平成30年度国際エネルギー情勢調査
(諸外国のエネルギー政策動向及び国際エネルギー統計等調査事業)
——国際エネルギー統計等調査事業報告書——

平成31年3月29日
目次

1. 本年度作業内容の概要 ... 6
2. 日本エネルギー経済研究所の協力内容 .. 7
3. 年次質問票 .. 10
 3.1. 記入方針 ... 10
 3.2. 提出方法 ... 10
 3.3. 2017年度改訂 .. 11
 3.4. 質問票の構造と記入の際の留意点 ... 11
 3.4.1. Oil Annual Questionnaire .. 11
 3.4.2. Coal Annual Questionnaire ... 17
 3.4.3. Natural Gas Annual Questionnaire 18
 3.4.4. Electricity and Heat Annual Questionnaire 19
 3.4.5. Renewables Annual Questionnaire 21
 3.5. IEAとの協議事項 .. 23
 3.5.1. 石炭質問票の協議事項 .. 23
 3.5.2. 石油質問票の協議事項 .. 26
 3.5.3. ガス質問票の協議事項 .. 29
 3.5.4. 電力質問票の協議事項 .. 34
 3.5.5. 再生可能エネルギー質問票の協議事項 38
4. Natural Gas Map ... 41
 4.1. 記入方針 ... 41
 4.2. 質問票の内容と記入方法 ... 41
 4.3. IEAとの協議事項 .. 42
5. Mini questionnaire ... 43
 5.1. 記入方針 ... 43
 5.2. 質問票の内容と記入方法 ... 43
 5.2.1. Coal Mini Questionnaire .. 43
 5.2.2. Bio fuels Mini Questionnaire ... 44
 5.2.3. Natural Gas Mini Questionnaire 44
 5.2.4. Electricity and Heat Mini Questionnaire 44
 5.2.5. Renewable Mini Questionnaire 45
 5.3. IEAとの協議事項 .. 45
 5.3.1. 電力質問票の協議事項 .. 45
 5.3.2. ガス質問票の協議事項 .. 46
 5.3.3. 石炭質問票の協議事項 .. 47
6. 月次質問票 ... 48
6.1. MOS (石油) ... 48
6.2. 提出方法 ... 48
6.3. 提出データ ... 48
 6.3.1. 質問票の構造 ... 48
 6.3.2. データの記入方針 .. 56
 6.3.3. IEAとの協議事項 ... 58
6.4. JODI Oil ... 61
 6.4.1. 提出方法 .. 62
 6.4.2. 提出データ ... 62
 6.4.3. 質問票の構造 ... 62
 6.4.4. データの記入方針 .. 63
 6.4.5. IEAとの協議事項 ... 63
6.5. MOS/JODI Gas ... 63
 6.5.1. 提出方法 .. 63
 6.5.2. 提出データ ... 64
 6.5.3. 質問票の構造 ... 64
 6.5.4. データの記入方針 .. 65
 6.5.5. IEAとの協議事項 ... 66
7. 緊急時対応審査(QuE) ... 67
8. Energy Efficiency Indicator (EEI) ... 68
 8.1. 質問票の構造 ... 68
 8.2. 利用統計一覧 ... 69
 8.3. 利用統計の定義とデータ捕捉性 ... 71
 8.4. IEAとの協議事項 ... 80
9. Standing group on long term co-operation committee on energy research and technology (SLT)のデータ提供協力 ... 86
 9.1. 記入方針 ... 86
 9.1.1. 質問票の構造 .. 86
 9.1.2. 質問票の記入内容 ... 88
 9.2. IEAとの協議事項 .. 89
図 表

図1-1 主な作業フロー..6
図4-1 日本のパイプラインとLNGターミナル報告例.......................41
図9-1 電力需要と電源構成の見通し..89

表2-1 国際協力実績..8
表2-2 協力体制および対応内容の詳細..9
表3-1 IEA年次質問票の担当者...10
表3-2 Oil Annual Questionnaireの質問票.................................11
表3-3 石油製品別密度..13
表3-4 バイオ燃料におけるIEA石油質問票・該当項目と計上方法......15
表3-5 バイオ燃料におけるIEA質問票の計上と構造(2017年度事業でIEAから指示があった事項)..................16
表3-6 Coal Annual Questionnaireの質問票...............................18
表3-7 Natural Gas Annual Questionnaireの質問票...................18
表3-8 Electricity and Heat Annual Questionnaireの質問票...........20
表3-9 Electricity and Heat Annual Questionnaireの質問票...........21
表3-10 バイオマス系燃料の分類...21
表5-1 Coal Mini Questionnaireの質問票.................................43
表5-2 Natural Gas Mini Questionnaireの質問票.......................44
表6-1 石油製品別密度..57
表6-2 利用統計一覧(MOS)...57
表6-3 JODI Databaseの一例...62
表6-4 JODI Oil質問票..62
表6-5 利用統計一覧(JODI OIL)...63
表6-6 利用統計一覧(MOS Gas, JODI Gas)...............................65
表8-1 Country data section...68
表8-2 IEA data and aggregate indicators....................................69
表8-3 利用統計一覧(EEI)...70
表8-4 住宅・土地統計調査の調査概要....................................71
表8-5 建築着工統計の調査概要...72
表8-6 FAOSTATの調査概要...72
表8-7 化学工業統計/生産動態統計化学工業統計編の調査概要........73
表8-8 資源・窯業・建材統計編の調査概要..................................73

表8-9 セメントハンドブックの調査概要....................................74
表8-10 紙・印刷・プラスチック・ゴム製品統計の調査概要.............74
表8-11 鉄鋼・非鉄金属・金属製品統計の調査概要.......................75
表8-12 アルミニウム統計の調査概要.....................................76
表8-13 World Energy Balancesの調査概要...............................76
表8-14 エネルギー・経済統計要覧の概要.................................77
表8-15 消費動向調査の調査概要...78
表8-16 自動車輸送統計の調査概要..78
表8-17 鉄鋼輸送統計の調査概要...79
表8-18 航空輸送統計の調査概要...79
表8-19 内航船舶輸送統計の調査概要
表9-1 SLT質問票の構成
表9-2 SLT Table 1質問票
表9-3 SLT Table 2質問票
表9-4 SLT Table 3質問票
表9-5 SLT Table 1 2030シートへの入力結果
目的

今日のエネルギー市場においては、アジア・太平洋地域を中心として将来的に力強い経済発展が予想されており、エネルギー需要の急速な増大が予想されている。一方で、これら地域を含めた国際エネルギー統計の不備による需給バランスおよび見通しの不透明さが、石油・ガス等の資源エネルギーの世界的な価格不安定化要因ともされ、エネルギー安全保障上の大きな課題となっている。そのため、国際エネルギー機関（IEA）が中心となって整備する国際エネルギー統計の更なる透明化・高度化を実現することが必要不可欠である。

IEAが作成する「World Energy Outlook」や「Oil Market Report」等の信頼度の高い世界規模のエネルギー統計として様々な場で活用されているレポートは、IEAが加盟国に対してエネルギー統計データに関する各種質問票を送付し、収集した数値を基としている。わが国としても、IEAが求める統計データについて、正確なデータを提出することが求められている。

本事業は、わが国が率先して国際エネルギー統計の整備を推進することにより、真に必要な政策をより効果的に適時適切に展開するための基礎となり、もって、わが国のエネルギー安全保障の向上に資することを目的とする。
1. 本年度作業内容の概要

IEAが作成する「World Energy Statistics」、「World Energy Balances」や「World Energy Outlook」、「Oil Market Report」等の、信頼度の高い世界規模のエネルギー統計や各種見通しは、IEAが加盟国に対して送付・収集した、エネルギー統計データに関する各種質問票に記入されたデータを基としている。

具体的には、年次データ(石油、天然ガス等エネルギー源別のエネルギーバランス等)、Monthly Oil And Gas Statistics (MOS)データ(油種毎の供給量、ガス供給量、輸出入量等)、Joint Organizations Data Initiative (JODI: IEA, OPEC, APEC, EUROSTAT, OLADE, UNSD, GECFの7国際機関が参加)データ(石油・ガスの生産、輸出入、在庫データ等)といった数値を収集しており、各加盟国には正確なデータの提供が求められている。Standing Group on Long-Term Co-operation Committee on Energy Research and Technology (SLT/CERT質問票)では、長期エネルギー需給見通しの記入が求められている。

2009年のIEA閣僚理事会においては、加盟国がセクター毎の最終エネルギー消費に関するEnergy Efficiency Indicator (EEI: エネルギー効率指標)データの提出に合意したことを受け、本データをIEAに提供することが必要となっている。

本事業では、国際エネルギー統計の更なる充実に貢献するため、国内外の膨大なエネルギー統計データを収集・加工し、求められるデータについて適切な数値を提供し、今後の改善に向けた提案を行う。

図1-1 主な作業フロー
2. 日本エネルギー経済研究所の協力内容

日本エネルギー経済研究所(IEEJ)は、資源エネルギー庁の協力のもと、わが国の各種エネルギー統計データを収集、加工し、IEAが要求する質問票への記入・提供を実施している。

提出による主な成果物として、年次データについては、世界各国のエネルギーバランス表を収録したWorld Energy Balances、エネルギーバランス表の元データとなるエネルギー源別固有単位表を収録したWorld Energy Statisticsがある。「Coal Information」「Oil Information」「Natural Gas Information」「Electricity Information」「Renewables Information」などの燃料別統計においても、World Energy BalancesやWorld Energy Statisticsで報告したデータが活用されている。また、エネルギー起源の二酸化炭素(CO2)排出量を収録した「CO2 Emissions from Fuel Combustion」でも、その推計にはWorld Energy Balancesが活用されており、IEEJが提出したデータが基礎になっている。

月次データについては、IEA Monthly Oil and Gas Reportがある。こちらも、IEAが要求する質問票にIEEJが毎月記入を行い、提出したもののが基礎となっている。

見通し関連では、Standing Group on Long-Term Co-operation (SLT)の枠組みの中で質問票が各国に毎年配布され、エネルギーバランス表の実績および2020年から2050年まで10年刻みのエネルギー需給見通しの記入が求められている。これについても、資源エネルギー庁の協力のもと、IEEJが毎年報告を行っている。
表2-1 IEAの取組と本事業での国際協力実績

<table>
<thead>
<tr>
<th>出版物</th>
<th>内容</th>
<th>IEA協力の有無</th>
<th>データの出所元</th>
</tr>
</thead>
<tbody>
<tr>
<td>基本統計</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key World Energy Statistics</td>
<td>一次エネルギー指標（世界、OECD）、各燃料の生産量、輸出入量の上位10か国、発電量上位10か国等</td>
<td>○</td>
<td>Annual Questionnaire（総合エネルギー統計、電源開発の概要等）、非OECDはIEAが各国統計情報により推計</td>
</tr>
<tr>
<td>World Energy Balances</td>
<td>世界各国のエネルギーバランス表（TPES、燃料別図等）</td>
<td>○</td>
<td>Annual Questionnaire（総合エネルギー統計、電源開発の概要等）、非OECDはIEAが各国統計情報により推計</td>
</tr>
<tr>
<td>World Energy Statistics</td>
<td>世界各国のエネルギーバランス表の元データとなるエネルギー源別国単位表</td>
<td>○</td>
<td>IEA Energy Balances & StatisticsよりIEA推計</td>
</tr>
<tr>
<td>CO₂ Emissions from Fuel Combustion</td>
<td>世界各国のCO₂排出量</td>
<td>○</td>
<td>IEA Energy Balances & StatisticsよりIEA推計</td>
</tr>
<tr>
<td>燃料別統計</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal Information</td>
<td>石炭の生産量、需給量、輸出入量等</td>
<td>○</td>
<td>World Energy Balances, World Energy Statistics</td>
</tr>
<tr>
<td>Oil Information</td>
<td>石油の生産量、需給量、輸出入量等</td>
<td>○</td>
<td>World Energy Balances, World Energy Statistics</td>
</tr>
<tr>
<td>Natural Gas Information</td>
<td>天然ガスの生産量、需給量、輸出入量等</td>
<td>○</td>
<td>World Energy Balances, World Energy Statistics</td>
</tr>
<tr>
<td>Electricity Information</td>
<td>電力の生産量、需給量、輸出入量等</td>
<td>○</td>
<td>World Energy Balances, World Energy Statistics</td>
</tr>
<tr>
<td>Renewable Information</td>
<td>再生可能エネルギーの生産量、需給量、輸出入量等</td>
<td>○</td>
<td>World Energy Balances, World Energy Statistics</td>
</tr>
<tr>
<td>Monthly Oil and Gas report</td>
<td>OECD加盟国の月次石油・ガスの供給データ</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Monthly Oil and Gas Survey</td>
<td>OECD加盟国の月次石油・ガスの供給データ</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Emergency Data Questionnaire (Quek)</td>
<td>緊急時対応審査</td>
<td>○</td>
<td>資源エネルギー庁国際課、石油資源備蓄課提供データ</td>
</tr>
<tr>
<td>価格統計（四半期ごと）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Prices and Taxes</td>
<td>国別の各燃料（石炭、ガソリン、電力料金、ガス料金等）の小売価格・税金</td>
<td>OECD(IEA加盟国)は各国からの提供、非OECDは独自調査</td>
<td></td>
</tr>
<tr>
<td>長期見通し</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World Energy Outlook</td>
<td>長期（2040年まで）のエネルギー市場見通し</td>
<td>IEAによる調査・推計</td>
<td></td>
</tr>
<tr>
<td>Market Report Series Oil</td>
<td>中期（5年）の石油市場見通し</td>
<td>IEAによる調査・推計</td>
<td></td>
</tr>
<tr>
<td>Market Report Series Gas</td>
<td>中期（5年）のガス市場見通し</td>
<td>IEAによる調査・推計</td>
<td></td>
</tr>
<tr>
<td>Market Report Series Coal</td>
<td>中期（5年）の石炭市場見通し</td>
<td>IEAによる調査・推計</td>
<td></td>
</tr>
<tr>
<td>Market Report Series Renewables</td>
<td>中期（5年）の再生可能エネルギー市場見通し</td>
<td>IEAによる調査・推計</td>
<td></td>
</tr>
<tr>
<td>Market Report Series Efficiency</td>
<td>中期（5年）のエネルギー効率見通し</td>
<td>IEAによる調査・推計</td>
<td></td>
</tr>
<tr>
<td>Energy Technology Perspectives</td>
<td>技術進展とエネルギー経済のシナリオ</td>
<td>IEAによる調査・推計</td>
<td></td>
</tr>
<tr>
<td>政策</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Policies of IEA Countries</td>
<td>IEA加盟各国のエネルギー政策レビュー（日本版は2014年度にIn-Depth Reviewが実施された）</td>
<td>○</td>
<td>政府資料、ヒアリング等よりIEAが作成</td>
</tr>
</tbody>
</table>

○本事業で示されていないもので、
*本事業で提供する質問票を用いてIEAが推計を行っている。

8
表2-2 本事業における協力体制および対応内容の詳細

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

IEAの発注方法 発注日 発注の受け手

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

データ入力者 (人数)

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

データの範囲 主なデータ項目 元データ 各元データの入手

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

データの期間 IEAへの提出日 IEAへのデータ 提出者 提出方法 データの活用先 備考、課題

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Annual

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

石油、石炭、ガス、電力・熱、再エネ

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

エネルギーバランス表(供給、転換、最経済統計)

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

・総合エネルギー統計

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

IEAへの提出〆切

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

エネルギー入力者

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

データの範囲 主なデータ項目 元データ 各元データの入手

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

先 データの期間 IEAへの提出日

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

IEAへの提出〆切

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

データの活用先 備考、課題

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Annual

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

石油、石炭、ガス、電力・熱、再エネ

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

エネルギーバランス表(供給、転換、最経済統計)

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

・総合エネルギー統計

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

IEAへの提出〆切

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

エネルギー入力者

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

データの範囲 主なデータ項目 元データ 各元データの入手

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

先 データの期間 IEAへの提出日

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

IEAへの提出〆切

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

データの活用先 備考、課題

<table>
<thead>
<tr>
<th>サイズ</th>
<th>日時</th>
<th>サイズ</th>
<th>日時</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
3. 年次質問票

3.1. 記入方針

IEA年次質問票は、Oil Annual Questionnaire、Coal Annual Questionnaire、Natural Gas Annual Questionnaire、Electricity and Heat Annual Questionnaire、Renewables Annual Questionnaireの5種類の質問票(Excelファイル)から構成される。

3.2. 提出方法

日本エネルギー経済研究所(IEEJ)の担当者が記入した質問票を、IEEJのID1を利用して、IEA Energy Data Management Center (IEA EDMC)より提出する。なお、本事業では、IEA EDMCのシステムに不具合が生じたとのことから、質問票(Excel)をIEAの各チームに送付した。報告に利用する総合エネルギー統計(速報版)の公表は毎年11月頃であり、質問票への入力作業は翌年1月頃まで要するため、1月末〜2月上旬にIEAに提出している。なお、本年度事業においては、総合エネルギー統計確報候補版(2019年2月末)を基に、2019年3月に再提出した。例年3月〜4月頃までIEAの担当者と協議を行い、必要に応じて再提出を行っている。

表3-1 IEA年次質問票の担当者

<table>
<thead>
<tr>
<th>エネルギー</th>
<th>メールアドレス</th>
<th>担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>石炭</td>
<td>COALAQ@iea.org</td>
<td>Konstantinos Theodoropoulos</td>
</tr>
<tr>
<td>石油</td>
<td>OILAQ@iea.org</td>
<td>Angela Ortega Pastor</td>
</tr>
<tr>
<td>ガス</td>
<td>GASAQ@iea.org</td>
<td>Faidon Papadimoulis</td>
</tr>
<tr>
<td>電力</td>
<td>ELEAQ@iea.org</td>
<td>Julian Smith</td>
</tr>
<tr>
<td>再生可能エネルギー</td>
<td>RENENWAQ@iea.org</td>
<td>Samantha Mead</td>
</tr>
</tbody>
</table>

1 Energy Data Management Centerが開設された当初IEAで研修があり、日本エネルギー経済研究所としてIDを取得。
3.3. 2017年度改訂

本年度より、質問票の項目、回答桁数等に一部変更があり、それに対応して回答を行った。
5つの質問票に共通して、以下の2点が変更された。

- 従来は整数単位の回答であったが、小数第3位までの回答に変更された。
- 国別輸出入量に関し、従来は主要国のみ記述、それ以外の国は「その他」にまとめて回答していたが、163か国それぞれとの輸出入量を回答するよう変更された。

上記2つの変更に対応する形で回答を行った。2016年度以前のデータに関しても遡及修正し、上記に適合する形式でのデータを提出した。なお、個別質問票の変更と対応に関しては、次節以降の当該質問票項目で記述する。

3.4. 質問票の構造と記入の際の留意点

3.4.1. Oil Annual Questionnaire

(1)質問票の構造

Oil Annual Questionnaireの質問票はTable 1、Table 2a、Table 2b、Table 3a、Table 3b、Table 3、Table 4、Table 5、Table 6の9つのシートから構成される。このうちTable 1〜Table 3は総合エネルギー統計、Table 4、Table 5は財務省「貿易統計」より、原油、NGL2、原料油および各石油製品の値を報告する。

<table>
<thead>
<tr>
<th>表3-2 Oil Annual Questionnaireの質問票</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1 原油・NGL等供給の総括表</td>
</tr>
<tr>
<td>Table 2a 石油製品供給の総括表</td>
</tr>
<tr>
<td>Table 2b 石油化学部門の需要</td>
</tr>
<tr>
<td>Table 3a 部門別原油・石油製品需要量(エネルギー利用)</td>
</tr>
<tr>
<td>Table 3b 部門別原油・石油製品需要量(非エネルギー利用)</td>
</tr>
<tr>
<td>Table 3 部門別原油・石油製品需要量(合計)</td>
</tr>
<tr>
<td>Table 4 国別原油・石油製品輸入量</td>
</tr>
<tr>
<td>Table 5 国別原油・石油製品輸出量</td>
</tr>
<tr>
<td>Table 6* 製油所能力</td>
</tr>
</tbody>
</table>

*は本年度より追加された項目

2 天然ガス液(Natural gas liquid)
(2)記入の際の留意点

質問票では、thousand metric tonでの記入が求められている。総合エネルギー統計のkL (キロリットル)単位からt (トン)への換算は、下記の密度を用いて行う。
表3-3 石油製品別密度

<table>
<thead>
<tr>
<th>IEA項目</th>
<th>日本語名称</th>
<th>密度(g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Oil</td>
<td>原油</td>
<td>0.8550</td>
</tr>
<tr>
<td>Natural Gas Liquids (NGL)</td>
<td>コンデンセート</td>
<td>0.7150</td>
</tr>
<tr>
<td>Refinery Gas</td>
<td>製油所ガス</td>
<td>0.9000</td>
</tr>
<tr>
<td>Ethane</td>
<td>(未報告)</td>
<td></td>
</tr>
<tr>
<td>LPG</td>
<td>液化石油ガス</td>
<td></td>
</tr>
<tr>
<td>Naphtha</td>
<td>ナフサ</td>
<td>0.7370</td>
</tr>
<tr>
<td>Motor Gasoline (Non-biogasoline)</td>
<td>自動車用揮発油</td>
<td>0.7370</td>
</tr>
<tr>
<td>Biogasoline</td>
<td></td>
<td>0.747</td>
</tr>
<tr>
<td>Aviation Gasoline</td>
<td>航空用ガソリン</td>
<td>0.7370</td>
</tr>
<tr>
<td>Gasoline Type Jet Fuel</td>
<td>(未報告)</td>
<td></td>
</tr>
<tr>
<td>Kerosene Type Jet Fuel</td>
<td>ジェット燃料油</td>
<td>0.7834</td>
</tr>
<tr>
<td>Other Kerosene</td>
<td>灯油</td>
<td>0.8140</td>
</tr>
<tr>
<td>Road Diesel</td>
<td>交通用軽油</td>
<td>0.8430</td>
</tr>
<tr>
<td>Biodiesels</td>
<td></td>
<td>0.88753</td>
</tr>
<tr>
<td>Heating & Other Gas oil</td>
<td>交通用以外の軽油+A重油</td>
<td>0.8430</td>
</tr>
<tr>
<td>Fuel Oil Low Sulphur (<1%)</td>
<td>B重油+C重油</td>
<td>0.9000</td>
</tr>
<tr>
<td>Fuel Oil High Sulphur (>=1%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Spirit SBP</td>
<td>工業用ガソリン</td>
<td>0.7370</td>
</tr>
<tr>
<td>Lubricants</td>
<td>潤滑油</td>
<td>0.8910</td>
</tr>
<tr>
<td>Bitumen</td>
<td>アスファルト</td>
<td></td>
</tr>
<tr>
<td>Paraffin Waxes</td>
<td>パラフィン</td>
<td></td>
</tr>
<tr>
<td>Petroleum Coke</td>
<td>石油コークス</td>
<td></td>
</tr>
<tr>
<td>Other Products</td>
<td>グリース</td>
<td></td>
</tr>
<tr>
<td></td>
<td>その他石油製品</td>
<td>0.9000</td>
</tr>
<tr>
<td></td>
<td>回収硫黄</td>
<td></td>
</tr>
</tbody>
</table>

(出所)石油資料他
質問票では、ボンド輸出入の記入に留意する。総合エネルギー統計の輸出は、ボンド輸出分を含み、輸入はボンド輸入分を除いた値が計上されている。一方、IEAでは、輸出はボンド輸出を除いた輸出、輸入はボンド輸入を含めた輸入量が計上されている。

なお、World Energy Balancesでは、International marine bunkersおよびInternational aviation bunkersは、一次エネルギー供給部門に計上されている。しかし、質問票では、後者は最終消費の内訳「International Aviation」として報告する。

(3)バイオ燃料の計上方法

2017年11月の総合エネルギー統計の改訂により、バイオ燃料の計上が始まった。総合エネルギー統計および貿易統計を用いて、Biogasoline (bio ETBE)およびBiodieselについて下表のとおり報告する。

ここでBio ETBEについては、IEA定義に従いバイオ由来分を47%としてBio ETBE量にこれを乗じる。

＜IEAのBiogasolineの定義＞

Biogasoline includes bioethanol (ethanol produced from biomass and/or the biodegradable fraction of waste), biomethanol (methanol produced from biomass and/or the biodegradable fraction of waste), bioETBE (ethyl-tertio-butyl-ether produced on the basis of bioethanol; the percentage by volume of bio-ETBE that is calculated as biofuel is 47%) and bioMTBE (methyl-tertio-butyl-ether produced on the basis of biomethanol: the percentage by volume of bioMTBE that is calculated as biofuel is 36%).

3 Ethyl tert-butyl ether
<table>
<thead>
<tr>
<th>表</th>
<th>項目</th>
<th>計上方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>[Of which Biofuels] [Receipt from other sources]</td>
<td>10³ kL×密度0.747 kg/L×ETBE換算値2.36528×IEA定義47% +貿易統計ETBE輸入量10³ kL×密度0.747 kg/L×IEA定義47% +[#110000] [$N134]バイオエタノール生産量10³ kL×密度0.747 kg/L×ETBE換算値2.36528×IEA定義47% ++[#110000] [$N135]バイオディーゼル生産量10³ kL×密度0.88753 kg/L ++[#120000] [$N135]バイオディーゼル輸入量10³ kL×密度0.88753 kg/L</td>
</tr>
<tr>
<td>Table 2a</td>
<td>[Biogasoline] [Primary product receipts]</td>
<td>上記に同じ</td>
</tr>
<tr>
<td>Table 2a</td>
<td>[Biodiesels] [Primary product receipts]</td>
<td>10³ kL×密度0.88753 kg/L ++[#120000] [$N135]バイオディーゼル輸入量10³ kL×密度0.88753 kg/L</td>
</tr>
<tr>
<td>Table 3a</td>
<td>[Biogasoline] [Road]</td>
<td>Table 2a [Biogasoline] [Primary product receipts]に同じ</td>
</tr>
<tr>
<td>Table 3a</td>
<td>[Biogasoline] [Road]</td>
<td>Table 2a [Biodiesels] [Primary product receipts]</td>
</tr>
</tbody>
</table>
表3-5 バイオ燃料におけるIEA質問票の計上と構造（2017年度事業でIEAから指示があった事項）

Oil questionnaire

Table 1

<table>
<thead>
<tr>
<th>Additives / oxygenates</th>
<th>Of which Biofuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indigenous production</td>
<td>(+) 1</td>
</tr>
<tr>
<td>Receipts from other sources</td>
<td>(+) 2</td>
</tr>
<tr>
<td>Products transferred</td>
<td>(+) 4</td>
</tr>
<tr>
<td>Imports (Balance)</td>
<td>(+) 5</td>
</tr>
<tr>
<td>Exports (Balance)</td>
<td>(-) 6</td>
</tr>
<tr>
<td>Direct use</td>
<td>(+) 7</td>
</tr>
<tr>
<td>Stocks changes</td>
<td>(+) 8</td>
</tr>
<tr>
<td>Refinery intake (Calculated)</td>
<td>(+) 9</td>
</tr>
<tr>
<td>Statistical difference</td>
<td>(-) 10</td>
</tr>
<tr>
<td>Refinery intake (Observed)</td>
<td>(+) 11</td>
</tr>
</tbody>
</table>

MEMO ITEMS: RECEIPTS FROM OTHER SOURCES

Solid fuels	19
Natural gas	20
Renewables	21

Table 2a

<table>
<thead>
<tr>
<th>Primary product receipts</th>
<th>(+) 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinery gross output</td>
<td>(+) 2</td>
</tr>
<tr>
<td>Recycled products</td>
<td>(+) 3</td>
</tr>
<tr>
<td>Refinery fuel</td>
<td>(+) 4</td>
</tr>
<tr>
<td>Imports (Balance)</td>
<td>(+) 5</td>
</tr>
<tr>
<td>Exports (Balance)</td>
<td>(-) 6</td>
</tr>
<tr>
<td>International marine bunkers</td>
<td>(-) 7</td>
</tr>
<tr>
<td>Interproduct transfers</td>
<td>(+) 8</td>
</tr>
<tr>
<td>Products transferred</td>
<td>(+) 9</td>
</tr>
</tbody>
</table>

Table 3a

<table>
<thead>
<tr>
<th>Transport sector</th>
<th>Blend</th>
<th>Pure bio</th>
<th>Oil</th>
<th>Blend</th>
<th>Pure bio</th>
<th>Oil</th>
<th>Blend</th>
<th>Pure bio</th>
<th>Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic aviation</td>
<td>28</td>
<td>28</td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note in Table3a: The biogasoline, biojetkerosene and biodiesel amounts correspond to the renewable portion of the fuel.

For example, in case of 100kt of E5 (ethanol + non-bio motorgasoline), the maximum amount of biogasoline contained in the blend is 5% = 5kt.
(4) 2017年質問票形式変更への対応
製油設備能力の追加
Table 6が追加され、以下の項目に関する設問が増えた。なお、これらの設問は最新年度の設備能力のみ回答すれば十分である。

- Name/Location
- Atmospheric distillation: Of which not in operation and not in active repair.
- Vacuum distillation
- Cracking (thermal)
 - Of which visbreaking
 - Of which coking
- Cracking (catalytic)
 - Of which fluid catalytic cracking (FCC)
 - Of which hydro-cracking (HCK)
- Desulphurization, including hydrotreating.
 - Of which naphtha/gasoline/other light distillates
 - Of which middle distillates
 - Of which heavy distillates
- Reforming
- Alkylation, Polymerisation, Isomerisation
- Etherification
- Other upgrading units
- Hydrogen production capacity.

これらの設問に対し、石油連盟「石油資料(平成29年版)」を参考にして、各製油所の常圧蒸留装置、減圧蒸留装置、接触分解装置、灯軽油脱硫装置、接触改質装置、アルキレーショN装置の能力を回答した。

3.4.2. Coal Annual Questionnaire

(1) 質問票の構造
Coal Annual QuestionnaireはTable 1～Table 4の4つのシートから構成される。総合エネルギー統計のコークス用原料炭、吹込用原料炭、国産一般炭、輸入一般炭、無煙炭、コークス、コールタール、コークス炉ガス、高炉ガス、転炉ガスの値およびエネルギー源毎の発熱量を報告する。
Table 3-6 Coal Annual Questionnaireの質問票

<table>
<thead>
<tr>
<th>Table 1</th>
<th>需給の部門別総括表</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
<td>国別輸入量</td>
</tr>
<tr>
<td>Table 3</td>
<td>国別輸出量</td>
</tr>
<tr>
<td>Table 4</td>
<td>石炭・石炭製品別発熱量</td>
</tr>
</tbody>
</table>

(2) 記入の際の留意点

原料炭および一般炭の国別輸入量は、総合エネルギー統計では把握ができないため、総合エネルギー統計の輸入量計を貿易統計の輸入量の国別比率で配分し報告する。

Table 4では、各製品別の総発熱量および真発熱量の記入が求められている。総発熱量は、総合エネルギー統計を用いて報告する。真発熱量は、総合エネルギー統計の総発熱量と真発熱量/総発熱量比率を用いて報告する。

(3) 2017年質問票形式変更への対応

石炭質問票固有の形式変更は行われなかった。共通の変更(回答桁数、輸出入国)への対応のみ行った。

3.4.3. Natural Gas Annual Questionnaire

(1) 質問票の構造

Natural Gas Annual Questionnaireの質問票はTable 1、Table 2a、Table 2b、Table 3、Table 4、Table 5の6つのシートから構成される。総合エネルギー統計の国産天然ガス、輸入天然ガス(LNG)および都市ガスを報告する。

Table 3-7 Natural Gas Annual Questionnaireの質問票

<table>
<thead>
<tr>
<th>Table 1</th>
<th>供給総括表</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2a</td>
<td>部門別国内消費量</td>
</tr>
<tr>
<td>Table 2b</td>
<td>国内最終消費量の詳細</td>
</tr>
<tr>
<td>Table 3</td>
<td>国別輸入量</td>
</tr>
<tr>
<td>Table 4</td>
<td>国別輸出量</td>
</tr>
<tr>
<td>Table 5a</td>
<td>貯蔵容量</td>
</tr>
<tr>
<td>Table 5b*</td>
<td>LNG輸入ターミナル</td>
</tr>
<tr>
<td>Table 5c*</td>
<td>LNG輸出ターミナル</td>
</tr>
<tr>
<td>Table 6*</td>
<td>国際パイプライン</td>
</tr>
</tbody>
</table>

(注) *は本年度より追加された項目。
記入の際の留意点

質問票では、固有単位（10^6 m^3、15°C/1気圧）と熱量値（TJ）での入力が求められる。固有単位kLからm^3への換算係数は、以下の密度を用いて報告する。

\[1 \text{ t} \approx 1.4 \text{ kL} = 1.4 \text{ m}^3 \] (出所: 石油資料巻末資料)

なお、2013年度値からの標準発熱量の改訂に伴い、輸入天然ガスの重量当たりのMJと、体積あたりのMJが改訂されている。これらから換算される密度は1 t ≈ 1.4408 kL = 1.4408 m^3であることから、2013年度からこの密度を利用し報告している。

密度は1 t ≈ 1.4408 m^3は、「エネルギー源別標準発熱量・炭素排出係数の改訂案について—2013年度改訂標準発熱量・炭素排出係数表—」のp.50に記された輸入天然ガスの重量あたり発熱量と体積あたり発熱量から算定している。

55.01 MJ/kg ÷ 38.18 MJ/m^3 = 1.4408 m^3/kg

熱量値は総合エネルギー統計のジュール表記の値を報告する。

Table 5 貯蔵設備容量は、資源エネルギー庁国際課の協力によりデータを入手し報告している。

(3) 2017年質問票形式変更への対応

Table 5bの対応

LNG輸入基地に関する設問が追加された。日本ガス協会「ガス事業便覧」や各社情報を参考に、各輸入基地の名称、気化設備数と能力、貯蔵設備数と容量を回答した。

3.4.4. Electricity and Heat Annual Questionnaire

(1)質問票の構造

Electricity and Heat Annual Questionnaireの質問票は下に示す9つのシートから構成される。

総合エネルギー統計の水力発電(揚水除く)、揚水発電、火力発電(再生可能エネルギーを含む)、原子力発電、地熱発電、太陽光発電、風力発電、電力および熱供給の値を報告する。

総合エネルギー統計で把握できない箇所は、「電気事業便覧」「電力調査統計」「電力需給の概要」「電源開発の概要」で補う。
表3-8 Electricity and Heat Annual Questionnaireの質問票

<table>
<thead>
<tr>
<th>Table</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>電力および熱の総生産量(転換部門)</td>
</tr>
<tr>
<td>Table 2</td>
<td>電力および熱の純生産量(Table 1より所内用電力量を除いた量)</td>
</tr>
<tr>
<td>Table 3</td>
<td>電力および熱の部門別消費量</td>
</tr>
<tr>
<td>Table 4</td>
<td>電力および熱の消費量(Energy Sector、Industry Sectorの詳細)</td>
</tr>
<tr>
<td>Table 5</td>
<td>自家発電量</td>
</tr>
<tr>
<td>Table 6a～6d</td>
<td>燃料別火力発電投入量および発電量</td>
</tr>
<tr>
<td>Table 7a</td>
<td>発電設備容量およびピーク負荷</td>
</tr>
<tr>
<td>Table 7b</td>
<td>火力発電設備容量の詳細</td>
</tr>
<tr>
<td>Table 8</td>
<td>国別輸出入量</td>
</tr>
</tbody>
</table>

(2)記入の際の留意点

Table 6 事業用火力発電部門および自家用火力発電部門のそれぞれの火力燃料別発電量は、統計がないため、下記の方法で推計し報告する。

事業用火力発電部門の火力燃料別発電量
総合エネルギー統計の燃料投入量および電力需給の概要の一般電気事業者による石油系、石炭系、ガス系の各火力発電効率より算出する。

自家用火力発電部門の火力燃料別発電量
総合エネルギー統計の発電電力量から、原子力発電、水力発電、各再生可能エネルギーによる発電量を差し引いた発電電力量を火力発電による電力量とみなす。この電力量を総合エネルギー統計の各燃料の投入量で除分する。

Table 7の設備容量は、電力事業便覧の電気事業者の設備容量を報告する。自家用発電の設備容量については、経済産業省からの提供データや電力調査統計を用いて報告する。

(3)2017年形式変更への対応

揚水発電の細分化
Table 3の電力需給バランス内、「揚水発電」が純揚水、混合揚水に分類された。資源エネルギー庁の数値データ提供を受け回答。
バイオガソリン発電の追加
バイオガソリンによる発電量および燃料投入量に関する質問が追加された。総合エネルギー統計上、2017年までには発電実績がないため発電量、燃料投入量ともに0を回答した。

3.4.5. Renewables Annual Questionnaire

(1) 質問票の構造

Renewables Annual QuestionnaireはTable 1～Table 6の6つのシートから構成される。

<table>
<thead>
<tr>
<th>質問票</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>電力および熱の総生産量</td>
</tr>
<tr>
<td>Table 2</td>
<td>需給バランスの総括表</td>
</tr>
<tr>
<td>Table 3</td>
<td>燃料別発電設備容量、バイオ燃料生産能力等</td>
</tr>
<tr>
<td>Table 4</td>
<td>木材・廃材・その他の生産量</td>
</tr>
<tr>
<td>Table 5</td>
<td>国別輸入量</td>
</tr>
<tr>
<td>Table 6</td>
<td>国別輸出量</td>
</tr>
</tbody>
</table>

総合エネルギー統計の水力発電（揚水除く）、揚水発電、地熱発電、太陽エネルギー、天然温度差エネルギー、廃タイヤ直接利用、廃プラスチック直接利用、再生油、廃棄物発電、木材利用、廃材利用、黒液直接利用、バイオマスその他、RPF、廃棄物その他、廃棄物ガスの値を集計し報告する。バイオマス系燃料の分類は、以下に従う。

<table>
<thead>
<tr>
<th>質問票</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial waste</td>
<td>廃タイヤ直接利用、廃プラスチック直接利用、再生油、RPF、廃棄物その他</td>
</tr>
<tr>
<td>Municipal waste</td>
<td>廃棄物発電</td>
</tr>
<tr>
<td>Solid biofuels</td>
<td>木材利用、廃材利用、黒液直接利用、バイオマスその他</td>
</tr>
<tr>
<td>Biogases</td>
<td>廃棄物ガス</td>
</tr>
</tbody>
</table>

(2) 記入の際の留意点

質問票では真発熱量での報告を求められている。換算には、総合エネルギー統計の真発熱量/総発熱量の割合を用いて総発熱量を真発熱量に変換し報告する。なお、日本の発熱量表記は総発熱量ベースであり、日本側は真発熱量値をあくまで参考値として報告しているが、IEAはWorld Energy Balancesで日本が報告した数値そのものを採用している。

4 Refuse derived paper and plastics densified fuel
総合エネルギー統計で参考として掲載されている真発熱量/総発熱量の割合

- 廃タイヤ直接利用、廃プラスチック直接利用、再生油、RPF、廃棄物その他、廃材利用: 0.975
- 木材利用、黒液直接利用、バイオマスその他: 0.95
- 廃棄物ガス: 0.9

わが国の太陽光発電量は、総合エネルギー統計の値を報告する。しかし、2016年度事業まで、この値は電力調査統計に基づいており、すなわち最大出力1,000 kW以上の設備を対象とした値であり、近年普及が進んでいる住宅小規模発電等の自家発自家消費を含んでいなかった。そのため、IEAは2016年度事業までに日本が提出した数値を使わずに、International Energy Agency Photovoltaic Power System Programmeで調査した設備容量を参考に日本の住宅用太陽光発電量を推計し、この結果をWorld Energy Balancesに計上してきた。なお、日本政府は2016年度事業までIEA独自の推計であると明記することを条件に、こうした計上を了承してきた。

2017年度事業で報告に利用した「総合エネルギー統計(2017年11月改訂版)」では、住宅小規模発電等の自家発自家消費が推計され、計上されることになった。そのため、2017年度事業では、IEAに対し、IEAが独自に行って来た推計を止め、日本が報告した1990年〜2016年の数値そのものを計上するよう依頼した。Country noteからも以下の注記を削除するようIEAに求めた。

Electricity and heat (Supply)
Production of electricity from solar photovoltaic and wind in autoproducer electricity plants is understated as it covers only plants with capacity higher than 1000 kW.

(3) 2017年形式変更への対応
再エネ種別の細分化
再生可能エネルギーの発電量、設備容量に関して、以下のように細分化された。

- Pure hydro - of which: run of river
- Mixed hydro
- Pure pumped storage
- PV <20 kW
- PV 20-1000 kW
- PV 1+ MW
- Off-grid (solar)
- Onshore wind
- Offshore wind
- Industrial waste - Of which: co-firing (for electricity and also for heat)
- Municipal waste - Of which: co-firing (for electricity and also for heat)
- Municipal waste Renewable - Of which: co-firing (for electricity and also for heat)
- Municipal waste Non-renewable- Of which: co-firing (for electricity and also for heat)
- Solid biofuels - Of which: co-firing (for electricity and also for heat)
本節では、本事業で行ったIEAとの主な協議事項について整理する。なお、ここに掲載しているのは2019年3月までの協議内容であり、今後も引き続き協議がなされる可能性がある。

3.5.1. 石炭質問票の協議事項
2019年3月22日に受けたIEAからの指摘事項について以下に記述する。

(IEAからの指摘事項1)
Coal Tar: revisions since 1990 that make consumption in Industry: Chemical Petrochemical zero for most years. Symmetrical increase of the statistical difference to absorb it. Could you review as the statistical difference is now very high?

(回答)
We checked and confirmed that Japan's energy balance table data is correctly reflected. As you pointed out, statistical difference gets decent amount, which is gap between supply data and demand data according to the energy balance table.

(IEAからの指摘事項2)
Coke Oven Gas: sizeable revisions from 1990 to 2004 that bring production down and are mostly absorbed by a further deterioration of statistical difference. Could you confirm?

(回答)
We checked and confirm that Japan's energy balance table data is correctly reflected. That is due to same reason as the previous question.

(IEAからの指摘事項3)
Revisions of Anthracite and Other Bituminous Coal input into Coke Ovens (Transformation) since 1990. Anthracite is revised downward and Other Bituminous coal mostly upward so the efficiency. Can you confirm and tell us a bit more?

(回答)
We checked and confirmed that Japan's energy balance table data is correctly reflected. According to the energy balance table, the calculation method for distribution between these two coals are altered (Total amount keeps).

(IEAからの指摘事項4)
Other Bituminous Coal: Sizeable revisions in Transformation of Electricity Autoproducers introduce a peak period from 2008-2015 with the values ranging roughly from 13,000 to 19,000 kt. Much of this is reflected in statistical difference which worsens. Could you explain what triggered this?
We checked and confirmed that Japan’s energy balance table data is correctly reflected. After the last cycle, energy balance table get to capture more data of consumption from autoproducers. In this period, the statistical difference improved at several years.

(IEAからの指摘事項5)
5. Other Bituminous Coal

1) Revisions of the Gross Calorific Values. Can you confirm and comment?
2) Textiles and Leather consumption is 0. Is this correct?
3) Commercial and Public Services Consumption up to 26 from 15. Could you comment?

(回答)
(1) Confirmed. From my viewpoint, we submitted same value as 2016 questionnaire except for production. Production is now same value as other sectors, and they correspond with Japan’s standard calorific value.
(2) Confirmed. That corresponded with source statistics.
(3) Confirmed. That corresponded with source statistics. It is so small sector that rapid fluctuation is not strange. (I do not have a concrete idea why)

(IEAからの指摘事項6)
Electricity Autoproducers: We noticed a decrease across several products (Other Bituminous Coal -20%, Coke Oven Gas, Other Recovered Gases). Is this something you would have further info on? Is it due to reclassification or autoproducers shutting down?

(回答)
It is due to liberation of power market at 2016. Some autoproducers become main activity producers then.

(IEAからの指摘事項7)
Coke Oven Coke: Non Metallic Minerals decrease -21.5% to the historical low. Would you know more?

(回答)
In this sector, total energy demand gets smaller and smaller, in addition, coke oven coke substituted by gas.

(IEAからの指摘事項8)
Blast Furnace Gas – Own Use in Power Plants. Although small values in previous years nothing was reported in 2017. Can you confirm?
(回答)

We checked and confirmed that Japan’s energy balance table data is correctly reflected(0). We guess the own use is too small to be shown in the original energy table.

(IEAからの指摘事項9)

Trade: could you confirm?

· 1) No import of Anthracite from US
· 2) Coking coal imports from Colombia more than double
· 3) Other Bituminous Coal: imports from US increase by more than 300%

(回答)

(1) According to Japan trade statistics, there is no anthracite import from US.
(2) According to Japan trade statistics, the import in 2017 more than double 2016.
(3) Confirmed. According to Japan trade statistics, that is true.

上記の回答を受け、2019年3月23日に受けたIEAからの指摘事項について以下に記述する。

(IEAからの指摘事項10)

As in previous cycles we would like to implement certain modifications as follows:

1. We will need to shift some of the coke oven coke data reported as consumed in the iron and steel industry up to blast furnace transformation as per IEA methodology and mark these as IEA estimates with the note: "The inputs of coke oven coke to blast furnaces, as well as the final consumption of coke oven coke in iron and steel, have been estimated by the IEA Secretariat starting in 1990." This would be applied for the entire time series.

2. Similarly, once again we have estimated net calorific values from submitted gross calorific values and intend to keep the same note as last year if this is acceptable: "The net calorific values for coal have been recalculated by the IEA Secretariat based upon gross values submitted by Japan."

3. Concerning trade, the submission shows discrepancies with partners data. Imports of other bituminous coal and coking coal from partner countries will need to be estimated by the IEA Secretariat, based on customs and partner data and total imports by coal type. Of course the total figures for trade will remain as submitted.

4. Old series for coal tar consumption in Chemical and Petrochemical industry + estimation for 2017 all to be marked as IEA estimates.

(回答)

As Usual, modification 1)-3) has been confirmed.
4) As you mentioned, in old series there is coal tar consumption.
I have to say that the all of the statistical difference is not necessary belong to chemical industry, so could you please note that this is IEA estimation?
3.5.2. 石油質問票の協議事項

2019年3月16日に受けたIEAからの指摘事項について以下に記述する。

(IEAからの指摘事項1)
PRODUCT: Crude oil, LPG, Heating and other gasoil, low-sulphur fuel oil.
BALANCE: Stock changes at public utilities.
QUERY: For 2017 there is no data reported in this flow, but there is for the rest of the time series. Can you double check that this is not missing?

(回答)
As you pointed out, stock change in 2017 was missing. We have added and re-submitted the data.

(IEAからの指摘事項2)
PRODUCT: Natural gas liquids
BALANCE: Total imports
QUERY: The imports of NGLs decreased in 2017 significantly, can you confirm this and give us more information.

(回答)
We checked and confirm that Japan’s energy balance table data is correctly reflected. Import from Iran and Qatar largely decreased in 2017.

(IEAからの指摘事項3)
PRODUCT: Refinery gas, LPG, Bitumen.
CONSUMPTION: Main electricity plants, energy sector own use in main/chp/heat plants.
QUERY: Can you confirm the new quantities of refinery gas and bitumen used in transformation in main electricity plants (2016-2017), and the increase in LPG own use in the electricity generation sector?

(回答)
Due to power liberation in 2016, some of autoproducer became main activity producers and fuel consumption/electricity production from entire "main activity producer" surged.

(IEAからの指摘事項4)
PRODUCT: Petroleum coke
BALANCE: Main electricity plants and Autoproducer electricity plants.
QUERY: For 2016 and 2017 it seems that quantities were reclassified from autoproducer electricity plants to main activity electricity plants. Can you please confirm and tell us why?

(回答)
As you guess, this is due to reclassification from power liberation in 2016. Same reason as above.

(IEAからの指摘事項5)
PRODUCT: Heating and other gasoil
BALANCE: Main electricity plants
QUERY: In 2016 and 2017 consumption for transformation in main activity electricity plants increases substantially. Can you confirm and tell us why?

(回答)
Same reason as above.

(IEAからの指摘事項6)
PRODUCT: Other oil products
CONSUMPTION: Non-specified industry
QUERY: In 2017 there is a sharp increase in the consumption of other oil products in non-specified industry. Can you confirm and tell us why?

(回答)
The value submitted was larger than it should be. We have corrected and re-submitted the data.

(IEAからの指摘事項7)
PRODUCT: Bitumen
CONSUMPTION: Refinery fuel use
QUERY: Consumption halved in 2016 compared to 2015 and remains low in 2017. Can you confirm and tell us why?

(回答)
That is due to reclassification from power liberation in 2016. (From same reason as 4) Some autoproducer which used bitumen became main activity producers in 2016, and its consumption moved from refinery fuel to power plant fuel in Japan’s energy balance table data.

(IEAからの指摘事項8)
PRODUCT: Other Kerosene
CONSUMPTION: International marine bunkers
QUERY: Can you confirm that there was no consumption in international marine bunkers in 2017?

(回答)
According to the statistics we referred, there was no consumption in 2017 in international bunkers.

(IEAからの指摘事項9)
Switch in the direction of interproduct transfers of lubricants in 2009 – can you explain what happened?
We checked and confirm that Japan’s energy balance table data is correctly reflected. Especially, domestic lubricants demand for industry dropped from decrease in production and saving from the financial crisis in 2007-2009.

(IEAからの指摘事項10)
Overall increase in total exports of oil products since 2005.

We checked and confirm that Japan’s energy balance table data is correctly reflected. As overall trend, since domestic demand decreased and rapid demand growth started in other Asian countries(mainly southeast/east Asia) in 00’s.

(IEAからの指摘事項11)
Overall decrease in consumption of oil products in autoproducer electricity plants.
As overall trend, oil consumption for autoproducer electricity plants has been substituted by gas/renewables/waste. In addition, some autoproducers became main activity producers in 2016 due to power market liberation(same reason as 4).

IEAからの指摘事項12
Decrease in use for transformation blending of oil products since 2006.

![Graph showing decrease in use for transformation blending of oil products since 2006.](image)

回答
We checked and confirm that Japan’s energy balance table data is correctly reflected.

IEAからの指摘事項13
For several products there are big changes across the time series in the NCVs. Can you give us more detail on why these changes occur and the methodology for calculating them?

回答
In Japan, standard unit calorific value of each energy source is revised every 5-8 years. Recently, in 2000, 2005, 2013, they were revised.
In addition, as for some kinds of fuel, unit calorific values are estimated every year from statistics.

3.5.3. ガス質問票の協議事項
2019年3月8日に受けたIEAからの指摘事項について以下に記述する。

IEAからの指摘事項1
According to our understanding there are a number of revised datapoints due to the introduction of 3 decimal points in the questionnaire. However there are also some extensive revisions which considerably change the dataset submitted in the context of last year’s cycle. Therefore we would like to ask if you can provide us the underlying reasons for this general revision (i.e. new datasets at your disposal, new methodology, re-classifications etc.) starting in most cases from 1990.

回答
Generally, that is due to revision of main data source (Energy Balance Table). In the data source, some estimation method including natural gas has been revised and some figures changed from 1990.
(IEAからの指摘事項2)
We would also like to request some more specific details for the following revisions which have been made in the data flows below:
The Observed Inland Consumption has been revised downwards by approximately a 5% for the past 12 years, having a respective impact also in the Statistical Difference.

(INGASTOCM)
Observed Inland Consumption

(NATGASCOCM)
Statistical Difference

(回答)
That is due to change of data source. In the new method transfer amount that did not captured have been estimated now and the statistical difference get smaller.

(IEAからの指摘事項3)
In the Transformation sector there have been revisions of the consumption for Autoproducers Electricity. Has there been any kind of reclassification?

(NATGASTEJ)
AUTOELEC

(回答)
I checked the data accuracy and correspond with the data source. Following two factors affect the new data.
1) Due to statistic revision, more autoproducer came to be captured the statistics.
2) Due to power liberation in 2016, some of auto producer became main activity producers and fuel consumption/electricity production from entire “autoproducer” dropped.
In the Energy sector the whole Electricity, CHP and Heat own consumption timeseries has been zeroed out, which explains roughly half of the decrease of Total Inland Demand. Can you please elaborate a bit deeper on this option?

That correspond with the data source and unfortunately we cannot capture the own consumption retrospectively.

The Industrial sector has been revised considerably, with certain sub-sectors like Non-ferrous metals, Non-metallic Minerals, Food production, Construction and Textiles, being revised with emphasis on the early years, whereas the other sub-sectors, like the Machinery, being revised for the late years. (please see examples below)

These are not mistake and correspond with the data source. That’s due to revision of the source statistics(they altered methodology to estimate energy production).

There has been an extensive downward revision in the consumption of Commercial-Public services data (roughly -30% in the later years), that is also an important driver of the overall decrease of the Total Inland Demand.
These are not mistake and correspond with the data source. That’s due to revision of the statistics. According to the data source, commercial and public demand in “Original data” include large statistical difference (≒100TJ in 2016) They has changed the estimation method and suppressed the difference.

The gas consumption in the Liquefaction Plants fell by 32% in 2017 which makes it the lowest value since 2006, despite the LNG imports remaining at roughly the same levels for the past few years. Could you please revisit the figures for confirmation and provide some background information on that? Has there been any kind of fuel switch in the various LNG facilities?

This is not mistake and corresponded with the data source. Unfortunately, no additional information is available.

Can you please revisit and amend the timeseries of the Non-specified Industry that erroneously even take negative values for certain years in the ‘90s?

A calculation mistake was found on distribution between consumption of “Non-specified Industry” and “Wood and wood products”. We revised the numbers (They are now all positive).
(IEAからの指摘事項9)
Would it be possible to confirm the increase in the consumption for the Residential (+4.9%) and for the Commercial & Public services (+5.6%) sector for 2017. Could this be attributed to weather conditions, further gas penetration or else?

(回答)
It seems to be mainly because of weather condition. 2017FY winter was much colder than usual and demand for gas heater largely increased.

(IEAからの指摘事項10)
The consumption in Agriculture increased sevenfold in 2016 compared to 2015 in your latest revision. Could you please verify it and provide some background information?

(回答)
This is not mistake and corresponded with the original energy balance Table which is the basis for this report.

(IEAからの指摘事項11)
In your revised dataset, the Non-specified Imports of the previous cycle’s dataset seem to have been reported as imports from Singapore and Brazil in this cycle. Given that these countries should not have liquefaction facilities, can you please revisit the figures for confirmation reasons and amend – if deemed necessary – according the principle of initial origin of gas? If there is no certainty about the origin of the LNG shipments, keeping them in the Non-specified Imports would be appropriate. These amounts are correspond with the data source(Trade statistics of Japan) and really from Singapore and Brazil. Unfortunately, we have no idea where the ultimate origin of the LNG is. Is there any country else which should be included to “non-specified”?

(回答)
These amounts are correspond with the data source(Trade statistics of Japan) and really from Singapore and Brazil. Unfortunately, we have no idea where the ultimate origin of the LNG is. Is there any country else which should be included to “non-specified”?

上記の回答を受け、2019年3月23日に受けたIEAからの指摘事項について以下に記述する。

(IEAからの指摘事項12)
MODIFICATION
As with the previous dataset, we proceeded to some modifications related to the Opening and Closing Stock Levels in the National Territory. More specifically, the terajoules values of the Opening and Closing Stock Levels have been modified for the period 1990-2016 so that (i) the Opening Stock Level of year “n” will match with the Closing Stock Level of year “n-1” and that (ii) the Opening minus Closing Stock Levels will match with the Stock Changes for each year. The changes are minor (<0.1%) and can be found in the modified version of the questionnaire (attached).

(回答)
I confirmed the modification. The changes seem small enough and better method to avoid the inconsistency. Thank you.
(IEAからの指摘事項13)
In your replies there is a frequent mention to the “change of data source”. Can you please specify which is your data source for this year’s submission and whether this has changed compared to last year? Additionally, has this data source proceeded to any revisions for this cycle?

(回答)
We mainly refer “Energy Balance Table” from Ministry of Economy, Trade and Industry. It is revised annually, then it changed from last year and there seems to be no revision in this cycle.

(IEAからの指摘事項14)
We would also like to ask if there is any specific reason for the revisions made between the two versions submitted this year for the consumption in the LNG regasification terminals, which are considerable in years 2004 and 2005.

(回答)
We have changed some calculation method to gas questionnaire since January. The latter is correct one.

(IEAからの指摘事項15)
Finally, we appreciate that it is difficult to capture own consumption in ‘Electricity, CHP and Heat’ retrospectively, however we would like to ask whether there is any way to retrieve figures for the years before 2013? If not, that is perfectly understandable.

(回答)
That seems difficult to capture/estimate them retrospectively. In the main data source there is zero value, and we cannot access enough other data when it comes to numbers before 2013.

3.5.4. 電力質問票の協議事項
2019年3月6日にIEAから受けた指摘事項について以下に記述する。

(IEAからの指摘事項1)
There were significant changes to the Electricity output from combustible fuels in Autoproducer electricity plants for the years 2008-2016. This looks to have been the result of increased production and self-consumption in the Commercial and Public Services sector specifically. The revised trend for the Commercial and Public Services sector looks puzzling, as there is huge growth in production/consumption and then a sudden drop-off. Do you know what drove this?

(回答)
I checked the data accuracy and correspondence with the data source(Energy Balance Table of Japan).
Following two factors affect the new data.
1)Due to statistic revision, more autoproducer came to be captured the statistics.
2) Due to liberation of electricity market in 2016, some of auto producer became main activity producers and fuel consumption/electricity production from entire “autoproducer” dropped. These changes affect the data which you mentioned at the questions “b.”, too.

(IEAからの指摘事項2)
Possibility connected with point a, electricity output from Natural Gas and Other Bituminous Coal fired Autoproducer electricity plants was revised upwards by 6000 - 17 000 GWh from 2008-2015. Can you please explain?

(回答)
Same as the answer to question 1).

(IEAからの指摘事項3)
Heat output from combustible fuels was revised upwards for most years, while heat output from other sources was revised downwards. Could you please explain?

(回答)
The previous method for heat of other sources from entire heat production turned out to overestimation. Then we have changed estimation method.

(IEAからの指摘事項4)
In addition to the revisions to consumption in the Commercial and public services sector mentioned above, Electricity consumption in Industry (Non-Specified), Commercial and Public sectors, and to a lesser extent, Coke ovens, and LNG plants was also revised

(回答)
For LNG Plant, that is due to new method of main data source. According to METI (The author of the data source). As for Coke oven, some consumption was not captured in previous statistics, then the latest version includes them.

(IEAからの指摘事項5)
Much of the Autoproducer wind output for 2016 has been reclassified as Main producer wind. Can you please confirm? Is this connection with liberalisation of the power marke? Has there been a change in ownership, or should historic autoproducer data also have been classified as main activity producer?

(回答)
As you guessed, that has something to do with liberalisation of power market. Some producer which used to be classified as autoproducer get main activity producer form 2016.
(IEAからの指摘事項6)
The Autoproducer solar capacity figures submitted in this cycle’s questionnaires, are very low compared with the reported output. As a result, the calculated utilization rates are exceed 100% or even 1000% in many years, while the expected values might be more like <20%. Can you please review the capacity figures?

(回答)
The capacity of PV is larger than capture the capacity less than 1000kW, although such small autoproducers stands for significant share. Then I heard that you originally estimate capacity of solar PV autoproducer. The “Previous” is probably your estimation in last year(From IEA PVPS).

(補足)
太陽光の設備容量の回答には、電力調査統計の数値を用いており、この中には1000kW未満の自家発電設備容量が含まれていない。この問題に関しては以前よりIEAも認識しており、IEA側は独自に集計した値(IEA PVPS)の設備容量をデータベースに登録している。

(IEAからの指摘事項7)
From 2000-2004, reported net electricity output from Main activity producer Wind (elec-only) on Table 2 is negative. Can you please review?

(回答)
That is due to a fault of estimation method, now is set to zero. Thank you.

(IEAからの指摘事項8)
Electricity production from both solid biofuels (2004-2015) and municipal waste (2010-2016) was revised upwards by about 3000 GWh per annum. Similarly, electricity production from industrial waste was also revised upwards by about 6000 GWh for some years. Can you please confirm? Do you know the reason behind these revisions? In addition, do you know why electricity production from municipal waste declined in 2016/2017, while electricity production from industrial waste increased? Is there a connection or misallocation between the two waste types?
Since 2016, power market has been liberated. Then (a) some of former autoproducer become main activity producers, (b) the investigation method and definition of the statistics of power generator revised. The statistics affect the source statistics of this questionnaire.

(IEAからの指摘事項9)
Electricity consumption in Rail in 2017 is precisely equal to 2016 down to the level of three decimal places. Is this correct? Has 2017 data been estimated based on 2016, or has a number been carried over in the Excel file by accident?

(回答)
We checked the data accuracy. The source statistics apply same value as 2016.

(IEAからの指摘事項10)
The output from Pumped Storage Hydro has been revised back historically, so that the outputs are precisely 70% of the inputs from 1996 onwards, whereas previously variable efficiencies has been observed.
Is a new methodology for calculating inputs and outputs being employed?

(回答)
That is due to revision of the data source. The data source had not included input/output electricity from some pumped storage(1990-2004). According to them, latest version includes the missed amount.

(IEAからの指摘事項11)
The capacity of combustible fuel fired Main Activity producer plants increases 22% between 2015 and 2016. I don’t believe this was queried last cycle - so given that it is a significant increase, can I ask you please confirm?

(回答)
Same as 1), due to liberation of electricity power market in 2016, some autoproducer became main activity producer.
(IEAからの指摘事項12)
We realise that the new Tables on Electrical Capacity broken down by fuel and technology are quite extensive and data heavy (TAB7CMAIN and TAB&DAUTO). However, just so we are aware, do you know if it will be feasible to include historical data in these Tables going forward?

(回答)
Simply, we cannot capture how much fuel is consumed in mixed fuel power plant. We will make effort to estimate them forward, however we do not find it an easy work.

3.5.5. 再生可能エネルギー質問票の協議事項
以下はIEAより2018年3月23日に2017年度事業で報告した数値について指摘を受けた事項である。同年3月28日と4月2日に回答した。

(IEAからの指摘事項1)
1) From the reported municipal waste (non-renewable), we split this amount 50% for municipal waste (non-renewable) and municipal waste (renewable) for Table s 1 and 2 for 2010 – 2016 as we have done in the past. I noticed you only reported electricity production and consumption in auto-producer electricity plants when, in the past, electricity production and consumption were reported in auto-producer electricity plants and main activity electricity plants.
 a. Is it true that municipal waste was only used in auto-producer electricity plants for this time period?

(回答/対応)
Yes, it is. The original energy balance Table by METI which is based on our report was reflected correctly.

(IEAからの指摘事項2)
a. Capacity has been reported in 1992 – 2009 for municipal waste. We have a country note which states that the electricity production data was lost in a prior revision. Is this still true?

(回答/対応)
Yes, it is.

(IEAからの指摘事項3)
2) We have estimated the input of solid biofuels to charcoal production plants in Table 2 using your reported NCV and an efficiency of 40% from 1990 – 2016.

(回答/対応)
OK.
3) We used the solar PV capacity data from the IEA Photovoltaic Power Systems Programme (IEA-PVPS) report from 1992 - 2016, available here: http://www.iea-pvps.org/index.php?id=6&elID=dam_frontend_push&docID=3951. We assumed this was the total capacity and that the capacity you provided corresponded to main activity producer plants.

a. We think these capacity figures are fairly close to reality, but earlier years in the time series have a utilisation rate that is probably not possible, namely from 1990 – 2002. Based on your previous correspondence with my colleague who is responsible for the ELE questionnaire, it seems as though you are fairly confident in the solar PV electricity production data. We think that further research and discussion for this time frame would be helpful, though, and we would like for you to make note of it and look into it when preparing your submission next cycle. Perhaps the report we are using is missing something.

We got Japan’s solar PV capacity corresponding to PV electricity production of the METI energy balance Table which is based on our report. We revised Table 3 in the attached file. But we did not revise the ELEC questionnaire, since we do not have breakdown of capacity “main activity” and “auto-producer”.

As these revisions for solar capacity are quite significant and were received after we froze our databases, we have not incorporated them. We can’t use these values without consistency with the electricity questionnaire and also, we need to understand your methodology. The capacity figures we sent you were produced in cooperation with METI.

b. We have a country note stating, “Production of electricity from solar photovoltaic and wind in autoproducer electricity plants is under-stated as it covers only plants with capacity higher than 1000 kW.” Since you say you have increased coverage for renewables, does this note still apply for 1990 - 2016?

No, it doesn’t. Please delete it.

4) The electricity generation capacities were missing in 2016 for industrial wastes, solid biofuels and biogases. I estimated these simply, by copying the capacities for 2015. If you have the capacity figures, can you either submit a new questionnaire with the values or let me know what they are in an email and I will add them (and send you the final version of the questionnaire)?
We do not have capacity data.

Lastly, I have two other queries unrelated to the estimates:
5) What was the event which caused the revisions back to 1990 for all fuels? It is unlikely that new
data from 1990 would become available now. This query is probably a longer discussion we will need
to have off-cycle, but I would like to make you aware of it now.

6) In 2016, electricity production from wind was quite high – it surged 7344% in main activity
producer electricity plants (67,165 MWh -> 4,999,826 MWh) and 72% overall. While there was
increased capacity, the utilisation rate jumped from 23% to 34%, which seems unlikely. Is there some
explanation for the large increase in wind production in 2016?

Our report is always based on the preliminary report of METI energy balance Table. I confirm our
report reflect it correctly, but we noticed it is too big last year and discussed it with the
METI. METI will update the energy balance Table as authentic report next month, wind power
generation will be modified. we do not have time to submit the authentic report again.
4. Natural Gas Map

4.1. 記入方針
日本の天然ガスパイプラインやLNGターミナルの最新情報(計画も含む)を報告する。なお、報告した内容はNatural Gas Information 2018 editionに公表される。

4.2. 質問票の内容と記入方法
資源エネルギー庁の情報を基に、日本の天然ガスパイプラインやLNGターミナルの最新情報(計画も含む)を報告する。

図4-1 日本のパイプラインとLNGターミナル報告例

Major pipeline and LNG terminal in Japan (As of 2017)

Major changes（From last year）
1. This pipeline starts operation.
2. This pipeline also starts operation.
3. New pipeline started to be planned.(It will start in 2027)
4. New pipeline started to be consideration.
4.3. IEAとの協議事項

報告した内容についてIEAからの指摘事項はなかった。
5. Mini questionnaire

5.1. 記入方針

IEA Mini questionnaireは、石炭、石油(バイオ燃料のみ)、天然ガス、電力・熱、再生可能エネルギーの5種類の質問票(Excelファイル)から構成される。石油質問票は、バイオ燃料の質問のみとなっており、それ以外の原油・石油製品の情報は、本事業で毎月提出している月次質問票(MOS)が流用されるため提出が求められない。統計を記入する負担を軽減するため、またMOSとの整合を担保するためのIEA側の配慮とみられる。

質問票の質問内容は、主として、供給サイドのデータであり、資源・エネルギー統計月報、石油等消費動態統計、貿易統計表、ガス事業生産動態統計、電力調査統計月報などから年度値を積み上げた結果を報告する。日本の記入・報告時期は、年度値が出揃う例年5月~6月上旬である。

5.2. 質問票の内容と記入方法

日本エネルギー経済研究所(IEEJ)の担当者が質問票に記入し、IEA担当者にメールで送信する。

5.2.1. Coal Mini Questionnaire

(1)質問票の構造

Coal Mini QuestionnaireはTable 1～Table 3の3つのシートから構成される。2017年度値を速報値として報告する。

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Production, Imports, Exports, Stock changes, Gross consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
<td>IMPORTS BY SOURCE</td>
</tr>
<tr>
<td>Table 3</td>
<td>EXPORTS BY DESTINATION</td>
</tr>
</tbody>
</table>

(2)記入方法と留意点

原料炭および一般炭の国別輸出入量は、財務省「貿易統計」、在庫変動は、資源エネルギー統計、出荷量は石油等消費動態統計により捕捉する。
5.2.2. Bio fuels Mini Questionnaire

(1) 質問票の構造

Bio fuels Mini Questionnaireは1シートから構成され、バイオ燃料の生産量、輸入量、在庫変動の記入が求められる。本事業では、2017年度値を速報値として報告する。

(2) 記入方法と留意点

バイオ燃料の輸入量は、財務省「貿易統計」より捕捉する。バイオ燃料の生産量については、2018年5月時点で2017年度の生産量を捕捉できる統計がないため、前年度横置きとして報告する。

5.2.3. Natural Gas Mini Questionnaire

(1) 質問票の構造

Natural Gas Mini QuestionnaireはTable 1〜Table 3の3つのシートから構成される。2017年度値を速報値として報告する。

表5-2 Natural Gas Mini Questionnaireの質問票

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Preliminary 2017 Natural Gas Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2</td>
<td>IMPORTS BY SOURCE</td>
</tr>
<tr>
<td>Table 3</td>
<td>EXPORTS BY DESTINATION</td>
</tr>
</tbody>
</table>

(2) 記入方法と留意点

生産、輸入、在庫は、ガス事業生産動態統計調査より入力する。国別輸入量は、貿易統計を用いて報告する。消費量については、電力調査統計、石油等消費動態統計調査より入力する。

5.2.4. Electricity and Heat Mini Questionnaire

(1) 質問票の構造

Electricity and Heat Mini Questionnaireは電力と熱の2つのシートから構成される。2017年度値を速報値として報告する。

(2) 記入方法と留意点

電力データは、電力調査統計、石油等消費動態統計により捕捉する。熱に関するデータは、熱供給便覧が最も適当な統計と考えられるが、2018年5月時点で2017年度値を把握ことができないため、N.A.として報告している。
5.2.5. Renewable Mini Questionnaire

(1) 質問票の構造
Renewable Mini Questionnaireは1つのシートから構成される。再生可能エネルギー、すな
わち地熱、太陽光、廃棄物発電、バイオマスの消費量や供給量について2017年度値を速報
値として報告する。

(2) 記入方法と留意点
貿易統計、電力調査統計、木材需給表、特用林産物統計、EDMCエネルギー・経済統計要
覧より報告する。

5.3. IEAとの協議事項
5.3.1. 電力質問票の協議事項

(IEAからの指摘事項1)
There was a large decline in output from Wind between 2016 and 2017 (-19%; -1 826 GWh). Is it the
case that the 2016 value is too high, rather than the 2017 value being too low? If not, do you know
what caused this decline?

(回答)
2016 value was mistaken in our source statistics. April 2018, The source was revised the value to
5,951 GWh. Then we notified RenAQ, however number in IEA database had already been fixed and
could not change.

(IEAからの指摘事項2)
There was a significant increase in electricity output from Refinery gas (+23%; +4 TWh). Do you
know what has driven this increase?

(回答)
Because of cold winter, power demand and refinery gas consumption increased in 2017FY.

(IEAからの指摘事項3)
Electricity output from Crude oil fell by 34% (-4 TWh). Although this matches the trend in recent
years, output has fallen quite low now. Do you know what is driving this trend? Is production of
electricity from crude being phased out?

(回答)
That is due to restart of nuclear power plants. Electricity output from crude oil is substituted by
nuclear power. 4 Nuclear plants(Takahama #3,#4, Ooi#3, Genkai #3) have restarted in FY2017.

(IEAからの指摘事項4)
No figure was provided in the three cases mentioned below. Therefore, I have taken the liberty of
making assumptions and filling these values into the questionnaire (see attached), can you please
confirm that these values are correct?
Electricity output from Petroleum Coke (2016: 4,140 GWh). As the Total of Combustible fuels is 4,136 GWh higher than the sum of the fuels, I assume that the output from petroleum coke is in fact 4,136 GWh.

(回答)
Thank you. 4,136 GWh is true.

(IEAからの指摘事項5)
Electricity Used for Electric Boilers. I have assumed 1,002 GWh, the same as 2016 since the heat output is the same as 2016.

(回答)
Please assume 1,002 GWh. Since data about it is not available, 2017 value is the same as 2016.

(IEAからの指摘事項6)
Electricity Used for pumped storage. In previous years, the ratio has been 0.7 outputs per 1 input. Therefore, I have assumed a value of 11,400 GWh.

(回答)
OK. It’s good way to assume 0.7 as ratio.

(IEAからの指摘事項7)
Electricity output from Nuclear plants increased by 82% in 2017. Presumably this is as a result of a plant coming back online in 2017. Was it Takahama?

(回答)
Same reason as 3. That is due to restart of 4 plants(Takahama #3,#4, Ooi#3, Genkai #3).

(IEAからの指摘事項8)
We have amended the Gross Electricity Output for wind in 2016 to be 5,951 GWh. However, at 7,786 GWh, the value for 2017 now looks quite high. That would mean 31% growth. We propose that an output of about 6,320 GWh would be more in line with the capacity additions in 2017 (approximately 190 MW). Do you agree?

(回答)
As for wind output, we don’t have data of all producers and estimate the output based on available data. Therefore we agree to it, thank you so much for your proposal.

5.3.2. ガス質問票の協議事項

(IEAからの指摘事項)
There is a considerable Statistical Difference of -9,946 mcm for the 2017 preliminary data. Given that similar high levels of statistical difference appeared also in 2016, could you please revisit the figures to ensure that all imports are captured in the statistics for the Calculated Gross Inland Consumption or that no double-counting takes place for the Observed Gross Inland Consumption?

(回答)
The statistical difference you have pointed out is due to definition of source statistics. The statistics is preliminary version and that include large statistical difference. (Import and consumption values are correct.)
It seems that annual questionnaire 2017 clears this problem and doesn’t contain such a large difference.

5.3.3. 石炭質問票の協議事項

(IEAからの指摘事項1)

We are working on your submission. As for the annual questionnaire we are making some estimates concerning trade (imports of other bituminous coal and coking coal based on customs and partner data). Please note that these modifications will be marked as IEA estimates. However, we have a question before submitting you the file. Concerning coking coal imports from Canada, in the miniQ you have reported only 884kt. Is this a typo? Is it 6,884kt? We are asking because this figure seems to be much lower than usual.

(回答)

As for import from Canada is not typo. Although that is far smaller than usual, that is true.
6. 月次質問票

6.1. MOS (石油)
エネルギー安全保障および緊急事態対応の観点から速報性のある石油消費統計整備を行うことを目的として、事務局IEAがOECD諸国から毎月データを収集する。OECD加盟国は、収集日から2か月前のデータ(M-2)をIEAが指定する質問票に記入し、毎月25日までに提出することが義務付けられている。

6.2. 提出方法
日本エネルギー経済研究所(IEEJ)の担当者が質問票に記入し、経済産業省資源エネルギー庁国際課のIDを利用して、IEA Energy Data Management Centerより提出している。
提出は、月次統計(確報値)が公表される毎月25日から、質問票の記入に2～3日の時間を要すため、毎月28日に行っている。

6.3. 提出データ
Final M-2、M-3、M-4の3か月分を毎月提出する。3か月分のデータを提出する理由は、日本の統計が数か月前まで遡及修正される場合があるためである。

6.3.1. 質問票の構造
MOS質問票は以下の8種類の質問票から構成されている。

(1) TABLE 1 (SUPPLY OF CRUDE OIL, NGL, REFINERY FEEDSTOCKS, ADDITIVES AND OTHER HYDROCARBONS)
原油の需給を報告する。

<table>
<thead>
<tr>
<th></th>
<th>Crude oil</th>
<th>Natural gas liquids</th>
<th>Refinery feedstocks</th>
<th>Additives / oxygenates</th>
<th>Of which</th>
<th>Other hydrocarbons</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Indigenous production</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receipts from other sources</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backflows</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products transferred</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imports (Balance)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exports (Balance)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct use</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock changes</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refinery inputs (Calculating)</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical difference</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refinery intake (Observed)</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memo Item: Refinery losses</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) TABLE 2 (SUPPLY OF FINISHED PRODUCTS)
最終石油製品の供給と国内出荷量を報告する。原油およびNGLの直接燃料使用(原油の生焚き・石油化学の原料)についても、この報告に含まれる。
<table>
<thead>
<tr>
<th>部門</th>
<th>エネルギー源</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary product receipts</td>
<td>Crude oil</td>
</tr>
<tr>
<td>Refinery gross output</td>
<td>Natural gas liquids</td>
</tr>
<tr>
<td>Recycled products</td>
<td>Refinery gas</td>
</tr>
<tr>
<td>Refinery fuel</td>
<td>Ethane</td>
</tr>
<tr>
<td>Imports (Balance)</td>
<td>LPG</td>
</tr>
<tr>
<td>Exports (Balance)</td>
<td>Naphtha</td>
</tr>
<tr>
<td>International marine bunkers</td>
<td>Total motor gasoline</td>
</tr>
<tr>
<td>Interproduct transfers</td>
<td>Biogasoline</td>
</tr>
<tr>
<td>Products transferred</td>
<td>Non-biogasoline</td>
</tr>
<tr>
<td>Stock changes</td>
<td>Aviation gasoline</td>
</tr>
<tr>
<td>Gross inland deliveries (Calculated)</td>
<td>Gasoline type jet fuel</td>
</tr>
<tr>
<td>Statistical difference</td>
<td>Total kerosene type jet fuel</td>
</tr>
<tr>
<td>Gross inland deliveries (Observed)</td>
<td>Bio jet kerosene</td>
</tr>
<tr>
<td>Memo Items: Deliveries to international aviation</td>
<td>Non-bio jet kerosene</td>
</tr>
<tr>
<td>Deliveries to main activity producer power plants</td>
<td>Other kerosene</td>
</tr>
<tr>
<td>Deliveries of automotive LPG</td>
<td>Road diesel</td>
</tr>
<tr>
<td>Deliveries of rail and marine diesel</td>
<td>Heating and other gas oil</td>
</tr>
<tr>
<td>Gross deliveries to the petrochemical industry</td>
<td>Total gas/diesel oil</td>
</tr>
<tr>
<td>Backflows to refineries</td>
<td>Biodiesels</td>
</tr>
<tr>
<td>Net deliveries of Total products</td>
<td>Non-bio gas/diesel oil</td>
</tr>
<tr>
<td></td>
<td>Total fuel oil</td>
</tr>
<tr>
<td></td>
<td>Fuel oil-low sulphur (<1%)</td>
</tr>
<tr>
<td></td>
<td>Fuel oil-high sulphur (> =1%)</td>
</tr>
<tr>
<td></td>
<td>Petroleum coke</td>
</tr>
<tr>
<td></td>
<td>Other products</td>
</tr>
<tr>
<td></td>
<td>Total products</td>
</tr>
</tbody>
</table>

49
(3) TABLE 3 and 4 (IMPORTS BY ORIGIN AND EXPORTS BY DESTINATION)

原油・石油製品の輸出入量を報告する。なお、統計上起源不明のデータが発生した場合は、[Non-Specified/Other]に、その違いを報告する。入港中タンカーの前月分と当月分の差分もこの[Non-Specified/Other]に計上する。
<table>
<thead>
<tr>
<th>輸入国</th>
<th>エネルギー源</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria, Angola, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Belarus, Belgium, Bosnia and Herzegovina, Brazil, Brunei Darussalam, Bulgaria, Cameroon, Canada, Chile, People's Republic of China, Colombia, Congo, Democratic Republic of Congo, Croatia, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Equatorial Guinea, Estonia, Finland, France, Gabon, Georgia, Germany, Greece, Hong Kong (China), Hungary, Iceland, India, Indonesia, Islamic Republic of Iran, Iraq, Ireland, Israel, Italy, Japan, Kazakhstan, Korea, Kuwait, Kyrgyzstan, Latvia, Libya, Lithuania, Luxembourg, Republic of Macedonia, Malaysia, Malta, Mexico, Republic of Moldova, Montenegro, Netherlands, Netherlands Antilles, New Zealand, Nigeria, Norway, Oman, Other Africa, Other Asia and Pacific, Other Europe, Other Former Soviet Union, Other Near and Middle East, Other non-OECD Americas, Papua New Guinea, Peru, Poland, Portugal, Qatar, Romania, Russian Federation, Saudi Arabia, Serbia, Singapore, Republic of Slovak, Slovenia, Spain, Sweden, Switzerland, Republic of Syrian Arab, Tajikistan, Thailand, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Ukraine, United Arab Emirates, United Kingdom, United States, Uzbekistan, Venezuela, Vietnam, Yemen, Non-specified/Other</td>
<td></td>
</tr>
<tr>
<td>Crude oil</td>
<td></td>
</tr>
<tr>
<td>Natural gas liquids</td>
<td></td>
</tr>
<tr>
<td>Refinery feedstocks</td>
<td></td>
</tr>
<tr>
<td>Additives/oxygenates</td>
<td></td>
</tr>
<tr>
<td>Other hydro-carbons</td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
</tr>
<tr>
<td>LPG</td>
<td></td>
</tr>
<tr>
<td>Naphtha</td>
<td></td>
</tr>
<tr>
<td>Total motor gasoline</td>
<td></td>
</tr>
<tr>
<td>Biogasoline</td>
<td></td>
</tr>
<tr>
<td>Non-biogasoline</td>
<td></td>
</tr>
<tr>
<td>Aviation gasoline</td>
<td></td>
</tr>
<tr>
<td>Gasoline type jet fuel</td>
<td></td>
</tr>
<tr>
<td>Total kerosene type jet fuel</td>
<td></td>
</tr>
<tr>
<td>Bio jet kerosene</td>
<td></td>
</tr>
<tr>
<td>Non-bio jet kerosene</td>
<td></td>
</tr>
<tr>
<td>Other kerosene</td>
<td></td>
</tr>
<tr>
<td>Road diesel</td>
<td></td>
</tr>
<tr>
<td>Heating and other gas oil</td>
<td></td>
</tr>
<tr>
<td>Total gas/diesel oil</td>
<td></td>
</tr>
<tr>
<td>Biodiesels</td>
<td></td>
</tr>
<tr>
<td>Non-bio gas/diesel oil</td>
<td></td>
</tr>
<tr>
<td>Total fuel oil</td>
<td></td>
</tr>
<tr>
<td>Fuel oil-low sulphur (<1%)</td>
<td></td>
</tr>
<tr>
<td>Fuel oil-high sulphur (>=1%)</td>
<td></td>
</tr>
<tr>
<td>Petroleum coke</td>
<td></td>
</tr>
<tr>
<td>Other products</td>
<td></td>
</tr>
<tr>
<td>Total products</td>
<td></td>
</tr>
<tr>
<td>Total oil</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Crude oil</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Algeria</td>
<td>1</td>
</tr>
<tr>
<td>Angola</td>
<td>2</td>
</tr>
<tr>
<td>Argentina</td>
<td>3</td>
</tr>
<tr>
<td>Armenia</td>
<td>4</td>
</tr>
<tr>
<td>Australia</td>
<td>5</td>
</tr>
<tr>
<td>Austria</td>
<td>6</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>7</td>
</tr>
<tr>
<td>Bahamas</td>
<td>8</td>
</tr>
<tr>
<td>Bahrain</td>
<td>9</td>
</tr>
<tr>
<td>Belarus</td>
<td>10</td>
</tr>
<tr>
<td>Belgium</td>
<td>11</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>12</td>
</tr>
<tr>
<td>Brazil</td>
<td>13</td>
</tr>
<tr>
<td>Brunei Darussalam</td>
<td>14</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>15</td>
</tr>
<tr>
<td>Cameroon</td>
<td>16</td>
</tr>
<tr>
<td>Canada</td>
<td>17</td>
</tr>
<tr>
<td>Chile</td>
<td>18</td>
</tr>
<tr>
<td>China, People's Republic</td>
<td>19</td>
</tr>
<tr>
<td>Colombia</td>
<td>20</td>
</tr>
<tr>
<td>Congo</td>
<td>21</td>
</tr>
<tr>
<td>Congo, Democratic Republic</td>
<td>22</td>
</tr>
<tr>
<td>Croatia</td>
<td>23</td>
</tr>
<tr>
<td>Cyprus</td>
<td>24</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>25</td>
</tr>
<tr>
<td>輸出国</td>
<td>エネルギー源</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Algeria, Argentina, Armenia, Australia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Brazil, Bulgaria, Canada, Chile, People's Republic of China, Chinese Taipei, Colombia, Croatia, Cyprus, Republic of Czech, Denmark, Egypt, Estonia, Finland, France, Georgia, Germany, Greece, Hong Kong (China), Hungary, Iceland, India, Indonesia, Islamic Republic of Iran, Iraq, Ireland, Israel, Italy, Japan, Kazakhstan, Korea, Kuwait, Kyrgyzstan, Latvia, Lebanon, Libya, Lithuania, Luxembourg, Republic of Macedonia, Malaysia, Malta, Mexico, Republic of Moldova, Montenegro, Morocco, Netherlands, Netherlands Antilles, New Zealand, Nigeria, Norway, Other Africa, Other Asia and Pacific, Other Europe, Other Former Soviet Union, Other Near and Middle East, Other non-OECD Americas, Pakistan, Philippines, Poland, Portugal, Qatar, Romania, Russian Federation, Saudi Arabia, Serbia, Singapore, Republic of Slovak, Slovenia, South Africa, Spain, Sweden, Switzerland, Republic of Syrian Arab, Tajikistan, Thailand, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Ukraine, United Kingdom, United States, Uzbekistan, Venezuela, Vietnam, Non-specified/Other</td>
<td></td>
</tr>
<tr>
<td>Crude oil</td>
<td></td>
</tr>
<tr>
<td>Natural gas liquids</td>
<td></td>
</tr>
<tr>
<td>Refinery feedstocks</td>
<td></td>
</tr>
<tr>
<td>Additives /oxygenates</td>
<td></td>
</tr>
<tr>
<td>Other hydro-carbons</td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
</tr>
<tr>
<td>LPG</td>
<td></td>
</tr>
<tr>
<td>Naphtha</td>
<td></td>
</tr>
<tr>
<td>Total motor gasoline</td>
<td></td>
</tr>
<tr>
<td>Biogasoline</td>
<td></td>
</tr>
<tr>
<td>Non-biogasoline</td>
<td></td>
</tr>
<tr>
<td>Aviation gasoline</td>
<td></td>
</tr>
<tr>
<td>Gasoline type jet fuel</td>
<td></td>
</tr>
<tr>
<td>Total kerosene type jet fuel</td>
<td></td>
</tr>
<tr>
<td>Bio jet kerosene</td>
<td></td>
</tr>
<tr>
<td>Non-bio jet kerosene</td>
<td></td>
</tr>
<tr>
<td>Other kerosene</td>
<td></td>
</tr>
<tr>
<td>Road diesel</td>
<td></td>
</tr>
<tr>
<td>Heating and other gas oil</td>
<td></td>
</tr>
<tr>
<td>Total gas/diesel oil</td>
<td></td>
</tr>
<tr>
<td>Biodiesels</td>
<td></td>
</tr>
<tr>
<td>Non-bio gas/diesel oil</td>
<td></td>
</tr>
<tr>
<td>Total fuel oil</td>
<td></td>
</tr>
<tr>
<td>Fuel oil-low sulphur (<1%)</td>
<td></td>
</tr>
<tr>
<td>Fuel oil-high sulphur (>=1%)</td>
<td></td>
</tr>
<tr>
<td>Petroleum coke</td>
<td></td>
</tr>
<tr>
<td>Other products</td>
<td></td>
</tr>
<tr>
<td>Total products</td>
<td></td>
</tr>
<tr>
<td>Total oil</td>
<td></td>
</tr>
</tbody>
</table>
(4) **TABLE 5 (STOCK LEVELS)**

石油製品の在庫量を報告する。

<table>
<thead>
<tr>
<th></th>
<th>Crude oil</th>
<th>Natural gas liquids</th>
<th>Refinery feedstocks</th>
<th>Additives/oxygenates</th>
<th>Other hydro-carbons</th>
<th>Total (A to E)</th>
<th>Ethane</th>
<th>LPG</th>
<th>Naphtha</th>
<th>Total motor gasoline</th>
<th>Biogasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armenia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia and Mongolia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breed</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China, People's Republic</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colombia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Verde</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German Democratic Republic</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iraq</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea, Republic of</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koweit Goma</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea, People's Republic</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lusotia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morocco</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oman</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qatar</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senegal</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunisia</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yemen</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (a) All stocks on national territory (b+c+d+e+f+g+h+i)
- (b) Stocks held for other countries under official agreement
- (c) Stocks with known foreign destination
- (d) Stocks held in bonded areas and not included in (b) or (c)
- (e) Stocks held by major consumers, obligated by law
- (f) Stocks held on board incoming ocean vessels in port or at mooring
- (g) Stocks held by government on national territory
- (h) Stocks held by stock holding organisation on national territory
- (i) All other stocks held on national territory
- (j) Stocks held abroad under official agreement (o+p+q)
- (k) Stocks held abroad designated definitely for import into your country
- (l) Total stocks (a-b-c+j+k)
- (m) Other stocks in bonded areas
- (n) Pipeline fill
- (o) Government stocks held abroad under official agreement
- (p) Holding organisation's stocks held abroad under official agreement
- (q) Other stocks held abroad under official agreement

Crude oil
Natural gas liquids
Refinery feedstocks
Additives/oxygenates
Other hydro-carbons
Ethane
LPG
Naphtha
Total motor gasoline
Biogasoline
Non-biogasoline
Aviation gasoline
Gasoline type jet fuel
Total kerosene type jet fuel
Bio jet kerosene
Non-bio jet kerosene
Other kerosene
Road diesel
Heating and other gas oil
Total gas/diesel oil
Biodiesels
Non-bio gas/diesel oil
Total fuel oil
Fuel oil-low sulphur (<1%)
Fuel oil-high sulphur (>=1%)
Petroleum coke
Other products
Total products
Total oil

<table>
<thead>
<tr>
<th>Crude oil</th>
<th>Natural gas liquids</th>
<th>LPG</th>
<th>Naphtha</th>
<th>Refinery feedstocks</th>
<th>Additives / oxygenates</th>
<th>Other hydrocarbons</th>
<th>Total (A+B+C+D+E+F+G+H+I+J+K+L)</th>
<th>Shave</th>
<th>LPG</th>
<th>Methane</th>
<th>Total methane gasolines</th>
<th>Total gasolines</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

(5) TABLE 6&6b (CLOSING STOCKS HELD FOR OTHER COUNTRIES UNDER BILATERAL GOVERNMENT AGREEMENTS BY BENEFICIARY)

ニュージーランドとの石油備蓄に関する協定による石油製品の在庫を報告する。2012年1月～12月は毎月原油56千tを報告した。Table 6およびTable 6bともに同じ値を報告する。なお、この協定は国際入札となっているが、2015年4月以降は失注となったため報告すべき値はなくなっている。

<table>
<thead>
<tr>
<th>対象国</th>
<th>エネルギー源</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Zealand</td>
<td>Crude Oil</td>
</tr>
<tr>
<td>Country</td>
<td>Crude oil</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Australia</td>
<td>1</td>
</tr>
<tr>
<td>Austria</td>
<td>2</td>
</tr>
<tr>
<td>Belgium</td>
<td>3</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>4</td>
</tr>
<tr>
<td>Canada</td>
<td>5</td>
</tr>
<tr>
<td>Chile</td>
<td>6</td>
</tr>
<tr>
<td>Croatia</td>
<td>7</td>
</tr>
<tr>
<td>Cyprus</td>
<td>8</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>9</td>
</tr>
<tr>
<td>Denmark</td>
<td>10</td>
</tr>
<tr>
<td>Estonia</td>
<td>11</td>
</tr>
<tr>
<td>Finland</td>
<td>12</td>
</tr>
<tr>
<td>France</td>
<td>13</td>
</tr>
<tr>
<td>Germany</td>
<td>14</td>
</tr>
<tr>
<td>Greece</td>
<td>15</td>
</tr>
<tr>
<td>Hungary</td>
<td>16</td>
</tr>
<tr>
<td>Ireland</td>
<td>17</td>
</tr>
<tr>
<td>Israel</td>
<td>18</td>
</tr>
<tr>
<td>Italy</td>
<td>19</td>
</tr>
</tbody>
</table>

(6) TABLE 7 (CLOSING STOCKS WITH KNOWN FOREIGN DESTINATION, BY BENEFICIARY)

わが国では消費が認められないため、報告していない。

(7) TABLE 8 (CLOSING STOCKS HELD ABROAD UNDER OFFICIAL AGREEMENT, BY LOCATION)

わが国では消費が認められないため、報告していない。

(8) TABLE 9 (CLOSING STOCKS HELD ABROAD DESIGNATED DEFINITELY FOR IMPORT INTO YOUR COUNTRY, BY LOCATION)

わが国では消費が認められないため、報告していない。

6.3.2. データの記入方針

(1)記入する際の留意点

質問票はt単位での報告が求められている。Lからtへの換算は、石油資料の燃料種別密度を用いて行う。
表6-1 石油製品別密度

<table>
<thead>
<tr>
<th>商品</th>
<th>密度 (t/kL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>原油</td>
<td>0.8550</td>
</tr>
<tr>
<td>NGL</td>
<td>0.7150</td>
</tr>
<tr>
<td>ガソリン、ナフサ</td>
<td>0.7370</td>
</tr>
<tr>
<td>ジェット燃料油</td>
<td>0.7834</td>
</tr>
<tr>
<td>燃料油</td>
<td>0.8140</td>
</tr>
<tr>
<td>軽油、A重油</td>
<td>0.8430</td>
</tr>
<tr>
<td>B・C重油</td>
<td>0.9000</td>
</tr>
<tr>
<td>潤滑油</td>
<td>0.8910</td>
</tr>
</tbody>
</table>

(出所)石油資料

(2)利用統計

資源エネルギー庁「資源エネルギー統計」、財務省「貿易統計」等を用いる。

表6-2 利用統計一覧(MOS)

<table>
<thead>
<tr>
<th>シート名</th>
<th>利用統計</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1</td>
<td>資源エネルギー庁「資源エネルギー統計」</td>
</tr>
<tr>
<td></td>
<td>財務省「貿易統計」</td>
</tr>
<tr>
<td>TABLE 2</td>
<td>資源エネルギー庁「資源エネルギー統計」</td>
</tr>
<tr>
<td></td>
<td>財務省「貿易統計」</td>
</tr>
<tr>
<td></td>
<td>経済産業省提供データ(石油製品別事業者用発電投入量)</td>
</tr>
<tr>
<td>TABLE 3, 4</td>
<td>財務省「貿易統計」(オイルコークス、LNG)</td>
</tr>
<tr>
<td></td>
<td>資源エネルギー庁「資源エネルギー統計」(上記以外)</td>
</tr>
<tr>
<td>TABLE 5</td>
<td>資源エネルギー庁「資源エネルギー統計」</td>
</tr>
<tr>
<td>TABLE 6</td>
<td>資源エネルギー庁「資源エネルギー統計」</td>
</tr>
</tbody>
</table>

なお、消費が認められているにも関わらず、統計がない箇所は推計して報告している。主な推計箇所は以下の項目である。

Table 1: Refinery Feedstocks [Backflows]

日本ではエチレン生成工程の際分解・重合によって分解ガソリンが副生される。また、石油化学工業ではナフサを改質してBTXを抽出する際ラフィネートという物質が残る。この分解ガソリンやラフィネートは石油精製会社や石油化学工業の供給契約の中で、供給
した製油所へ引き取らせる場合がある。これをリターンナフサと呼んでいる。リターンナフサは総合エネルギー統計より年次ベースで把握できるが、月次で把握できる統計がない。よって、総合エネルギー統計を参考に推計をし、IEAに報告している。

Table 2: Deliveries of Automotive (LPG), Gross Deliveries to Petrochemical sector (Other Kerosene, Petrochemical sector)
統計が廃止、または消費があるにも関わらず統計では把握できない箇所については、廃止前の調査実績を用いて推計している。Deliveries of Automotive (LPG)は、2001年まで資源・エネルギー統計より国内向総販売量の内訳(自動車用)が公表されていたが、2002年以降公表されなくなった。そのため、2001年以降の自動車用販売量は、資源・エネルギー統計より把握したLPG国内向総販売量に、販売量に対する自動車用向け比率0.067118を乗じて推計する。この比率は、資源エネルギー庁国際課推計により提供された係数である。

Closing level of stocks held on national territory (LNG)
資源エネルギー統計月報のLNG在庫は石油販売会社のみの在庫であり、電力会社およびガス会社の在庫を含んでいない。したがって、同統計よりLNG輸入量と(1-消費/輸入)比率を用いて推計し報告している。

6.3.3. IEAとの協議事項
以下は、2018年度にIEAから受けた指摘事項である。なお、IEAからの指摘は、国際課を通して行われる。

(IEA指摘事項1 2018年5月31日国際課)
1) Table 2: High imports (125kt) of gas/diesel oil
2) Table 2: High imports of fuel oil (516kt)
3) Table 3: High imports of naphtha from Greece (37kt)
4) Table 4: High exports of gas/diesel oil (109kt) and motor gasoline (93kt) to Malaysia
5) Table 5: Low closing stocks on national territory of crude oil (51899kt)

(回答)
2) Table 2: High imports of fuel oil (516kt)
の質問について、516ktは「Exports」の値と思われる。
念のため、Fuel oilの輸出・輸入の値を確認したが統計通りであった。
また、1)、3)~5)についても統計通りであることを再度確認した。

(IEA指摘事項2 2018年8月1日国際課)
Could you please confirm the following:
1) Table 2: High gross inland deliveries of kerosene type jet fuel (1077kt)
2) Table 2: High use of petroleum coke for refinery fuel (39kt)
3) Table 5: Low closing stocks in category (m) - other stocks in bonded areas - for crude oil (740kt)
統計通り報告していることを確認した。

>3) Table 5: Low closing stocks in category (m) - other stocks in bonded areas - for crude oil (740kt)

については5月のUAE共同備蓄分がこれまでより少ないためと推察される。

(IEA指摘事項3 2018年8月30日国際課)
Thank you for your submissions. Could you please confirm the following data points?
1) Table 1: Low imports (9807kt) and refinery intake (10223kt), and high statistical difference (298kt) for crude oil
2) Table 2: Low refinery gross output (657kt) and gross inland deliveries (1953kt) of naphtha
3) Table 2: Low gross inland deliveries of fuel oil (438kt)
4) Table 4: No exports of any products to Hong Kong

(回答)
指摘事項について、統計通りであることを確認した。

(IEA指摘事項4 2018年9月28日国際課)
Thank you for your submissions. Could you please confirm the following data points?
1) Table 2: Low level of deliveries to public electricity for fuel oil (43kt)
2) Table 2: High use of refinery fuel for petroleum coke (56kt)
3) Table 3: New flow of imports of naphtha from Mexico (37kt)
4) Table 4: New flow of exports of gas/diesel oil to Other Africa (9kt)

(回答)
1) 修正し再提出する。前年同月値を元にしての推計のため、国際課様より汽力発電データをご提供いただいた後に数値が変わる可能性がある。
2), 3), 4)→統計通りであることを確認した。4)については英領インド洋地域への輸出が該当する。

(IEA指摘事項5 2018年10月31日国際課)
Thank you for your submissions. We have a few questions about some unusual trade data and we would appreciate if you could double-check these figures.
1) Crude oil: High imports from the USA (277kt) and the UAE (4227kt) and a new flow of imports from Yemen (71kt)
2) LPG: High imports from Australia (123kt) and no exports
3) Motor gasoline: High imports (199kt) and low exports (56kt)
4) Naphtha: High imports from Bahrain (154kt) and low imports from India (24kt)
5) Jet kerosene: New flow of exports to Indonesia (36kt)
6) Gas/diesel oil: High exports to Other Africa (37kt)
7) Fuel oil: High imports (397kt), particularly from Singapore (204kt)
Also, could you please let us know when we can expect submissions of MOS Gas/Jodi Gas and Jodi Maxi for September 2018 data?
(回答)
1)～7)すべて統計通りであることを確認した。

(IEA指摘事項6 2018年11月28日国際課)
1. Table 5: Very low closing stocks held by government on national territory for LPG (1kt). The stock change also caused extremely high figures for statistical difference and calculated gross inland deliveries of LPG.
2. Table 3: High imports of crude oil from the US (422kt) 3. Table 4: High exports of gas/diesel oil to Taipei (243kt)

(回答)
>1. Table 5: Very low closing stocks held by government on national territory for LPG (1kt). The stock change also caused extremely high figures for statistical difference and calculated gross inland deliveries of LPG.
→修正し再提出する。
>2. Table 3: High imports of crude oil from the US (422kt)
>3. Table 4: High exports of gas/diesel oil to Taipei (243kt)
→統計通りであることを確認した。

(IEA指摘事項7 2019年1月9日国際課)
先般提出したMOSについて以下質問が来ております。
1) Table 2: Low refinery gross output of petroleum coke (48kt)
2) Table 5: High closing stocks on national territory for crude oil (1844kt)

(回答)
>1) Table 2: Low refinery gross output of petroleum coke (48kt)
→統計通りであることを確認した。
>2) Table 5: High closing stocks on national territory for crude oil (1844kt)
→当該数値のご確認をお願いしたい。

(IEA指摘事項7続き 2019年1月10日国際課)
1844ktは10月MOSのTable 1にあるstock changesの数字である。
注釈6でTable 5から参照されていることになっている。

(回答)
Table 5内の値の差分であった。統計通りであることを確認した。(石油統計の原油月末在庫が通常より多いことに起因すると推察される。)

(IEA指摘事項8 2019年1月31日国際課)
1) Table 2: Could you please double check the flows for LPG? The statistical difference is very high this month (442kt).
2) Table 2: High deliveries to international aviation for jet kerosene (753kt)
3) Table 2: High deliveries to international marine bunkers of fuel oil (413kt)
4) Table 3: Please confirm the following imports:
a) No imports of crude oil from Iran
b) New flow of imports of petroleum coke from the UK (1kt)
c) High imports of naphtha from the UAE (757kt) and Egypt (73kt), and low imports of naphtha from Russia (30kt)
d) High imports of jet kerosene from non-specified countries (317kt)
5) Table 5: High closing stocks on

1) Table 2: Could you please double check the flows for LPG for the November data? The statistical difference is very high (442kt)
2) Table 3: High imports of crude oil from the US (839kt), and high imports of naphtha from Thailand (70kt)

1) Table 2 is also mentioned in the previous report. We are aware of the large values, but we are using the current statistical data.

6.4. JODI Oil

JODI database is the global statistical repository for the transparency of global oil data. It was established in 2001, managed by the International Energy Forum (IEF) and supported by the International Energy Agency (IEA), Eurostat, APEC, OLADE, OPEC, UNSD, GECF, and 7 other institutions.

The data submitted by Japan is updated on the JODI database (https://www.jodidata.org/oil/) every two weeks.

5 IEF: International Energy Forum
6 IEA: International Energy Agency, 国際エネルギー機関
 Eurostat: 欧州連合統計局
 APEC: Asia Pacific Economic Cooperation, アジア太平洋経済協力
 OLADE: Latin America Energy Organization
 OPEC: Organization of the Petroleum Exporting Countries, 石油輸出国機構
 UNSD: United Nations Statistics Division, 国際連合統計局
 GECF: Gas Exporting Countries Forum, ガス輸出国フォーラム
6.4.1. 提出方法

IEEJの担当者が質問票に記入を行い、月末までにIEAのEnergy Data Management Centerへ提出している。

6.4.2. 提出データ

M-1 (速報)をIEAに提出する。M-2より前は遅く修正があった場合に提出する。

6.4.3. 質問票の構造

対象項目は、生産、輸出入、在庫変動、石油精製等、計10項目である。対象エネルギーは、12種類である。単位はkLとtのそれぞれの単位での記入が求められている。

表6-4 JODI質問票

<table>
<thead>
<tr>
<th>Month</th>
<th>Unit : 1000kL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude Oil</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

- Production
- Direct Use
- Stocks
- Statistical Difference
- Direct Use
- Stocks
- Statistical Difference
- Demand
- Closing stocks

(出所) JODI Oil Database
6.4.4. データの記入方針

(1) 記入する際の留意点
単位Lからtへの換算は、石油資料の燃料種別密度(表4-1)を用いて計算する。

(2) 利用統計
石油統計速報、資源エネルギー庁「資源エネルギー統計」、財務省「貿易統計」、経済産業省提供データ等を利用する。
M-1質問票は、収集対象月の翌月28日頃に公表される石油統計月報(速報)を利用して報告する。M-2は、収集対象月の翌々月14日頃に公表される資源エネルギー統計(確報)を利用して報告する。

表6-5 利用統計一覧(JODI OIL)

<table>
<thead>
<tr>
<th>M-1</th>
<th>M-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>石油統計月報</td>
<td>資源エネルギー庁「資源エネルギー統計」</td>
</tr>
<tr>
<td>LPGの備蓄はMETI提供データ</td>
<td>財務省「貿易統計」</td>
</tr>
<tr>
<td></td>
<td>石油製品別事業者用発電投入量「Deliveries to Main Activity Producer Power Plants」についてはMETI提供データ</td>
</tr>
</tbody>
</table>

※収集対象月の翌月28日頃に公表される石油統計月報を速報、収集対象月の翌々月14日頃に公表される資源エネルギー統計を確報と呼んでいる。

6.4.5. IEAとの協議事項

(IEA指摘事項1 2018年8月1日)
Regarding the June 2018 submission for Jodi:
Low imports (9589kt) and refinery intake (10132kt) were observed for crude oil, as well as low refinery gross output for some products such as naphtha (657kt) and motor gasoline (2758kt). Was there refinery maintenance in June?

(回答)
統計通り報告していることを確認した。

6.5. MOS/JODI Gas

6.5.1. 提出方法
IEEJの担当者が質問票に記入し、経済産業省資源エネルギー庁国際課のIDを利用して、IEA Energy Data Management Centerより提出する。
6.5.2. 提出データ
速報値(Provisional M-1)、確報値(Final M-2)を毎月提出する。

6.5.3. 質問票の構造
MOS (ガス)質問票とJODI Gas質問票は同じフォーマットである。IEAでは、Provisional M-1として報告したデータをJODI-Gasデータ、Final M-2として報告したデータをMOS Gasとして定義している。

MOSとJODI Gasの質問票は、以下の2つの質問票から構成されている。

(1) Table 10: SUPPLY OF NATURAL GAS
天然ガス/LNGの需給を報告する。

<table>
<thead>
<tr>
<th>部門</th>
<th>エネルギー源</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indigenous production</td>
<td>Natural gas Million m³ (at 15°C, 760 mm Hg)</td>
</tr>
<tr>
<td>Imports (Entries)</td>
<td>Natural gas Terajoules (Gross calor. value)</td>
</tr>
<tr>
<td>Exports (Exits)</td>
<td>Natural gas Gross calorific value (Calculated)</td>
</tr>
<tr>
<td>Stock changes (National territory)</td>
<td></td>
</tr>
<tr>
<td>Gross inland deliveries (Calculated)</td>
<td></td>
</tr>
<tr>
<td>Statistical difference</td>
<td></td>
</tr>
<tr>
<td>Gross inland deliveries (Observed)</td>
<td></td>
</tr>
<tr>
<td>Opening stock level (National territory)</td>
<td></td>
</tr>
<tr>
<td>Closing stock level (National territory)</td>
<td></td>
</tr>
<tr>
<td>Opening stock level (Held abroad)</td>
<td></td>
</tr>
<tr>
<td>Closing stock level (Held abroad)</td>
<td></td>
</tr>
<tr>
<td>Own use and losses of the natural gas industry</td>
<td></td>
</tr>
<tr>
<td>Deliveries to power generation</td>
<td></td>
</tr>
</tbody>
</table>

(2) Table 11: IMPORTS OF NATURAL GAS BY ORIGIN
LNGの輸入量を報告する。
6.5.4. データの記入方法

(1) 利用統計

資源エネルギー庁「資源エネルギー統計」、財務省「貿易統計」、その他消費統計を利用してする。

<table>
<thead>
<tr>
<th>シート名</th>
<th>利用統計</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 10</td>
<td>資源エネルギー庁「資源エネルギー統計」「電力調査統計月報」、「ガス事業統計月報」「簡易ガス事業生産動態統計調査」、「石油等消費動態統計月報」</td>
</tr>
<tr>
<td>TABLE 11</td>
<td>財務省「貿易統計」</td>
</tr>
</tbody>
</table>

(注)表番号はMOS (石油)質問票の番号(Table 1～9)に続いている。
(2)記入する際の留意点
天然ガス、液化天然ガスともにm³での記入が求められている。液化天然ガスのtからm³への換算は、2013年3月分までの報告は1,400 m³/tを用いて行う。2013年4月分以降は標準発熱量の変更に伴い、1,440.8 m³/tを用いる。

6.5.5. IEAとの協議事項

(IEA指摘事項1 2019年1月9日国際課)
Regarding the revision for October MOS Gas, the gross inland deliveries are very high (15179mcm), causing a very large statistical difference (-5626mcm). Could you please double check this?

(回答)
>Regarding the revision for October MOS Gas, the gross inland deliveries are very high (15179mcm), causing a very large statistical difference (-5626mcm).
修正し再提出する。
7. 緊急時対応審査(QuE)

緊急時対応審査(QuE)は、隔年の実施であり、2018年度事業中に審査はなかった。
8. Energy Efficiency Indicator (EEI)

8.1. 質問票の構造

わが国では、資源エネルギー庁総務課が日本エネルギー経済研究所(IEEJ)と協力して、IEAより配布された効率指標に関する質問票(以下、IEAエネルギー効率指標テンプレート、略して統計テンプレート)への入力および提出を行っている。

統計テンプレートは、Excelファイルで整備されており、3つの分野「Country data section」「IEA data and aggregate indicators」「Support tools」から構成される。

「Country data section」は、さらにマクロ経済指標、活動量、産業部門、業務部門、家庭部門、運輸部門の6つのシートで構成されており、経済、人口動態、活動量、エネルギー消費量のデータ入力ができるようになっている。これらのシートはデータ入力の主要部分といえる。

本年度はIEAより2017年データまで提出することが要請された。そのため、1990年から2017年までのデータ入力を実施した。

<table>
<thead>
<tr>
<th>シート名</th>
<th>質問内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)マクロ経済指標</td>
<td>経済、人口、世帯数等のマクロ経済指標</td>
</tr>
<tr>
<td>(2)活動量</td>
<td>粗鋼、化学製品、セメント等の生産量</td>
</tr>
<tr>
<td>(3)産業部門</td>
<td>産業業種別エネルギー消費量</td>
</tr>
<tr>
<td>(4)業務部門</td>
<td>エネルギー源別・用途別エネルギー消費量</td>
</tr>
<tr>
<td>(5)家庭部門</td>
<td>エネルギー源別・用途別エネルギー消費量</td>
</tr>
<tr>
<td>(6)運輸部門</td>
<td>機器の普及状況、保有率</td>
</tr>
</tbody>
</table>

IEA data and aggregate indicatorsは発電部門、基礎指標の2つのExcelシートで構成されている。このシートは、IEA Energy Statistics等に基づいている。
表8-2 IEA data and aggregate indicators

<table>
<thead>
<tr>
<th>シート名</th>
<th>質問内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7)発電部門</td>
<td>IEA Energy Statisticsの発電投入燃料および発電量データ</td>
</tr>
<tr>
<td>(8)基礎指標</td>
<td>対GDPエネルギー原単位等の基礎指標を計算するための式が設定されたシート</td>
</tr>
</tbody>
</table>

Support toolsは、データの入力ミスや精度を確認するためのツールである。データ捕捉率のチェック、効率指標のグラフ化等を行うことができる。

8.2. 利用統計一覧

統計テンプレートへの入力には、公式統計または捕捉性の高い統計を利用する。
<table>
<thead>
<tr>
<th>Country data section</th>
<th>統計名</th>
<th>出所</th>
</tr>
</thead>
<tbody>
<tr>
<td>マクロ経済指標</td>
<td>(1)国民経済計算年報</td>
<td>内閣府</td>
</tr>
<tr>
<td></td>
<td>(2)住宅・土地統計調査</td>
<td>総務省</td>
</tr>
<tr>
<td></td>
<td>(3)建築着工統計</td>
<td>国土交通省</td>
</tr>
<tr>
<td>活動量</td>
<td>(4) FAO Stats</td>
<td>Food and Agriculture Organization of the United Nations (FAO)</td>
</tr>
<tr>
<td></td>
<td>(5)化学工業統計</td>
<td>経済産業省</td>
</tr>
<tr>
<td></td>
<td>(6)窯業建材統計</td>
<td>経済産業省</td>
</tr>
<tr>
<td></td>
<td>(7)セメントハンドブック</td>
<td>日本セメント協会</td>
</tr>
<tr>
<td></td>
<td>(8)紙・印刷・プラスチック・ゴム製品統計</td>
<td>経済産業省</td>
</tr>
<tr>
<td></td>
<td>(9)古紙需給統計</td>
<td>古紙再生促進センター</td>
</tr>
<tr>
<td></td>
<td>(10)鉄鋼・非鉄金属・金属製品統計</td>
<td>経済産業省</td>
</tr>
<tr>
<td></td>
<td>(11)アルミニウム統計年報</td>
<td>日本アルミニウム協会</td>
</tr>
<tr>
<td>産業部門</td>
<td>(12) IEA Energy Balances</td>
<td>IEA</td>
</tr>
<tr>
<td>業務部門</td>
<td>(13)エネルギー・経済統計要覧</td>
<td>日本エネルギー経済研究所</td>
</tr>
<tr>
<td>家庭部門</td>
<td>(13)エネルギー・経済統計要覧</td>
<td>日本エネルギー経済研究所</td>
</tr>
<tr>
<td></td>
<td>(14)消費動向調査</td>
<td>内閣府</td>
</tr>
<tr>
<td></td>
<td>(15)省エネルギー性能カタログ</td>
<td>資源エネルギー庁</td>
</tr>
<tr>
<td>運輸部門</td>
<td>(13)エネルギー・経済統計要覧</td>
<td>日本エネルギー経済研究所</td>
</tr>
<tr>
<td></td>
<td>(16)自動車輸送統計</td>
<td>国土交通省</td>
</tr>
<tr>
<td></td>
<td>(17)鉄道輸送統計</td>
<td>国土交通省</td>
</tr>
<tr>
<td></td>
<td>(18)航空輸送統計</td>
<td>国土交通省</td>
</tr>
<tr>
<td></td>
<td>(19)内航船舶輸送統計</td>
<td>国土交通省</td>
</tr>
<tr>
<td></td>
<td>(20)自動車保有車両数</td>
<td>自動車検査登録情報協会</td>
</tr>
<tr>
<td></td>
<td>(21)交通関連統計資料集</td>
<td>国土交通省</td>
</tr>
<tr>
<td></td>
<td>(22)総合エネルギー統計</td>
<td>資源エネルギー庁</td>
</tr>
</tbody>
</table>
8.3. 利用統計の定義とデータ捕捉性

本節では、統計テンプレートのCountry data sectionへのデータ入力に利用している統計について概説する。

(1) Structural Analysis (STAN) database
この統計は、OECDが加盟国の産業構造を分析するために作成したものであり、OECD諸国のマクロ経済、産業連関表、製造業指数等の産業構造に関する情報を網羅している。国際標準産業分類(ISIC)に沿って整備されており、各国間比較にも適した統計である。

(2) 住宅・土地統計調査
この統計は、統計法に基づく指定統計調査の一つであり、住宅および住宅以外で人が居住する建物に関する実態等を調査したものである。調査は、世帯を対象としたサンプル調査である。調査項目は、住宅数、建物の種類、世帯数・世帯人員、延床面積等となっている。なお、現在平成30年調査が行われている。

表8-4 住宅・土地統計調査の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅・土地統計調査</td>
<td>1948年以来5年毎に実施しており、平成25年調査は14回目</td>
<td>サンプル調査</td>
<td>住宅数</td>
</tr>
<tr>
<td></td>
<td></td>
<td>調査単位区内から抽出した住宅および住宅以外で人が居住する建物ならびにこれらに居住している世帯を対象。</td>
<td>建物の種類</td>
</tr>
<tr>
<td></td>
<td></td>
<td>単位区当たり17住戸, 計約350万住戸・世帯</td>
<td>世帯数・世帯人員</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>延床面積、他</td>
</tr>
</tbody>
</table>

(3) 建築着工統計
建築着工統計は、統計法に基づく基幹統計「建築動態統計調査」の一つであり、全国における建築物の着工状況(建築物の数、床面積の合計、工事費予定額)を建築主別、構造別、用途別に調査したものである。調査は、新たに建築される全国の建築物が対象となっている。この統計は、2019年3月1日時点の2018年値まで公表されている。
建築着工統計の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>建築着工統計</td>
<td>1951年～2018年</td>
<td>悉皆調査 (新たに建築される全国の建築物すべて)</td>
<td>新設住宅着工・利用関係別戸数 建て方別 新設マンション三大都市圏別 都道府県別 利用関係別 着工建築物用途別・使途別床面積 工事費予定額</td>
</tr>
</tbody>
</table>

(4) FAOSTAT

FAOSTATは国連食糧農業機関（FAO）が運営する包括的な食糧・農林・水産業関連のオンライン統計データベースである。200か国以上、最長55年（1961年～）のデータの入手が可能である。資源、生産、林業、食糧需給表、漁業・養殖業の需給データが把握できる。

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAOSTAT</td>
<td>1961年～2017年</td>
<td>各国統計を用しFAOがデータ加工、推計を行っている</td>
<td>農用地面積 農林漁家人口・農林水産業従事者数 農業生産量-繊維・ゴム 1人当たり供給食料 主要農水産物の自給率 木材生産量 水産物生産量-漁獲・養殖、他</td>
</tr>
</tbody>
</table>

(5)化学工業統計/生産動態統計化学工業統計編

この統計は、統計法に基づく基幹統計の1つであり、「経済産業省生産動態統計調査規則」によって調査されるものである。エチレン等の化学工業品の生産、受入、消費等を把握するものである。調査対象は、石灰および軽質炭酸カルシウム（従業者15名以上の事業所）、油脂製品、石けん・合成洗剤等および界面活性剤（従業者10名以上の事業所）、塗料および印刷インキ（従業者10名以上の事業所）、化粧品（委託生産企業を含めて従業者30名以上の事業所）を除いた、すべての生産事業所としている。
この統計は2019年3月初旬時点で2017年値まで公表されている。

表8-7 化学工業統計/生産動態統計化学工業統計編の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>化学工業統計</td>
<td>1989年～2017年(暦年、年度、月報)</td>
<td>下記を除き、すべての生産事業所を対象とする。</td>
<td>エチレン等の化学製品の生産、受入、消費、出荷、販売金額、在庫、他</td>
</tr>
<tr>
<td>生産動態統計</td>
<td></td>
<td>石灰および軽質炭酸カルシウム(従業者15名以上の事業所が対象)</td>
<td></td>
</tr>
<tr>
<td>化学工業統計編(2013年版～)</td>
<td></td>
<td>油脂製品、石鹸・合成洗剤等および界面活性剤、塗料および印刷インキ(同従業者10名以上の事業所)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>化粧品(同企業全体の常従業者30名以上の企業)</td>
<td></td>
</tr>
</tbody>
</table>

(6)窯業建材統計/経済産業省生産動態統計年報 資源・窯業・建材統計編

この統計は統計法に基づく基幹統計「生産動態統計調査規則」により実施された窯業・建材製品に関する生産動態統計および商工業石油等消費統計調査規則により実施された窯業・建材製品に関する石油等消費動態統計の調査結果を編集公表したものである。調査項目はセメントやクリンカ等の生産量、受入、消費等である。調査対象は、従業者20名以上のセメント製品事業所、従業者30名以上の金属製建具事業所およびすべてのセメント・板ガラス製品工業とする。

この統計は2019年3月初旬時点で2017年値まで公表されている。

表8-8 窯業建材統計/経済産業省生産動態統計年報 資源・窯業・建材統計編の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>窯業建材統計</td>
<td>1989年～2017年(暦年、年度、月報)</td>
<td>従業者20名以上のセメント製品事業所</td>
<td>セメント、クリンカ等の生産、受入、消費、出荷、販売金額、在庫、他</td>
</tr>
<tr>
<td>生産動態統計</td>
<td></td>
<td>従業者30名以上の金属製建具事業所</td>
<td></td>
</tr>
<tr>
<td>資源・窯業・建材統計編</td>
<td></td>
<td>セメント工業全部</td>
<td></td>
</tr>
<tr>
<td>(2013年版～)</td>
<td></td>
<td>板ガラス工業全部</td>
<td></td>
</tr>
</tbody>
</table>

(7)セメントハンドブック

この統計は、セメント協会に加盟している企業について、その製造能力、生産・販売動向、原料・エネルギー消費状況等の情報を報告したものである。
表8-9 セメントハンドブックの調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>セメントハンドブック</td>
<td>1989年〜2017年</td>
<td>セメント協会に加盟している企業 (2019年現在)</td>
<td>セメント企業概況、工場分布、製造能力、キルン保有基数、生産・販売動向、原料・エネルギー消費状況、他</td>
</tr>
<tr>
<td></td>
<td>(暦年、年度)</td>
<td>八戸セメント、日鉄住金高炉セメント、日鉄住金セメント、東ソー、トクヤマ、琉球セメント、荏田セメント、太平洋セメント、敦賀セメント、宇部興産、デイ・シイ、デンカ、麻生セメント、明星セメント、三菱マテリアル、日立セメント、住友大阪セメント</td>
<td></td>
</tr>
</tbody>
</table>

(8)紙・印刷・プラスチック・ゴム製品統計/生産動態統計紙・印刷・プラスチック・ゴム製品統計編

この統計は、統計法に基づく基幹統計により実施されたパルプ、紙、板紙、段ボール、印刷、プラスチック製品およびゴム製品に関する調査結果を編集公表したものである。パルプ、紙、板紙産業はすべての事業所を対象としている。ダンボール、印刷、プラスチック製品、ゴム製品製造業は従業者数で裾きりして調査を行っている。主な調査内容は、生産、受入、消費、出荷等である。

表8-10 紙・印刷・プラスチック・ゴム製品統計の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>紙・印刷・プラスチック・ゴム製品統計</td>
<td>1989年〜2017年</td>
<td>パルプ: すべての事業所</td>
<td>生産、受入、消費、出荷、販売金額、在庫、他</td>
</tr>
<tr>
<td>生産動態統計</td>
<td>(暦年、年度、月報)</td>
<td>紙: すべての事業所 (手すきの紙を除く)</td>
<td></td>
</tr>
<tr>
<td>紙・印刷・プラスチック・ゴム製品統計編</td>
<td>2013年版〜</td>
<td>板紙: すべての事業所</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>段ボール: 常用従業者10名以上の事業所</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>印刷: 常用従業者100名以上の事業所</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>プラスチック製品: 常用従業者40名以上の事業所</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ゴム製品: 常用従業者5名以上の事業所</td>
<td></td>
</tr>
</tbody>
</table>
(9)古紙需給統計

古紙需給統計は、古紙再生促進センターが、経済産業省の紙・印刷・プラスチック・ゴム製品統計を基に発行している統計である。主な内容は、品種別(新聞、雑誌、段ボール等)の入荷、消費、在庫等である。2019年3月初旬時点で、2018年値の把握が可能である。

(10)鉄鋼・非鉄金属・金属製品統計/経済産業省生産動態統計年報　鉄鋼・非鉄金属・金属製品統計編

この統計は、統計法に基づく経済産業省生産動態統計調査規則(基幹統計)により実施された鉄鋼製品、非鉄金属製品および金属製品に関する調査の集計結果を編集公表している。

鉄鋼関連はほぼすべての事業所を対象としている。非鉄金属工業および金属製品工業は、従業員数で裾引きして調査を行っている。調査項目は、生産、受入、消費、出荷等である。

表8-11 鉄鋼・非鉄金属・金属製品統計の調査概要

(11)アルミニウム統計年報

アルミニウム統計年報は、日本アルミニウム協会が発行する統計である。
表8-12 アルミニウム統計の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>公表年</th>
<th>主な内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>アルミニウム統計</td>
<td>1989年度〜2017年度/2018年暦年値</td>
<td>アルミニウム製品、アルミニウム圧延製品の生産、出荷、輸出入、在庫量等</td>
</tr>
</tbody>
</table>

(12) World Energy Balances

World Energy Balancesは、国際機関IEAがOECD諸国を対象に推計しているエネルギーバランス表の統計である。

日本のIEAエネルギーバランス表は、日本政府が報告しているエネルギー消費量年次質問票に基づいて作成されている。

この年次質問票の記入は、資源エネルギー庁がIEEJと協力して行っている。基本となるデータは総合エネルギー統計であるが、IEA年次質問票の統計定義に調整する必要があること、総合エネルギー統計以外の統計を利用する箇所があることなどから、総合エネルギー統計のエネルギー消費量とIEA World Energy Balancesのそれは、必ずしも一致していない。

表8-13 World Energy Balancesの調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>公表年</th>
<th>主な内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Energy Balances</td>
<td>日本(先進国)は1960年〜2016年、2017年速報値</td>
<td>エネルギーバランス表、マクロ経済指標(GDP、人口等)</td>
</tr>
</tbody>
</table>

(13)エネルギー・経済統計要覧

エネルギー・経済統計要覧は、IEEJが、エネルギーデータベースの確立、各種エネルギーモデルの構築および計量分析を通じて、エネルギー政策等に資する情報提供を目的に、既存統計の加工や独自の推計を踏襲して作成したデータ集である。

このデータ集では、マクロ経済指標、日本のエネルギーバランス表、民生部門エネルギー源別用途別消費原単位、海外のエネルギー消費量等のデータが集約されている。このうち、日本のエネルギーバランス表や民生部門エネルギー源別用途別消費原単位は、IEEJが独自の推計方法を踏襲し作成したものである。
表8-14 エネルギー・経済統計要覧の概要

<table>
<thead>
<tr>
<th>書籍名</th>
<th>公表年</th>
<th>主な内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>エネルギー・経済統計要覧</td>
<td>1965年〜2019年(2017年度実績)</td>
<td>主要経済指標</td>
</tr>
<tr>
<td></td>
<td></td>
<td>エネルギー需給の概要</td>
</tr>
<tr>
<td></td>
<td></td>
<td>一次エネルギー供給と最終エネルギー消費</td>
</tr>
<tr>
<td></td>
<td></td>
<td>エネルギー価格</td>
</tr>
<tr>
<td></td>
<td></td>
<td>最終需要部門別エネルギー需要</td>
</tr>
<tr>
<td></td>
<td></td>
<td>産業部門</td>
</tr>
<tr>
<td></td>
<td></td>
<td>家庭部門</td>
</tr>
<tr>
<td></td>
<td></td>
<td>業務部門</td>
</tr>
<tr>
<td></td>
<td></td>
<td>運輸部門(旅客、貨物)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>エネルギー源別需給</td>
</tr>
<tr>
<td></td>
<td></td>
<td>石炭需給</td>
</tr>
<tr>
<td></td>
<td></td>
<td>石油需給</td>
</tr>
<tr>
<td></td>
<td></td>
<td>都市ガス・天然ガス需給</td>
</tr>
<tr>
<td></td>
<td></td>
<td>電力需給</td>
</tr>
<tr>
<td></td>
<td></td>
<td>新エネルギー等</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・世界のエネルギー・経済指標</td>
</tr>
</tbody>
</table>

(14)消費動向調査

この統計は、今後の暮らし向きの見通しなどについて、消費者の意識を把握するとともに、旅行、各種サービス等への支出予定、主要耐久消費財等の保有状況を把握することにより、景気動向判断の基礎資料を得ることを目的としている。調査対象は、全国の世帯のうち外国人・学生・施設等入居世帯を除く約5,000万世帯となっている。調査内容は、消費者意識、物価の見通し、旅行実績・予定、支出予定、主要耐久消費財等の保有・賃替状況等である。
表8-15 消費動向調査の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>消費動向調査</td>
<td>～2019年1月</td>
<td>一般世帯と単身世帯を合わせた約5,000万世帯を対象として、そこから約1万世帯を抽出して調査を実施する。</td>
<td>消費者意識、物価の見通し、旅行実績・予定、支出予定、主要耐久消費財等の保有・賃貸状況</td>
</tr>
</tbody>
</table>

(15)省エネ性能カタログ

省エネ性能カタログは、資源エネルギー庁が年に2回発行する、家電の製品分野毎に省エネ性能の順位付けをするカタログである。エアコン、液晶テレビ、電気冷蔵庫、電気冷凍庫、ジャー炊飯器、電子レンジ、照明器具、電球形LEDランプ、電気便座、ガスストーブ、石油ストーブ、ガス調理機器、ガス温水機器、石油温水機器を対象に、通年エネルギー消費率(APF)、年間消費電力量、熱効率、年間目安電気料金等をメーカー別に把握できる。

(16)自動車輸送統計

この統計は、統計法に基づく基幹統計であり、自動車輸送の実態を明らかにし、経済・交通政策および経済・交通計画を策定するための基礎資料の作成を目的としている。輸送需要(人キロ、トンキロ)、燃料消費量、自動車保有台数、車両生産台数などが把握できる。

調べ範囲は、登録自動車(道路運送車両法第4条)および軽自動車(道路運送車両法第60条)合わせて約7,500万両の自動車を調査対象(大調査)とし、その中から国土交通大臣が選定する自動車について調査(小調査)を実施している。大調査および小調査を合わせることにより日本全体の輸送状況を推計している。

表8-16 自動車輸送統計の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>自動車輸送統計</td>
<td>1987年度～2017年度</td>
<td>登録自動車(道路運送車両法第4条)および軽自動車(道路運送車両法第60条)合わせて約7,500万両の自動車を調査対象(大調査)とし、その中から国土交通大臣が選定する自動車について調査(小調査)を実施している</td>
<td>輸送需要、燃料消費量、自動車保有台数、車両生産台数</td>
</tr>
</tbody>
</table>

(17)鉄道輸送統計

この統計は、統計法に基づく一般統計調査であり、鉄道、軌道および索道の輸送実態を明らかにすることを目的として行われている。営業キロ、数値、旅客人キロ、貨物トンキロ、収入等が把握できる。
調査範囲は、鉄道、軌道および索道の各事業者としている。

表8-17 鉄鋼輸送統計の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>鉄道輸送統計</td>
<td>1987年度〜</td>
<td>鉄道、軌道および索道の各事業者(第三種鉄道自動車を除く)</td>
<td>営業キロ、数量、</td>
</tr>
<tr>
<td></td>
<td>2017年度</td>
<td></td>
<td>旅客人数、貨物トーンキロおよび収入等</td>
</tr>
</tbody>
</table>

(18)航空輸送統計

この統計は、統計法に基づく一般統計調査であり、わが国の航空運送事業および航空機使用事業の実態を明らかにするとともに航空行政の基礎資料を得ることを目的として行われている。調査範囲は、航空法第100条に基づく許可を受けた航空運送事業者、同法第123条に基づく許可を受けた航空機使用事業者としている。航空機稼動時間、燃料消費量、国内定期航空運送事業輸送実績、国際航空運送事業輸送実績に関連する事項が把握できる。

表8-18 航空輸送統計の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>航空輸送統計</td>
<td>1987年度〜</td>
<td>航空法第100条に基づく許可を受けた航空運送事業者、同法第123条に基づく許可を受けた航空機使用事業者。</td>
<td>航空機稼動時間、燃料消費量、国内定期航空運送事業輸送実績、国際航空運送事業輸送実績に関連する事項</td>
</tr>
<tr>
<td></td>
<td>2017年度</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(19)内航船舶輸送統計

この統計は、統計法に基づく基幹統計調査であり、内航に従事する船舶について貨物輸送の実態を明らかにし、わが国の交通政策、経済政策を策定するための基礎資料を作成することを目的としている。調査範囲は、内航海運業法第3条に基づき、内航運送業に係る国土交通大臣の許可を受けた者または国土交通大臣に内航運送業の届出をした者が輸送した貨物（営業用）のうち、総トン数20t以上の船舶としている。貨物の品名、重量、輸送区間、輸送距離、航海距離、燃料消費量等が把握できる。
表8-19 内航船舶輸送統計の調査概要

<table>
<thead>
<tr>
<th>統計名</th>
<th>調査年</th>
<th>調査定義</th>
<th>主な調査内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>内航船舶輸送統計</td>
<td>1987年度〜2017年度</td>
<td>内航海運業法第3条に基づき、内航運送業に係る国土交通大臣の許可を受けた者または国土交通大臣に内航運送業の届出をした者が輸送した貨物(営業用)のうち、総トン数20t以上の船による輸送</td>
<td>貨物の品名、重量、輸送区間、輸送距離、航海距離、燃料消費量等</td>
</tr>
</tbody>
</table>

(20)自動車保有車両数

この統計は、一般財団法人自動車検査登録情報協会が発行している統計であり、年度末(3月末現在)の車両数を登録年別、低公害燃料別、メーカー別等に把握できるものである。この統計は、普通自動車、小型自動車、大型特殊自動車を対象したものであり、軽自動車および小型特殊自動車を含んでいない。

(21)交通関連統計資料集

この統計は国土交通省が交通・運輸に関連した資料を収集したものをもとに刊行されたものである。資料集の構成は以下のとおりである。

- 国内統計（総括、輸送、観光、事業、施設・車両等、公害・事故、経済）
- 海外統計（輸送、観光、施設、保有、事故、主要5か国における国別主要交通統計）
- 交通関係エネルギー（世界のエネルギー情勢、我が国のエネルギー情勢、交通関係のエネルギー情勢）
- 付録

(22)総合エネルギー統計

資源エネルギー庁がエネルギー関連の統計をもとに加工・推計した我が国のエネルギーバランス表である。供給、転換、部門別最終需要のエネルギーフローの一覧表になっている。可能な限り既存統計を活用して作成されているが、推計が施されているものもある。なお、総合エネルギー統計は2017年11月に全面改訂が行われた。

8.4. IEAとの協議事項

2018年4月16日にIEAから2017年度事業に提出した報告内容について指摘事項があったため、下記に記述する。

Queries on end use data submitted | Japan | 2017/2018 cycle
Please note that the EEI template/questionnaire and the IEA balances refer respectively to the IEA Energy Efficiency Indicators template and to the data coming from the 5 IEA annual questionnaires.

Legend for graphs:
- SECTOR (INDUSTRY/RESIDENTIAL/SERVICES/TRANSPORT) NEW – data for this cycle: dashed RED.
- 2014 FROZEN – final data from the EEI template (last cycle): RED with big circles.
- 2016 BIGBAL_WV – Data from the latest IEA energy Balances with 2016 data: GREEN.
- 2015 BIGBAL – Data from the latest IEA energy Balances with 2016 data: LIGHT GREEN.

MACRO-ECONOMIC DATA:

Q1: Last cycle we used value added from the OECD database for Japan. This year, since you submitted value added data, we considered the value added data that you submitted. However, we would like to point out some consequences of this change in the energy intensities of industry:

- ISIC 17-18 (paper and printing): The energy intensities are now higher (from around 10 to 20 PJ/USD).
- ISIC 23 (non-metallic minerals): Intensity decreased slightly (from around 20 to 16 PJ/USD).
- ISIC 24 (basic metals): Intensity decreased significantly (from around 20 to 5 PJ/USD), and is now one of the lowest for IEA member countries.

We kindly ask you to check if you agree with this, and please confirm if you would like to keep the value added data submitted or if you prefer us to keep using OECD value added data (and estimate the year 2016 based on your submission – as it is not available from OECD database).

[IEEJ回答] One reason is that our original energy balance Table which is based on the intensity was all revised from 1990 to 2016. With this revision, paper and printing was modified upward and non-metallic minerals and basic metals was modified downward.

We think it is prefer to keep OECD value added data as same as last year.

Q2: Could you please confirm that values added data submitted refers to base year 2011?

[IEEJ回答] Yes, the value added data is defined as base year 2011 by Japan cabinet office.

Q3: You submitted data in national currency. Could you please check if you agree with the conversion from JPY to USD (we used OECD exchange rates)?
We agree with the conversion, if you keep our value added data.

Q4: There is also no data available for total employment and services employment for the year 2016. Do you know if these data are available?

We revised the data.

COMMODITIES DATA:
Q1: Clicker to cement ratio in 2016 is quite high (0.90), which normal values ranging from 0.75-0.85.

Our report reflect the statistics correctly.

SERVICES:
Q1: There is a significant difference between the energy use reported in the services sector in the IEA energy balances and the totals from the efficiency indicators questionnaire – especially after the year 1997, where the amounts reported in the efficiency questionnaire become significantly lower than the ones reported in the IEA energy balances (roughly 25% lower). Do you know the reason for this difference? Would you consider revising to improve consistency of the two databases?

Same as Q1 MACRO-ECONOMIC DATA. They reflect the large changes in the original energy balance Table which is the basis for this report. There was a major change in the survey mainly of autoproducer and the final consumption. In Japan consumption survey to find out energy consumption for autoproducer, industry sector and commercial sector, sampling method, abnormal value elimination, estimation method were all revised. The result reflect the original energy balance Table. The data were all revised from 1990 to 2016.

But we did not understand the red line above. Is this coming from data we submitted?

INDUSTRY SECTOR:
Q1: ISIC 17 (Paper): Last cycle, there was data for the manufacture of paper and paper
products (ISIC 17), while the combined energy consumption for paper and printing (ISIC 17-18) had the same values. However, from the IEA energy balances we only know the combined energy consumption for paper and printing (ISIC 17-18). Could you please let us know if the amounts reported in (ISIC 17-18) refers only to paper production or if it also includes printing?

[IEEJ回答] Printing is not included.

Q2: Agriculture energy consumption has been revised, and now shows a very large increase for the whole time series, especially for oil and electricity. Could you please give us some context on the reasons for the revisions done?

[IEEJ回答] Private managed agriculture was not included in our original energy balance Table before revision, despite the share of private managed agriculture is over 90% in agriculture sector in Japan. Energy consumption was revised upward after revision.

Q3: There is a trend of sharp increase in energy intensity since 2014 (and a previous peak in 2012), for mining and quarrying. Do you see a reason for this? Would you consider revising the data since 2012 or 2014?

[IEEJ回答] Same as Q1 MACRO-ECONOMIC DATA and Q1 SERVICES.

Q4: Still, for agriculture, while energy consumption has been slightly increasing since 2014, the value added from agriculture decreased in this two-year time period. Do you know the reason for this increase in energy intensity for agriculture from 2014-2016?

[IEEJ回答] This data comes from Ministry of Agriculture. We will share your comment with the METI person making original energy balance Table.
Q5: ISIC 29-30 (manufacture of transport equipment): Natural gas consumption now shows a large break (increase) for the year 2011, followed by another break (decreasing) in 2013. Do you know the reason for this?

[IEE]回答]This data comes from “energy consumption survey” by METI. This survey is 200,000 sampling survey and little sTable. We will share your question with the METI person making original energy balance Table.

RESIDENTIAL SECTOR:
Q1: I see that there was some old data in the past on energy consumption for lighting and also for appliances, by appliance type. However, this was removed last data cycle, and it hasn’t been provided this year. Do you know if these data may be available?

[IEE]回答]I never seen the data since the previous person did not submit data.

Q2: Diffusion of clothes dryers now shows a break for 2013 (very big increase). Are you aware of any reason for this? Would you consider revising the time series after 2013?

[IEE]回答]It begun to include bathroom dryer from 2013.

TRANSPORT SECTOR:
Q1: I see that you now added energy consumption from motorcycles. Thank you for that. Do you think that you would be able to provide passenger-kilometres for motorcycles also in the future?
Energy consumption from motorcycles is estimation by MLIT. We do not have statistics on passenger-kilometres.

Q2: The intensity of trucks is one of the largest among the IEA member countries. Do you know the reason for this?

We will share your comment with the METI person making original energy balance Table.

2018年5月16日にIEAから2017年度事業に提出した報告内容について指摘事項があったため、下記に記述する。

(IEAからの指摘事項1)
For the services sector, you asked about the red line in the graph sent. The green line shows IEA energy balances data reported to the IEA through the 5 fuel questionnaires, while the red line shows your submission from this data cycle (similar to last cycles submissions). So, you can see that the total energy use for the services sector reported in the two cases is very different. Would you like to revise the data for the services sector this cycle, or would you prefer to look at it more thoroughly in the next data cycle?

(回答)
We would like to look at it in the next data cycle.

(IEAからの指摘事項2)
You mentioned that the break below is due to the fact that it begun to include bathroom dryer from 2013. Could you please explain a bit better what is this “bathroom dryer”? Is this typically used in residences / dwellings? Is it used for drying clothes, or ambient air? In the case this is not used to dry clothes in dwellings, would you have the data without including these bathroom dryers?

(回答)
Bathroom dryers are increasing in newly residences. It is used for both of drying clothes and ambient air.

2018年度事業で提出した質問票に関しては、2019年3月27日現在、IEAから質問、提案等を受けていない。
9. Standing group on long term co-operation committee on energy research and technology (SLT)のデータ提供協力

9.1. 記入方針

IEAがOECD諸国に要求する質問票は、これまでに述べてきた年次質問票(石炭、石油、ガス、電力、再生可能エネルギーの5種類)およびMOS質問票などの他に、以下の4つの質問票がある。

1. Quarterly end use prices and taxes
2. Crude oil import register (SOM)
3. Energy Balance forecast (SLT)
4. Government energy RD&D budgets

このうち、日本エネルギー経済研究所(IEEJ)は、Energy balance forecast (以下、SLT)質問票のエネルギーに係る箇所の報告を行っている。SLT質問票の目的は、エネルギー政策を表すものとしての将来のエネルギーバランス表の見通しを提出することにある。日本が提出したSLT質問票の結果がIEAの出版物などに利用されている例は確認できないが、IEAでは、IDR (In Depth Review国別詳細審査)などで日本に対して行った政策に関する勧告が、その後のエネルギー政策に反映されているかどうかを確認する1つの手段として利用しているとみられる。

9.1.1. 質問票の構造

SLT質問票は以下の7つのシートから構成されている。

表9-1 SLT質問票の構成

<table>
<thead>
<tr>
<th>シート名</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1 2017P</td>
<td>Energy Balances for 2017 provisional</td>
</tr>
<tr>
<td>Table 1 2020</td>
<td>Energy Balances for 2020</td>
</tr>
<tr>
<td>Table 1 2030</td>
<td>Energy Balances for 2030</td>
</tr>
<tr>
<td>Table 1 2040</td>
<td>Energy Balances for 2040</td>
</tr>
<tr>
<td>Table 1 2050</td>
<td>Energy Balances for 2050 (optional)</td>
</tr>
<tr>
<td>Table 2</td>
<td>Supplementary Data</td>
</tr>
<tr>
<td>Table 3</td>
<td>Coal Production, Imports and Exports</td>
</tr>
</tbody>
</table>

(1)対象年

2017年(速報)、2020年、2030年、2040年、2050年の5定点である。
(2) 対象エネルギー/部門

Table 1の質問票は、エネルギーバランス表形式になっている。対象エネルギーは、coal / oil / shale (excluding peat), peat, oil, natural gas, nuclear, hydro, wind, geothermal, solar/etc., biofuels and waste, electricity, heatの12種類、対象部門は供給、転換、最終部門と、それぞれの詳細部門の計22部門である。Table 1のエネルギー消費量は、熱量単位(Mtoe)での記入が求められている。

Table 1

<table>
<thead>
<tr>
<th>質問票</th>
<th>Coal / Oil</th>
<th>shale</th>
<th>Peat</th>
<th>Oil</th>
<th>Natural gas</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Wind</th>
<th>Geothermal</th>
<th>Taraxacum</th>
<th>TOTAL</th>
<th>TOTAL</th>
<th>TOTAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production (+)</td>
<td>A</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imports (+)</td>
<td>B</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exports (–)</td>
<td>C</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International marine bunkers (–)</td>
<td>D</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International aviation bunkers (–)</td>
<td>E</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stock changes (±)</td>
<td>F</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Primary Energy Supply</td>
<td>G</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformation processes & Energy industry own use</td>
<td>H</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity, CHP & heat plants (±)</td>
<td>I</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other transformation processes (±)</td>
<td>J</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Own use and Losses</td>
<td>K</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical differences (±)</td>
<td>L</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Final Consumption</td>
<td>M</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2では、GDP成長率と人口の実績および見通しの記入が求められている。

Table 2

<table>
<thead>
<tr>
<th>質問票</th>
<th>2016P</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050 (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP Growth Rates (%)</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Population (Millions)</td>
<td>B</td>
<td>126.933</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3では、石炭種別の生産、輸出入の記入が求められている。
表9-4 SLT Table 3 質問票

PRODUCTION (1)

<table>
<thead>
<tr>
<th></th>
<th>2016P</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050 (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracite</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coking Coal</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other Bituminous Coal</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sub-Bituminous Coal</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lignite</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coal Products</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

IMPORTS (2)

<table>
<thead>
<tr>
<th></th>
<th>2016P</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050 (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracite</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coking Coal</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other Bituminous Coal</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sub-Bituminous Coal</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lignite</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coal Products</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

EXPORTS (3)

<table>
<thead>
<tr>
<th></th>
<th>2016P</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050 (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracite</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coking Coal</td>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other Bituminous Coal</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sub-Bituminous Coal</td>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lignite</td>
<td>E</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coal Products</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

9.1.2. 質問票の記入内容

日本は、Table 1について経済産業省の「長期エネルギー需給見通し 平成27年7月」を用いて、具体的な数値を報告できる箇所のみ、すなわち2030年の電源構成の見通しについて提出している。なお、長期エネルギー需給見通しにて、発電量が幅を持って示されている電源、すなわち原子力、地熱、水力等については、単純平均値を入力し、その旨をコメント(Commentsシート)としている。なお、本事業では、「長期エネルギー需給見通し」の改訂は行われていないため、昨年度から提出内容に変更がない旨をIEAに報告した。

コメント(Commentsシート)

The source of "Table 1 2030": The Ministry of Economy, Trade and Industry (METI); "Long-term Energy Supply and Demand Outlook"
In that sheet, Row G, Row M and Column M could be filled in if these cells were unlocked.
In the METI's Outlook, elec. gen. from nuclear, geothermal, hydro and biomass have some range (for example nuclear: 216.8 to 231.7 TWh, geothermal: 10.2 to 11.3 TWh, hydro: 93.9 to 98.1 TWh, etc.). We adopted the average value for these generation.
表9-5 SLT Table 1 2030シートへの入力結果

<table>
<thead>
<tr>
<th>クラス</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>等級</td>
<td></td>
</tr>
<tr>
<td>社内物</td>
<td></td>
</tr>
<tr>
<td>社外物</td>
<td></td>
</tr>
<tr>
<td>再生可能エネルギー</td>
<td></td>
</tr>
<tr>
<td>石油</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td></td>
</tr>
</tbody>
</table>

図9-1 電力需要と電源構成の見通し

電力需要
1,961億kWh程度（対策前比17%）

電源構成
水力8.8～9.2%程度

(出所)長期エネルギー需給見通し(2015年7月)

9.2. IEAとの協議事項

2019年3月27日現在、IEAから質問、提案等を受けていない。