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1. 研究開発の内容 

1.1. 事業背景 

現在政府は，様々な社会課題の解決に向けて，自動運転移動サービスを実現させる様々

な施策を実施している．また，2022 年 12 月 23 日に閣議決定された「デジタル田園都市国

家構想総合戦略」においては，自動運転移動サービスの実現目標として「地域限定型の無

人自動運転サービスにつて，2025 年度を目途に 50 か所程度，2027 年度までに 100 か所

以上の地域で実現するため，あらゆる施策を講ずる」とされている．このような自動運転

サービスの多地域での展開においては，自動運転システムの安全性を如何に論証していく

かが重要になると考えられる． 

本事業の実施者らは，SIP 第 2 期 自動運転（システムとサービスの拡張）において，

AD-URBAN(FOT project of Automated Driving system under Real city environment based 

on Academic Researcher's Neutral knowledge)プロジェクトとして，インフラ協調型の自

動運転システムの開発を行い，自動運転システムの認識技術の実環境における課題を明ら

かにするとともに，自動運転システムをサポートするインフラの有効性について検証を行

ってきた実績がある．またこの活動の中で  DIVP®(Driving Intelligence Validation 

Platform)プロジェクトと連携し，現実環境と仮想環境の双方からの検討によって，自動運

転システムの認識の限界性能の把握を行う手法について検討してきた実績がある．また自

動運転システムのシナリオベースの安全性評価手法について検討を進めている

SAKURA(Safety Assurance Kudos for Reliable Autonomous Vehicles)プロジェクトとも連

携を進め，一般道において評価すべき自動運転システムのシナリオ等についても検討を進

めてきた．このような，現実環境と仮想環境双方を用いた体系的な評価手法の確立が，将

来の自動運転システムにおける網羅的かつ効率的な安全性の論証に必須となると考えらえ

る． 

また本事業の実施者らは，前述の DIVP®プロジェクト，SAKURA プロジェクトに加え，日

本自動車工業会(JAMA)などとともに，仮想環境を用いた自動運転システムの安全性評価環

境の構築に向けて議論を行うモビリティ DX 検討会 安全性評価戦略サブワーキンググルー

プや，関連するタスクフォース等の会議体にも参加し，各プロジェクトの連携によるシナ

ジー効果を発揮するとともに，自動運転システムの安全性を評価する環境の構築に向けて

オールジャパンの体制で取り組んできた実績がある．本事業においては，これまでのオー

ルジャパンの体制で実施してきた取り組みをより発展させ，仮想環境を用いた安全性評価

環境の構築に向けて，リアルとバーチャルの融合により自動運転システムの安全性を網羅

的かつ効率的に評価を行うための手法について検討を行うことを目的としている． 
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1.2. 研究開発概要 

本事業の関連事業として実施されている DIVP®プロジェクトおよび SAKURA プロジェ

クトにおいては，仮想環境において自動運転自動車の安全性を評価する環境を構築す

る取り組みが行われている．一方，安全性評価環境を効率的に開発し，効果的に自動

運転システムの安全性評価に用いていくためには，実際の自動運転システムをリファ

レンスシステムとして接続しながら環境の構築を行っていくことが重要となる．この

ため，本事業では 2.2 節に記載の「歩行者，自転車が存在する交差点における安全性

評価指標の検討」に記載の取り組みを実施し，DIVP®プロジェクトおよび SAKURA プロジ

ェクトが開発する安全性評価環境である CI（Continuous Integration）環境の開発を

加速させる．一方，安全性評価環境に接続されるリファレンスシステムは，高度な自

動運転技術を有していることも必要となる．特に，DIVP®プロジェクトおよび SAKURA

プロジェクトとの連携によって構築する CI環境においては一般道における自動運転に

おいて最も危険性が高い状況の一つとして考えられる交差点の通過判断をベースとし

て開発を行う予定となっている．このため，本事業では 2.1 節に記載の「死角を伴う

環境下における安全性評価指標の検討」に記載の取り組みを実施し，特に交差点の通

過判断に必要となる認識技術を中心とした自動運転技術の向上に資する取り組みを実

施する．また，高度な判断技術を備えた自動運転システムを様々な環境で実証評価す

ることによって，自動運転システムがどのような環境で判断を行うことが難しくなる

のかといった課題を見つけることが可能になると考えられる．このため 2.3 節に記載

の「仮想環境を活用した効率的な AD システムの安全性評価手法の確立」に示す取り組

みを実施し，自動運転システムの判断技術の向上を加速させる環境を構築する．そし

て，実証実験等を通して得られた判断技術の課題を SAKURA プロジェクトなどの関連す

る他プロジェクトに展開し，安全性を評価すべきシナリオの検討に資する取り組みを

実施する． 

 

 
図 1.2-1 AD-URBAN の事業概要 
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1.3. 研究開発体制 

図 1.2-2 に示すように，本事業では金沢大学が AD-URBAN プロジェクトの全体のとり

まとめを行いつつ，金沢大学および中部大学の連携によって事業を推進した．また，

本事業と連携する DIVP®プロジェクト，SAKURA プロジェクトと密な連携を行い，自動運

転自動車の安全性評価環境の構築を加速させる取り組みを行った．  

 

 
 

図 1.2-2 AD-URBAN の実施体制 

 

 
図 1.2-3 AD-URBAN と関連プロジェクトの事業推進体制 
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また図 1.2-3 に示すように，本事業の進捗状況の確認および関連するプロジェクト

との連携状況については，産学官の自動運転システムに精通した関係者が参加するモ

ビリティＤＸ検討会 安全性評価戦略サブＷＧへ定期的に報告を行い，各方面の専門家

の意見やアドバイスを頂きながら，本事業を効果的かつ効率的に推進させた． 

 

本報告書では，2 章において本事業で実施した研究テーマごとの目標について述べる．

また 3 章において各研究テーマの詳細な実施内容について述べる．そして 4 章におい

て本事業の実施成果について述べる． 
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2. 研究テーマごとの目標 

2.1. 死角を伴う環境下における安全性評価指標の検討 

A.マルチセンサを用いた死角を伴う環境における認識モデルの構築(金沢大学) 

自動運転における交差点の走行では車載センサで認識した周辺物体の運動状態にも

とづいて衝突判定による安全確認を行い，加減速などの走行軌道を生成する．また，

SIP 第 2 期 自動運転（システムとサービスの拡張）において実施していた AD-URBAN

プロジェクトでは，市街地の走行環境において 200m 先の自動車を認識することが遠距

離物体認識の要求性能として重要であることが議論されていた．しかしながら，交差

点右折時の死角が発生する場合では，対向車の接近状態を直接認識することが困難と

なるため衝突判定による安全確認は困難となる．このような状況における安全な自動

運転を実現するためには，自車から見えている領域と見えていない領域を適切に区別

する死角領域の認識技術及び死角領域から飛び出してくる自動車の早期認識が重要と

なる．そこで，隠れにロバストな死角領域及び交通参加者の認識を実現するために

LiDAR，ミリ波レーダ及びカメラなどのマルチセンサを用いた認識モデルを構築する． 

本事業における研究初所年度である 2023 年度では，マルチセンサを用いた死角領域

の認識アルゴリズムの初期検討及びミリ波レーダを用いた物体認識技術を構築する．

前述の通り AD-URBANプロジェクトにおける事前検討から交差点右折時においては概ね

200m 程度遠方から対向車両を検知することが求められる．このため，高分解能ミリ波

レーダを導入して自動車を認識可能な物体認識アルゴリズムを開発し，良好な環境条

件における隠れの少ない物体に対して 200m 以内の認識率 90%の達成を目指す．しかし

ながら特に隠れの大きな物体などでは性能を維持できない可能性もあり，安全性評価

の視点ではそのような条件の明確化が重要であると考えられる．このため，目標とす

る認識率 90%を達成できる条件の明確化を行う． 

 

B.深層学習を用いた LiDAR・カメラのセンサフュージョンによる物体認識モデルの精度

向上(中部大学) 

自動運転サービスとして，時間帯や天候が異なっても死角を伴う環境下で安全に走

行することが求められる．しかしながら，実環境において同一の状況を異なる時間帯，

天候で再現し，その安全性を評価することは困難である．SIP 第 2 期 自動運転（シス

テムとサービスの拡張）において実施していた AD-URBAN プロジェクトでは，仮想環境

を活用して様々な時間帯，天候，対向車の種類などの諸条件を変えて，同一の状況に

おける各諸条件のもたらす影響について，カメラ画像および LiDAR それぞれでの限界

性能評価を実施してきた．また，カメラ画像および LiDAR の認識モデルの結果を結合

することで，それぞれの認識モデル単体での結果よりも認識性能が向上することを確

認した．一方で，雨天時に対向車の遮蔽率が高い場合，検出精度が低下していた．こ

のような認識モデルにとって不調となる条件における認識性能を向上させることが可

能かを評価するために，2023 年度は深層学習を用いたカメラ画像と LiDAR のセンサフ

ュージョンによる認識モデルを開発する．カメラ画像および LiDAR それぞれの認識モ

デルの結果を統合するのではなく，同一の認識モデルにすることで，各センサから得

られる特徴を相互共有でき，検出精度の向上が期待できる．また，雨天時のような不

調となる悪環境の学習データが不足していることも検出精度低下の一因であると考え

る．そこで，仮想環境のデータを認識モデルの構築に活用することで，検出精度が向

上するか検討する．これらの開発・検討を通じて，2023 年度は不調となる条件として

代表的な雨天時における 100m 遠方の対向車に対して，検出精度 90%達成を目指す．一

方で，安全性評価の視点では認識できない条件の明確化が重要であると考えられる．

このため仮想環境を用いた評価により，十分な認識精度を確保できない条件の明確化

を行う． 
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2.2. 歩行者，自転車が存在する交差点における安全性評価指標の検討 

A.CI 環境を用いた交差点における安全性評価に向けた AD システム評価手法の検討(金

沢大学) 

自動運転(AD)システムの安全性を評価するためには，認識・判断に関連する環境要

因や交通状況などの様々な要因に対して，十分な性能が確保されているかを評価する

ことが必要となる．したがって，自動運転の安全性評価には網羅的な評価によって要

求性能の達成度合いや環境変化時のロバスト性を明確化することが必要となる．この

ため本事業では安全性をより効率的かつ網羅的に評価可能とするため，仮想環境の構

築を行っている DIVP®プロジェクトと連携して AD システムの自動評価環境を CI（継続

的インテグレーション）環境として構築する．また CI 環境における安全性評価をより

効率的に行うため，認識及び判断の機能に分けて 2-Stageで評価する環境を構築する． 

まず 1st-Stage では，認識機能に関する自動評価環境を構築する．シミュレーション

環境を活用したデータを生成することで，特定環境のシナリオにおける認識機能の限

界性能を評価可能である．このため，多数のシナリオに対して自動的に評価可能な環

境を CI 環境として構築する．2023 年度においては，SIP 第 2 期における AD-URABAN プ

ロジェクトで構築していた自動運転車両を対象としたカメラ及び LiDAR の認識限界性

能の評価を CI 環境で実施するソフトウェア環境を開発し，環境条件に対する認識精度

の統計モデルの近似手法を検討する． 

また，2nd-Stage では経路・軌道計画などの判断機能に対して 1st-Stage 同様の CI 環

境による自動評価環境を構築する．本事業では，ヒューマンドライバがどのような挙

動を取るのかという視点で SAKURA プロジェクトにおいて調査された事故・ヒヤリハッ

ト事例や，実交差点における車両の挙動の解析結果等をもとに，交差点を走行する車

両の挙動（実交通流シナリオ）を DIVP®シミュレータ上で再現させる．そして，自動運

転車の交差点通過時の安全性を評価する環境を構築する．この際 1st-Stage にて検討し

た認識精度の統計モデルを DIVP®シミュレータから出力される Ground Truth データに

付加することで環境条件に応じて他車両に対する認識の曖昧さを再現する．そして仮

想環境上で様々なシナリオ・環境条件を再現させ，自動運転システムを走行させるこ

とで安全性の評価を行うことが可能な CI 環境を構築する．  

 

B.歩行者，自転車が存在する交差点における安全性評価指標の検討(中部大学) 

歩行者や二輪車といった車両以外の交通参加者が存在するシーンにおいて，自動運

転サービスが安全に走行するためには，各交通参加者の位置を認識しなければならな

い．このようなシーンにおける認識モデルの限界性能を評価するために，同一のシナ

リオを現実の環境下において異なる時間帯および天候で再現することは困難であり，

仮想環境の活用は不可欠である．そこで，2023 年度は，上記(1)で実施した限界性能評

価を歩行者および二輪車に拡張するために，実環境での走行シーンを参考にして，交

差点を対象とした評価シナリオを仮想環境で作成する．このとき，歩行者の体型や服

装，二輪車の色など，限界性能を評価すべき項目を明らかにする． 

また自動運転する際，安全に停止・発進といった走行判断性能を向上させるために

は，交通参加者の行動を予測することも重要となる．これまでの SIP 第 2 期における

AD-URABAN プロジェクトでは，歩行者の行動予測アルゴリズムの調査および開発を実施

してきた．この結果を拡張して，交差点における限界性能評価に歩行者の行動予測が

必要な指標になるか調査する． 
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2.3. 仮想環境を活用した効率的な AD システムの安全性評価手法の確立 

①実証データを活用した AD システムの安全かつ効率的な評価手法の検討(金沢大学) 

自動運転(AD)システムを実環境で評価するためには，様々な環境への適用性や安全

性の評価の観点から，膨大な走行データを使用した評価・検証が必要になると考えら

れる．したがって演繹的なアプローチによって仮想環境で評価すべき認識・判断機能

のシナリオを検討し，現実的に起こり得る範囲内での網羅的な安全性評価を行うこと

が重要となる．そして，仮想環境において再現された交通環境の中で自動運転システ

ムを走行させることで安全かつ効率的な自動運転システムの評価が期待される． 

一方実環境では，危険なシナリオや緊急車両遭遇時の挙動など，発生頻度が極めて

まれなシナリオも存在している．また自動運転システムの開発者目線では，例えば個

別の自動運転システムが課題としている具体的なシナリオなどといったシーンに対し

て，自動運転車両が適切な挙動を取れているのかといった観点での評価も必要となる．

このため，演繹的な評価に加え，帰納的なアプローチでの仮想環境上での評価も必要

になると考えられる．このため，本事業では実環境では再現が困難もしくは遭遇頻度

が稀なシナリオに対する自動運転システムの判断技術の向上を目的として，以下に示

す評価環境を構築する． 

a) 自動運転時に課題のあった状況を仮想環境上で再現する． 

b) 手動走行において収集した交通環境のタグ付けを行い仮想環境上で再現する． 

c) ドライビングシミュレータを構築して人為的に発生させた危険な走行パターン

を仮想環境上で再現する． 

d) そして，a),b),c)に交通参加者の位置や遭遇タイミング，天候条件等のバリエー

ションを付加して仮想環境上で再現する． 

 

上記目的を最終的に達成するため，本事業における研究初年度である 2023 年度にお

いては，DIVP®にて地図整備が行われている東京臨海部等において自動運転時のデータ

収集を進めるとともに，仮想環境を活用した効率的な自動運転システムの評価環境を

構築する． 
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②緊急車両認識モデルの構築 

A.緊急車両認識モデル構築用データの収集(金沢大学) 

通常の走行シーンにおいて遭遇頻度が低く再現が困難なシナリオの一つとして，緊

急車両遭遇時の挙動が挙げられる．緊急車両接近時には通常とは異なる回避行動が要

求されるためこのような走行シナリオにおける安全性の評価は重要である．そこで，

緊急車両の認識モデル構築用の効率的なデータ収集環境を構築し，定期的なデータ収

集作業を実施することで市街地の走行環境における緊急車両の走行データを収集する．

またこれまでの SIP 第 2 期における AD-URABAN プロジェクトでは，非公道環境にて走

行可能な模擬緊急車両を構築して警光灯を点滅するテスト車両の高精度な位置情報な

どを計測できる環境を整備している．そこでこの模擬緊急車両を活用し，日本自動車

研究所のテストコースなどを利用した模擬的な環境でのデータ収集も実施する．一方，

計測したセンサデータの解析にあたり効率的なデータ抽出を可能とすることも重要で

ある．そこで，AD-URBAN プロジェクトにて構築したサイレン音の認識モデルを用いて

緊急車両が存在するデータを効率的に抽出できるようにする． 

以上より，2023 年度ではデータ収集用の環境を構築して緊急車両の認識モデル用の

データ計測を実施する．なお，SIP 第 2 期における AD-URBAN プロジェクトでの事前検

討から緊急車両に対する定期的なデータ収集時に緊急車両と遭遇するのは年間数件程

度となることが経験的に判明している．このことから，市街地の環境において少なく

とも 5 件以上の緊急車両の遭遇シナリオ収集を目指してデータを計測する．  

 

B.緊急車両認識モデルの構築(中部大学) 

緊急車両認識を行うために，SIP 第 2 期における AD-URBAN プロジェクトにおいて，

カメラを用いた緊急車両認識アルゴリズムの開発を実施してきた．遮蔽が生じないシ

ーンにおいて，パトカーおよび消防車は 90%以上の検出率を達成した．一方で，救急車

は 78%程度の検出率に留まっている．また，遠方から緊急車両が近づいてくるケースを

想定すると，緊急車両の一部が隠れていることが想定される．50%未満の遮蔽が生じて

いるケースでは，パトカーおよび消防車の検出率が 75%程度，救急車の検出率が 48%程

度となっていた．これらの精度低下の要因は認識モデルを構築する際の学習データ不

足であることが考えられる．そこで，②A.で収集した緊急車両のデータを活用して認

識モデルの高精度化を目指す．一方で，実環境では，緊急車両に遭遇することは少な

く，高精度な認識モデルを実現するためのデータが十分に収集できるとは限らない．

そこで，仮想環境に緊急車両を配置してデータ収集を行う．このとき，実走行シーン

で得られた緊急車両のデータを参考に，緊急車両だけでなく，周辺に他車両を配置す

る．2023 年度は，仮想環境で収集した緊急車両データを認識モデル構築に活用し，遮

蔽率が 50%未満のときの検出率 90%を目指す．そして，遭遇頻度が低い緊急車両の認識

モデルの精度向上に対する仮想環境の活用の有効性について評価する．また，安全性

評価の視点では認識できない条件の明確化が重要であると考えられる．このため，検

出率 90%が維持できない条件の明確化を行う． 
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3. 研究開発成果 

3.1. 死角を伴う環境下における安全性評価指標の検討 

A.マルチセンサを用いた死角を伴う環境における認識モデルの構築(金沢大学) 

本研究項目では，隠れにロバストな死角領域の認識及び死角環境下でのマルチセン

サの認識モデルの構築を目指す．2023 年度では，マルチセンサを用いた死角領域の認

識アルゴリズムの初期検討及びミリ波レーダを用いた物体認識技術を構築する．高分

解能ミリ波レーダを導入して自動車を認識可能な物体認識アルゴリズムを開発し，良

好な環境条件における隠れの少ない物体に対して 200m 以内の認識率 90%の達成可能な

条件を明確化する．以降では具体的な研究開発成果について個別に述べる． 

 

• 死角領域の認識アルゴリズムの検討 

自動運転自動車の周辺の死角領域を認識するためにはセンサで取得した情報から周

囲の障害物を検出して走行可能領域を決定する必要がある．走行可能領域を検出する

一つの方法としては LiDAR などの測距センサを用いて周囲で検出した障害物と自車と

の位置関係から可視領域をフリースペースとして認識する．代表的な方法としては占

有格子地図があげられ，図 3.1.A-1(a)のように自車周辺の可視領域及び死角領域を確

率的に認識する方法[1]がある．その他の方法としてカメラを用いた走行可能領域の認

識などもあげられるが LiDAR と比べて測距精度が劣るため死角範囲の精度に課題が残

るため本検討では LiDAR による死角認識を採用する．自車周辺の可視領域及び死角領

域が得られると，交差点の進入判断の処理などに活用可能である．例えば図 3.1.A-1(b)

は自動運転自動車が交差点を右折するシーンの様子となる．自車前方の右折待ち車両

により後方が遮蔽されるとその奥が死角領域となるため遠方の安全確認が困難となる．

交差点進入判断アルゴリズムに関する文献[2][3]などでは物体認識が困難な死角領域

から任意の物体が飛び出す可能性を考慮して安全確認を行う方法が検討されている．

このような死角領域の範囲を考慮した意思決定を適切に実施するためには正確な死角

領域の認識が必要不可欠である．  

 

 
(a) 占有格子地図による死角領域の表現 

 
(b) 死角状態を考慮した交差点進入例 

図 3.1.A-1 死角状態に基づいた周辺環境認識 
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死角領域の認識は検出した障害物とセンサとの相対的な位置関係から算出をするが，

基本的な占有格子地図では周囲の路面高さを正確に得ることが困難なため車両周辺の

路面が平坦であると仮定して死角領域を計算する．このとき，自車周辺の路面勾配が

変化している場合の正確な死角領域の認識が課題となる．図 3.1.A-2 のように，自車

位置の先で路面勾配が変化している場合では認識した死角領域と実際の範囲との誤差

が大きくなる．このように実際の死角範囲との乖離があると交差点進入判断において

不必要に待機しすぎる場合や見えていないにも関わらず進入可と判断するなどの誤っ

た判断に繋がり危険である．こうした背景から本検討では路面勾配を考慮した死角領

域の認識アルゴリズムを検討した． 

 

 
図 3.1.A-2 路面勾配の状態に応じた死角検出範囲の課題 

 

検討した死角領域の認識アルゴリズムの概要を図 3.1.A-3 に示す．こちらではセン

サにより測距した障害物情報に加えて路面高さ情報を詳細に記録した Digital 

Elevation Map (DEM)を活用して死角領域を認識する方法である．DEM は任意の地点の

高度情報を記録した画像形式の地図であり，図 3.1.A-3(a)のように地図の各画素が緯

度経度に対応する位置情報と画素値として高度情報を表現している．この地図は自動

運転自動車の LiDAR などのセンサ情報を蓄積して作成可能であり，オンラインで作成

する方法[4]や事前の走行データからオフラインで広範囲の地図を作成する方法があ

る．このように路面の各地点における高度情報が得られると，路面高度及び勾配を考

慮した死角領域を算出可能である．図 3.1.A-3(b)が検討した死角認識アルゴリズムの

概要である．センサと障害物輪郭の延長線上と路面領域の交点を算出し，路面高さを

考慮してセンサから視認可能な路面範囲を判定することで路面状態に応じた死角範囲

を認識する．以上の流れで検討したアルゴリズムをベースとして実環境での性能評価

を実施する． 

性能評価では，実際の道路環境として路面勾配が変化する環境での検出性能を比較

した．金沢大学内の道路環境における右折待ち対向車に対する死角発生シーンを評価

環境とした．図 3.1.A-4 に代表的な評価シーンを示す．車両前方に右折車両が配置さ

れており，その車両後方部分が死角となるシーンである．また当該車両後方は登り坂

となっており，自車から離れるにつれて路面勾配が変換する道路環境である．評価に

当たり死角領域の正解情報を定義する必要がある．ここでは車両の視点から確認可能

な死角領域を含む情報として車載カメラで認識した道路領域を評価する．カメラの視
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点において死角領域には遮蔽物が存在するため，カメラ上の道路領域の認識精度を評

価することで認識した死角領域の妥当性を検証する． 

 

 
(a) Digital Elevation Map の作成例 

 
(b)死角領域の認識 

図 3.1.A-3  DEM(Digital Elevation Map)を用いた死角領域の認識 

 

  
(a) カメラ画像 (b) Semantic Segmentation 結果 

図 3.1.A-4 登り坂の傾斜環境における評価シーン 

 



 

15 

 

 図 3.1.A-4(b)として評価に用いる物体画像を示す．こちらはカメラ画像に対して

Semantic Segmentation により認識した道路領域の画像である．画像内で紫色の領域が

道路領域と対応するため，LiDAR により認識したフリースペースをカメラ上に投影し，

道路領域の認識精度を評価する．評価では自車からの異なる距離による精度

(Precision =TP/(TP+FP))，再現率(Recall=TP/(TP+FN))を評価する．ただし，TP は道

路領域をフリースペースとして認識した点群数，FP は道路外の領域をフリースペース

として誤認識した点群数，FN は道路領域を死角領域として未検出した点群数である． 

評価結果を図 3.1.A-5 に示す．図 3.1.A-5(a),(b)より DEM の地図情報を用いること

で全体的な精度・再現率が改善していることが確認できる．特徴的な認識結果の様子

を図 3.1.A-5(c),(d)に示す．各図においてオレンジ色の領域が路面の未検出領域に対

応する．地図情報を活用することで路面の未検出領域を削減し認識した死角範囲が短

くなっていることが確認できる．本評価シーンでは検討した死角認識アルゴリズムを

使用することで注目車両後方の死角範囲が約 11m 削減された．死角後端から移動物の

飛び出しを考慮して交差点右折判断をする場合，例えば時速 50km/h の車両が接近する

と仮定すると移動物の予想到達時間が約 0.8s 減少することになる．正確な死角認識に

より対向車を過剰に待ち続ける可能性を抑制し，適切な交差点進入判断の実現が期待

できる． 
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図 3.1.A-5 登り坂の傾斜環境における評価結果例 
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• ミリ波レーダを用いた物体認識技術の検討 

市街地の交通環境における高度な周辺物体の認識を実現するため，高分解能なミリ

波レーダである 4D イメージングレーダを活用した物体認識技術を検討する．4D イメー

ジングレーダは周囲の物体の相対距離，ミリ波照射方向の相対速度，方位角，仰角を

計測可能である．従来の平面走査型のミリ波レーダと比べて物体の情報を 3 次元点群

として得られる特徴がある．また，得られる点群数，観測可能な距離が従来型のミリ

波レーダより高性能化されているためこれによりロバストな認識も期待できる．本検

討では，図 3.1.A-6 のように車両上部に 6 台のイメージングレーダを設置し，全方位

の物体を観測可能な環境を構築した．図 3.1.A-6(c)のように LiDAR と比べると疎な点

群であるが，相対速度の情報が得られることから移動している物体の点群と背景の静

止物体の点群を区別して処理可能である．また，遠距離まで十分な点群が得られてお

り，ここで得られるセンサ情報を活用して周辺物体の認識技術を構築する． 

 

 

 

(a) 4D イメージングレーダの設置の様子

（赤丸がセンサ設置位置） 

(b)4D イメージングレーダの観測範囲 

 
(c) 観測点群の様子 

図 3.1.A-6 4D イメージングレーダのセンサ構築 

 

認識アルゴリズムの開発にあたり，本研究項目ではフレームあたりの物体認識アル

ゴリズム及び時系列処理による物体の追跡アルゴリズムの検討を進めた． 
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【ミリ波レーダを用いた物体認識モデルの検討】 

 4D イメージングレーダで得られる観測点を用いた深層学習による物体認識モデルを

検討した．検討したアルゴリズムでは LiDAR の点群に対する物体認識の代表的なモデ

ルである PointPillars[5]をベースとして近傍の点群の特徴から物体の位置・種別及び

矩形枠サイズを検出するモデルを採用した．しかしながら，学習において 4D イメージ

ングレーダの点群情報に関するデータセットは十分に整備されていない．今年度の取

組では自動運転自動車で同時に計測した LiDAR のデータ利用し，LiDAR で認識した物体

矩形枠を学習・評価用データとすることで初期検討用のデータを用意した． 

ここで用いる LiDAR の認識モデルでは自動車・バス・トラック・歩行者・二輪車な

どの異なる種別の物体を認識可能である．4D イメージングレーダの認識モデルにおい

てもこれらの各種別の物体に注目し，一定点群数以上または一定速度以上の点群が得

られている物体に限定してデータセットを作成した．これにより疎な点群のなかでも

移動している物体や近距離の密な点群が得られる物体に注目した認識の傾向を評価す

る．用意したデータセットの内訳を表 3.1.A-1 に示す．本データセットでは最大 200m

以内の範囲に存在する自動車及び大型自動車（バス・トラック）を中心にとりまとめ

ている．ただし十分なデータ数が確保されているのは 100m 程度の範囲にとどまってい

るため，性能評価では 100m 以内の自動車・大型自動車の検出率（Recall）を評価する． 

 

表 3.1.A-1 ミリ波データの物体認識用いたデータセットの内訳 

 Train Test 

Car 50,236 25,719 

Large Car 7,971 2,548 

Pedestrian 2,882 --- 

Cyclist 783 --- 

 

  
(a)  Car クラスの検出率 (b)  Large Car クラスの検出率 

図 3.1.A-7 物体検出モデルによる認識率の評価結果（青：ターゲット車両停止，橙：

ターゲット速度 25km/h 未満，緑：ターゲット速度 25km/h 以上） 

 

評価結果として図 3.1.A-7 に各クラスの距離ごとの Recall の分布を示す．各グラフ

ではターゲットとなる車両の走行速度によって停止車両，低速車両，高速車両と分け

ている．これらのグラフより車両の走行速度が低速な物体ほど未検出が増大する傾向

があり，停止車両はほとんど検出できていないことが確認できる．これは停止車両と

背景の建物の輪郭点の区別が困難なため認識ができていない点が理由である．LiDAR

と比べると得られる点群数が少ないため，点群の速度情報から移動物体であることが

わかる場合において認識可能な傾向が得られた．低速物体の認識率を改善するにはカ

メラなどの追加情報の検討が重要である． 

本評価における特徴的な検出結果のシーンを図 3.1.A-8 に示す．図 3.1.A-8(a)より
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近距離においては車両だけでなく歩行者の認識も可能な点が確認できた．歩行者に関

しては得られる点群が数点しか得られないため，車両同様に停止している歩行者の認

識は困難であった．また，車の認識では低速車両の未検出だけでなく物体形状の誤認

識も確認されている．図 3.1.A-8(b)のように十分に点群が得られない場合では一般車

両と大型車両の誤識別も発生している．検出率の評価では 100m 以内の物体に注目して

いるが更に遠距離の物体に対して図 3.1.A-8(c)のように認識可能な点を確認している．

4D イメージングレーダでは遠方の車両は数点しか点群数が得られないが，電波による

測距のため 200m 以上遠方の場合でも安定した観測が可能である．しかしながら，本検

討のように LiDAR の認識結果を学習データとしている場合では遠距離の学習データを

適切にタグ付けできていない点も課題である．物体の追跡アルゴリズムなどを利用し

て遠距離までカバーしたデータを用意することも課題である．今年度の取り組みでは，

モデルの学習において必要となる学習データのタグ付け作業も実施している．LiDAR

で点群が十分に得られない遠方の物体において適切な学習・評価を実現するために次

年度ではさらなるモデル改善の検討を進める予定である． 

 

 

 

 

(a)  近距離の認識例 (b) 車両サイズの誤認識例 

 
(c) 遠方の認識例 

図 3.1.A-8 物体認識の特徴的な認識結果 
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【ミリ波レーダを用いた物体追跡アルゴリズムの検討】 

4D イメージングレーダによる追跡では，カルマンフィルタをベースとした質点追跡

を行っている．図 3.1.A-9 に追跡システムの概要を示す．4D イメージングレーダから

得られた点群をクラスタリングによって物体ごとに分割し，それらのクラスタを過去

の追跡情報と対応付けを行うことで運動状態を推定する．4D イメージングレーダを用

いるにあたって，ST-DBSCAN[6]によるクラスタリングと絶対速度の推定を行うことで

追跡性能を向上させた． 

 
図 3.1.A-9 レーダ追跡システムの概要 

  

4D イメージングレーダは従来の 3D レーダと比較して一度に観測できる点が多く，1

つの物体に対しても複数の点が得られる．そこで，点群をクラスタリングによって物

体ごとに分割する処理が必要となるが，LiDAR などと比較すると測距精度があまり高く

はないため正確な物体の形状を得ることは難しく，一般的なクラスタリング手法では

物体を正しく分割できない場合がある．例えば，道路を走行している他車両の付近に

ガードレールがある場合，これらの点群が 1 つの物体としてクラスタリングされてし

まうといったことが起こりうる．そこで，本研究では ST-DBSCAN によるクラスタリン

グを行うことでこれを解決した．ST-DBSCAN は，点の密度に基づいてクラスタリングを

行う手法であり，これに観測点の速度情報も用いて，観測点間の速度差が大きいもの

を別のクラスタとして分割することができる．図 3.1.A-10 に ST-DBSCAN によるクラス

タリングの例を示す．観測点の速度を考慮してクラスタリングを行うことによって，

車両の点群と植樹帯の点群を正しく分割できていることがわかる． 

 

 

図 3.1.A-10 ST-DBSCAN によるクラスタリング 
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 また，4D イメージングレーダを用いることで近距離の物体では 1 物体に対して複数

の観測点群が得られるが，それぞれの観測点について相対速度と方位角の情報が得ら

れるため，それらを利用することで，幾何学的に物体の絶対速度を推定可能である．

図 3.1.A-11 に示すように，1 つの物体に対して 2 つの観測点が得られたとき，各観測

点の相対速度・方位角および自車両(自動運転車)の速度からレーダ照射方向の速度が 

計算できる． 

 

これらのレーダ照射方向速度に対して物体の進行方向成分を計算すると絶対速度に

一致する．したがって，物体の進行方向を仮定して各観測点のレーダ照射方向速度か

ら進行方向成分を計算したとき，すべての値が一致する角度が真の進行方向となる．

しかし，実際には相対速度・方位角は観測誤差を含むため，進行方向成分の速度の分

散が最小となる向きを探索する． 

 次に，４D イメージングレーダの実環境における追跡性能評価のため，金沢大学構内

の見通しの良い道路を利用した実験を行った．図 3.1.A-12 に実験環境を示す． 

 
図 3.1.A-11 物体の絶対速度推定 

 
図 3.1.A-12 レーダ追跡評価実験環境 
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本実験では大きく分けて 2 つの走行パターンのデータを取得した．自車が静止した

状態で追跡対象の車両が道路を往復する場合と，自車両が対象車両に追従して道路を

往復する場合で，表 3.1.A-2 に示すようにそれぞれ 3 パターンの条件での試験を行っ

た． 

 

表 3.1.A-2 実験条件  
自車 対象速度 往路フレーム数 復路フレーム数 

データ 1 静止 10km/h 1969 2216 

データ 2 静止 30km/h 896 936 

データ 3 静止 50km/h 533 551 

データ 4 対象と同じような

速度で追跡 

10km/h 3375 3956 

データ 5 対象と同じような

速度で追跡 

30km/h 2053 1914 

データ 6 対象と同じような

速度で追跡 

50km/h 1348 2143 

 

また，追跡結果の評価条件は以下のとおりである． 

⚫ IoU (Intersection over Union)に閾値設定で対応付け 

➢ 追跡対象車両は高精度 GNSS/INS を搭載しているため，その測位結果を車両位

置の真値として利用した．真値において車両のサイズから計算される矩形と，

追跡結果の矩形との IoU を計算し IoU > 0.1 の条件を満たすものを正解と対応

付けている． 

⚫ 距離ごとの再現率(Recall)での評価 

➢ 精度評価は再現率(Recall=TP/(TP+FN))を用いた． 

⚫ 距離の代表点 

➢ 本実験では 40ｍごとの区間で評価した．その際，0～40m，40m～80m の区間の

Recall をそれぞれ代表点 20m，60m の値として算出した． 

 

自車が停止時における追跡精度を，往路と復路それぞれについて図 3.1.A-9 (a)(b)

に示す．棒グラフが代表点に含まれるデータのフレーム数を表し，折れ線グラフが

Recall を表している． 

 

  

(a) 往路 (b) 復路 

図 3.1.A-13 自車停止時の追跡精度 
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往路では 200m 付近まで 90%以上の追跡精度を達成した．対して，復路では同程度の

フレーム数を有していながらも追跡精度が低下した．これについては，遠方から追跡

対象が近づいてくる場合，観測点が非常に少ない状態からの認識と追跡が必要になる

ためフレームによっては認識に失敗し追跡が途切れることが要因と考えられる．往路

の場合には対象車両が近距離から遠ざかっていくため，多くの観測点が得られる状態

から追跡が開始され安定して継続される傾向にある． 

 次に，対象車両の速度による追跡性能の変化を評価するため，対象車両が低速走行

時(10km/h)と高速走行時(50km/h)の距離に対する追跡精度をそれぞれ図 3.1.A-10(a), 

(b)に示す．これらのグラフは往復のデータをまとめてプロットしたものである． 

3.1.A-10(b)より，高速走行時においては 240ｍ付近まで約 90％の追跡精度を達成して

いることが確認できた．それに対して， 3.1.A-10(a)のグラフから低速走行時の場合

は追跡精度が低下していることがわかる．これについては，遠方において得られるレ

ーダ観測点が少なくなることが要因と考えられる．追跡対象車両が高速走行している

場合にはその速度から車両であることが認識可能であるが，低速で移動している場合，

少ない点群からそれが歩行者や二輪車との区別が困難になるため，追跡精度が低下す

る傾向にあると考察される． 

 

 

 

  
(a) 対象車両速度 10km/h (b) 対象車両速度 50 ㎞/h 

図 3.1.A-14 対象速度ごとの追跡精度 
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B.深層学習を用いた LiDAR・カメラのセンサフュージョンによる物体認識モデルの精度

向上(中部大学) 

カメラ画像および LiDAR それぞれを入力とした認識モデルの出力結果を統合するこ

とで，認識モデル単体の場合よりも認識性能が向上する．しかしながら，雨天時など

認識性能が低下するケースもある．そこで，認識モデルにカメラ画像と LiDAR の両方

を入力することで互いの特徴を相互利用または補間させることで，認識性能の向上を

図れるかを検討した．カメラ画像と LiDAR の両方を入力する方式は，Early fusion と

呼ばれており，研究が活発に行われている．Early fusion は，カメラと LiDAR の組み

合わせだけでなく，カメラと RADAR，LiDAR と RADAR など多岐にわたる．本検討では，

カメラと LiDAR の組み合わせに限定して行う．カメラと LiDAR を組み合わせた手法と

して，BEV fusion が提案されている．一般に，カメラと LiDAR では，視点の高さや解

像度が異なるため，それらを同一に扱うことは難しい．そこで，BEV fusion では，カ

メラと LiDAR の映像を鳥瞰視点に統一することで，同一に扱うことができるようにし

ている．鳥瞰視点の画像に変換することで，畳み込みニューラルネットワークのよう

な高い認識性能を得ることができる認識モデルを活用できるようになる．図 3.1.B-1

に BEV fusion の概要図を示す．カメラ画像は Camera Encoder に入力して，Camera 

Features を獲得する．そして，カメラ特徴を鳥瞰視点の特徴量である Camera Feat.に

変換する．このとき，カメラのパラメータおよび設置位置，LiDAR の設置位置を利用し

て，LiDAR の点群データをカメラ画像に対応づけを行う．これにより，画像の特徴量に

対応する距離情報を点群データから取得している．LiDAR の点群データも同様に LiDAR 

Encoder を介して，LiDAR Features を獲得し，高さ方向を集約することで鳥瞰視点の

特徴量である LiDAR Feat.に変換する．カメラの Camera Feat.と LiDAR の LiDAR Feat.

を連結して BEV Encoder に入力して融合した特徴量である Fused BEV Features を獲得

する．そして，Fused BEV Features をもとに，3 次元の物体検出を行う．BEV fusion

の論文では，カメラおよび LiDAR 単体の場合よりもカメラと LiDAR の特徴を融合した

方が高い３次元の物体検出精度を獲得できていると報告されている． 

 

 
図 3.1.B-1 BEV fusion の概要図(文献[1]より引用) 

 

  BEV fusion は，nuScenes データセットを利用して認識モデルの学習を行なっている．

nuScenes データセットに含まれるカメラおよび LiDAR のスペック，設置位置などが公

開されている．これらを確認すると，LiDAR は Velodyne 社の VLP-64 のため，ビーム数

が少なく，遠方の物体を認識することが困難である．そこで，遠方の物体を認識する

ために，ビーム数が 128 本の VLP-128 によるデータセットを構築する．データセット

を実環境で構築する場合，収集コストだけでなく，正解情報を付与するアノテーショ

ンコストも非常にかかるため，DIVP®シミュレータを利用して仮想環境のデータ生成を

行う．これにより，データ収集コストおよびアノテーションコストを軽減できる．青

梅交差点を対象シーンとし，複数の車両が遠方から自車に向かって走行するシナリオ
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を作成した．このとき，対向車線の右折レーンにトラックが待機しているシナリオと

待機していないシナリオの 2 パターン用意した．また，それぞれのシナリオにおいて，

天候を晴天または雨天に変化させた．時刻は 14 時とした．このように，同一の走行シ

ナリオについて，異なる天候のデータを収集することができることが，DIVP®シミュレ

ータを活用するメリットである．データは，0.1 秒ごとに保存するようにした．学習用

に収集したデータの条件および枚数を表 3.1.B-1 に示す．また，生成したデータのシ

ナリオを図 3.1.B-2 に示す．図 3.1.B-2 の交差点中央の右側に停車している白い車両

が自車両である．対向の２車線および同方向の１車線に他の車両を配置し，走行させ

ている．他の車両の種類や色はランダムに決めている． 

 データを収集する際のカメラと LiDAR の仕様を表 3.1.B-2 に示す． 

 

表 3.1.B-1 DIVP®シミュレータで作成したシナリオ条件と枚数 

右折待機車 天候 時刻 枚数 

あり(トラック) 晴天 14 時 364 

雨天 364 

なし 晴天 580 

雨天 580 

 

 
図 3.1.B-2 DIVP®シミュレータで作成したシナリオ例 

 

表 3.1.B-2 DIVP®シミュレータで設定したカメラと LiDAR の仕様 

センサ 仕様 

カメラ 解像度：1600×1200 

焦点距離：5.5 

F 値：1.6 

視野角：70 度 

設置高さ 1.4m 

LiDAR ビーム数：128 

回転数：600rpm 

FOV：水平 360 度，垂直 40 度（+15 度〜−25 度） 

設置高さ：1.9m 

 

BEV fusion の学習は，まず LiDAR データを利用して LiDAR Encoder を学習する．次

に，画像データを利用して Camera Encoder を学習する．そして，両データおよび学習

した Camera Encoder と LiDAR Encoder を利用して，BEV Encoder と物体検出部の学習

を行う． 
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次に，評価データセットについても DIVP®シミュレータで作成を行う．学習データと

同様に青梅交差点を対象シーンとし，右折待機車としてトラックが待機しているシナ

リオと待機していないシナリオの 2 パターンを用意した．天候についても学習データ

と同様に晴天および雨天の 2 パターンを用意した．評価データにおいても遠方から車

両が自車方向に走行してくるが，学習データと異なり，対向車は 1 台または 2 台とし

た．評価データの条件と枚数を表 3.1.B-3 に示す．また，生成した評価用データのシ

ナリオを図 3.1.B-3 に示す．図 3.1.B-3 の交差点中央の右側に停車している白い車両

が自車両である．対向の２車線に他の車両を配置して走行させている．他の車両の種

類や色はランダムに決めている． 

 

表 3.1.B-3 DIVP®シミュレータで作成したシナリオ条件と枚数 

右折待機車 天候 時刻 枚数 

あり(トラック) 晴天 14 時 3000 

雨天 3000 

なし 晴天 3000 

雨天 3000 

 

 

 
図 3.1.B-3 DIVP®シミュレータで作成した評価用のシナリオ例 

 

 本シナリオで作成したデータを用いて学習した認識モデルを評価した．図 3.1.B-4

に対向車の右折車線に待機車両がいない場合の距離ごとの検出率を示す．図 3.1.B-4

より，対向車までの距離が 150m 程度の場合でも対向車の検出率が 97%程度となってい

る．  

 
図 3.1.B-4 対向車両までの距離と検出率の関係（右折待機車なし） 
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図 3.1.B-5 および図 3.1.B-6 にカメラ画像の検出結果例を示す．また，図 3.1.B-7

および図 3.1.B-8 は，同時刻の鳥瞰視点の検出結果例である．図 3.1.B-5 より，100m

程度遠方の車両を認識できていることがわかる．また，図 3.1.B-6 より，自車両と距

離の近い車両についても認識できていることがわかる． 

 

 
図 3.1.B-5 検出結果例 

（カメラ画像，100m 程度遠方の車両，緑色の枠が検出結果，青色の枠が正解矩形） 

 

 
図 3.1.B-6 検出結果例 

（カメラ画像，40m 程度遠方の車両，緑色の枠が検出結果，青色の枠が正解矩形） 

 

 図 3.1.B-7 の鳥瞰視点の検出結果は自車両前方の点群データを可視化している．図

3.1.B-7 の中央付近の黄色およびオレンジ色の矩形が検出結果である．2 台の車両が並

走しており，両方の車両を認識できている．図 3.1.B-8 は自車両近くに 2 台の車両が

並走している．自車両に近い場合でも認識できている．図 3.1.B-7 および図 3.1.B-8

の遠方の緑色の矩形は誤検出である．中央分離帯にある構造物を誤って車両と認識し

ている．本誤検出は同一の位置にあるため，時系列処理などを導入することで削除可

能である． 
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図 3.1.B-7 検出結果例（鳥瞰視点，100m 程度遠方の車両） 

 

 

 
図 3.1.B-8 検出結果例（鳥瞰視点，40m 程度遠方の車両） 

 

 

図 3.1.B-9 および図 3.1.B-10 に雨天時の検出結果例を示す．図 3.1.B-9 および図

3.1.B-10 に示すように，雨天時でも 2 台の車両を認識することができている．  

 

 
図 3.1.B-9 雨天時の検出結果例 

（カメラ画像，100m 程度遠方の車両，緑色の枠が検出結果，青色の枠が正解矩形） 
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図 3.1.B-10 雨天時の検出結果例（鳥瞰視点，100m 程度遠方の車両） 

 

 次に，右折車線に車両が待機しているシナリオでの距離と検出率の関係を図

3.1.B-11 に示す．ここで 40-50m 以上の対向車両は右折待機しているトラックにより遮

蔽しているため，検出することができない．対向車両の一部のみが見えている 40m 程

度では，検出率が 84%程度となっているが，対向車両に遮蔽が生じていない場合は 90%

程度の検出率となっている．なお，0-10m の距離では，対向車が自車両を通りすぎる位

置となり，対向車両の一部に遮蔽が生じるため，検出率がわずかに低下している．対

向車両に遮蔽が生じていない 30m 程度では 97%程度の検出率となっている． 

 

 
図 3.1.B-11 対向車両までの距離と検出率の関係（右折待機車あり） 

 

 図 3.1.B-12 および図 3.1.B-13 に，雨天時において，右折車両が待機している交差

点を対向車両が走行するシーンでの検出結果例を示す．図 3.1.B-12 は，右折待機車両

のやや後方に対向車両が現れるシーンである．このとき，1 台の対向車両は右折待機車

両によりほとんどが遮蔽されている．また，自車両のワイパーが作動しており，もう 1

台の対向車両もほとんどが遮蔽されている．このように，カメラ画像だけでは対向車

両の特徴がわずかであるが，LiDAR の特徴と融合することで，両車両とも検出できてい

る． 

カメラおよび LiDAR 単体の認識モデルを利用した場合，このような雨天時の認識性能

は低下していたが，BEV fusion によるカメラと LiDAR を融合した認識モデルの場合，

雨天時でも晴天時と同等の認識性能であった．これは，カメラでは雨滴などの影響で

検出できない場合でも LiDAR の特徴を利用することで，他方の弱点を補完し，認識性

能の低下を抑制していると考える． 
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図 3.1.B-12 雨天時の遮蔽率の高いシーンにおける検出結果例 1 

（緑色の枠が検出結果，青色の枠が正解矩形） 

 

 

 
図 3.1.B-13 雨天時の遮蔽率の高いシーンにおける検出結果例 2 

（緑色の枠が検出結果，青色の枠が正解矩形） 

 

[1] Z. Liu, H. Tang, A.Amini, X. Yang, H. Mao, D. Rus and S. Han, “BEVFusion: 

Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation”, 

IEEE International Conference on Robotics and Automation (ICRA), 2022. 
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3.2. 歩行者，自転車が存在する交差点における安全性評価指標の検討 

A.CI 環境を用いた交差点における安全性評価に向けた AD システム評価手法の検討(金

沢大学) 

自動運転システムの認知・判断に関する安全性評価手法を検討する．様々な環境要

因や交通状況を考慮した効率的な性能評価を可能とするため，仮想環境の構築を行っ

ている DIVP®プロジェクトと連携して AD システムの自動評価環境を CI（継続的インテ

グレーション）環境として構築する．本研究項目にて検討している CI 環境の概要を図

3.2.A-1 に示す．ここでは環境条件に対するセンサの認識性能を評価するための

1st-Stage および，主に経路・軌道計画の性能を評価するための 2nd-Stage としてそれ

ぞれの実現に必要となる要素技術を検討した． 

これまでの SIP 第 2 期における AD-URABAN プロジェクトにおいて，DIVP®プロジェク

トと連携して仮想環境でモデル化されたセンサ情報の一致性評価及びカメラ・LiDAR

の認識おける限界性能の分析を実施してきた．具体的には異なる天候条件・ターゲッ

トの相対位置及び遮蔽率などの条件を網羅的に変化させたセンサデータを生成するこ

とでセンサの弱点となる環境条件を議論してきた．2023 年度においては，カメラ及び

LiDAR の認識限界性能の議論の結果を反映させて CI 環境で実施するソフトウェア環境

を開発する．1st-Stage の評価において実際のセンサ情報を用いずに環境条件から認識

結果を模擬するために認識精度の統計モデルの近似手法を検討する．また，2nd-Stage

では経路・軌道計画などの判断機能に対して 1st-Stage 同様の CI 環境による自動評価

環境を構築する．本事業では，ヒューマンドライバがどのような挙動を取るのかとい

う視点で SAKURA プロジェクトにおいて調査された事故・ヒヤリハット事例や，実交差

点における車両の挙動の解析結果等をもとに，交差点を走行する車両の挙動（実交通

流シナリオ）を DIVP®シミュレータ上で再現させる．そして，自動運転車の交差点通過

時の安全性を評価する環境を構築する．以降では具体的な研究開発成果について個別

に述べる． 

  

 
図 3.2.A-1  DIVP®/AD-URABAN/SAKURAプロジェクトで連携した 2-Stage評価による CI

環境の構築（出所: DIVP®プロジェクト） 

 



 

32 

 

 

• 1st-Stage：センサ認識性能モデルの検討 

CI 環境によるシミュレーションを構築するには車両の認識・パスプランニングのシ

ミュレーションをリアルタイムで処理して網羅的な条件での検証が必要となる．一方，

これまでの SIP 第 2 期における AD-URBAN プロジェクトでの検証にて用いていた仮想環

境モデルでのセンサ情報のシミュレーションではセンサ内部の挙動をモデル化してお

り環境要因を考慮した再現性の高い情報が得られるがリアルタイム性に課題がある．

そこで 2nd-Stage の評価にて自動運転システムのパスプランニングをリアルタイムに

評価するための認識性能モデルを開発する．認識性能モデルは特定の認識アルゴリズ

ムを模擬した統計モデルとなっており，図 3.2.A-2 のように通常の認識モデルで出力

される物体情報及び確信度情報を教師データとして，これを正解情報・環境条件から

出力する回帰モデルである．本検討では自動車の認識結果に注目し，特定の認識モデ

ルで出力された確信度及び物体の矩形枠位置・サイズの誤差を回帰するモデルを構築

した． 

 

 
(a)  通常の深層学習モデルによる物体認識の流れ 

 
(b)  センサ認識性能モデルによる認識結果の再現 

図 3.2.A-2 センサ認識性能モデル概要 

 

認識性能モデルの学習には DIVP®シミュレータ上で作成されたセンサデータを用い

ている．LiDAR・カメラのセンサ情報に対して異なる環境条件・車両でのデータを生成

している．センサデータの内訳は表 3.2.A-1 の通りで，既に地図データが存在していた

日本自動車研究所（JARI）のテストコースおよびお台場におけるデータと，RoAD to the 

L4 プロジェクトテーマ 2 で検討中の道路環境の一部である磯坪交差点を対象としてデ

ータを生成した．ここで作成されるデータは図 3.2.A-3 のようにターゲットとして配

置した車両を別の車両または建物などで遮蔽する状況を作成し，相対位置関係を変更

することで異なる距離・遮蔽率のターゲット車両のデータを作成している．データ作

成の都合上，LiDAR については SIP 第 2 期における AD-URBAN プロジェクトにて作成済

みのお台場のセンサデータも利用している． 
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表 3.2.A-1 認識性能評価モデルの学習データ数 

 JARI お台場 磯坪交差点 合計 

LiDAR 15,265 2,489 0 17,754 

CAMERA 22,174 0 6,951 29,125 

 

  
(a) LiDAR の認識結果例 (b) カメラの認識結果例 

図 3.2.A-3 モデル化に利用したセンサデータと認識結果例 

（バスに遮蔽された一般車をターゲットとしてターゲットの検出結果を表示） 

 

このような条件で作成されたセンサデータに対して認識性能のモデル化に利用する

認識アルゴリズムの性能評価を実施した．LiDAR の認識では PointPillars[1]，カメラ

の認識では YOLOv7[2]を採用した．それぞれの認識モデルはあらかじめ AD-URBAN プロ

ジェクトにて整備しているセンサデータで学習済みのモデルを利用している． 

LiDAR 認識モデルとカメラ認識モデルの距離別認識率結果を図 3.2.A-4 に示す．横軸

はターゲット車両までの距離，縦軸は認識率である．またグラフに用いたデータは確

信度 0.25 以上且つ，IoU0.5 以上のデータに絞りプロットしている．遮蔽率は 3 つのグ

ループに分類し，青線は遮蔽率 50%未満，オレンジ線は遮蔽率 50～75%，緑線は遮蔽率

75%以上である．遮蔽率が大きくなると認識性能が低くなっており，遮蔽率の各グルー

プにおいてターゲット車両との距離が遠方になるにつれ認識率も低下傾向にある．ま

た，LiDAR 認識モデルの 50～75m 付近で一時的に検出率が上昇しているが，今回のデー

タでは物体の配置に偏りがあり，認識しやすい視点のデータが集まっている点が理由

と考えられる．将来的にはデータ全体の N 数の増大が必要である．カメラ認識モデル

においてはターゲットまでの距離 75～100m 以降の認識率が小さくなっている．SIP 第

2 期における AD-URBAN プロジェクトでは遠方に特化した画像認識の方法として，画像

全体及び遠方道路領域を切り出した領域における画像認識を複数回適用して遠距離の

認識性能を確保していた．一方，本検討では初期検討として一度の認識処理で検出さ

れる認識性能のモデルを目指しているため 100m 以降が低下する結果となっている．遠

距離の認識モデルの構築には想定するカメラの画角・解像度や処理方法によっても影

響することが考えられるため，モデル化する方法の違いによるパスプランニングへの

影響の調査も重要な課題となる． 
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図 3.2.A-4 カメラと LiDAR の異なる遮蔽率の認識評価結果 

 

 

 
(a) LiDAR 認識モデルの距離における誤差 

 
(b) カメラ認識モデルの距離における誤差 

図 3.2.A-5 カメラと LiDAR の認識誤差の評価結果 
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また上記で評価した検出結果に関して位置・サイズの誤差をそれぞれ図 3.2.A-5 に

示す．横軸はターゲット車両までの距離，縦軸は位置誤差とサイズ誤差である．また

グラフに用いたデータは確信度 0.25 以上且つ、IoU0.5 以上のデータに絞りプロットし

ている．遮蔽率は 3 つのグループに分類し，青色は遮蔽率 50%未満、オレンジ色は遮蔽

率 50～75%，緑線は遮蔽率 75%以上である． 

LiDAR に関しては，ターゲットまでの距離が大きくなると位置の誤差が大きくなる傾

向が確認され，サイズ誤差は概ね一定程度であることが確認された．今回評価に用い

たデータは一般車両が大半を占めており，サイズ誤差は位置誤差に比べ小さいことが

確認できた． また，カメラに関しては，遮蔽の程度によらず全体的に一定範囲の誤差

が分布している点を確認した． これらの検証に関しては十分なデータ数での評価が実

施できていない点もあるため，引き続いて誤差の傾向を分析する必要がある． 

カメラ認識モデルと LiDAR 認識モデルの認識弱点事例を以下に示す．どちらのセン

サの場合においてもターゲットまでの距離が認識可能な距離ではあるが、遮蔽率が大

きい場面で認識が難しいことが確認できた．特に LiDAR においてはターゲット車両の

一部しか見えていない影響で認識結果が正解と大きく異なっている（ターゲット車両

のサイズと向き）ことが確認できた．またカメラでも同様に確信度が小さく、正しく

認識できていない様子が確認できた．（黄色枠：認識結果の期待値、緑枠：認識結果） 

 

黄色: 正解
緑色: 各センサの認識モデルの認識結果 (数値は確信度)

自車両

認識対象

dist: 距離
occ_rate: 遮蔽率

rect_width: 正解矩形幅
occ_rate: 遮蔽率

rect_width: 正解矩形幅
occ_rate: 遮蔽率

 
図 3.2.A-6 カメラ認識モデルと LiDAR 認識モデルの認識弱点事例 

 

上記の評価で得られた認識結果の出力データを用いて認識性能モデルの学習を実施

した．図 3.2.A-2 のように出力された確信度及び位置・サイズ誤差を回帰するモデル

となっている．入力情報には環境条件として認識結果の傾向と関連のある要素として，

相対位置（カメラの場合は矩形枠幅）及び遮蔽率を入力している． 

認識性能評価結果を図 3.2.A-7 に示す．横軸がターゲットまでの距離(カメラの場合

は矩形枠幅)，縦軸がターゲットの遮蔽率を示しており，ターゲット認識結果の確信度

を色別で示している．LiDAR ではより遠距離になるほど，遮蔽率が高くなるほど確信度

が低くなる傾向が得られている．図 3.2.A-4 の評価結果を参照しても 100m 以上先の物

体には徐々に検出率が低下する傾向を確認しているため適切な傾向を再現できている

と言える．カメラの認識結果においても遠距離に対応する画素数が小さな物体になる

ほど，また遮蔽率が高くなるほど確信度が低くなり一般的な傾向を捉えた分布が得ら

れていることが確認できる．一方，矩形枠幅が 25～50px の低遮蔽率の領域を参照する

と部分的に確信度が低下している領域が確認された．図 3.2.A-8 に該当するシーンの
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画像例を示す．本検討では遮蔽を発生させる物体として建物や他車両を想定してそれ

らの矩形枠から遮蔽率を算出している．しかし図 3.2.A-8 のように電柱や他の物体に

よって遮蔽が発生する場合には遮蔽率が 0%として取り扱われてしまっている．このた

めこうしたシーンでは実際の見え方の遮蔽率と内部で算出している遮蔽率に乖離が発

生する．これによって当該シーンの区間では遮蔽率が実際よりも低く扱われることか

ら極端に確信度が低下していると考えられる．こうした適切な環境条件の考慮も今後

も課題である．また本モデル化では，評価ターゲットの遮蔽状態を遮蔽率と数値で表

現して扱っているが，例えば，図 3.2.A-6 のようにターゲットのどの部分が遮蔽され

ているかも重要なポイントとなる．こうしたモデル化に必要な要素の改善も今後も課

題となる． 

 

 
(a) LiDAR の認識性能モデル 

 
(b) カメラの認識性能モデル 

図 3.2.A-7 認識性能モデルの学習結果 
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図 3.2.A-8 遮蔽率が正しく計算できていないシーン例 
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• 2nd-Stage：CI 環境への自動運転システムの接続・検証 

前述した認識性能モデルを活用し，CI 環境に自動運転システムを接続する．DIVP®

プロジェクトと連携して検討した CI 環境のシステムのイメージを図 3.2.A-9 に示す．

シナリオの情報として各フレームでは物体の位置情報としての真値データと遮蔽率・

環境情報が与えられる．これに基づいて認識性能モデルで各物体の確信度を出力する

ことで，自動運転システムの認識結果として扱う．以降は自動運転システムのパスプ

ラニング機能などを動作させて次フレームの自車位置を算出する．そしてこれらを繰

り返して Closed-Loop でのシミュレーションを実施する． 

 

 

図 3.2.A-9 CI 環境のシステムイメージ（出所: DIVP®プロジェクト） 

 

本検討では開発した認識性能モデルを自動運転システムに接続してサンプルとなる

交差点（RoAD to the L4 プロジェクトテーマ 2 で検討中の道路環境の一部である磯坪

交差点）への進入のシナリオでの動作検証を実施した．図 3.2.A-10 にて示す交差点の

進入可否を判断するシーンを例としてターゲット車両の走行条件を変化させて安全性

検証を実施した．なお，シナリオの検討は SAKURAプロジェクト，挙動の性能評価は DIVP®

プロジェクトが担当しており，AD-URBAN プロジェクトの自動運転システムを接続して

全体の挙動を検証した． 

 

 

図 3.2.A-10 2nd-Stage で検証した交差点進入シナリオ概要（磯坪交差点） 
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本評価においては，効率的な評価を行うため，カメラ認識・LiDAR 認識に大きな影響

を与える自車と他車の位置関係（建物による遮蔽含む），特に他車の速度や距離，PET

（Post Encroachment Time，2 車両間の交差点通過時間差）の違いによる安全性評価を

優先して実施した．また，PET 定義に関しては自車両が回避行動をしない・AD/ADAS 制

御がない場合の PET を仮決めし，シナリオ化を行っている．更にシナリオ定義の PET

としては 3 つの領域（PET:3.5～6.0[sec]の安全領域、PET:0.5～3.0[sec]のニアミス

領域、PET:0～-2.0[sec]の接触事故が起きる領域）に分けて定義を行った（図 3.2.A-11）．

障害物の異なる隠れを発生させるシナリオとして，遮蔽物の少ない自車が北上するシ

ーンと近距離に遮蔽物が存在する南下シーンで評価を実施する． 

  

安全 ニアミス 接触事故

 

図 3.2.A-11 交通条件に対する安全性指標（定速走行）（出所: DIVP®プロジェクト） 

 

図 3.2.A-12 に各シナリオにおける安全性評価の結果を示す．本評価では，シナリオ

定義 PET にて PET：3.5s 以上の評価は十分安全に走行できると予測できるため，不安

全な走行が考えられる PET:0.5～3.0s のニアミス領域，PET:0～-2.0s の接触事故が起

きる領域に絞り評価を実施した．また図 3.2.A-12 では横軸にシナリオ定義の PET，縦

軸にターゲットの車両速度，セルの中にターゲット車両の走行方向 Left（東→西），

Right（西→東）毎の PET 計算結果を記載している．セル内に数値が記載されていない

パターンはシミュレーション時間内で自動運転自動車が交差点に進入しなかった場合

である．自車北上パターンの結果について，ターゲット車両が東→西に走るパターン，

及び西→から東に走るパターンともに交差点手前からターゲット車両を認識して PET

を 3.5s以上に拡大し，安全マージンを取って走行出来ていることが確認できた．また，

自車南下パターンの結果にはすべてのパターンで立ち往生し発進できない結果となっ

た．これは近距離に建物が存在することで見通しが悪く安全確保が出来ない為である． 
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（出所: DIVP®プロジェクト） 

図 3.2.A-12 2nd-Stage 安全性評価結果 

 

図 3.2.A-13 に磯坪交差点（上面視）の自車北上パターン・ニアミス領域における自

車と他車の挙動（走行軌跡の例）を示す．自車が交差点手前で一時停止後，自車から

向かって右方向から接近するターゲット車両を自車センサ（カメラ，LiDAR）にて検出

し，交差点手前で待機，ターゲット車両が通過後に安全マージンを取って発進，交差

点通過出来ていることが確認できた．このことよりニアミスを回避し，走行できてい

ることがシミュレーションにて確認・評価できた．  

また，図 3.2.A-14 に磯坪交差点（上面視）の自車南下パターン・ニアミス領域にお

ける自車と他車の挙動（走行軌跡の例）を示す．自車が交差点手前で一時停止後，自

車から向かって右方向から接近するターゲット車両がいるがターゲット車両が建物に

遮蔽され交差点直前までセンサで検出できない状況が続く．建物の遮蔽が一部なくな

ったポイントではターゲット車両の検出が出来ているが，見通しが悪く交差点通過の

安全確保が結果として出来ない状況であると判断された為，立ち往生し発進できない

状況となっている． 

以上より走行条件を変化させた状況での自動運転システムの接続及び走行結果の動

作検証の一連の流れを確認することができた．今後はこのような CI 環境を用いて自動

運転システム自体の性能改善につなげていく点が課題である． 
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交差点手前で一時停止

右方向から来るターゲット車両を認識

ターゲット車両の通過後、交差点走行

：自車

：他車（未検出）

：他車（検出済）

：死角

：遮蔽物
（建物など）

凡例

 

図 3.2.A-13 自車北上パターン走行例 

 

 

図 3.2.A-14 自車南下パターン走行例 
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B.歩行者，自転車が存在する交差点における安全性評価指標の検討(中部大学) 

歩行者の安全性評価指標を検討するにあたり，歩行者の認識限界性能の調査を行っ

た．このとき，同一シーンにおいて，天候や時間帯などを変更したシナリオにおいて，

限界性能を比較するために，DIVP®シミュレータを活用して，仮想環境での評価データ

を作成した．また，歩行者の遮蔽率が認識性能に与える影響および歩行者までの距離

が認識性能に与える影響も調査することを想定して，表 3.2.B-1 のような諸条件でデ

ータを作成した．  

 

表 3.2.B-1 DIVP®シミュレータで作成したシナリオ条件 

条件 内容 

天候 晴天，雨天，曇天 

時刻 14:00，16:00 

歩行者 成人，子供，高齢者 

停車車両 プリウス，ハイエース，トラック 

自車両の位置  

(横断歩道と自車両の距離) 

15m (トラックのみなし)，30m，50m 

停車車両の位置  

(横断歩道と停車車両の距離) 

5m，10m，なし(停車車両なし) 

 

 

 本作成条件に従い，DIVP®シミュレータで地図が準備されている日本科学未来館前の

横断歩道を対象シーンとしてデータを作成した．停車車両は，プリウス，ハイエース，

トラックの 3 パターンを用意した．作成したデータ例を図 3.2.B-1 に示す．なお，自

転車は，歩行者の検出と同様の検出傾向となるため，本検討では，歩行者のみを対象

として調査を行った．図 3.2.B-1 に作成したシナリオ例を示す． 

  

 
図 3.2.B-1 DIVP®シミュレータで作成したシナリオ例 
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 認識モデルには，YOLO v4 を用いる．YOLO v4 の学習は，東海臨海部および金沢市街

地を走行して収集した実データを用いて行った．自車両と横断歩道間の距離を横軸，

遮蔽率ごとの検出傾向を示す散布図を図 3.2.B-2 に示す．ここで，曇天(14 時)は，天

候が曇天で時間帯が 14 時を示している．また，赤色は検出した画像，青色は未検出の

画像を示している． 

 

 
図 3.2.B-2 各天候および時間における距離と遮蔽率ごとの検出傾向 

 

これより，歩行者と自車両の距離が 15m の時，曇天および晴天では遮蔽率が 80%程度

でも検出できている．雨天時も同様に遮蔽率が 80%程度でも検出できており，停車車両

の後方から現れる歩行者を適切に検出可能であることがわかる．一方，雨天時は遮蔽

率が 0%でも検出できていないケースがある．これは，図 3.2.B-3 に示すように歩行者

がワイパーで隠れているシーンである．DIVP®シミュレータは画像上でのワイパーと歩

行者の位置関係を考慮した自動アノテーションが行われていないため，このような事

象が発生する．本事象は，人によるアノテーションの確認を行うことで対応可能であ

り，今後検討する． 

 次に，歩行者と自車両の距離が 30m の場合，曇天，晴天の遮蔽率に対する検出傾向

に大きな差はない．一方で，晴天時に遮蔽率が 20%以上になるとやや未検出が増加して

いる．歩行者と自車両の距離が 50m の場合でも同様の傾向があり，晴天時に未検出が

増加している． 図 3.2.B-4 に各天候および時間帯の検出率を示す．これより，曇天時

が最も精度が高く，次に雨天時，晴天時の順となっている．雨天時はワイパーや雨粒

による影響のため，検出率が低下しやすい．晴天時における検出率の低下は，それ以

外の要因であるため，詳細な調査が必要である． 

 

   
                (a)雨天時           (b)同シーンの晴天時 

図 3.2.B-3 ワイパーにより歩行者が遮蔽されるシーン 
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図 3.2.B-4 各天候および時間帯検出精度 

 

晴天時の検出率の低下について，詳細に調査するために，歩行者の種類別の評価を

行う．本検討では，歩行者について成人，子供，高齢者の３種類用意してデータを作

成した．図 3.2.B-5 に各歩行者の画像例を示す． 

 
図 3.2.B-5 DIVP®シミュレータで作成した歩行者の例 

 

  

図 3.2.B-6 に歩行者の種類ごとの距離と遮蔽率の検出傾向を示す．これより，成人

の場合，自車両との距離が 15m の時に遮蔽率が 80%程度まで検出できていることがわか

る．高齢者も同様に，自車両との距離が 15m の時に遮蔽率が 80%程度まで検出できてい

る．一方，子供の場合は，遮蔽率が 60%程度で検出できていないケースもある．自車両

との距離が離れると，子供の検出精度が低下する傾向があり，自車両との距離が 50m

になるとほとんど検出できていない．これは，子供の身長が成人および高齢者より小

さいため，検出可能距離が短くなっているためである．また，成人と高齢者を比較す

ると，自車両との距離が 50m の場合に遮蔽率が高くなると成人の検出精度が低下して

いる． 

 

 
図 3.2.B-6 歩行者の種類ごとの距離と遮蔽率による検出傾向 
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 図 3.2.B-7 に各天候および時間帯ごとに，各歩行者の種類の検出率を示す．これよ

り，曇天時と雨天時において，時間帯による検出精度の差は小さい．しかしながら，

晴天時は，時間帯による検出精度の差が大きい．また，曇天時および雨天時と比べて

も晴天時は検出精度が低下している．特に成人の検出精度の低下が大きい． 

 

図 3.2.B-7 天候および時間帯ごとの各歩行者の種類の検出率 

 

 
図 3.2.B-8 曇天および晴天時の成人のデータ 

 

図 3.2.B-8 に曇天および晴天時の成人のデータを示す．これより，曇天時は成人の

服色が道路の色と差がはっきりとしている．一方，晴天時は成人の服色が道路の色と

近くなっている．特に自車両との距離が 50m 離れると，周辺の色と歩行者が同化して

いるように見える．このように，周辺との境目がわかりにくくなっているため，検出

精度が低下したと考える． 

 次に，停車車両による影響を調査する．本シナリオでは，歩行者が横断する前方に

停車車両を配置している．停車車両は，プリウス，ハイエース，バスのいずれかであ

る．図 3.2.B-9 に，天候および時間帯ごとの停車車両の種類による歩行者の検出率を

示す．これより，歩行者の遮蔽率が小さくなるプリウスを停車車両とした場合の検出

率が高い．プリウスの場合，図 3.2.B-10 に示すように，歩行者の頭部付近が見えるた

めである．ハイエースの場合はプリウスよりも検出率が低い．さらに，バスの場合は，

最も検出率が低くなる．停車車両を配置しない場合も含めて，晴天時は曇天および雨

天時よりも検出率が低下する傾向がある．この検出率の低下傾向についても歩行者の

服色が原因であると考える． 
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図 3.2.B-9 天候および時間帯ごとの停車車両の種類による歩行者の検出率 

 

 
図 3.2.B-10 歩行者の頭部付近が見えるシーン 

 

歩行者の服色が検出性能に影響を与えることが考えられるため，DIVP®シミュレータ

で作成する歩行者の服の色を変更してデータの生成を行った．このときのシナリオの

条件を表 3.2.B-2 に示す．ここで，自車両は，一定の位置に停車させず，時速 30km で

走行させた．図 3.2.B-11 に歩行者の服色を変更した例を示す． 

 

表 3.2.B-2 歩行者の服の色を変更したデータを作成する際のシナリオ条件 

条件 内容 

天候 晴天 

時刻 14:00 

歩行者 成人 

歩行者の服色 黒色,青色, グレー 

停車車両 プリウス，ハイエース，トラック 

横断歩道と自車両の距離 自車走行 

横断歩道と停車車両の距離 5m 
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図 3.2.B-11 歩行者の服色を変更した例 

 

図 3.2.B-12 に服色ごとの距離と遮蔽率による歩行者の検出傾向を示す．これより，

服色が黒の場合，歩行者と自車両の距離が 20m 以内の場合，遮蔽率が 80%程度でも検出

できる傾向がある．服の色が青色，グレーでも同様の傾向があり，服色に関わらず，

距離が 20m 以内で遮蔽率が 80%以下の場合は，同様の限界性能であると言える．一方で，

服色が黒い場合，遮蔽率が 80%以上になると検出できていないケースが増えている．こ

れは，図 3.2.B-13 に示すように停車車両の影と歩行者の服色が同色で影と同化したた

めである． 

次に，歩行者と自車両の距離が 20m 以上になると遮蔽率が低くても検出できない傾

向がある．特に服色がグレーの場合，距離が 40m 以上になると遮蔽率が 0%であっても

検出できていない．これより，服色が遠方の歩行者を検出する際に検出精度の低下の

大きな要因になることがわかった． 

 

図 3.2.B-12 服色ごとの距離と遮蔽率による歩行者の検出傾向 

 

服色：⿊色 服色：⻘色  
図 3.2.B-13 服色による影との同化シーン例 
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3.3. 仮想環境を活用した効率的な AD システムの安全性評価手法の確立 

①実証データを活用した AD システムの安全かつ効率的な評価手法の検討(金沢大学) 

自動運転(AD)システムを実環境で評価するためには，様々な環境への適用性や安全

性の評価の観点から，膨大な走行データを使用した評価・検証が必要になると考えら

れる．したがって演繹的なアプローチによって仮想環境で評価すべき認識・判断機能

のシナリオを検討し，現実的に起こり得る範囲内での網羅的な安全性評価を行うこと

が重要となる．そして，仮想環境において再現された交通環境の中で自動運転システ

ムを走行させることで安全かつ効率的な自動運転システムの評価が期待される． 

一方実環境では，危険なシナリオや緊急車両遭遇時の挙動など，発生頻度が極めて

まれなシナリオも存在している．また自動運転システムの開発者目線では，例えば個

別の自動運転システムが課題としている具体的なシナリオなどといったシーンに対し

て，自動運転車両が適切な挙動を取れているのかといった観点での評価も必要となる．

このため，演繹的な評価に加え，帰納的なアプローチでの仮想環境上での評価も必要

になると考えられる．このため，本事業では実環境では再現が困難もしくは遭遇頻度

が稀なシナリオに対する自動運転システムの判断技術の向上を目的として，以下に示

す取り組みを実施した．  

 

(1) 車載センサデータのタグ付けによるシナリオの手動生成 

本事業では， SIP 第 2 期において作成した自動運転車両（図 3.3.①-1）2 台等の試

験車両を用いて，東京都臨海部（お台場）や，石川県金沢市などにおいて自動運転実

証実験を実施した． 

 

 
図 3.3.①-1 実証実験に用いた自動運転車両の外観 

 

図 3.3.①-2(a)に示すように，この自動運転車両には，周辺環境認識用センサとして，

5 台の LiDAR，8 台のカメラ，9 台の平面走査型ミリ波レーダが搭載されている．この

うち LiDAR に関しては自車周辺の 3 次元的な環境を全方位でセンシング可能となって

いる．またカメラに関しては直接的に奥行情報を観測ができないものの，自車周辺の

全方位の画像を収集可能となっており，上下左右方向に高い分解能を有している．こ

れらの LiDAR やカメラに関しては，上下左右方向に高い分解能を有しているため，死

角を伴う環境における物体検出に大きな効果をもたらすことが可能となっている．一

方，SIP 第 2 期に構築した自動運転車両に搭載されているミリ波レーダに関しては，自

車周辺の 2 次元的な物体位置と相対速度を観測する平面走査型のセンサとなっていた

ため，上空に存在する看板と道路上に存在する車両の区別ができない問題があった．

また，例えば交差点の右折時など，死角を伴いやすい環境において認識能力が低下し
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てしまう問題もあった．このため本事業では，図 3.3.①-2(b)に示すように最新の 4D

イメージングレーダを導入し，車両周辺の全方位の物体の 3 次元位置および相対速度

を計測可能な環境を構築した．また既に車載済みであった他のセンサやコンピュータ

などと精密に時刻同期が可能な環境を構築した． 

 

 
(a) SIP 第 2 期において設置していたセンサ 

 

 
(b) 本事業で設置した 4D イメージングレーダ 

図 3.3.①-2 自動運転車両に搭載したセンサ 

 

これらのセンサに加えて，自動運転車両には信号認識用のカメラ，緊急車両のサイ

レン音認識用センサとしてマイクが搭載されており，これらのセンサデータを収集し

ながら，各地において自動運転システムの公道走行実証実験の実施や，手動運転によ

るデータ収集を実施した（図 3.3.①-3）． 
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図 3.3.①-3 石川県金沢市の公道で自動運転を行っている様子 

 

自動運転及び手動運転によって公道走行を行いながら収集した車載センサデータは，

自動運転車両に搭載する認識技術の開発・評価に有益なデータとなる．また車載セン

サデータの解析によって得られる交通参加者の挙動は，自車周辺に存在していた実際

の交通シナリオを忠実に再現したものであるため，自動運転車両に搭載する判断技術

（行動予測やパスプランニング技術など）にも有益なデータとなることが期待される．

このため本事業では，図 3.3.①-4 に例示するように，収集したデータのタグ付け作業

を行い，3.1 節で述べた深層学習モデルの学習や評価等へ活用した．またタグ付けした

データを用いた自動運転車両の判断技術の開発・評価等への活用についても検討を行

った． 

 

 
図 3.3.①-4 タグ付けした車載センサデータの例 
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(2) 車載センサデータからのコンクリートシナリオの自動生成 

(1)で述べたように，自動運転及び手動運転によって公道走行を行いながら収集した

車載センサデータを用いて，タグ付け作業を行い交通環境のコンクリートシナリオを

収集することは，自動運転車両の判断技術の開発・評価にとって有益なデータとなる

ことが期待される．一方，人手でタグ付け作業を行うことを想定すると，膨大なデー

タの解析が必要となるため，コスト，効率といった観点で大きな課題が生じる．この

ため，本事業では自動運転車両に搭載されている認識技術をベースとして，図 3.3.①

-5 に示すように車載センサデータから自動的にコンクリートシナリオを抽出する機能

を開発した．具体的には，SIP 第 2 期において開発した LiDAR，カメラ等を用いた深層

学習を用いた認識技術や，移動物体の追跡技術をベースとして，移動物体の抽出(移動

物の位置･姿勢･サイズや物体種別の認識)を行うとともに，移動物体の運動状態(速

度・加速度・ヨーレート)や，移動物体の時系列的な移動軌跡を抽出する機能を開発し

た．これによって，公道走行によって収集したデータをもとに仮想環境上でコンクリ

ートシナリオを再現して，判断技術の開発評価を行うことが可能となる． 

 

 
図 3.3.①-5 車載センサデータを用いたコンクリートシナリオの自動生成の例 

 

また本事業で収集したデータに加え，SIP 第 2 期において収集したセンサデータなど，

過去に収集した大量のセンサデータを最新の認識技術をもとにコンクリートシナリオ

を自動生成する機能も開発し，大量のコンクリートシナリオを自動抽出する機能を開

発した．一方，大量のコンクリートシナリオを無作為に抽出すると，例えば車線を追

従しているだけの単調な走行シーンなど，自動運転システムの判断技術の評価にあま

り有益でないシーンが大量に含まれてしまい，効率的な判断技術の開発・評価を行う

ことが難しくなることが想定される．このため，過去に収集した大量のセンサデータ

の中から，車両に搭載したボタンなどによって特殊なシーンとしてマーキングした状

況や，自動運転から手動運転に切り替わったシーンなどを自動的に抽出し，自動運転

システムの判断技術の開発・評価に有益であると考えられるシナリオを選別する機能

も開発した．またこれらの枠組みを活用することで，例えば図 3.3.①-6 に示す緊急車
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両との遭遇シーンなど，過去に収集したセンサデータの中から遭遇シーンが稀であり

認識・判断技術の開発に有効となるシナリオを自動探索することも可能となる． 

 

 
 

図 3.3.①-6 緊急車両遭遇シーンの抽出例 
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(3) 交通参加者の危険な危険な挙動の生成 

一方，通常の交通環境では真に危険となる状況は多く存在しない．このため洗練さ

れた自動運転システムである場合，(2)で述べた手法を用いて過去の大量の実証実験デ

ータを解析して得られるコンクリートシナリオのほとんどは，概ね自動運転車両が安

全に走行可能な交通環境であることが想定される．このため実証実験のみから抽出し

たコンクリートシナリオのみでは，危険なシーンのシナリオを再現して自動運転シス

テムの判断技術の開発・評価を行うことが困難であるという課題もある．このため図

3.3.①-7(a)に示すように，モーションプラットフォームを用いたドライビングシミュ

レータを構築し，自動運転車周辺に存在する手動運転の自動車が仮想環境上で危険な

走行を行う挙動を生成可能な環境を構築した．さらに図 3.3.①-7(b)に示すように，Ｈ

ＭＤ（ヘッドマウントディスプレイ），モーションキャプチャ装置，ジョイスティック

等を活用し，仮想環境上で自動運転車両に対して危険な挙動を行う歩行者，二輪車等

の挙動を生成可能な環境を構築した．これらの環境を用いることで，例えば自動運転

車両にぶつかってくる交通参加者や，違法な行動をする交通参加者などといった，通

常の交通環境では遭遇頻度が稀な状況も仮想的に作り出すことができ，様々な交通環

境を仮想環境上に再現可能となることが期待される． 

 

  
(a) 手動運転自動車挙動生成装置  (b) 歩行者挙動生成装置  

図 3.3.①-7 交通参加者の危険な危険な挙動の生成装置 

 

 

次年度以降は，2023 年度に構築した車載センサを用いたコンクリートシナリオの自

動抽出機能，ドライビングシミュレータ等を用いた危険シナリオの生成機能などの複

数の機能を連携させ，自動運転システムの判断技術を仮想環境上で安全かつ効率的に

開発・評価可能な環境を構築する．これによって自動運転車開発におけるＤＸ（デジ

タルトランスフォーメーション）を推進し，安全かつ効率的な自動運転車両の開発を

可能としていく予定である． 
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②緊急車両認識モデルの構築 

A.緊急車両認識モデル構築用データの収集(金沢大学) 

通常の走行シーンにおいて遭遇頻度が低く再現が困難なシナリオの一つとして，緊

急車両遭遇時の挙動が挙げられる．緊急車両接近時には通常とは異なる回避行動が要

求されるためこのような走行シナリオにおける安全性の評価は重要である．緊急車両

の接近を把握するためにはサイレン音及び警光灯の点滅状態を認識する必要がある．

本研究項目では，緊急車両の遭遇シナリオを効率的に収集するための環境構築として，

緊急車両のサイレン音及び警光灯の点滅状態を認識するアルゴリズムを検討する．

2023 年度ではデータ収集用の環境を構築して緊急車両の認識モデル用のデータ計測を

実施し，市街地の環境において少なくとも 5 件以上の緊急車両の遭遇シナリオを収集

する．以降では具体的な研究開発成果について個別に述べる． 

 

• 緊急車両のサイレン音の認識アルゴリズム検討 

マイクの音を用いた認識では一般的に音データから統計的手法により抽出された特

徴量を用いた認識処理が行われる．本検討では，サイレン音の波形から周波数解析及

び次元削減処理を適用して抽出されたメルスペクトログラム特徴量を用いて認識処理

を開発した．自動運転自動車に設置された車載マイクを用いて実際に収集される特徴

データを図 3.3.②A-1 に示す．認識対象となる緊急車両以外にも街頭演説などのマイ

ク音や踏切などの周期的な音，走行中の風切り音などのノイズなどを定期的に計測し

て認識モデルの構築に必要となるデータを収集した． 

 

   
(a) パトカー(4s 周期) (b) パトカー(8s 周期) (c) 救急車 

   
(d) マイク音 (e) 踏切 (f) 風切り音 

図 3.3.②A-1  走行中に計測されるマイクの特徴データ例（メルスペクトログラム） 

 

サイレン音などの環境音の認識では上述したメルスペクトログラムなどの特徴量か

ら機械学習・深層学習により認識する方法が一般的である．本検討ではこれまでにメ

ルスペクトログラムの特徴量データに対して機械学習アルゴリズムを適用して緊急車

両のサイレン音を認識するアルゴリズムを検討している[1]．本研究項目では深層学習

による識別モデルをベースモデルとして構築し，これに対して公道の走行環境にて見

られる特徴的な課題の解決を目的としたモデル改善を検討した．サイレン音の状態を

判別するモデルとしては畳み込みニューラルネットワークを用いて設計しており，メ

ルスペクトログラムの特徴データを入力して緊急車両のサイレンの有無を出力する．

本検討に当たり，車載マイクから得られるマイク音のデータでは緊急車両接近時に発
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生するドップラ効果の影響や風切り音などの環境音のノイズの影響などが想定される．

そのため，これらの影響を考慮したデータ拡張方法として，波形の位相・周波数の変

更処理及びホワイトノイズの付与処理を導入して実環境での認識への効果を検討した．

モデルの構築に用いたデータには自動運転自動車で計測したサイレン音データに加え

て環境音のオープンなデータセットである ESC-50[2]，web からのスクレイピングによ

り収集したデータを用いた．本学習において想定するサイレン音はパトカー・救急車・

消防車の各サイレン音とする．使用したデータの内訳を表 3.3.②.A-1 に示す． 

 

表 3.3.②A-1 緊急車両のサイレン音認識モデルの構築に用いたデータセット 

 種類 データ件数 

学習データ（サイレン） Web 音源, サイレン音 132,505 

 実走行, サイレン音 57,848 

 ESC-50, サイレン音 1,196 

 計 191,549 

学習データ（環境音） Web 音源, 環境音 48,526 

 実走行, 環境音 78,097 

 ESC-50, 環境音 41,274 

 計 167,897 

テストデータ（非実走行, サイレン） Web 音源, サイレン音 54,628 

 ESC-50, サイレン音 548 

 計 55,176 

テストデータ（非実走行,環境音） Web 音源, 環境音 18,350 

 ESC-50, 環境音 15,115 

 計 33,465 

テストデータ（実走行, サイレン） 実走行, サイレン音 10,668 

テストデータ（実走行, 環境音） 実走行, 環境音 11,207 

 

評価では精度(Precision =TP/(TP+FP))，再現率(Recall=TP/(TP+FN))及び精度・再

現率の調和平均である F 値を評価する．ただし，TP はサイレン音を正しく識別した件

数，FP は環境音をサイレン音として誤認識した件数，FN はサイレン音を環境音として

未検出した件数である．表 3.3.②.A-2 に評価結果として非実走行及び実走行のテスト

データに対する認識結果を示す．評価結果よりそれぞれのデータに対して 98%以上の認

識率でサイレン音を識別できている様子が確認できる．本評価において認識において

課題となる特徴的な事例を図 3.3.②A-2 に示す．本認識モデルではサイレン音として

パトカー・救急車・消防車の個別の音源を収集していたが，実際の環境では交差点内

で救急車・消防車のサイレン音が同時に発せされる場合や交差点内でサイレン音のパ

ターンを変える場合などもある．このような異なるパターンのサイレン音が重なった

シーンにおける認識は代表的な課題のシーンである．その他の課題として学習用デー

タとは異なる周期パターンのサイレン音の考慮などデータセットのバリエーションの

拡張も必要である． 

 

表 3.3.②A-2 テストデータにおける評価結果 

 テストデータ（非実走行） テストデータ（実走行） 

Precision 0.989 0.996 

Recall 0.985 0.990 

F-value 0.987 0.993 
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図 3.3.②A-2  認識困難な課題例, 複数種類のサイレン音を同時に計測したシーン 

 

上記の評価によりマイクにて得られた音データから高精度にサイレン音を認識可能

であることを確認した．一方で，実際の走行環境では遠方から早期に緊急車両の接近

を把握する必要がある．そこで一般車両に緊急車両のアンプ及び GNSS/INS システムを

搭載した模擬緊急車両を用いたデータ計測を実施し，異なる走行条件・距離における

サイレン音のデータを計測した．データ計測は日本自動車研究所の多目的市街地にて

実施しており，非公道のテストコースにてサイレン音のデータを計測した．データ計

測の様子を図 3.3.②A-3 に示す．テストコース内を自車及び模擬緊急車両が走行し，

異なる走行速度・距離におけるデータを計測した．本評価データは異なる条件のサイ

レン音データとして 7,770 件のサイレンデータを収集して性能を評価した． 

 

 

…実験車両

…緊急車両

★-★間約500[m]

 

(a) 実験車両の車載カメラからの様子 (b) 評価データの計測例 

図 3.3.②A-3  日本自動車研究所 多目的市街地路での評価データの計測 

 

 
図 3.3.②A-4 テストコースの走行データによる検出率の評価結果 
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評価結果として，自車の異なる走行速度における検出率（F 値）の傾向を図 3.3.②

A-4 に示す．サイレン音認識用のマイクが車室外に設置されており自車の走行速度が高

くなるにつれて風切り音による環境音の影響を受けて検出率が低下する傾向があるも

のの走行中において 100m 先の緊急車両のサイレンを 80%程度で認識できることを確認

した．自車周辺の緊急車両の接近を抽出するには十分な範囲での認識が期待できるた

め，ここで開発した認識モデルを用いて緊急車両の遭遇シナリオの抽出への利用を検

討する． 
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• 警光灯の点滅認識アルゴリズムの検討 

カメラを用いた緊急車両の認識では，連続した車載カメラの画像から緊急車両及び

警光灯の点滅状態を認識する必要がある．一般的な認識方法では最初に対象となる車

両を検出し，車両の連続画像から点滅状態の認識を行うアプローチがある[3]．このよ

うなアプローチは緊急車両が視認可能な範囲においては有効であるが，緊急車両が遠

方から接近する状況では周辺車両により生じるオクルージョンの影響が課題となる．

一般車両と緊急車両の区別が困難な状況では点滅検出の対象に含まれない可能性もあ

る．遠方から緊急車両が接近するシーンでは車両本体ではなく警光灯だけが確認でき

る場合が多いため，点滅の発生情報を点滅の種別に関係なく検知することができれば

緊急車両の接近状況を把握することに役立てることができる．そこで本検討項目では，

画像内から対象を限定せずに点滅領域を検出する方法を検討する．検討したアルゴリ

ズムの概要を図 3.3.②A-5 に示す． 

 

 
図 3.3.②A-5 開発した点滅領域の認識アルゴリズム概要 

 

  
(a) 連続フレームの車載カメラ画像 

（左図: 時刻 t-1，右図: 時刻 t） 

(b) (a)の画像間の 

オプティカルフローの様子 

(色:移動方向,輝度:移動量) 

図 3.3.②A-6 車載カメラ画像に対するオプティカルフローの様子 

 

車載カメラで走行中の画像から周辺の対象物の連続的な変化に注目するため，過去

フレームで撮影された画像から画素ごとの移動量を逐次算出することで現在時刻にお

ける予測画像を作成する．作成された予測画像と実際に撮影された画像間の差分をと

ることで点滅時の明暗変化として輝度の変化領域を抽出する．ここで抽出した変化領
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域を時系列処理することにより，任意の周波数で輝度変化する領域を検出する方法で

ある．予測画像の作成では，図 3.3.②A-6 にて示す密なオプティカルフローアルゴリ

ズム[4]を採用して処理している．図 3.3.②A-6(b)のように対象となる画像間の移動量

のベクトルが得られるため，過去フレームの画像にオプティカルフローの移動ベクト

ルを考慮することで現在フレームの予測画像が作成可能である．この方法を用いるこ

とで，図 3.3.②.A-7 のように画像内の点滅している領域として，周辺車両のウインカ

ーの点滅や緊急車両の警光灯の領域を高確率な点滅領域として認識可能である． 

 

  
(a) 車載カメラ画像 (b) 認識した点滅領域の様子 

図 3.3.②A-7 カメラ画像内の点滅物体の認識の様子 

 

開発したアルゴリズムを用いた定量評価を実施した．評価用のデータは前述のサイ

レン音の評価時に用いた日本自動車研究所の多目的市街地路での走行データである

（図 3.3.②A-3）．模擬緊急車両の警光灯の位置を個別にラベル付けしたデータは整備

していないため，図 3.3.②A-8 のように画像から事前に検出した車両領域の上部に警

光灯の判定領域を設定して評価を実施した．カメラ画像全体から提案手法にて点滅領

域を認識し，検出判定領域内に点滅物体を認識できるかを評価した． 

 

 
図 3.3.②A-8 警光灯の認識状態の評価概要 

 

評価指標には Precision, Recall を採用し，模擬緊急車両が 100m 以内の範囲にある

ときの認識率を評価した．評価結果は，全体の認識率は Precision が 0.869, Recall

が 0.915 となり，90%程度で点滅領域を検出可能である点を確認した．特に遠方におけ

る認識事例として図 3.3.②A-9 に 280m 先の車両の検出例を示す．図中では車両全体の

ピクセル数が十分には得られていない遠距離であるが，輝度変化の領域を時系列処理

することで警光灯周辺を高い点滅確率の領域として認識していることが確認できる．

以上より本検討にて開発した処理の利用により自車周辺の点滅物体を効果的に検出可

能であることを検証した． 
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図 3.3.②A-9 遠方の警光灯の認識例（自車からの距離: 約 280m） 
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• 公道走行データを用いた緊急車両遭遇シナリオの収集 

本研究項目では継続的な市街地環境の走行データ計測を実施して緊急車両と遭遇す

るシーンの調査を実施した．これまでに蓄積しているデータを調査・分析したところ

25 件の遭遇シーンを確認しており，本研究項目の目標値である 5 件以上の遭遇シーン

を確認した．実際に確認された遭遇シーンでは自動運転自動車のパスプラニング及び

緊急車両の認識の観点で課題となりうる特徴的なシーンを確認した． 

自車が停止・回避などの対処が必要となるような遭遇シーンでは緊急車両の走行ス

ペースが十分に確保されているのか否かによってパスプラニングの課題が変化してく

る．図 3.3.②A-10(a),(b)のように緊急車両が走行するスペースがある場合は路肩に停

止などで対処可能であるが，スペースがない場合は周辺車両の停止位置に応じて緊急

車両の走行路を考慮したプランニングが必要となる．実際に遭遇したシーンの例を図

3.3.②A-11 及び図 3.3.②A-12 に示す．緊急車両が前方または後方から接近するのを確

認した段階で通過スペースを確保した地点に停止しているシーンである．一方パスプ

ランニングの課題だけではなく，画像認識・サイレン音の認識においても課題となる

シーンも確認されている．図 3.3.②A-10(c)のように自車と緊急車両の間に多くの周辺

車両や建物が存在する場合では緊急車両の一部または全体が視認できないため緊急車

両としての判別が遅くなることが想定される．こうしたシチュエーションでは前述し

た点滅物体の認識などの一部の情報から緊急車両の存在を認識する方法が有効なシー

ンである．これらプランニング・認識において課題となるシーンを想定して今後のア

ルゴリズム改善に有効活用していきたい． 

 

: 自車 : 他車: 緊急車両

緊急車両の⾛⾏に⼗分なスペースが
ある場合 → 停⽌して待機

 
(a) 緊急車両の走行スペースが十分存在する遭遇シーン例 

 

緊急車両の⾛⾏スペースがない場合
→ ⾛⾏スペースを考慮して停⽌

: 自車 : 他車: 緊急車両

⼗分な⾛⾏スペースを確保

 
(b)  緊急車両の走行スペースを考慮した停止位置プランニングが必要な遭遇シーン例 

 

周辺車両・建物によるオクルージョンによって
緊急車両を⼗分に視認できないシーン

 
(c)  周辺物体によるオクルージョンによって緊急車両の認識が困難となるシーン 

図 3.3.②A-10 特徴的な緊急車両の遭遇シーン例 
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(a)  t=8s (b) t=16s 

  
(c) t=20s (d) t=25s 

図 3.3.②A-11 手動データ収集時の緊急車両遭遇シーン例（前方から接近） 

 

  
(a) t=12s (b) t=19s 

  
(c) t=21s (d) t=22s 

図 3.3.②A-12 手動データ収集時の緊急車両遭遇シーン例（後方から接近） 
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B.緊急車両認識モデルの構築(中部大学) 

緊急車両の認識精度向上に向けて，認識モデルの学習データセットを再構築した．

表 3.3.②B-1 にデータセットの構成を示す．これまでの SIP 第 2 期における取り組み

では，WEB データおよび実走行データを利用して認識モデルの学習を行ってきた．WEB

データは緊急車両が画像の中心にあり，比較的明瞭な画像が多い．そのため，認識モ

デルの学習にとって容易なケースに偏っている．一方，実走行データは，他の車両が

多数写っており，また，緊急車両が他の車両で遮蔽しているケースが多い．実走行デ

ータは認識モデルを実利用する上で非常に有用なデータであるが，学習データとして

は認識が困難なケースに偏っている．このように，これまで利用している WEB データ

と実走行データは両極端なデータと言える．認識モデルの学習データとして多様なデ

ータを用意するために，JARI 施設内でパトライトを擬似的に搭載した車両を走行させ

て収集した JARI データを活用する．本データは，図 3.3.②B-1 に示すように，乗用車

の上部にパトライトを搭載して走行している車両を別の車両から撮影した画像となる．

任意の位置や車両の向きのデータを収集できるため，学習不足のデータを補うことが

できる． 

 

 

表 3.3.②B-1 各データの内訳 

データの種類 枚数 データ内容 

WEB データ 681 WEB からスクレイピングして収集 

実走行データ 814 金沢市街を走行して収集 

JARI データ 20096 パトライトを搭載した車両を JARI 施

設内で走行して収集 

 

 

 

 
図 3.3.②B-1 JARI データの例 

 

 

 一方で，本 JARI データには，物体の位置情報を示す矩形のアノテーションがなされ

ていない．そこで，約 3.5 万枚の画像に対して，アノテーション作業を行った．この

とき，緊急車両が写っていないフレームも含まれているため，それらの画像を除外し

た結果，20,096 枚の画像にアノテーションを付与することとなった．アノテーション

は，緊急車両の種類，遮蔽度合い，自車両までの距離を入力した．アノテーションの

基準を表 3.3.②B-2 に示す．遮蔽度合いおよび自車両までの距離はアノテーション基

準に基づいて主観で入力している． 
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表 3.3.②B-2 アノテーションの基準 

入力内容 詳細 

緊急車両の種類 Police_Car：パトカー 

Fire_Engine：消防車： 

Ambulance：救急車 

Articulated_Vehicle：その他 

遮蔽度合い FullyVisible：オクルージョンなし 

PartiallyOccluded：オクルージョン 50%未満 

LargelyOccluded：オクルージョン 50%以上 

距離 Near：距離が近い 

Far：距離が遠い 

 

 

 WEB データおよび実走行データと比較して，JARI データのデータ数は非常に膨大で

ある．JARI データは擬似的な緊急車両のため，本 JARI データをすべて利用すると本来

の緊急車両の認識精度が低下する恐れがある．そこで，20,096 枚の中から 2,000 枚の

画像を選別して，認識モデルの学習を行う．すべてのデータを用いた場合と比較して，

データ選別の必要性の調査についても行う．認識モデルには YOLO v4 を用いる．評価

には，実走行データのうち，32 枚を評価データに用いる．この評価データは遮蔽度合

いが FullyVisible または，PartiallyOccluded のデータのみとする． 

図 3.3.②B-2 に各緊急車両に対する検出精度を示す．これより，JARI データを 2,000

枚追加することで，すべての緊急車両（全体）に対して 90.7%の検出精度を達成した．

WEB データと実走行データの場合と比べて，8.3 ポイント精度が向上した．また，JARI

データを 20,000 枚用いる場合と比較して 0.9 ポイント精度が向上した．各緊急車両に

ついて個別に比較すると，救急車の検出精度が最も向上している．パトカーおよび消

防車も JARI データを追加することで精度が 6 ポイントから 8 ポイント程度の向上が見

られる． 

 

 
図 3.3.②B-2 各緊急車両に対する検出精度  

 

各認識モデルについて，矩形サイズと遮蔽度合いによる検出傾向を図 3.3.②B-3 に

示す．ここで，本データセットには物体までの距離情報は付与されていない．そのた

め，距離情報の代わりに矩形サイズにより評価する．矩形サイズが小さいほど遠方の

車両であることを意味する．図 3.3.②B-3(a)と図 3.3.②B-3(b)を比較すると，JARI

データを追加することで，50%未満の遮蔽度合い(PartialOcc)において，矩形サイズが
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150 ピクセルから 400 ピクセル程度の小さな緊急車両に対する検出精度が改善してい

る． 図 3.3.②B-3(b)と 図 3.3.②B-3(c)を 比較 す る と， 50%未 満の 遮 蔽 度合 い

(PartialOcc)において，JARI データを 2,000 枚にすることで，100 ピクセルから 200

ピクセルのさらに小さな緊急車両の検出精度が改善している．これより，大量に学習

データを追加するだけでなく，データの選別が重要であることがわかった． 

 

 
(a) WEB データ+実走行データで学習した認識モデル 

 

 
(b) WEB データ+実走行データ+JARI データ(20,000 枚)で学習した認識モデル 

 

 
(c) WEB データ+実走行データ+JARI データ(2,000 枚)で学習した認識モデル 

図 3.3.②B-3 各緊急車両に対する検出精度 
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 各緊急車両の検出結果例を以下に示す．図 3.3.②B-4 は，遮蔽度合いがないパトカー

の検出結果例である．これより，遮蔽が生じていない場合は，JARI データを追加しな

い場合でも検出できていることがわかる．図 3.3.②B-5 は，遮蔽度合いが 50%未満のパ

トカーの検出結果例である．図 3.3.②B-5 の下部のように，WEB+実走行データのみの

場合は，誤って一般車(Car)と認識している．一方で，JARI データを追加することで正

しく，パトカーと認識できている． 

 

 
図 3.3.②B-4 パトカーの検出結果例(遮蔽なし) 

 

 
図 3.3.②B-5 パトカーの検出結果例(遮蔽度合い 50%未満) 
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図 3.3.②B-6 パトカーの検出結果例(遮蔽度合い 50%以上) 

 

図 3.3.②B-6 に遮蔽度合いが 50%以上のパトカーの検出結果例を示す．図 3.3.②B-6

のようにパトライトが見えていても，車両の大部分が隠れているとパトカーの検出が

できていない． 一方で，図 3.3.②B-7 に示すように，遠方のパトカーは JARI データ

を追加することで正しく認識できている． 

 

 
図 3.3.②B-7 パトカーの検出結果例(遠方) 

 

 

  次に，遮蔽度合いが 50%未満の場合の消防車の検出結果例を図 3.3.②B-8 に示す．図

3.3.②B-8 の上部より，自車両に近く，遮蔽度合いが小さい場合は正しく消防車と認識

できている．一方，遠方かつ手前に同色の車両が走行している場合，正しく検出でき

ていない．特に，JARI データを追加した場合，誤って手前の車両を救急車と認識して

いる．このように複合的な要因で消防車を認識できないケースがあることがわかった． 
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図 3.3.②B-8 消防車の検出結果例(遮蔽率 50%未満) 

 

遮蔽度合いが 50%未満の場合の救急車の検出結果例を図 3.3.②B-9 に示す．図

3.3.②B-9 の上部より，遮蔽度合いが小さい場合は遠方の救急車でも正しく救急車と認

識できている．一方，遠方かつパトライトが消灯している場合は，乗用車と認識して

いる．しかしながら，一般的な定義上は，パトライトが消灯している場合は緊急車両

として扱わないので，本認識は正しい結果であると言える． 

 

 
図 3.3.②B-9 救急車の検出結果例(遮蔽率 50%未満) 

 

 図 3.3.②B-2 より，救急車の認識精度は，他のパトカーや消防車よりも低い．その

原因として，上記で説明したパトライトの消灯時の誤認識だけでなく，図 3.3.②B-10

に示すようなシーンがある．図 3.3.②B-10 は，遠方から救急車が走行してくるシーン

であるが，雨天時に点灯しているヘッドライトが路面で反射している．このような車

両としても検出が困難なシーンがあるために，検出性能が低下したと考えられる．本

シーンに対応する方法として，DIVP®シミュレータを活用したデータ作成が考えられる．
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しかしながら，現在の DIVP®シミュレータでは，パトライトの点灯は可能であるがヘッ

ドライトの路面の反射までを再現することが困難である．そのため，仮想環境を活用

したデータ収集は現時点では検討対象外とした． 

 

 
図 3.3.②B-10 救急車の誤認識シーン 
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4. 研究開発のまとめ成果 

4.1. 死角を伴う環境下における安全性評価指標の検討 

A.マルチセンサを用いた死角を伴う環境における認識モデルの構築(金沢大学) 

2023 年度は，マルチセンサを用いた死角領域の認識アルゴリズムの初期検討及びミ

リ波レーダを用いた物体認識技術を構築した．死角領域の認識では LiDAR の測距情報

に加えて路面の高さ情報を表現した地図情報を活用することで自車周辺の勾配を考慮

した死角認識アルゴリズムを開発した．これにより自車前方の対向車両の死角など交

差点走行中に発生しうる路面領域の未検出を改善可能な点を検証し，有効性を評価し

た．また，高分解能ミリ波レーダとして 4D イメージングレーダを導入し，全方位のセ

ンサ取得環境を構築して周辺移動物体の認識及び追跡アルゴリズムを開発した．物体

の認識アルゴリズムでは 4D イメージングレーダで観測される 3次元点群及び照射方向

の相対速度情報を入力とした深層学習モデルを検討し，ターゲット車両の走行条件に

よる検出性能を比較評価した．評価結果より，ターゲットの走行速度が上がるほど背

景物体と移動物体の区別が可能となり検出率が向上する点を確認した．一方で，停止

物体や隠れのある物体の認識には課題あり，単独フレームの認識結果だけでは遠方の

認識性能が十分ではない点も確認されたため，追加の検討として 4D イメージングレー

ダの観測点から移動物体の追跡アルゴリズムを検討した．検討した追跡アルゴリズム

では観測点群をクラスタリングし，クラスタの代表点をカルマンフィルタで追跡する

運動状態の推定処理を設計している．ここで実装したアルゴリズムを用いて隠れのな

い開けた環境での性能評価を実施した．物体追跡の評価結果より自車から遠ざかって

いく物体に対しては 200m 以内の認識率 90%以上を確認して目標条件を達成した．一方

で遠距離から接近する物体や前述同様に低速の物体になると追跡性能が低下する傾向

を確認しているため，今後はマルチセンサフュージョンにより認識が苦手となるシー

ンの追跡性能の改善が必要となる． 

 

B.深層学習を用いた LiDAR・カメラのセンサフュージョンによる物体認識モデルの精度

向上(中部大学) 

2023 年度は，深層学習を用いたカメラ画像と LiDAR のセンサフュージョンによる認

識モデルの開発を実施した．まず，カメラ画像と LiDAR のセンサフュージョン方法に

ついて調査し，両センサの特徴を鳥瞰視点で融合する BEV fusion を採用した．BEV 

fusion の学習および評価を行うために，DIVP®シミュレータを活用し，データ作成を行

った．DIVP®シミュレータを活用することで同一シナリオにおいて，天候や時間帯など

の諸条件を変更したデータを容易に生成でき，またアノテーションコストを削減でき

る．DIVP®シミュレータで作成するデータのシナリオは青梅交差点の右折待機時とし，

対向車両を多数配置してデータを作成した．DIVP®シミュレータで作成したデータを用

いて BEV fusion を学習した．このとき，学習方法については BEV fusion に合わせて

実施した．晴天時および雨天時の評価データについて，学習した認識モデルを用いて

距離ごとの検出率を求めて評価を行った．評価結果から，150m 程度遠方の対向車両を

97%程度の検出率で検出できることを確認した．これにより，2023 年度の目標であった

100m 遠方の対向車両に対して 90%以上の認識率という目標を達成した．また，右折待

機の車両がいる場合についても同様に評価を行った．その結果右折待機車両により一

部が遮蔽する 40m 程度遠方の対向車両を 85%程度の精度で認識できることを確認した．

さらに，ワイパーなどで対向車両に遮蔽が生じるシーンにおいても認識できているこ

とを確認した．センサフュージョンすることで互いのセンサと特徴を補完することが

でき，センサ単体では認識困難なシーンへの対応が可能であることがわかった． 
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4.2. 歩行者，自転車が存在する交差点における安全性評価指標の検討 

A.CI 環境を用いた交差点における安全性評価に向けた AD システム評価手法の検討(金

沢大学) 

 2023 年度は，自動運転システムの認知・判断に関する安全性評価として，様々な環

境要因や交通状況を考慮した評価を可能とする自動評価環境の CI環境の構築を進めた．

ここでは環境条件に対するセンサの認識性能を評価するための 1st-Stage および，主に

経路・軌道計画の性能を評価するための 2nd-Stage としてそれぞれの実現に必要となる

要素技術を検討した．自動運転システムのリアルタイムな評価を実現するため，

1st-Stage の評価において実際のセンサ情報を用いずに環境条件から認識結果を模擬す

るために認識精度の統計モデルの近似手法を検討した．また，2nd-Stage では経路・軌

道計画などの判断機能に対して 1st-Stage 同様の CI 環境による自動評価環境を構築し

てテストシナリオでの評価を実施した． 

1st-Stage において初期検討したセンサ認識性能モデルでは特定の物体認識モデルの

認識結果の模擬を目的としている．物体認識モデルで出力される物体情報及び確信度

情報を教師データとして，これを正解情報・環境条件から出力する回帰モデルを検討

した．DIVP®シミュレータにより生成した環境条件及び遮蔽条件の異なるセンサデータ

の認識結果を用いてモデルを構築して有効性を検証した．開発したカメラ・LiDAR の認

識性能モデルでは遮蔽率が高く，遠距離の物体になるほど出力される確信度が低下す

る傾向を確認し，一般的な認識アルゴリズムの特徴を捉えたモデルを実現した．今後

はモデルの再現精度に注目して認識性能モデルの評価・改善が課題である． 

一方，2nd-Stage の評価では DIVP®プロジェクトと連携して開発したシミュレーショ

ン環境に自動運転システムを接続してパスプランニングの安全性評価環境を構築した．

ここでは，SAKURA プロジェクトにて検討されたシナリオと DIVP®にて開発された評価環

境を用いて特定シナリオにおける安全性評価の一連の流れを検証した．今後は開発し

た CI 環境を用いて自動運転システムの性能改善につなげていく点が課題である． 

 

 

B.歩行者，自転車が存在する交差点における安全性評価指標の検討(中部大学) 

2023 年度は，歩行者および自転車の安全評価指標を検討する上で必要となる認識モ

デルの限界性能評価を実施した．歩行者が横断歩道を横断する際，横断歩道の前方に

車両が停車しているシナリオとし，歩行者の遮蔽率が認識性能に与える影響を調査し

た．このとき，歩行者と自車両との距離，天候や時間帯，停車車両の種類を変更した． 

なお，自転車は，乗車している人物を検出することで応用できるため，歩行者に限定

して調査を行った．歩行者と自車両の距離が 15m の時，曇天および晴天では遮蔽率が

80%程度でも検出できることがわかった．雨天時も同様に遮蔽率が 80%程度でも検出で

きており，停車車両の後方から現れる歩行者を適切に検出可能である．一方，雨天時

は遮蔽率が 0%でも検出できていないケースがある．これは，歩行者がワイパーで隠れ

るためである． 

次に，歩行者と自車両の距離が 30m の場合，曇天，晴天の遮蔽率に対する検出傾向

に大きな差はなかった．一方で，晴天時に遮蔽率が 20%以上になるとやや未検出が増加

している．歩行者と自車両の距離が 50m の場合でも同様の傾向があり，晴天時に未検

出が増加している．雨天時はワイパーや雨粒による影響のため，検出率が低下しやす

い． 

晴天時における検出率の低下について，詳細な調査をするために，歩行者の種類ご

との評価を行った．その結果，遠方の子供の検出精度が低いことがわかった．これは，

子供の身長が低く，検出可能なサイズが影響している．服色ごとの検出傾向について

も調査した．服色が黒の場合，歩行者と自車両の距離が 20m 以内，遮蔽率が 80%程度で

も検出できる．服の色が青色，グレーでも同様の傾向があり，服色に関わらず，距離
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が 20m 以内で遮蔽率が 80%以下の場合は，同様の限界性能であると言える．一方で，服

色が黒の場合，遮蔽率が 80%以上になると検出できていないケースが増えている．これ

は，停車車両の影と歩行者の服色が同色で影と同化したためである． 

 これらの結果より，歩行者の身長および服色について考慮した安全性評価指標を検

討する必要がある．また，雨天時のワイパーによる影響についても考慮する必要があ

ると考える． 
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4.3. 仮想環境を活用した効率的な AD システムの安全性評価手法の確立 

①実証データを活用した AD システムの安全かつ効率的な評価手法の検討(金沢大学) 

2023 年度は，実環境では再現が困難もしくは遭遇頻度が稀なシナリオに対する自動

運転システムの判断技術の向上を目的として，(1)車載センサデータのタグ付けによる

シナリオの手動生成，(2)車載センサデータからのコンクリートシナリオの自動生成，

(3)交通参加者の危険な危険な挙動の生成について検討した．(1)の検討項目について

は，SIP 第 2 期に構築した自動運転車両に最新の 4D イメージングレーダを搭載し，東

京都臨海部(お台場)，石川県金沢市等における自動運転公道走行実証実験や，各地に

おける手動運転によるデータ収集を行った．また，収集したセンサデータのタグ付け

作業を実施し，深層学習モデルの学習や評価等へ活用した．(2)の検討項目については，

SIP 第 2 期において開発した LiDAR，カメラ等を用いた深層学習を用いた認識技術や，

移動物体の追跡技術をベースとして，移動物体の抽出(移動物の位置･姿勢･サイズや物

体種別の認識の認識)を行うとともに，移動物体の運動状態(速度・加速度・ヨーレー

ト)や，移動物体の時系列的な移動軌跡を抽出する機能を開発した．また本事業で収集

したデータに加え，SIP 第 2 期において収集したセンサデータなど，過去に収集した大

量のセンサデータを最新の認識技術をもとにコンクリートシナリオを自動生成する機

能も開発し，大量のコンクリートシナリオを効率的に自動抽出する機能を開発した．

これによって例えば緊急車両遭遇時などの遭遇頻度が稀なシナリオ等を収集すること

を可能とした．(3)の検討項目については，モーションプラットフォームを用いたドラ

イビングシミュレータを構築し，自動運転車周辺に存在する手動運転の自動車が仮想

環境上で危険な走行を行う挙動を生成可能な環境を構築した．また，ＨＭＤ（ヘッド

マウントディスプレイ），モーションキャプチャ装置，ジョイスティック等を活用し，

仮想環境上で自動運転車両に対して危険な挙動を行う歩行者，二輪車等の挙動を生成

可能な環境を構築した． 

次年度以降は，2023 年度に構築した車載センサを用いたコンクリートシナリオの自

動抽出機能，ドライビングシミュレータ等を用いた危険シナリオの生成機能などの複

数の機能を連携させ，自動運転システムの判断技術を仮想環境上で安全かつ効率的に

開発・評価可能な環境を構築する．これによって自動運転車開発におけるＤＸ（デジ

タルトランスフォーメーション）を推進し，安全かつ効率的な自動運転車両の開発を

可能としていく予定である． 
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②緊急車両認識モデルの構築 

A.緊急車両認識モデル構築用データの収集(金沢大学) 

2023 年度の検討では，通常走行にて遭遇頻度の低いシナリオの一つとして，緊急車

両の遭遇シーンに注目し，当該シナリオを効率的に収集するための環境構築として，

緊急車両のサイレン音及び警光灯の点滅状態を認識するアルゴリズムを検討した．自

車の停止・回避行動が必要となる緊急車両の接近を把握するには，サイレン音の認識

及び警光灯の点滅を認識する必要がある．そこで，マイクの音データを用いたサイレ

ン音の認識モデルの構築，及び画像処理による点滅物体の認識アルゴリズムを開発し

て有効性を検証した．サイレン音の認識ではマイクの波形パターンであるメルスペク

トログラムの特徴量を用いた深層学習モデルを検討し，実際の交通環境で認識が困難

となる特徴的な周波数・位相の変化に注目した性能改善を実施した．また，日本自動

車研究所多目的市街地路にて計測された模擬緊急車両の走行データを用いた評価より，

走行中において 100m 以内のサイレン音を 80%以上で認識可能な点を検証した．また，

点滅物体の認識では多数の車が存在する交通環境にてオクルージョンのある緊急車両

の存在を把握するため，画像中から任意の点滅領域の認識が可能なアルゴリズムを検

討した．特定の周期で点滅する点滅物体を抽出可能な方法を検討し，評価結果より周

辺車両の警光灯を検出可能な点を確認した．この他，継続的な市街地環境の走行デー

タ計測を実施し，緊急車両と遭遇するシーンの調査を実施した．これまでに蓄積して

いるデータを調査・分析したところ 25 件の遭遇シーンを確認し，本研究項目の目標値

である 5 件以上の遭遇シーンを確認した．実際に確認された遭遇シーンでは自動運転

自動車のパスプラニング及び緊急車両の認識の観点で課題となりうる特徴的なシーン

が含まれており，今後のアルゴリズム開発に有効活用できる点を確認した． 

 

 

B.緊急車両認識モデルの構築(中部大学) 

2023 年度は，②A.で収集した緊急車両のデータを活用して認識モデルの高精度化を

検討した．その際，緊急車両のデータの選別の必要性についても調査した．緊急車両

の認識モデルを構築するにあたり，緊急車両のデータにアノテーション作業を行い，

データセットを用意した．用意したデータセットを用いて認識モデルの学習を行い，

評価を実施した結果，遮蔽率が 50%未満の緊急車両の認識率が 90.6%と目標値(90%)を

クリアした．認識結果を分析した結果，救急車のパトライトが点灯していない場合に

乗用車と誤認識するケース，雨天時に緊急車両のヘッドライトが路面で反射するケー

スで認識できないことがわかった．このようなケースについて，仮想環境でデータ作

成を行うことを検討したが，DIVP®シミュレータでは，雨天時の路面反射を再現できな

いことがわかった．そのため，仮想環境の活用は今後の課題となる． 

 



（様式２）

頁 図表番号
24 図3.1.B-1

二次利用未承諾リスト

令和５年度 無人自動運転等のCASE対応に向けた実証・支援事業（自動運転技術（レベル３、４）に必要な認識技術等の研究）

令和５年度 無人自動運転等のCASE対応に向けた実証・支援事業（自動運転技術（レベル３、４）に必要な認識技術等の研究）

国立大学法人 金沢大学、学校法人中部大学 中部大学

タイトル
BEV fusion の概要図
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