する可能性があるため、アミンはおそらくほとんどの土壌や堆積物中で移動しない。

表 2.3.3.3.1-2 REACH 規制で制限が必要と評価されたイソシアネート類と規制に向けた活動状況

	2 2.0.0.0.1 2	TELICIT / SEID CINTE	※ 石ダこ前 圃これ	にイフンテオート類と規制に回げた	-1D 30 V V V L
EC No.及び物質名	人健康影響	生態影響	関連用途と暴露の	予想される規制	規制に向けた活動状況
			可能性		
サブグループ 1 芳香族ポリイソシアネートとそのオリゴマー: サブグループ 1.1 芳香族ジイソシアネート サブグループ 1.3 MDI オリゴマー サブグループ 1.4 TDI オリゴマー サブグループ 2 MDI ポリウレタン	既知文は潜在的 有害性 ・皮吸発が ・発感感がした。 ・発取を ・発取を ・発取を ・発取を ・発取を ・発取を ・ので、 、ので、 ・ので、 ・ので、 ・ので、 ・ので、 、ので、 ・ので、 ・ので、 ・ので、 ・ので、 ・ので、 ・ので、 ・ので、	・水生毒性の既知又は 潜在的危険性(変化 物) ・PBT/vPvB の可能性 は低い	ポン剤け及工用 レ 結て び途入能 は、	EU RRM の必要性:制限 ・現在の制限(制限項目 74 と 56)の範囲を拡大し、イソシアネートグループ(サブグループ1、2、3、4、5、6、7、8、9、10、11)の全物質を含める見直しが提案されている。見直された規制は、物質の呼吸器感作性、皮膚感作性から生じる産業労働者、専門家、消費者へのリスクに対処するものでが多さが必性特性(Carc 2)による労働者と消費者へのリスクに対処すべきである(制限項目 74 は、サブグループ1.1.及び3.1の物質の平路が多個では、サブグループ1.1.及び3.1の物質の呼吸器感作性に起因すると消費者へのリスクに対処すべきである(制限項目 74 は、サブグループ1.1.及び3.1の物質の呼産業及び専門職労働者管へのリスクに関するとに関するとに関するとに、制限項目 56 は、EC 247-714-0、EC-202-966-0、EC 227-534-9、EC 219-799-4 の皮膚及び呼吸器感作性から生じる消費者へのリスクを管理するための条件を定義している)。 EU RRM の必要性:OEL ・イソシアネートグループの全物質(サブグループ1、2、3、4、5、6、7、8、9、10、11)を対象に含めるよう、OEL 案の見直しを推奨する。提案されたOELは、労働者のイソシアネートに対するのEL 提案に関するRAC 意見があることに留意)。OEL 提案の範囲は、サブグループ1 (1.2を除く)、2、3、4、6 (ジイソシアネート)及び11 (EC 926-601-6)をカバー。)	・制限項目 74 を見直し、サブグループ 1.2、1.3、1.4、及び2の全物質を対象とする(サブグループ 1.1.の物質は既に制限項目 74 でカバーされている)。 ・制限項目 56 を見直し、サブグループ 1 及び2の全物質を対象とする(サブグループ 1.1 の4物質、すなわち EC 番号 247-714-0、202-966-0、227-534-9、219-799-4 は既に制限項目 56 でカバーされている)。 ・OEL 提案を見直し、サブグループ 1.2の全物質を対象とする(サブグループ 1.1、1.3、1.4、2の物質は既に OEL提案でカバーされている)。 ・変異原性、生殖毒性、ED、STOT RE、PBT/vPvB について有害性がないことを確認し、均質な条件下で生成される変化物の水生毒性を評価するためのデータ作成: TPE (試験提案審査):

表 2.3.3.3.1-3 REACH 規制で制限が必要と評価されたイソシアネート類と規制に向けた活動状況(つづき)

		.,_,,	そと呼叫でもいこうノ、		
EC No.及び物質名	人健康影響	生態影響	関連用途と暴露の可	予想される規制	規制に向けた活動状況
			能性		
サブグループ3	皮膚感作性、呼	・水生毒性の既知又は	ポリマー、コーティン	上記のとおり	・制限項目 74 を見直し、サブグループ
脂肪族ポリイソシアネー	吸器感作性の	潜在的危険性(変化	グ剤、塗料、接着剤、シ		3.2、3.3、3.4、4の全物質を対象とす
トとそのオリゴマー:	既知又は潜在	物)	ーラントにおける工業		る。(サブグループ 3.1 の物質は、制
サブグループ3.1.	的有害性	・PBT/vPvB の可能性	用及び業務用用途;		限項目 74 で既にカバーされてい
脂肪族ジイソシアネート		は低い	主な用途はポリウレタ		る)。
サブグループ3.2			ン産業;モノマー、中間		サブグループ3及び4の全物質を対
脂肪族ジイソシアネート			体、結合剤、硬化剤とし		象とするよう、制限項目 56 を見直
オリゴマー			て使用;		す。
サブグループ3.4			作業員が暴露する可能		・注:OEL 提案は、既にサブグループ
アロファネート類			性が高い。消費者用途		3及び4の物質を対象としている。
			は確認されていない。		・変異原性、生殖毒性、ED、STOT RE、
					PBT/vPvB、及び均一条件下で生成さ
サブグループ 4					れる変換生成物の水生毒性につい
アルコールとのジイソシ					て、有害性がないことを確認するた
アネート反応生成物					めのデータ作成。
					CCH (コンプライアンスチェック):
					212-485-8、807-040-5、223-242-0
					943-686-5、931-274-8、931-288-4
					931-297-3、931-312-3、939-340-8
					939-549-4、939-657-1、700-674-2
サブグループ5	·皮膚感作性、呼	・水生毒性の既知又は	・主に中間・産業用途。	上記のとおり	・制限項目 74 を見直し、サブグループ
アクリレート官能基化モ	吸器感作性の	潜在的危険性(変化	ある物質について		5の全物質を対象とする。
ノイソシアネート	既知又は潜在	物)	は、耐用年数も特定		・制限項目 56 を見直し、サブグループ
	的有害性	・PBT/vPvB の可能性	されている。		5の全物質を対象とする。
		は低い	・作業者に対する暴露		・サブグループ5の全物質を対象とす
			の可能性が高い。消		るよう、OEL 提案を見直す。
			費者用途は確認され		
			ていない。		

表 2.3.3.3.1-4 REACH 規制で制限が必要と評価されたイソシアネート類と規制に向けた活動状況(つづき)

EC No.及び物質名	人健康影響	生態影響	関連用途と暴露の可 能性	予想される規制	規制に向けた活動状況
サブグループ6 シロキサン官能基化モノ 及びジイソシアネート	・皮膚感作性、呼吸器感作性の 吸器感作性の 既知又は潜在 的有害性	・水生毒性の既知又は 潜在的危険性(変化 物) ・PBT/vPvB の可能性 は低い	 ・主な用途は、ポリマー製剤、接着剤、シーリング剤、充填剤、コーティング剤、塗料などである。 ・3物質は業務用途(EC 918-105-3、EC 924-669-1、EC 926-191-9)、1物質(EC 924-669-1)は消費者用途もある。その他は工業用途のみ。 ・労働者や消費者への暴露の可能性が高い。 	上記のとおり	 ・制限項目 74 を見直し、サブグループ6の全物質を対象とする。 ・制限項目 56 を見直し、サブグループ6の全物質を対象とする。 ・OEL 提案を見直し、サブグループ6 (シロキサン官能基化ジイソシアネートオリゴマー、EC 918-105-3、EC 924-669-1、EC 926-191-9)の全物質を対象とする。 ・変異原性、生殖毒性、ED、STOT RE、PBT/vPvB、及び均一条件下で生成される変化物の水生毒性について、有害性がないことを確認するためのデータ作成。 CCH(コンプライアンスチェック): 239-415-9、246-467-6、918-105-3 924-669-1、926-191-9
サブグループ 7 芳香族モノイソシアネート サブグループ 8 脂肪族モノイソシアネート	・皮膚感作性、呼吸器感作性の 吸器感作性の 既知又は潜在 的有害性 ・発がん性(サブ グループ 7): 結論の出ていない有害性	・水生毒性の既知又は 潜在的危険性(変化 物) ・PBT/vPvB の可能性 は低い	・中間登録 (TII/OSII<1000 t/y) の み - 低暴露可能性	上記のとおり	 ・制限項目 74 を見直し、サブグループ 7と8の全物質を対象とする。 ・制限項目 56 を見直し、サブグループ 7と8の全物質を対象とする。 ・OEL 提案を見直し、サブグループ 7 と8の全物質を対象とする。
サブグループ9 塩素化芳香族モノイソシ アネート	・皮膚感作性、呼吸器感作性の 既知又は潜在 的有害性 ・発がん性:結 論の出ていな い有害性	・水生毒性の既知又は 潜在的危険性(変化 物) ・PBT/vPvB の可能性 は低い	・主に工業用中間用途- 暴露の可能性は低い	上記のとおり	 制限項目 74 を見直し、サブグループ 9の全物質を対象とする。 制限項目 56 を見直し、サブグループ 9の全物質を対象とする。 OEL 提案を見直し、サブグループ 9 の全物質を対象とする。

表 2.3.3.3.1-5 REACH 規制で制限が必要と評価されたイソシアネート類と規制に向けた活動状況(つづき)

		生態影響		予想される規制	
EC No.及び物質名	人健康影響	土思影響	関連用途と暴露の可 能性	「心思される規則	規制に向けた活動状況
サブグループ10 スルホモノイソシアネート	・皮膚感作性、呼 吸器感作性の 既知又は潜在 的有害性	・水生毒性の既知又は 潜在的危険性(変化 物) ・PBT/vPvB の可能性 は低い	・EC 618-297-6 は中間 用途のみ - 暴露の 可能性は低い。 ・EC 223-810-8 はポリ マー、接着剤及びコ ーティング剤に使用 - 広範な分散用途 (業務用及び一般消 費者用)のため、暴露 の可能性は高い。	上記のとおり	・制限項目 74 を見直し、サブグループ 10 の全物質を対象とする。 ・制限項目 56 を見直し、サブグループ 10 の全物質を対象とする。 ・OEL 提案を見直し、サブグループ 10 の全物質を対象とする。 ・変異原性、生殖毒性、ED、STOT RE、PBT/vPvB、及び均一条件下で生成される変化物の水生毒性について、有害性がないことを確認するためのデータ作成。 CCH (コンプライアンスチェック): 223-810-8
サブグループ11 単体物質	・皮膚感作性、呼吸器感作性の 既知又は潜在 的有害性(EC 947-972-0, EC 402-440-2, EC 606-676-9) ・926-601-6 は有 害性が低い	・水生毒性の既知又は 潜在的危険性(変化 物) ・PBT/vPvB の可能性 は低い	 ・主に中間用途、ポリマー調剤、接着剤、シーラント。 ・2物質 (EC-926-601-6、EC 947-972-016) は工業用及び業務用であり (そのうちの1つ、EC-947-972-0 は皮膚及び呼吸器感作性がある)、作業者への暴露の可能性が高いが、他の物質は暴露の可能性が低い。 	上記のとおり	 ・制限項目 74 を見直し、サブグループ 11 の全物質を対象とする。 ・制限項目 56 を見直し、サブグループ 11 の全物質を対象とする。 ・OEL 提案を見直し、サブグループ 11 の全物質を対象とする。(1物質:EC 926-601-6 は既に OEL 提案の対象)。

2.3.3.3.2 米国における規制

(1) 米国における TDI の用途

ジイソシアネート (一般にイソシアネートとも呼ばれる) は、反応性 が高く、汎用性の高い化学物質で、商業用及び消費者用に広く使用され ている。ジイソシアネート市場の 90%以上は、2種類のジイソシアネー ト(MDI:メチレンジフェニルジイソシアネート、TDI:トルエンジイソ シアネート)とそれに関連するポリイソシアネートで占められている。 これらはユニークな特性と機能的多様性を持ち、遊離イソシアネート官 能基(-N=C=O)を含む。イソシアネートを遊離のヒドロキシル官能基(-OH)を含む他の化合物と組み合わせると、反応してポリウレタンポリマ ーを形成し始める。この化学反応は、最初に遊離していた-N=C=O 基が 全てポリマーネットワーク内に結合した時点で完了する。このプロセス は一般的に "硬化 "と呼ばれている。遊離-N=C=O 基を含む製品は、使用 過程で反応し "硬化 "することを意図している。例えば、接着剤は、最 初は未硬化の状態で塗布され、硬化することで2枚の木材を接着する製 品として販売されている。マットレス、枕、ボーリング・ボールなどの 他のポリウレタン製品は、販売される前に完全に硬化した製品とみなさ れる。完全硬化製品は完全に反応するため、不活性で無害であると考え られている。このため、US EPA のアクションプランにおいても、未反応 の未硬化製品に対する懸念に焦点が当てられている 73 。

(2) US EPA が懸念する TDI の有害性

ジイソシアネートは、職業環境における皮膚及び呼吸器感作物質としてよく知られており、喘息や肺障害を引き起こし、重篤な場合には死に至ることが記録されている。労働者の暴露は、職業環境において既に規制対象となっているが、EPAは、未硬化 TDI 及びその関連ポリイソシアネートを含む製品(例えば、スプレー塗布シーラント及びコーティング剤)を使用中の消費者又は自営業者への暴露、あるいは住宅や学校を含む建物内又はその周辺でそのような製品が使用されている間の一般住民への偶発的な暴露から生じる可能性のある健康影響を懸念している。

(3) US EPA のリスク管理措置

1) アクションプラン

11

TDI アクションプランは、TDI 及び関連化合物(表 2.3.3.3.2-1)に関する EPA の見直しに対応している。アクションプランでは、子供へのジイソシアネート暴露の潜在的リスクに対する関心を高める必要があるとしている。EPA は、MDI とその関連化合物(表 2.3.3.3.2-2)に関するアクションプランを TDI とは別に策定している ⁷⁴。TDI は MDI と化学的に類似しており、同様の有害性と暴露の懸念があるが、使用されている製品の範囲が異なると報告されている。

⁷³ US EPA (2011) Toluene Diisocyanate (TDI) And Related Compounds Action Plan. https://www.epa.gov/sites/default/files/2015-09/documents/tdi.pdf

⁷⁴ US EPA (2011) Methylene Diphenyl Diisocyanate (MDI) And Related Compounds Action Plan. https://www.epa.gov/sites/default/files/2015-09/documents/mdi.pdf

表 2.3.3.3.2-1 対象となる TDI 及び関連化合物

No.	CAS番号	物質名	略称	一般名
1	91-08-7	Benzene, 1, 3-diisocyanato-	2,6-TDI	2,6-Toluene diis
		2-methyl-		ocyanate
2	584-84-9	Benzene, 2,4-diisocyanato	2,4-TDI	2,4-Toluene diis
		-1-methyl-		ocyanate
3	26471-62	Benzene, 1,3-diisocyanato	TDI 80/2	Toluene diisocy
	-5	methyl-	0	anate
4	9017-01-	Benzene, 1,3-diisocyanato	Polymeri	Poly(toluene dii
	0	methyl-,homopolymer	c TDI	socyanate)
5	26747-90	1,3-Diazetidine-2,4-dione,	2,4-TDI	Tolylene diisocy
	-0	1,3-bis(3-isocyanatomethyl	dimer	anate dimer
		phenyl)-		
6	26603-40	1,3,5-Triazine-2,4,6(1H,3	TDI trim	Tolylene diisocy
	-7	H,5H)-trione, 1,3,5-tris(3-	er	anate trimer
		isocyanatomethylphenyl)-		

% No. 1 ~ 4 は TDI モノマー及び関連する異性体、ポリマー、No. 5 、 6 は TDI ダイマー及びトリマー(二量体、三量体)

表 2.3.3.3.2-2 対象となる MDI 及び関連化合物

No.	CAS番号	物質名	略称	一般名
1	101-68-8	Benzene, 1,1'-methylenebi	4,4'-MDI	4,4'-Methylened
		s[4- isocyanato-		iphenyl diisocya
				nte
2	5873-54-	Benzene, 1-isocyanato-2-	2,4'-MDI	2,4'-Methylened
	1	[(4- isocyanatophenyl)met		iphenyl diisocya
		hyl]-		nte
3	2536-05-	Benzene, 1,1'-methylenebi	2,2'-MDI	2,2'- Methylene
	2	s[2- isocyanato-		diphenyl diisocy
		, i		ante
4	26447-40	Benzene, 1,1'- methyleneb	MDI	Methylenebis(ph
	-5	is[isocyanato-		enyl isocyanate)
5	9016-87-	Isocyanic acid, polymethy	Polymeri	Poly(Methyleneb
	9	lenepolyphenylene ester	c MDI	is(phe nyl isocy
				anate)
6	17589-24	1,3-Diazetidine-2,4-dione,	4,4'-MDI	4,4'-Methylened
	-1	1,3- bis[4-[(4-isocyanatop	dimer	iphenyl diisocya
		henyl) methyl]phenyl]-	G1111 G1	nte dimer
7	31107-36	1,3-Diazetidin-2-one, 1,3-	4,4'-MDI	4,4'-Methylene
,	-5	bis[4-[(4- isocyanatophen	trimer	diphenyl diisocy
		yl)methyl]phenyl]-4- [[4-	V1111101	ante trimer (or
		[(4-isocyanatophenyl)meth		Uretonimine of
		yl] phenyl]imino]-		4,4'- MDI)
8	25686-28	Benzene, 1,1'-methylenebi	4,4'-MDI	4,4'-Diphenyl m
0				
	-6	s[4- isocyanato-, homopol	homo-p	ethanediisocyana
\ ! \!\ > T		ymer	olymer	te homopolymer

% No. 1 ~ 5 は MDI モノマー並びに関連する異性体及びポリマー、No. 6 ~ 8 は MDI ダイマー、トリマー(二量体、三量体)及びポリマー

2) 法規制

TDI及び MDI は、有害大気汚染物質として大気浄化法の下で規制されている他、有害廃棄物として RCRA 及び CERCLA の下で規制されている。分類としてのジイソシアネート及び TDI は、毒物排出目録報告の対象となっている。TSCA に基づき、EPA は以前、TSCA 第 8 条(a)及び第 8 条(d)に基づく権限を使用して、産業界に情報を要請している。EPA はまた、TSCA 第 8 条(c)及び TSCA 第 8 条(e)に基づき、ジイソシアネートに関する提出を受理している。ジイソシアネートは TSCA 新規化学物質プログラムの化学物質分類であり、この分類に該当する新規化学物質は、TSCA 第 5 項の製造前通知が提出された後、さらに規制される可能性がある。

平成27年1月8日にEPAは、TSCAに基づき、7種類のTDIの消費者用途に関する重要新規用途規則(SNUR)を提案した。SNUR案は、輸入消費者製品を含む消費者製品のコーティング剤、接着剤、エラストマー、結合剤、シーラントにおいて、0.1%を超える化学物質の新規使用又は再開された使用を禁止又は制限するための行動をとる機会をEPAに与え、必要に応じて評価するものである。

(4) その他

1) 米国労働安全衛生庁 (OSHA)

ジイソシアネートの有害性は、一般産業、造船所、及び建設業向けの特定の基準で OSHA により扱われており、職場暴露の許容暴露限界 (PEL) も含まれている。 TDI モノマーに対する OSHA の PEL は、上限として $0.140~mg/m^3~(0.02~ppm)$ 、MDI モノマーに対する OSHA の PEL は、上限 として $0.2~mg/m^3~(0.02~ppm)$ である。 OSHA はまた、工学的及び管理的 な制御が実行不可能又は効果的でなく、暴露を PEL 未満に低減できない場合、労働者の暴露を低減するために個人防護具 (PPE) の使用を義務付けている。

2) 米国国立労働安全衛生研究所 (NIOSH)

平成8年と平成18年、NIOSHは、特定の状況における作業員のジイソシアネート暴露による喘息や死亡を防止するための注意喚起を発表した。NIOSHは、スプレーポリウレタン(SPF)断熱材塗布は他のSPF塗布と同様の危険性があると考え、同じ安全手順とPPEの使用を推奨している。NIOSHは、TDIを職業発がん物質とみなし、暴露を実行可能な最低限度に抑えるよう勧告している。MDIモノマーに対するNIOSHの推奨暴露限界値(REL)は、週40時間の労働時間中、10時間までの時間加重平均(TWA)で0.05 mg/m³(0.005 ppm)であり、10分間の上限は0.2 mg/m³(0.02 ppm)である。NIOSH RELは、労働者の急性及び慢性の刺激と感作を防止することを意図しているが、既に感作されている労働者の健康影響を防止することは意図していない。NIOSHは MDIが感作された人に有害反応を起こさない濃度を示していない。

3) 米国産業衛生専門家会議(ACGIH)

TDI 及び MDI の閾値限界値(TLV)は呼吸器感作性のものであるが、皮膚感作性のものではない。現在では、ジイソシアネートの皮膚からの吸収の可能性に注意を向けるために、MDI の TLV に「皮膚表記」を追加することを推奨するのに十分な情報があることが示唆されている。ACGIH は TDI モノマーの TLV を、通常の 8 時間労働と週 40 時間労働の時間加重平均(TWA)として $0.036\,\mathrm{mg/m^3}$ ($0.005\,\mathrm{ppm}$)、MDI モノマーの TLV を、通常の 8 時間労働の時間加重平均(TWA)として $0.05\,\mathrm{mg/m^3}$ ($0.005\,\mathrm{ppm}$)とした。また、TDI については、 $15\,\mathrm{分間}$ 短期暴露限界(STEL)が $0.14\,\mathrm{mg/m^3}$ ($0.02\,\mathrm{ppm}$)と設定されている。MDI の ACGIH TLV は、特に感作性の可能性に基づいており、この影響から労働者を保護することを意図している。

4) カリフォルニア州環境保健有害性評価局 (OEHHA)

MDI の基準暴露レベル(RELs)として、急性 RELs を $12~\mu g/m^3$ 、 8~ 時間 RELs を $0.16~m g/m^3$ 及び慢性 RELs を $0.08~m g/m^3$ としている。 TDI はプロポジション 65~で発がん性物質としてリスト化されており、著しいリスクを示さないレベル(NSRL)を $20~\mu g/day$ としている。

2.3.3.3.3 まとめ

欧州及び米国における TDI 又はイソシアネート化合物の規制動向を調査したところ、以下のような状況であった。

- ✓ 欧州、米国ともに、TDIを含むジイソシアネートの職業暴露を懸念しており、人の健康影響(皮膚感作性、呼吸器感作性)のリスク管理のために、欧州では使用の制限(原則禁止)、米国では許容限界濃度を定めたリスク管理が行われている。
- ✓ 接着剤、シーリング材などに含まれるジイソシアネートは硬化するまでの間に、消費者暴露の可能性があることから、欧州では REACH 規則の制限 Entry 56 及び 74 の見直しが令和 5 年に提案され、米国では平成 27 年から重要新規用途規則(SNUR)の対象となっている。
- ✓ 欧州では、モノイソシアネート、ポリイソシアネートの分解物としてアミン類が生成し、生態影響の懸念があることから、生態影響がないことを確認するためのデータが必要とされている。
- ✓ 欧州では、皮膚感作性、呼吸器感作性に基づき、様々な法規制における対象物質となっている。

2.3.4 優先評価化学物質の他法令規制の整理

(1) 他法令による管理状況整理の必要性

平成 30 年 11 月 16 日の 3 省合同審議会において、化審法のスクリーニング評価・リスク評価における WSSD2020 年目標の達成に係る進捗状況と今後の取組(案)が議論された 75。リスク評価の合理化、加速化方策の1つとして、他法令で基準値等が設定されており、それが化審法の法目的にも沿うものであり、それが概ね達成されているような物質などは、必要に応じてそのような情報を柔軟に活用し、リスク評価 (一次)評価 II のスケジュールの再検討において考慮されることとなった。平成31 年 3 月 22 日の 3 省合同審議会において、見直しが行われたリスク評価 (一次)評価 II 以降の全体スケジュール 76が公表され、表 2.3.4-1 の7 物質が他法令の管理状況等を勘案して評価時期等を検討する物質とされた。

化審法では、暴露の観点では環境経由の暴露、有害性の観点では人健康影響と生態影響について、リスク評価・管理を行っている。化学物質管理に関連する他の法規制は、化学物質が製造・使用される用途やライフサイクルに応じて複数存在し、人の健康保護のため、職業暴露を管理する労働安全衛生法、消費者暴露を管理する有害家庭製品規制法、建築基準法、食品衛生法、医薬品医療機器等法でも表 2.3.4-1 の 7 物質が管理されている(図 2.3.4-1)。また、化審法と同様に、環境経由の暴露により人の健康や生態系への悪影響を防止する法規制も存在する。環境中の化学物質濃度の基準を定めている環境基本法や、環境中への排出規制・自主管理促進を行う大気汚染防止法、水質汚濁防止法、土壌汚染対策法等が該当する。

リスク評価の加速化のためには、第二種特定化学物質に指定される可能性がある物質を優先して、リスク評価を実施していく必要があり、他法令で管理されている化学物質は、その管理状況に応じてリスク評価(一次)評価 II の評価時期等を検討する(図 2.3.4-1 の青色矢印の方向へ情報を活用し、優先度を下げるかどうか検討する)ことが必要である。

このため、「他法令の管理状況等を勘案して評価時期等を検討する物質」について、他法令における管理状況を整理することとした。

⁷⁵ 経済産業省 (2018) 化審法のスクリーニング評価・リスク評価における WSSD2020年目標の達成に係る進捗状況と今後の取組 (案)、平成 30 年度第 7 回薬事・食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会 平成 30 年度化学物質審議会第 3 回安全対策部会 第 189 回中央環境審議会環境保健部会化学物質審査小委員会、

https://www.meti.go.jp/shingikai/kagakubusshitsu/anzen_taisaku/pdf/h30_03_04_0_0.pdf

⁷⁶ 経済産業省 (2019) リスク評価 (一次) 評価 II 以降の全体スケジュール (2019年以降)、平成 30年度第 10回薬事・食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会 平成 30年度化学物質審議会第 5回安全対策部会 第 192回中央環境審議会環境保健部会化学物質審査小委員会、https://www.meti.go.jp/shingikai/kagakubusshitsu/anzen_taisaku/pdf/h30_05_02_00.pdf

表 2.3.4-1	他法令の	管理状況等	を勘案して言	平価時期等を	検討する物質
-----------	------	-------	--------	--------	--------

優先通し番号	優先評価化学物質名称	評価の観点
2.5	ホルムアルデヒド	人健康影響
4.5	ベンゼン	人健康影響
140	アルキルベンゼンスルホン酸ナトリウム(アルキルは炭	生態影響
	素数が10から14までの直鎖アルカンの基に限る。)	
	(別名:LAS)	
144	│二塩化ニッケル(Ⅱ)	人健康影響
145	三酸化クロム (VI)	人健康影響
146	ビス(スルファミン酸)ニッケル(Ⅱ)	人健康影響
148	硫酸ニッケル(Ⅱ)	人健康影響

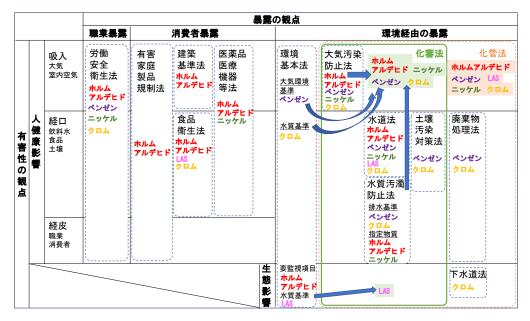


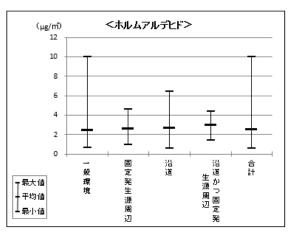
図 2.3.4-1 他法令の管理状況等を勘案して評価時期等を検討する物質 と関連する法規制

※緑色網掛け:評価 II 段階の化審法優先評価化学物質、オレンジ色網掛け: 化管法 PRTR 対象物質、青色矢印:化審法リスク評価 II において評価時期を検討する際に、参考とする情報の流れを示す。

(2) ホルムアルデヒドの他法令による規制の状況

詳細リスク評価書によると、ホルムアルデヒドの発生源は自然由来及び人為起源があり、さらに、そのまま放出される 1 次排出と、前駆体となる有機物が光化学反応をしてホルムアルデヒドに変化する 2 次生成がある。排出先は大気が大部分で、一部が水域に排出される 77 。ホルムアルデヒドの大気中濃度の基準値は設定されていないが、WHO のガイドライン値(一般的なヒトへの明らかな感覚刺激を防ぐための 30 分平均値)が $100~\mu g/m^3$ 、IRIS の 10^{-5} 相当の発がんリスクレベルが $0.8~\mu g/m^3$ と

143


⁷⁷ 産業技術総合研究所 (2006) 詳細リスク評価書 ホルムアルデヒド

報告されている。

令和3年度の有害大気汚染物質モニタリング調査結果報告 78 によると、「一般環境」、「固定発生源周辺」、「沿道」、「沿道かつ固定発生源周辺」の計 317 地点で大気中のホルムアルデヒド濃度が測定されたが、令和3年度の平均値は $2.5~\mu g/m^3$ であり、WHO のガイドライン値よりは 40 倍低いが IRIS の 10^{-5} 相当の発がんリスクレベルよりは 3.1 倍高い(図 2.3.4-2)。また、平成 10 年度から平成 22 年度頃までは、大気中ホルムアルデヒド濃度の平均値は減少したが、平成 22 年度以降は、横ばいで推移している(図 2.3.4-3)。

平成8年にホルムアルデヒドが有害大気汚染物質の優先取組物質に指定され、大気汚染防止法に基づき、事業者が有害大気汚染物質自主管理計画を策定し、自主的な排出削減が行われた(第一期:平成9年度~平成11年度、第二期:平成13年度~平成15年度)⁷⁹。第二期(平成15年度)には、平成11年度と比較して29%の排出削減がされている。

したがって、ホルムアルデヒドは、大気汚染防止法に基づく規制、自主管理により、環境経由の人健康影響のリスク低減が進んだものと考えられる。

	一般環境	固定発生 源周辺	沿道	沿道がつ 固定発生 源周辺	合計
全地点数	202	27	80	8	317
平均値(// g/mi)	2.4	2.5	2.6	3.0	2.5

図 2.3.4-2 令和 3 年度の大気中ホルムアルデヒド濃度モニタリング結果

⁷⁸ 環境省 (2023) 令和3年度大気汚染状況について(有害大気汚染物質モニタリング調査結果報告)、

https://www.env.go.jp/air/osen/monitoring/mon_r02/index_00001.html

⁷⁹ 経済産業省、第2期有害大気汚染物質自主管理計画の実績・評価等、 https://www.meti.go.jp/policy/chemical_management/other/yugai/H18FY/H18follo w_up.html

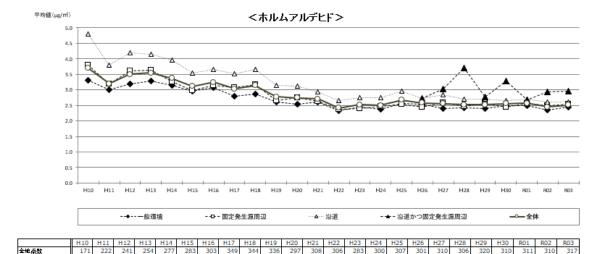
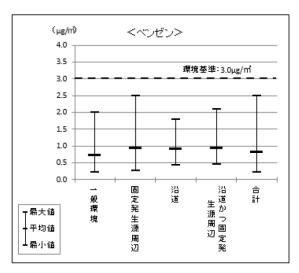


図 2.3.4-3 大気中ホルムアルデヒド濃度及び環境基準超過地点数の推 移

(3) ベンゼンの他法令による規制の状況

詳細リスク評価書によると、ベンゼンの環境への排出先は大部分が大気で、ごく一部が水域に排出されるものの、短時間のうちに大気に揮発する 80。ベンゼンは、平成8年に大気環境基準が3.0 μg/m³に設定された。平成10年度からは大気汚染防止法に基づき、地方公共団体においてモニタリングが行われている。令和3年度の有害大気汚染物質モニタリング調査結果報告によると、「一般環境」、「固定発生源周辺」、「沿道」、「沿道かつ固定発生源周辺」の計400地点程で大気中のベンゼン濃度が測定されたが、令和3年度の平均値は0.80 μg/m³であり、環境基準を超過した地点はなかった(図2.3.4-4)。また、平成10年度以降、大気中ベンゼン濃度の平均値、環境基準超過地点数は減少し続け、平成29年度以降は、環境基準を超過した地点はない(図2.3.4-5)。

固定発生源の対策としては、大気汚染防止法に基づき、事業者が有害大気汚染物質自主管理計画を策定し、自主的な排出削減が行われた(第一期:平成9年度~平成11年度、第二期:平成13年度~平成15年度)⁸¹。移動発生源の対策としては、平成12年1月1日に、大気汚染防止法に基づく「自動車の燃料の性状に関する許容限度及び自動車の燃料に含まれる物質の量の許容限度(平成7年10月環境庁告示第64号)」の改正⁸²が適用され、ガソリン中のベンゼン含有率の許容限度が「5体積%以下」から「1体積%以下」となった。


したがって、ベンゼンは、大気汚染防止法に基づく規制、自主管理に

⁸¹ 経済産業省、第 2 期有害大気汚染物質自主管理計画の実績・評価等、 https://www.meti.go.jp/policy/chemical_management/other/yugai/H18FY/H18follo w_up.html

⁸⁰ 産業技術総合研究所 (2006) 詳細リスク評価書 ベンゼン

⁸² 環境省 (1999) 自動車燃料品質に関する許容限度の改正について - ガソリンの低ベンゼン化について - 、 https://www.env.go.jp/press/2203.html

より、環境経由の人健康影響のリスク低減が進んだものと考えられる。

	一般環境	固定発生 源周辺	沿道	沿道がつ 固定発生 源周辺	合計
超過地点数	0	0	0	0	0
全地点数	225	73	87	15	400
平均値(με/mi)	0.71	0.91	0.89	0.92	0.80

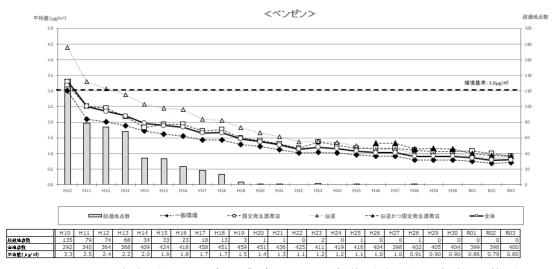


図 2.3.4-5 大気中ベンゼン濃度及び環境基準超過地点数の推移

(4) LASの他法令による規制の状況

LASの主要用途は洗濯・住宅用等洗浄剤であり約8割を占め、工業系の主要用途は業務用の洗濯・清掃用等洗浄剤及びゴム・プラスチック工業等で用途全体の約1割を占めており、環境への排出先は水域である。また、平成25年3月に水生生物の保全に係る水質環境基準の項目として追加され、平成30年には、LASの使用・排出実態を踏まえた排水対策

について検討、整理されている 83。

環境基準への追加以降の公共用水域における LAS の環境基準超過状況は、水質汚濁防止法に基づき地方自治体が実施した公共用水域水質測定結果によると、平成 26 年度が河川 3 水域 (760 水域中 3 水域、超過率約 0.4%)、平成 27 年度が河川 3 水域(868 水域中 3 水域、超過率約 0.3%)、平成 28 年度が河川 4 水域 (917 水域中 4 水域、超過率約 0.4%) と特定の水域に限られていた。なお、令和 3 年度は河川 1 水域 (1,292 水域中 1 水域、超過率約 0.1%) であった 84。

平成 28 年度にこれらの水域で環境省が実施した調査によると、PRTR 届出情報における LAS の排出実態を有する事業場の分布、各水域の周辺地域の状況及び関係地方自治体における原因究明調査の結果を踏まえ評価した結果、基準超過が工場・事業場由来であることが確認された水域はなく、生活系排水等由来の可能性が想定されている。さらに、環境基準が設定された平成 25 年以降、LAS の製造・使用量は減少傾向にあり、工場・事業場の排水処理において一般的に広く用いられている活性汚泥法により、一定程度の除去が可能であることが明らかとなっており、既に一定の対策が講じられているとしている。このため、全国一律的な対策として、工場・事業場を対象とする水質汚濁防止法の一律排水基準を新たに設定する必要性は低いと結論付けている。

したがって、LAS は水質環境基準が設定されたことで代替が促され、 生態影響のリスク低減が進んだものと考えられる。

(5) ニッケル化合物の他法令による規制の状況

初期リスク評価書によると、ニッケル化合物の環境への排出先は大気、水域、土壌であり、ニッケル化合物のヒトへの暴露経路は、呼吸による大気からの吸入暴露、飲料水及び食物を摂取することによる経口暴露が主であると考えられている⁸⁵。

ニッケル化合物は、有害大気汚染物質の指針値項目となっており、「1年平均値が 25 ng Ni/m³以下であること」と設定されている。平成 10年度からは大気汚染防止法に基づき、地方公共団体においてモニタリングが行われている。令和 3 年度の有害大気汚染物質モニタリング調査結果報告 78 によると、「一般環境」、「固定発生源周辺」、「沿道」、「沿道かつ固定発生源周辺」の計 279 地点程で大気中のニッケル化合物濃度が測定されたが、令和 3 年度の平均値は 2.5 ng Ni/m³であり、指針値を超過した地点はなかった(図 2.3.4-6)。また、平成 10 年度以降、大気中ニッケル化合物濃度の平均値、指針値超過地点数は減少し続け、令和元年度以降

85 製品評価技術基盤機構 (2008) 化学物質の初期リスク評価書 Ver.1.0 No.115 ニッケル化合物、

⁸³ 環境省 (2018) 直鎖アルキルベンゼンスルホン酸及びその塩 (LAS) に係る排水対策について (案)、https://www.env.go.jp/press/y090-44/mat03 3.pdf

⁸⁴ 環境省 (2023) 令和 3 年度公共用水域水質測定結果、 https://www.env.go.jp/content/000105994.pdf

https://www.nite.go.jp/chem/chrip/chrip_search/dt/pdf/CI_02_001/risk/pdf_hyoukasyo/232riskdoc.pdf

は、指針値を超過した地点はない。

水中のニッケル化合物は、要監視項目に設定されており、人の健康の保護に関連する物質ではあるが、公共用水域等における検出状況等ものみて、直ちに環境基準とはせず、引き続き知見の集積に努めるべきをのと位置づけられている 86。指針値は、平成5年に0.01 mg/L 以下と定められたが、平成11年2月に「毒性についての定量的評価を確立するには十分な試験結果がない状況で指針値を示すことは、不確定な毒性評価をもとに環境中の存在状況について適切とはいえない評価を誘導する可能性があることから、これを考慮してニッケルについてはこれまでの指針値を削除する」とされ、撤廃された 87。また、ニッケル及びその化合物は水道法の水質管理目標設定項目であり、目標値が0.02 mg/L 以下であり、消水の最高値は0.02 mg/L 以下であり、浄水の最高値は0.01 mg/L 以下であり、浄水の最高値は0.01 mg/L 以下であると、平成9年以降は浄水で0.01 mg/L を超えることはなかった 89とされており、飲料水経由の暴露による人の健康影響へのリスクは低いレベルで維持されていると考えられる。

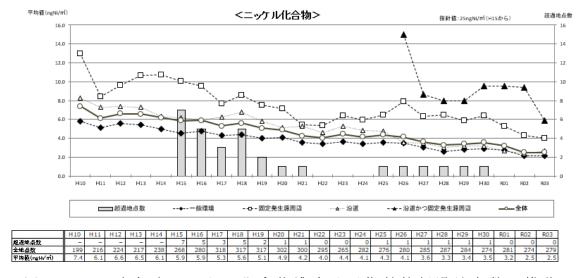


図 2.3.4-5 大気中ニッケル化合物濃度及び指針値超過地点数の推移

⁸⁶ 環境省、要監視項目とは、人の健康の保護に係る項目、

https://www.env.go.jp/water/impure/kanshi.html

⁸⁷ 環境省、環境基準等の設定に関する資料集、 https://www.nies.go.jp/eqsbasis/water.html

⁸⁸ 日本水道協会、水道水質データベース、http://www.jwwa.or.jp/mizu/list.html

⁸⁹ 産業技術総合研究所 (2008) 詳細リスク評価書 ニッケル、https://riss.aist.go.jp/wp-content/uploads/2021/07/nickelic summary.pdf

(6) 六価クロム化合物の他法令による規制の状況

詳細リスク評価書によると、六価クロム化合物の環境への排出先は大気、水域、土壌であり、六価クロム化合物のヒトへの暴露経路は、呼吸による大気からの吸入暴露、飲料水及び食物を摂取することによる経口暴露が主であると考えられている 90 。六価クロム化合物は、ニュージーランドの大気環境指針値(六価クロム 11 $^{$

平成 10 年度からは大気汚染防止法に基づき、地方公共団体においてモニタリングが行われている。ただし、六価クロムは環境大気中で不安定で、容易に三価に還元されることから、当面、クロム及びその化合物(全クロム)を測定することになっていた。このため、今年度入手した令和 3 年度データもクロム及びその化合物の濃度であった。なお、令和 5 年 5 月に有害大気汚染物質測定方法マニュアルが改訂され、令和 5 年 5 月に有っていたの物とクロム及び三価クロム化合物は分けて測定される 9^2 。

令和3年度の有害大気汚染物質モニタリング調査結果報告⁷⁸によると、「一般環境」、「固定発生源周辺」、「沿道」、「沿道かつ固定発生源周辺」の計 266 地点で大気中のクロム及びその化合物濃度が測定されたが、令和3年度の「沿道かつ固定発生源周辺」3地点の平均値は 14 ng Cr/m³であった。(図 2.3.4-6)。しかし、「沿道かつ固定発生源周辺」のクロム及びその化合物の濃度は減少傾向である(図 2.3.4-7)。

水中の六価クロム化合物は、水道水質基準 (0.02 mg/L)、水質環境基準 (0.02 mg/L)、排水基準 (0.2 mg/L) が設定されている。令和2年に六価クロムの水道水質基準が改正された ⁹³ことを受け、令和3年に水質環境基準の見直しが行われ ⁹⁴、令和6年1月25日に水質汚濁防止法の排水基準を改正する省令が公布された ⁹⁵。水道水質データベースによると、令和3年度の水道原水の六価クロム化合物濃度は、0.02 mg/L を超過した地点が8,668 地点中2 地点存在したが、浄水中濃度が 0.02 mg/L を超過した地点はなかった ⁹⁶。また、令和3年度公共用水域水質測定結果に

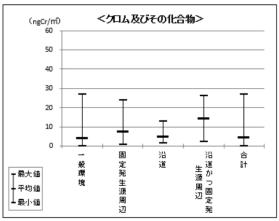
⁹⁰ 産業技術総合研究所 (2008) 詳細リスク評価書 六価クロム、https://unit.aist.go.jp/riss/crm/mainmenu/6-Cr Summary080602.pdf

⁹¹ 環境省、「有害大気汚染物質に該当する可能性がある物質リスト及び優先取組物質の見直し並びに有害大気汚染物質のリスクの程度に応じた対策のあり方について」に対する御意見等の概要及びこれに対する考え方、

https://www.env.go.jp/press/files/jp/16389.pdf

⁹² 環境省 (2023) 「有害大気汚染物質測定方法マニュアル」の改訂について (周知)、https://www.env.go.jp/content/000136289.pdf

⁹³ 厚生労働省 (2019) 六価クロム化合物に係る水質基準に関する省令等の改正について (案)、令和元年度第1回水質基準逐次改正検討会、https://www.mhlw.go.jp/content/10901000/000525194.pdf


⁹⁴ 環境省 (2021) 水質汚濁に係る環境基準の見直しについて (お知らせ)、 https://www.env.go.jp/press/110052.html

⁹⁵ 環境省 (2024) 水質汚濁防止法施行規則等の一部を改正する省令の公布について、https://www.env.go.jp/press/press_02672.html

⁹⁶ 日本水道協会、水道水質データベース、<u>http://www.jwwa.or.jp/mizu/list.html</u>

よると、3,677 地点で六価クロム濃度が測定されたが、0.02 mg/L を超過した地点はなかった ⁹⁷。令和 4 年度の水質汚濁防止法等の施行状況報告書によると、六価クロムについて法令違反のおそれがあるとして、電気めっき施設 2 件に対して改善命令が出されている ⁹⁸。

クロム及びその化合物は3地点で大気中濃度が高く、六価クロムを扱う2施設に水質汚濁防止法に基づく改善命令が出されているが、人の健康影響に対するリスクの懸念がある地点は非常に限られていると考えられる。また、大気汚染防止法、水質汚濁防止法に基づき、継続的な環境モニタリング、産業会における自主的な取り組み 99、行政による事業者の監視により、リスクの低減が進んでいると考えられる。

	一般環境	固定発生 源周辺	沿道	沿道がつ 固定発生 源周辺	合計
全地点数	199	32	32	3	266
平购债(ngCr/ml)	3.7	7.4	4.4	14	4.3

図 2.3.4-6 令和 3 年度の大気中クロム及びその化合物濃度モニタリング結果

https://www.env.go.jp/content/000105994.pdf

⁹⁷ 環境省 (2023) 令和3年度公共用水域水質測定結果、

⁹⁸ 環境省 (2024) 令和 4 年度水質汚濁防止法等の施行状況、https://www.env.go.jp/content/000191961.pdf

⁹⁹ 日本自動車工業会 (2022) 『重金属 4 物質の削減に関する自主取組み』の進捗 状況について、

 $[\]frac{https://www.meti.go.jp/shingikai/sankoshin/sangyo_gijutsu/haikibutsu_recycle/jidosha_wg/pdf/057_s03_01.pdf$

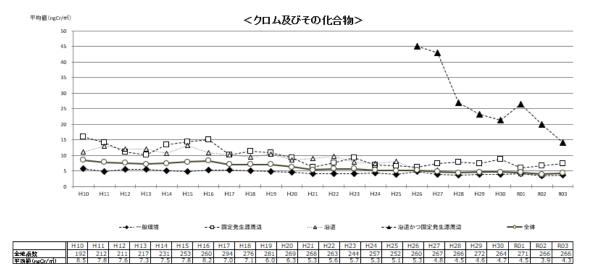


図 2.3.4-7 大気中クロム及びその化合物濃度及び指針値超過地点数の 推移

2.3.5 暴露評価モデルの精緻化検討

2.3.5.1 検討の概要

リスク評価 II 又は評価 III において、リスク評価結果の不確実性を減らすため、精緻な暴露評価モデルの活用が必要とされている。環境中に残留しやすい化学物質は、水の流れが滞りやすい河川(水源をもたない小河川、感潮河川、水門で水流が管理されている河川等)、湖沼等に蓄積される可能性がある。河川水中濃度については、AIST-SHANEL の活用が有効と考えられるが、環境中での生分解等の反応や、揮発による濃度変化の考慮、潮汐による水位や流速変化が生じる感潮域の濃度推計等が課題とされている。

過年度は、上流端の境界条件として濃度を入力し、一次元不定流モデル+潮汐モデルで感潮域の濃度を補正することで、潮位変動を考慮した 化学物質濃度の推計モデルを検討した。

本年度は、暴露評価モデルの精緻化のため、過年度に検討した潮汐を 考慮した暴露評価モデルを改良するとともに、河川構造物の反映方法等 について検討を行った。また、暴露評価モデルの専門家と意見交換をし ながら、現状の技術的な課題を整理し、短期的に解決ができる課題と長 期的な検討が必要な課題を取りまとめた。

2.3.5.2 課題整理

(1) 流出計算モデルにおける課題

過年度に検討対象とした流路の改変が多く、かつ感潮域で流れが滞りやすい小河川では、分水路や河川構造物の情報を踏まえる必要がある。地形・河道については、当初はオープンデータの流域地形メッシュデータを使用したが、現地踏査の結果、データと現地の実態に乖離があり、地形条件等を手動で設定する必要があった。また、昨年度検討モデルでは、定常の流量・濃度とポンプ場の運転記録による雨水の流入量を上流端に境界条件として与えたが、横流入や流域・支川からの流入等は考慮されておらず、これらの反映が必要である。

(2) 化学物質の動態シミュレーションにおける課題

AIST-SHANEL や昨年度検討の動態シミュレーションモデルでは、化学物質の河川水中の移流拡散や、河川水と河川底質の沈降、巻き上げを考慮した動態シミュレーションが可能であるが、NPの解析において、排出源である NPE から、環境中での生分解により NP が生成される反応や、感潮域において淡水と塩水が混ざりあうことによる NP の動態への影響等については考慮されていない。シミュレーションにおける生分解過程の反映に関する知見が必要である。

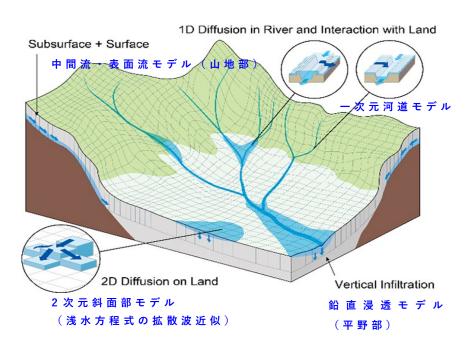
2.3.5.3 モデル改良検討

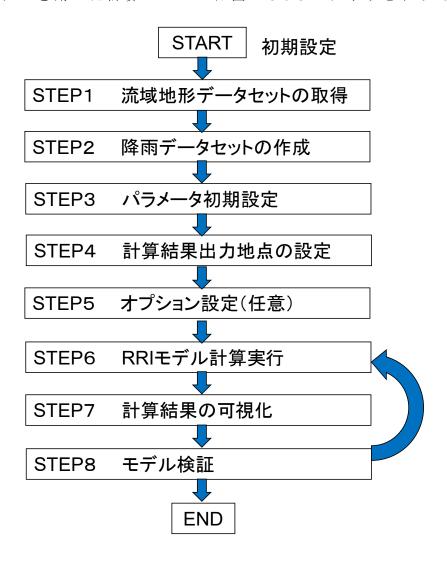
(1) 流出計算モデル変更の検討

昨年度に検討した一次元モデルでは、河川によっては複雑な流路条件、 手動で多くの条件を設定することが必要であり、汎用性に課題があるため、以下のとおりモデル変更の検討を行った。

今年度の検討では、国内外で広く使用され、国内河川でも導入が始まっている「RRI モデル(Rainfall-Runoff-Inundation: RRI Model)」を流出計算に採用することとした。

RRIモデルは、平成 28 年 5 月から、ICHARM ウェブサイト 100で無償公開されている。プログラムは GUI 版、CUI 版の 2 つがあり、CUI 版はFortran で記述されている。RRI モデルは、AIST-SHANEL と同様の分布型流出モデルの 1 つであり、潮汐等の水位境界条件と、いくつかの人工物の効果を考慮することができる。




図 2.3.5.3-1 RRI モデルの概要図

https://www.pwri.go.jp/icharm/research/rri/index_j.html

¹⁰⁰ ICHARM ウェブサイト、

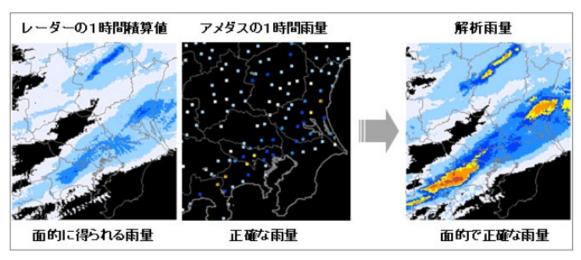
(2) 計算フロー(RRIモデル)

RRI モデルを用いた計算のフローは図 2.3.5.3-2 に示すとおりである。

■計算の流れ

- ✓ 初期設定(ライブラリ、可視化ソフトインストール、プロジェクトフォルダ作成)
- ✓ モデル構築(流域地形データ取得、降雨データ作成、パラメータ設定)
- ✓ モデル検証(計算実行、結果の可視化、パラメータ再調整)

図 2.3.5.3-2 RRI モデルの計算フロー


(3) 境界条件や構造物の反映方法の検討(RRIモデル)

RRI モデル(バージョン $1_4_2_7$)の公式マニュアル等の情報を調査し、以下のとおり境界条件や構造物の反映方法を検討した。

①レーダ雨量による降雨データ入力

RRIモデルでは、AIST-SHANELと同様に、アメダス等のデータから雨量を入力することができるが、メッシュ形式のレーダ雨量データを入力する標準機能も搭載している。

入力する降雨データとして、気象庁の「解析雨量」データを用いた。解析雨量は、AIST-SHANEL(全国版)と同じ3次地域メッシュ(約1km)毎の降水量であり、かつアメダス等の地上雨量で校正された精度の高い雨量メッシュデータである。現在の形式の1kmメッシュデータは、平成18年以降から存在する。データはgrib2形式(バイナリ)であるため、RRIモデルに入力できるテキスト形式に変換するツールを作成した。

出典:気象庁ウェブサイト

図 2.3.5.3-3 解析雨量におけるレーダ観測雨量の補正方法

② 地形修正ツール

RRI モデルの付属ツールとして、流域メッシュデータの流向や標高を手動で修正し、その修正後のデータを読み込んで、流路や集水域のデータを修正できるツールが使用可能である。流路が現地の実態と異なる点についても、修正が可能であることを確認した。

③流量の境界条件

RRI モデルでは、上流端のみでなく、任意のメッシュ番号(i,j)に対して、時系列の流量のテキストデータを与えることで、境界条件として流量を与えることができる。

④ 水位の境界条件

RRIモデルでは、任意のメッシュ番号(i,j)に対して、時系列の水位のテキストデータを与えることで、境界条件として水位を与えることができる。河口域に潮位データを与えることで、潮汐を考慮した非定常計算が可能である。

⑤河道の流路条件

集水域グリッド数がいくつ以上で河道とみなすか、パラメータで与えることができる。

河道はデフォルトで矩形断面であるが、堤防や断面形状について、別途入力ファイルを用意することで考慮することも可能である。また、任意のメッシュ番号(i,j)に対して、分流の設定が可能である。パラメータとして分配率を設定する。ただし、水門の開閉や堰の計算についてはモデルに実装されていない。

⑥ダムモデル

任意のメッシュ番号(i,j)に対して、ダムを設けることができる。パラメータとしてダムの有効貯水量等を与え、洪水時は複数の放流方式(一定率、一定量)に対応している。

(4) 流出計算結果(RRIモデル)

30

以上を踏まえ、RRIモデルで対象とした河川の条件設定と流出計算を行った。潮汐の境界条件として、昨年度と同様に近傍の海域の潮位データを使用した。

対象とした地点における、令和3年5月~12月の流域平均雨量(解析雨量)と、RRIモデルによる潮汐あり/なしの2パターンにおける流出計算結果を示す。降雨や潮汐に応答した流量や水位の変動がみられることを確認した。

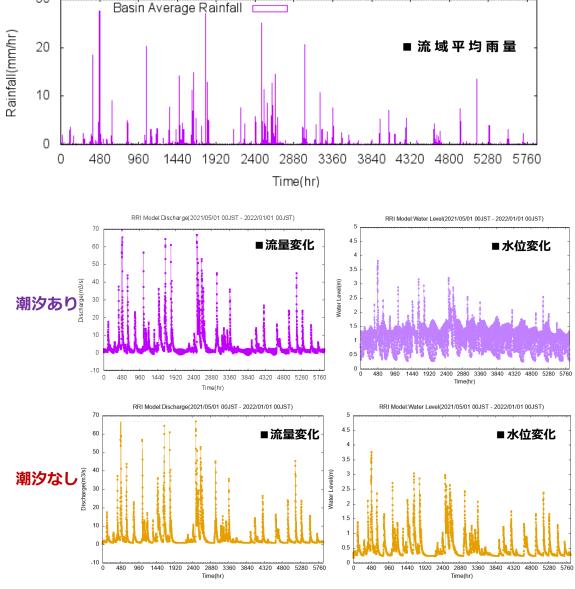


図 2.3.5.3-4 RRI モデルの流出計算結果 (令和3年5月~12月)

(5) 文献整理

NPEの生分解や塩分の影響に関する文献整理を行った。

- ① 前駆物質の分解による生成について
- ・国総研プロジェクト研究報告 第 13 号、参考資料 2 https://www.nilim.go.jp/lab/bcg/siryou/kpr/prn0013.htm

モデル河川において、NP、NPE等を対象に、現地観測結果を基に、移流・分散・大気への揮発、底泥への蓄積、生物分解等の現象をモデル化した事例。前駆物質の分解による生成を、暴露評価モデルに組み込む際に参考となる。

- ② NPE 動態への塩分の影響
- Jonkers et al (2003) Fate of Nonylphenol Ethoxylates and Their Metabolites in Two Dutch Estuaries: Evidence of Biodegradation in the Field https://doi.org/10.1021/es020121u

NPE への塩分の影響については、エスチャリー ¹⁰¹における海水と淡水の混合により、NPE の分解が促進されることが示唆されている。

 Jonkers et al (2005) Fate modeling of nonylphenol ethoxylates and their metabolites in the Dutch Scheldt and Rhine estuaries: validation with new field data

https://doi.org/10.1016/j.ecss.2004.08.014

オランダのライン川河口とスヘルデ川河口の調査データをもとにECoS モデルを用いて NPE の動態を解析したものである。エスチャリーでは、海水と淡水の混合によって NPE の分解半減期が短縮することを示している。

 Kvestak etal (1995) Biotransformation of nonylphenol polyethoxylate surfactants by estuarine mixed bacterial cultures https://doi.org/10.1007/BF00208388

Kvestak らによる、流入河川水の NPE の淡水、塩水の分解度の室内 実験の結果である (表 2.3.5.3-12.3.5.3-1 参照)。

¹⁰¹ エスチャリー:陸水と海水が共存する水域で、何らかの閉鎖性を伴うもの。 出典:国土交通省 汽水域の河川環境の捉え方に関する手引書. https://www.mlit.go.jp/river/shishin_guideline/kankyo/kankyou/kisuiiki/pdf/shiryo u1.pdf

表 2.3.5.3-1 NPE の海水との混合による分解能変化 (Kvestak et al の室内実験 (1995) の表に加筆)

Table 1. Kinetic parameters of nonylphenol polyethoxylates (NPnEO) biotransformation by two mixed bacterial cultures from the Krka River estuary at different temperatures and different initial concentrations of NPnEOs

Initial concentration (mg/L)	Culture origin	Salinity (%)	T (°C)	Lag-phase (days)	速度定数 K _b a (days ⁻¹)	半減期 t _{1/2} ^b (days)
1	E4A-0.5 m	8	13	7	0.02ª	35
	E4A-0.5 m	8.5	18	4	0.03 ^b	23
	E4A-0.5 m	32	20	<1	0.17^{b}	4
	E4A-0.5 m	24	22.5	<1	0.17^{b}	4
0.1	E4A-0.5 m	8	13	3	0.03^{b}	23
	E4A-0.5 m	8.5	18	5	$0.07^{\rm b}$	10
	E4A-0.5 m	24	22.5	<1	0.28^{b}	2.5
1	E4A-6 m	38	13	7	0.01^{a}	69
	E4A-6 m	38	18	13	0.02^{a}	35
	E4A-6 m	38	22.5	3	0.02^{b}	35
0.1	E4A-6 m	38	13	3	0.02^{b}	35
	E4A-6 m	38	18	5	0.03^{b}	23
	E4A-6 m	38	22.5	<1	$0.05^{\rm b}$	14

E4A-0.5 m: brackish water layer; E4A-6 m: saline water layer

Probability level of the linear regression analysis (log-lin): $^{a}p < 0.05$; $^{b}p < 0.01$

Arch. Environ. Contam. Toxicol. 29, 551-556 (1995)

^a K_b: biotransformation rate constant calculated from the exponential phase (based on first-order kinetics)

b t_{1/2}: half-life

2.3.5.4 専門家ヒアリング

前項までの検討結果について、3名の専門家へのヒアリングを実施した。検討結果について、以下のご意見をいただいた。

- ・淡水と塩水の鉛直方向の混合や、底泥の有機炭素含有率や組成についてどのように見積もるかが不明瞭である。
- ・河川ごとの複雑な条件や現象をモデルに反映させる労力と推計値のバランスが課題である。
- ・NPE の汽水域 102 での生分解性については、NPE が特殊な例である可能性があり、他の物質では異なる可能性がある。
- ・分解度については、感度解析で重要なパラメータを抽出し、重要なパ ラメータから優先して整備していくべきである。
- ・NPE に拘らず、動態が複雑でない化学物質を例として、化審法のリスク評価におけるモデルの有効性を確認することを優先させた方がよい。

2.3.5.5 技術的課題の整理

全般として、今年度までに検討したモデルを化審法のリスク評価で使 うには、検討すべき事項が多い状況である。モデルで今後検討すべき技 術的課題と方向性を以下に整理した。

- ・汽水域では分解しにくい有機物(化学物質)が蓄積しやすく、高濃度となりやすいため、懸念地点となる可能性が高くなるという仮説のもと、NPE以外で動態が複雑でない化学物質を対象に、感潮域モデルのリスク評価における有効性を実証することを優先する。
- ・SS、底質組成、底質中有機物濃度の実測値の得られる河川を検討対象とする。併せて、河道情報、河川施設情報など、モデル精緻化のために必要な情報を整備する。

¹⁰² 汽水域: 汽水域河川水と海水が接触する混合する部分で、淡水域と海域の推移帯である。塩分が 0.5%から 30%までの範囲の水域をいう。

出典:国土交通省 河川砂防技術基準 調査編 第 14章 汽水域・河口域の環境調査

エスチャリーと同義語。汽水の塩分は海水よりも低いと定義されているが、米国やオーストラリアのエスチャリーでは海水の塩分を上回る場合もある。

日本国内の場合は、エスチャリーと汽水域はほぼ同義。

出典: 国土交通省 汽水域の河川環境の捉え方に関する手引書.

https://www.mlit.go.jp/river/shishin_guideline/kankyo/kankyou/kisuiiki/pdf/shiryoul.pdf

3. 一般 化学物質等製造数量等届出のデータ整理

3.1 一般化学物質等製造数量等届出書のパンチ入力及び PDF データ 化作業

3.1.1 はじめに

令和4度実績分及び過年度実績分として製造・輸入事業者から届出のあった一般化学物質、優先評価化学物質、監視化学物質及び第二種特定化学物質(以下、「一般化学物質等」という。)の届出書のうち、書面により届け出られた届出書に記載された製造・輸入・出荷数量等の情報について、パンチ入力及びPDFデータ化を行った。また、併せて構造・組成に係る添付書類(以下、「構造添付書類」という。)の一覧表を作成した。

3.1.2 一般化学物質等製造数量等届出書のパンチ入力及び PDF データ化

令和5年度の一般化学物質等製造数量等届出の届出期間(書面:4月1日~6月30日、光ディスク・電子4月1日~7月31日)に提出された全ての届出書うち、書面により届け出られた届出書(一般化学物質2,150件、優先評価化学物質258件、監視化学物質7件)とパンチ入力データフォーマット(受理番号、申請方法、法人番号の情報が付されたExcelファイル)を借り受け、パンチ入力及びPDFデータ化を行った。

なお、パンチ入力データフォーマットと届出書の受理番号の確認を行い、受理番号の不整合があった際には、経済産業省担当官(以下、「担当官」という。)に報告し、受理番号の修正や付与を依頼した。パンチ入力は、フォーマットに異なる2名で入力し、PDFデータ化は届出事業者毎に作成したフォルダに保存した。フォルダ名の付け方は担当官の指示により、以下のとおりとした。

フォルダ名:事業者コード

ファイル名: [西暦年度] [事業者コード] [物質区分] [受理番号].pdf

[西暦年度]: 4 桁半角数字(2023) [事業者コード]: 13 桁半角数字

[物質区分]: 1(一般)、2(優先)、3(監視)、4(二特)

[受付番号]: 9桁半角数字

例: 2023 111111111111 1 000000001.pdf

※本年度は第二種特定化学物質のパンチ入力及び PDF データ化作業はなかった。

3.1.3 構造添付書類の一覧表作成

「経済産業省関係化学物質の審査及び製造等の規制に関する法律施行規則(昭和 49 年通商産業省令第 40 号。)が平成 30 年 8 月 31 日に公布、平成 31 年 4 月 1 日から施行された。これに基づき、化審法第 8 条による一般化学物質の製造数量等の届出及び第 9 条による優先評価化学物質の製造数量等の届出の際に、届出対象物質に関しての構造・組成について参考となる事項を記載した構造添付書類が必要に応じて添付されている。

一般化学物質、優先評価化学物質の届出対象物質に関して、構造添付書類を一覧表に取りまとめた。本年度は書面での構造添付書類の提出はなかったため、パンチ入力の対象はなかった。取りまとめの対象となった届出書の件数を表 3.1-1、表 3.1-2 に示す。

表 3.1-1 令和 5 年度届出(令和 4 年度実績)における一般化学物質の構造・組成に係る添付書類件数

官報整理	公示名称	届出件数
番号		
7-155	ポリオキシアルキレンアルキル (又はアルケニル) (C = 4 ~ 2 4) エーテルの硫酸エステル及びその塩 (K, Na, Ca)	31

表 3.1-2 令和 5 年度届出(令和 4 年度実績)における優先評価化学物質の構造・組成に係る添付書類件数

通し番号	優先評価化学物質の名称	届出件数
214	ナトリウム=アルキル (C=8~18) = スルファート	37
250	$ \begin{bmatrix} \alpha - (アルキル (C=16 \sim 18)) - \omega \\ - ヒドロキシポリ (オキシエタン-1, 2 \\ - ジイル) 又は \alpha - (アルケニル (C=16 \sim 18)) - \omega - ヒドロキシポリ (オキシエタン-1, 2 - ジイル)] (数平均分子量が 1, 0 0 0 未満のものに限る。) $	58

3.2 一般化学物質等製造数量等届出に係る事業者照会票の作成

3.2.1 はじめに

令和5年度中に書面、光ディスク又は電子申請により届出のあった一般化学物質等製造数量等届出書について、一部に不明瞭情報等(記載すべき項目欄が空欄になっている等の形式的不備や届出物質に係る官報整理番号とCAS登録番号が対応しない等の技術的な誤り)が含まれていることがある。

当該不明瞭情報等については経済産業省及び独立行政法人製品評価技術基盤機構(以下、「NITE」という。)が対象案件を選定・リスト化し(以下、「不明瞭情報等リスト」という。)当該届出を行った事業者に対し届出区分毎に技術照会を行っているため、不明瞭情報等リストを届出区分毎に事業者単位で切り分けた事業者照会票を作成した。

なお、事業者照会票フォーマット(Excel 形式)は、経済産業省から提供され、作業内容及びスケジュール等については、経済産業省担当官と調整した。

3.2.2 事業者照会票の作成

一般化学物質、優先評価化学物質の届出書に含まれていた不明瞭情報等のうち、メールでの照会手続きが必要となった一般化学物質 22 件、優先評価化学物質 27 件について、事業者毎にパスワードを設定した事業者照会票 35 件を作成した。

なお、作成した事業者照会票のファイル名の付け方は担当官の指示により、以下のとおりとした。

ファイル名: [事業者コード]_[23_NITE]_[ファイル出力日]. xlsx

[事業者コード]:13 桁半角数字 [ファイル出力日]:8 桁半角数字

例: 1111111111111 23 NITE 20230101. xlsx

事業者照会票の主な照会内容例を下記に示す。

- 高分子化合物の該当の有無の整合性
- ▶ 官報公示名称、物質名称の整合性
- ➤ CAS 登録番号の整合性

3.3 構造・組成に係る添付書類と届出書の整合確認

3.3.1 はじめに

構造添付書類と届出書に記載されている内容の整合を確認するため、 構造添付書類事業者照会用リストを作成した。当該リストは構造添付書 類の一覧表に、構造添付書類と届出書の値が異なる箇所等を追記し作成 した。

3.3.2 構造添付書類と届出書の整合確認

構造添付書類の提出の対象である一般化学物質(1物質)、優先評価化学物質(2物質)について、構造添付書類の記載内容と届出書との照合を行った。出荷数量について1t未満の合計による差異が散見された他、優先評価化学物質の届出書では物質名称と官報公示名称が同一である場合に物質名称の省略による物質名称の不一致があった。担当官の指示により、出荷数量の差が有効数字1桁程度、あるいは1t未満の合計による場合には、誤差なしとみなし、結果の集計を行った。また、必要な修正を行い、結果表に反映させた。

4. 「化審法のリスク評価等に用いる物理化学的性状、分解性、蓄 積性等のレビュー会議」の開催及び事務補助業務

4.1 会議の開催

一般化学物質のスクリーニング評価に用いる分解性データ、優先評価化学物質のリスク評価に用いる物理化学的性状、分解性(媒体中半減期等)、蓄積性等のデータについて、物理化学的性状の専門家による「化審法のリスク評価等に用いる物理化学的性状、分解性、蓄積性等のレビュー会議」(以下、「物化性状等レビュー会議」という)を令和5年度に2回開催した。事務作業として、Web会議運営等を行った。

なお、必要に応じて開催することとされていた「外部専門家及び関係機関との意見交換会」については、開催しなかった。

4.2 外部専門家の招集及び謝金の支払い

事務作業として、物化性状等レビュー会議に招集した6名の専門家に対して、委員委嘱、謝金の支払いを行った。会議は全て Web 会議のため、交通費は発生しなかった。

4.3 物化性状等レビュー会議の会議資料及び議事録の作成

令和5年度に開催した物化性状等レビュー会議の配布資料の作成、議事録作成を行った。

4.4 3省合同審議会での審議・報告に係る資料作成補助

令和5年9月15日に開催された3省合同審議会において、NPEの第 二種特定化学物質への指定等について審議されることを受け、NPE実態 調査の解析を行うとともに、審議資料の作成に係り、以下のような補助 作業等を実施した。

- ・ 法第 35 条の届出業務を課す NPE 含有製品の選定にかかり、NPE 含有水系洗浄剤輸入量の推計及び輸入製品の調査等を実施し、資料上に記載する調査済みの輸入洗浄剤の数等を確認した。
- ・技術上の指針等の対象となる NPE 含有製品の選定にかかり、NPE 実態調査結果のとりまとめ・解析を行うと共に、資料上に記載する調査回答者数、事業者の排出処理状況等の記載内容を確認した。
- ・ コンクリートや塗料等の長期使用製品の考え方にかかり、参考情報等調査すると共に、審議会資料上の記載内容を確認した。