政府向け GHS 分類ガイダンス (平成22年度改訂版)

平成 22 年 7 月 G H S 関係省庁連絡会議編

目 次

第	1部	 茅	1
	1 - 1	「GHS 分類ガイダンス」について	1
	1 - 2	分類結果の記載方法	3
	1 - 3	分類作業フロー	4
第	-	物理化学的危険性ガイダンス	
		分類判定に利用可能な情報源	
	_	-1 GHS の分類に直接利用可能な情報(国連危険物輸送勧告による分類)	
	_	- 2 物性データ集	
		- 3 物理化学的危険性データ集	
	_	- 4 参考資料	.14
	2 - 2	物理化学的危険性の分類のための物理的、化学的状態および	
		化学構造による対象項目	
	2 - 2	- / -	
	2 - 2		
	2 - 2		
	2 - 2		
	2 - 2		
	2 - 2		
	2 - 2	, , , , , , , , , , , , , , , , , , ,	
	2 - 2		
	2 - 2	, , , , , , , , , , , , , , , , , , ,	
	2 - 3	物理化学的危険性の分類・各論	
	2 - 3	3 - 1 火薬類	
	_	3-2 可燃性/引火性ガス	
	2 - 3	3-3 可燃性/引火性エアゾール	
	2 - 3	3-4 支燃性/酸化性ガス類	
	2 - 3	3 - 5 高圧ガス	.45
	2 - 3	3-6 引火性液体	.47
	2 - 3	3 - 7 可燃性固体	.50
	2 - 3	8-8 自己反応性化学品	.53
	2 - 3	8-9 自然発火性液体	.58
	2 - 3	3-10 自然発火性固体	.60
	2 - 3	B-11 自己発熱性化学品	.62
	2 - 3	3-12 水反応可燃性化学品	66

2-3-13	酸化性液体	71
2-3-14	酸化性固体	73
2-3-15	有機過酸化物	75
2-3-16	金属腐食性物質	80
第3部 健康有	『害性分類ガイダンス	82
3-1 分類	判定に利用可能な情報	82
3-1-1	分類判定に利用可能な情報源	82
3-1-2	複数データが存在する場合の優先順位	90
3-1-3	特殊なケースにおける情報の扱い	91
3-2 健康	有害性の分類	94
3 - 2 - 1	急性毒性	94
3 - 2 - 2	皮膚腐食性/刺激性	105
3 - 2 - 3	眼に対する重篤な損傷性/眼刺激性	115
3 - 2 - 4	呼吸器感作性または皮膚感作性	125
3 - 2 - 5	生殖細胞変異原性	132
3 - 2 - 6	発がん性	144
3 - 2 - 7	生殖毒性	150
3 - 2 - 8	特定標的臟器毒性(単回暴露)	159
3 - 2 - 9	特定標的臟器毒性(反復暴露)	169
3-2-10	吸引性呼吸器有害性	177
第4部 環境有	『害性分類ガイダンス	182
4-1 分類	判定に利用可能な情報	182
4-1-1	分類判定に利用可能な情報源	182
4-2 水生	環境有害性の分類	189
付録:ガイダ	ンスに記載している EU R-Phrase	202

第1部序

1-1 「GHS 分類ガイダンス」について

「化学品の分類および表示に関する世界調和システム (GHS)」(以下、国連 GHS) は、国連における長年の検討の後、2003 年 7 月の国連経済社会理事会においてその実施促進のための決議が採択され、各国で導入に向けた制度構築等が進められている。我が国においては、2001 年に関係省庁連絡会議¹を設置し、国連 GHS の邦訳、GHS に関連する国内法の整備のための情報交換などを実施するとともに、国内での分類作業を促進するため、2006 年度からの 2 年間で、化管法²、労働安全衛生法、毒物および劇物取締法(毒劇法)等における MSDS 交付対象物質(約 1,500 物質)について、参考値としての GHS 分類を実施し、その分類結果の公表を行ってきた。

また、この GHS 分類作業を 2 年という短期間で円滑に行うため、具体的なデータ収集の方法やデータの信頼性評価基準等を定めた「GHS 分類マニュアル」と健康有害性について細かい技術的方針と判断基準を定めた「GHS 分類に関する技術上の指針」も策定された。

さらに、国連 GHS 文書には、GHS を各国のシステムにどのように当てはめるかについて、各国に選択の自由を与えている箇所があるほか、分類者が分類を行う際に判断に迷う記述箇所があるといった指摘もあったことから、2007 年度に関係省庁および事業者は、これらの箇所について国際調和性を踏まえた上で我が国としての方針を整理し(国連 GHS の 2007 年度改訂版がベース)、2008 年度にはそれを「GHS に基づく化学物質等の分類方法」に関する日本工業規格(JIS)として制定する作業を開始した。なお、本ガイダンスでは、JIS Z 7252-2009「GHS に基づく化学物質等の分類方法」を「分類 JIS」と称する。

一方、関係省庁では、今後とも、上記分類作業で用いたマニュアル等を活用して政府による新たな化学物質の分類も進めることとしたため、分類精度の向上を目指してマニュアル等の改正を行うことした。またこの際、上記分類 JIS に整合性のとれたものとし、さらには使い勝手の向上を目指して「GHS 分類マニュアル」と「技術上の指針」を統合した形で、新たに政府向け「GHS 分類ガイダンス」として作成することとなり、分類 JIS

¹厚生労働省、経済産業省、環境省、総務省、農林水産省、国土交通省、外務省、国際連合 GHS 専門家 小委員会委員、日本化学工業協会、OECD タスクフォース委員が参加。

² 「特定化学物質の環境への排出量の把握等および管理の改善の促進に関する法律」(化学物質把握管理 促進法)

の策定に先駆けて政府向け GHS 分類ガイダンス(初版)を作成した。その後、分類 JIS の策定及び国連 GHS 文書改訂第 3 版が出版されたことを受け、最新の情報に更新した本ガイダンスを作成した。

なお、混合物の分類については、本ガイダンスと同じく国連 GHS 改訂第三版と分類 JIS の内容を踏まえた事業者向け GHS 分類ガイダンス (平成21年度改訂版) を作成した。

本ガイダンスは、国際調和性を考慮した分類 JIS をベースとした、GHS 分類をより正確かつ効率的に実施するための手引きであるが、国連 GHS には分類 JIS で採択しなかった分類や我が国としての判断、さらにはガイダンス特有の考え方もあることを理解の上分類を行うことが必要である。(採用しなかった区分等については、極力該当箇所で解説等を行っているので参照されたい。)

また、本ガイダンスは、GHS 分類を効率的に行うという観点で作成されているため、信頼性の高い分類結果を得るためにはさらなる精査(原著確認、最新知見の収集、専門家への意見聴取など)が必要となる点に留意すべきである。

なお、本ガイダンスは、国連 GHS の改訂に応じて、および関係者の合意のもと、作業の実施状況・効率性等を踏まえ、合理的な理由から修正が加えられることがある。

なお、本ガイダンスにおいて、二重線の枠内に記載している部分は、国連 GHS 改訂 3 版からの転記であることを示す。

2009 年 9 月 初版 2010 年 7 月 第 2 版改訂

1-2 分類結果の記載方法

(1) 分類結果の表現について

本ガイダンスでは、分類の結果について以下のように表現している。

分類結果での語句	解説
分類できない	各種の情報源および自社保有データ等を検索してみたが、分類の判断を行うためのデータが全く、または分類するに充分な程度に得られなかった場合。
分類対象外	GHSで定義される物理的性質に該当しないため、当該区分での分類の対象となっていないもの。例えば、危険有害性区分が「○○性固体」となっているもので、常態が液体や気体のもの。当該物質の化学構造中に評価項目に関係する原子団(表2-1 (p.18)の右欄に挙げた項目)を含まない場合も分類対象外とする。
区分外	分類を行うのに十分な情報が得られており、分類を行ってみたところ GHS で規定する危険有害性区分において一番低い区分とする十分な証拠が認められなかった場合。十分な情報が得られない場合は「区分外」とせず、「分類できない」と分類する。(英文の場合 Not classified.)

注: GHS の物理化学的危険性の大部分は国連危険物輸送勧告(UNRTDG)の区分を採用している。危険物は適切な容器に収納されて運送されるもので、危険性は火災、あるいは容器が破損する事故での漏洩等の際に発現する。結果として危険物輸送のあるクラスにおいては、より危険性の高い区分を対象とし、危険性の低い区分は考慮されていない場合がある。

また、UNRTDGで規定した試験方法で、区分に入らない結果が得られている場合は「区分外」となる。例えば酸化性固体の分類で、硝酸カリウム四水和物、硝酸ニッケル、硝酸ストロンチウム(無水)はクラス 5.1 に達しなかったことがTDG 試験方法説明書の中で例示されているので、酸化性物質ではあるが「区分外」と判断される。

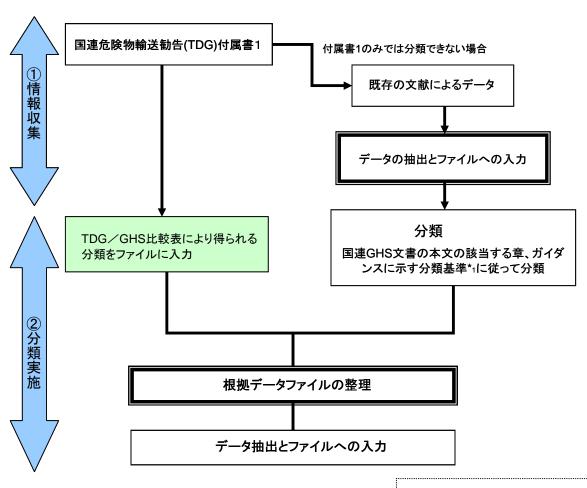
以上の点を踏まえ、GHSの物理化学的危険性で「区分外」と判定されたものは「危険性なし」という意味ではない点に留意する必要がある。「区分に入るだけの危険性は認められなかった」という意味である。

また、「3-3-1 急性毒性」で示すように、国連 GHS 改訂 3 版による分類基準 と分類 JIS による分類基準は異なる点にも注意が必要である。例えば、国連 GHS における「急性毒性」の区分 5 は、分類 JIS では区分外と分類される。

(2) 分類結果の記載に関する留意点

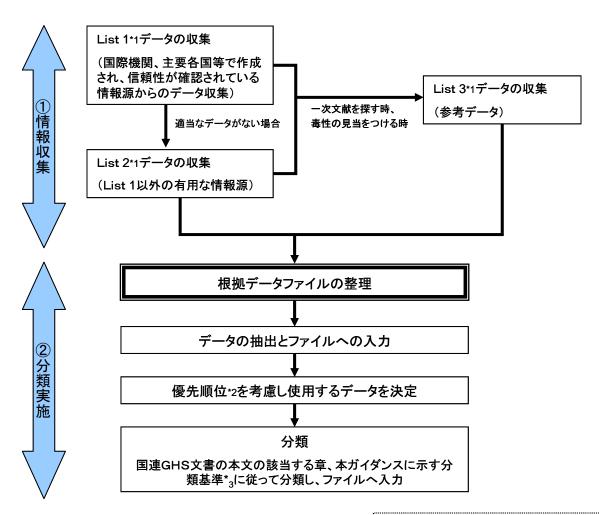
- ・ 分類根拠に関して評価文書名を引用する場合は、LIST 中に略語がある場合は、そ の略語を用いること。
- ・ GHS 分類結果の記載には、「GHS データ入力フォーム」(GHS 関係省庁連絡会議 平成 18 年度)が参考になる。記載に当たっては、「GHS ハザードシート説明資料」を参照のこと。「GHS データ入力フォーム」、「GHS ハザードシート説明資料」は 以下から参照できる。

http://www.safe.nite.go.jp/ ghs/ghs refs.html


((独) 製品評価技術基盤機構のウェブサイト。 <GHS 分類結果シート作成ツール>を参照))

1-3 分類作業フロー

図 1-1 から図 1-3 に分類作業を進めていくためのフロー図を示す。


図 1-1 GHS に基づく分類作業フロー (物理化学的危険性)

物理化学的危険性

*1:本ガイダンスの2-3の各項目に おける(2)の項目参照。

健康有害性

- *1:本ガイダンスの3-1-1(p.82)の項目参照
- *2:本ガイダンスの3-1-2(p.90)の項目参照
- *3: 本ガイダンスの各有害性項目の(2)を参照

環境有害性 List 1*1データの収集 (国際機関、主要各国等で作成 され、信頼性が確認されている List 3*1データの収集 情報源からのデータ収集) 一次文献を探す時、 (参考データ) 適当なデータがない場合 毒性の見当をつける時 List 2*1データの収集 (List 1以外の有用な情報源) 根拠データファイルの整理 データの抽出と指定ファイルへの入力 優先順位*2を考慮し使用するデータを決定 分類 国連GHS文書の本文の該当する章、及び本ガイダンスに示す分類基準*3に従って分類し、ファイルへ入力

- *1: 本ガイダンスの4-1-1(p.183)の項目参照
- *2:本ガイダンスの4-2(3)C)(p.200)の項目参照
- *3:本ガイダンスの4-2(2)(p.191)の項目参照

第2部 物理化学的危険性ガイダンス

2-1 分類判定に利用可能な情報源

GHS の分類においては、物質の物理的性質、特に温度と状態の関係がひとつの重要な要素である。更に引火爆発性、支燃性、爆発限界などの物理的危険性の情報がある。以下、分類基準に採用された既存システムの文献および参考となる情報源について述べる。

2-1-1 GHS の分類に直接利用可能な情報(国連危険物輸送勧告による分類)

GHS に基づいた分類結果をまとめた資料は、現在、整備が進められている段階である。しかし GHS における物理化学的危険性の分類は、従来から国際的な合意の下に用いられてきた分類システムである国連危険物輸送勧告(UNRTDG)による分類(以下、TDG分類と略記)を基にしているので、原則として GHS における分類と TDG 分類とは一致する。ただし、GHS では、輸送が禁止されている危険物(不安定火薬類等)や TDG 分類では危険物に該当しない物質も分類対象となるため、こうした物質が該当する区分は、TDG 分類にはない区分となる(表 2-4)。

本来の GHS 分類の手順は、物理化学的性質から GHS 分類を行い、それによって TDG 分類・国連番号を決めるというものであるが、上記のことから、実用的には、物理化学 的危険性の分類に当たって、対象とする物質が TDG 分類でどのように分類されているか を調べることが必要である。そのためには (1)の勧告等をデータ集として用いることができる。関連する、(2)、(3) の文献も補助的に使用される。

(1) 国連危険物輸送勧告(UNRTDG)

本勧告は GHS 勧告と同じく国際連合の危険物輸送/専門家委員会 (CETDG/GHS) の 勧告であり、相補的な内容となっている。したがって、危険物輸送に関する勧告を GHS 分類に採用するのが適当である。

2010年3月時点で現在の版は"UN Recommendations on the Transport of Dangerous Goods, Model Regulations, Sixteenth revised edition" (2009年) である。

http://www.unece.org/trans/danger/publi/unrec/ rev16/16files_e.html

http://jonai.medwel.cst.nihon-u.ac.jp/uploadfiles/file/pdf/orange1.pdf(日本語版。ただし、2007年に発行された改訂 15 版の日本語訳である)

UNRTDGによる国連番号・分類が物質毎に掲載されているサイト(独立行政法人製品評価技術基盤機構)は次の通りである。なお、本サイトの国連番号・分類については、十分に確認することが望ましい。

http://www.safe.nite.go.jp/japan/sougou/view/SystemTop_jp.faces?child_flg=child&ser vice id=APSelectingListsList jp

(2) 国際海上危険物規定(IMDG Code)

海上輸送に関しては国際海事機関 (IMO) が International Maritime Dangerous Goods Code (IMDGC) を発行している。2008 年版が現在 (2010 年 3 月) 最新のものである。分類は (1) と一致する。

日本の法規に採用されたものでは「危険物船舶運送および貯蔵規則」(以下「危規則」) (海文堂版第 14 版、2009 年) がある。航空法施行規則も危規則と同様に TDG 分類が 採り入れられている。

「危規則」告示別表 1 のサイト (内容は国連情報よりも遅れることがあることに注意。) http://law.e-gov.go.jp/htmldata/S32/S32F03901000030.html

GHS 分類と直接関係しないが、以下の文献も補助的に使用される。

EMS GUIDE, Emergency Response Procedures for Ships Carrying Dangerous Goods, EmS:2002 年版 IMDG Code に対応:日本語訳はまだない。

(3) 緊急時対応指針(Emergency Response Guidebook : ERG)

カナダ、アメリカ合衆国、メキシコの3国でまとめた陸上輸送での事故時対応指針。 2001年に日本語訳が発行された。(2004年に改訂版、2009年に改訂第3版)[「緊急時応急措置指針 - 容器イエローカード(ラベル方式)への適用」日本化学工業協会]これによって日本のイエローカードに111から172のスケジュール番号を記載することになった。

2-1-2 物性データ集

前述の通り、分類に当たっては、TDG 分類を最初に調べることとなるが、TDG 分類の情報が得られない場合は、他のデータ集の中から、必要な物理化学的データを収集することになる。

そのために利用できる物性データ集は以下の通り。

ガスおよび低沸点液体の GHS 分類においては、諸々の物理的性質に関する情報が重要になる。本節では、まず 20 世紀を通じて化学研究者・技術者の基本的な文献としての地位を保ち続けたデータベース集、抄録集を $(1) \sim (4)$ に示す。また特に化学工学技術者に役立ってきた物性データ集について (5)、(6) に述べる。最近の有機化学物質に関する物性資料(オンラインデータベースを含む)を $(7) \sim (13)$ で紹介する。高沸点液体については、物理的性質が危険性に影響することがより小さくなるので、次節で述べる危険性データ集に収載されている物性情報で十分な場合が多い。

固体については、その形状、粒子サイズ、表面状態などにより危険性の程度が異なることが多いので、個々の製品について測定・評価することが原則として必要である。

(1) Gmelins Handbuch der Anorganischen Chemie および Gmelin Handbook of Inorganic and Organometallic Chemistry 8th Ed (Gmelin)

Leopold Gmelin が 1817 年に講義のためのテキストとして著作した Handbuch der

theoretischen Chemie がその沿革。ドイツ化学会が 1921 年に編集業務を譲り受け、無機化合物および有機金属化合物に関する体系的資料を作成することになった。

1924年にシステム番号 32「亜鉛」から第8版の刊行が開始され、1998年までに約300巻位の大著になった。1982年から英語での発行に変わった。最近は電子データ化され、CDで入手できる。

(2) Beilsteins Handbuch der Organischen Chemie および Beilstein Handbook of Organic Chemistry 5th ed. (Beilstein)

ペテルスブルグの帝国工学研究所教授.K.Beilstein によって $1881\sim2$ 年に 2 巻本の有機化学ハンドブックとして発行されたのが基礎になった。第 3 版までは Beilstein が手がけたが、1896 年に以後の編集をドイツ化学会に委譲した。

1918年に P. Jacobson と B. Prager によって第 4 版の刊行が開始された。その後編集を受け継ぎながら、第 4 版の追補版として 20 世紀を通じて発行が続けられた。

1960年に(第5増補版から)英文に変わった。1997年に電子データ化され、CDで提供されるようになった。

(3) The Merck Index 14th Ed (Merck)

メルク社によって 1889 年に創刊された試薬および医薬物質の解説書。最新 14 版は電子化され Web を活用した検索システムとなっている。

(4) Chemical Abstracts (CA)

1907年に The American Chemical Society が編集し、the Chemical Publishing 社 (後に Chemical Abstracts Service) から刊行されるようになった抄録誌。世界の化学学術文献および特許を網羅する。物質情報だけでなく、理論化学、化学技術のすべてをカバーしている。2002年9月に、1907年まで遡及されて CAS 番号が付与された。現在も書籍形態での発行が続いているが、オンラインでの利用が主流になりつつある。

(5) International Critical Tables of Numerical Data, Physics, Chemistry and Technology (ICT)

米国 National Research of Council が International Research Council および米国 National Academy of Sciences の後援で編集したデータ集。1926 年から 1930 年にかけて全7巻が McGraw-Hill 社から刊行され、1933 年にその総索引が出ている。

(6) エンジニアのための流体物性データ

日本の化学工学会が 2003 年まで刊行していた「化学物質定数」の改訂版。物性データ そのものではなく、物性データの元となる文献を調べることができる。化学工学のみな らず、機械工学などのより多くの分野にも対応できるよう、物性の範囲が拡大されてい る。

(7) Ullmanns Encyklopaedie der Technischen Chemie および Ullmann's Encyclopedia: Industrial Organic Chemicals (Ullmann)

1920年代に発刊されたウルマンの工業化学百科事典第 4 版が 1972 年~84 年に Verlag Chemie 社から刊行された。 $1\sim7$ 巻は総論で、 $8\sim24$ 巻は物質ごとの各論である。第 25 巻が索引になっている。有機の基礎原料物質と中間体を選んで編集した英語版(全 8 巻)が 1999 年から Wiley-VCH 社によって刊行された。

主要な反応、用途、毒性なども含み、1物質グループで約20ページの記述があるが、 物性表が非常によくまとまっている。

(8) Handbook of Physical Properties of Organic Chemicals (約 13,000 物質) (Howard)

Syracuse Research Corporation の P.H.Howard と W.M.Meylan が編集した物理性データ集。1997年に Lewis 社から刊行された。約 13,000の有機物質について、CAS番号順に配列し、各 8 項目〔融点、沸点(減圧下での沸点を含む)、水溶解度、オクタノール/水分配係数、蒸気圧、解離定数、ヘンリー係数、並びに大気中での水酸化ラジカル反応速度定数〕のデータを収載している。

(9) Chapman and Hall Chemical Database (Chapman) (1997 年現在 442,257 レコード)

初期には HEILBRON と呼ばれていた有機化合物の物理化学性データベース。(有料) http://library.dialog.com/bluesheets/html/bl0303.html

(10) CRC Handbook of Chemistry and Physics (CRC)

CRC 出版が物理化学的性状に関するハンドブックとして出版し、84 版を数える。CAS 番号で検索ができる。

(11) HODOC File (Handbook of Data on Organic Compounds) (HODOC) (2008 現在 25,580 物質)

CRC のハンドブックをデータベース化したもの。日本では(独) 科学技術振興機構が管理している。 http://www.cas.org/ONLINE/DBSS/hodocss.html

(12) Sax's Dangerous Properties of Industrial Materials (Sax)

Wiley-VCH 出版が工業製品の危険物性データ集として出版し、11 版を数える。反応性、 火災・爆発性に関する 2 万物質以上のデータが収載されている。 CAS 番号で検索ができ る。

(13) Hazardous Substances Data Bank (HSDB)

米国厚生省の National Library of Medicine (NLM) が作成したデータベースであり、物理化学的性状データも含まれている。CD-Rom 版の他にインターネットからも検索できる。CAS 番号で検索ができる。 http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB

(14) eChem Portal (OECD)

OECD の eChem のポータルサイト。CAS 番号や物質名から物理化学的データ等を検索できる。http://webnet3.oecd.org/echemportal/

2-1-3 物理化学的危険性データ集

化学物質の危険性に焦点をあててまとめた文献が 20 世紀後半になって現れてきた。これらは危険性データ集というより、緊急時の処置やリスク管理策を述べたものが多く、文章や危険度のランク付けに関する記述で占められている。特に物理化学危険性について GHS の区分に使用しにくい。当面は2-1-1で述べた TDG 分類に頼ることになろう。危険性データ集は健康有害性も含んでいるが、本節には中でも物理化学危険性の記述が多いと思われるものを選んだ。

なお (2)、(3) は現在の GHS には含まれていない 2 物質間の反応性に重点を置いている。参考のためここに掲載した。

(1) ホンメル 危険物ハンドブック (Hommmel) (1205 物質)

ドイツ語版はギュンター・ホンメルが編集して 1970 年に Springer-Verlag 社から刊行され、その後改訂を重ねた。1987 年版を新居六郎が日本語に訳し、シュプリンガー・フェアラーク東京から 1991 年に発行された。

(2) Bretherick's Handbook of Reactive Chemical Hazards およびブレセリック 危険 物ハンドブック 第 5 版 (Bretherick)

1975年に英国の Butterwoth-Heinemann から発刊され、第 5 版が 1995年に出た。 混触危険に関する記述が詳しい。田村昌三の監訳で 1998年に日本語訳が丸善から発行された。

(3) 化学薬品の混触危険ハンドブック (東京消防庁)

吉田忠雄・田村昌三の監修で1980年に日刊工業新聞社から発刊された。第2版は1997年に出たが、520余りの物質について、それぞれ10物質前後の混触危険物質を表示し、個々に危険度をランク付けしたものである。

(4) Hazardous Chemicals Data Book (G. Weiss) および Solvents Safety Handbook

(D. J. De Renzo) (Weiss)

前者は 1986 年に第 2 版 (1,016 物質を含む) が刊行されたが、この版から後者 (335 溶剤を含む) が分割された。米国の Noyes Data Corporation の発行である。

各物質 1 ページのフォーマットにまとめられているが、後者にはそのうち 7 項目について、例えば、温度と物質を対比した表がもう 1 ページついている。米国の書籍であるため温度は華氏、その他の単位はヤード・ポンド法によっている。

(5) 危険物データブック (東京消防庁)

東京連合防火協会が編集し、東京消防庁警防研究会が監修して 1988 年に丸善から刊行された。1993 年に 290 物質を含んだ改訂第 2 版が出版された。

(6) 道路輸送危険物のデータシート (総合安全工学研究所)

財団法人総合安全工学研究所が道路3公団の支援を得て1991年に刊行した。後に増補版が出たあと、1996年に322物質を含んだ改訂版にまとめられた。

(7) 化学物質安全性データブック (化学物質安全情報研究会)

上原陽一の監修で1994年にオーム社から発刊されたあと、1997年に改訂増補版(582物質を含む)が出版された。

(8) International Chemical Safety Cards (国際化学物質安全性カード) (ICSC)

国際化学物質安全性計画(IPCS)が作成している。ILO3は、引火点、発火点、および爆発限界などの物理化学的危険性を、WHO4は人の健康を担当し、英語の他に、日本語、中国語、韓国語、ドイツ語、イタリア語、フランス語、ロシア語などの16言語に翻訳されている。

現在の所、約 1,400 物質についてカードが作成されている。CAS 番号で検索ができる。 http://www.ilo.org/public/english/protection/safework/cis/products/icsc/dtasht/index. htm

国際化学物質安全性カードの日本語版:http://www.nihs.go.jp/ICSC/

(9) Fire Protection Guide to Hazardous Materials (NFPA)

NFPA (National Fire Protection Association、米国防火協会) が編集した防火指針であり、引火点、発火点、および爆発限界などの物理化学的危険性に関するデータを収載しており、13 版を数える。CAS 番号で検索ができる。

(10) ガスに関する ISO 規格 (ISO 10156、ISO 5145)

³ ILO:International Labour Organization:国際労働機関

⁴ WHO:World Health Organization:世界保健機構

GHS のガス物理化学的危険性評価は下記の ISO 規格に基づいているが、これらは国連 GHS の編集と併行して改訂されつつある。内容に矛盾がある場合は ISO 規格の記述を優先する。

- A) ISO 10156 Gases and gas mixtures Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets. (1996-02-15)
- B) ISO 10156-2 Gas cylinders Gases and gas mixtures Part 2: Determination of oxidizing ability of toxic and corrosive gases and gas mixture (2005-08-01)
- C) ISO 5145 Cylinder valve outlets for gases and gas mixtures Selection and dimentioning. (2004-04-15)

B)には酸化性ガスに関する新しい評価方法が記載されている。A)も改訂されて Z10156-1 となる予定であるが、可燃性ガスについて内容が変更されるという情報は得られていない。C)ではガス物質の分類がなされているので、参考になる。

(1 1) Matheson Gas Data Book (7th Ed.) (Matheson)

McGraw-Hill 社が 1976 年に発行したもので、2001 年の第 7 版には 157 種のガスについての物理化学的データが収載されている。

(12) Handbook of Compressed Gases (4th Ed.) (Gas Handbook)

米国高圧ガス協会が編集し、Kluwer Academic Publishers が発行している。1999 年の第4版には45種のガスおよび混合ガスについてのデータが載せられている。

(13) SIDS レポート (SIDS Initial Assessment Report)

OECD が発行しており、日本化学物質安全情報センターより SIAP 日本語版が出されている。SIDS レポートは http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html よりダウンロードできる。日本語版は http://www.jetoc.or.jp/HP_SIDS/SIAPbase.htm よりダウンロードできる。

(14) International Uniform Chemical Information Database (IUCLID)

EU European Chemicals Bureau (ECB: 欧州化学品局)が発行しているもので、CD-ROM (Update 版 Edition 2 - 2000)も入手可能である。

URL: http://ecb.jrc.it/classification-labelling/

2-1-4 参考資料

以下の文献は、GHS分類と直接対応していない。あくまで参考と考えるべきである。

(1)EU 理事会指令 67/548/EEC の附属書 I (以下「EU DSD 分類」)

EU 既存化学物質リスト(EINECS)に収載された有害物質のラベル記載事項、および新

規化学物質のベースセット試験結果に基づくラベル記載事項をまとめたものであり、警句および結合警句による定性的な記述となっている。

EU 理事会指令 67/548/EEC の附属書 I (CLP 規則の制定に伴って、CLP 規則の附属書VI (CLP 規則・Annex VI) Table 3-2 に移管された)記載の分類・区分は、GHS 分類・区分とは異なる基準に基づいているので、その結果を直ちに GHS 分類・区分に用いることはできない。日本語訳は「EU 危険な物質のリスト (第 7 版)」(JETOC 2004 年)。EU 理事会指令 67/548/EEC は、DSD (Dangerous Substances Directive) とも呼ぶ。

さらに、EU では、2009 年 1 月に発行した「物質および混合物の分類、表示および包装に関する規則」EC No.1272/2008 CLP 規則(Regulation of the European Parliament and of the Council on classification, labeling and packaging of substances and mixtures)によって EU における分類、表示および包装に関する法規に GHS の分類基準および表示規則が取り入れられた。これを本ガイダンスでは EU CLP 分類と言う。

(2)化学物質の安全性に係る情報提供に関する指針(平成5年労厚通告告示1号)

爆発性物質、高圧ガス、引火性液体、可燃性固体又は可燃性ガス、自然発火性物質、禁水性物質、酸化性物質、自己反応性物質、および腐食性物質に関する我が国の法律での定義が示されており、GHS 分類・区分との対比ができる。本指針は、「労働省・厚生省・通商産業省告示第1号(平成5年3月26日)」として公示された。

2-2 物理化学的危険性の分類のための物理的、化学的状態および化学構造による対象項目

2-2-0 序

GHS の物理化学的危険性は現在16項目があるが、物質の状態(ガス、液体、固体)によって評価する項目を絞ることができる。一部の項目については、特定の化学構造・原子団などを含む物質だけが対象になる。

2-2-1 GHS の物理化学的状態の定義

GHS では物質の状態を、原則として気温 20 \mathbb{C} 、気圧 101.3 kPa におけるものとして定義している。国際的に共通の尺度として、このように決められたのであるが、物質によっては、必ずしもこの状態で扱われないものがある。

例えば、フェノール (融点 43℃)、や 1,6-ジアミノヘキサン (融点 42℃) は GHS の 定義では固体であるが、通常は保温して溶融状態で輸送・貯蔵される。その理由の第一 は液体の方が移しかえや計量が容易なことであるが、固体用の容器 (箱あるいは袋) に 入れて輸送すると高温になった際、液化・漏出する危険も考慮に入っているからである。

2-2-2 ガス

ガス (GAS) とは、(i) 50°Cで 300kPa (絶対圧) を超える蒸気圧を有する物質、または (ii) 101.3kPa の標準気圧、20°Cにおいて完全にガス状である物質をいう(国連 GHS 改訂 3 版 1.2)。

空気と混じって可燃範囲がある場合は「可燃性/引火性ガス」(2-3-2)の判定基準に該当する。空気以上に他物質の燃焼に寄与する場合は「支燃性/酸化性ガス」(2-3-4)に該当する。

提供、輸送、貯蔵などの目的で、200kPa (ゲージ圧)以上の圧力の下で容器に充てんされているガスまたは液化または深冷液化されているガスは「高圧ガス」(2-3-5)に該当する。高圧ガスは物質固有の化学的危険性ではなく、物質の状態に伴う物理的危険性である。

エアゾールの噴射剤に可燃性/引火性ガスを使用した場合は「可燃性/引火性エアゾール」(2-3-3)としての判定対象になる。ノズルの構造なども影響するので、個々の製品サンプルについて試験する。(不燃性ガスを噴射剤にした場合でも、噴射物として引火性液体ないし可燃性固体を使用していれば「可燃性/引火性エアゾール」の評価が必要である。)

2-2-3 液体

50°Cにおいて蒸気圧が 300kPa (3bar)以下の蒸気圧を有し、20°C、標準気圧(101.3kPa) では完全にガス状ではなく、かつ標準気圧(101.3kPa) において融点または融解が始ま

る温度が 20°C以下である物質が「液体」と定義されている(国連 GHS 改訂 3 版 1.2)。融 点が特定できない粘性の大きな、またはペースト状の物質・混合物は、ASTM の D4359-90 試験を行うか、又は危険物の国際道路輸送に関する欧州協定(ADR)の附属文書の 2.3.4節に定められている流動性特定のための(針入度計)試験で判定する。

液体物質については「引火性液体」(2-3-6)、「自然発火性液体」(2-3-9)、「自己発熱性化学品」(2-3-11) および「金属腐食性物質」(2-3-16) に該当しないかを評価する。

2-2-4 固体

液体またはガスの定義にあてはまらない物質(混合物を含む)は「固体」と定義されている(国連 GHS 改訂 3 版 1.2)。固体は、粉末状、顆粒状、ペースト状、塊状、繊維状、平板状など種々の形状をとる。粉末などは粒子サイズによって、危険性が変わることがある。従って、物質固有の危険性ではなく、その形状において有する危険性が評価される。

固体物質については「可燃性固体」(2-3-7)、「自然発火性固体」(2-3-10)、「自己発熱性化学品」(2-3-11) および「金属腐食性物質」(2-3-16) に該当しないかを評価する。

2-2-5 化学構造による評価項目の選別

液体および固体物質について、分子内に特定の原子団が含まれている場合は、それに 対応する評価を行う。

爆発性に関連する原子団 (2-2-6参照) を含んでいる場合は「火薬類」(2-3-1) および「自己反応性化学品」(2-3-8) の評価を行う。自己反応性に関連する原子団 (2-2-7参照) も含んでいる場合は「自己反応性化学品」(2-3-8) の評価を行う。

分子内に金属または半金属 (Si、Ge、As、Sb、Bi など) を含んでいる場合は「水反応可燃性化学品」(2-3-12) の評価を行う。

酸素、フッ素または塩素を含み、かつこれらの元素に、炭素、水素以外の元素と化学結合しているものがある場合は「酸化性液体」(2-3-13)ないし「酸化性固体」(2-3-14)の評価を行う。

分子内に-O-O-構造を有する有機化合物、またはそれを含む混合物に対しては、「有機過酸化物」(2-3-15)の評価が必要である。

以上をまとめると、次の表になる。

表 2-1 物理的、化学的状態および化学構造による分類項目の選別

該当 箇所	項目	ガス	液体	固 体	該当する可能性のある化学構造
2-3-1	火薬類	×	0	0	分子内に爆発性に関連する原子団を 含んでいる。(2-2-6参照)
2-3-2	可燃性/引火性ガス	0	×	×	
2-3-3	可燃性/引火性エアゾール	0	0	0	
2-3-4	支燃性/酸化性ガス類	Δ	×	×	
2-3-5	高圧ガス	\bigcirc	×	×	
2-3-6	引火性液体	X	0	×	
2-3-7	可燃性固体	×	×	0	(粉末状、顆粒状またはペースト状の 物質が評価対象)
2-3-8	自己反応性化学品	×	0	0	分子内に爆発性または自己反応性に 関連する原子団を含んでいる。 (2-2-6、7)参照
2-3-9	自然発火性液体	\times	0	×	
2-3-10	自然発火性固体	X	×	0	
2-3-11	自己発熱性化学品	X	Δ	0	
2-3-12	水反応可燃性化学 品	×	0	0	金属または半金属 (Si,Ge,As,Sb,Bi,など)を含んでいる。
2-3-13	酸化性液体	×	0	×	酸素、フッ素または塩素を含み、か
2-3-14	酸化性固体	×	×	0	つこれらの元素に、炭素、水素以外 の元素と化学結合しているものがあ る。
2-3-15	有機過酸化物	×	0	0	-O-O-構造を有する有機化合物 である。ただし活性酸素量(%)が 国連 GHS 改訂 3版 2.15.2.1(a)(b) に該当するものは除く。
2-3-16	金属腐食性物質	\triangle	0	\triangle	
	該出する可能歴がなる				

○ :該当する可能性がある

× :該当しない

△ :該当する可能性があるが、該当する試験法が規定されていない

評価対象物質の化学構造が、表 2-1 の「該当する可能性がある」とされる場合の例に記 載された原子団を含んでいないときは、その「分類結果」を「分類対象外」とする。

記入例:「有機過酸化物」の項で「分類対象外」(-0-0-構造を含まない有機化合物 である。)

「分類対象外」と判定されるケースとして、危険有害性項目が優先順位上位に該当し ている場合がある。

2-2-6 爆発性に関連する原子団

【国連 GHS 改訂 3 版】 (2.1.4.2.2(a))

(a)分子内に爆発性に関わる原子団がない。爆発性を示唆すると思われる原子団の例は 危険物の輸送に関する国連勧告、試験および判定基準の付録 6 の表 A6.1 に示す。

原子団の例を以下に示す。

不飽和の C-C 結合 アセチレン類、アセチリド類、1,2-ジエン類

C-金属、N-金属 グリニャール試薬、有機リチウム化合物

隣接した窒素原子 アジド類、脂肪族アゾ化合物、ジアゾニウム塩類、

ヒドラジン類、スルホニルヒドラジド類

隣接した酸素原子 パーオキシド類、オゾニド類

N-Oヒドロキシルアミン類、硝酸塩類、硝酸エステル類、

ニトロ化合物、ニトロソ化合物、

N-オキシド類、1,2-オキサゾール類

Nーハロゲン クロルアミン類、フルオロアミン類

0-ハロゲン 塩素酸塩類、過塩素酸塩類、ヨードシル化合物

(UNRTDG: Manual of Tests and Criteria, Appendix 6, Table A6.1)

2-2-7 自己反応性に関連する原子団

【国連 GHS 改訂 3 版】(2.8.4.2(a))

(a) その分子内に爆発性または自己反応性に関連する官能基が存在しない。そのような 官能基の例は危険物の輸送に関する国連勧告、試験法および判定基準の附属書 6、表 A6.1 および表 A6.2 に示されている。

官能基の例を以下に示す。

相互反応性グループ アミノニトリル類、ハロアニリン類、酸化性酸の有機塩類 S=0ハロゲン化スルホニル類、スルホニルシアニド類、 スルホニルヒドラジド類 P-O

亜燐酸塩類

歪のある環 エポキシド類、アジリジン類

不飽和結合
オレフィン類、シアン酸化合物

(UNRTDG: Manual of Tests and Criteria, Appendix 6, Table A6.2)

2-2-8 分類の指針と分類結果の記載例

本節においては、16 種類の物理化学的危険性について、分類の指針と分類結果の記載例の概要について説明する。実際の分類に当たっては、2-3節の各危険有害性の項もあわせて参照されたい。

(1)分類対象外の判定

- A) 表 2-1 にしたがって当該 GHS 項目の定義と状態が異なる、或いは化学構造上定義に 該当しない物質は、その項目について「分類対象外」とする。
- B) 危険有害性項目が優先順位上位に該当している場合
- (例)「自己反応性化学品」として考慮すべき物質が、爆発性または自己反応性の原子団を含む物質であり、「火薬類」、「有機過酸化物」、「酸化性液体」または「酸化性固体」のいずれかに分類される場合。

記入例:「分類対象外」(火薬類に分類されている。)など。

「自己発熱性化学品」として考慮すべき物質が、「自然発火性液体」ま

たは「自然発火性固体」のいずれかに分類される場合。

記入例:「分類対象外」(自然発火性液体に分類されている。) など

A)、B)によって「分類対象外」となった物質の分類根拠の記載例を表 2-2 に示す。

表 2-2「分類対象外」の記載例

	危険有害性項目	分類結果	分類根拠・記載例問題点
1	火薬類	分類対象外	爆発性に関わる原子団を含んでいない。
3	可燃性/引火性エ	分類対象外	エアゾール製品でない。
	アゾール		
6	引火性液体	分類対象外	GHS の定義における固体である。
8	自己反応性化学品	分類対象外	火薬類に分類されている。
		分類対象外	爆発性に関わる原子団を含んでいない、かつ自己反
			応性に関連する原子団を含んでいない。
11	自己発熱性化学品	分類対象外	自然発火性液体に分類に分類されている。
12	水反応可燃性化学	分類対象外	金属または半金属 (B, Si, P, Ge, As, Se, Sn, Sb, Te,
	묘		Bi, Po, At)を含んでいない。
13	酸化性液体	分類対象外	酸素、またはハロゲンを含まない無機化合物であ

	危険有害性項目	分類結果	分類根拠・記載例問題点
			る。
14	酸化性固体	分類対象外	フッ素および塩素を含まず、酸素を含む有機化合物
			であるが、この酸素が炭素、水素以外の元素と化学
			結合していない。
15	有機過酸化物	分類対象外	-O-O-構造を含まない有機化合物である。

(2)区分外の判定

分類対象であるが、国連 GHS 改訂 3 版での定義、あるいは周知の科学的性質(例えば「不燃性」)から区分に該当しないことが明確である場合は「区分外」とする。「区分外」とされた物質の分類根拠の記載例は表 2-3 の通り。

表 2-3 「区分外」の記載例

	危険有害性項目	分類結果	分類根拠・記載例
1	火薬類	区分外	酸素収支の計算結果に基づく。
1	火薬類	区分外	鈍性化火薬類(レビュー文書名、年数)
6	引火性液体	区分外	不燃性(経験に基づく、評価機関名)
7	可燃性固体	区分外	不燃性(レビュー文書名、 年数)
8	自己反応性化学品	区分外	自己加速分解温度(SADT)の具体的数
0	自己灰心性化子而	丛 カ外	値(℃)を記入(レビュー文書名、年数)
9	自然発火性液体	区分外	不燃性(レビュー文書名、 年数)
		区分外	常温の空気と接触しても自然発火しな
		四カ が	い(レビュー文書名、年数)
		区分外	TDG 分類がクラス 3 (国連番号)
10	自然発火性固体	区分外	不燃性(レビュー文書名、年数)
		区分外	常温の空気と接触しても自然発火しな
		四カ が	い(レビュー文書名、年数)
11	自己発熱性化学品	区分外	不燃性(レビュー文書名、年数)
12	水反応可燃性化学品	区分外	水に対して安定(レビュー文書名、年数)
		II // M	水に対して安定
		区分外	(経験に基づく、評価機関名)
13	酸化性液体	区分外	還元性物質(レビュー文書名、年数)
14	酸化性固体	区分外	還元性物質(レビュー文書名、年数)
15	有機過酸化物	区分外	活性酸素量が定義に満たない。
16	金属腐食性物質	区分外	鋼およびアルミニウムが容器として使
			用できる(レビュー文書名、年数)。

○区分外の判定に関する補足

◆火薬類

【国連 GHS 改訂 3 版】(2.1.4.2.2)

以下の物質または混合物は火薬類に分類されない。

- (a) 分子内に爆発性に関わる原子団がない。爆発性を示唆すると思われる原子団の例は危険物の輸送に関する国連勧告、試験および判定基準の付録 6 の表 A6.1 に示す;または
- (b) 物質が酸素を含む爆発性の性質に関連した原子団を含んでいる、および酸素収支の計算値が-200より低い。

酸素収支は化学反応に対して次式により計算される。

 $C_xH_yO_z + [x+(y/4)-(z/2)] O_2 \rightarrow x CO_2 + (y/2) H_2O.$

この場合には次式を用いる。

酸素収支= $-1600\times[2x+(y/2)-z]$ /分子量

- (c) 有機物質または有機物質の均一な混合物に爆発性に関連する原子団が含まれるが、発熱分解エネルギーが 500J/g 未満であり、かつ分解の発熱開始が 500℃より低い場合。 (この温度制限は、爆発性ではないが 500℃を越えるとゆっくりと分解して 500J/g より大きいエネルギーを放出するような多数の有機物質に手順が適用されないようにするものである。) 発熱分解エネルギーは適切な熱量測定法により決定することができる;または
- (d) 無機酸化性物質と有機物質との混合物では、その無機酸化性物質の濃度が; 重量で15%未満、但し酸化性物質が区分1または2に分類される場合。 重量で30%未満、但し酸化性物質が区分3に分類される場合。

◆自己反応性化学品

【国連 GHS 改訂 3 版】 (2.8.4.2(a))

- (a) その分子内に爆発性または自己反応性に関連する官能基が存在しない。そのような官能基の例は危険物の輸送に関する国連勧告、試験法および判定基準の付属書 6、表 A6.1 および表 A6.2 に示されている。
- ◆引火性液体(又は固体)、自然発火性液体(または固体)、自己発熱性化学品 評価対象物質が、不燃性であることが所定のレビュー文書の情報から確認できる場合 には、「引火性液体(または固体)」、「自然発火性液体(または固体)」および「自己発熱性 化学品」について、「分類結果」を「区分外」とし、「分類根拠・問題点」には「不燃性」 と記載する。

注: 難燃性の物質も、これらの項目は区分外と考えられるが、可燃性と難燃性の境界の定義は明確にされていない。したがって、今回の分類作業では所定のレビュー文書で不燃性と確認された物質の場合のみ、「分類結果」に「区分外」と記載する。

(3) TDG 分類に基づく区分

GHS の物理化学的危険性試験 (=UNRTDG の試験) 結果は、引火点や爆発限界など、一部のデータを除いてほとんど公表されていない。本ガイダンスに従い、所定のレビュー文書から物理化学的危険性データが入手できないときは、TDG 分類のクラスに基づくGHS 判定を行うことになる。表 2-4 にその対応表を示した。

表 2-4 GHS 分類と TDG 分類 (UNRTDG) との比較

GHS 分類	GHS 区分	UNRTDG (注:() は副次危険)
1)火薬類	不安定火薬類	輸送禁止とされている爆発性物質であ
		るため、国連危険物輸送の番号は付さ
		れていない。
	等級 1.1	1.1
	等級 1.2	1.2
	等級 1.3	1.3
	等級 1.4	1.4
	等級 1.5	1.5
	等級 1.6	1.6
2)可燃性/引火性ガス	区分1	2.1 および 2.3(2.1)
	区分 2☆	20℃、1 気圧において空気中で可燃範
		囲を有するが、上に含まれない可燃性
		ガスは 2.2 または 2.3 に分類されてい
		る。
3)可燃性/引火性エア	区分 1☆	エアゾールの国連番号は UN1950
ゾール	区分 2☆	(aerosol)で、クラス 2(ガス)となってい
		る。
4)支燃性/酸化性ガス	区分 1	2.2(5.1)または 2.3(5.1)
類		
5)高圧ガス	グループ圧縮ガス☆	国連危険物輸送分類クラスには「高圧
	グループ液化ガス☆	ガス」というクラスはないが、
	グループ深冷液化ガス☆	UNRTDG2(ガス)の定義と GHS2.5.1

表 2-4 GHS 分類と TDG 分類 (UNRTDG) との比較 (続き)

おいまでは、いきでは、200KPa (ゲージ圧)以上の圧力で容器に充てんされているガスが「高圧ガス、液化ガス、溶解ガスの定義は両者で一致している。 6)引火性液体 区分1 31 区分2 3II 区分3 3III 区分4会 非危険物なので関連番号が付かない。 7)可燃性固体 区分1 4.1 II 8)自己反応性化学品 タイプ Ac 輸送禁止物質であるので、関連危険物輸送の番号が付かない。 タイプ B UNRTDG4.1、UN3221、3222、3231、3232 タイプ C UNRTDG4.1、UN3223、3224、3233、3234 タイプ D UNRTDG4.1、UN3225、3226、3235、3236、3236、3236 タイプ E UNRTDG4.1、UN3227、3228、3237、3238、3234 タイプ E UNRTDG4.1、UN3227、3228、3237、3238、3236 3236 サイア E UNRTDG4.1、UN3227、3228、3237、3238、3236 3236 サイア E UNRTDG4.1、UN3227、3228、3237、3236、3236 3236 サイア E UNRTDG4.1、UN3227、3228、3237、3236、3236 3236 サイア E UNRTDG4.1、UN3227、3228、3237、3236、3236 3236 サイア E UNRTDG4.1、UN3227、3228、3237、3236、3236 3236 3236 サイア E U	GHS 分類	GHS 区分	UNRTDG (注:()は副次危険)
6)引火性液体 区分1 3 I 区分2 3 II 区分3 3 II 区分4会 非危険物なので国連番号が付かない。 7)可燃性固体 区分1 4.1 II 8)自己反応性化学品 タイプ A 会 輸送禁止物質であるので、国連危険物輸送の番号が付かない。 タイプ B UNRTDG4.1、UN3221、3222、3231、3232 タイプ C UNRTDG4.1、UN3223、3224、3233、3234 タイプ D UNRTDG4.1、UN3225、3226、3235、3236 タイプ E UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ G 会 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性液体 区分 1 4.2 I (液体) 11)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 III 区分 2 4.2 III 区分 2 4.2 III 区分 2 4.2 III 区分 2 4.2 II 区分 2 4.3 II 区分 2 4.3 II 区分 3 4.3 II 区分 2 4.3 II 区分 3 4.3 II 区分 2 4.3 II 区分 2		グループ溶解ガス☆	のガスの定義とは一致し、GHSでは、
6)引火性液体 区分1 3 I 区分2 3 II 区分3 3 II 区分4会 非危険物なので国連番号が付かない。 7)可燃性固体 区分1 4.1 II 区分2 4.1 III 区分2 4.1 III 区分2 4.1 III 区分2 4.1 III 8)自己反応性化学品 タイプA会 輸送禁止物質であるので、国連危険物輸送の番号が付かない。 タイプB UNRTDG4.1、UN3221、3222、3231、3232 332 リルRTDG4.1、UN3223、3224、3233、3234 タイプ C UNRTDG4.1、UN3225、3226、3235、3236 タイプ E UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ G会 非危険物なので国連番号が付かない。 9)自然発火性液体 区分1 4.2 I (液体) 10)自然発火性菌体 区分1 4.2 II 区分2 4.2 II 区分2 4.3 II 日本ので可燃性化学品 区分1 4.3 II 日か2 4.3 II 日か2 4.3 II 日からでするが表します。 3 II 日本のでするが表します。 4.2 II 日本のでするが表します。 4.3 II 日本のでするが表します。 4.3 II 日本のでするが表します。 <td< td=""><td></td><td></td><td>200KPa(ゲージ圧)以上の圧力で容</td></td<>			200KPa(ゲージ圧)以上の圧力で容
おおける			器に充てんされているガスが「高圧ガ
(9引火性液体 区分 1 3 II 区分 2 3 II 区分 3 3III 区分 4 次 非危険物なので国連番号が付かない。 ア 7 可燃性固体 区分 1 4.1 III 区分 2 4.1 III 図 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			ス」とされている。圧縮ガス、液化ガ
6 引火性液体 区分 1 3 I 区分 2 3 II 区分 3 期間 区分 4☆ 非危険物なので国連番号が付かない。 ア 2 4.1 II 区分 2 4.1 III 区分 2 4.1 III 区分 2 4.1 III 図 2 4.1 III 区分 2 UNRTDG4.1、UN3221、3222、3231、3232、33324、3233、3232 タイプ B UNRTDG4.1、UN3221、3222、3231、3232 タイプ C UNRTDG4.1、UN3223、3224、3233、3234 タイプ E UNRTDG4.1、UN3227、3228、3237、3236 3236 UNRTDG4.1、UN3227、3228、3237、3238、3236 タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ G ☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性液体 区分 1 4.2 II 区分 2 4.2 II 区分 2 4.2 II 区分 2 4.2 II 区分 2 4.3 I 区分 3 4.3 II 区分 3 4.3 II 区分 3 4.3 II 区分 3 4.3 II			ス、深冷液化ガス、溶解ガスの定義は
区分 2 3 II 区分 3 3 III 区分 4 ☆ 非危険物なので国連番号が付かない。 7) 可燃性固体 区分 1 4.1 III 8) 自己反応性化学品 タイプ A ☆ 輸送禁止物質であるので、国連危険物輸送の番号が付かない。 タイプ B UNRTDG4.1、UN3221、3222、3231、3232 タイプ C UNRTDG4.1、UN3223、3224、3233、3234 タイプ D UNRTDG4.1、UN3225、3226、3235、3236 タイプ E UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ G ☆ 非危険物なので国連番号が付かない。 9) 自然発火性液体 区分 1 4.2 I (液体) 10) 自然発火性菌体 区分 1 4.2 I (固体) 11) 自己発熱性化学品 区分 1 4.2 II I2) 水反応可燃性化学品 区分 1 4.3 I、4、2(4、3) 日2) 水反応可燃性化学品 区分 1 4.3 I、4、2(4、3) 区分 2 4.3 II 区分 3 4.3 II 区分 3 4.3 II 区分 3 4.3 II 13)酸化性液体 区分 1 5.1 I			両者で一致している。
区分 3 3 III 区分 4☆ 非危険物なので国連番号が付かない。 アリ熱性固体 区分 1 4.1 III 区分 2 4.1 III 8)自己反応性化学品 タイプ A☆ 輸送禁止物質であるので、国連危険物輸送の番号が付かない。 タイプ B UNRTDG4.1、UN3221、3222、3231、3232 タイプ C UNRTDG4.1、UN3223、3224、3233、3234 タイプ D UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3239、3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 III 12)水反応可燃性化学品 区分 1 4.3 I、4、2(4、3) 日2)水反応可燃性化学品 区分 1 4.3 I、4、2(4、3) 日2)水反応可燃性化学品 区分 1 4.3 I、4、2(4、3) 区分 2 4.3 II 2.3 II 区分 2 4.3 II 2.5 II 13)酸化性液体 区分 1 5.1 I	6)引火性液体	区分 1	3 I
7)可燃性固体 区分 4☆ 非危険物なので国連番号が付かない。 8)自己反応性化学品 タイプ A☆ 輸送禁止物質であるので、国連危険物輸送の番号が付かない。 タイプ B UNRTDG4.1、UN3221、3222、3231、3232 タイプ C UNRTDG4.1、UN3223、3224、3233、3234 タイプ D UNRTDG4.1、UN3225、3226、3235、3236 3236 タイプ E UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3239、3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性菌体 区分 1 4.2 I (菌体) 11)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 II 区分 2 4.2 II 日ン水反応可燃性化学品 区分 2 4.3 II 日ン水反応可燃性化学品 区分 2 4.3 II 区分 2 4.3 II 区分 2 4.3 II 区分 3 4.3 III 日本の方式 5.1 I		区分 2	311
プロ燃性固体 区分 1 4.1 II 8)自己反応性化学品 タイプ A☆ 輸送禁止物質であるので、国連危険物輸送の番号が付かない。 タイプ B UNRTDG4.1、UN3221, 3222, 3231, 3232 タイプ C UNRTDG4.1、UN3223, 3224, 3233, 3234 タイプ D UNRTDG4.1、UN3225, 3226, 3235, 3236 タイプ E UNRTDG4.1、UN3227, 3228, 3237, 3238 タイプ F UNRTDG4.1、UN3229, 3230, 3239, 3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 I (個体) 11)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 II 区分 2 4.2 II 区分 2 4.3 II 日ン水反応可燃性化学品 区分 1 4.3 I、4.2(4.3) 区分 2 4.3 II 区分 3 4.3 III 区分 3 4.3 III		区分 3	3111
区分 2		区分 4☆	非危険物なので国連番号が付かない。
8)自己反応性化学品 タイプ A☆ 輸送禁止物質であるので、国連危険物輸送の番号が付かない。 タイプ B UNRTDG4.1、UN3221、3222、3231、3232 タイプ C UNRTDG4.1、UN3223、3224、3233、3234 タイプ D UNRTDG4.1、UN3225、3226、3235、3236 3236 タイプ E UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 II I1)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 II I2)水反応可燃性化学品 区分 1 4.3 I、4.2(4.3) I2)水反応可燃性化学品 区分 2 4.3 II 区分 3 4.3 III I3)酸化性液体 区分 1 5.1 I	7)可燃性固体	区分 1	4.1 ∏
輸送の番号が付かない。		区分 2	4.1 🎹
タイプ B UNRTDG4.1、UN3221、3222、3231、3232 タイプ C UNRTDG4.1、UN3223、3224、3238、3234 タイプ D UNRTDG4.1、UN3225、3226、3235、3236 タイプ E UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3239、3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性固体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 II I1)自己発熱性化学品 区分 2 4.2 II 区分 2 4.3 I 4.2 (4.3) 日ン水反応可燃性化学品 区分 2 4.3 II 区分 3 4.3 II I3)酸化性液体 区分 1 5.1 I	8)自己反応性化学品	タイプ A☆	輸送禁止物質であるので、国連危険物
9 イプ C3232タイプ CUNRTDG4.1、UN3223、3224、3233、3234タイプ DUNRTDG4.1、UN3225、3226、3235、3236タイプ EUNRTDG4.1、UN3227、3228、3237、3238タイプ FUNRTDG4.1、UN3229、3230、3239、3240タイプ G☆非危険物なので国連番号が付かない。9)自然発火性液体区分 14.2 I (液体)10)自然発火性固体区分 14.2 I (固体)11)自己発熱性化学品区分 14.2 II区分 24.2 III12)水反応可燃性化学品区分 14.3 I、4.2(4.3)品区分 24.3 II区分 34.3 III3)酸化性液体区分 15.1 I			輸送の番号が付かない。
タイプ C UNRTDG4.1、UN3223、3224、3233、3234 タイプ D UNRTDG4.1、UN3225、3226、3235、3236 3236 タイプ E UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 II I1)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 III 区分 2 4.3 I 日 区分 2 4.3 II 区分 3 4.3 II I3)酸化性液体 区分 1 5.1 I		タイプ B	UNRTDG4.1、UN3221, 3222, 3231,
タイプ D 3234 タイプ D UNRTDG4.1、UN3225, 3226, 3235, 3236 9イプ E UNRTDG4.1、UN3227, 3228, 3237, 3238 3238 タイプ F UNRTDG4.1、UN3229, 3230, 3239, 3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 II I)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 III I2)水反応可燃性化学 区分 1 4.3 I、4. 2(4. 3) 日 区分 2 4.3 II 区分 3 4.3 III I3)酸化性液体 区分 1 5.1 I			3232
タイプ D UNRTDG4.1、UN3225, 3226, 3235, 3236 タイプ E UNRTDG4.1、UN3227, 3228, 3237, 3238 タイプ F UNRTDG4.1、UN3229, 3230, 3239, 3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性菌体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 II(固体) 11)自己発熱性化学品 区分 2 4.2 III 区分 2 4.3 II、4、2(4、3) 日 区分 3 4.3 III I3)酸化性液体 区分 1 5.1 I		タイプ C	UNRTDG4.1、UN3223, 3224, 3233,
タイプ E UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ G☆ 非危険物なので国連番号が付かない。 9) 自然発火性液体 区分 1 4.2 I (液体) 10) 自然発火性固体 区分 1 4.2 II 11) 自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 III 12) 水反応可燃性化学 区分 1 4.3 I、4.2(4.3) 品 区分 2 4.3 II 区分 3 4.3 II 13)酸化性液体 区分 1 5.1 I			3234
タイプ E UNRTDG4.1、UN3227、3228、3237、3238 タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 II (固体) 11)自己発熱性化学品 区分 2 4.2 II 区分 2 4.2 II 区分 2 4.3 II 日 区分 2 4.3 II 区分 3 4.3 III 13)酸化性液体 区分 1 5.1 I		タイプ D	UNRTDG4.1、UN3225, 3226, 3235,
タイプ F UNRTDG4.1、UN3229、3230、3239、3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 I (固体) 11)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 II 区分 2 4.2 II 区分 2 4.3 I、4、2(4、3) 日 区分 2 4.3 II 区分 3 4.3 II 13)酸化性液体 区分 1 5.1 I			3236
タイプ FUNRTDG4.1、UN3229、3230、3239、3240タイプ G☆非危険物なので国連番号が付かない。9)自然発火性液体区分 14.2 I (液体)10)自然発火性固体区分 14.2 II (固体)11)自己発熱性化学品区分 14.2 II区分 24.2 IIII 2)水反応可燃性化学区分 14.3 I、4. 2(4. 3)品区分 24.3 II区分 34.3 II13)酸化性液体区分 15.1 I		タイプ E	UNRTDG4.1、UN3227, 3228, 3237,
3240 タイプ G☆ 非危険物なので国連番号が付かない。 9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 II (固体) 11)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 III 区分 2 4.2 III 区分 2 4.3 II 、 4. 2(4. 3) 区分 2 4.3 II 区分 3 4.3 III 区分 3 4.3 III 13)酸化性液体 区分 1 5.1 I 14.2 II 14.3 III 14.3 II 14.3 II			3238
タイプ G☆非危険物なので国連番号が付かない。9)自然発火性液体区分 14.2 I (液体)10)自然発火性固体区分 14.2 I (固体)11)自己発熱性化学品区分 14.2 II区分 24.2 III12)水反応可燃性化学区分 14.3 I、4. 2(4. 3)品区分 24.3 II区分 34.3 III13)酸化性液体区分 15.1 I		タイプ F	UNRTDG4.1、UN3229, 3230, 3239,
9)自然発火性液体 区分 1 4.2 I (液体) 10)自然発火性固体 区分 1 4.2 I (固体) 11)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 III 12)水反応可燃性化学 区分 1 4.3 I、4. 2(4. 3) 日 区分 2 4.3 II 区分 3 4.3 III 13)酸化性液体 区分 1 5.1 I			3240
10)自然発火性固体 区分 1 4.2 I (固体) 11)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 III 12)水反応可燃性化学 区分 1 4.3 I、4. 2(4. 3) 日 区分 2 4.3 II 区分 3 4.3 III 13)酸化性液体 区分 1 5.1 I		タイプ G☆	非危険物なので国連番号が付かない。
11)自己発熱性化学品 区分 1 4.2 II 区分 2 4.2 III 12)水反応可燃性化学品 区分 1 4.3 I、4.2(4.3) 日本 区分 2 4.3 II 区分 3 4.3 II 13)酸化性液体 区分 1 5.1 I	9)自然発火性液体	区分 1	4.2 I (液体)
区分2 4.2 III 12)水反応可燃性化学 区分1 4.3 I、4.2(4.3) 日 区分2 4.3 II 区分3 4.3 III 13)酸化性液体 区分1 5.1 I	10)自然発火性固体	区分 1	4.2 I (固体)
12)水反応可燃性化学 区分1 4.3 I、4. 2(4. 3) 品 区分2 4.3 II 区分3 4.3 III 13)酸化性液体 区分1 5.1 I	11)自己発熱性化学品	区分 1	4.2 Ⅱ
品 区分 2 4.3 II 区分 3 4.3 III 13)酸化性液体 区分 1 5.1 I		区分 2	4.2Ⅲ
区分3 4.3Ⅲ 13)酸化性液体 区分1 5.1 I	12)水反応可燃性化学	区分 1	4.3 I 、4. 2(4. 3)
13)酸化性液体 区分 1 5.1 I	品	区分 2	4.3 Ⅱ
		区分 3	4.3Ⅲ
区分 2 5.1 II	13)酸化性液体	区分 1	5.1 I
, I DA = I VII - I		区分 2	5.1 II

表 2-4 GHS 分類と TDG 分類 (UNRTDG) との比較 (続き)

GHS 分類	GHS 区分	UNRTDG (注:()は副次危険)
	区分 3	5.1Ш
14)酸化性固体	区分 1	5.1 I
	区分 2	5.1 II
	区分 3	5.1111
15)有機過酸化物	タイプ A☆	輸送禁止物質であるので、国連危険物
		輸送の番号が付かない。
	タイプ B	UNRTDG5.2、UN3101, 3102, 3111,
		3112
	タイプ C	UNRTDG5.2、UN3103, 3104, 3113,
		3114
	タイプ D	UNRTDG5.2、UN3105, 3106, 3115,
		3116
	タイプ E	UNRTDG5.2、UN3107, 3108, 3117,
		3118
	タイプ F	UNRTDG5.2、UN3109, 3110, 3119,
		3120
	タイプ G☆	非危険物なので国連番号が付かない。
16)金属腐食性物質	区分 1☆	国連危険物輸送分類クラス8は皮膚腐
		食性も含んでいる。

☆ GHS 分類区分と国連輸送分類と一致していない区分。

TDG 分類は、国際海事機関(IMO)を中心に長年の議論を積み上げたものであり、分類された物質の評価に大きな漏れはないものと考えられる。しかし、N.O.S(not otherwise specified: 「その他の火薬類」といった特定できない総称)分類は荷主の判断に任されており、すべての性質を網羅して分類されているとは保証できないので、原則的には N.O.S.付きの国連番号に基づく分類は行わないことにする。ただし、我が国における法規制などを踏まえ、所定のレビュー文書の情報から確認できる場合には、区分分けできることにする。

○TDG 分類の優先順位

一つの物質(ないし混合物)に複数の危険性がある場合、TDG 分類では、その危険性の程度に基づいて、優先順位を定めてクラス分けを行っている。従って、その物質の一部の危険性しか TDG 分類に反映されていないことがある。GHS 分類では個々の危険性に基づいて分類しなければならないので、TDG 分類を基に分類する場合は「無視された

危険性」を「区分外」としないよう、注意を払わなければならない。 この判定に、本ガイダンスでは以下の表を使用する。

- UNRTDG Sixteenth revised edition(2009) 2.0.3 Precedence of hazard characteristics (P.53-54),
- ・ IMDGC 2006Ed. 2.0.3 Precedence of hazard characteristic (P.37-38)、または
- ・ 「危規則別表第1備考3」(次ページ参照)

ただし、毒物 (クラス 6) および腐食性物質 (クラス 8) については、TDG 分類から GHS 分類を決めることは原則として行わない。以下の説明は危規則の表に基づいて行う。 危規則別表第 1 備考 3 にあるように、火薬類、自己反応性化学品、自然発火性物質、有機過酸化物は最優先に評価されるものである。これらのクラスに属する物質は、他の危険性(可燃性物質、自己発熱性化学品、水反応可燃性化学品、酸化性物質)について、分類対象外でなく、かつ化学構造等から分類できない場合は「分類できない」とする。

最優先評価項目に該当しない他の危険性については、危規則別表第 1 備考 3 の表で優 先順位を判断する。

【危規則別表第1備考3】

複数の分類又は項目に該当すると判断された場合は、次に定めるところにより、分類 又は項目を決定するものとする。

- (1) 次の分類又は項目に該当すると判断された場合は、その分類又は項目を優先し、他の分類又は項目を副次危険性とする。
 - (i) 火薬類
 - (ii) 高圧ガス
 - (iii) 可燃性物質(備考 2 (4) (ii) の自己反応性物質のタイプの判定基準により自己反応性物質に該当すると判断された場合に限る。)
 - (iv) 自然発火性物質
 - (v) 有機過酸化物
 - (vi) 毒物(備考2(6)(i)ハの蒸気を発生する物質の吸入毒性試験による容器等級の 判定基準により毒物に該当すると判定された場合に限る。)
- (2) (1)の場合以外の場合にあっては、次の表に掲げる分類又は項目を優先し、他の分類又は項目を副次危険性とする。
- (3) 引火性高圧ガスおよび毒性高圧ガスのいずれにも該当すると判定された場合は、毒性高圧ガスを優先し、引火性高圧ガスを副次危険性とする
- (4) 容器等級の判定は、個別の容器等級のうち数値の小さいものとする。

次頁表の注釈を以下に示す。

注1 表中の数字は、次に掲げる分類又は項目を示す。

「3」 引火性液体類 「5.1」酸化性物質

「4.1」 可燃性物質 「6.1」 毒物

「4.2」 自然発火性物質 「8」腐食性物質

「4.3」 水反応可燃性物質

- 2 表中「I」、「II」および「III」は、それぞれ、容器等級がI、IIおよびIIIであると判定された場合に限ることを示す。
- 3 表中「経皮」、「経口」および「吸入」は、それぞれ、備考2(6)(i)イ、口およびハの容器等級の判定基準により、容器等級が判定された場合に限ることを示す。
 - 4 表中「*」は、殺虫殺菌剤類にあっては、「6.1」とすることを示す。
 - 5 表中「一」は、組合せがないことを示す。
- 6 次頁表は"UN Recommendations on the Transport of Dangerous Goods, Model Regulations, Sixteenth revised edition, 2009"にもとづく。現在の危規則別表第 一備考3の表では空欄となっている部分があることに注意されたい。

	4.2	4.3	5.1(I)	5.1(II)	5.1(III)	6.1(I ,	1	6.1(Ⅱ)	6.1(Ⅲ)	8.(I ,	8.(I ,	8.(II,	8.(II,	8.(Ⅲ,	8.(III,
						経皮)	経口)			液体)	固体)	液体)	固体)	液体)	固体
3(1)		<u>4.3</u>				3	3	3	3	3	_	3	_	3	_
3(II)		<u>4.3</u>				3	3	3	3	8	_	3	_	3	_
3(III)		<u>4.3</u>				6.1	6.1	6.1	3*	8	_	8	-	3	_
4.1(Ⅱ)	4.2	4.3	5.1	4.1	4.1	6.1	6.1	4.1	4.1	_	8	_	4.1	_	4.1
4.1(Ⅲ)	4.2	4.3	5.1	4.1	4.1	6.1	6.1	6.1	4.1	_	8	_	8	_	4.1
4.2(Ⅱ)		4.3	5.1	4.2	4.2	6.1	6.1	4.2	4.2	8	8	4.2	4.2	4.2	4.2
4.2(Ⅲ)		4.3	5.1	5.1	4.2	6.1	6.1	6.1	4.2	8	8	8	8	4.2	4.2
4.3(I)			5.1	4.3	4.3	6.1	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
4.3(Ⅱ)			5.1	4.3	4.3	6.1	4.3	4.3	4.3	8	8	4.3	4.3	4.3	4.3
4.3(Ⅲ)			5.1	5.1	4.3	6.1	6.1	6.1	4.3	8	8	8	8	4.3	4.3
5.1(I)						5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
5.1(Ⅱ)						6.1	5.1	5.1	5.1	8	8	5.1	5.1	5.1	5.1
5.1(Ⅲ)						6.1	6.1	6.1	5.1	8	8	8	8	5.1	5.1
6.1(I,経皮)										8	6.1	6.1	6.1	6.1	6.1
6.1(I,経口)										8	6.1	6.1	6.1	6.1	6.1
6.1(Ⅱ,吸入)										8	6.1	6.1	6.1	6.1	6.1
6.1(Ⅱ,経皮)										8	6.1	8	6.1	6.1	6.1
6.1(Ⅱ,経口)										8	8	8	6.1	6.1	6.1
6.1(Ⅲ)										8	8	8	8	8	8

"UN Recommendations on the Transport of Dangerous Goods, Model Regulations , Sixteenth revised edition, 2009"に基づく。下線部は現在の危規則別表第一備考3の表では空欄となっていることに注意。

例えば、アゾジカーボンアミド(UN $-3242\cdot$ クラス 4.1 容器等級 II)は、GHS 分類では可燃性固体・区分 2 となる。上位のクラス 4.2、4.3 には分類されていないので、自己発熱性、水反応可燃性は「区分外」と判断される。酸化性固体(クラス 5.1)については、容器等級 I は上位なので該当しないことがわかるが、容器等級 II、III は下位なので、TDG 分類での試験結果を推定できない。従って TDG 分類だけでは、酸化性固体については「分類できない」とすることになる。(化学構造でみて、酸素が炭素・水素としか結合していないので「分類対象外」となる。)

硝酸ジルコニウム(UN-2728・クラス 5.1 容器等級Ⅲ)は、クラス 4 のすべてが上位なので、可燃性固体、自己発熱性化学品、水反応可燃性化学品の GHS 区分は「区分外」と判断される。

○副次危険性の利用

TDG 分類に副次危険性がついている場合、危規則別表第1備考3の表を利用して分類できる場合がある。但し、容器等級は副次危険性の程度を反映していないので注意を要する。

例えば、クロロ酢酸エチル(UN-1181・クラス 6.1、副次危険 3、容器等級 II)は、引火性液体では GHS 区分 3 と推定される。(区分 1、2 なら容器等級 I、II で毒物より上位になり、クラス 3、副次危険 6.1 とされる。GHS 区分 4 なら輸送上は非危険物。)

他方、モルホリン(UN-2054・クラス 8、副次危険 3、容器等級 I)は、引火性液体 が GHS 区分 2、3 のときに下位になるため、TDG 分類だけからは分類できない。 (引火点 37Cから区分 3 とされる。)

(4)「分類できない」の判定

前述したように、物質の状態、化学組成、化学的性質等から「分類対象外」あるいは「対象外」と判定されず、かつ文献データおよび TDG 分類によっても区分できなかった項目は分類の根拠とすべきデータがないので「分類できない」とする。「分類できない」とされた物質の分類根拠の記載例を、表 2-5 に示す。

表 2-5 「分類できない」の記載例

	危険有害性項目	分類結果	分類根拠・記載例
6	引火性液体	分類できない	データなし。
7	可燃性固体	分類できない	データなし。
8	自己反応性化学品	分類できない	データなし。
9	自然発火性液体	分類できない	データなし。
11	自己発熱性化学品	分類できない	データなし。あるいは液体状の物質に 適した試験方法が確立していない。
16	金属腐食性	分類できない	データなし。あるいは、気体状の物質 に適した試験方法が確立していない。
		分類できない	データなし。あるいは固体状の物質に 適した試験方法が確立していない。

2-3 物理化学的危険性の分類・各論

2-3-1 火薬類

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.1.1)

2.1.1.1 爆発性物質(または混合物)とは、それ自体の化学反応により、周囲環境に損害を及ぼすような温度および圧力ならびに速度でガスを発生する能力のある固体物質または液体物質(若しくは物質の混合物)をいう。火工品に使用される物質はたとえガスを発生しない場合でも爆発性物質とされる。

火工品に使用される物質(または混合物)とは、非爆発性で持続性の発熱化学反応により、熱、光、音、ガスまたは煙若しくはこれらの組み合わせの効果を生じるよう作られた物質または物質の混合物をいう。

爆発性物品とは、爆発性物質または爆発性混合物を一種類以上含む物品をいう。 火工品とは、火工品に使用される物質または混合物を一種類以上含む物品をいう。

- 2.1.1.2 次のものが火薬類に分類される。
 - (a) 爆発性物質および爆発性混合物、
 - (b) 爆発性物品、ただし不注意または偶発的な発火若しくは起爆によって、飛散、火炎、発煙、発熱または大音響のいずれかによって装置の外側に対し何ら影響を及ぼさない程度の量またはそのような特性の爆発性物質または混合物を含む装置を除く、および
 - (c) 上記(a)および(b)以外の物質、混合物および物品であって、爆発効果または火工効果を実用目的として製造されたもの。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】 (2.1.2)

2.1.2.1 このクラスに分類される物質、混合物および物品(不安定火薬類に分類される ものを除く)は、それぞれが有する危険性の度合により、次の六等級のいずれかに割り 当てられる。

- (a) 等級 1.1: 大量爆発の危険性を持つ物質、混合物および物品 (大量爆発とは、ほとんど全量がほぼ瞬時に影響が及ぶような爆発をいう)。
- (b) 等級 1.2: 大量爆発の危険性はないが、飛散の危険性を有する物質、混合物および 物品。
- (c) 等級 1.3: 大量爆発の危険性はないが、火災の危険性を有し、かつ、弱い爆風の危

険性または僅かな飛散の危険性のいずれか、若しくはその両方を持っている物質、混合物および物品。

- (i) その燃焼により大量の輻射熱を放出するもの、または
- (ii) 弱い爆風または飛散のいずれか若しくは両方の効果を発生しながら 次々に燃焼するもの。
- (d) 等級 1.4: 高い危険性の認められない物質、混合物および物品、すなわち、発火または起爆した場合にも僅かな危険性しか示さない物質、混合物および物品。その影響はほとんどが包装内に限られ、ある程度以上の大きさと飛散距離を持つ破片の飛散は想定されないというものである。外部火災により包装物のほとんどすべての内容物がほぼ瞬時に爆発を起こさないものでなければならない。
- (e) 等級 1.5: 大量爆発の危険性を有するが、非常に鈍感な物質。すなわち、大量爆発 の危険性を持っているが、非常に鈍感で、通常の条件では、発火・起爆 の確率あるいは燃焼から爆轟に転移する確率が極めて小さい物質および 混合物。
- (f) 等級 1.6: 大量爆発の危険性を有しない極めて鈍感な物品。すなわち、極めて鈍感な物質、または混合物だけを含む物品で、偶発的な起爆または伝播の確率をほとんど無視できるようなものである。

(3)分類の指針

- A) 分類対象外の判定
 - ① ガスに相当する場合は、「分類結果」を「分類対象外」とし、「分類根拠・問題点」には、「GHSの定義におけるガスである。」と記載する。
 - ②爆発性に関する原子団を含まない場合は「分類対象外」とし、「分類根拠・問題点」には「爆発性に関する原子団を含まない。」と記載する。
- B) 区分外の判定

酸素を含む爆発性の原子団を有する物質で、国連 GHS 改訂 3 版 2.1.4.2.2(b)-(d) (酸素収支の計算、発熱分解エネルギー、無機酸化物の含有量)に該当する場合は、「分類結果」を「区分外」とし、「分類根拠」には「酸素収支の計算結果(計算結果値**)に基づく。」と記載する。

- C) TDG 分類による分類
 - ①TDG 分類によって、(7) に例示された物質はそれに従って分類する。
 - ②「鈍性化火薬類」は、TDG 分類の火薬類に関する試験シリーズの試験結果からは、 等級 1.1~1.6 に該当しない。したがって、GHS の「火薬類」の区分にも該当しない。これに該当する場合には、「火薬類」については、「分類結果」を「分類できない」とし、「分類根拠」には「試験法が決まっていない」と記載する。

国連の試験方法を(部分的にでも)採用している「火薬類取締法」または「消防 法危険物第五類」の試験データを、GHSの試験法と比較・吟味して、分類に使用 することは妨げないものとする。

(4) データの入手可能性

火薬の性能は調合によって決まるものである。物質固有の爆発性能データは限られている。

(5) 従来の分類システムとの比較

等級 $1.1\sim1.6$ について UNRTDG2.1.1.4 の区分(Division)の定義をそのまま採用している。

(6) 従来システムで分類された結果の情報源

UNRTDG の危険物リスト (例えば危規則別表 1) に以下の物質例が挙がっている。

・ 不安定火薬類 =輸送を禁止されている爆発性物質および物品

昭和54年運輸省告示第549号「船舶による危険物の運送基準等を定める告示」第5条一に掲げられた以下の火薬類は不安定火薬類とされる。

- (イ) 臭素酸アンモニウム
- (ロ) 臭素酸アンモニウム溶液
- (ハ) 塩素酸アンモニウム
- (ニ) 塩素酸アンモニウム溶液
- (ホ) 亜塩素酸アンモニウム
- (へ) 硝酸アンモニウム (別表第1に掲げるものを除く。)
- (ト) 亜硝酸アンモニウム
- (チ) 無機亜硝酸とアンモニウム塩の混合物
- (リ) ピクリン酸銀(乾性または水<30%)
- (ヌ)シクロトリメチレントリニトラミン(乾性または水<15%)
- (ル) ジアゾニトロフェノール(乾性またはアルコール・水<40%)
- (ヲ) ジエチレングリコールジナイトレート (安定剤<25%)
- (ワ) グアニルニトロサミノグアリニデンヒドラジン(乾性または水<30%)
- (カ) グアニルニトロサミノグアニルテトラセン(乾性またはアルコール・水<30%)
- (ヨ) アジ化鉛(乾性またはアルコール・水<20%)
- (タ) スチフニン酸鉛(乾性またはアルコール・水<20%)
- (レ) 六硝酸マンニトール (乾性またはアルコール・水<40%)
- (ソ) 雷こう (乾性またはアルコール・水<20%)
- (ツ) ニトログリセリン (安定剤<40%)
- (ネ) 四硝酸ペンタエリスリット (水<25%、安定剤<15%)

- (ナ) パウダーケーキ (水<25%、アルコール<17%)
- (ラ) シクロテトラメチレンテトラニトラミン(乾性または水<15%)
- (ム) シクロトリメチレントリニトラミンとシクロテトラメチレンテトラニトラミン の混合物 (水<15%、安定剤<10%)

等級 1.1 = UNRTDG1.1

UNNo. 物質名(仕様)

- 0004 ピクリン酸アンモニウム(乾性または水<10%)
- 0028 黒色火薬
- 0072 シクロトリメチレントリニトラミン (湿性:水>15%)
- 0074 ジアゾジニトロフェノール (湿性:水>40%)
- 0075 ジエチレングリコールジナイトレート(鈍感剤>25%)
- 0076 ジニトロフェノール (乾性または水<15%)
- 0077 ジニトロフェノールアルカリ金属塩(乾性または水<15%)
- 0078 ジニトロレゾルシノール(乾性または水<15%)
- 0079 ヘキサニトロジフェニルアミン
- 0113 グアニルニトロサミノグアニリデンヒドラジン(水>30%)
- 0114 グアニルニトロサミノグアニルテトラセン(水>30%)
- 0118 ヘキソライト(乾性または水<15%)
- 0129 アジ化鉛 (水>20%)
- 0130 スチフニン酸鉛(水>20%)
- 0133 六硝酸マンニトール (水>40%)
- 0143 ニトログリセリン (鈍感剤>40%)
- 0146 硝酸でん粉(乾性または水<20%)
- 0147 ニトロ尿素
- 0150 四硝酸ペンタエリスリット(水>25%又は鈍感剤>15%)
- 0151 ペントライト(乾性または水<15%)
- 0153 トリニトロアニリン
- 0154 ピクリン酸(乾性または水<30%)
- 0155 トリニトロクロロベンゼン
- 0207 テトラニトロアニリン
- 0208 トリニトロフェニルメチルニトラミン
- 0209 トリニトロトルエン (乾性または水<30%)
- 0213 トリニトロアニソール
- 0214 トリニトロベンゼン (乾性または水<30%)
- 0215 トリニトロ安息香酸(乾性または水<30%)
- 0216 トリニトロメタクレゾール

- 0217 トリニトロナフタレン
- 0218 トリニトロフェネトール
- 0219 トリニトロレゾルシノール(乾性または水<20%)
- 0220 硝酸尿素(乾性または水<20%)
- 0222 硝酸アンモニウム (可燃物>0.2%)
- 0224 アジ化バリウム (乾性または水<50%)
- 0226 シクロテトラメチレンテトラニトラミン(水>15%)
- 0266 オクトライト (乾性または水<15%)
- 0282 ニトログアニジン (乾性または水<20%)
- 0340 ニトロセルロース (乾性または水<25%)
- 0341 ニトロセルロース(改質されないものまたは可塑剤<18%)
- 0385 5ーニトロベンゾトリアゾール
- 0386 トリニトロベンゼンスルホン酸
- 0387 トリニトロフルオレノン
- 0390 トリトナール
- 0392 ヘキサニトロスチルベン
- 0393 ヘキソトナール
- 0394 トリニトロレソルシノール (水>20%)
- 0402 過塩素酸アンモニウム
- 0483 シクロトリメチレントリニトラミン (鈍性化したもの)
- 0484 シクロテトラメチレンテトラニトラミン (鈍性化したもの)
- 0489 ジニトログリコルリル
- 0490 ニトロトリアゾロン
- 0496 オクトナール
- 0504 1Hーテトラゾール

等級 1.2 = UNRTDG1.2

現在のところ国連番号がつけられているものは物品に限られている。定義としては物質も含まれる。

等級 1.3 = UNRTDG1.3

- 0161 無煙火薬
- 0234 ジニトロ-o-クレゾールナトリウム塩(乾性または水<15%)
- 0235 ピクラミン酸ナトリウム (乾性または水<20%)
- 0236 ピクラミン酸ジルコニウム(乾性または水<20%)
- 0342 ニトロセルロース (アルコール>25%)
- 0343 ニトロセルロース (可塑剤>18%)

- 0406 ジニトロソベンゼン
- 0411 四硝酸ペンタエリスリット (ワックス>77%)

等級 1.4 = UNRTDG1.4

- 0407 テトラゾール-1-酢酸
- 0448 5-メルカプトテトラゾール-1-酢酸

等級 1.5 = UNRTDG1.5

0331 爆破薬B

等級 1.6 = UNRTDG1.6

明示された品名のものはない。

鈍性化爆発物質(GHS2.1.2.2 注記 2)

ある種の爆発性物質を水、アルコール等で湿性化し、爆発性を抑えたものは、GHS の火薬類の判定基準に入らない。UNRTDG でクラス 3 および区分 4.1 の一部に入れられているが、ERG ではスケジュール 113 (引火性固体一毒性(湿性/鈍性化爆薬))の物質が該当する。これらは EmS では F-E (水無反応引火性液体)および S-J (湿性爆薬および自己発熱性物質)に分類される。

(例) UNRTDG3*EmS:F-E

- 1204 ニトログリセリン (濃度1%以下のアルコール溶液)
- 2059 ニトロセルロース溶液 (含有率 55%以下)

UNRTDG4.1*ERG113

1310 ピクリン酸アンモニウム(水分10%以上)

(UNRTDG4.1*EmS:S-J)

- 1320 ジニトロフェノール (水分 15%以上)
- 1336 ニトログアニジン (水分20%以上)
- 1337 硝酸でん粉 (水分 20%以上)
- 1354 トリニトロベンゼン (水分30%以上)
- 1355 トリニトロ安息香酸(水分30%以上)
- 1356 トリニトロトルエン (水分30%以上)
- 1357 硝酸尿素(水分20%以上)
- 1571 アジ化バリウム (水分50%以上)
- 2555 ニトロセルロース (水分25%以上)

(6) 火薬類関連物質についてのその他の項目の分類

「鈍性化火薬類」は、評価対象物質が固体の場合、GHSの「可燃性固体」に関する試験(UNTDGのクラス 4.1 容器等級Ⅱ、Ⅲに対する試験と同じ)を行うには危険を伴う。したがって、所定のレビュー文書に情報がない場合には、「可燃性固体」については、「分類結果」を「分類できない」とし、「分類根拠・問題点」には「鈍性化火薬類」と記載する。なお、液体で引火点の測定結果が得られている場合は、それによって「引火性液体」に関する分類を行う。

2-3-2 可燃性/引火性ガス

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.2.1)

可燃性/引火性ガスとは、標準気圧101.3kPa で20℃において、空気との混合気が爆発 範囲(燃焼範囲)を有するガスをいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】 (2.2.2)

可燃性/引火性ガスは、次表に従ってこのクラスにおける二つの区分のいずれかに分類 される。

表2.2.1 可燃性/引火性ガスの判定基準

区 分	判定基準			
1	標準気圧101.3kPa で20℃において以下の性状を有するガス;			
	(a) 濃度が13%(容積分率)以下の空気との混合気が可燃性/引火性で			
	あるもの、または			
	(b) 爆発 (燃焼) 下限界に関係なく空気との混合気の爆発範囲 (燃焼範			
	囲)が12%以上のもの。			
2	区分1 以外のガスで、標準気圧101.3kPaで20℃においてガスであり、空			
	気との混合気が爆発範囲(燃焼範囲)を有するもの。			

注記1:アンモニアおよび臭化メチルは、規制目的によっては特殊例と見なされる。 注記2:エアゾールは可燃性/引火性ガスと分類すべきではない、第2.3章(注:可燃性/引火性エアゾール)参照。

(3)分類の指針

A) 分類対象外の判定

GHSのガスの定義にあてはまらない製品は「分類対象外」とする。

B) 区分外の判定

不燃性、および酸化性のガスを「区分外」とする。

C) TDG 分類による分類

TDG 分類によって、(6)に例示された物質はそれに従って分類する。

D) 既定の文献中のデータからの分類

所定のレビュー文書の可燃範囲または爆発限界のデータに基づき、国連 GHS 改訂 3 版 2.2.2 に従い区分する。

(4) データの入手可能性

気体物質の物性データは比較的得やすい。常温・常圧で可燃性/引火性の気体物質は すべて可燃性/引火性ガスになる。可燃範囲(いわゆる爆発限界)のデータを得れば単 体ガスの区分の判断は容易である。

(5) 従来の分類システムとの比較

UNRTDG2.2.2.1 に述べられた区分(Division) 2.1 の定義が GHS 区分 1 と一致する。 EmS ではスケジュール F-D が該当する。S-U は毒性ガス等も含んでいる。

ERG ではスケジュール 115, 116, 117, 118, 119 に分けられている。

EU DSD 分類の R-Phrase 5 12 (以下、R12 のように記載) が付けられた気体物質はこの判定基準 (区分 1、2) に該当するが、区分は示されない。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

区分 1 = UNRTDG2.1 および 2.3.2(2.1)

区分2 =上に含まれない可燃性ガス

UNRTDG でいう「クラス 2・ガス類」は 2-3-5 で述べる高圧ガスの定義に当てはまる状態(圧縮、ないし液化)のもののみを対象にしている。

GHS の「可燃性/引火性ガス」では、高圧ガスの条件がはずされて、常圧のガスでも対象になる。

区分1の例)

UNRTDG2.1 1012 ブチレン

1036 エチルアミン

1049 圧縮水素

1978 プロパン

2203 シラン

2454 フッ化メチル

3153 パーフルオロ (メチルビニルエーテル)

UNRTDG2.3(2.1) 1 0 5 3 硫化水素

1082 トリフルオロクロロエチレン

2188 アルシン

2204 硫化カルボニル

区分2の例) 1062 臭化メチル

39

⁵ R-Phrase については付録を参照のこと。

2-3-3 可燃性/引火性エアゾール

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.3.1)

エアゾール、すなわちエアゾール噴霧器とは、圧縮ガス、液化ガスまたは溶解ガス(液状、ペースト状または粉末を含む場合もある)を内蔵する金属製、ガラス製またはプラスチック製の再充填不能な容器に、内容物をガス中に浮遊する固体もしくは液体の粒子として、または液体中またはガス中に泡状、ペースト状もしくは粉状として噴霧する噴射装置を取り付けたものをいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】 (2.3.2)

2.3.2.1 次のGHS判定基準に従って可燃性/引火性に分類される成分を含むエアゾールの 分類は、可燃性/引火性とするべきである。

GHS判定基準:

引火性液体 (第2.6章参照)

可燃性/引火性ガス (第2.2章参照)

可燃性固体(第2.7章参照)

- 注記1:可燃性/引火性成分には自然発火性物質、自己発熱性物質または水反応性物質は含まない。なぜならば、これらの物質はエアゾール内容物として用いられることはないためである。
- 注記2: 可燃性/引火性エアゾールを、追加的に第2.2章 (可燃性/引火性ガス)、第2.6章 (可燃性/引火性液体) あるいは第2.7章 (可燃性固体) とすることはない。
- 2.3.2.2 可燃性/引火性エアゾールは、それを構成する物質、その化学燃焼熱、および該当する場合には泡試験(泡エアゾールの場合)ならびに火炎長(着火距離)試験と密閉空間試験(噴射式エアゾールの場合)にもとづいて、可燃性/引火性エアゾールのクラスにおける二つの区分のいずれかに分類される。第2.3.4.1項の判定論理参照。

(2.3.4.1項判定論理)

可燃性/引火性エアゾールの分類には、その可燃性/引火性成分、その化学燃焼熱、および該当する場合には泡試験(泡エアゾールの場合)ならびに火炎長(着火距離)試験および密閉空間試験(噴射式エアゾールの場合)に関するデータが求められる。

なお、GHSによる分類基準は以下のように要約される。

区分1:・可燃性/引火性成分の含有率が85%以上、かつ燃焼熱が30kJ/g以上、または

- ・噴射式エアゾールで、火炎長(着火距離)試験において、75cm以上の距離で着火。
- ・泡エアゾールで、泡試験において、火炎の高さ 20cm 以上および火炎持続時間 2 秒以上、または火炎の高 4cm 以上および火炎持続時間 7 秒以上、
- 区分2:・噴射式エアゾールで、燃焼熱量が20kJ/g以上であり、火炎長(着火距離) 試験において、15cm以上の距離で着火、または密閉空間着火試験で、着火時間換算300秒/m³以下、または爆発限界(燃焼限度300g/m³以下。
 - ・泡エアゾールで、泡試験において、火炎の高さ 4cm 以上および火炎持続時間 2 秒以上、

区分外: 引火性成分の含有率が1%以下、かつ燃焼熱が20kJ/g未満。

(3) 分類の指針

A) 分類対象外の判定

「引火性エアゾール」については、「分類結果」を「分類対象外」とし、「分類根拠・ 問題点」に「エアゾール製品でない。」と記載する。

B) 区分外の判定

可燃性成分が含まれない場合、および1%以下でかつ化学燃焼熱が 20kJ/g 未満の場合「区分外」とする。

(4) データの入手可能性

エアゾール製品の構成は、製品設計者が決めるものである。 噴射液および推進ガスについて、必要なときは試験をして GHS 分類基準に該当する場合は GHS2.3.4.1 の判定論理に従って、区分を決める。

(5) 従来の分類システムとの比較

UNRTDG3.2.1 Dangerous Goods List の国連番号 1950 (Aerosols)に対する Special provision 63 に記載されている判定方法が、GHS の判定論理に採用された。

2-3-4 支燃性/酸化性ガス類

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.4.1)

支燃性/酸化性ガスとは、一般的には酸素を供給することにより、空気以上に他の物質の燃焼を引き起こす、または燃焼を助けるガスをいう。

注記:「空気以上に他の物質の燃焼を引き起こすガス」とは、ISO 10156:1996または 10156-2:2005により定められる方法によって測定された23.5%以上の酸化能 力を持つ純粋ガスあるいは混合ガスをいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】 (2.4.2)

支燃性/酸化性ガスは、次表に従ってこのクラスにおける単一の区分に分類される。

表2.4.1	支燃性/酸化性ガスの判定基準
1X 4 . T . T	

区分	判定基準
1	一般的には酸素を供給することにより、空気以上に他の物質の燃焼
1	を引き起こす、または燃焼を助けるガス

(3)分類の指針

A) 分類対象外の判定

GHSのガスの定義にあてはまらない製品は「分類対象外」とする。

B) TDG 分類等による分類

TDG 分類に基づく危険物リストに危険物(ガス製品で副次危険性 5.1 のもの)として記載のある評価対象物質を「区分 1 」とする。

ISO10156-2 に記載されている次のガスも、「区分1」とする。

Bis-trifluoromethylperoxide	C i = 4 0 注) Ci :酸素当量
Bromine pentafluoride	C i = 4 0
Bromine trifluoride	C i = 4 0
Chlorine	C i = 0.7
Chlorine pentafluoride	C i = 4 0
Chlorine trifluoride	C i = 4 0
Fluorine	C i = 4 0
Iodine pentafluoride	C i = 4 0
Nitric oxide	C i = 0.6

Nitrogen dioxide	C i = 1
Nitrogen trifluoride	C i = 1.6
Nitrogen trioxide	C i = 4 0
Oxygen difluoride	C i = 4 0
Ozone	C i = 4 0
Tetrafluorohydrazine	C i = 4 0

参考:「酸化性ガス」に関する国際的な試験方法である ISO10156-2 が 2005 年 8 月 に制定された。GHS 文書改訂 3 版 2.4.4.1 の記述は ISO10156:1996 に基づくものであり、今後修正されることが想定される。この試験は手間がかかり、かつ爆発危険性を伴うもので ISO 制定までに数物質しか Coefficient of Oxygen Equivalency の測定結果が得られていない。

C) 区分外の判定

これら以外の(酸化性でない)ガスを「区分外」とする。

(4) データの入手可能性

ISO-10156-2 に従って、組成から計算する。

国連 GHS 改訂 3 版には亜酸化窒素および酸素の酸素当量係数が記載されている。毒性・腐食性の酸化性ガスについては ISO-10156-2 に記載されている。

(5) 従来の分類システムとの比較

UNRTDG の酸化性物質 (区分 5.1) の定義(UNRTDG2.5.2)は液体および固体に限られている。気体の酸化性の判定基準はないが、副次危険性としてガス類に 5.1 を付した物質があるが網羅的ではない。ERG ではスケジュール 122、EmS では S-W に分類されている。これらをもとに酸化性ガスを選ぶことができる。

次項で三フッ化窒素以下のものが「その他全ての酸化性ガス」に相当する。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

UNRTDG の危険物リスト第 3 および第 4 欄で区分 2.2 (5.1) 又は 2.3 (5.1)、2.3 (5.1、8) とされているガスが該当する。また、副次危険性の位置づけがなくとも、区分 2.2 および 2.3 のガスの一部も該当する可能性がある。

輸送危険物は「高圧ガス」の定義に当てはまるものだけが規制対象であるが、GHSではこのような条件はつかないので、常圧のガスも GHS 区分にはいる。

(例) UNRTDG2.2 (5.1)

- 1003 液体空気
- 1014 圧縮された二酸化炭素と酸素の混合物
- 1070 亜酸化窒素
- 1072 圧縮酸素

- 1073 液化酸素
- 2201 液化亜酸化窒素
- 2451 圧縮三フッ化窒素

UNRTDG2.3 (5.1、8) または UNRTDG2.3 (5.1)

- 1045 圧縮フッ素
- 1067 二酸化窒素
- 1660 圧縮一酸化窒素
- 1749 三フッ化塩素
- 1975 一酸化窒素と二酸化窒素の混合物
- 2190 圧縮二フッ化酸素
- 2421 三酸化二窒素
- 2548 五フッ化塩素
- 2901 塩化臭素
- 3083 パークロリルフルオライド

2-3-5 高圧ガス

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.5.1)

高圧ガスとは、200kPa (ゲージ圧)以上の圧力の下で容器に充填されているガスまたは液化または深冷液化されているガスをいう。

高圧ガスには、圧縮ガス;液化ガス;溶解ガス;深冷液化ガスが含まれる。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.5.2)

ガスは、充填された時の物理的状態によって、次表の4つのグループのいずれかに分類される。

表2.5.1 高圧ガスの判定基準

グループ	判定基準			
圧縮ガス	加圧して容器に充填した時に、-50℃で完全にガス状であるガス;			
	臨界温度-50℃以下のすべてのガスを含む。			
液化ガス	加圧して容器に充填した時に-50℃を超える温度において部分的に			
	液体であるガス。次の2 つに分けられる。			
	(a) 高圧液化ガス:臨界温度が-50℃と+65℃の間にあるガス;			
	および			
	(b) 低圧液化ガス: 臨界温度が+65℃を超えるガス。			
深冷液化ガス	容器に充填したガスが低温のために部分的に液体であるガス。			
溶解ガス	加圧して容器に充填したガスが液相溶媒に溶解しているガス。			

臨界温度とは、その温度を超えると圧縮の程度に関係なく純粋ガスが液化されない温度をいう。

(3)分類の指針

A) 分類対象外の判定

GHS の定義で液体および固体である物質、混合物を「分類対象外」とする。

B) 既定の文献中のデータからの分類

ガスの GHS 区分のうち、「高圧ガス」は製造者によって輸送・使用等の目的に応じて容器内に作り出された状態である。また、その他の性質(可燃性ガス、酸化性ガス、急性吸入毒性)はガスが常圧の空気中に存在するときの危険・有害性に基づいている。今回の GHS 分類では、ガス状物質は、原則として所定のレビュー文書から得た臨界温度および想定される輸送時の状態により、「高圧ガス」を各グループに区分分けする。単一物質を扱う分類では、深冷液化ガスおよび溶解ガスの分類は使用しない。

(4) データの入手可能性

必要なデータは、50°Cにおける蒸気圧、20°C、1 気圧での物理的性状、および臨界温度である(GHS2.5.4.2)。これらは比較的容易に入手できる。ボンベに充てんしたときの状態、圧力等は製造者の設計による。

(5) 従来の分類システムとの比較

UNRTDG2.2.1.2 に述べられたクラス 2 (ガス) の定義および GHS におけるガスの定義は「50°Cで蒸気圧 300kPa (絶対圧)以上、又は 20°C常圧(101.3kPa)の条件で完全にガスであるもの」として一致している。他方、UNRTDG では「高圧ガス」の定義はなく、GHS において新たに「200kPa(ゲージ圧)以上」と定義された。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

製造者の設定による。外部データを補助的に使用して高圧ガス内の区分をする。

2-3-6 引火性液体

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.6.1)

引火性液体とは、引火点が93℃以下の液体をいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.6.2)

引火性液体は、次表に従ってこのクラスにおける4 つの区分のいずれかに分類される。 表2.6.1 引火性液体の判定基準

区 分	判定基準
1	引火点<23℃および初留点≦35℃
2	引火点<23℃および初留点>35℃
3	引火点≧23℃および≦60℃
4	引火点> 60℃および≦93℃

注記 1: 引火点が 55 \mathbb{C} から 75 \mathbb{C} の範囲内にある軽油類、ディーゼル油および軽加熱油は、 規制目的によっては一つの特殊グループとされることがある。

注記 2: 引火点が 35℃を超え 60℃を超えない液体は、危険物の輸送に関する国連勧告、 試験および判定基準の燃焼持続試験 L.2 において否の結果が得られている場合 は、規制目的(輸送など)によっては引火性液体とされないことがある。

注記3:ペイント、エナメル、ラッカー、ワニス、接着剤、つや出し剤等の粘性の引火性 液体は、規制目的(輸送など)によっては一つの特殊グループとされることがあ る。この分類またはこれらの液体を非引火性とすることは、関連法規または所管 官庁により決定することができる。

注記4:エアゾールは引火性液体と分類すべきではない、第2.3章参照。

(3)分類の指針

A) 分類対象外の判定

ガスおよび固体の物質、混合物を「分類対象外」とする。

B) 区分外の判定

不燃性の液体を「区分外」とする。(消防法の第4類危険物、動植物油、指定可燃物である液体も区分外とする。)なお、難燃性の物質も、これらの項目は区分外と考えられるが、可燃性と難燃性の境界の定義は明確にされていない。したがって、今回の分類作業では所定のレビュー文書で不燃性と確認された物質の場合のみ、「分類結果」に「区分外」と記載する(p.21 参考)。

C) 既定の文献中のデータによる分類

引火性液体の GHS 分類については、所定のレビュー文書で得られた引火点による区分を優先し、TDG による分類は引火点データが得られなかったときに採用するものとする。

GHS 分類での引火性液体の区分 4 は、TDG 分類では危険物に該当していないので、 区分 4 については UNRTDG の分類結果を GHS 分類には利用できない。

(4) データの入手可能性

消防法で測定を義務付けていることもあり、調合製品であっても、データの入手は比較的容易であるが、引火点が高い場合に消防法の測定が「開放式」になることが、区分4の上限付近で問題になる。

【消防法第4類の試験結果による分類】

消防法の危険物第四類物質は引火点や初留点(または沸点)のデータが得られているので、それらを用いることができる。密閉式の引火点測定で 80℃を超えた場合は、消防法では開放式のデータを使用するので、そのままでは GHS 分類に使用できない。

注: 引火点の測定結果は、「密閉式」を基本とするが、特殊な場合には「開放式」も許されている(国連 GHS 改訂 3 版 2.6.4.2.4)。消防法データの蓄積されている我が国ではこの規定が利用できる。「開放式」は、「密閉式」よりも数℃高いとされているので、引火点がおおむね 110℃以上である場合は、試験法によらず「区分外」とする。しかし、開放式の測定結果が 90~110℃の場合には、GHS に基づく測定法により「区分外」となる場合と、そうではない場合があり得る。密閉法のデータが得られなかった場合「分類できない」とする。

(5) 従来の分類システムとの比較

区分1~3は、UNRTDGクラス3と原則的に一致している。

区分 1 =UNRTDG3 I (引火点に上限がないが、初留点 35℃以下で引火点が 23℃以上の 可燃性物質は見当たらない。)

区分 2 = UNRTDG3 II

区分 3 = UNRTDG3III

区分4 = UNRTDG では非危険物

EU DSD 分類の区分は GHS と違っている。R12,11,10 は参考データにしか出来ない。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

区分3までは、適切な UNRTDG に従った法規(日本では危規則など)を前節に述べた対応で使える。

(区分1の例) UNRTDG3 I

- 1093 アクリロニトリル
- 1131 二硫化炭素
- 2481 エチルイソシアネート

(区分2の例) UNRTDG3 II

- 1090 アセトン
- 1154 ジエチルアミン
- 1717 塩化アセチル
- 1230 メタノール

(区分3の例) UNRTDG3Ⅲ

- 1157 ジイソブチルケトン
- 2260 トリプロピルアミン
- 2529 イソ酪酸

(区分4の例) ジビニルベンゼン

N-エチルアニリン

エチレンシアンヒドリン

ニトロベンゼン

2-3-7 可燃性固体

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.7.1)

可燃性固体とは、易燃性を有する、または摩擦により発火あるいは発火を助長する恐れのある固体をいう。

易燃性固体とは、粉末状、顆粒状、またはペースト状の物質で、燃えているマッチ等の発火源と短時間の接触で容易に発火しうる、また、炎が急速に拡散する危険なものをいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.7.2)

- 2.7.2.1 粉末状、顆粒状またはペースト状の物質あるいは混合物は、危険物の輸送に関する国連勧告、試験法および判定基準Part III, 第33.2.1 項に従って1 種以上の試験を実施し、その燃焼時間が45 秒未満か、または燃焼速度が2.2mm/秒より速い場合には、 易燃性固体として分類される。
- 2.7.2.2 金属または金属合金の粉末は、発火し、その反応がサンプルの全長にわたって10 分間以内に拡散する場合、可燃性固体として分類される。
- 2.7.2.3 摩擦によって火が出る固体は、確定的な判定基準が確立されるまでは、既存のもの(マッチなど) との類推によって、このクラスに分類される。
- 2.7.2.4 可燃性固体は、危険物の輸送に関する国連勧告、試験法および判定基準の第33.2.1 項に示すように、Method N.1 を用いて、下記の表に従ってこのクラスにおける二つ の区分のいずれかに分類される。

	表2.7.1 可燃性固体の判定基準			
区分	判定基準			
1	燃焼速度試験:			
	金属粉末以外の物質または混合物			
	(a) 火が湿潤部分を越える、および			
	(b) 燃焼時間<45 秒、または燃焼速度>2.2mm/秒			
	金属粉末:燃焼時間 ≦ 5分			
2	燃焼速度試験:			
	金属粉末以外の物質または混合物			
	(a) 火が湿潤部分で少なくとも4 分間以上止まる、および			
	(b) 燃焼時間<45 秒、または燃焼速度>2.2mm/秒			
	金属粉末:燃焼時間> 5分 および 燃焼時間≦ 10分			

注記 1: 固体物質または混合物の分類試験では、当該物質または混合物は提供された形態で試験を実施すること。たとえば、供給または輸送が目的で、同じ物質が、試験したときとは異なった物理的形態で、しかも評価試験を著しく変える可能性が高いと考えられる形態で提供されるとすると、そうした物質もまたその新たな形態で試験されなければならない。

注記2:エアゾールは可燃性固体と分類すべきではない、2.3章参照。

(3) 分類指針

A) 分類対象外の判定

ガスおよび液体の物質、混合物を「分類対象外」とする。

B) 区分外の判定

文献から、不燃性、ないし難燃性であることがわかっている固体を「区分外」とする。

C) TDG 分類による分類

物質名で TDG 分類がされている場合は、その分類に従って区分する。TDG 分類がされていない場合は「分類できない」とするのが原則である。

(4) データの入手可能性

燃焼速度試験の結果値はほとんど公表されていない。

(5) 従来の分類システムとの比較

UNRTDG・区分 4.1 の「引火性固体」の定義と一致する。

区分 4.1 は他に 2-3-8 「自己反応性化学品」および 2-3-1 「火薬類」を含んでいる。 従って ERG と合わせて考えなければならない。

関係する ERG のスケジュールは以下のものである。

- 133 引火性固体
- 134 引火性固体-毒性/腐食性
- 170 金属(粉末、ちり、削り屑、穿孔屑、旋盤屑、切り屑など) EmS ではスケジュール S-G に自己反応性物質と合わせて入れられている。 EUDSD 分類の R11 が付けられた固体物質もこの分類基準に該当する。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

UNRTDG(または、日本では危規則)において、以下に属する物が該当する。

区分 1 = UNRTDG · 4.1 II * ERG133, 134, 170

区分 2 = UNRTDG · 4.1 III * ERG133, 134, 170

(区分1の例)

(E)1 1 (2)(1)	
4.1 II * 1 3 3	1345 ゴムくず
	2989 ホスホン酸水素鉛
$4.1 \mathrm{II} * 1 3 4$	1868 デカボラン
$4.1 \mathrm{II} * 1 7 0$	1309 アルミニウム粉末 (表面被覆)
	1323 フェロセリウム
	1871 水素化チタン
(区分2の例)	
4.1Ⅲ * 1 3 3	1312 ボルネオール
	1328 ヘキサメチレンテトラミン
	2213 パラホルムアルデヒド
	3241 ブロノポール
	3251 一硝酸イソソルビド
4.1Ⅲ * 1 3 4	明示された品名のものはない。
4.1 Ⅲ * 1 7 0	1346 けい素粉末 (無定形のもの)
	2878 スポンジチタン(粒状又は粉状)

2-3-8 自己反応性化学品

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.8.1)

2.8.1.1 *自己反応性物質または混合物*は、熱的に不安定で、酸素(空気)がなくとも強い発熱分解を起し易い液体または固体の物質あるいは混合物である。GHSのもとで、火薬類、有機過酸化物または酸化性物質として分類されている物質および混合物は、この定義から除外される。

2.8.1.2 自己反応性物質または混合物は、実験室の試験において処方剤が密封下の加熱で 爆轟、急速な爆燃または激しい反応を起こす場合には、爆発性の性状を有すると見なされ る。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.8.2)

2.8.2.1 自己反応性物質または混合物は、このクラスでの分類を検討すること。ただし 下記の場合を除く。

- (a) 第2.1 章のGHS 判定基準に従い、火薬類である。
- (b) 第2.13 章または第2.14 章の判定基準に基づく酸化性液体または酸化性固体、ただし、5%以上有機可燃性物質を含有する酸化性物質の混合物は注記に規定する手順により自己反応性物質に分類しなければならない。
- (c) 第2.15 章のGHS 判定基準に従い、有機過酸化物である。
- (d) 分解熱が300J/g より低い、または
- (e) 50kg の輸送物の自己加速分解温度 (SADT) が75℃を超えるもの。

注記:酸化性物質の分類の判定基準に適合し、かつ5%以上有機可燃性物質を含有する酸化性物質の混合物であって、上記(a)、(c)、(d)又は(e)の基準に適合しないものは自己反応性物質の分類手順に拠らなければならない;

自己反応性物質タイプB からF の性状(2.8.2.2 参照)を有する混合物は、自己反応性物質に分類しなければならない。

- 2.8.2.2 自己反応性物質および混合物は、下記の原則に従って、このクラスにおける「タイプAからG」の7種類の区分のいずれかに分類される。
 - (a) 包装された状態で爆轟しまたは急速に爆燃し得る自己反応性物質または混合物は自己反応性物質タイプA と定義される。

- (b) 爆発性を有するが、包装された状態で、爆轟も急速な爆燃もしないが、その包装物内で熱爆発を起こす傾向を有する自己反応性物質または混合物は**自己反応性物質タイプB** として定義される。
 - (c) 爆発性を有するが、包装された状態で、爆轟も急速な爆燃も熱爆発も起こすことのない自己反応性物質または混合物は自己反応性物質タイプC として定義される。
 - (d) 実験室の試験で以下のような性状の自己反応性物質または混合物は**自己反応 性物質タイプD**として定義される。
 - (i) 爆轟は部分的であり、急速に爆燃することなく、密封下の加熱で激しい反応 を起こさない。
 - (ii) 全く爆轟せず、緩やかに爆燃し、密封下の加熱で激しい反応を起こさない。 または
 - (iii) 全く爆轟も爆燃もせず、密封下の加熱では中程度の反応を起こす。
 - (e) 実験室の試験で、全く爆轟も爆燃もせず、かつ密封下の加熱で反応が弱いかまたは無いと判断される自己反応性物質または混合物は、自己反応性物質タイプE として定義される。
 - (f) 実験室の試験で、空気泡の存在下で全く爆轟せず、また全く爆燃もすることなくかつ、密封下の加熱でも爆発力の試験でも、反応が弱いかまたは無いと判断される自己反応性物質または混合物は、自己反応性物質タイプF として定義される。
 - (g) 実験室の試験で、空気泡の存在下で全く爆轟せず、また全く爆燃もすることなく、かつ、密封下の加熱でも爆発力の試験でも反応を起こさない自己反応性物質または混合物は、自己反応性物質タイプG として定義される。ただし、熱的に安定である(SADT が50kg の輸送物では60Cから75C)、および液体混合物の場合には沸点が150C以上の希釈剤で鈍感化されていることを前提とする。混合物が熱的に安定でない、または沸点が150C未満の希釈剤で鈍感化されている場合、その混合物は自己反応性物質タイプF として定義すること。

注記1: タイプG には危険有害性情報の伝達要素の指定はないが、別の危険性クラスに該当する特性があるかどうか考慮する必要がある。

注記2: タイプA からタイプG はすべてのシステムに必要というわけではない。

2.8.2.3 温度管理基準

自己加速分解温度(SADT)が55℃以下の自己反応性物質は、温度管理が必要である。 SADT 決定のための試験法並びに管理温度および緊急対応温度の判定は危険物の輸送に 関する国連勧告、試験および分類基準の第Ⅱ部、28 節に規定されている。選択された試験 は、包装物の寸法および材質のそれぞれに対する方法について実施しなければならない。

(3)分類の指針

A) 分類対象外の判定

- ①ガス並びに火薬類、有機過酸化物および酸化性物質に分類された液体・固体の物質を「分類対象外」とする。
- ②爆発性に関連する原子団 (2-2-6) および自己反応性に関連する原子団 (2-2-7) を 含まない物質を「分類対象外」とする。

B) 区分外の判定

爆発性・自己反応性の原子団を含む物質について、SADT、または発熱分解エネルギーのデータが所定のレビュー文書から得られ、GHS 文書改訂 3 版 2.8.2.1(d)(e)の手引きに該当する場合は、「分類結果」を「区分外」とし、「分類根拠・問題点」には「SADT ** \mathbb{C} 」(※※には具体的数値が入る)等と記載する。

C) TDG 分類等による分類

物質名でTDG 分類がされている場合は、その分類に従って区分する。

危規則第7条第1項の規定により「船舶による危険物の運送基準等を定める告示」第5条二から四に掲げられている輸送禁止物質のなかには純物質が「自己反応性物質タイプ A」に属するものもあるが、これらは必要な安定剤を含有するものについて分類し、タイプ A とはしない。

以上の手順で判定できなかった物質は「分類できない」とする。

(4) データの入手可能性

国連 GHS 改訂 3 版 2.8.4 のフローチャートに関わる測定データはほとんど公表されていない。

自己反応性物質は純物質単体で扱われるよりも、希釈物質や安定化物質を加えて調合された化学品として、取引および使用されることが多い。個々の調合製品について試験をしてタイプA~Gに分類すべきである。

(5) 従来の分類システムとの比較

国連 GHS 改訂 3 版 GHS2.8.4 のフローチャートは UNRTDG 図 2.4.1 のフローチャートと全く同一である。EmS では温度管理が不要な自己反応性物質は可燃性固体と合わせてスケジュール S-G に、温度管理が必要なものは S-K に入れられている。ERG ではスケジュール 149,150 に分類されている。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

UNRTDG と北米緊急時対応指針において、UNRTDG4.1* ERG149, 150 に属する化学品が該当する。

		温度管理不	要(149)	温度管理必要(1	50)
		液体	固体	液体	国体
タイプA	=		(輸送禁止物	質)	
タイプB	=	UN3221,	3222、	3231, 32	2 3 2
タイプC	=	UN3223,	3224、	3233, 32	2 3 4
タイプD	=	UN3225,	3226、	3235, 32	2 3 6
タイプE	=	UN3227,	3228,	3237, 32	2 3 8
タイプF	=	UN3229,	3230、	3239, 32	2 4 0
タイプG	=		(非危険物	1)	

代表的な例は UNRTDG2.5.3.2.4 の表(あるいは危規則告示別表 1 備考 1 の(2))に列挙されている。例を以下に示す。不活化剤によって、より下のタイプになることもある。

(タイプB例)

- 3221 明示された品名のものはない。
- 3222 2-ジアゾー1-ナフトールー4(又は5)-スルホニルクロライド
- 3231 明示された品名のものはない。
- 3232 アゾジカーボンアミド製品B (温度管理必要)

(タイプ C 例)

- 3223 明示された品名のものはない。
- 3224 2、2'-アゾジイソブチロニトリル(水分<50%、ペースト)
- 3233 明示された品名のものはない。
- 3234 2、2'-アゾジ (イソブチロニトリル)

(タイプD例)

- 3225 明示された品名のものはない。
- 3226 ベンゼンスルホニルヒドラジド
- 3235 2、2'-アゾジ(エチル-2-メチルプロピオネート)
- 3236 2、2'-アゾジ(2、4-ジメチル-4-メトキシバレロニトリル)

(タイプE例)

- 3227 明示された品名のものはない。
- 3228 4-(ジメチルアミノ)ベンゼンジアゾニウム三塩化亜鉛-1
- 3237 ジエチレングリコールビス (アリルカーボネート) (>88%) とジイソプロピルパーオキシジカーボネート (<12%) の混合物
- 3238 明示された品名のものはない。

(タイプF例)

- 3229 明示された品名のものはない。
- 3230 明示された品名のものはない。
- 3239 明示された品名のものはない。
- 3240 明示された品名のものはない。

タイプGに区分された物質は UNRTDG の対象外となる。

2-3-9 自然発火性液体

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.9.1)

自然発火性液体とは、たとえ少量であっても、空気と接触すると5 分以内に発火しやすい液体をいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.9.2)

自然発火性液体は、危険物の輸送に関する国連勧告、試験法および判定基準の第 33.3.1.5 項の試験N.3により、下記の表に従ってこのクラスの単一の区分に分類される。

表2.9.1 自然発火性液体の判定基準

区分	判定基準
1	液体を不活性担体に漬けて空気に接触させると5 分以内に発火する、ま
	たは液体を空気に接触させると5 分以内にろ紙を発火させるか、ろ紙を
	焦がす。

(3) 分類の指針

A) 分類対象外の判定

ガスおよび固体の物質・混合物を「分類対象外」とする。

B) 区分外の判定

評価対象物質が、常温で空気と接触しても自然発火しないことが所定のレビュー文 書の情報から確認できる場合には、分類結果を「区分外」とし、「分類根拠」には「常 温の空気と接触しても自然発火しない」と記載する。

信頼できる「発火点」のデータは有力な判断基準にできる。

参考:発火点がおおむね 70℃を超えることが所定のレビュー文書の情報から確認できる場合には「区分外」とすることもできる。

参照: GHS 文書改訂 3 版 2.9.4.2 および GHS 文書改訂 3 版 2.10.4.2

C) TDG 分類による分類

物質名で TDG 分類がされている場合は、その分類に従って区分する。TDG 分類がされていない場合は「分類できない」とするのが原則であるが、当該物質が、常温で空気と接触しても自然発火しないことが認められているなら「区分外」としてよい。

(4) データの入手可能性

公表されたデータはほとんどない。

(5) 従来の分類システムとの比較

国連 GHS 改訂 3 版 GHS2.9.1 の自然発火性液体の定義は UNRTDG2.4.3.2.2 の記載と一致している。かつ 2.4.3.3.1 に述べられているように、容器等級は I とされる。

EmS では 2-3-10 で述べる固体と合わせてスケジュール S-M (自然発火性危険性) または S-L (自然発火性、水反応性物質) に分類される。

ERG ではスケジュール 135, 136 (自然発火性物質) に包含されているが、2-3-11 で述べる自己発熱性化学品との区別がされていない。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

区分 1 = UNRTDG4.2 I (液体) と判断できる。これらの物質は $2 \cdot 3 \cdot 1$ 2 で述べる「水反応可燃性化学品」の性質を併せ持つ場合がある。

(例) UNRTDG4.2 I 1 3 6 6	ジエチル亜鉛
-------------------------	--------

1370 ジメチル亜鉛

1380 ペンタボラン

2445 アルキルリチウム

2870 水素化ホウ素アルミニウム

3053 アルキルマグネシウム

3076 水素化アルキルアルミニウム

3254 トリブチルホスファン

3255 次亜塩素酸ターシャリブチル

2-3-10 自然発火性固体

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.10.1)

自然発火性固体とは、たとえ少量であっても、空気と接触すると**5** 分以内に発火しやすい固体をいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.10.2)

自然発火性固体は、危険物の輸送に関する国連勧告、試験法および判定基準の第 33.3.1.4 項の試験N.2により、以下の表に従って、このクラスの単一の区分に分類される。 表2.10.1 自然発火性固体の判定基準

区分	判定基準
1	固体が空気と接触すると5 分以内に発火する。

注記:固体物質または混合物の分類試験では、当該物質または混合物は試験に供せられる形態で試験を実施すること。たとえば、供給または輸送が目的で、同じ物質が、試験したときとは異なった物理的形態で、しかも評価試験結果を著しく変える可能性が高いと考えられる形態で提供されるとすると、そうした物質もまたその新たな形態で試験されなければならない。

(3)分類の指針

A)分類対象外の判定

ガスおよび液体の物質・混合物を「分類対象外」とする。

B) 区分外の判定

評価対象物質が、常温で空気と接触しても自然発火しないことが所定のレビュー文書の情報から確認できる場合および経験に基づき判断できる場合には、「分類結果」を「区分外」とし、「分類根拠」には「常温の空気と接触しても自然発火しない」と記載する。

記入例:「自然発火性固体」の項で「区分外」(常温の空気と接触しても自然発火 しない)

信頼できる「発火点」のデータは有力な判断基準にできる。

参考:発火点がおおむね 70℃を超えることが所定のレビュー文書の情報から確認できる場合には「区分外」とすることもできる。

参照: GHS 文書改訂 3 版 2.9.4.2 および GHS 文書改訂 3 版 2.10.4.2

C)TDG 分類による分類

物質名で TDG 分類がされている場合は、その分類に従って区分する。TDG 分類がされていない場合は「分類できない」とするのが原則であるが、当該物質が、常温で空気と接触しても自然発火しないことが認められているなら「区分外」としてよい。

(4) データの入手可能性

公表されたデータはほとんどない。

(5) 従来の分類システムとの比較

GHS2.10.1 の自然発火性固体の定義は UNRTDG2.4.3.2.1 の記載と一致している。かつ 2.4.3.3.1 に述べられているように、容器等級は I に区分される。

EmS では 2-3-9 で述べた液体と合わせてスケジュール S-M (自然発火性危険性) または S-L (自然発火性、水反応性物質) に分類される。

ERG ではスケジュール 135, 136 (自然発火性物質) に包含されているが、2-3-11 で述べる自己発熱性化学品との区別がされていない。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

区分1 = UNRTDG4.2I (固体) と判断できる。これらの物質は2 - 3 - 1 2 で述べる「水反応可燃性化学品」の性質を併せ持つ場合が多い。

(例) UNRTDG4.2 I 1854 バリウム合金

- 1855 カルシウムまたはカルシウム合金
- 2005 マグネシウムジフェニル
- 2008 ジルコニウム粉末 (乾性のもの)
- 2 4 4 1 三塩化チタン
- 2545 ハフニウム粉末 (乾性のもの)
- 2546 チタン粉末 (乾性のもの)

2-3-11 自己発熱性化学品

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.11.1)

自己発熱性物質または混合物とは、自然発火性液体または自然発火性固体以外の固体物質または混合物で、空気との接触によりエネルギー供給がなくとも、自己発熱しやすいものをいう。この物質または混合物が自然発火性液体または自然発火性固体と異なるのは、それが大量(キログラム単位)に、かつ長期間(数時間または数日間)経過後に限って発火する点にある。

注記:物質あるいは混合物の自己発熱は、それらが酸素(空気中)と徐々に反応し発熱する過程である。発熱の速度が熱損失の速度を超えると物質あるいは混合物の温度は上昇し、ある誘導時間を経て、自己発火や燃焼となる。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.11.2)

- 2.11.2.1 危険物の輸送に関する国連勧告、試験法および判定基準Part III の第33.3.1.6 項に示される試験法に従って試験し、以下の結果となった場合、物質または混合物はこのクラスの自己発熱性物質に分類される。
 - (a) 25mm 立方体のサンプルを用いて140℃で肯定的結果が得られる
 - (b) 100mm 立方体のサンプルを用いて140[°]Cで肯定的結果が得られ、および 100mm 立方体サンプルを用いて120[°]Cで否定的結果が得られ、<u>かつ</u>、当該物質 または混合物が3m³ より大きい容積のパッケージとして包装される
 - (c) 100mm 立方体のサンプルを用いて140℃で肯定的結果が得られ、および 100mm 立方体サンプルを用いて100℃で否定的結果が得られ、<u>かつ</u>、当該物質 または混合物が450 リットルより大きい容積のパッケージとして包装される
 - (d) 100mm 立方体のサンプルを用いて140℃で肯定的結果が得られ、<u>および</u> 100mm 立方体サンプルを用いて100℃で肯定的結果が得られる
- 2.11.2.2 自己発熱性物質または混合物は、危険物の輸送に関する国連勧告、試験法および判定基準の第33.3.1.6 項に示される試験法N.4 に従って実施された試験で得られた結果が表2.11.1 の判定基準に適合するならば、このクラスにおける二つの区分のいずれかに分類される。

		表2.11.1 自己発熱性化学品の判定基準
Ī	区分	判定基準
Ī	1	25mm 立方体サンプルを用いて140℃における試験で肯定的結果が得られ
		る
Ī	2	(a) 100mm 立方体のサンプルを用いて140℃で肯定的結果が得られ、お
		よび25mm 立方体サンプルを用いて140℃で否定的結果が得られ、 <u>か</u>
		<u>つ</u> 、当該物質または混合物が3m3より大きい容積パッケージとして包
		装される、または
		(b) 100mm 立方体のサンプルを用いて140℃で肯定的結果が得られ、お
		よび25mm立方体サンプルを用いて140℃で否定的結果が得られ、
		100 mm立方体のサンプルを用いて 120 $^{\circ}$ で肯定的結果が得られ、 \underline{n} つ、
		当該物質または混合物が450 リットルより大きい容積のパッケージと
		して包装される、または
		(c) 100mm 立方体のサンプルを用いて140℃で肯定的結果が得られ、お
		よび25mm 立方体サンプルを用いて140℃で否定的結果が得られ、 <u>か</u>
		<u>つ</u> 100mm 立方体のサンプルを用いて100℃で肯定的結果が得られる。

注記 1: 固体物質または混合物の分類試験では、当該物質または混合物は提供された形態で試験を実施すること。たとえば例、供給または輸送が目的で、同じ物質が、試験したときとは異なった物理的形態で、しかも評価試験結果を著しく変える可能性が高いと考えられる形態で提供されるとすると、そうした物質もまたその新たな形態で試験されなければならない。

注記2:この判断基準は、27m³の立方体サンプルの自己発火温度が50℃である木炭の例をもとにしている。27m³の容積の自然燃焼温度が50℃より高い物質および混合物はこの危険性クラスに指定されるべきでない。容積450リットルの自己発火温度が50℃より高い物質および混合物は、この危険性クラスの区分1に指定すべきでない。

(3)分類の指針

- A) 分類対象外の判定
 - ①ガスの物質・混合物を「分類対象外」とする。
 - ②自然発火性の液体および固体を「分類対象外」とする。
- B) 区分外の判定

不燃性の液体および固体を「区分外」とする。

C) TDG 分類による分類

物質名で TDG 分類がされている場合は、その分類に従って区分する。TDG 分類がされていない場合は「分類できない」とするのが原則である。

D) 既定の文献中のデータによる分類

GHS 文書改訂 3 版 2.11.4.2 に記載されたスクリーニング試験のデータが、所定のレビュー文書から得られ、それにより自己発熱性が否定されている場合は「区分外」とし、スクリーニング試験の結果を「分類根拠・問題点」に記載する。

「自然発火性液体」の分類結果が「区分 1」の物質および「不燃性」情報に基づき「自己発熱性化学品」についての分類結果が「区分外」とされたもの以外の液体状の評価対象物質は、「自己発熱性化学品」の「分類結果」を「分類できない」とし、「分類根拠」には「液体状の物質に適した試験方法が確立していない。」と記載する。

参考: TDG 分類で定められ、GHS 分類にも採用された「自己発熱性化学品」に関する試験は、ステンレスメッシュの籠に試料を入れて恒温室内に 24 時間放置するもので、液体(および融点 140℃以下の固体)には適用できない。そこで、液体および融点 140℃以下の固体については、「分類できない」とする。

(4) データの入手可能性

個々の物質の公表されたデータはほとんどない。

(5) 従来の分類システムとの比較

UNRTDG2.4.3.2.3 に記載された区分 4.2 のうち自己発熱性物質の定義が GHS2.11.2 の分類基準と一致している。容器等級 II が GHS 区分 I 、III が区分 I に相当する。区分 4.2 は他に自然発火性固体(2.4.3.2.1)および自然発火性液体(2.4.3.2.2)を含んでいる。

ERG はスケジュール 135, 136 (自然発火性物質) に包含されている。

EmS ではスケジュール S-J (湿性爆薬および自己発熱性物質) に含まれるが、前者については、2-3-1 で述べたように、UNRTDG 区分 4.1 に属している。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

UNRTDG4.2*EmS: S-J に分類される物質が該当する。

(区分1の例) UNRTDG4.2 II *EmS: S-J

- 1369 pーニトロソジメチルアニリン
- 1382 硫化カリウム (無水または結晶水<30%)
- 1384 亜ジチオン酸ナトリウム
- 1385 硫化ナトリウム (無水または結晶水<30%)
- 1923 亜ジチオン酸カルシウム
- 1929 亜ジチオン酸カリウム
- 2318 硫化水素ナトリウム (結晶水<25%)
- 2940 9-ホスファビシクロノナン
- 3341 二酸化チオ尿素

(区分2の例) UNRTDG4.2Ⅲ*EmS: S-J

1362 活性炭

- 1363 コプラ
- 1364 綿廃くず(油性のもの)
- 1365 綿花(湿性のもの)
- 1379 油性加工紙 (カーボン紙)
- 1387 羊毛くず(湿性のもの)
- 1386 シードケーキ (植物油を含有するもの)
- 1857 織物くず
- 2002 セルロイドくず
- 2793 切削鉄くず又は切削鋼くず
- 3 1 7 4 二硫化チタン

2-3-12 水反応可燃性化学品

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.12.1)

水と接触して可燃性/引火性ガスを発生する物質または混合物とは、水との相互作用により、自然発火性となるか、または可燃性/引火性ガスを危険となる量発生する固体または液体の物質あるいは混合物である。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.12.2)

水と接触して可燃性/引火性ガスを発生する物質または混合物は、危険物の輸送に関する国連勧告、試験法および判定基準の第33.4.1.4 項の試験N.5 により、下記の表に従って、このクラスにおける三つの区分のいずれかに分類される。

表2.12.1 水と接触して可燃性/引火性ガスを発生する物質または混合物の判定基準

	,
区分	判定基準
1	大気温度で水と激しく反応し、自然発火性のガスを生じる傾向が全般的に
	認められる物質または混合物、または大気温度で水と激しく反応し、その
	際の可燃性/引火性ガスの発生速度は、どの1 分間をとっても物質1kg につ
	き10 リットル以上であるような物質または混合物。
2	大気温度で水と急速に反応し、可燃性/引火性ガスの最大発生速度が1時間
	あたり物質1kg につき20 リットル以上であり、かつ区分1 に適合しない物
	質または混合物。
3	大気温度では水と穏やかに反応し、可燃性/引火性ガスの最大発生速度が1
	時間あたり物質1kg につき1 リットル以上であり、かつ区分1 や区分2に適
	合しない物質または混合物。

注記 1:試験手順のどの段階であっても自然発火する物質または混合物は、水と接触して可燃性/引火性ガスを発生する物質として分類される。

注記2:固体物質または固体混合物を分類する試験では、その物質または混合物が提示されている形態で試験を実施する必要がある。たとえば同一化学物質でも、供給または輸送のために、試験が実施された形態とは異なる、および分類試験におけるその試験結果を著しく変更する可能性が高いと思われる物理的形態として提示されるような場合、その物質または混合物はその新たな形態でも試験されなければならない。

(3)分類の指針

A)分類対象外の判定

- ①ガス物質を「分類対象外」とする。
- ②化学構造に金属または半金属 (metalloids) が含まれていない物質を「分類対象外」とする。

B) 区分外の判定

金属または半金属を含む物質で、水と接触しても安定なことが、所定のレビュー文書の情報に基づき判断できる場合 (例えば、水を用いて製造された、水で洗浄されている、或いは文献に水溶解度が示されている、など)には、「分類結果」を「区分外」とし、「分類根拠」として「水に対して安定」と記載する。

参照: GHS 文書改訂 3 版 2.12.4.2(b)(c)

C) TDG 分類による分類

物質名で TDG 分類がされている場合は、その分類に従って区分する。TDG 分類が されていない場合は「分類できない」とするのが原則である。

(4) データの入手可能性

ガス発生速度の、数値データはほとんど公表されていない。

(5) 従来の分類システムとの比較

GHS2.12.2 の判定基準は UNRTDG・区分 4.3 の定義と完全に一致する。 EU 分類の判定基準も GHS と一致するが、区分はなされていない。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

該当する UNRTDG に従った法規(日本では危規則)による。

区分1 = UNRTDG·4.3 I

区分2 = UNRTDG ⋅ 4.3 II

区分3 = UNRTDG·4.3III

UNRTDG・4.2 (4.3) の物質は GHS 区分1になる。

EU DSD 分類の R15 の物質は GHS 判定基準内であるが、区分 1、2、3 には対応していない。

ERG で GHS の水反応可燃性に関わるスケジュールは以下のものである。

135:自然発火性物質

138:水反応性物質-引火性ガスを発生

139:水反応性物質-引火性・毒性ガスを発生

判定基準内の物質の例

区分1

UNRTDG4.3I*ERG138:アルカリ金属およびその合金、水素化物、またアルカリ

土類金属も含めて、アマルガム、懸濁物

- 1410 水素化リチウムアルミニウム
- 1426 水素化ホウ素ナトリウム
- 1428 ナトリウム

UNRTDG4.3 I * ERG139 : りん化物および一部のシラン化合物

- 1183 エチルジクロロシラン
- 1360 りん化カルシウム
- 1714 りん化亜鉛

区分2

UNRTDG4.3 II * ERG138 : アルカリ土類金属および金属炭化物、珪素化物

- 1394 アルミニウムカーバイド
- 1401 カルシウム
- 2624 珪素化マグネシウム

UNRTDG4.3 II * ERG139 : りん化物および一部のシラン化合物

- 1340 五硫化りん
- 1395 アルミニウムフェロシリコン

区分3

UNRTDG4.3Ⅲ*ERG138 : 軽金属および金属珪素化物

- 1398 アルミニウムシリコン粉末
- 1435 亜鉛くず

UNRTDG4.3 II * ERG139 : 金属珪素化合物

1408 フェロシリコン

GHS 判定基準に該当しない水反応性物質

水に触れると、不燃性の(しばしば有毒あるいは腐食性の)ガスを生成、あるいは熱を発生する(併せて危険な飛沫を発生させる)物質がある。これらは GHS 区分に入らないが ERG では「水反応性」という言葉を含んだスケジュール名をもっている。

137:水反応性物質-腐食性 例: 五酸化りん、硫酸

144:酸化剤(水反応性) 過酸化ナトリウム

155:毒性物質/腐食性物質(引火性/水反応性) アセトンシアノヒドリン

156:毒性物質/腐食性物質(可燃性/水反応性) 塩化ベンジル

157: 毒性物質/腐食性物質(不燃性/水反応性) 三塩化アンチモン

166:放射性物質-腐食性(六フッ化ウラン-水反応性)

これらは GHS の「水反応可燃性」とは切り離して考えるべきである。

(7) GHS 水反応可燃性物質と半金属についての考察

A) 国連 GHS 改訂 3 版 2.12 の記述

GHS 文書改訂 3 版 2.12「水反応可燃性化学品」の 2.12.4.2 には「化学構造に金属

または半金属が含まれていない場合は、このクラスへの分類手順を適用する必要はない。」と記されている。GHS 分類をスムーズに行うため、この「半金属」についてまとめた。

B)半金属 (Metalloid)

半金属とは金属と非金属の中間の性質を有する物質とされているが、この性質は 単体元素固体物質の電気伝導性に関わるものである。大学共同利用機関法人自然科 学研究機構分子科学研究所(岡崎分子研)のホームページには半金属として <u>B, C, Si, P,</u> <u>Ge, As, Se, Sn, Sb, Te, Bi, Po, At</u>が挙げられている。例えば炭素は、グラファイト 構造を取った際に特異な電導性を示すので、半金属に入れられたと推察される。

C) 水反応可燃性物質

水反応可燃性物質は、水と接触した際にその酸素を奪って可燃性ガス(水素、炭化水素など)を放出するものである。電導性をもとに定義された半金属と直接の因果関係はないといえる。国連 GHS 改訂 3 版 2.12.4.2(a)の記述に理論的説明を加えるには、相当高度な電子論的展開が必要である。

しかし、現実に TDG 分類でクラス 4.3 に挙げられている物質はほとんどが金属ないし金属化合物(水素化物、リン化物、炭素化物、シリコン化物、ホウ水素化物、アルキル化物等)であり、それに加えて以下に示す少数の半金属化合物がある。(N.O.S. は除く)

UN-1183 エチルジクロロシラン

UN-1242 メチルジクロロシラン

UN-1295 トリクロロシラン

UN-1340 五硫化リン

UN-2965 三水素化ホウ素・ジメチルエーテル溶液

クラス 4.3 の物質として、金属アルキル化物以外の炭素化合物には、以下の 2 件が 挙がっている。

UN-1394 アルミニウムカーバイド

UN-1402 カルシウムカーバイド

これらは金属を含んでいるので、炭素を半金属から除外しても水反応可燃性物質 の評価から脱落することはない。

国連 GHS 改訂 3 版 2.12.4.2(a)の記述「当該物質または混合物の化学構造に金属または半金属 (metalloids) が含まれていない」は、炭素・水素・窒素・酸素・硫黄と 4 種のハロゲン元素だけから構成される膨大な数の有機化合物について、分類評価の検討を免除するためのものと考えられる。炭素を半金属に入れるとその目的が果たせなくなる。

D) 半金属の範囲

国連 GHS 改訂 3 版 2.12.4.2(a)の記述にある半金属の解釈からリンを除外すると、「五硫化リン」を逃がすことになる。セレン、テルルと非金属元素からなる化合物

で水反応性になることはないと思われるが、これらは半金属を含む物質に入れる。

あるいは、2.12.4.2(a)を、「炭素・水素・窒素・酸素・硫黄と4種のハロゲン元素のうち1つ以上から構成される物質およびそれらのみの混合物(固体ないし液体)は、このクラスへの分類手順を適用する必要はない。」と言い換えた方が判りやすいが、「半金属」という言葉を採用した国連GHS改訂3版に従うこと。

2.12.4.2(a)の記述に該当する場合は、モデル分類を「分類対象外」とし、根拠を「金属または、半金属(B, Si, P, Ge, As, Se, Sn, Sb, Te, Bi, Po, At)を含まない。」とする。

E) 無機金属化合物の評価

GHS 文書改訂 3 版 2.12.4.2(a)によって評価を免除されるのは、(有機金属化合物等をのぞく)大部分の有機化合物と一部の無機化合物であり、大多数の無機金属化合物が残っている。これらについては、GHS 改訂 3 版 2.12.4.2(b) (c) によって水中で安定だと判っているものを「区分外」とする。

判定の根拠としては、分類入力フォーム共通事項の「水溶性」および「反応性」 を見る。水溶解度の数値が得られているか、または不溶性、難溶性などと記載され ているものは「区分外」である。水反応性の場合には反応性の欄に「水と激しく反 応する」などの記述が書かれる。

2-3-13 酸化性液体

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.13.1)

酸化性液体とは、それ自体は必ずしも可燃性を有しないが、一般的には酸素の発生により、他の物質を燃焼させまたは助長する恐れのある液体をいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】 (2.13.2)

酸化性液体は、危険物の輸送に関する国連勧告、試験法および判定基準の第34.4.2 項の試験0.2 により、下記の表に従って、このクラスにおける3つの区分のいずれかに分類される。

	X-1-10-1 KARIENTI - TIVEE
区分	判定基準
1	物質(または混合物)をセルロースとの重量比1:1 の混合物として試験し
	た場合に自然発火する、または物質とセルロースの重量比1:1 の混合物の
	平均昇圧時間が、50%過塩素酸とセルロースの重量比1:1 の混合物より短
	い物質または混合物。
2	物質(または混合物)をセルロースとの重量比1:1 の混合物として試験し
	た場合の平均昇圧時間が、塩素酸ナトリウム40%水溶液とセルロースの
	重量比1:1 の混合物の平均昇圧時間以下である、および区分1 の判定基
	準が適合しない物質または混合物。
3	物質(または混合物)をセルロースとの重量比1:1 の混合物として試験し
	た場合の平均昇圧時間が、硝酸65%水溶液とセルロースの重量比1:1 の混
	合物の平均昇圧時間以下である、および区分1 および2 の判断判定が適
	合しない物質または混合物。

表2.13.1 酸化性液体の判定基準

(3)分類の指針

A) 分類対象外の判定

- ①ガスおよび固体物質を「分類対象外」とする。
- ②酸素、フッ素または塩素を含まない、あるいは含んでいてもこれらの元素が炭素 あるいは水素とのみ結合している有機物質を「分類対象外」とする。
- ③酸素またはハロゲン元素を含まない無機物質を「分類対象外」とする。

B) 区分外の判定

「酸化性液体」または「酸化性固体」については、評価対象物質が「還元性物質」

であることが所定のレビュー文書で確認できる場合には、「分類結果」を「区分外」とし、「分類根拠」として「還元性物質」と記載する。

C)TDG 分類による分類

物質名で TDG 分類がされている場合は、その分類に従って区分する。TDG 分類がされていない場合は「分類できない」とするのが原則である。

(4) データの入手可能性

酸化性の実験データはほとんど公表されていない。

(5) 従来の分類システムとの比較

GHS2.13.2 の定義は UNRTDG の区分 5.1 液体の定義 (UNRTDG2.5.2.3.2) に等しい。ERG では酸化性物質が固体も合わせてスケジュール 140, 141, 142, 143, 144 に分けられているが、本 GHS 区分の参考にはならない。EmS ではスケジュール S-Q に固体とともに分類されている。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

区分 1 = UNRTDG · 5.1 I (液体)

区分 2 = UNRTDG·5.1 II (液体)

区分 $3 = \text{UNRTDG} \cdot 5.1 \text{III}$ (液体) として区分できる。

(区分1例)	1873	過塩素酸溶液(50~72%)
	2 4 9 5	五フッ化ヨウ素
(区分2例)	2014	過酸化水素水溶液(20~40%)
	2 4 2 7	塩素酸カリウム水溶液(濃度により区分3も)
(区分3例)	2984	過酸化水素水溶液 (8~20%)

2-3-14 酸化性固体

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.14.1)

酸化性固体とは、それ自体は必ずしも可燃性を有しないが、一般的には酸素の発生により、他の物質を燃焼させまたは助長する恐れのある固体をいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】 (2.14.2)

酸化性固体は、危険物の輸送に関する国連勧告、試験法および判定基準の第34.4.1 項の試験O.1 を用いて、下記の表に従ってこのクラスにおける三つの区分のいずれかに分類される。

表2.14.1 酸化性固体の判定基準

区分	判定基準
1	サンプルとセルロースの重量比4:1または1:1の混合物として試験した場合、
	その平均燃焼時間が臭素酸カリウムとセルロースの重量比3:2の混合物の平
	均燃焼時間より短い物質または混合物。
2	サンプルとセルロースの重量比4:1または1:1の混合物として試験した場合、
	その平均燃焼時間が臭素酸カリウムとセルロースの重量比2:3の混合物の平
	均燃焼時間以下であり、かつ区分1の判断基準が適合しない物質または混合
	物。
3	サンプルとセルロースの重量比4:1または1:1の混合物として試験した場合、
	その平均燃焼時間が臭素酸カリウムとセルロースの重量比3:7の混合物の平
	均燃焼時間以下であり、かつ区分1および2の判断基準に適合しない物質ま
	たは混合物。

注記1: 一部の酸化性固体はある条件下で爆発危険性を持つことがある(大量に貯蔵しているような場合)。例えば、一部の硝酸アンモニウムは厳しい条件下で爆発する可能性があり、この危険性の評価には「爆発抵抗試験」(BC コード1、附属書3、試験5)が使用できるであろう。適切なコメントを安全データシートに記載すべきである。

注記2: 固体物質または混合物の分類試験では、当該物質または混合物は提供された形態で試験を実施すること。たとえば、供給または輸送が目的で、同じ物質が、試験したときとは異なった物理的形態で、しかも評価試験を著しく変える可能性が高いと考えられる形態で提供されるとすると、そうした物質もまたその新たな形態で試験されなければならない。

1. Code of Safe Practice for Soled Bulk Cargoes, IMO, 2005.

(3)分類の指針

- A) 分類対象外の判定
 - ①ガスおよび液体物質を「分類対象外」とする。
 - ②酸素、フッ素または塩素を含まない、あるいは含んでいてもこれらの元素が炭素 あるいは水素とのみ結合している有機物質を「分類対象外」とする。
 - ③酸素またはハロゲン元素を含まない無機物質を「分類対象外」とする。
- B) TDG 分類による分類

物質名で TDG 分類がされている場合は、その分類に従って区分する。TDG 分類がされていない場合は「分類できない」とするのが原則である。

(4) データの入手可能性

酸化性の実験データはほとんど公表されていない。

(5) 従来の分類システムとの比較

GHS2.14.2 の分類基準は UNRTDG の区分 5.1 固体の定義 (UNRTDG2.5.2.2.2) に 等しい。

ERGでは酸化性物質が液体も合わせてスケジュール140, 141, 142, 143, 144 に分けられているが、本 GHS 区分の参考にはならない。EmS ではスケジュール S-Q に液体とともに分類されている。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

区分 1=UNRTDG · 5.1 I (固体)

区分 2=UNRTDG·5.1 II (固体)

区分 $3=UNRTDG \cdot 5.1 III$ (固体) として区分できる。

(区分1例) 1504 過酸化ナトリウム

2466 超酸化カリウム

(区分2例) 1439 重クロム酸アンモニウム

1463 三酸化クロム (無水物)

1493 硝酸銀

1496 亜塩素酸ナトリウム (固体)

2719 臭素酸バリウム

(区分3例) 2067 硝酸アンモニウム系肥料

2469 臭素酸亜鉛

2724 硝酸マンガン

2728 硝酸ジルコニウム

2-3-15 有機過酸化物

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.15.1)

- 2.15.1.1 有機過酸化物とは、2価の-O-O-構造を有し、1あるいは2個の水素原子が有機ラジカルによって置換されるので、過酸化水素の誘導体と考えられる。この用語はまた、有機過酸化物組成物(混合物)も含む。有機過酸化物は熱的に不安定な物質または混合物であり、自己発熱分解を起こす恐れがある。さらに、以下のような特性を一つ以上有する。
 - (a) 爆発的な分解をしやすい
 - (b) 急速に燃焼する
 - (c) 衝撃または摩擦に敏感である
 - (d) 他の物質と危険な反応をする
- 2.15.1.2 有機過酸化物は、実験室の試験でその組成物が爆轟したり、急速に爆燃したり、 または密封下の加熱で激しい反応を起こす傾向があるときは、爆発性を有するものと 見なされる。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.15.2)

2.15.2.1 いかなる有機過酸化物でも、以下を除いて、このクラスへの分類を検討すること。

- (a) 過酸化水素の含有量が1.0%以下の場合において、有機過酸化物に基づく活性酸素量が1.0%以下のもの。
- (b) 過酸化水素の含有量が1.0%を超え7%以下である場合において、有機過酸化物に 基づく活性酸素量が0.5%以下のもの。

注記:有機過酸化物混合物の活性酸素量(%)は以下の式で求められる。

$$16 \times \sum_{i}^{n} \left(\frac{n_{i} \times c_{i}}{m_{i}} \right)$$

ここで $n_i = 有機過酸化物i の一分子あたりの過酸基(ペルオキソ基)の数$

ci = 有機過酸化物i の濃度(重量%)

mi = 有機過酸化物i の分子量

2.15.2.2 有機過酸化物は、下記の原則に従ってこのクラスにおける七つの区分「TYPE

A~TYPE G」のいずれかに分類される。

- (a) 包装された状態で、爆轟しまたは急速に爆燃し得る有機化酸化物は、有機過酸化物タイプ A として定義される。
- (b) 爆発性を有するが、包装された状態で爆轟も急速な爆燃もしないが、その包装物内で熱爆発を起こす傾向を有する有機過酸化物は、有機過酸化物タイプ B として定義される。
- (c) 爆発性を有するが、包装された状態で爆轟も急速な爆燃も熱爆発も起こすことのない有機過酸化物は、有機過酸化物タイプ C として定義される。
- (d) 実験室の試験で以下のような性状の有機過酸化物は有機過酸化物タイプ D として定義される。
 - (i) 爆轟は部分的であり、急速に爆燃することなく、密閉下の加熱で激しい反応 を起こさない
 - (ii) 全く爆轟せず、緩やかに爆燃し、密閉下の加熱で激しい反応を起こさない
 - (iii) 全く爆轟も爆燃もせず、密閉下の加熱で中程度の反応を起こす
- (e) 実験室の試験で、全く爆轟も爆燃もせず、かつ密閉下の加熱で反応が弱いか、または無いと判断される有機過酸化物は、有機過酸化物タイプ E として定義される。
- (f) 実験室の試験で、空気泡の存在下で全く爆轟せず、また全く爆燃もすることなく、 また、密閉下の加熱でも、爆発力の試験でも、反応が弱いかまたは無いと判断 される有機過酸化物は、有機過酸化物タイプ F として定義される。
- (g) 実験室の試験で、空気泡の存在下で全く爆轟せず、また全く爆燃することなく、密閉下の加熱でも、爆発力の試験でも、反応を起こさない有機過酸化物は、有機過酸化物タイプ G として定義される。ただし熱的に安定である(自己促進分解温度(SADT)が50kgのパッケージでは60℃以上)、また液体混合物の場合には沸点が150℃以上の希釈剤で鈍感化されていることを前提とする。有機過酸化物が熱的に安定でない、または沸点が150℃未満の希釈剤で鈍感化されている場合、その有機過酸化物は有機過酸化物タイプ F として定義される。
- 注記 1: タイプ G には危険有害性情報の伝達要素は指定されていないが、他の危険性 クラスに該当する特性があるかどうか検討する必要がある。

注記 2: タイプ A から G はすべてのシステムに必要というわけではない。

2.15.2.3 温度管理基準

次に掲げる有機過酸化物は、温度管理が必要である。

- (a) SADT が50℃以下のタイプB およびC の有機過酸化物;
- (b) SADT が50℃以下であり密閉加熱における試験結果¹ が中程度またはSADT が 45℃以下であり密閉加熱における試験結果が低いか若しくは反応なしのタイプ

D の有機過酸化物:および

(c) SADT が45℃以下のタイプE およびF の有機過酸化物

SADT 決定のための試験法並びに管理温度および緊急対応温度の判定は、危険物の輸送に関する国連勧告、試験および判定基準の第Ⅱ部、28 節に規定されている。選択された試験は、包装物の寸法および材質のそれぞれに対する方法について実施しなければならない。

1. 試験および判定基準の第Ⅱ部に規定する試験シリーズEにより決定される。

(3)分類の指針

A) 分類対象外の判定

無機物、および有機過酸化物でない有機物を「分類対象外」とする。

B) 区分外の判定

過酸化水素含有量および活性酸素量が GHS 改訂 3 版 2.15.2.1 に記載された定義を下回る場合には、「分類結果」を「区分外」とし、「分類根拠」には「活性酸素量が定義に満たない。」と記載する。

C) TDG 分類による分類

物質名でTDG分類がされている(例えばIMDGC2.5.3.2.4の表に記載されている) 場合は、その国連番号に従って区分する。TDG分類がされていない場合は「分類できない」とするのが原則である。

(4) データの入手可能性

活性酸素の含有率は、基礎的な化学知識を有する者には容易に計算できるが、過酸化水素の含有率は、意識的に添加した場合でなければ、分析する必要があろう。GHS2.15.4のフローチャートに関わる測定実験のデータはほとんど公表されていない。また、有機過酸化物は化学物質単体で扱われるよりも、希釈物質や安定化物質を加えて調合された化学品として、取引および使用されることが多い。個々の調合製品について試験をしてタイプ $A\sim G$ に分類すべきである。

(5) 従来の分類システムとの比較

GHS2.15.2.2 のフローチャートは UNRTDG 図 2.5.1 のものと全く同一である。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

UNRTDG と北米緊急時対応指針において、UNRTDG 区分 5.2 でかつ ERG147、148 に属する化学品が該当する。

		温度管理不要(147)	温度管理必	公要(148)
		液体 固体	液体	固体
タイプA	=	(輸送禁止	上物質)	
タイプB	=	UN3101、3102、	3111,	3 1 1 2
タイプC	=	UN3103、3104、	3113、	3 1 1 4
タイプD	=	UN3105、3106、	3115,	3 1 1 6
タイプE	=	UN3107、3108、	3117,	3 1 1 8
タイプF	=	UN3109、3110、	3119,	3 1 2 0
タイプG	=	(非危险)	

代表的な調合例と分類について UNRTDG2.5.3.2.4 の表 (あるいは危規則告示別表 1 備考 1 の表) に列挙されている。例を以下に示す。不活化剤によって、より下のタイプになることもある。

(タイプB例)

3 1 0 1

1,1-ジ (ターシャリーブチルパーオキシ) シクロヘキサン ($>80\%\sim100\%$) 2,5-ジメチル-2,5-ジ (ターシャリーブチルパーオキシ) ヘキシン-3 ($>86\%\sim100\%$) 等

- 3102 ターシャリーブチルモノパーオキシマレエート
- 3 1 1 1 ジイソブチリルパーオキサイド (>32~52%、希釈剤 B>48%)
- 3112 ジ (2-メチルベンゾイル) パーオキサイド ($\leq 87\%$ 、水 $\geq 13\%$)

(タイプ C 例)

- 3103 ターシャリーアミルパーオキシベンゾエート
- 3 1 0 4 ジベンゾイルパーオキサイド (≦77%、水≥23%)
- 3113 ターシャリーブチルパーオキシジエチルアセテート
- 3114 ジデカノイルパーオキサイド

(タイプD例)

- 3 1 0 5 アセチルアセトンパーオキサイド (≦42%、希釈剤A≧48%、水≧8%)
- 3106 ジラウロイルパーオキサイド
- 3 1 1 5 ジアセチルパーオキサイド (≦27%、希釈剤 B≧73%)
- 3116 ジノルマルノナノイルパーオキサイド

(タイプE例)

- 3107 ジターシャリーアミルパーオキサイド
- 3 1 0 8 ジベンゾイルパーオキサイド (≦52%、ペースト)
- 3 1 1 7 ジプロピオニルパーオキサイド (≦27%、希釈剤 B≧73%)
- 3 1 1 8 ターシャリーブチルパーオキシネオデカノエート (≦42%、安定な凍結水 分散体)

(タイプF例)

- 3109 過酢酸 (安定剤入りのもの) (≦43%)
- 3 1 1 0 ジクミルパーオキサイド (>52%~100%)
- 3 1 1 9 ジセチルパーオキシジカーボネート (≦42%、安定な水分散体)
- 3 1 2 0 ジ (2-エチルヘキシル) パーオキシジカーボネート (≦52%、安定な凍結 水分散体)

2-3-16 金属腐食性物質

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連GHS改訂3版】(2.16.1)

金属に対して腐食性である物質または混合物とは、化学反応によって金属を著しく損傷し、または破壊する物質または混合物をいう。

(2) GHS の分類基準

【国連 GHS 改訂 3 版】(2.16.2)

金属に対して腐食性である物質または混合物は、危険物の輸送に関する国連勧告、試験法および判定基準Part III、37.4 項を用いて、下記の表に従ってこのクラスにおける単一の区分に分類される。

表2.16.1 金属に対して腐食性である物質または混合物の判定基準

区分	判定基準			
1	55℃の試験温度で、鋼片またはアルミニウム片の両方で試験されたとき、侵			
1	食度がいずれかの金属において年間6.25mm を超える。			

注記: 鋼片またはアルミニウムにおける最初の試験で物質あるいは混合物が腐食性を示したならば、他方の金属による追試をする必要はない。

(3) 分類の指針

A) 区分外の判定

鋼およびアルミニウムの両方が容器として使用できることが、所定のレビュー文書で確認できる物質の場合には、「金属腐食性」については、「分類結果」を「区分外」とし、「分類根拠」には「鋼およびアルミニウムが容器として使用できる。」と記載する。

B) 分類できない物質の判定

①試験方法が確立していない場合

TDG 分類で定められ、GHS 分類でも採用されている「金属腐食性物質」に関する試験方法は、気体の場合には適用できず、液体の場合には沸点が 55℃以下のものにも適用できないが、固体の場合には融点が 55℃以下のものには適用できる。したがって、次の通り記載する。気体の場合、「金属腐食性物質」について、「分類結果」を「分類できない」とし、「分類根拠」には「気体状の物質に適した試験方法が確立していない」と記載する。沸点が 55℃以下の液体の場合、「金属腐食性物質」について、「分類結果」を「分類できない」とし、「分類根拠」には「低沸点の液体に適し

た試験方法が確立していない」と記載する。また、融点が55℃を超える固体の場合、「金属腐食性物質」について、「分類結果」を「分類できない」とし、「分類根拠」として「固体状の物質に適した試験方法が確立していない」と記載する。以上の場合、分類根拠の記載に代わり、単に「データなし」としても差し支えない。

②データがないので、分類できない場合

以上の方法で、分類できなかった危険性項目は「分類結果」を「分類できない」とし、「分類根拠」として「データなし」と記載する。

(4) データの入手可能性

金属腐食速度の、数値データはほとんど公表されていない。

(5) 従来の分類システムとの比較

UNRTDG2.8.2.5(c)(ii)に述べられたクラス 8 **Ⅲ**の金属腐食性の定義と完全に一致している。

(6) 従来システムで分類された結果の情報源と、当面の区分方法

UNRTDG クラス 8 は金属腐食性を皮膚腐食性と一緒に分類しているので、クラス 8 に分類されただけでは金属腐食性の有無は判断できず、危規則別表 1 から金属腐食性を読み取ることはできない。そこで、腐食性の明確な物質は、区分に入れる。不明確な物質は「推定」としてラベルに記載する。

また、GHS 区分は漏洩時の処置に関わるものとして考案された UNRTDG に基づいている。区分に達しなくても、貯蔵・使用時の容器・配管に対する危険性があることに注意すべきである。

なお、金属腐食性の試験方法は、金属片(鋼およびアルミニウム)を 55℃の液体に浸漬等して 7~28 日 保持し、年換算で 6.25 mm を超える腐食を起こすことで判定する。上述の通り、この腐食度は、液体が漏洩した際に直ちに処理しなければ、輸送機器あるいは他の貨物の容器に損傷を与える危険性を考慮したものと考えられ、その物質を使用している際の容器や配管に金属を使用できるか、というのとは別の物指しと考えなければならない。僅かでも侵食する場合には、容器に使用するとその物質の品質を損なうことになるが、GHS の金属腐食性はこれまで、そのような基準を採用していない。

注)

なお、GHSでは、決められた試験方法での試験データを信頼できる情報源から得られない限り「分類できない」とすることとされている。したがって、アンモニアガスや塩化水素ガスのように金属を損なうことが既知のガスであっても、ガスの試験方法が定まっていないため、「分類できない」とする。

第3部 健康有害性分類ガイダンス

3-1 分類判定に利用可能な情報

3-1-1 分類判定に利用可能な情報源

国連 GHS では、分類に当たっては入手可能なデータをあたることとしている。 本ガイダンスでは、分類結果のばらつきを極力低減しつつ、分類作業を効率的に進める ための手順を以下に示す。

分類調査に際しては、3-2-1 から 3-2-10 に示す有害性ごとに、まず、List 1 にある既に入手済みあるいは閲覧可能なすべての評価文書にあたり、当該物質情報の有無を確認するとともに、選択した情報源に必要な情報がない、あるいは不足している場合は他の情報源を追加して調べる。

List 1 で必要な情報が確保できない場合は、List 2 にあたり、同様に調査を進める。

List 3 は原典を探したり、毒性の見当をつけるための統合データベース等であり、必要に応じ利用する。

なお、下記に示したものは、総説的なものあるいはデータベースとして参考となる主な情報源の一例である。各々の List の中では、情報源の信頼性に大きな差はないが、それぞれの情報原の対象毒性指標や対象物質には違いのある場合がある(例えば WHO 国際がん研究機関(IARC)は発がん性関連情報に、FAO/WHO 合同残留農薬専門家会議(JMPR)は農薬に特化している、など)。また、ここに挙げたもの以外の信頼性のある有用な情報源の利用を制限するものではない。

なお、以下に示す各種オンライン情報の中には、適宜改訂されるものがあり、最新の 情報入手が望ましい。

(注) 疫学データの扱いについては、「3-1-3 (2) 疫学データ」(p.92) を参照のこと。

List1:

国際機関、主要各国等で作成され、信頼性が認知されている情報源であり、原則として、一次資料に遡ることができ、必要な場合に情報の確からしさを確認できる評価文書や成書である。

ただし、個々の情報で、信頼性の確認が必要とされた情報は原文献にあたり、信頼性 に問題がある場合は分類の根拠に利用しない。

なお、国際的に認められているテストガイドライン(OECD等)に従ってGLPで実施され、かつ、国の委員会等の専門家のレビューで妥当と判断された生物試験結果もこれらと同様に取り扱う。

1-1)	機関	(独)製品評価技術基盤機構(NITE)			
1 1/	情報源名	化学物質の初期リスク評価書			
	URL	http://www.safe.nite.go.jp/risk/riskhykdl01.html			
	備考	(財)化学物質評価研究機構(CERI)・(独)製品評価技術基盤機構(NITE)			
	1 1 1 1 1 1 1 1 1 1	「化学物質有害性評価書」			
		http://www.cerij.or.jp/db/sheet/yugai_indx.htm			
		http://www.safe.nite.go.jp/japan/sougou/view/SystemTop_jp.face			
1-2)	機関	child_flg=child&service_id=APSelectingListsList_jp			
1-2)		厚生労働省			
	情報源名	試験報告「化学物質毒性試験報告」化学物質点検推進連絡協議会			
1.0)	URL	http://dra4.nihs.go.jp/mhlw_data/jsp/SearchPage.jsp			
1-3)	機関	厚生労働省			
	情報源名	労働安全衛生法第28条第3項の規定に基づく健康障害を防止するた			
		めの指針に関する公示			
	URL	http://www.jaish.gr.jp/user/anzen/kag/ankgc05.htm			
1-4)	機関	日本バイオアッセイ研究センター			
	情報源名	厚生労働省委託がん原性試験結果			
URL		http://www.jaish.gr.jp/user/anzen/kag/ankgc06.htm			
1-5)	機関	環境省環境リスク評価室			
情報源名		化学物質の環境リスク評価(第1巻~第6巻)			
	URL	http://www.env.go.jp/chemi/report/h15-01/index.html			
1-6)	機関	日本産業衛生学会(JSOH)			
	情報源名	許容濃度提案理由書および許容濃度等の勧告(毎年発行)			
1-7)	機関	OECD			
	情報源名	SIDS レポート (SIDS)			
	URL	http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html			
	備考	SIAP(SIDS Initial Assessment Report)日本語版			
		日本化学物質安全情報センター			
		http://www.jetoc.or.jp/HP_SIDS/SIAPbase.htm			
1-8)	機関	WHO/IPCS			
	情報源名	環境保健クライテリア(EHC)(2008/9 現在、No.1~No.237)			
	URL	http://www.who.int/ipcs/publications/ehc/en/index.html			
		http://www.inchem.org/pages/ehc.html			
	備考	EHC 日本語版:http://www.nihs.go.jp/hse/ehc/index.html			

1-9)	機関	WHO/IPCS			
	情報源名	国際簡潔評価文書 (CICAD)			
		(Concise International Chemical Assessment Documents)			
	URL	http://www.who.int/ipcs/publications/cicad/pdf/en/			
	備考	CICAD 日本語版 http://www.nihs.go.jp/hse/cicad/cicad.html			
1-10)	機関	WHO 国際がん研究機関(IARC)			
	情報源名	IARC Monographs Programme on the Evaluation of			
		Carcinogenic Risk to Humans (IARC Monographs)			
	URL	http://monographs.iarc.fr/ または			
		http://monographs.iarc.fr/htdig/search.html			
	備考	EHC、CICAD、IARC、JMPR などを含む WHO 関連評価文書や			
		SIDS は以下のサイト(1)から一括検索および閲覧可能。また、国際機			
		関を含む日本、米国などいくつかの国の有害性評価文書が以下のサイ			
		ト(2)からリンクされている:			
		(1) http://www.inchem.org/			
		(2)http://www.safe.nite.go.jp/japan/sougou/view/SystemTop_jp.face			
		s?child_flg=child&service_id=APSelectingListsList_jp			
1-11)	機関	FAO/WHO 合同食品添加物専門家会議(JECFA)			
	情報源名	FAO/WHO Joint Expert Committee on Food Additives -			
		Monographs (JECFA モノグラフ (食品添加物等)) (JECFA			
		Monographs)			
	URL	http://www.who.int/ipcs/publications/jecfa/monographs/en/index.h			
		tml			
1-12)	機関	FAO/WHO 合同残留農薬専門家会議(JMPR)			
	情報源名	FAO/WHO Joint Meeting on Pesticide Residues - Monographs of			
		toxicological evaluations (JMPR モノグラフ (残留農薬)) (JMPR			
		Monographs)			
	URL	http://www.who.int/ipcs/publications/jmpr/en/			
	備考	http://www.inchem.org/			
1-13)	機関	EU European Chemicals Bureau (ECB: 欧州化学品局)			
	情報源名 EU リスク評価書(EU Risk Assessment Report:F				
	(2008/9 現在 1 巻~91 巻)				
	http://ecb.jrc.it/esis/esis/php?PGM=ora (Full list では CAS 番号順)				
	http://ecb.jrc.it/home.php?CONTENU=/DOCUMENTS/Existing-C				
		hemicals/RISK_ASSESSMENT/REPORT/			

	I					
1-14)	機関	European Center of Ecotoxicology and Toxicology of				
		Chemicals(ECETOC)				
	情報源名	Technical Report シリーズおよび JACC Report シリーズ				
	URL	http://www.ecetoc.org/publications				
		WEB ではリスト一覧のみ。				
1-15)	機関	米国産業衛生専門家会議(ACGIH)				
	情報源名	ACGIH Documentation of the threshold limit values for chemical				
		substances (化学物質許容濃度文書) (7th edition, 2001) (2008				
		supplement, 2008)および"TLVs and BEIs"(ACGIH、毎年発行)				
	URL	WEB では公開されていない。				
		"TLVs and BEIs"WEB から購入可能。				
		http://www.acgih.org/home.htm				
1-16)	機関	米国 EPA				
	情報源名	Integrated Risk Information System (IRIS)				
	URL	http://www.epa.gov/iris/				
1-17)	機関	米国国家毒性プログラム (NTP)				
	URL	http://ntp-server.niehs.nih.gov/				
1-17-1)	情報源名	NTP Database Search Home Page:				
[For Standard Toxicology & Ca		[For Standard Toxicology & Carcinogenesis Studies, Reproductive				
		Studies, Developmental Studies, Immunology Studies, Genetic				
Toxicity Studies]		Toxicity Studies]				
		または、http://ntp-server.niehs.nih.gov/ ⇒ Study Results &				
		Research Projects \Rightarrow Study Data Searches				
	URL	http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm				
1-17-2)	情報源名	Report on Carcinogens (11th,2005)				
	URL	$ \text{http://ntp-server.niehs.nih.gov/} \Rightarrow \text{Public Health} \Rightarrow \text{Report on}$				
		Carcinogens \Rightarrow 11th RoC (The 11 th RoC contains 246 entries, 58				
		of which are listed as known to be human carcinogens and with				
		the remaining 188 being listed as reasonably anticipated to be				
		human carcinogens.)				
		あるいは http://ehp.niehs.nih.gov/roc/toc10.html				
		または http://ehp.niehs.nih.gov/ntp/docs/ntp.html				

1-17-3)	情報源名	発がん性テクニカルレポート				
	URL	http://ntp-server.niehs.nih.gov/ \Rightarrow Study Results & Research				
		Projects ⇒ NTP Study Reports(発がん性を含む各種試験報告書/抄録) ⇒ Long-term ⇒TR1~TR533(発がん性のレポート)				
1-18)	機関	米国毒性物質疾病登録局(ATSDR)				
	情報源名	Toxicological Profile				
	URL	http://www.atsdr.cdc.gov/toxpro2.html				
1-19)	機関	カナダ環境省/保健省				
	情報源名	Assessment Report Environment Canada : Priority Substance				
		Assessment Reports(優先物質評価報告書)				
	URL	http://www.ec.gc.ca/substances/ese/eng/psap/final/main.cfm				
		WEB では要約のみ。				
1-20)	Australia NICNAS					
	情報源名	Priority Existing Chemical Assessment Reports				
	URL http://www.nicnas.gov.au/publications/car/pec/defa					
1-21)	機関	ドイツ学術振興会(DFG)				
	情報源名	MAK Collection for Occupational Health and Safety, MAK Values				
		Documentations				
		および List of MAK and BAT values(毎年発行)				
	URL	WEB では公開されていない				
	備考	"List of MAK and BAT values"は評価書ではない。				
1-22)	情報源名	Patty's Toxicology (5th edition, 2001) (Patty)				
	E. Bingham, B. Cohrssen, C.H. Powell (Eds), John Wiley & Sons,					
		Inc.全9巻				
1-23)	機関	United States Environmental Protection Agency (EPA)				
	情報源名	Pesticides "Reregistration Eligibility Decision"				
	URL	http://www.epa.gov/pesticides/reregistration/status.htm				

<u>List2</u>: List1 に記載された評価書以外の有用な情報源。

2-1)	機関	EU					
	情報源名	EU 第 7 次修正指令 Annex I (EU AnnexI)					
		(最新版:委員会指令第 29 次適応化指令): Annex 1 の分類結果					
	URL	http://ecb.jrc.it/classification-labelling/					
		("SEARCH CLASSLAB"より検索可能)					
2-2)	機関	EU European Chemicals Bureau (ECB: 欧州化学品局)					
	情報源名	International Uniform Chemical Information Database (IUCLID)					
		IUCLID CD-ROM (Update 版 Edition 2 - 2000)					
	URL	http://ecb.jrc.it/classification-labelling/					
2-3)	機関	米国国立医学図書館(NLM)					
	情報源名	Hazardous Substance Data Bank (HSDB)					
	URL	http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB					
2-4)	機関	German Chemical Society-Advisory Committee on Existing					
		Chemicals of Environmental Relevance					
	情報源名	BUA Report (BUA)					
	URL	http://www.hirzel.de/bua-report/download.html					
	備考	公開サイトからは full report は入手できない。					
2-5) 情報源名 Dreisbach's Handbook of Poi		Dreisbach's Handbook of Poisoning (DHP , 13th edition, 2002)					
	備考	B-L. True and H. Dreisbach, The Parthenon Publishing Group					
2-6) 機関 農林水産省消費技術安全センター		農林水産省消費技術安全センター					
	情報源名	農薬抄録および評価書					
	URL	http://www.acis.famic.go.jp/syouroku/index.htm					
2-7)	機関	農薬工業会					
	情報源名	農薬安全性情報(公開情報一覧)					
	URL	http://www.jcpa.or.jp/safe/info_01.html					
2-8)	機関	内閣府食品安全委員会					
	情報源名	食品健康影響評価					
URL		http://www.ffcr.or.jp/zaidan/FFCRHOME.nsf/pages/info,cao					
2-9)	機関	厚生労働省					
	情報源名	既存添加物の安全性の見直しに関する調査研究					
	URL	http://www.ffcr.or.jp/zaidan/MHWinfo.nsf/0f9d5ee834a5bcff492565					
	a10020b585/01ec065c06a3601f49257328000c3afa?OpenDocument						
	食品添加物の安全性について記載						

List 3:

一次文献検索および参考データベースである。List1、2のデータがある場合に、必要に応じて参照する。

なお、既存の MSDS 等から各製品の有害性情報は入手可能であるが、GHS 分類への直接的利用は避ける。

3-1)文献データベース (一次文献情報の検索)

- Pub-Med/NLM(原文献調査) http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
- NLM TOXNET (TOXLINE (原文献調査) を含むオンライン検索) http://toxnet.nlm.nih.gov/index.html
- JICST 科学技術(医学)文献ファイル (JOIS オンライン検索) http://pr.jst.go.jp/db/db.html

3-2) 化学物質に関する総合情報データベース

- (独)製品評価技術基盤機構「化学物質総合情報提供システム」(CHRIP): http://www.safe.nite.go.jp/japan/db.html
- ドイツ労働安全研究所 (BIA)「GESTIS-database on hazardous substances」 (GESTIS): http://www.hvbg.de/e/bia/fac/stoffdb/index.html
- 環境省「化学物質ファクトシート」:
 http://www.env.go.jp/chemi/communication/factsheet.html
- (独)国立環境研究所「WebKis-Plus 化学物質データベース」(WebKis-Plus): http://w-chemdb.nies.go.jp/
- (独)産業技術総合研究所「詳細リスク評価書」: http://unit.aist.go.jp/riss/crm/mainmenu/1.html
- (財)化学物質評価研究機構(CERI)「化学物質安全性(ハザード)データ集」: http://www.cerij.or.jp/db/sheet/sheet_indx.htm
- Hazardous Substance Fact Sheet (New Jersey Department of Health and Senior Services): http://web.doh.state.nj.us/rtkhsfs/indexfs.aspx
- 「Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens (4th edition,2002)」 (Sittig)
- 米国国立労働安全衛生研究所(NIOSH)「RTECS [Registry of Toxic Effects of Chemical Substances](化学物質毒性影響登録)」(RTECS):
 http://www.cdc.gov/niosh/npg/npgdrtec.html
- WHO/IPCS「ICSC カード(International Chemical Safety Cards)」(ICSC): http://www.ilo.org/public/english/protection/safework/cis/products/icsc/dtasht/ind ex.htm (ICSC カード日本語版:http://www.nihs.go.jp/ICSC/)

3-3)EU の分類

- ・ EU CLP 規則の Annex VI Table 3-1 に基づく分類(以下、本ガイダンスで「EU CLP 分類」という。R-フレーズについては EU DSD 分類とする。)が、その根拠となる情報とともに入手できない場合は、「分類できない」とする。
- ・ EUCLP 分類及び EU DSD 分類が、その根拠となる情報とともに入手できる場合で、これらの分類と GHS 分類の分類基準が異なっている場合には、分類の根拠とした情報が科学的に妥当なものであれば、GHS 分類に使用することができる。
- ・ また、CLP 分類及び EU DSD 分類がその根拠となる情報とともに入手でき、かつ、 これらの分類と GHS 分類の基準が一致する場合には、これらの EU 分類に従って GHS 分類を行うことができる。

基本的には、情報源から得られる証拠の質、信頼性、一貫性などを基に、証拠の重み付けにより、必要に応じ、専門家判断を加えて分類する。

なお、本ガイダンスでは、EU CLP 規則の AnnexVIに基づく分類を EU CLP 分類、R-フレーズを EU DSD 分類とする。特段の表記がなく EU 分類とある場合は、CLP 分類と DSD 分類の双方を指すこととする。また、EU DSD (EU 理事会指令 67/548/EEC) による分類・区分は、GHS 分類・区分とは異なる基準に基づいているので、その結果を直ちに GHS 分類・区分に用いることはできない。日本語訳は「EU 危険な物質のリスト(第 7 版)」(JETOC2004 年)。

また、上記の情報源以外にも、利用可能な情報源がある。例として、以下に、厚生労働省による GHS 分類作業 (中央労働災害防止機構実施) において専門家検討会で採用された情報源の一例を示す。

機関:米国国立労働安全衛生研究所(NIOSH)

"NIOSH Publications; Criteria Documents"

http://www.cdc.gov/niosh/pubs/criteria_date_desc_nopubnumbers.html

"NIOSH Pocket Guide to Chemical Hazards"

http://www.cdc.gov/niosh/npg/

3-1-2 複数データが存在する場合の優先順位

(1) List 1の情報源で複数データが存在する場合の優先順位

- A)国際的に認められているテストガイドライン (OECD 等) に従って GLP にて実施 されているデータを優先する。
- B)A)に該当するデータがない場合は、GLP 準拠は不明だが、国際的に認められているテストガイドライン (OECD 等) に従って実施されているデータを優先する。
- C)A)および B)で示したようなデータの信頼性によって分類することができない場合は、データの新しさ、試験における用量設定、試験動物種選定、投与経路の妥当性など検討し、最も科学的妥当性が高いと思われるデータを採用することとするが、判断が困難な場合には専門家の判断を仰ぐことが必要である。

(2) List 1以外の情報源で複数データが存在する場合の優先順位

- A)その他の情報源(例えば List2 に示した情報源)から収集したデータの中から、信頼性があると判断できるデータ(GLP に準拠したデータであること、あるいは判断の根拠となるデータが明記されて評価されていること、試験における用量設定、試験動物種選定、投与経路の妥当性などの検討も行い、最も科学的妥当性の高いデータであること等)を採用する。この際の判断の手順は(1)と同様に行う。
- B)また、その際、評価文書・データベースについてはできるだけ最新のものである こと、あるいは引用文献が信頼性のあるものであること等を考慮する。
- C)分類に際しては、データの信頼性・妥当性を総合的に評価して判断する必要があるため、A)および B)で示したような、データの信頼性によって分類することができない場合は、専門家の判断を仰ぐことが必要である。

3-1-3 特殊なケースにおける情報の扱い

類縁化合物や疫学情報の扱いにおける留意点は、以下による。

(1) 類縁化合物の評価

分子種の異なる金属、塩類、無水物、水和物、異性体などの有害性データの取り扱いは、原則として、CAS 番号によって特定される物質を対象として、データの検索・収集および評価を行う。これは、類縁物質であってもその分子種等の違いによって、溶解性、体内吸収、生物活性などが異なり、結果として健康有害性の発現も異なる可能性があることによる。

当該物質では十分な有害性データが得られていない場合でも、類縁物質では十分な情報が提供されているケースがあり、その物質が既に分類されている場合には、「健康有害性については、IDXXXX、物質名、CAS: ZZZZ-ZZ-Z も参照のこと」などと記載し、他に参照すべき物質のあることを明示する。これは、GHS 分類一覧表においては、健康に対する有害性の最初の項、すなわち「急性毒性(経口)」の"分類根拠"欄に記載することで、対応可能である。また、分類対象物質がラセミ体など複数の異性体を含む化学物質(CAS で特定)であって、混合体(例えばラセミ体)としての情報は少ないが、各異性体についての情報があるような場合には、当該異性体のデータを利用して分類し、根拠として"XXX 異性体のデータに基づく"などと記載する。

発がん性については、CAS 番号で特定された当該物質についてのものでなくとも、「○ つおよびその化合物」として IARC が評価したものにあてはまれば、類縁化合物のひと つとして扱い、その発がん性評価を採用する。なお、類縁化合物にあっては、除外物質 とされるものや無機塩/有機塩で評価が異なる場合があるので注意する(下記対応例を参照)。

- A) 異なる状態・形態において、有害性の評価が明確に異なる場合はそれらを列記する。 例:鉛の発がん性:GHS 分類 区分1B (無機鉛) /区分外(有機鉛)
 - 根拠 IARC (2004)
- B) 異なる状態・形態において、有害性の評価が必ずしも明確でない場合、根拠として 注釈を加える。

例:カドミウムの発がん性:GHS 分類 区分1A

根拠 IARC(1993) ただし「カドミウムおよびその化 合物として」

(2) 疫学データの扱いについて

疫学データは、当該物質をその対象物質のひとつとして扱うことの妥当性の判断が難しいケースが多い。ただし、当該疫学データが、本ガイダンスに示された範囲の情報源を CAS 番号によって検索して得られた情報であれば、純粋に CAS 番号で特定された当該物質について評価がなされていなくとも、類縁化合物を含めて物質群として評価がなされていれば、それらの有害性情報を採用できる。

疫学データは、GHS における区分の定義が作用の強さに応じた定量的なものの場合 (急性毒性等)には適していないことがある。証拠の確からしさによって区分が設定さ れている CMR (発がん性・変異原性・生殖毒性) における疫学データの扱いを以下に 示す。

◆CMR における疫学データの扱いについて

- A) ヒトの疫学データについては、List 1 の評価書で評価の対象となったものについて、 当該評価書での評価に従って分類を行う。
- B) 同じ疫学データで評価が異なる場合、異なる疫学データに基づいて異なる評価が なされている場合があれば、最新の評価書の評価結果に従う。
- C) List 1 以外の評価書の疫学データしかない場合のみならず、疫学データの個々の扱いについては有効性を、当該分野の専門家の判断を求めること。

(3) 動物試験における飼料中濃度から体重当たりの用量を求める際の換算表

特定標的臓器(反復暴露)および生殖毒性に関して、動物試験において、報告書に飼料中濃度の記載しかない場合に、飼料中濃度から体重当りの用量を求める場合には、以下の換算表に従うものとする(出典: Environmental HealthCriteria, No. 104, 1990, p.113、表を一部改変)。この場合、用いた動物の体重を考慮してさらに換算する必要はない。

表 3-0-1 飼料中の濃度 (ppm) と体重当たりの用量 (mg/kg 体重/日) との関係

動物	体重 (kg)	1日当たりの 摂餌量(g) (液体を除く)	餌の種類	飼料中 1ppm 当たりの 用量(mg/kg 体重/日)
マウス	0.02	3	乾燥実験用飼料	0.15
ラット (若齢)	0.1	10		0.1
ラット (成熟)	0.4	20		0.05
モルモット	0.75	30		0.04
ウサギ	2	60		0.03
イヌ	10	250		0.025
ネコ	2	100	含水半固形飼料	0.05
サル	5	250		0.05
イヌ	10	750		0.075

Lehman、 A.J.(1954) Association of Food and Drug Officials Quarterly Bulletin、 18:66 を一部改変。本表中の数値は、多くの出典から得られた数値の平均値である。

- (例) ラットにおいて飼料中 0.5%含有される物質は、ppm 換算あるいは 1 日の体重当 たりの用量換算でどうなりますか。
- (答) 0.5%は 5000ppm に対応します。表より、成熟ラットにおける飼料中 1ppm の含有は、0.05mg/kg 体重/日に相当します。従って、5000ppm は 250mg/kg 体重/日(5000×0.050)に相当します。

表 3-0-2 飲水中の濃度 (ppm) と体重当たりの用量 (mg/kg 体重/日) との暫定的関係

動物	体重 (kg)	1日当たりの 飲水量(ml)	飲水中 1ppm 当たりの 用量 (mg/kg 体重/日)
マウス	0.02	4	0.2
ラット (若齢)	0.1	20	0.2
ラット (成熟)	0.4	45	0.125
モルモット	0.75	120	0.16
ウサギ	2	140	0.07
イヌ	10	300	0.03

「実験動物学事典」藤原公策編、朝倉書店、1989、p. 481 付表より一部改変

3-2 健康有害性の分類

3-2-1 急性毒性

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。ただし、単回暴露で起こる非致死性の臓器への影響は、急性毒性ではなく特定標的臓器毒性(単回暴露)として取り扱う。

【国連 GHS 改訂 3 版】(3.1.1)

急性毒性は、物質の経口または経皮からの単回投与、あるいは 24 時間以内に与えられる複数回投与ないしは 4 時間の吸入暴露によっておこる有害な影響をいう。

(2) 分類基準

A)分類 JIS による分類基準

表 3-1 急性毒性値又は急性毒性推定値(ATE)に基づく区分

暴露経路	区分 1	区分 2	区分 3	区分 4
経口(mg/kg 体重)	ATE≦5	5 <ate≦50< td=""><td>50<ate≦300< td=""><td>300<ate< td=""></ate<></td></ate≦300<></td></ate≦50<>	50 <ate≦300< td=""><td>300<ate< td=""></ate<></td></ate≦300<>	300 <ate< td=""></ate<>
A	AIE	3 \AIE ≡ 50	50 \AIE = 500	≦ 2000
 経皮(mg/kg 体重)	ATE≦50	50 <ate≦200< td=""><td>200<ate≦1000< td=""><td>1000<ate< td=""></ate<></td></ate≦1000<></td></ate≦200<>	200 <ate≦1000< td=""><td>1000<ate< td=""></ate<></td></ate≦1000<>	1000 <ate< td=""></ate<>
在汉(IIIg/Kg 平里/	AIE = 50	50 \A1E \(\text{\text{200}}\)	200 \ATE≦1000	≦ 2000
気体(ppmV)	ATE≦100	100 <ate≦500< td=""><td>500<ate≦2500< td=""><td>2500<ate< td=""></ate<></td></ate≦2500<></td></ate≦500<>	500 <ate≦2500< td=""><td>2500<ate< td=""></ate<></td></ate≦2500<>	2500 <ate< td=""></ate<>
X(体(ppiii v)			500 \ATE \(\alpha \)	≤ 20000
蒸気 a) (mg/L)	$ATE \leq 0.5$	$0.5 < ATE \le 2.0$	2.0 <ate≦10< td=""><td>10<ate< td=""></ate<></td></ate≦10<>	10 <ate< td=""></ate<>
然义。(IIIg/L)	AIE = 0.5	0.5 \ ATE \(\frac{1}{2}\).0	2.0 \ATE≦10	≦ 20
粉塵 b)およびミス	ATE≦0.05	$0.05 < ATE \le 0.5$	$0.5 < ATE \le 1.0$	1.0 <ate< td=""></ate<>
ኑ ^{c)} (mg/L)	A1E ≥ 0.00	0.05 \ATE≦0.5	0.5 \A1E \(\text{\ti}\text{\tin}\tint{\text{\tint{\text{\te}\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\ti}\tii}}\tinttitent{\text{\text{\ti}}\tittten}\text{\text{	≤ 5

物質の分類のための ATE は次のいずれかを用いて求める。

- (a) 利用可能な LD₅₀ 又は LC₅₀
- (b) 範囲試験の結果に関連した表 3-2 からの適切な変換値
- (c) 分類区分に関連した表 3-2 からの適切な変換値

表中の吸入試験の ATE は、4 時間試験暴露に基づく。1 時間暴露で求める既存の吸入 毒性データを換算するには、気体および蒸気の場合は 2 で割り、粉塵およびミストの場合は 4 で割る。

化学物質等によっては、試験対象となる物質の状態が、蒸気だけでなく、液体相と蒸気相との混成の場合もある。また、他の化学物質等では、試験雰囲気が、ほぼ気体相に近い蒸気である場合もある。この後者の例では、区分 1(100ppmV)、区分 2(500ppmV)、

区分 3(2500ppmV)および区分 4(20000ppmV)のように、ppmV 濃度により分類するのがよい。

- 注記1 気体濃度は容積での百万分の1 (ppmV) を単位として表している。
- 注記 2 一般に粉塵は、機械的な工程で形成される。一般にミストは、過飽和蒸気の凝縮又は液体の物理的なせん(剪)断で形成される。粉塵およびミストの大きさは、一般に $1\mu m$ 未満からおよそ $100\mu m$ までである。
 - 注 a) 蒸気:液体又は固体の状態から放出されたガス状の物質又は混合物
 - b) 粉塵:ガス(通常は空気)の中に浮遊する物質又は混合物の固体の粒子
 - c) ミスト:ガス(通常は空気)の中に浮遊する物質又は混合物の液滴

表 3-2 実験で得た急性毒性範囲推定値(又は急性毒性区分)から 各暴露経路に関する分類のための急性毒性点推定値への変換

	分類又は実験で得られた	変換値
	急性毒性範囲推定値	(Conversion Value) (注記 2 参照)
	0< 区分 1 ≦5	0.5
経口	5< 区分 2 ≦50	5
(mg/kg 体重)	50< 区分3≦300	100
	300< 区分4≦2000	500
	0< 区分 1 ≦50	5
経皮	50< 区分 2 ≦200	50
(mg/kg 体重)	200< 区分3≦1000	300
	1000< 区分 4 ≦2000	1100
	0< 区分 1 ≦100	10
気体	100< 区分2≦500	100
(ppmV)	500< 区分 3 ≦2500	700
	2500< 区分 4 ≦20000	4500
	0< 区分 1 ≦0.5	0.05
蒸気	0.5 < 区分 $2 \leq 2.0$	0.5
(mg/l)	2.0< 区分 3 ≦10.0	3
	$10.0 < 区分4 \le 20.0$	11
	0< 区分 1 ≦0.05	0.005
粉塵/ミスト	0.05 < 区分 $2 \leq 0.5$	0.05
(mg/L)	0.5< 区分 3 ≦1.0	0.5
	1.0< 区分 4 ≦5.0	1.5

- 注記1 気体濃度は容積当りの ppm (ppmV)で表す。
- 注記 2 変換値は、混合物の各成分の情報に基づき混合物の分類のための急性毒性推定値(ATE)値を計算する目的のためのものであり、試験結果を示すものではな

い。変換値は、区分 1 および区分 2 では範囲の下限を、区分 3 および区分 4 では、範囲の幅の 1/10 程度を下限から上にずらした値で設定している。

なお、分類 JIS では、化学物質の急性毒性を、経口、経皮又は吸入経路による急性毒性に対して、4つの毒性区分の一つに割り当てている。また、特に刺激性を有する化学物質の経口投与試験の場合、強制経口投与と飼料あるいは飲料水に添加して投与する場合とでは毒性標的臓器・毒性発現機序が異なり、それに伴い試験結果のヒトへの外挿が全く異なる場合があることに注意が必要である(例えば、前胃に見られるびらん、潰瘍などという所見は強制経口という手法でなければ出現しない病変であり、ヒトには外挿出来ない)。

B) GHS における分類基準(参考情報)

GHS 分類においては、分類 JIS に加えて、区分 5 を設定している。GHS による 分類基準と区分 5 に関する注釈は以下の通り。

【国連 GHS 改訂 3 版】 (3.1.2)

表 3.1.1 急性毒性区分および

それぞれの区分を定義する急性毒性推定値(ATE)

暴露経路	区分1	区分2	区分3	区分4	区分5
経口(mg/kg 体重)	$\leqq 5$	≦ 50	≦300	≦ 2000	≦5000
経皮(mg/kg 体重)	≦ 50	≦ 200	≦1000	≦ 2000	詳細な判 定基準(g) 参照
気体 (ppmV)	≦ 100	≦ 500	≦2500	≤20000	詳細な判定基準(g) 参照
蒸気(mg/L)	≤ 0.5	≤ 2.0	≦10	≦20	
粉塵およびミスト (mg/L)	≦ 0.05	≦0.5	≦1.0	≦ 5	

注記:気体濃度は容積での百万分の1 (ppmV) を単位として表されている。

表 3.1.1 への注記

- (a) 物質の分類のための急性毒性推定値(ATE)は、利用可能な LD_{50}/LC_{50} から得られる。
- (b) 混合物成分の分類のための急性毒性推定値(ATE)は、次を用いて得られる:
 - (i) 利用可能な LD₅₀/LC₅₀

- (ii) 範囲試験の結果に関連した表 3.1.2 からの適切な変換値、または
- (iii) 分類区分に関連した表 3.1.2 からの適切な変換値
- (c) 表中の吸入試験のカットオフ値は4時間試験暴露に基づく。1時間暴露で求めた、 既存の吸入毒性データを換算するには、気体および蒸気の場合2、粉塵およびミストの場合は4で割る。
- (d) ある規制システムでは、飽和蒸気濃度を追加要素として使用し、特別な健康および安全保護規定を設けている。(例:国連危険物輸送に関する勧告)
- (e) 物質によっては、試験対象となる物質の状態が蒸気だけでなく、液体相と蒸気相で混成される。また他の化学品では、試験雰囲気が、ほぼ気体相に近い蒸気であることもある。この後者の例では、区分 1(100ppmV)、区分 2(500ppmV)、区分 3(2500ppmV)、区分 4(20000ppmV)のように、ppmV 濃度により分類すべきである。

「粉塵」、「ミスト」および「蒸気」という用語は以下のとおり定義される:

- (i) 粉塵: ガス(通常空気)の中に浮遊する物質または混合物の固体の粒子;
- (ii) ミスト: ガス(通常空気)の中に浮遊する物質または混合物の液滴:
- (iii) 蒸気:液体または固体の状態から放出されたガス状の物質または混合物。
- 一般に粉塵は、機械的な工程で形成される。一般にミストは、過飽和蒸気の凝縮または液体の物理的な剪断で形成される。粉塵およびミストの大きさは、一般に 1μm 未満からおよそ 100μm までである。
- (f) 粉塵およびミストの数値については、今後 OECD テストガイドラインが、吸入 可能な形態での粉塵およびミストの発生、維持および濃度測定の技術的限界のた めに変更された場合、これらに適合できるよう見直すべきである。
- (g) 区分5の判定基準は、急性毒性の有害性は比較的低いが、ある状況下では高感受性集団に対して危険を及ぼすような物質を識別できるようにすることを目的としている。こうした物質は、経口または経皮 LD50 値が 2000-5000mg/kg、また吸入で同程度の投与量であると推定されている。区分5に対する特定の判定基準は:
 - (i) LD50 (またはLC50)が区分 5 の範囲内にあることを示す信頼できる証拠がすでに得られている場合、またはその他の動物試験あるいはヒトにおける毒性作用から、ヒトの健康に対する急性的な懸念が示唆される場合、その物質は区分 5 に分類される。
 - (ii) より危険性の高い区分へ分類されないことが確かな場合、データの外挿、 推定または測定により、および下記の場合に、その物質は区分 5 に分類され る。
 - ヒトにおける有意の毒性作用を示唆する信頼できる情報が得られている、 または

- 経口、吸入または経皮により区分 4 の数値に至るまで試験した場合に 1 匹でも死亡が認められた場合、または
- 区分 4 の数値に至るまで試験した場合に、専門家の判断により意味のある毒性の臨床症状(下痢、立毛、不十分な毛繕いは除く)が確認された場合、または
- 専門家の判断により、その他の動物試験から意味のある急性作用の可能性 を示す信頼できる情報があると確認された場合。

動物愛護の必要性を認識した上で、区分 5 の範囲での動物の試験は必要ないと考えられ、動物試験結果からヒトの健康保護に関する直接的関連性が得られる可能性が高い場合にのみ検討されるべきである。

(3) 情報源およびデータに関する事項

※分類手順については、 $\begin{bmatrix} 3-1-1 \end{bmatrix}$ 分類判定に利用可能な情報源」を参照のこと。 A)データの入手可能性

- 分類判定に利用可能な情報等に公表された毒性値に基づいて分類する方法をとる。
- ・ 情報源はレビュー情報を中心としているため、一つの急性毒性データが複数のレビューで記載されている場合が多い。同一の急性毒性値があった場合、レビューの引用文献等に当たり同一データの重複をさけること。
- ・ OECD テストガイドラインには、急性毒性に関連する下記の試験法がある。
 - OECD TG 420 Acute oral toxicity Fixed dose procedure
 - OECD TG 423 Acute oral toxicity Acute toxic class method
 - OECD TG 425 Acute oral toxicity Up-and-down procedure
 - OECD TG 402 Acute dermal toxicity
 - OECD TG 403 Acute inhalation toxicity
- ・ EU CLP 分類の判定基準は、分類 JIS における GHS と完全に一致している。 European Commission のホームページでは、EU 内で調和された CLP 分類結果が Annex VI、Table 3-1 及び Annex VI、Table 3-2 として提示されており、参考とすることができる。

 $\label{lem:http://ec.europa.eu/enterprise/sectors/chemicals/documents/classification/index $$_{\rm en.htm}$$

・ EU DSD (Dangerous Substances Directive) 分類の急性毒性に関する R-Phrase 20、R-Phrase 21、R-Phrase 22、R-Phrase 23、R-Phrase 24、R-Phrase 25、R-Phrase 26、R-Phrase 27、R-Phrase 28(以下「R20」のように記載6)を参考とすることができる。

⁶ R-Phrase については付録を参照のこと。

B)複数データが存在する場合の優先順位

「3-1-2 複数データが存在する場合の優先順位」(p.90) を参照のこと。

C)従来の分類システムとの比較

- ・ EU DSD 分類はおおまかな目安として参考にできるが完全には一致しない。
- ・ EU CLP 規則 附属書WIでは、下記の表のように EU DSD 分類の R-フレーズとシンボルマークにより、GHS 分類の急性毒性に換算している。
- ・ UNRTDG クラス 6.1 は暴露経路で分けられていない。

区分		1			2		3		4
経口 (mg/ kg)	GHS	Ę			50		30	00	2000
	EU CLP 分類	H30)		H300 T+; R28	•	H301 T; R		H302 Xn; R22
	EU DSD 分類	R28 25				R25 200			R22 2000
経皮 (mg/ kg)	GHS	50			200	200	100	00	2000
<i>O</i> *	EU CLP 分類	H31 T+;			H310		H311 T; R		H312 Xn; R21
	EU DSD 分類	R27			R24 400				R21 2000
	GHS			100		500		2500	1
気体 (ppm V)	EU CLP 分類	分類 H330		H330 T+; R26		H331 T; R23		H332 Xn; R20	
V)	EU DSD 分類				定義	定義されていない			
蒸気 (mg/l)	GHS	0.8			2		-	10	20
,	EU CLP 分類	H33 T+;			H330 T; R23		H331		H332 Xn; R20
	EU DSD 分類	R26			R23		R20		
		0.5			2		20		
粉塵 /ミス ト (mg/l	GHS	0.05			0.5			1	5
	EU CLP 分類	H33)		H330	•	H331		H332

		T+; R26		T; R23	Xn; R2	20
EU	R26		R23		R20	
DSD 分	0.25		1		5	
類						

(注)「経口」「経皮」は LD_{50} 、「蒸気」「粉塵・ミスト」は LC_{50} の値。「気体」については、現在の EU DSD 分類では定義されていない。

DSD: Dangerous Substances Directive

D)データに係る手引き

吸入毒性についてはデータの単位が物質の性状によって単位が異なるので注意を要する。試験雰囲気がほぼ気体に近い蒸気を含めてガス状である場合は気体(ppmV)、液体であって沸点が比較的低い物は蒸気(mg/L)、その他の物は粉塵およびミスト(mg/L)の数値を用いて分類する。

(参考) ppmV 単位と mg/L 単位の換算 (1 気圧、25℃において)

 $(ppmV) = \{ (mg/L) \times 24.45 \times 10^3 \} / 分子量$

 $(mg/L) = \{ (ppmV) \times 分子量 \times 10^{-3} \} / 24.45$

(4)分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。

なお、混合物のデータしかないもの(毒性のない溶媒等によって混合・希釈されている場合に限る)については、適宜濃度から推算して化学物質の場合の GHS 分類を行い、その推定の過程を記載する。

B)急性毒性に係る記述が複数あった場合の決定

高い信頼性のデータを用いた、急性毒性に係る記述が複数あり、それらが複数の区分に該当する場合は、原則として「3-1-2 複数データが存在する場合の優先順位」(p.90)に記載の方法により分類を決定する。ただし、この優先順位の方法でも複数の区分に該当する場合には、最も多くのデータが該当する区分を採用する。

また、最も多くのデータが同数の場合には、危険性が高い区分を採用する。

(なお、このような区分結果を用いて混合物を分類する場合には、決定した区分を基に、表 3-2 の変換値 (Conversion Value) を用いる方法や、分類根拠に示されている個々のデータから妥当 (最小値を採用する) と考えられる値を用いる方法などがある。)

C)吸入経路における急性毒性 LC50 を評価する場合の留意点

- ①吸入毒性に関する数値は、4 時間の動物試験に基づいている。データが複数存在する場合は「3-2-2 複数データが存在する場合」に記載されている方法によりデータを選択するが、同じ信頼性の場合は、下記の基準に基づきデータを採用し、4 時間に換算して計算を行う。
 - 1) 1 時間と 4 時間のデータがあれば、そのデータのみを用いて、計算を行う。 ※1 時間のデータは 4 時間のそれに換算して計算
 - 2) 1)に該当するデータがない場合は、30分~24時間のデータを用いて計算を行う。
 - 3) 1)および 2)に該当するデータがなければ、「分類できない」とする。ただし、区分 1 の基準値以下の濃度で 4 時間以下(30 分未満を含む)の暴露により致死作用が示されたもの(ATE/LC_{50} で判断)については、区分 1(吸入)に分類する。

A 時間の LC₅₀ 値 B を C 時間の LC₅₀ 推定値 D に変換する方法

・気体・蒸気の場合: D = B√A / √C

・粉塵・ミストの場合: **D** = **BA/C**

※GHS 分類を行う場合には、Cには4 (時間) が入る

(換算について) 1 時間の暴露試験から実験値を採用する場合には、1 時間での数値を、気体および蒸気の場合には 2 で、粉塵およびミストの場合では 4 で割ることで、4 時間に相当する数値に換算すること。なお、1 時間以外の場合は GHS 本文には記載されていないが、上述の算術式を用いて GHS 分類の判定に必要な 4 時間での LC_{50} を求めること。

- ②採用したデータが、蒸気の吸入試験であるか、ミストの吸入試験であるか不明な場合がある。その場合、蒸気圧等の物性から明らかにどちらであるか結論づけられる場合を除き、「分類できない」とする。なお、「試験条件が、蒸気であれば区分〇〇、ミストであれば区分△△に該当するが、蒸気であるかミストであるか得られた情報原からは判断できず、分類できないとした。」など、判断できなかった理由等を明記すること。
- ③例えミストであっても LC_{50} が ppmV で記載されている場合、またはガスであっても、 LC_{50} が mg/L で記述されている場合がある。評価文書においては、 LC_{50} 値のみが記載され、通常、温度等の試験条件が記載されていない場合が多く、正確な換算はできない場合は、下記の式により換算を行うこと。

 $ppmV = mg/L \times 1000 \times 24.45$ / 分子量 (1 気圧、25℃で換算した場合)

(例) ある物質の飽和蒸気圧が $0.9 \mathrm{kPa}$ ($25 \mathrm{C}$) である。この物質の飽和蒸気圧濃度

(ppm) はどうなりますか。

(答) 飽和蒸気圧濃度=飽和蒸気圧/大気圧、であるから、

飽和蒸気圧濃度=0.9kPa/101.3kPa

=0.0088845

=8885ppm

従って、飽和蒸気圧が $0.9 \mathrm{kPa}$ $(25 ^{\circ}\mathrm{C})$ の物質の飽和蒸気圧濃度は $8885 \mathrm{ppm}$ となる。 mmHg の場合には、大気圧を $760 \mathrm{mmHg}$ として計算する。

経路 ラット又はウサ 経路 ギのデータより (経口、吸入) (経皮) 決定。ただし、両 Yes Yes 方ある場合はそ ラットのデ ラットまたは ラットのデー Yes Yes れぞれの種で決 タより決定。 ウサギのデー タがある 定し、危険性の高 タがある No い方を採用する。 齧歯類のデータ No 齧歯類(マウ より決定。異な Yes 齧歯類(マウ ス、モルモッ 齧歯類のデータ る種が複数ある Yes ス、モルモッ ト)のデータが より決定。異なる 場合は、それぞ ト)のデータが ある 種が複数ある場 れの種で決定 ある 合は、それぞれの し、危険性の高 No No 種で決定し、危険 い方を採用す 「分類できな 性の高い方を採 る。 「分類できない」

図 3-1 動物の種差の取扱いについて

- ※1 齧歯類以外のデータについては、分類には採用しないものの、後で必要に応じて 参照できるようにしておく。
- ※2 齧歯類およびウサギ以外のデータについては、分類には採用しないものの、後で必要 に応じて参照できるようにしておく。

とする※2

用する。

D)急性毒性分類における蒸気 (vapour) 吸入に関わる基準値

い」とする※1

急性毒性の分類では、蒸気吸入の際の基準が、国連 GHS 改訂 3 版の表 3.1.1.本体のみをみると誤解しやすいものとなっているため、同文書の表 3.1.1.の注記(d)と同文書 3.1.2.6.2 の記載に注意して分類する必要がある。

国連 GHS 改訂 3 版表 3.1.1 の蒸気の欄に付された注記 (e) は、「物質によっては、試験対象となる物質の状態が蒸気だけではなく、液体相と蒸気相で混成される。また、他の化学品では、試験雰囲気がほぼ気体相に近い蒸気であることもある。この後者の例では、区分 1 (100ppmV)、区分 2 (500ppmV)、区分 3 (2500ppmV)、区分 4 (20000ppmV)、のように、ppmV 濃度により分類すべきである。」となっている。これは、「蒸気」として試験をしたと記載されていても、実際は「ミストが混在」している場合があるので、このような場合は mg/L でないと正確な濃度表示ができないことから 表本体の蒸気吸入の欄には mg/L で基準値が定められているが、きちんと気化させた蒸気で試験を実施している場合は ppmV で示された基準値で分類するよう指示をし

ているものである。またここで示された値は、ガスの分類基準値と同じものとなっている。同文書 3.1.2.6.2 でも、同様の主旨が繰り返し述べられている。

- この、国連 GHS 改訂 3 版 表 3.1.1.の注記(d)と同文書 3.1.2.6.2 の主旨にしたがって、「吸入」の場合の急性毒性については、以下の方針で分類を実施すること。
 - ①GHS の定義による「気体」(「(i) 50℃で 300kPa (絶対圧) を超える蒸気圧を有する物質、または (ii) 101.3kPa の標準気圧、20℃において完全にガス状である物質」と定義されている) については、気体の区分基準値(ppmV)を適用する。
 - ②液体から発生する蒸気で、飽和蒸気圧を超えた濃度で吸入実験が実施された場合は「ミスト」として「粉塵・ミスト」の区分基準値を適用する。
 - ③液体から発生する蒸気で、飽和蒸気圧以下の濃度で吸入実験が実施された場合は、「蒸気」として扱う。ただし、「蒸気」として扱う場合には、GHSにしたがって、ミストが混在していると推定される場合とミストがほとんど混在していないと推定される場合があるので、これに応じて以下の1)から4)により区分を行なう。
 - 1)ミストが混在していると推定される場合は、表の「蒸気」の行に示された mg/L を単位とする基準値により区分する。
 - 2)ミストがほとんど混在してないと考えられる場合については、表 3.1.1 の注記(d) に示された ppmV を単位とする基準値(気体-ガス-と同じ値)により区分を実施する。
 - 3) 試験で得られた ATE (LC50) 値が、当該物質の飽和蒸気圧濃度とその 90%に 相当する濃度の値の間にある場合は、ミスト混在の可能性を考慮して「ミスト が混在している蒸気」として 1)を適用する。それより低い濃度の場合は「ミストがほとんど混在しない蒸気」として 2)を適用する。
 - 4) 文献での記載が mg/L である場合は分子量と温度条件から ppmV に変換して上述した方式を適用する。吸入試験時の温度の記載がない場合は、25 \mathbb{C} を仮定して 1 モルの気体の体積を 24.45 リットルとして単位変換を行なう。
 - ④明確に「ミスト」として試験を実施した旨の記載がある場合は、ミストとして扱う。
 - ⑤固体から発生した蒸気を吸入させる場合も想定されるので、固体(気体・液体以外)から発生するものについては「蒸気」と明示されていたり、吸入濃度が ppmV を単位として表示されていたりする場合は「蒸気」として扱う。ただし、濃度が飽和蒸気圧濃度以上の場合には、ダストが混在している可能性がある。これについては GHS では特段の定めがないので、「飽和蒸気圧を超えているため蒸気としての記載に疑問あり・ダスト混在の可能性が高い」と特記する。また、飽和蒸気圧に相当する濃度以下であって、表示単位が mg/L で、蒸気かダストかが明示されていない場合は、一般的には分類できない。この場合は、「蒸気であれば区分○○、ダストであれば区分○○」と特記することが望ましい。

3-2-2 皮膚腐食性/刺激性

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】 (3.2.1)

皮膚腐食性とは皮膚に対する不可逆的な損傷を生じさせることである。即ち、試験物質の4時間以内の適用で、表皮を貫通して真皮に至る明らかに認められる壊死である。腐食反応は潰瘍、出血、出血性痂皮により、また14日間の観察での、皮膚脱色による変色、付着全域の脱毛、および瘢痕によって特徴づけられる。疑いのある病変部の評価には組織病理学的検査を検討すべきである。

皮膚刺激性とは、試験物質の 4 時間以内の適用で、皮膚に対する可逆的な損傷を生じさせることである。

(2) 分類基準

A) 分類 JIS による分類基準

腐食性/刺激性の区分は、皮膚腐食性を区分 1、皮膚刺激性を区分 2 の 2 種類で分類 し (後述するように国連 GHS では、分類 JIS に加えて区分 3 を設定している)、そのうち皮膚腐食性は、暴露時間、観察期間で細分化される。その基準を下表に示す。

府会區区八1	府各州如豆八	動物 3 匹中 1 匹以上における腐食性			
腐食性区分1	腐食性細区分	暴露時間(T)	観察期間(t)		
腐食性	1A	T≦3 分間	t ≦1 時間		
	1B	3 分間 <t≦1 td="" 時間<=""><td colspan="2">t ≦14 日間</td></t≦1>	t ≦14 日間		
	1C	1 時間 <t≦4 td="" 時間<=""><td>t ≦14 日間</td></t≦4>	t ≦14 日間		

表 3-3 皮膚腐食性の区分および細区分 a)

注 a) ヒトのデータを使用する場合については、「ヒトから得られた証拠」(国連 GHS 改訂 3 版 1.3.2.4.7)で論じている。

表 3-4 皮膚刺激性の区分^{a)}

	Lot Under Nation
区分	判定基準
皮膚刺激性 (区分 2)	判定基準は、次のいずれかとする。 a)試験動物 3 匹のうち少なくとも 2 匹で、パッチ除去後 24、48 および 72 時間における評価、又は反応が遅発性の場合には皮膚反応発生後 3 日間連続しての評価結果で、紅はん(斑)、又はか(痂)皮若しくは浮しゅ(腫)の平均スコア値が 2.3 以上かつ 4.0 以下である。 b)少なくとも 2 匹の動物で、通常 14 日間の観察期間終了時まで炎症が残る、特に脱毛(限定領域内)、過角化症、過形成および落せつ(屑)を考慮する。 c)上述の判定基準ほどではないが、動物間にかなりの反応の差があり、動物 1 匹で化学品暴露に関してきわめて決定的な陽性作用が見られるような例もある。

注 a) ヒトのデータを使用する場合については、「ヒトから得られた証拠」(国連 GHS 改訂 3 版 1.3.2.4.7)で論じている。

B) GHS における分類基準(参考情報)

GHS 分類においては、分類 JIS に加えて、区分 3 を設定している。GHS による分類基準は以下の通り。

【国連 GHS 改訂 3 版】(3.2.2)

表 3.2.1 皮膚腐食性の区分および細区分 a

腐食性	区分1	腐食性	細区分	動物3匹中1匹以上にま	おける腐食性
(細区分を い所管官庁 れる)	と採用しな 庁に適用さ	(限られた) 一		暴露時間	観察期間
腐食性		1.4	Λ	≦3 分間	≦1 時間
		1H	3	>3 分間-≦11 時間	≦14 日間
		10	2	>1 時間-≦4 時間	≦14 日間

a ヒトのデータを使用する場合については 3.2.2.1 および 1.3 章 (1.3.2.4.7.1) で論じている。

表 3.2.2 皮膚刺激性の区分 a

区分	判定基準
刺激性	(1)試験動物3匹のうち少なくとも2匹で、パッチ除去後24、
(区分 2)	48 および 72 時間における評価で、または反応が遅発性の場
(すべての所	合には皮膚反応発生後3日間連続しての評価結果で、紅斑/痂
管官庁に適用	皮または浮腫の平均スコア値が≧2.3、≦4.0 である、または

される)	(2) 少なくとも 2 匹の動物で、通常 14 日間の観察期間終了時ま		
	で炎症が残る、特に脱毛(限定領域内)、過角化症、過形成な		
	よび落屑を考慮する、または		
	(3)動物間にかなりの反応の差があり、動物 1 匹で化学品暴露		
	に関してきわめて決定的な陽性作用が見られるが、上述の判		
	定基準ほどではないような例もある。		
軽度刺激性	試験動物 3 匹のうち少なくとも 2 匹で、パッチ除去後 24、48 およ		
(区分)	び72時間における評価で、または反応が遅発性の場合には皮膚反		
(限られた所	応発生後3日間連続しての評価結果で、紅斑/痂皮または浮腫の平		
管官庁のみに	均スコア値が ≥ 1.5 、 < 2.3 である(上述の刺激性区分には分類さ		
適用)	れない場合)		

a ヒトのデータを使用する場合については 3.2.2.1 および 1.3 章 (1.3.2.4.7.1) で論じている。

(3)情報源およびデータに関する事項

※分類の手順については、「3-1-1 分類判定に利用可能な情報源」を参照のこと。 A)データの入手可能性

- ・ 分類区分は刺激性試験データに基づいて定義されているが、GHS 評価基準を適用できる詳細な Draize スコアを記載したデータ集は少ない。詳細なデータがない場合には区分 1 の細区分(1A、1B、1C)の分類はできない。(OECD で皮膚腐食性分類(1A、1B、1C)の区分を行うための試験法ガイドライン 435 ($in\ vitro\ membrane\ barrier\ test\ method$) の提案がなされている。)
- ・ データに基づく適切な刺激性データ (例えば、紅斑/痂皮または浮腫の Draize Score 平均スコア値 (個体毎の)、PII (皮膚一次刺激指数) など) の刺激評点 (平均スコア値) が容易に入手できない場合は、試験報告書の皮膚腐食性/刺激性に関する Severe、 Moderate、 Mild(Slightly)7などの所見を参考とすることができる。
- EUDSD 分類の皮膚腐食性/刺激性に関する R-Phrase⁸(R34、R35、R38、R36/37、R36/38、R37/38、R36/37/38) を参考とすることができる。
- ・ OECD テストガイドラインには、皮膚腐食性/刺激性に関連する下記の試験法がある。

OECD TG 404 Acute dermal irritation / corrosion

OECD TG 430 In vitro skin corrosion: Transcutaneous electrical resistance test

OECD TG 431 In vitro skin corrosion: Human skin model test

OECD TG 435 In vitro membrane barrier test method for skin corrosion

⁷ Mild と Slightly を区別する所見もあるが、IUCLID では、Mild の代わりに Slightly と記載されている。

⁸ R-Phrase については付録を参照のこと。

B)複数データが存在する場合の優先順位

「3-1-2複数データが存在する場合の優先順位」(p.90) を参照のこと。

C)従来の分類システムとの比較

- EU DSD 分類 の R34、R35 で腐食性 (C) と分類されているものは区分1に相当する。
- ・ EU DSD 分類 で R38 およびこれらを組み合わせた R-Phrase⁹(R36/38、R37/38、R36/37/38) で刺激性(Xi) と分類されているものは区分2または区分3 (GHS 分類の場合)に相当する。詳細データの確認が必要であり、EUDSD 分類結果のみで、分類の根拠となる情報が他に入手できない場合は、「分類できない」とする。
- ・ EU CLP 分類の H314 と分類されているものは区分 1 、H315 は区分 2 と一致する。
- ・ EU 分類と GHS 分類を比較すると次のようになる。

皮膚腐食性

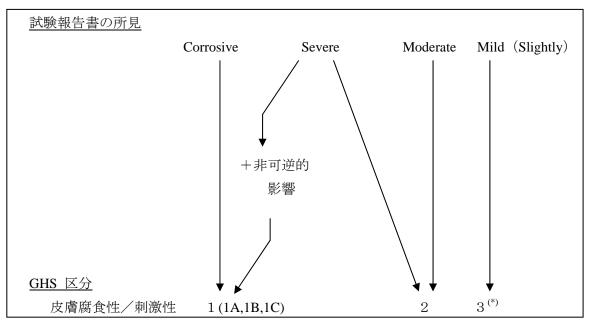
EU DSD 分類	C R35	C R34	
EU CLP 分類	H314(注)		
GHS 分類	区分1A 区分1B 区分1C		

皮膚刺激性

EU DSD 分類	Xi R38		
EU CLP 分類	H315		
GHS 分類	区分2		区分3

注:判定基準によると、H314 は GHS 分類の区分 1 B と 1 C を包含しているが、 EU CLP 規則 Annex WI では、H314 は区分 1 B とされている。

D)データに係る手引き


試験報告書の所見として Severe、 Moderate、 Mild (Slightly) 10の評価で示している場合が多い。これは、それぞれ区分 1、区分 2、区分 3 に相当するものと判断できる。可能な限り、PII (皮膚一次刺激指数) などを確認し、moderate (PII3-5 に相当)、severe (PII 6-8 に相当) とすることが望ましい。また、同じ"moderate"であっても用いた分類基準によっては皮膚反応の程度が異なる可能性があるため、少なくともその既存分類がどの分類基準に基づくものであるのかを確認したうえで、該当区分を検討すること。区分 1 は皮膚腐食性/刺激性試験の観察期間内において壊死などの非可逆的病変が観察された場合に適用される。「Severe の評価であっても非可逆的病変が観

-

⁹ R-Phrase については付録を参昭のこと

¹⁰ Mild と Slightly を区別する所見もあるが、IUCLID では、Mild の代わりに Slightly と記載されている。

察されてない場合は区分 2 に相当する」、との意見もあるが、この判断は記述者の主観による場合があるので参考とすべきである。GHS の分類を行う場合には原文献を参照し、データの妥当性を検討し、科学的な根拠および GHS の方法に従って分類を行うことが望ましい。

(*)(分類 JIS では区分外)

E)物理化学的性状による判定

物理化学性状で強酸($pH \le 2$)あるいは強アルカリ($pH \ge 11.5$)とされているものは区分 1 に分類する。但しこの場合は国連 GHS 改訂 3 版にも記載があるように、緩衝力によってその pH が暴露時にも維持されていることを証明される必要がある。分類に際しては、酸塩基の緩衝能を考慮する必要がある。

(4)分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。

なお、皮膚腐食性および刺激性については、国連 GHS 改訂 3 版の明確な判定基準である判定論理 3.2.1 のフローに従って分類すること。その際、以下に既存の試験データによる判定方法など技術的助言を記載するので参照すること。

また、腐食性の細区分については、国連 GHS 改訂 3 版の腐食性の判定(同文書表 3.2.1)を適用できるような暴露時間と観察期間をもうけた動物試験が実施されたときのみ分類することができる。よって、そのような場合のみ、細区分を行い、それ以外の場合は、細区分を行わない。

さらに、分類に際しては、以下の点を留意すること。

※「区分外」の取扱いについて、List1において明確に有害性を否定する、又は有害性が極めて低いと記述している場合を除き、「区分外」の判定は慎重に行うこと。 疑義があれば、むしろ判断を行うに十分な情報が無く「分類できない」としたほうが望ましい。

※細区分できない場合は、「区分1」とする。

B)信頼できる既存の暴露経験による判定

ヒトあるいは動物での結果で腐食性(区分 1A、1B、1C のいずれか、又は区分 1)あるいは刺激性(区分 2)と判断できる事例がある場合は、そのように分類すること(例:事故事例など)。

C)既存の試験データによる判定

①in vivo の試験結果による判定:

- ◆腐食性: (区分 1A、1B、1C のいずれか、又は区分 1)
 - 4時間以内の暴露で試験動物3匹中1匹以上に
 - 1) 真皮に至る壊死。
 - 2) 処置部の潰瘍(ulcer)、出血(bleeding)、出血性痂皮(bloody scabs)。
 - 3) 14 日間の観察期間終了時に皮膚の脱色(blanching of the skin)、処置部全域の脱毛(complete areas of alopecia)、および瘢痕(scars)が残留、が認められる場合。
 - 4) 紅斑・痂皮スコアあるいは浮腫スコアが4の場合は腐食性(区分1)と判定(但し、非可逆的病変が観察されない場合は刺激性(区分2)と判定)。
- ◆刺激性:(区分2)

処置後24、48、および72時間において

- 1) 試験動物 3 匹中 2 匹以上で紅斑/痂皮または浮腫の Draize Score 平均スコア値 (S) (個体毎の) が $S \ge 2.3$ かつ $S \le 4.0$ 、
- 2) 処置 14 日後で 2 匹以上の動物で炎症や限局された脱毛(alopecia、limited area)、 過角化症(hyperkeratosis)、過形成(hyperplasia)、落屑(scaling)が残る、または
- 3) 一匹の動物で明確な陽性反応が認められるが、程度が上記 1)、2)の基準を満た すほどの所見では無い場合(個体差が大きい場合で、3 匹中 1 匹のみではあるが、 観察期間終了時においても明確に病変が認められるような場合)。

②既存の分類との比較による判定:

- ・ Severe あるいは Corrosive と分類された物質は腐食性(区分 1) と判定し、 Severe について、非可逆的病変が観察されない場合は刺激性(区分 2) と判定)
- ・ Moderate と分類された物質は刺激性(区分2)と判定する。
- 可能な限り、PII(皮膚一次刺激指数)などを確認し、moderate (PII 3-5 に相当)、severe (PII 6-8 に相当)とすることが望ましい。また、同じ"moderate"

であっても用いた分類基準によっては皮膚反応の程度が異なる可能性があるため、少なくともその既存分類がどの刺激性データに基づくものであるのかを確認したうえで、該当区分を検討することが望ましい。

③症状による判定(他に情報が無い場合):

・ Necrosis と記述された場合は腐食性(区分1)と判定

D)構造活性相関または構造特性相関による判定

分類においては、一切考慮しないこと。ただし、List1 の評価文書に「構造活性相関の解析により、区分○○に該当すると判断される」旨の記載があればその結果に基づき、分類する。

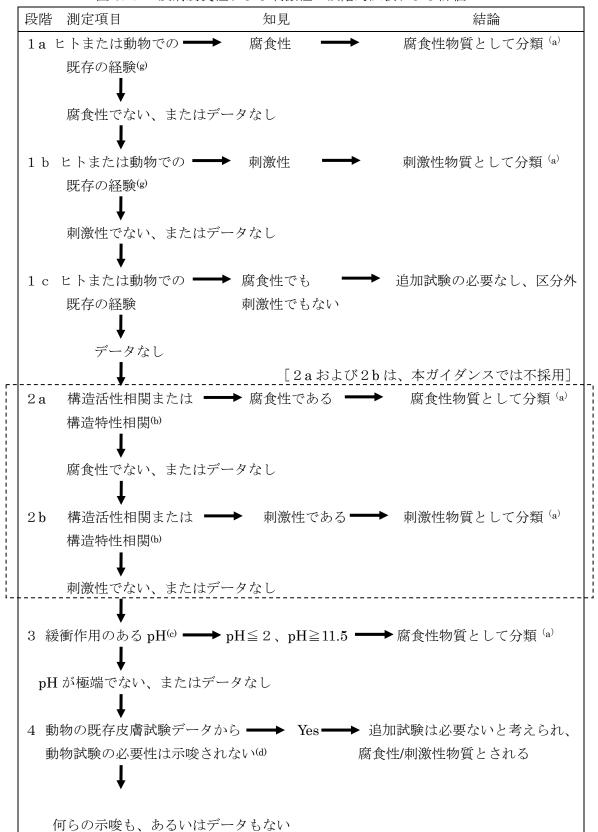
E)物理化学的性状による判定

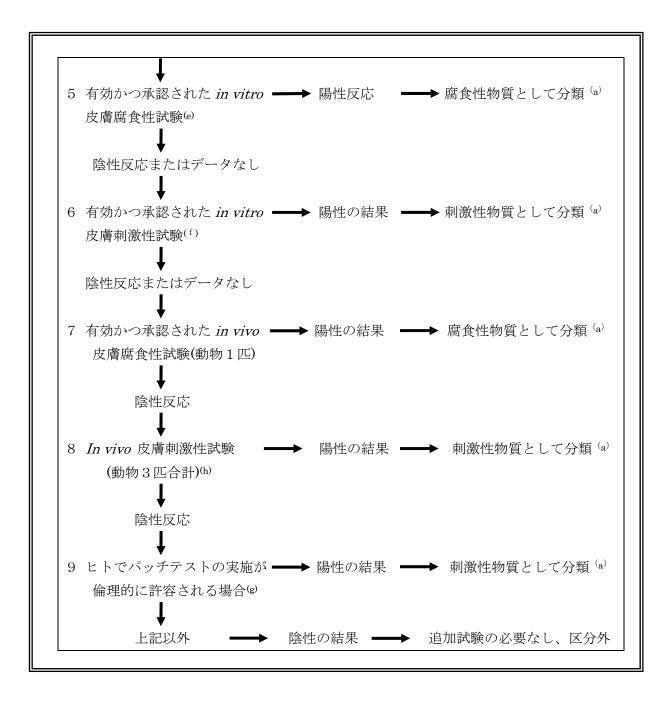
 $pH \le 2$ 、 $pH \ge 11.5$ の場合は腐食性(区分 1)と判定する(緩衝能も考慮して判定する)。(Booman et al (1989)は眼刺激性で 0.2meg HCl/g を提唱する。)。

刺激性は pH のみによって決定されるのではなく、酸やアルカリの内容による影響を受けるという事例を示した参考文献として、下記論文がある。

"Classification as Corrosive or irritant to Skin of Preparations Containing Acidic or Alkaline Substances, without Testing on Animals", YOUNG.J, et. al (SDA), Toxicol in vitro VOL.2 NO.1 PAGE 19-26 (1988)

F) *In vitro* の試験法での判定


OECD TG431 (ヒト皮膚モデル Epiderm)、TG430 (皮膚電気伝導度試験) および OECD TG435 (Corrositex®.) に基づき試験されたデータがあれば、その試験ごとに 国際的に承認された判定基準に従って分類。それ以外の *in vitro* 試験は考慮しない。 G)皮膚腐食性および刺激性の段階的試験および評価の戦略


国連 GHS 改訂 3 版 3.2.1 に記載されている皮膚腐食性および刺激性の段階的試験 および評価の戦略を以下に示す。なお、D)に記載したように、本ガイダンスでは、構 造活性相関または構造特性相関(段階 2a および 2b) は採用しない。

また、「国連化学品の分類および表示に関する世界調和システムに関する専門家小委員会」では、本フロー図を改訂する議論も起きているため、本フロー図は参考として扱っていただきたい。

【国連 GHS 改訂 3 版】

図 3.2.1 皮膚腐食性および刺激性の段階的試験および評価

[上図についての注記]

- (a) (2) B) に示した区分で分類すること。
- (b) 構造活性相関と構造特性相関は個別に示されるが、おそらく実際には並行して行われる。ただし、本ガイダンスでは、構造活性相関と構造特性相関を不採用としている。
- (c) pH のみの測定でもよいが、酸またはアルカリ予備の評価が望ましい。緩衝能力評価の方法が必要である
- (d) すでに存在している動物試験データを詳しく見直し、in vivo 腐食性/刺激性試験が必要であるかどうかを決定すべきである。例えば、被験試料により、急性経皮毒性試験において限界用量で皮膚刺激が生じていない場合や、急性経皮毒性試験で極めて毒性の高い作用が生じている場合には、試験は必要でないと思われる。後者の場合、この試料は経皮経路による急性毒性では、極めて有害であるとして分類されることになる。しかし、この試料が皮膚に対して刺激性または腐食性であるかどうかには議論の余地がある。急性経皮毒性情報を評価する際には、皮膚病変部の報告が不完全であったり、試験の実施や所見が得られたのがウサギ以外の動物種であったり、また動物種はその反応の感受性が異なったりすることを留意しておくべきである。

(注) 限界用量を規定する OECD テストガイドラインおよび限界用量を以下に示す。

	OECD テストガイドライン	限界用量
番号	試験名称	
OECD	Acute Dermal Irritation/Corrosion	2000 mg/kg 体重
TG404	Acute Dermai Irritation/Corrosion	2000 mg/kg 冲里

- (e) 皮膚腐食性物質の *in vitro* 試験法には、国際的に承認された実例として OECDTG 430、TG431 および TG 435 がある。(p.110「F) *in vitro* の試験法での判定」参照)
- (f) 皮膚刺激性の in vitro 試験法には有効性が確認され国際的に承認された試験法は 今のところまだない。
- (g) この証拠は単回または反復暴露により導くことも可能である。ヒト皮膚刺激性試験法には国際的に承認された試験方法はないが、OECD TG が提案されている。
- (h) 試験は通常動物 3 匹を用いて実施される。 うち 1 匹は腐食性試験で陰性となった動物を流用する。

3-2-3 眼に対する重篤な損傷性/眼刺激性

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】 (3.3.1)

眼に対する重篤な損傷性は、眼の表面に試験物質を付着させることによる、眼の組織 損傷の生成、あるいは重篤な視力低下で、付着後 21 日以内に完全には治癒しないものを いう。

眼刺激性は、眼の表面に試験物質を付着させることによる、眼の変化の生成で、付着後 21 日以内に完全に治癒するものをいう。

(2) 分類基準

A)分類 JIS による分類基準

表 3-5 不可逆的な眼への影響に関する区分

眼刺激性物質区分 1 (眼に対する不可逆的影響) とは、次の状況を生じる試験物質である。

少なくとも1匹の動物で角膜、こう(虹)彩若しくは結膜に対する可逆的であると予測されない作用が認められる、通常21日間の観察期間中に完全には回復しない作用が認められる、又は試験動物3匹中少なくとも2匹で試験物質滴下後24、48および72時間における評価の平均スコア計算値が、

角膜混濁≧3 および/又は

こう(虹)彩炎>1.5

で陽性反応が得られる。

表 3-6 可逆的な眼への影響に関する区分

眼刺激性物質区分 2A (眼に対する刺激性作用) とは、次の状況を生じる試験物質である。

- 試験動物 3 匹中少なくとも 2 匹で、試験物質滴下後 24、48 および 72 時間における評価の平均スコア計算値が:

角膜混濁≥1 および/又は

こう(虹) 彩炎 ≧1 および/又は

結膜発赤≧2 および/又は

結膜浮しゅ(腫)≧2

で陽性反応が得られ、かつ通常21日間の観察期間内で完全に回復する。

上記の区分について、上述の作用が7日間の観察期間内に完全に可逆的である場合には、眼刺激性は軽度の眼刺激性(区分2B)であると見なす。

B) GHS における分類基準 (参考情報)

分類 JIS および GHS における分類基準では、同一の区分を採用している。 詳細な記述については、国連 GHS 改訂 3 版表 3.3.1 および表 3.3.2 を参照のこと。

(3)情報源およびデータに関する事項

※分類の手順については、「3-1-1 分類判定に利用可能な情報源」を参照のこと。 A) データの入手可能性

- ・ 分類区分は眼刺激性試験データに基づいて定義されているが、GHS 分類基準を 適用できる詳細な Draize スコアを記載したデータ集は少ない。
- ・ 皮膚腐食性物質については、通常、動物の眼に滴下する試験は行われない。眼 刺激性試験のデータがない場合、皮膚腐食性物質は重篤な眼の損傷を与える物質(区分1)とする。
- ・ データに基づく適切な刺激性データ (例えば、Draize Score 平均スコア値 (個体毎の)、AOI (Acute ocular irritation index、急性眼刺激指数)など)の刺激評点 (平均スコア値)が容易に入手できない場合は、試験報告書の眼損傷性/刺激性に関する Severe、 Moderate、 Mild (Slightly) 11などの所見を参考にすることができる。試験報告書における、眼刺激性反応の程度 (例:ウサギの Draize 法またはヒトでの知見)が軽微で 7 日以内に回復することを示すデータが利用可能な場合にはそれに基づいて分類することができるが、引用された原文献を参照して、その科学的な妥当性を検討しその内容によって、分類することが望ましい。また古い文献には標準的な Draize 法を採用していない場合があるが、参考にすることができる。しかしながら、引用された原文献を参照・検討し、科学的な根拠によって分類を行うことが望ましい。
- EU DSD 分類の眼に対する重篤な損傷/眼刺激性に関する R-Phrase¹² (R36、R41、R36/37、R36/38、R36/37/38) を参考とすることができる。
- ・ OECD テストガイドラインには、眼に対する重篤な損傷性/眼刺激性に関連する下記の試験法がある。

OECD TG 405 Acute eye irritation / corrosion

B) 複数データが存在する場合の優先順位 「3-1-2 複数データが存在する場合の優先順位」(p.90) を参照のこと。

C) 従来の分類システムとの比較

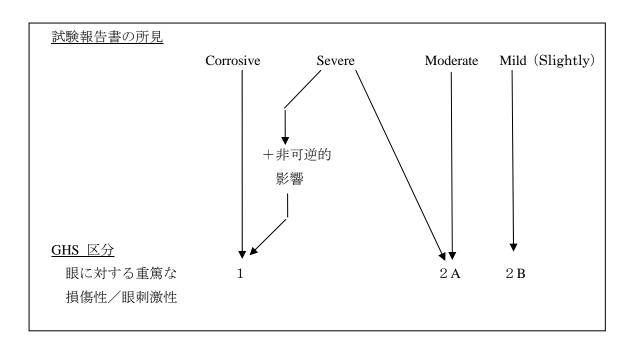
• EUDSD 分類で R41 と分類されているものは区分 1 に相当する。

^{11 「3-2-2} 皮膚腐食性/刺激性」脚注 (p.106) に記載したように、Mild と Slightly を区別する所見もあるが、IUCLIDでは、Mild の代わりに Slightly と記載されている。

 $^{^{12}}$ R-Phrase については付録を参照のこと。

- EUDSD 分類で R36 および R36 を組み合わせた R-Phrase¹³(R36/37、R36/38、R36/37/38) が適用されているものは区分 2 に相当する。
- EU CLP 分類の H318 に分類されているものは区分 1、H319 は区分 2 と一致する。

EU DSD 分類	Xi R41	Xi R36	
EU CLP 分類	H318	H319	
GHS 分類	区分 1	区分 2A	区分 2B


D) データに係る手引き

試験報告書の所見として Severe、 Moderate、 Mild (Slightly) 14の評価で示している場合が多い。これはそれぞれ区分 1、区分 2A、区分 2B に相当すると判断できるが、用いた試験法、検体適用条件、Severe、 Moderate、 Mild (Slightly) の根拠となるクライテリアによって、該当する眼反応の程度は異なると思われる。最終所見の確認だけではなく原文献に立ち戻って分類基準及びデータの妥当性を確認することが望ましい。その観点から区分 1 は眼損傷性/刺激性試験の観察期間内において、角膜、虹彩などに対する非可逆的作用が観察された場合に適用される。 Severe の評価であっても非可逆的作用が観察されてない場合は区分 2A に相当する。なお、試験報告書の所見で、 Mild と Slightly を区別している場合には、 Slightly の評価は区分外とする。

_

 $^{^{13}}$ R-Phrase については付録を参照のこと。

^{14 「3-2-2} 皮膚腐食性/刺激性」(p.107) に記載したように、Mild と Slightly を区別する所見もあるが、IUCLID では、Mild の代わりに Slightly と記載されている。Mild と Slightly を区別している場合には、Slightly の評価は区分外とする。

(4)分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。

なお、眼の重篤な損傷性/眼刺激性については、国連 GHS 改訂 3 版の明確な判定基準である「判定論理 3.3.1」(3.3.5.1) のフローに従って分類すること。その際、以下に既存の試験データによる判定方法など技術的助言を記載するので参照すること。

また、眼刺激性の細区分については、GHS の眼刺激性の判定(国連 GHS 改訂 3 版表 3.2.2)を適用できるような眼刺激性反応の程度(例:ウサギの Draize 法またはヒトでの知見)が軽微で7日以内に回復することを示すデータが利用可能な場合には分類することができる。よって、そのような場合のみ、細区分を行い、それ以外の場合は、細区分を行わない。

さらに、分類に際しては、以下の点を留意すること。

※「区分外」の取扱いについて、List 1 において明確に有害性を否定する、又は有害性が極めて低いと記述している場合をのぞき、「区分外」の判定は慎重に行うこと。 疑義があれば、むしろ判断を行うに十分な情報が無く「分類できない」とするほうが望ましい。

B)信頼できる既存の暴露経験による判定

ヒトあるいは動物での結果で眼に対する不可逆的影響 (区分 1) あるいは眼に関する可逆的影響 (区分 2) とする事例がある場合は、そのように分類すること。同様にヒトあるいは動物で皮膚腐食性とするデータがある場合は眼に対する不可逆的影響 (区分 1) に分類すること。国連 GHS 改訂 3 版表 3.3.1 を参照。(例:事故事例など)

C)信頼できる既存の試験データによる判定

①in vivo の試験(Draize 試験) 結果による判定:

1)重篤な眼損傷性(不可逆的作用)の判定基準(区分1):

- ・ 少なくとも 1 匹の動物で角膜、虹彩、あるいは結膜に可逆的とは思われない 障害を出現、あるいは通常 21 日間の観察期間中に障害が完全には回復しない 場合。
- ・ 3 匹中 2 匹以上で処置後 24、 48、 72 時間目での評価の平均スコア計算値 が角膜混濁 ≥ 3 かつ/または虹彩炎 > 1.5 の場合。

2)刺激性(可逆的作用)の判定基準(区分2A、2B、又は2):

- ・ 3匹の動物を用いて実施したDraize 試験で2匹以上に処置後24、48、72 時間目での評価の平均スコア計算値が角膜混濁 ≥ 1 かつ/または虹彩炎 ≥ 1 かつ/または結膜発赤 ≥ 2 かつ/または結膜浮腫 ≥ 2 の場合。
- ・ かつ、21 日間の観察期間中に完全に回復する。
- ・ ただし、上記に該当する場合であって、かつ 7 日間の観察期間内に回復する場合は軽度の刺激性(区分 2B) と分類

②既存の分類による判定:

- ・ Severe あるいは Corrosive (非常に強い刺激性または腐食性 AOI 80 以上に相当) と分類された物質は区分 1 に分類 (但し、非可逆的病変が観察されない場合は刺激性 (区分 2A) と判定)
- Moderate (強い刺激性 AOI 30-80 に相当) と分類された物質は区分 2A に分類
- ・ Mild (15≦AOI<30) と分類された物質は区分 2B に分類。
- ・ なお、可能な限り原文献にあたり、眼に対する刺激性などを確認することが 望ましい。

D)構造活性相関または構造特性相関による判定

分類時においては、一切考慮しないこと。ただし、List1 の評価文書に構造活性相関の解析により該当すると判断される旨の記載があればその結果に基づき、分類する。

E)物理化学的性状による判定

 $pH \le 2$ 、 $pH \ge 11.5$ の場合は区分 1 に分類(緩衝能も考慮して判定(Booman et al (1989)は眼刺激性で 0.2meq HCl/g を提唱))。

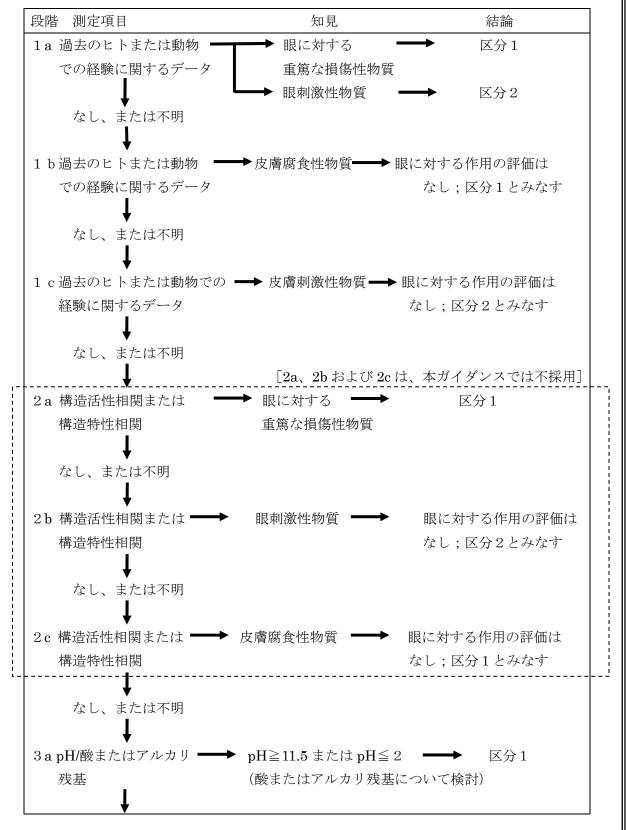
刺激性はpHのみによって決定されるのではなく、酸やアルカリの内容による影響を受けるという事例を示した参考文献として、下記論文がある。

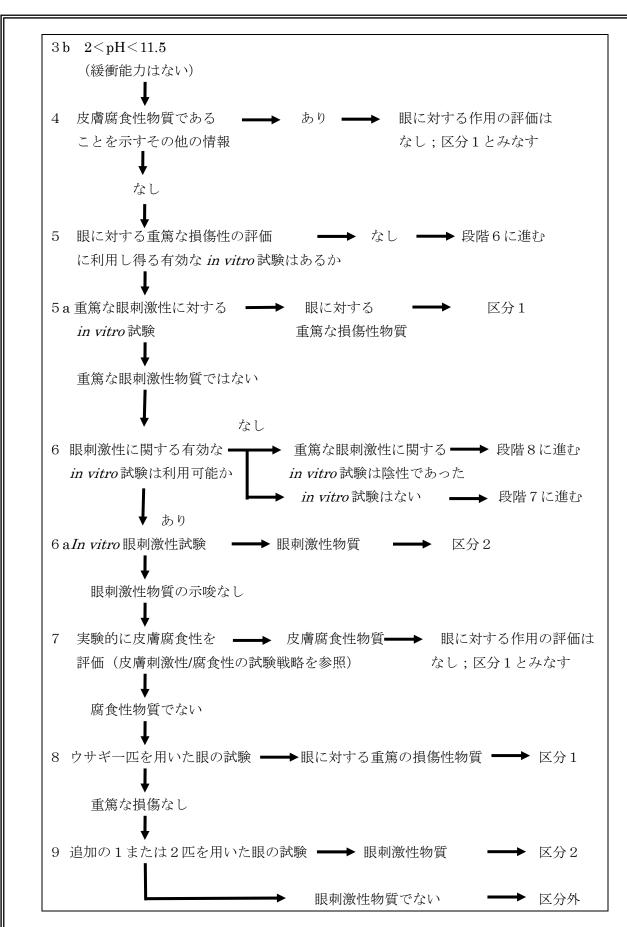
"Classification as Corrosive or irritant to Skin of Preparations Containing Acidic or Alkaline Substances, without Testing on Animals", YOUNG.J, et. al (SDA),

Toxicol in vitro VOL.2 NO.1 PAGE 19-26 (1988)

F) In vitro の試験法での判定:

眼刺激性の $in\ vitro$ 試験法には、国際的に承認された試験法として OECD TG437 および TG438 がある。


G) 眼に対する重篤な損傷性/眼刺激性試験および評価の戦略


国連 GHS 改訂 3 版図 3.3.1 に記載されている眼に対する重篤な損傷性/眼刺激性の段階的試験および評価段階を以下に示す。なお、D)に記載したように、本ガイダンスでは、構造活性相関または構造特性相関(段階 2a、2b および 2c)は採用しない。

また、「国連化学品の分類および表示に関する世界調和システムに関する専門家小委員会」では、本フロー図を改訂する議論も起きているため、本フロー図は参考として扱っていただきたい。

(皮膚刺激性/腐食試験および評価の概略も参考にすること)

【国連 GHS 改訂 3 版】図 3.3.1 眼に対する重篤な損傷性/眼刺激性試験および評価の戦略

[上図についての注記]

- 第1a/b 段階:過去のヒトまたは動物での経験に関するデータ:眼に対する局所作用に関する情報がない場合、皮膚腐食性の評価を考慮しなければならないため、眼刺激性および皮膚腐食性に関する既存情報は個別に示される。その化学物質を用いた既存の経験を分析すれば、皮膚および眼の両方に対する作用に関する重篤な損傷、腐食性と刺激性が特定されることもある。すなわち、
 - (i)第 1a 段階 ヒトまたは動物での経験に基づいた眼刺激性の信頼できる決定 専門家の判断による。多くの場合、ヒトでの経験は事故発生の際の事象であるために、 事故後に検出される局所作用を動物試験データ評価のために作成された分類基準と 比較する必要がある。
 - (ii)第 1b 段階 皮膚腐食性に関するデータの評価 皮膚腐食性物質は動物の眼に 滴下すべきではない。このような物質は眼に対する重篤な損傷につながると見なす べきである。(区分 1)
- 第 2a/b/c 段階【本ガイダンスでは不採用】: 眼刺激性および皮膚腐食性の SAR(構造活性相関)/SPR(構造特性相関)は個別に示されるが、おそらく実際には並行して行われる。この段階は、有効な承認された SAR/SPR 方法を用いて完了されるべきである。 SAR/SPR 分析により、皮膚および眼両方に対する重篤な損傷、腐食性および刺激性が特定されるであろう。すなわち、
 - (i)第 2a 段階・理論的評価だけによる眼刺激性の信頼できる決定 多くの場合、このことは特性が十分にわかっている物質の類似物質にのみあてはまることになる。
 - (ii)第 2c 段階-皮膚腐食性の理論的評価 皮膚腐食性物質は動物の眼に滴下すべきでない。そのような物質は眼に対する重篤な損傷につながると見なすべきである。(区分1)
- 第3段階:2以下または11.5以上の極端なpHは、特に酸またはアルカリ残基の評価と組合せると強力な局所作用を示唆している。そのような物理化学的性質を示す物質は 眼に対する重篤な損傷性物質であると見なすべきである。(区分1)
- 第4段階:ヒトで考えられる経験も含めて、入手された情報をすべて用いるべきである。 ただしこうした情報は既存のものだけに限定すべきである(例:経皮 LD50 試験または過 去の皮膚腐食性に関する情報)。
- 第5段階: これらは、国際的に合意された原則および判定基準(国連 GHS 改訂 3 版 1.3.2 参照)に従って有効性が確認された、眼刺激性または重篤な損傷性(例:角膜の不可逆的 白濁)評価の代替法でなくてはならない。

- 第6段階:現在、この段階は近い将来に達成できそうにない。(可逆的)眼刺激性の信頼できる評価のための有効な代替法を開発する必要がある。
- 第7段階: その他に何ら該当する情報がない場合には、ウサギ眼刺激性試験に進む前に、 国際的に承認された腐食性/刺激性試験により、本情報を入手する事が不可欠である。 これは段階的なやり方で実施されなければならない。可能であれば、有効でありかつ 承認された *in vitro* 皮膚腐食性試験によりこれを達成するべきである。それが利用で きないならば、次に動物試験により評価を完結すべきである(国連 GHS 改訂 3 版 3.2.2 「皮膚刺激性/腐食性の分類基準」参照)。
- 第8段階:眼刺激性の段階的 *in vivo* 評価。ウサギ1匹を用いた限定試験で、眼に対する重篤な損傷が認められたならば、さらに試験を行う必要はない。
- 第9段階:(重篤な作用の評価に用いた1匹も含めて)2匹の動物を用いた刺激性試験で、その2匹で一致して、明らかな刺激性または明らかに刺激性でない反応が認められたならば、その2匹だけが採用されることもある。反応が異なるかまたは紛らわしい反応であるならば、3匹目の動物が必要となる。この3匹目の動物の試験結果によって、分類が必要となることも、ならないこともある。

3-2-4 呼吸器感作性または皮膚感作性

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】 (3.4.1.)

- 3.4.1.1 呼吸器感作性物質とは、物質の吸入の後で気道過敏症を引き起こす物質である。 皮膚感作性物質とは、物質との皮膚接触の後でアレルギー反応を引き起こす物質である。
- 3.4.1.2 本章では感作性に二つの段階を含んでいる。最初の段階はアレルゲンへの暴露による個人の特異的な免疫学的記憶の誘導(訳者注:induction)である。次の段階は惹起(訳者注:elicitation)、すなわち、感作された個人がアレルゲンに暴露することにより起こる細胞性あるいは抗体性のアレルギー反応である。
- 3.4.1.3 呼吸器感作性で、誘導から惹起段階へと続くパターンは一般に皮膚感作性でも同じである。皮膚感作性では、免疫システムが反応を学ぶ誘導段階を必要とする。続いて起こる暴露が視認できるような皮膚反応を惹起するのに十分であれば臨床症状となって現れる(惹起段階)。したがって、予見的試験は、まず誘導期があり、さらにそれへの反応が通常はパッチテストを含んだ標準化された惹起期によって測定されるパターンに従う。誘導反応を直接的に測定する局所のリンパ節試験は例外的である。ヒトでの皮膚感作性の証拠は普通診断学的パッチテストで評価される。
- 3.4.1.4 通常皮膚および呼吸器感作性では、惹起に必要なレベルは誘導に必要なレベルよりも低い。感作された人に混合物中の感作物質の存在を知らせるための対策を 3.4.4.2 に示した。

(2) 分類基準

A) 分類 JIS による分類基準

分類 JIS では、「物質は、次の判定基準に従って<u>呼吸器感作性</u>物質区分 1 に分類する」としている。

- a) ヒトに対し当該物質が特異的な呼吸器過敏症を引き起こす証拠がある場合、又は
- b) 適切な動物試験より陽性結果が得られている場合 また、「物質は、次の判定基準に従って<u>接触感作性</u>物質区分1に分類する」として いる。
- a)物質が相当な数(*)のヒトに皮膚接触により過敏症を引き起こす証拠がある場合、 又は

- b) 適切な動物試験より陽性結果が得られている場合
- (*)「相当な数」については判定者の判断による。判定理由に相当な数と判断した根拠を記載すること。

B) GHS における分類基準 (参考情報)

分類 JIS では国連 GHS 改訂 3 版に準じて区分 1 を採用している。 国連 GHS 改訂 3 版では、新たに以下の細区分 1 A、1B が設けられた。

【GHS 改訂 3 版】

表 3.4.1 呼吸器感作性物質の有害性区分および細区分

	次冊芯下は物質の自己に対するより神色が			
区分1:	呼吸器感作性物質			
	物質は呼吸器感作性物質として分類される			
	(a) ヒトに対し当該物質が特異的な呼吸器過敏症を引き起こす証拠が			
	ある場合、または			
	(b) 適切な動物試験により陽性結果が得られている場合。			
細区分 1A:	ヒトで高頻度に症例が見られる;または動物や他の試験に基づいたヒト			
	での高い感作率の可能性がある。反応の重篤性についても考慮する。			
細区分 1B:	ヒトで低~中頻度に症例が見られる;または動物や他の試験に基づいた			
	ヒトでの低~中の感作率の可能性がある。反応の重篤性についても考慮			
	する。			

表 3.4.2 皮膚感作性物質の有害性区分および細区分

区分1:	皮膚感作性物質			
	物質は呼吸器感作性物質として分類される。			
	(a) 物質が相当な数のヒトに皮膚接触により過敏症を引き起こす証拠			
	がある場合、または			
	(b) 適切な動物試験により陽性結果が得られている場合。			
細区分 1A:	ヒトで高頻度に症例が見られるおよび/または動物での高い感作能力か			
	らヒトに重大な感作を起こす可能性が考えられる。反応の重篤性につい			
	ても考慮する。			
細区分 1B:	ヒトで低~中頻度に症例が見られるおよび/または動物での低~中の感			
	作能力からヒトに感作を起こす可能性が考えられる。反応の重篤性につ			
	いても考慮する。			

(3)情報源およびデータに関する事項

※分類の手順については、「3-1-1 分類判定に利用可能な情報源」を参照のこと。

A) データの入手可能性

- ・ 呼吸器または皮膚感作性に対する証拠の重みで行われる。ヒトに関する情報を使用 して分類する際には、暴露された集団の大きさ、暴露の程度についても確認して考 慮する必要がある。
- ・ 呼吸器感作性、皮膚感作性ともに、感作性が認められる(区分1)か否か(区分外)の1ランクの分類である。暴露を受けた集団の大きさに比べて過敏症が発症するものの、割合が極めて小さいときなどは、判定が困難になる場合がある。過敏症を発症するものの頻度と作用の強さに十分に留意して判断することが必要となり、専門家の判断を仰ぐことが望ましい。
- ・ 皮膚感作性では、陽性結果を示した適切な動物実験データがある場合、当該データ に基づいて区分することが可能であり、国連 GHS 文書改訂第3版に、陽性率及び 暴露濃度による基準が示されている。
- ・ 本ガイダンスに示した情報源において、感作性物質との明確な記載がない物質であっても、それに感作されるヒトが存在する可能性があり、区分外の判定は慎重に行うことが必要である。
- ・ (参考情報1) 呼吸器感作性の方がヒトの健康に対する影響が重大であるとみて、 注意喚起語は「危険」であり、皮膚感作性の場合は、同じ区分1でも注意喚起語は 「警告」である。
- ・ (参考情報2)一般的な感作性物質については、以下の情報も参考になる。
 - -Frosch et al. Contact Dermatitis 4th Ed. Springer(413 物質)
 - 「アレルゲンリスト」接触皮膚炎学会(25 物質)

http://www.fujita-hu.ac.jp/~jsdacd/html/allergen.html

- EUDSD 分類: R42・R43・R42/44、日本産業衛生学会許容濃度勧告: 気道感作性・皮膚感作性、ACGIH の TLV 表の: SEN または Sensitization 物質、ドイツ MAK リスト Sensitization 物質(Sa、Sh、Sah)表示を参考とすることができる。
- ・ OECD テストガイドラインには、呼吸器または皮膚感作性に関連する下記の試験法 がある。

OECD TG 406 Skin sensitisation

OECD TG 429 Skin sensitisation: Local Lymph Node Assay(LLNA)

B) 複数データが存在する場合の優先順位 「3-1-2 複数データが存在する場合の優先順位」(p.90) を参照のこと。

C) 従来の分類システムとの比較

・ 感作性に関する EU DSD 分類 として、R42、R43、R42/43 がある。

- ・ 日本産業衛生学会・許容濃度勧告の中に感作性物質と認められた物質のリストが掲載されている。ACGIH・TLV 表では、感作性物質である場合には SEN マーク、ドイツ DFG の MAK 表では Sa・Sh・Sah マークが付けられている。
- ・ EU DSD 分類・R42 および R42/43、日本産業衛生学会許容濃度勧告・気道感作性 は、呼吸器感作性区分 1 に相当する。
- ・ EU DSD 分類・R43 および R42/43、日本産業衛生学会許容濃度勧告・皮膚感作性 は皮膚感作性区分 1 に相当する。
- ・ EC CLP 分類で H334 に分類されているものは呼吸器感作性区分 1、H317 は皮膚 感作性区分 1 と一致する。
- ・ ACGIH・SEN 物質が呼吸器感作性と皮膚感作性のいずれであるかについては、 ACGIH Documentation に遡って確認する必要がある。
- ・ 必要な場合には、引用された原文献に遡って、暴露の状況や暴露された集団の大き さ、感作性の有無の判定基準を検討する。

D) データに係る手引き

・ 試験報告書、総説、評価書などに感作性に関する記述がある場合にはそれに従って 分類する。

(4) 分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。さらに、分類に際しては、以下の 点を留意すること。

※「区分外」の取扱いについて、List 1 において明確に有害性を否定する、又は有害性が極めて低いと記述している場合をのぞき、「区分外」の判定は慎重に行うこと。疑義があれば、むしろ判断を行うに十分な情報が無く「分類できない」としたほうが望ましい。

B)分類手順について

①呼吸器感作性:

以下の【判定基準1】~【判定基準3】に該当するものを区分1とする。

【判定基準 1】List1 のいずれかの評価文書で陽性と結論づけている場合(結論づけているとは、示唆されるや可能性があるという表現ではなく、明らかに陽性であると明言しているもの)。

(除外規定)

【判定基準1】に該当する場合でも、気管支過敏症の人だけに喘息症状を誘発することが実証されている場合は、区分外とする

【判定基準 2】ヒトに対し当該物質が特異的な呼吸器過敏症を引き起こす証拠がある場合。

ヒトでの証拠については国連 GHS 改訂 3 版 3.4.2.1.2 を参照のこと。 具体的な証拠とは、以下のような点を指す。

【国連 GHS 改訂 3 版】(3.4.2.1.2.3)

- (a) 臨床履歴および当該物質への暴露に関連する適切な肺機能検査より得られたデータで、下記の項目、およびその他の裏付け証拠により確認されたもの
 - (i) in vivo 免疫学的試験(例:皮膚プリック試験)
 - (ii) in vitro 免疫学的試験 (例:血清学的分析)
 - (iii)例えば反復低濃度刺激、薬理学的介在作用など、免疫学的作用メカニズムがまだ証明されていないその他の特異的過敏症反応の存在を示す試験
 - (iv)呼吸器過敏症の原因となることがわかっている物質に関連性のある化 学構造
- (b) 特異的過敏症反応測定のために認められた指針に沿って実施された、当該 物質についての気管支負荷試験の陽性結果

【判定基準3】適切な動物試験より陽性結果が得られている場合。

(現時点では、呼吸器過敏症試験用として認められた動物モデルはない(国連 GHS 改訂 3版 3.4.2.1.3 脚注 2 より)ため、【判定基準 3】は本ガイダンスでは採用しない。今後、適切な動物モデルが設定された場合、この判定基準も採用する)。

②皮膚感作性:

以下の【判定基準 1】~【判定基準 4】のいずれかに適応するものを区分 1 とする。なお、分類にあたっては国連 GHS 改訂 3 版「3.4.2.2.4 特別に留意すべき事項」に留意すること。

【国連 GHS 改訂 3 版】 (3.4.2.2.4)

3.4.2.2.4.1 物質の分類では、証拠の重みづけを考慮し下記の項目のいずれか、 またはすべてが証拠に含まれているべきである。

- (a) 通常、複数の皮膚科診療所でのパッチテストより得られた陽性データ
- (b) 当該物質によりアレルギー性接触皮膚炎が生じることを示した疫学的調査。症例数が少なくとも、特徴的な症状を示した暴露例の比率が高かった状況については、特に注意して確認する必要がある
- (c) 適切な動物試験より得られた陽性データ

- (d) ヒトにおける実験的研究より得られた陽性データ。(第 1.3 章 1.3.2.4.7を参照)
- (e) 通常、複数の皮膚科診療所で得られたアレルギー性接触皮膚炎について の、十分に記録された事例
- (f) 反応の重篤性についても考慮する。

【判定基準 1】List 1 のいずれかの評価文書で陽性と結論づけている場合。

【判定基準2】ヒトに対し当該物質が皮膚接触により特異的な症状を引き起こす証拠がある場合。

【判定基準 3】List1 又はList2 において、当該物質によりアレルギー性接触皮膚 炎が生じることを示した疫学的調査報告があるか、別々の医療機関からの 2 症 例以上の症例報告がある場合。

【判定基準4】下記の動物実験で陽性の結果が得られている場合。

○ 陽性の判定基準

アジュバントを用いる場合: 動物の30%以上が反応

アジュバントを用いない場合:動物(モルモット)の15%以上が反応

- ※ 感作された動物の比率が明確でない場合も少なからずある。比率が不明の場合は、原文献に戻り内容を精査し比率を精査することが望ましい。 List1 でその試験を根拠として皮膚感作性がある旨が報告されている場合で比率等不明な場合も同様。List1 でその試験を根拠として皮膚感作性がある旨が明らかに結論づけられている場合は、区分 1 とする。それ以外の場合は、「分類できない」とする。
- ※ List2 については、下記に示される OECD で承認された試験方法で実施 されており、かつ感作された動物の比率が明確で、皮膚感作性が陽性で あると結論づけている場合は、区分 1 とする。それ以外の場合は、試験 を実施していても、「分類できない」とする。
- OECD で承認された皮膚感作性に関する動物試験

ヒトの皮膚感作性陰性のデータで、動物試験の陽性データを否定することはできない。一方、ヒトの皮膚感作性に関する曖昧な陽性データは動物試験の明確な陰性データを参考にして区分すべきである。(ヒトのデータと各種動物試験データの一致性に関しては、(Magnusson B et.al. 1969: J Investigative Dermatol. 52、268-276、<math>(Robinson MK et.al. 1990: J Investigative Dermatol. 52 (Robinson MK et.al. 1990: J Investigative Dermatol. 1990

Toxicology 61、91-107、 ③Schneider K and Akkan Z、 2004: Reg. Toxicol. Pharmacol.などに報告がある。)

OECD テスト ガイドライン	試験名	動物	アジュバント 有無
406	Guinea Pig Maximization Test (Magnusson and	モルモット	使用
	Kligman)		
406	Buehler Test	モルモット	非使用
429%	LLNA 法(Local Lymph Node Assay)	マウス	非使用

上記のモルモット試験では惹起部位の紅斑および浮腫の主観的評価を用いて判定を行うが、LLNA 法は 3H-メチルチミジンの取り込みをアレルギー反応の誘導相で生じる T 細胞形成を指標としている。LLNA 法では Stimulation Index(SI値)が 3 以上の場合を陽性とする。

なお、次のような皮膚感作性試験方法もあるが、OECD で承認されていないことから、政府の分類に用いない。さらに、国連 GHS 改訂 3 版(発効:2009 年 7 月予定)では、感作性の強さに従い細区分(1A、1B)が設けられ、その判定に用いる動物試験法は上述のOECD で承認された 3 試験法となっている。

試験名	動物	アジュバント 有無
Adjuvant and Patch Test	モルモット	使用
Draize Test	モルモット	非使用
Freund's Complete Adjuvant Test	モルモット	使用
Open Epicutaneous Test	モルモット	非使用
Optimization Test	モルモット	使用
Split Adjuvant Test	モルモット	使用
Mouse Ear Swelling Test (MEST)	マウス	非使用

3-2-5 生殖細胞変異原性

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】 (3.5.1)

- 3.5.1.1 この有害性クラスは主として、ヒトにおいて次世代に受継がれる可能性のある突然変異を誘発すると思われる化学物質に関するものである。一方、*in vitro* での変異原性/遺伝毒性試験、および *in vivo* でのほ乳類体細胞を用いた試験も、この有害性クラスの中で分類する際に考慮される。
- 3.5.1.2 本文書では、変異原性、変異原性物質、突然変異および遺伝毒性についての一般 的な定義が採用されている。ここで突然変異とは、細胞内遺伝物質の量または構造の 恒久的変化として定義されている。
- 3.5.1.3 突然変異という用語は、表現型レベルで発現されるような経世代的な遺伝的変化と、その根拠となっている DNA の変化 (例えば、特異的塩基対の変化および染色体転座など)の両方に適用される。変異原性および変異原性物質という用語は、細胞または生物の集団における突然変異の発生を増加させる物質について用いられる。
- 3.5.1.4 より一般的な用語である遺伝毒性物質および遺伝毒性とは、DNA の構造や含まれる遺伝情報、または DNA の分離を変化させる物質あるいはその作用に適用される。これには、正常な複製過程の妨害により DNA に損傷を与えるものや、非生理的な状況において(一時的に) DNA 複製を変化させるものもある。遺伝毒性試験結果は、一般的に変異原性作用の指標として採用される。

参考:細菌を用いる復帰突然変異試験(Ames 試験)に関して

Ames 試験は変異原性物質(特にがん原性物質)のスクリーニング試験として有用だが、 Ames 試験のみで「ヒトにおいて次世代に受継がれる可能性のある突然変異」-生殖細胞 変異原性--を結論づけることはできない。

(2) 分類基準

A)分類 JIS による分類基準

表 3-7 生殖細胞変異原性物質の有害性区分

区分1:ヒト生殖細胞に経世代突然変異を誘発することが知られている物質、又は経世 代突然変異を誘発すると見なされる物質

区分1A:ヒト生殖細胞に経世代突然変異を誘発することが知られている物質

物質の区分 1A への分類は、ヒトの疫学的調査による陽性の証拠による。

- 区分1B:ヒト生殖細胞に経世代突然変異を誘発すると見なされる物質 物質の区分1Bへの分類は、次のいずれかによる。
- a)ほ乳類における in vivo 経世代生殖細胞変異原性試験による陽性結果
- b)ほ乳類における *in vivo* 体細胞変異原性試験による陽性結果に加えて、当該物質が 生殖細胞に突然変異を誘発する可能性についての何らかの証拠。この裏付け証拠 は、例えば、生殖細胞を用いる *in vivo* 変異原性又は遺伝毒性試験より、又は、当 該物質又はその代謝物が生殖細胞の遺伝物質と相互作用する機能があることの実 証により導かれる。
- c)次世代に受継がれる証拠はないがヒト生殖細胞に変異原性を示す陽性結果;例えば、暴露されたヒトの精子中の異数性発生頻度の増加など。

区分2:ヒト生殖細胞に経世代突然変異を誘発する可能性がある物質 物質の区分2への分類は、次のいずれかによる。

- a)ほ乳類を用いる in vivo 体細胞変異原性試験の陽性結果、又は
- b) in vitro 変異原性試験の陽性結果により裏付けられたその他の in vivo 体細胞遺伝毒性 試験の陽性結果
- 注記 ほ乳類培養細胞を用いる in vitro 変異原性試験で陽性となり、さらに既知の生殖 細胞変異原性物質と化学的構造活性相関を示す物質は、区分2変異原性物質として分類してもよい。
- B) GHS における分類基準 (参考情報) 分類 JIS および GHS における分類基準では、同一の区分を採用している。

(3)情報源およびデータに関する事項

※分類の手順については、「3-1-1 分類判定に利用可能な情報源」を参照のこと。 A)データの入手可能性

- ①国連 GHS 改訂 3 版では、「変異原性試験」と「遺伝毒性試験」を使い分けており、変異原性試験は遺伝子突然変異、染色体の構造あるいは数的異常を指標としたものが該当し、遺伝毒性試験はそれら以外の、例えば、DNA 損傷や DNA 修復を指標としたものが該当する。変異原性試験あるいは遺伝毒性試験には非常に多くの種類があるが、ヒトに対する経世代変異原性物質(注)かどうかを分類する基準となる試験を GHS では例示している。表 3-8 に、GHS の例示に加え、いくつかの試験を追加して分類の基礎となる試験データを示す。
 - (注) GHS 区分の趣旨は、ヒトにおける経世代的な変異原性作用を勘案するものであり、本ガイダンスでは、理解を容易にするために「生殖細胞変異原性(germ cell mutagenicity)」に加え、「経世代変異原性(heritable mutagenicity)」という用語を用いている。「生殖細胞変異原性」は生殖細

胞において変異原性/遺伝毒性を誘発する作用として、また「経世代変異原性」は、生殖細胞に認められた変異原性が以降の世代に遺伝子突然変異あるいは染色体異常を誘発する作用として用いている。なお、国連 GHS 改訂 3 版では"heritable mutagenicity"という用語は用いられていないが、それに相当する語句として"to induce heritable mutations in germ cells of humans"が使用されている。

- ②国連 GHS 改訂 3 版 3.5.5.1「物質の判定論理 3.5.1」の判断樹の出発点において、 "当該物質に変異原性に関するデータがあるか?"とあるが、ここでいう変異原性に 関するデータとは、原則として、汎用されている *in vivo* の変異原性試験あるいは 遺伝毒性試験であり、通常 *in vitro* 試験を含んだデータセットを意味する。結果 の異なる多数の実験報告から判定を下すには専門家の助けが必要である。
- ③多くの化学物質について、*in vitro* 試験を含む多数の変異原性(あるいは遺伝毒性) 試験の結果が報告されているが、ほ乳動物の生殖細胞を対象とした in vivo 試験は 少ない。*In vitro* および *in vivo* の多数の実験報告から、ヒトの生殖細胞に対する 変異原性の判定を下すには専門家の評価と判断が必要である。
- ④ヒトを用いたデータは貴重であるが、ある化学物質に暴露されたヒトのモニタリングによって得られたデータ(例えば、ヒト末梢リンパ球の染色体分析)は、当該物質自体による影響が明確でない場合や一般的結論を下すに十分な数が調査されていない場合が多く、疫学データの利用は極めて限定されたものとなる。疫学データでは相反する結果が得られることもあり、List1の評価文書等で、当該知見(陰性あるいは陽性)が妥当なものと認知されている場合は、利用が容易である。
- ⑤ In vivo および in vitro 試験からなるデータセットが得られる化学物質よりもむしろ in vitro 試験データしか得られない化学物質が多い。 In vitro 試験データの結果のみから、ヒトに対する経世代変異原性の可能性の有無を判断することは、通常困難である。
- ⑥げっ歯類を用いる精子形態異常試験は、遺伝物質以外への影響に起因する場合が あり、原則として分類には用いない。
- ⑦ショウジョウバエを用いた各種試験(伴性劣性致死試験や翅毛スポット試験など)は、昆虫とほ乳類では化学物質の体内動態や生殖発生過程などが異なることから、原則として分類には用いない。ただし、他に適切なほ乳類 *in vivo* 変異原性/遺伝毒性試験データがない場合で、特にショウジョウバエを用いた伴性劣性致死試験

で陽性結果のある場合には、その利用の可否並びに GHS 分類区分について、専門家の判断を仰ぐ。

- ⑧数多くの in vitro 遺伝毒性試験(ほ乳類培養細胞を用いるコメット試験、ほ乳類培養細胞を用いる UDS 試験、枯草菌を用いる DNA 修復試験(Rec-assay)、ネズミチフス菌を用いる umu 試験、大腸菌を用いる SOS 試験、酵母を用いる異数性を含む染色分体異常試験/遺伝子変換試験など)や宿主経由試験(Host-mediated assay)があるが、原則としてこれらの試験結果は分類に用いない。
- ⑨ In vivo 変異原性/遺伝毒性試験では様々な投与経路が使われているが、通常ヒト暴露経路の知見が優先されるものの、当該投与経路が妥当ではないことが合理的に説明されない限り、いずれの投与経路の試験データも利用可能である。
- ⑩ヒト疫学調査により、ヒト集団に対し経世代突然変異を誘発することが確認され た物質を区分 1A に分類する。ただし、現時点では、このような物質の存在は確 認されていない。生殖細胞を用いた in vivo 変異原性試験など多くの試験法におい て陽性の結果が得られており、ヒトの生殖細胞に遺伝子突然変異または染色体異 常を誘発するとみなすべき物質を区分1Bと分類する。これには、ほ乳類を用い た生殖細胞の in vivo 遺伝性変異原性試験(げっ歯類優性致死突然変異試験、マウ ス遺伝性転座検定、マウス特定座位試験など)で陽性の場合、または、ほ乳類を 用いた体細胞の in vivo 変異原性試験(ほ乳類の骨髄染色体異常試験、ほ乳類赤血 球小核試験、マウススポット試験など)の陽性に加えて、当該物質が生殖細胞に 突然変異を誘発する可能性についての何らかの証拠(例えば、ほ乳類精原細胞染 色体異常試験、精子細胞小核試験、精原細胞を用いた姉妹染色分体交換分析、精 巣細胞を用いた不定期 DNA 合成試験 (UDS) などでの陽性結果や、活性を示す 当該物質あるいは代謝物質の生殖細胞への暴露の証拠など) がある場合、または、 次世代への遺伝の証拠はないがヒト生殖細胞に変異原性を示す陽性結果がある場 合(例えば、暴露されたヒトの精子細胞中の異数性発生頻度の増加など)が該当 する。
- ①その他の情報からヒトの生殖細胞に遺伝子突然変異または染色体異常を誘発する 疑いのある物質を区分2とする。これには、ほ乳類を用いた体細胞の in vivo 変異 原性試験(ほ乳類の骨髄染色体異常試験、ほ乳類赤血球小核試験、マウススポッ ト試験など)で陽性の場合、または、体細胞を用いた in vivo 遺伝毒性試験 (in vivo 肝臓不定期 DNA 合成試験 (UDS)、ほ乳類骨髄姉妹染色分体交換試験 (SCE) な ど)での陽性結果があり、かつ in vitro 変異原性試験 (in vitro ほ乳類染色体異常 試験、in vitro ほ乳類細胞遺伝子突然変異試験、細菌を用いる復帰突然変異試験な

- ど)の陽性結果がある場合が該当する。なお、ほ乳類を用いた *in vitro* 変異原性 試験における陽性結果しか存在しない場合であっても、それが既知の生殖細胞変 異原性物質(区分1)と化学構造的に(強い)類似性を示す場合は、区分2に分類する。
- ②OECD テストガイドラインには、変異原性/遺伝毒性に関連する下記の試験法がある。
 - TG 471 Bacterial Reverse Mutation Test (Ames Test)
 - TG 473 In Vitro Mammalian Chromosome Aberration Test
 - TG 474 Mammalian Erythrocyte Micronucleus Test
 - TG 475 Mammalian Bone Marrow Chromosome Aberration Test
 - TG 476 In Vitro Mammalian Cell Gene Mutation Test
 - TG 477 Genetic Toxicology: Sex-linked Recessive Lethal Test in Drosophila Melanogaster
 - TG 478 Genetic Toxicology: Rodent Dominant Lethal Test
 - TG 479 Genetic Toxicology: In Vitro Sister Chromatid Exchange Assay in Mammalian Cells
 - TG 480 Genetic Toxicology: Saccharomyces Cerevisiae Gene Mutation Assay
 - TG 481 Genetic Toxicology: Saccharomyces Cerevisiae Mitotic Recombination Assay
 - TG 482 Genetic Toxicology: DNA Damage and Repair、 Unscheduled DNA Synthesis in Mammalian Cells In Vitro
 - TG 483 Mammalian Spermatogonial Chromosome Aberration Test
 - TG 484 Genetic Toxicology: Mouse Spot Test
 - TG 485 Genetic Toxicology: Mouse Heritable Translocation Assay
 - ${
 m TG}$ 486 Unscheduled DNA Synthesis (UDS) Test with Mouse Liver Cells In Vitro
 - (TG 487 In Vitro Mammalian Cell Micronucleus Test (MNvit), Draft)

上記の変異原性試験については、以下の情報源が参考となる。

国立医薬品食品衛生研究所変異遺伝部「用語の解説」のうち、「5. 遺伝毒性試験」 http://dgm2alpha.nihs.go.jp/other%20files/genotoxicity%20(09.1.4).html

(1)生殖細胞を用いる in vivo 経世代変異原性試験の例

(In vivo heritable germ cell mutagenicity tests in mammals)

- ・ げっ歯類を用いる優性致死試験(Rodent dominant lethal test)
- ・ マウスを用いる相互転座試験 (Mouse heritable translocation assay)
- ・ マウスを用いる特定座位試験(Mouse specific locus test)

(2)生殖細胞を用いる in vivo 変異原性試験の例

(In vivo mutagenicity tests in germ cell in mammals)

- ・ ほ乳類精原細胞を用いる染色体異常試験 (Mammalian spermatogonial chromosomal aberration test)
- ・ ほ乳類精子細胞を用いる小核試験(Spermatid micronucleus assay)
- ・ トランスジェニックマウス/ラットを用いる生殖細胞の遺伝子突然変異試験*(Gene mutation tests with transgenic animal models in germ cells)
- ・ ヒトの精子における異数性の分析(Analysis of aneuploidy in sperm cells of exposed people)

(3)体細胞を用いる in vivo 変異原性試験の例

(In vivo somatic cell mutagenicity tests in mammals)

- ・ ほ乳類の骨髄を用いる染色体異常試験(Mammalian bone marrow chromosome aberration test)
- ・ マウススポット試験(Mouse spot test)
- ・ ほ乳類赤血球を用いる小核試験(Mammalian erythrocyte micronucleus test)
- ヒトの末梢リンパ球における染色体/小核分析(ヒトモニタリング解析)
 *(Metaphase or micronucleus formation analysis of peripheral lymphocytes of exposed people (Human monitoring))
- ・ ほ乳類の末梢リンパ球を用いる染色体異常試験* (Mammalian peripheral lymphocytes chromosome aberration test)
- ・ トランスジェニックマウス/ラットを用いる体細胞の遺伝子突然変異試験*(Gene mutation tests with transgenic animal models in somatic cells)

(4)生殖細胞を用いる in vivo 遺伝毒性試験の例

(In vivo genotoxicity tests in germ cell in mammals)

- ・ ほ乳類精原細胞を用いる姉妹染色分体交換(SCE)試験(Sister chromatid exchange (SCE) analysis in spermatogonia)
- ・ ほ乳類精巣細胞を用いる不定期 DNA 合成(UDS)試験(Unscheduled DNA synthesis (UDS) test in testicular cells)

- ・ ほ乳類生殖細胞 DNA との(共有)結合試験や付加体形成試験*(Assays of (covalent) binding or adduct formation to germ cell DNA)
- ほ乳類生殖細胞における DNA 損傷試験(コメット試験、アルカリ溶出試験など)
 *(Assays of DNA damage in germ cells (comet assay、 alkaline elution assay、 etc.、))

(5)体細胞を用いる in vivo 遺伝毒性試験の例

(In vivo genotoxicity tests in somatic cells in mammals)

- ・ ほ乳類の肝臓を用いる不定期 DNA 合成(UDS)試験(Liver UDS test)
- ・ ほ乳類の骨髄を用いる姉妹染色分体交換(SCE)試験(Bone marrow or peripheral lymphocytes SCE analysis)
- ・ ほ乳類体細胞 DNA との(共有)結合試験や付加体形成試験*(Assays of (covalent) binding or adduct formation to somatic cell DNA)
- ほ乳類体細胞における DNA 損傷試験(コメット試験、アルカリ溶出試験など)*
 (Assays of DNA damage in somatic cells (comet assay、 alkaline elution assay、 etc.))

(6) In vitro 変異原性試験の例(In vitro mutagenicity tests)

- ・ ほ乳類培養細胞を用いる染色体異常試験(*In vitro* mammalian cell chromosome aberration test)
- ・ ほ乳類培養細胞を用いる小核試験*(In vitro mammalian cell micronucleus test)
- ・ ほ乳類培養細胞を用いる遺伝子突然変異試験(*In vitro* mammalian cell gene mutation test)
- 【参考】上述した試験以外にも、以下のような試験があるが、以下は原則として分類の際に利用する必要はない。その利用については、専門家の判断を仰ぐのが望ましい。
 - ・ げっ歯類を用いる精子形態異常試験 (Sperm abnormality test using rodents) (A⑥項参照)
 - ショウジョウバエを用いる各種試験(A⑦) 項参照)(Several drosophila tests (sex-linked recessive lethal test, wing spot test, etc.))
 - in vitro 遺伝毒性試験(In vitro genotoxicity tests) (A⑧項参照)
 - ーほ乳類培養細胞を用いるコメット試験(comet assay)、
 - ーほ乳類培養細胞を用いる UDS 試験(UDS test using mammalian cultured cells)、
 - 枯草菌を用いる DNA 修復試験(Rec-assay) (DNA repair test (Rec-assay) in bacteria)、
 - 細菌を用いる umu 試験あるいは SOS 試験(umu test or SOS test using bacteria)、
 - -酵母を用いる各種試験(aneuploidy test using yeast)、など

• 宿主経由試験(host-mediated assay in bacterial gene mutation test) (A⑧項参照)

B) 複数データが存在する場合の優先順位

「3-1-2複数データが存在する場合の優先順位」(p.90) を考慮しつつ、基本的に は以下のデータを優先して採用するが、すべての適切なデータを利用し、全体的な証 拠の重み付けに基づき分類する。

- ①適切に実施され、十分に有効性が確認された試験に基づく。例えば、OECD テストガイドラインなど国際的に認められた方法に従い、GLP で実施された試験が該当する。
- ②変異原性試験に関しては多くのデータが存在するが、その中から、よりヒトの生殖細胞に遺伝的突然変異を誘発させると判断するのが妥当と考えられるデータ(in vivo 試験では体細胞より生殖細胞を用いた試験、in vitro 試験より in vivo 試験、in vitro 試験ではほ乳類細胞よりヒト細胞を用いた試験)に証拠の重みがある。
- ③国連 GHS 改訂 3 版の分類判定基準からもわかるように、in vitro 変異原性試験での陽性結果のみで区分 2 に分類されることは、通常ない。同様に、ショウジョウバエを用いた in vivo 変異原性試験の結果についても留意が必要である。また、試験結果には複数の陰性あるいは陽性報告がなされていることがあり、一部の陽性結果をもとに分類する場合には、その妥当性を検証する必要がある。

C)従来の分類システムとの比較

- ・ EUDSD 分類の変異原性物質のカテゴリー1、2、3 と GHS の生殖細胞変異原性区分の分類の考え方は基本的には一致している。
- ・ EUDSD 分類で R46・変異原性カテゴリー1 の物質は区分 1A に相当する。(現時点では該当する物質はない。)
- ・ EUDSD 分類で R46・変異原性カテゴリー2 の物質は区分 1B に相当する。
- ・ EUDSD 分類で R68・変異原性カテゴリー3 の物質は区分 2 に相当する。
- ・ EU CLP 分類で H340 に分類されているものは区分 1 B、H341 は区分 2 と一致する。

D)データに係る手引き

分類は適切な情報源のデータに基づき実施するが、(生殖細胞)変異原性分類について評価を行ってきた EU 分類やドイツの MAK 委員会の分類は参考になる。

EU 分類における Mutagenicity と、GHS における Germ cell mutagenicity は同じ目的・基準で分類されている。従って、EU 分類で使用できる試験方法は、GHSでも使用できる。また、適切な試験であれば他の試験も使用可能である。

(4)分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。

分類に際しては、入手可能なデータをすべて比較検討すること。必要に応じ、試験結果の評価は専門家の判断に基づくこと。また、*in vitro*変異原性試験データしかない場合には、原則「分類できない」とする。

- ※生殖細胞変異原性については、国連 GHS 改訂 3 版および本項を参照し、国連 GHS 改訂 3 版の判定理論 3.5.1 のフローに従って分類すること。
- ※本ガイダンスに記載している生殖細胞変異原性分類フロー(図 3-5-1)は、国連 GHS 改訂 3 版の図 3.5.1 の情報をもとに、証拠の重み付けを勘案した分類手順 の一つを示したものである。本分類フローにおいては、データの質などを勘案 し、国連 GHS 文書改訂 3 版におけるヒトに関するデータについては、表 3-5-2 に示すとおり、生殖細胞を用いる *in vivo* 変異原性試験の例として含めている。

B)分類に係る判定基準

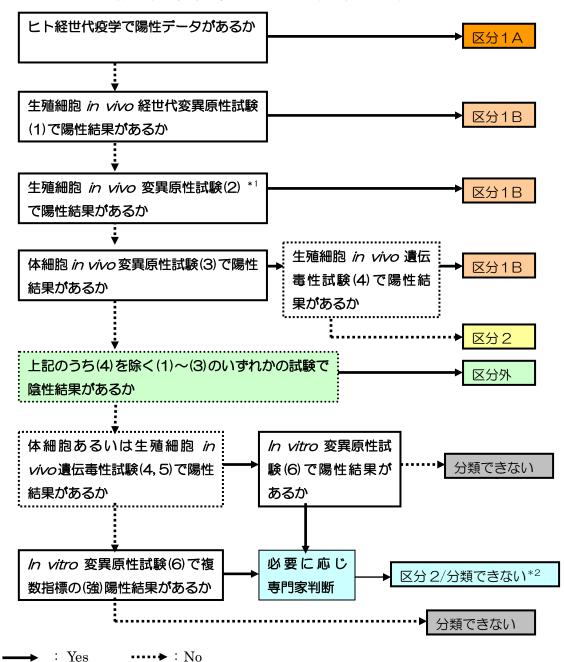
以下に、各 GHS 区分に該当する試験結果の例を、また、分類作業を容易なものとするために図 3-2 に分類フローを示す。なお、基本的に本フローは、各試験における陽性結果を優先させたものであるが、必要に応じその妥当性を検証する。"陰性"結果は、多数ある指標のうち 1 つだけの指標の結果(例えば、細菌を用いる復帰突然変異試験における一部の菌株だけの使用)や、適切に行われたとは言い難い試験結果(例えば、骨髄小核試験における適切ではないサンプリング時間)の場合もあり、必要に応じその妥当性を検証する。全体をとおし、各データの妥当性を考慮し、証拠の重みづけにより判定する。

- ①区分 1A: ヒト生殖細胞における疫学的評価がある場合 ヒトの疫学調査により、ヒト経世代変異原性が認められた場合に区分 1A に分 類する。ただし、現時点では、このような物質の存在は確認されていない。
- ②区分 1B: in vivo 変異原性試験データがあり、かつ、生殖細胞の変異原性を示唆する情報がある場合

生殖細胞を用いる *in vivo* 変異原性試験を含む多くの試験法において陽性の結果が得られており、ヒトにおいて経世代変異原性を示すとみなすべき物質を区分1B とする。具体的には、以下のような場合などが当てはまる:

- 1) ほ乳類を用いる生殖細胞の経世代変異原性試験(げっ歯類を用いる優性致死試験、マウスを用いる相互転座試験、マウスを用いる特定座位試験など)での陽性結果
- 2) ほ乳類を用いる生殖細胞の変異原性試験(ほ乳類精原細胞を用いる染色体異常 試験、ほ乳類精子細胞を用いる小核試験、トランスジェニックマウス/ラットを 用いる生殖細胞の遺伝子突然変異試験など)での陽性結果

- 3) ほ乳類を用いる体細胞の変異原性試験(ほ乳類の骨髄を用いる染色体異常試験、ほ乳類赤血球を用いる小核試験、マウススポット試験など)において陽性であり、かつ、当該物質が生殖細胞に変異原性を示す可能性についての何らかの証拠がある場合。例えば、生殖細胞を用いる *in vivo* 遺伝毒性試験(ほ乳類精原細胞を用いる姉妹染色分体交換(SCE)試験、ほ乳類精巣細胞を用いる不定期 DNA合成(UDS)試験など)での陽性結果や、活性を示す当該物質あるいは代謝物質の生殖細胞への暴露の証拠等。
- 4) 次世代に影響を及ぼす証拠はないが、ヒト生殖細胞に変異原性を示す陽性結果がある場合。例えば、暴露されたヒトの精子における異数性発生頻度の増加等。
- ③区分 2: in vivo 変異原性/遺伝毒性試験データがあるが、生殖細胞の突然変異を示唆する直接の情報がない場合


ヒトに経世代変異原性を誘発する疑いのある物質を区分2とする。例えば、以下の場合などが当てはまる:

- 1) ほ乳類を用いる体細胞の変異原性試験(ほ乳類骨髄細胞を用いる染色体異常試験、ほ乳類赤血球を用いる小核試験、マウススポット試験など)での陽性結果
- 2) ほ乳類を用いる体細胞の遺伝毒性試験(ほ乳類の肝臓を用いる不定期 DNA 合成試験(USD)、ほ乳類骨髄細胞を用いる姉妹染色分体交換試験(SCE)など)において陽性であり、かつ、in vitro変異原性試験(ほ乳類培養細胞を用いる染色体異常試験、ほ乳類培養細胞を用いる遺伝子突然変異試験、細菌を用いる復帰突然変異試験など)で陽性の場合
- 3) 例外的に、in vivo 試験データがないものの複数の指標の in vitro 変異原性試験における強い陽性結果があり、かつ、既知の生殖細胞変異原性物質(区分1、すなわち経世代変異原性物質)と化学構造的に(強い)類似性を示す場合(下記⑤2)項参照、専門家の判断を仰ぐ)
- ④区分外(Not classified): *in vivo* 変異原性試験に関するデータがあり、陰性の場合。分類に必要なデータ(基本的には *in vivo* および *in vitro* 変異原性)があり、区分 1 あるいは区分 2 に分類されなかった物質を区分外とする。例えば、経世代変異原性試験あるいは *in vivo* 変異原性試験(体細胞あるい生殖細胞)で陰性の場合が該当する。
- ⑤分類できない (Classification not possible): 分類に必要な変異原性データがない 場合
 - 1) *In vitro* 変異原性試験の結果のみから、ヒトの経世代変異原性を推測すること は困難である。したがって、原則として *in vitro* 変異原性試験データしかない 場合には「分類できない」とするが、必要に応じ専門家の判断を仰ぐ。
 - 2) なお、例外的に、*in vivo* のデータがないものの、複数の指標の *in vitro* 変異 原性試験(例えば、ほ乳類培養細胞を用いる染色体異常試験と細菌を用いる復

帰突然変異試験)で強い陽性を示す物質については、区分2に分類するのが妥当な場合があるため、専門家の判断を仰ぐ。

3) *In vivo* 遺伝毒性試験で陰性だが、*in vivo* 変異原性の陰性データがない場合。 例え *in vitro* 変異原性の陰性サポートがあったとしても、*in vivo* (ひいては生殖細胞) における変異原性作用を評価するために十分な情報とはいえない。

図 3-2 GHS における生殖細胞変異原性分類フロー (各試験の番号は、表 3-8 の各試験に相当する)

実線による囲みは変異原性試験を示し、破線による囲みは遺伝毒性試験を示す。

- *1 ヒトに限らず「(2) 生殖細胞 in vivo変異原性試験」の試験の陽性は、「(3) 体細胞 in vivo変異原性試験」の陽性結果によってサポートされることが望ましい。
- *2「区分2」か「分類できない」のいずれかを判断

なお、全体をとおし、各データの妥当性を考慮し、証拠の重みづけにより判定する。

3-2-6 発がん性

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】(3.6.1)

発がん性物質とは、がんを誘発するか、またはその発生率を増加させる物質あるいは 混合物を意味する。動物を用いて適切に実施された実験研究で良性および悪性腫瘍を誘 発した物質および混合物もまた、腫瘍形成のメカニズムがヒトには関係しないとする強 力な証拠がない限りは、ヒトに対する発がん性物質として推定されるかまたはその疑い があると考えられる。

物質または混合物の発がん有害性を有するものとしての分類は、それら固有の特性に基づきなされるものであり、このように分類されることによって、当該物質または混合物の使用により生ずる可能性のあるヒトのがんリスクの程度に関する情報を提供するものではない。

(2) 分類基準

A)分類 JIS による分類基準

以下に、分類 JIS における発がん性物質の有害性区分を示す。

表 3-9 発がん性物質の有害性区分

- 区分 1 ヒトに対する発がん性が知られている又はおそらく発がん性がある物質の区分 1 への分類は、疫学的データ又は動物データをもとに行う。個々の物質は、さらに次のように区別されることもある:
 - 区分 1A ヒトに対する発がん性が知られている物質は、主としてヒトでの証拠により物質を区分 1A に分類する。
 - 区分 1B ヒトに対しておそらく発がん性がある物質は、主として動物での証拠により物質を区分 1B に分類する。

証拠の強さとその他の事項も考慮した上で、ヒトでの調査により物質に対するヒトの暴露と、がん発生の因果関係が確立された場合には、その証拠とする(ヒトに対する発がん性が知られている物質)。又は、動物に対する発がん性を実証する十分な証拠がある動物試験を、その証拠とすることもある(ヒトに対する発がん性があると考えられる物質)。さらに、試験からはヒトにおける発がん性の証拠が限られており、また実験動物での発がん性の証拠も限られている場合には、ヒトに対する発がん性があると考えられるかどうかは、ケースバイケースで科学的判定によって決定することもある。

分類 発がん性物質区分 1A および発がん性物質区分 1B

区分2:ヒトに対する発がん性が疑われる

物質の区分 2 への分類は、物質を確実に区分 1 に分類するには不十分な場合に、ヒト又は動物での調査より得られた証拠をもとに行う。証拠の強さとその他の事項も考慮した上で、ヒトでの調査で発がん性の限られた証拠、又は動物試験で発がん性の限られた証拠を証拠とする場合もある。

分類 発がん性物質区分2

B) GHS における分類基準(参考情報)

分類 JIS および GHS における分類基準では、同一の区分を採用している。

(3)情報源およびデータに関する事項

※分類の手順については、「3-1-1 分類判定に利用可能な情報源」を参照のこと。

A) データの入手可能性

- ・ 危険有害性の総説やデータ集には発がん性に関して多くの記述がなされている。多くの機関から発がん性評価のランク付けが報告されているので分類の参考になる (WHO 国際がん研究機関 (IARC)、EU 分類の分類結果、米国国家毒性プログラム (NTP)、日本産業衛生学会「許容濃度等の勧告」発がん物質、ACGIH "TLVs And BEIs" 発がん性注記、米国 EPA Integrated Risk Information System (IRIS)、ドイツ DFG "List of MAK and BAT Values" 発がん性注記など、[3-1]項参照のこと)。
- ・ OECD テストガイドラインには、発がん性に関連する下記の試験法がある。

OECD TG 451 Carcinogenicity studies

OECD TG 453 Combined chronic toxicity / carcinogenicity studies

B) 複数データが存在する場合の優先順位

「3-1-2複数データが存在する場合の優先順位」(p.90)を参照しつつ、以下の点を考慮すること。

IARC と EU の情報は多くの専門家によって検討された結果であり、この評価がある場合には優先する。これに次いで、日本産業衛生学会、US-EPA、US-NTP、ACGIH、ドイツ DFG の情報がある場合には参考とする。

C) 従来の分類システムとの比較

- ・ IARC の発がん性グループ分類、およびEU分類の発がん性カテゴリー分類とGHS の発がん性区分の分類の考え方は一致している。
- ・ 従来の分類システムと GHS の区分カテゴリーはほとんど同一である。従来の分類 を用いる場合は次のように位置づける。

20 10	0,110),	× = 10 - 1	/A/// - 1/ - 1	, 4 , 3 , 9 , 9	7.37.0 20	() [, , , ,]		/
GHS	IARC	産衛 学会	ACG IH	EPA 1986	EPA 1996	EPA 2005	NTP	EU
1A	1	1	A1	A	K/L	СаН	K	1
1B	2A	2A	A2	B1, B2		L	R	2
2	2B	2B	A3	C		S		3
分類できない	3		A4	D	CBD	I		
区分外	4		A5	Е	NL	NL		

表 3-10 GHS 分類と他の機関における分類の対応表(発がん性について)

- ※ 上表に従い、発がん性分類を行った場合、毒性情報、疫学・職業暴露等の他項目への データ入力はしなくてよい。ただし、EU 分類しかない場合は、毒性情報を探すこと。
 - (注) EU 分類については、どのような有害性情報からそのような判断がなされたのかわからないため、その他のリソースを当たり、その判断が正しいかどうか確認すること。もし、EU 分類以外の有害性情報が見あたらない場合は、「分類できない」とする。

注記2:EPAの分類の表記は年によって変わっているので注意が必要。

1986年ガイドラインの略号

A: Human carcinogen

B1: Probably human carcinogen (Limited human evidence of carcinogenicity in humans)

B2 : Probably human carcinogen (sufficient animal evidence, but inadequate human evidence for carcinogenicity)

C: Possible human carcinogen (human data are inadequate and animal data demonstrate limited evidence of carcinogenicity)

D : Not classifiable as to human carcinogenicity

E: Evidence of Non-carcinogenicity for human

1996年ガイドライン案の略号は以下のとおり。

K: Known human carcinogens

L: Likely to produce cancer in humans

CBD: Cannot be determined

NL: Not likely to be carcinogenic in humans

2005年ガイドラインの略号は以下のとおり。

CaH: Carcinogenic to humans

L: Likely to be carcinogenic to humans

S: Suggestive evidence of carcinogenic potential

I: Inadequate information to assess carcinogenic potential

NL: Not likely to be carcinogenic to humans

日本産業衛生学会の分類の略号は以下のとおり。

Group1: carcinogenic to humans

Group2A: probably carcinogenic to humans

Group2B: possibly carcinogenic to humans

ACGIH の分類の略号は以下のとおり。

A1: Confirmed human carcinogen

A2: Suspected human carcinogen

A3: Confirmed animal carcinogen with unknown relevance to humans

A4: Not classifiable as a human carcinogen

A5: Not suspected as a human carcinogen

米国毒性プログラム (NTP) の分類の略号は以下のとおり。

K: Known

R: Reasonably suspected

D) データに係る手引き

発がん性試験データから分類する場合、ヒトに対する発がん性が既知である物質を区分 1A とする。大部分が動物試験の証拠からヒトに対する発がん性があると推定される物質を区分 1B とする。その他、ヒトに対する発がん性があると疑われる物質を区分 2 とする。

(4) 分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。

さらに、分類に際しては、以下の点を留意すること。

※List1 にあるすべての評価文書について、調査物質に係る記述の存在の有無を必ず確認すること。

※GHS 分類に必要な情報が得られない場合は、無理に分類をせず、「分類できない」とする。

※「区分外」の取扱いについて、List1において明確に有害性を否定する、又は有害性が極めて低いと記述している場合をのぞき、「区分外」の判定は慎重に行うこと。疑義があれば、むしろ判断を行うに十分な情報が無く「分類できない」とする。

B)専門家の判断を要せず、GHS 分類できるもの

下記に従い分類したものについては、専門家の判断を要せず、そのまま GHS 分類として採用する。

- ① 次に掲げる機関において既に評価されているものについては、表 3-10 GHS 分類 と他の機関における分類の対応表(発がん性について)の対応表に従い、GHS の 分類を行う。IARC の評価を優先させるが、複数の評価文書があり、それらの間で 区分が異なる場合は、原則、最近の評価文書に従い分類する。ただし、最近の評価文書の区分が複数にわたっており、GHS 分類ができない場合(例えば EPA や NTP など)は、過去の評価文書を参照して、適切に分類を行うこと(必要に応じ、専門家の判断を仰ぐ)。
 - (例) EPA の分類が K/L(1996)で、IARC の分類が 2 A(1997)であった場合、GHS 分類は 1 B とする。

(参考文献:「化学物質の発がん性評価とその分類基準(第7版)」、JETOC 特別資料 No.218(2007))

- ・ 国際がん研究機関:IARC
- (社) 日本産業衛生学会
- · 米国産業衛生専門家会議:ACGIH
- ・ 米国環境保護庁: EPA(1996 年ガイドライン案、および 2005 年ガイドラインは分類に数字/文字表記を用いていない。よって、ここでは便宜上、下記表示に沿って表記した)
- ②「表 3-10 GHS 分類と他の機関における分類の対応表 (発がん性について)」に該当する情報がなく、また他の有害性情報が不十分で、明確に「分類できない」と判断される場合
- ③ データがない場合→「分類できない」、陽性のデータがない(陰性のデータのみ) 場合→専門家の判断を仰いだ上で問題がなければ「区分外」とする。
- ④ EU 分類が、その根拠となる情報とともに入手できない場合は、「分類できない」とする。EU 分類が、その根拠となる情報とともに入手できる場合でも、EU 分類と GHS 分類の分類基準が異なっている場合には、分類の根拠とした情報が科学的に妥当なものであれば、GHS 分類に使用することができる。また、EU 分類がその根拠となる情報とともに入手でき、かつ、EU 分類と GHS 分類の基準が一致する場合には、EU 分類に従って GHS 分類を行うことができる。

C)専門家の判断に必要となる記述

B) ①および B) ②に従い判断することが困難であったものおよび判断できなかったもの、さらに動物の発がん性のメカニズムが証明あるいは推定され、種差その他からみてヒトの発がんがあり得ないことが強く推定されるものについては、下記に従い、評価文書に記載される発がん性に関する記述をすべて拾い上げ、専門家の判断を仰ぐこと。

- ① List 1 (上記 B) ①に掲げる評価文書は除く) において、発がん性にかかる記述、 又は発がん性を示唆する記述
- ② List 2 および List3 においては、次に掲げる記述。なお、この②の規定は、分類実施者が考慮すべきであると判断した文献や記述をテンプレートに記載することを妨げるものではない。
 - ・ 明らかに「発がん性」と区分されている箇所に記載されている記述
 - ・ 動物における長期の投与試験において病理組織学的検査を行い、腫瘍の発生 を確認しているもの(又は発がん性(又は腫瘍)の有無や示唆に明確に言及 しているもの)
 - ・ ヒト集団における疫学的調査

D)特に専門家の判断が必要となる点

- ① 次に掲げる物質は、一般に発がん性物質と分類されており、慎重に調査を行う 必要がある。このようなカテゴリーによる判断は、物質によって、代謝系の違いなど、ヒトとは異なるメカニズムによって動物に特有の発がん所見(種差による異なる)が認められることもあり、慎重に調査を行う。
 - a) 芳香族炭化水素
 - b) 芳香族アミン
 - c) N-ニトロソ化合物
 - d) キノリン誘導体
 - e) ニトロフラン誘導体
 - f) アゾ化合物
 - g) ハロエーテルおよびその他の活性ハロゲン化物
 - h) 金属(砒素、カドミウム、クロム、ニッケルなど) (参考文献:「トキシコロジー」、日本トキシコロジー学会教育委員会編集、p.143-156 朝倉書店(2004))
- ② 動物からヒトへの外挿を行うに当たって、上述の種差によってヒトでの発がん性が否定できる可能性のあるものとしては以下の発がん性などが知られている。以下により発がん性を否定するためには専門家の判断が必要となる。
 - a) α 2u グロブリン尿細管への過剰蓄積によるラットの腎臓発がん性
 - b) フェノバルビタールの発がん機序との類似性が証明されている齧歯類の肝臓 発がん性
 - c) 肝臓での甲状腺ホルモンの代謝促進作用に起因したラット甲状腺発がん性
 - d) ドーパミン作動性の視床下部刺激性を介したラット精巣発がん性
 - e) 尿中代謝物による膀胱粘膜への物理的刺激によって惹起される膀胱発がん性

3-2-7 生殖毒性

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】(3.7.1)

3.7.1.1 生殖毒性

生殖毒性には、雌雄の成体の生殖機能および受精能力に対する悪影響に加えて、子の発生毒性も含まれる。下記に示された定義は、IPCS/EHCの文書番号 225、化学品への暴露と関連する生殖に対する健康リスクの評価原則における仮の定義に従って作成したものである。分類という目的から、遺伝子要因に基づく子への遺伝的影響の誘発については、生殖細胞に対する変異原性という別の有害性クラスの方がより適切であると思われるため、第3.5章「生殖細胞変異原性」に示してある。

本分類システムでは、生殖毒性は以下の二つの主項目に分けられている。

- (a)性機能および生殖能に対する悪影響
- (b)子の発生に対する悪影響

ある種類の生殖毒性の影響は、性機能および生殖能の損傷によるものであるか、または発生毒性によるものであるか明確に評価することはできない。それにもかかわらず、これらの影響を持つ化学品は、一般的な危険有害性情報には生殖毒性物質と分類されるであろう。

3.7.1.2 性機能および生殖能に対する悪影響

化学品による性機能および生殖能を阻害するあらゆる影響。これには雌雄生殖器官の変化、生殖可能年齢の開始時期、配偶子の生成および移動、生殖周期の正常性、性的行動、受精能/受胎能、分娩、妊娠の予後に対する悪影響、生殖機能の早期老化、または正常な生殖系に依存する他の機能における変化などが含まれるが、必ずしもこれらに限られるわけではない。

授乳に対するまたは授乳を介した影響も生殖毒性に含められるが、この分類においては、別に扱っている(3.7.2.1 を参照)。なぜならば、特に授乳に対して悪影響を及ぼす化学品を分類することは、授乳中の母親に対して有害性情報を提供するためにも望ましいからである。

3.7.1.3 子の発生に対する悪影響

発生毒性を広義にとらえると、胎盤、胎児あるいは生後の子の正常な発生を妨害する あらゆる作用が含まれる。それは受胎の前のいずれかの親の暴露、胎児期における発生 中の胎児の暴露、あるいは出生後の性的成熟期までの暴露によるものがある。 ただし、 発生毒性という分類においては、妊娠女性および生殖能のある男女に対して有害性警告 を提供することを第一の目的としていると考えることができる。

したがって、分類するという目的のために、発生毒性とは本質的に妊娠中または親の 暴露によって誘発される悪影響をいう。このような影響は、その生体の生涯のいかなる 時点においても発現され得る。発生毒性の発現には主として(a)発生中の生体の死亡、(b) 構造異常、(c)生育異常、および(d)機能不全が含まれる。

(2) 分類基準

A)分類 JIS による分類基準

分類 JIS における生殖毒性物質および授乳影響の有害性区分を以下に示す。

表 3-11 生殖毒性物質の有害性区分

区分 1: ヒトに対して生殖毒性があることが知られている物質、又はあると考えられる物質 この区分には、ヒトの性機能および生殖能又は発生に悪影響を及ぼすことが知られている物質、又はできれば他の補足情報もあることが望ましいが、動物試験によってその物質 がヒトの生殖を阻害する可能性があることを強く推定できる物質が含まれる。分類のため の証拠が、主としてヒトのデータによるものか (区分 1A)、又は動物データによるものなのか (区分 1B) によってさらに次のように分類することもできる。

区分 1A: ヒトに対して生殖毒性があることが知られている物質 この区分への物質の分類は、主にヒトにおける証拠をもとにして行う。

区分 1B: ヒトに対して生殖毒性があると考えられる物質

この区分への化学物質の分類は、主に実験動物による証拠をもとにして行う。動物 実験から得られたデータは、他の毒性作用のない状況で性機能および生殖能若しくは 発生に対する悪影響の明確な証拠があるか、又は他の毒性作用も同時に生じている場 合は、その生殖に対する悪影響が、他の毒性作用が原因となった二次的な非特異的影 響ではないと判断されることが必要である。ただし、ヒトに対する影響の妥当性につ いて疑いが生じるようなメカニズムに関する情報がある場合は、区分2に分類する方 がより適切である。

区分2:ヒトに対する生殖毒性が疑われる物質

この区分に分類するのは次のような物質である。

- a) 他の補足情報もあることが望ましいが、ヒト若しくは実験動物から、他の毒性作用のない状況で性機能および生殖能又は発生に対する悪影響についてある程度の証拠が得られている物質
- b) 他の毒性作用も同時に生じている場合には、他の毒性作用が原因となった 2 次的な非特

異的影響ではないと見なしてよいが、当該物質を区分1に分類するにはまだ証拠が十分でないような物質

c) 例えば、試験に欠陥があるなど、証拠の信頼性が低いため、区分 2 とした方がより適切な分類であると思われる場合がある物質

表 3-12 授乳影響の有害性区分

授乳に対する又は授乳を介した影響

授乳に対する又は授乳を介した影響は別の区分に振り分ける。多くの物質には、授乳によって幼児に悪影響を及ぼす可能性についての情報がないことが認められている。ただし、女性によって吸収され、母乳分泌に影響を与える、又は授乳中の子供の健康に懸念をもたらすに十分な量で母乳中に存在すると思われる物質(代謝物も含めて)は、ほ乳中の乳児に対するこの有害性に分類して示す。この分類は次の事項をもとに判定する。

- a)吸収、代謝、分布および排せつに関する試験で、当該物質が母乳中で毒性を持ち得る濃度で存在する可能性が認められた場合。
- b)動物を用いた一世代又は二世代試験の結果より、母乳中への移行による子への悪影響又は母乳の質に対する悪影響の明らかな証拠が得られた場合、又は
- c)授乳期間中の乳児に対する有害性を示す証拠がヒトで得られた場合。
- B) GHS における分類基準 (参考情報) 分類 JIS および GHS における分類基準では、同一の区分を採用している。

(3)情報源およびデータに関する事項

※分類の手順については、「3 - 1 - 1 分類判定に利用可能な情報源」を参照のこと。

- A) データの入手可能性
- ・ SIDS、EHC、ECETOC、CERI「化学物質安全性(ハザード)データ集」、などに 生殖毒性に関する評価が報告されている。
- 生殖毒性の報文データ引用は多く入手できるが、専門家が元の文献に当たってクライテリアに該当するかどうかを判断しなければならない。
- ・ OECD テストガイドラインには、生殖毒性に関連する下記の試験法がある。
 - OECD TG 414 Prenatal development toxicity study
 - OECD TG 415 One-generation reproduction toxicity study
 - OECD TG 416 Two-generation reproduction toxicity
 - OECD TG 421 Reproduction / developmental toxicity screening test
 - OECD TG 422 Combined repeated dose toxicity study with the reproduction / developmental toxicity screening test

B) 複数データが存在する場合の優先順位

「3-1-2 複数データが存在する場合の優先順位」(p.90)を参照のこと。 データに基づく適切な情報源が容易に入手できない場合は、生殖毒性に相当する EUDSD 分類 (R60、R61、R62、R63、R64) から、元となった EU の評価書文書 の入手を試みる。評価文書入手できた場合は、それに基づき分類する。

C) 従来の分類システムとの比較

- ・ EU 分類の生殖毒性カテゴリー分類と GHS の生殖毒性区分の分類の考え方は一致 している。
- EUDSD 分類・R60, R61 でカテゴリー1 の物質は区分 1A に相当する。
- EUDSD 分類・R60, R61 でカテゴリー2 の物質は区分 1B に相当する。
- ・ EUDSD 分類・R62, R63 でカテゴリー3の物質は区分 2 に相当する。
- ・ EUDSD 分類・R64 (母乳栄養児に害を及ぼすことがある)が付与されている物質は「授乳に対する、または授乳を介した影響に関する追加区分」に該当するので、 危険有害性情報として「授乳中の子に害をおよぼすおそれ」を適用する。
- EU CLP 分類で、H360D 及び H360F に分類されるものは区分 1 A あるいは区分 1 B、H361d 及び H361f に分類されるものは区分 2 と一致する。また、H360FD、H360Fd、H36Df に分類されるものも区分 1 A あるいは区分 1 B、H361fd に分類されるものは区分 2 と一致する。

D) データに係る手引き

生殖毒性試験データから分類する場合、ヒトに対する生殖毒性が既知である物質を区分 1A とする。主に動物実験の証拠から人に対する生殖毒性が推定される物質を区分 1B とする。その他、ヒトに対する生殖毒性が疑われる物質を区分 2 とする。

(4) 分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。なお、分類に際しては、以下の 点を留意すること。

- ※List1 にあるすべての評価文書について、調査物質に係る記述の存在の有無を必ず確認すること。
- ※「区分外」の取扱いについて、List 1 において明確に有害性を否定する、又は有害性が極めて低いと記述している場合をのぞき、「区分外」の判定は慎重に行うこと。疑義があれば、むしろ判断を行うに十分な情報が無く「分類できない」とする。

B) 分類の要点

- ・ 試験動物種とヒトの投与形態、作用機作など、試験動物とヒトの間に違いがある場合には試験動物の結果が証拠としての重みを失うことに留意が必要である。例えば、作用メカニズムがヒトと試験動物とで異なり、ヒトにはその有害性が発現しないことが明確に示される場合には、実験動物に生殖毒性が発現する物質であっても、この区分に分類されるべきではない。
- ・ 被試験物質が試験動物の母体に対して毒性を発現することによって、あたかも生殖 毒性が発症しているように観察されることがある。従って、生殖毒性の証拠が、他 の毒性作用が原因となった 2 次的な非特異的影響である場合は、分類に用いるべき ではない。胚や胎児に対しても同様である。

C)一般的考察

①「生殖毒性」

GHS では、生殖毒性として、雌雄の成体の性機能および生殖能、子の発生に対する毒性を対象としている。

②「性機能および生殖能に対する悪影響」

化学物質による性機能および生殖能を阻害するあらゆる影響。これには雌雄生殖器官の変化、生殖可能年齢の開始時期、配偶子の生成および移動、生殖周期の正常性、性的行動、受精能/受胎能、分娩、妊娠の予後に対する悪影響、生殖機能の早期老化、またはその他の正常な生殖機能からの変化などを含む。

③「子の発生に対する悪影響」

発生毒性を広義にとらえると、胎盤、胎児あるいは生後の子の正常な発生を妨害するあらゆる作用が含まれるが、分類するという目的のために、発生毒性とは本質的に妊娠中または親の暴露によって誘発される悪影響をいう。

D)物質の判定論理および分類

①物質の判定論理

国連 GHS 改訂 3 版 3.7.5.1 生殖毒性の判定論理に従って行う。なお母動物に対する毒性については、二次的結果である可能性も十分検討し、分類を行う。(例、国連 GHS 改訂 3 版 3.7.2.4 参照)

②分類

本ガイダンスにしたがって情報を収集し、収集したデータにしたがって分類することを原則とする。

【分類できないとするもの】

当該物質に関する生殖毒性に関するデータがないものについては「分類できない」とする。

【分類をするもの】

区分 1A: ヒトの性機能、生殖能または子の発生に悪影響を及ぼすことが知られている物質

(判断基準)

List 1 の情報でヒトにおいて生殖毒性が認められると明確に記載している物質 ※その他の物質で区分 1A に該当すると考えられる場合は、専門家の判断を仰ぐ こと。

※ 下記の「③4)分類に当たって注意を要する物質」に該当する場合であって、分類ガイダンスに基づく文献調査の結果、区分 1A に該当するだけの情報が得られなかった場合は、専門家の判断を仰ぐこと。

区分 1B:性機能、生殖能または子の発生に悪影響を及ぼすと推定される物質 (判断基準)

次の条件を満たすもの。ただし、「区分外」に当てはまるものは除く。

List1 の情報で、動物実験において親動物で一般毒性(母体毒性のみではなく、雌雄の親動物に対する生殖毒性以外の影響、以下同じ)が示されない用量で明確な生殖毒性※(精液の測定項目、胎児の偶発的異常の発生率、変異・化骨遅延、胎児/生後児の体重、生後の発生指標のわずかな変化等を除く)が発現すると記載されている物質。

※ここでの生殖毒性とは、C)で定義される生殖毒性をいう。すなわち、親の性機能および生殖能、発生影響をいう。本ガイダンス内すべて同じ。

区分2:ヒトに対する生殖/発生毒性が疑われる物質

(判断基準)

List1 又は List2 の情報で次のいずれかの条件を満たすもの。ただし、「区分 1」 および「区分外」に当てはまるものは除く。

- 1)動物試験で、親動物での一般毒性が発現する用量で明確な生殖毒性(精液の測定項目、胎児の偶発的異常の発生率、変異・化骨遅延、胎児/生後児の体重、生後の発生指標のわずかな変化等を除く)が発現すると記載されている物質。ただし、親動物での重篤な影響(死亡、顕著な体重増加抑制など)と胎児への影響の関連性を示す事例は報告されており(Khera KS 1984: Teratology 29, 411-416, Carny EW et.al. 2004: Toxicol. Sci. 82, 234-249, Fleeman TL et.al. 2005: Birth Defects Research (Part B) 74, 442-449)、両者の関連性が明確な場合は区分2への分類の証拠としない。
 - 2)動物試験で親動物での一般毒性に関する記述がないが、明確な生殖毒性(精液の測定項目、胎児の偶発的異常の発生率、変異・化骨遅延、胎児/生後児の体重、生後の発生指標のわずかな変化等を除く)が発現すると記載されて

いる物質

(レビュー文献は一般的に一般毒性が出る用量が不明な場合があり、その場合は原文献に立ち戻って確認することが望まれる。)

(特例)

List2の情報で、動物試験において親動物での一般毒性が示されない用量で明確な生殖毒性(精液の測定項目、胎児の偶発的異常の発生率、変異・化骨遅延、胎児/生後児の体重、生後の発生指標のわずかな変化等を除く)が発現すると記載されている物質については、区分1Bにするほど確かな証拠(根拠)はないとし、本指針においては区分2と整理する。

- 3)ヒトでの生殖毒性に関する報告があるが、十分とは言えない物質(区分1Aに 分類されない物質)※
- ※ここには、List2 の情報でヒトにおいて生殖毒性が認められる旨の記述がある場合も含まれる。

区分外:ヒトに対する生殖/発生毒性がないと判断される物質

(判定基準)

適切な生殖毒性試験が実施されており、その結果生殖/発生毒性を示す証拠が認められていない場合には、生殖毒性がないことが示されていると判断し、「区分外」と判定する。そのほか、下記の条件に該当する場合は、区分1や区分2と判断するのは不適当であるため、後述の「③分類する場合の留意事項」の 2)を参照すること。

- 1)生殖機能、生殖能力または発生に対する悪影響が報告されているものの、他の 毒性作用の非特異的な二次的影響として誘発されたと考えられる場合。
- 2)生殖毒性を発現する動物種特有の機序により発現することが実証される場合、 または、トシキコキネティクスの違いが著しく異なるためにヒトでは当該有 害性が発現しないことが示される場合。
- 3)毒性学的な重要性が低いかまたは最小限な影響 (精液の測定項目、胎児の偶発的異常の発生率、変異・化骨遅延、胎児/生後児の体重、生後の発生指標のわずかな変化)を誘発する場合。

③分類する場合の留意事項

1)静脈注射または腹腔内注射などの投与経路を用いた試験で被験物質の生殖器官の暴露濃度が非現実的なほどに高濃度となる場合、または、刺激性などにより生殖器官に局所的損傷をもたらす場合には分類の根拠とはしない。動物試験で極めて高い用量段階(例えば、衰弱、重度の食欲不振、高い死亡率を生じるような用量)でのみ認められる生殖に対する有害影響については、例えば人の感受性の方が動物より高いことを示すトキシコキネティクス等の情報があり、そ

の分類が適切であることを裏付けることができない限り分類の根拠とはしない。 2)生殖毒性に関連する情報があるにもかかわらず、最終的な判断をするには不十分 と判断した場合には、GHS 分類を行うのに十分な情報がないので「分類できな い」とする。必要に応じて、専門家の判断を仰ぐこと。

3)授乳に対する又は授乳を介した影響

授乳に対する又は授乳を介した影響に関する記述があった場合は、専門家の判断を仰ぐこと。専門家においては、GHS に基づき専門的な知見から、【授乳に対する又は授乳を介した影響】があるかどうか判断する。

4)分類に当たって注意を要する物質

本項の末尾に示した参考文献1では、ヒトにおける催奇形物質として、以下の物質を挙げている。これらに該当する物質については「区分1A」に該当する可能性があるので、本ガイダンスに従って特に慎重に情報を収集すること。

(Schardein, 2000, Table 1-18)

- ・ アルコール類
- 抗がん剤(アミノプテリン、ブスルファン、クロラムブシル、メトトレキサート、シタラビン、シクロホスファミド、メクロレタミン)
- 男性ホルモン
- ・ 抗甲状腺薬、アミノグリコシド系抗菌薬,
- ・ クマリン抗凝血薬類
- ・ ジエチルスチルベストロール
- メチル水銀
- · PCBs
- サリドマイド
- ・ 抗痙攣薬(ヒダントイン、プリミドン、カルバマゼピン、ジオン、バルプロ酸)
- ・ペニシラミン
- ・リチウム
- ・コカイン
- ・ レチノイン酸
- · ACE 阻害薬
- トルエン、テトラサイクリン

また、文献 1 では、Male-mediated 発生毒性を示すとされている物質リスト (Schardein, 2000, Table 1-9) および California Proposition 65 により発生毒性物質として例示されている物質リスト (Schardein, 2000, Table 1-16) が掲載されている。そこに示された物質については、本ガイダンスにしたがって特に慎重に調査を行い、判断するのに十分な情報の収集に努めること。

5)限界用量

国連 GHS 改訂 3 版 3.7.2.5.9 には、限界用量として 1000mg/kg を採用することができるとの記載があるが、投与量が 1000mg/kg を超えていれば一律で限界用量を適用するのではなく、採用の適否については専門家の判断を仰ぐこと。限界用量を規定する OECD テストガイドラインおよび限界用量を以下に示す。

番号	試験名称	限界用量	
414	Prenatal Development Toxicity Study	1000 mg/kg 体重/日	
415	One-Generation Reproduction Toxicity	1000 mg/kg 体重	
	Study		
416	Two-Generation Reproduction Toxicity	1000 mg/kg 体重/日	
	Study		

- 参考文献 1. Schardein JL, Chemically Induced Birth Defects-3rd edition, Marcel Dekker, New York, 2000
- 参考文献 2. Shepard TH, Lemire RJ, Catalog of Teratogenic Agents, 11th edition, Johns Hopkins Univ Press, Boltimore, 2004

3-2-8 特定標的臓器毒性(単回暴露)

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】(3.8.1)

- 3.8.1.1 本章の目的は、単回暴露で起こる特異的な非致死性の特定標的臓器毒性を生ずる物質を分類する方法を規定することである。可逆的と不可逆的、あるいは急性および遅発性かつ第3.1章から3.7章において明確に扱われていない双方の機能を損ないうるすべての重大な健康への影響がこれに含まれる(3.8.1.6 参照)。
- 3.8.1.2 この分類は、ある化学物質が特定標的臓器毒性物質であるかどうか、および、それに暴露したヒトに対して健康に有害な影響を及ぼす可能性が存在するかどうかを特定する。
- 3.8.1.3 分類は、ある物質に対する単回暴露がヒトにおける一貫性のある、かつ特定できる毒性影響を与えたこと、あるいは実験動物において、組織/臓器の機能または形態に影響する毒性学的に有意な変化が示されたか、または生物の生化学的項目または血液学的項目に重大な変化が示され、これらの変化がヒトの健康状態に関連性があるということについての信頼できる証拠が入手できるかに依存する。この有害性クラスに関しては、ヒトのデータを優先的な証拠とすることが確認されている。
- 3.8.1.4 評価においては、単一臓器または生物学的システムにおける重大な変化だけでなく、いくつかの臓器に対するそれほど重度でない一般的変化も考慮すべきである。
- 3.8.1.5 特定標的臓器毒性は、ヒトに関連するいずれの経路によっても、すなわち主として経口、経皮または吸入によって起こりうる。
- 3.8.1.6 GHS における反復暴露による特定標的臓器毒性の分類については、特定標的臓器毒性一反復暴露(第 3.9 章)で述べられているので、本章から除外されている。以下に記載されている他の特定の毒性は、GHS において別に扱われ、ここには含まれていない。
 - (a)急性致死/毒性(第3.1章)
 - (b)皮膚腐食性/刺激性(第 3.2 章)
 - (c)目に対する重篤な損傷性/眼刺激性(第3.3章)
 - (d)皮膚および呼吸器感作性(第 3.4 章)
 - (e)生殖細胞変異原性(第3.5章)

(f)発がん性(第3.6章)

(g)生殖毒性(第3.7章) および

(h)吸入毒性(第 3.10 章)

3.8.1.7 この章における分類基準は、区分1および2の物質(3.8.2.1参照)の基準、区分3の物質(3.8.2.2 参照)の基準および混合物の区分(3.8.3 参照)の基準として体系化されている。

(2) 分類基準

A)分類 JIS による分類基準

表 3-13 特定標的臓器毒性(単回暴露)のための区分

区分 1: ヒトに重大な毒性を示す物質、又は実験動物での試験の証拠に基づいて単回暴露によってヒトに重大な毒性を示す可能性があると考えられる物質

区分1に物質を分類するには、次による。

- a) ヒトの症例又は疫学的研究からの信頼でき、かつ質のよい証拠、又は、
- b) 実験動物における適切な試験において、一般的に低濃度の暴露でヒトの健康に関連 のある有意な、又は強い毒性作用を生じたという所見。証拠の重み付けの評価の一 環として使用すべき用量/濃度ガイダンス値は後述する。

区分 2:実験動物を用いた試験の証拠に基づき単回暴露によってヒトの健康に有害である可能性があると考えられる物質

物質を区分 2 に分類するには、実験動物での適切な試験において、一般的に中等度の 暴露濃度でヒトの健康に関連のある重大な毒性影響を生じたという所見に基づいて行 う。ガイダンス値は分類を容易にするために後述する(表 3.14 参照)。例外的に、ヒト での証拠も、物質を区分 2 に分類するために使用できる。

区分3:一時的な特定臓器への影響

物質又は混合物が上記に示された区分1又は2に分類される基準に合致しない特定臓器への影響がある。これらは、暴露の後、短期間だけ、ヒトの機能に悪影響を及ぼし、構造又は機能に重大な変化を残すことなく合理的な期間において回復する影響である。この区分は、麻酔の作用および気道刺激性を含む。物質又は混合物は、H.4(注:混合物の分類基準)において議論されているように、これらの影響に対して明確に分類できる。

これらの区分 1~3 においても、分類された物質によって一次的影響を受けた特定標

的臓器又は器官が明示されるか、又は一般的な全身毒性物質であることが明示される。 毒性の主標的臓器を決定し、その意義にそって分類する。例えば肝毒性物質、神経毒性 物質のように分類するよう努力する。そのデータを注意深く評価し、できる限り二次的 影響を含めないほうがよい。例えば、肝毒性物質は、神経又は消化器官で二次的影響を 起こすことがある。

X o I T LIX MI LIX T T T T T T T T T				
			ガイダンス値	
暴露経路	単位	区分1	区分2	区分3
経口(ラット)	mg/kg 体重	C≦300	300 <c≦2000< td=""><td></td></c≦2000<>	
経皮 (ラット又はウサギ)	mg/kg 体重	C≦1000	1000 <c≦2000< td=""><td>ガイダン ス値は、</td></c≦2000<>	ガイダン ス値は、
吸入(ラット)気体	ppmV/L/4 時間	C≦2500	$2500 < C \le 20000*$	適用しな
吸入(ラット)蒸気	mg/L/4 時間	C≦10	10 <c≦20< td=""><td>週用しない</td></c≦20<>	週用しない
吸入(ラット)	mg/L/4 時間	C≦1.0	1.0 <c≦5.0< td=""><td>V .</td></c≦5.0<>	V .
粉塵/ミスト/ヒューム	III8/T/4 时间	U ≧ 1.0	1.0 < € ≥ 0.0	

表 3-14 単回暴露に関するガイダンス値

*第 15 回国連 GHS 小委員会 (ST/SG/AC.10/C.4/30 25 July 2008) で、2500 < C ≤ 20000 と修正され、国連 GHS 改訂 3 版では「2500 < C ≤ 20000」と改訂されているため、注意が必要である。

B) GHS における分類基準 (参考情報)

分類 JIS および GHS における分類基準では、同一の区分を採用している。また、ガイダンス値の範囲も同様である。詳細な記述は、区分については国連 GHS 改訂 3版 3.8.2 を、ガイダンス値については国連 GHS 改訂 3版表 3.8.1 を参照のこと。

なお、GHSにおける特定標的臓器毒性(単回投与)区分 3「気道刺激性」の基準は以下の通りである。

【国連 GHS 改訂 3 版】(3.8.2.2.1)

区分3としての気道刺激性の基準は以下の通りである。

- (a) 咳、痛み、息詰まり、呼吸困難等の症状で機能を阻害する (局所的な赤化、浮腫、かゆみあるいは痛みによって特徴付けられる) ものが気道刺激性に含まれる。 この評価は、主としてヒトのデータに基づくと認められている。
- (b)主観的なヒトの観察は、明確な気道刺激性(RTI)の客観的な測定により支持され うる。(例:電気生理学的反応、鼻腔または気管支肺胞洗浄液での炎症に関する生 物学的指標)
- (c)ヒトにおいて観察された症状は、他に見られない特有の反応または敏感な気道を 持った個人においてのみ誘発された反応であることより、むしろ暴露された個体

群において生じる典型的な症状でもあるべきである。「刺激性」という単なる漠然とした報告については、この用語は、この分類のエンドポイントの範囲外にある臭い、不愉快な味、くすぐったい感じや乾燥といった感覚を含む広範な感覚を表現するために一般に使用されるので除外するべきである。

- (d)明確に気道刺激性を扱う検証された動物試験は現在存在しないが、有益な情報は、単回及び反復吸入毒性試験から得ることができる。例えば、動物試験は、毒性の症候(呼吸困難、鼻炎等)及び可逆的な組織病理(充血、浮腫、微少な炎症、肥厚した粘膜層)について有益な情報を提供することができ、上記で述べた特徴的な症候を反映しうる。このような動物実験は証拠の重み付けに使用できるであるう。
- (e)この特別な分類は、呼吸器系を含むより重篤な臓器への影響は観察されない場合 にのみ生じるであろう。

また、特定標的臓器毒性(単回投与)区分 3「麻酔作用」の基準は以下の通りである。

【国連 GHS 改訂 3 版】(3.8.2.2.2)

区分3としての麻酔作用の判定基準は以下の通りである。

- (a)眠気、うとうと感、敏捷性の減少、反射の消失、協調の欠如およびめまいといったヒトにおける麻酔作用を含む中枢神経系の抑制を含む。これらの影響は、ひどい頭痛または吐き気としても現れ、判断力低下、めまい、過敏症、倦怠感、記憶機能障害、知覚や協調の欠如、反応時間(の延長)や嗜眠に到ることもある。
- (b)動物試験において観察される麻酔作用は、不活発、協調正向反射の欠如、立ち直り反射、昏睡、運動失調を含む。これらの影響が本質的に一時的なものでないならば、区分1また2に分類されると考えるべきである。区分3としての麻酔作用の判定基準は以下の通りである。

(3)情報源およびデータに関する事項

※分類の手順については、「3-1-1 分類判定に利用可能な情報源」を参照のこと。 A) データの入手可能性

- ・ 既存の MSDS の簡単な記載からでは分類のための十分な情報は得られない。しっかりした総説情報、あるいは毒性作用に関する1次情報の文献検索を行う必要がある。
- EU DSD 分類の R-Phrase¹⁵ (R39、R68、R37、R67) が附されているものには、
 特定標的臓器毒性(単回暴露)の懸念がある。
- T+,R39 および T,R39 は区分1に相当する。R68 は区分2に相当する。R37と R67

162

 $^{^{15}}$ R-Phrase については付録を参照のこと。

は単回の区分3 気道刺激性と麻酔性にそれぞれ相当する。

B) 複数データが存在する場合の優先順位

- ①信頼できる機関において評価されたデータ (例えば List 1 に示した参考資料から得られたもの)。
- ②データに基づく適切な情報源が容易に入手できない場合は、特定標的臓器毒性 (単回暴露)に相当する EU の分類 (R39、R68、R67) から元となった EU の 評価書の入手を試みる。評価文書が入手できた場合は、それに基づき分類する。
- ③報告書のデータに信頼性があると判断できるもの(GLPによる測定であること、 あるいは判断の根拠となるデータが明記されて評価されていること等)
- ④その他の情報源から収集したデータ(例えば List2、3 に示した参考資料から得られたもの)

C) 従来の分類システムとの比較

一致するシステムとして、EU DSD 分類の R-Phrase¹⁶、R39、R68、R37、R67 がある。

EU CLP 分類では、H370 に分類されるものは区分 1 、H371 が区分 2 、H335 あるいは H336 が区分 3 と一致する。

D) データに係る手引き

- ・ 単回暴露で起きる特異的な非致死性の特定標的臓器毒性に関する情報が得られた 場合、それがヒトの健康に対して有意の毒性作用であるかどうか、専門家が判断し なければならない。
- 分類した物質が損傷を起こした暴露経路を明示すべきである。
- ・ 特定標的臓器毒性の分類において考慮を払う必要がある。ヒトまたは実験動物にお ける毒性影響の実例を以下に示す。

【国連 GHS 改訂 3 版】(3.8.2.1.7.3)

実験動物における適切な試験の証拠は、臨床所見、肉眼および顕微鏡による病理組織学的検査の形をとって多くのより詳しい内容を供給することができ、そして、生命への危険に至らない機能障害を起こすかも知れない有害性を、しばしば明らかにすることができる。したがって、入手されたすべての証拠およびヒトの健康状態への関連性は、分類の過程において考慮を払う必要がある。

ヒトまたは実験動物における関連性のある毒性影響の実例を以下に示す:

(a) 単回暴露に起因する罹患;

-

 $^{^{16}}$ R-Phrase については付録を参照のこと。

- (b) 中枢神経系抑制の徴候および特殊感覚器(例:視覚、聴覚および嗅覚)に及ぼ す影響を含む本質的に一時的なものにとどまらない呼吸器系、中枢または末梢神 経系、他の器官、あるいはその他の器官系における重大な機能変化;
- (c) 臨床生化学的検査、血液学的検査または尿検査の項目における一貫した重大で 有害な変化
- (d) 剖検時に観察され、またはその後の病理組織学的検査時に認められた、または確認された重大な臓器損傷;
- (e) 再生能力を有する生体臓器における多発性またはびまん性壊死、線維症または 肉芽腫形成;
- (f) 潜在的に可逆的であるが、臓器の著しい機能障害の明確な証拠を提供する形態 学的変化;
- (g) 再生が不可能な生体臓器における明白な細胞死(細胞の退化および細胞数の減少を含む)の証拠
- ・ 以下に記載されている有害性は、国連 GHS 改訂 3 版において別の有害性として扱われているので、特定標的臓器毒性には含まれない。
 - -急性毒性(3-2-1)
 - -皮膚腐食性/刺激性(3-2-2)
 - -眼に対する重篤な損傷性/眼刺激性(3-2-3)
 - 呼吸器感作性または皮膚感作性(3-2-4)
 - -生殖細胞変異原性(3-2-5)
 - 発がん性(3-2-6)
 - 生殖毒性 (3-2-7)
 - -吸引性呼吸器有害性(3-2-10)

(4) 分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。

分類に際しては、以下の点を留意すること。

- ※「区分外」の取扱いについて、List 1 において明確に有害性を否定する、又は有害性が極めて低いと記述している場合をのぞき、「区分外」の判定は慎重に行うこと。疑義があれば、むしろ判断を行うに十分な情報が無く「分類できない」としたほうが望ましい。
- ※影響を受ける臓器が特定できる場合は、「GHS 分類」には、該当する区分と括 弧を付して影響を受ける臓器を記載すること。臓器が特定できない場合は、括 弧内に「全身毒性」と記載すること。(記載例:区分1(肝臓、腎臓、血液)、又

は区分1(全身毒性))

- ※区分1 (呼吸器) や区分2 (呼吸器) に分類される場合は、区分3 (気道刺激性) として分類しない。
- ※区分1 (中枢神経系) や区分2 (中枢神経系) に分類される場合であっても、 区分3 (麻酔作用) として分類することができる。
- ※影響を受ける臓器ごとに区分が異なる場合は、それぞれの臓器ごとに区分を記載すること(記載例:区分1(肝臓、腎臓)、区分2(血液)、区分3(気道刺激性))
- ※混合物のデータしかないもの(毒性のない溶媒等によって混合・希釈されている場合に限る)については、適宜濃度等から推算して化学物質の場合の GHS 分類を行い、根拠としてその推定の過程を記載する。

B)分類手順について

①以下の【判定基準 1a】または【判定基準 1b】に該当するものを区分 1 とする。 【判定基準 1a】List1 でヒトへの毒性症状を誘発する証拠がある。

(注意事項)

- 1)影響を受ける臓器のうち、明らかに二次的影響とわかる場合は記載から除外する こと。二次的影響か否かについては、必要に応じ専門家の判断を求めること。 二次的影響かどうか判断が難しい場合は、影響を受ける全ての器官をあげるこ と。
- 2)呼吸器系への局所影響 (site of contact) による影響については、ここに適用し、 区分1 (じん肺など) とする。ただし、気道以外の局所影響 (site of contact)、 例えば腐食性/刺激性物質を経口投与した場合の消化器系での刺激性/炎症性反 応は、皮膚腐食性などの他の毒性項目に該当するものとして、特定標的臓器に は分類しない。
- 3)軽微な毒性症状(微熱、だるいなど)のみが記載されている場合は、区分外とする。
- 4)List1 に記載された影響を受けた臓器は、すべて書き出すこと。ただし、同じ試験に基づいて複数の評価書での臓器の記載が異なるときは、共通に記載されている臓器を記載すること。また、毒性症状のみが記載され、影響を受けた臓器が特定できない場合は、全身毒性として記載する。なお、標的臓器が特定された場合は、毒性症状の記載は基本的には記載する必要はない。
- 5)影響を受ける臓器が特定できる場合は、該当する区分と括弧を付して影響を受ける臓器を記載すること。臓器が特定できない場合は、括弧内に「全身毒性」と記載すること。

【判定基準 1b】次の条件をすべて満たしている動物試験

- 1)動物種は問わない
- 2) 暴露量が明らかで、ガイダンス値の区分1の範囲で毒性症状がみられる。
- 3)List1 に記載されている、又は List2 で OECD TG 試験であり、かつ GLP 適合 試験であり、かつ一定の評価(複数者のレビュー)を受けているもの (注意事項)
- 1)毒性影響については、国連 GHS 改訂 3 版および下記をよく読むこと
- 2)影響を受ける臓器のうち、明らかに二次的影響とわかる場合は記載から除外すること。二次的影響か否かについては、必要に応じ専門家の判断を求めること。
- 3)呼吸器系への局所影響 (site of contact) による影響については、ここに適用し、 区分 1(じん肺など) とする。ただし、気道以外の局所影響 (site of contact)、 例えば腐食性/刺激性物質を経口投与した場合の消化器系での刺激性/炎症性反 応は、皮膚腐食性などの他の毒性項目に該当するものとして、特定標的臓器に は分類しない。
- 4)軽微な毒性症状(微熱など)のみが記載されている場合は、区分外とする。
- 5)List1 に記載された影響を受けた臓器は、すべて書き出すこと。ただし、同じ試験に基づいて複数の評価書での臓器の記載が異なるときは、共通に記載されている臓器を記載すること。また、毒性徴候のみが記載され、影響を受けた臓器が特定できない場合は、全身毒性として記載する。なお、標的臓器が特定された場合は、毒性徴候の記載は基本的には記載する必要はない。
- 6) 暴露量の換算については、本ガイダンスの急性毒性の(3) 情報源およびデータ に関する事項及び(4)分類・判定等に係る指針(動物の種差の取扱いに関す る基準は除く)を準用する。
- 7)影響を受ける臓器が特定できる場合は、該当する区分と括弧を付して影響を受ける臓器を記載すること。臓器が特定できない場合は、括弧内に「全身毒性」と記載すること。
- ②以下の【判定基準 2a】または【判定基準 2b】に適応するものを区分 2 とする。
- 【判定基準 2a】List2 でヒトへの毒性症状を誘発する証拠がある。

(注意事項)

①の【判定基準 1a】(注意事項) 1)~5)に準じる。

- 【判定基準 2b】次の条件をすべて満たしている動物試験
 - 1)動物種は問わない
- 2) 暴露量が明らかで、ガイダンス値の区分 2 の範囲で毒性症状がみられる。(複数の文献があった場合は、暴露量の最も小さいもので判断する)
- 3)List1 又はList2 に記載されている (例外事項)

動物種は問わないが、暴露量が明らかで、ガイダンス値の区分 1 の範囲にあるものでも、List2 にのみ記載があり【判定基準 1b】 3)の条件に適合しないもの (OECDTG 試験であり、かつ GLP 適合試験であり、かつ一定の評価(複数者のレビュー)を受けている、との条件を満たさない)については、例外的に区分 2 として分類し、特記事項として『ガイダンス値から判断すると区分 1 相当であるが、List2 のデータであって、判定基準 1b3)を満たさないため、本ガイダンスにしたがって区分 2 とした』と記載すること。

(注意事項)

- ①の【判定基準 1b】(注意事項) 1)~2)に準じる
- ③以下の【判定基準3】に適応するものを区分3とする。
- 【判定基準3】次の条件をすべて満たしているヒトでの証拠又は動物試験
 - 1) 暴露後、短期間だけ、気道刺激性(respiratory tract irritation) の基準または麻酔作用(narcotic) の分類基準に適合する毒性が認められる場合
- 2) その作用に回復性が認められる。
- 3)List1 又は List2 に記載されている (注意事項)
- 1)区分 3 (一時的な特定臓器への影響)の定義は、『暴露後、短期間だけ人の機能に悪影響を及ぼし、構造または機能に重大な変化を残すことなく合理的な期間において回復する影響』である。現在 GHS では、気道刺激性および麻酔作用について区分 3 への分類基準が示されており、原文献に神経系機能抑制や行動抑制を根拠とした麻酔作用を示唆する記述が見られた場合に、区分 3 に分類する。もしも、これらの影響以外の可逆的作用がある場合は、今回の分類作業では特記事項に記載することとするが、分類の根拠とはしない。
- 2)気道刺激性の場合、呼吸器系を含むより重篤な臓器の影響が観察される場合は、 区分1 または2 に分類する。麻酔作用については、影響が本質的に一時的でな い場合のみ、区分1 または2 に分類すること。
- 3)気道刺激性、麻酔作用物質のいずれであるか明示すること。(記載例:区分3(気 道刺激性))
- C)特定標的臓器毒性(単回暴露)の分類における蒸気吸入ガイダンス値の扱いについて

特定標的臓器毒性(単回暴露)の分類については、動物データをもとに区分する「ガイダンス値」が、p156 表 $3\cdot14$ (国連 GHS 改訂 3 版 表 $3\cdot8\cdot1$.) に示されており、いずれも蒸気吸入については mg/L を単位としたものとなっている。しかし、急性毒性用の表 $3\cdot1\cdot1$.のような蒸気吸入に関する注記はなされていない。したがって、特定標的臓器毒性(単回暴露)では蒸気吸入時の毒性発現濃度を mg/L で調べ、表に

示された値と比較して評価することとする。原文献の記載が ppmV であれば単位を mg/L に変換し比較する。

飽和蒸気圧を超える濃度であればミスト(あるいはダスト)として急性毒性の場合を参考に取り扱う。

3-2-9 特定標的臓器毒性(反復暴露)

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】(3.9.1)

- 3.9.1.1 この章の目的は、反復暴露によって起こる特異的な非致死性の特定標的臓器毒性を生ずる物質または混合物を分類する方法を規定することである。可逆的、不可逆的、あるいは急性または遅発性の機能を損ないうるすべての重大な健康への影響がこれに含まれる。
- 3.9.1.2 この分類は、ある化学物質が特定標的臓器毒性物質または混合物であるか、およびそれに暴露されるヒトに対して健康への悪影響を及ぼす可能性があるものかどうかを識別する。
- 3.9.1.3 分類は、ある物質または混合物に対する反復暴露がヒトにおける一貫性のある、かつ特定できる毒性影響を与えたこと、あるいは実験動物において組織/臓器の機能または形態に影響する毒性学的に有意な変化が示されたか、または生物の生化学的項目または血液学的項目に重大な変化が示され、これらの変化がヒトの健康状態に関連性があるということについて信頼できる証拠が入手できるかに依存する。この有害性クラスに関しては、ヒトのデータを優先的な証拠とすることが確認されている。
- 3.9.1.4 評価においては、単一の臓器または生物学的システムにおける重大な変化だけでなく、いくつかの臓器に対するそれほど重度でない一般的変化も考慮すべきである。
- 3.9.1.5 特定標的臓器毒性は、ヒトに関連するいずれの経路によっても、すなわち主として経口、経皮または吸入によって、起こり得る。
- 3.9.1.6 GHS における単回暴露での非致死性毒性の分類については特定標的臓器毒性ー単回暴露(第3.8章)に述べられており、したがって本章からは除外されている。急性毒性、眼に対する重篤な損傷性/眼刺激性、皮膚腐食性/刺激性、皮膚および呼吸器の感作性、発がん性、変異原性、生殖毒性などその他の個々の毒性については GHS で別個に扱われているため、本章には含まれない。

(2) 分類基準

A)分類 JIS による分類基準

表 3-15 特定標的臓器毒性(反復暴露)のための区分

区分 1: ヒトに重大な毒性を示した物質、又は実験動物での試験の証拠に基づいて反復暴露によってヒトに重大な毒性を示す可能性があると考えられる物質

物質を区分1に分類するのは、次による。

- a)ヒトの症例又は疫学的研究からの信頼でき、かつ質のよい証拠、又は、
- b)実験動物での適切な試験において、一般的に低い暴露濃度で、ヒトの健康に関連のある重大な、又は強い毒性影響を生じたという所見。証拠評価の重み付けの一環として使用すべき用量又は濃度のガイダンス値は後述する(表 3-16 参照)。

区分 2:動物実験の証拠に基づき反復暴露によってヒトの健康に有害である可能性がある と考えられる物質

物質を区分 2 に分類するには、実験動物での適切な試験において、一般的に中等度の暴露濃度で、ヒトの健康に関連のある重大な毒性影響を生じたという所見に基づいて行う。 分類に役立つ用量又は濃度のガイダンス値は後述する(表 3-16 参照)。例外的なケースにおいてヒトでの証拠を、物質を区分 2 に分類するために使用できる(表 3-16 参照)。

いずれの区分においても、分類された物質によって最初に影響を受けた特定標的臓器若しくは器官が明示されるか、又は一般的な全身毒性物質であることが明示される。毒性の主標的臓器を決定し(例えば肝毒性物質、神経毒性物質)、その目的にそって分類するよう努力する。そのデータを注意深く評価し、できる限り二次的影響を含めないようにするのが望ましい。例えば、肝毒性物質は、神経又は消化器官に二次的影響を起こすことがある。

表 3-16 反復暴露に関するガイダンス値

		ガイダンス値(用量/濃度)		
暴露経路	単位	区分1	区分 2	
経口(ラット)	mg/kg 体重/日	10	10~100	
経皮	ma/lra 休重/口	90	20~200	
(ラットまたはウサギ)	mg/kg 体重/日	20		
吸入(ラット)気体	ppmV/6 時間/日	50	$50 \sim 250$	
吸入(ラット)蒸気	mg/L/6 時間/日	0.2	0.2~1.0	
吸入(ラット)	mg/ L /6 時間/日	0.09	0.02~0.2	
粉塵/ミスト/ヒューム	IIIg/ L/O 时间/ 口	0.02		

B) GHS における分類基準(参考情報)

分類 JIS および GHS における分類基準では、同一の区分を採用している。また、ガイダンス値の範囲も同様である。詳細な記述は、区分については国連 GHS 改訂 3版 3.9.2 を、ガイダンス値については国連 GHS 改訂 3版表 3.9.1 および表 3.9.2 を参照のこと。

(3)情報源およびデータに関する事項

A) データの入手可能性

- ・ 既存の MSDS の簡単な記載からでは分類のための十分な情報は得られない。しっかりした総説情報、あるいは毒性作用に関する1次情報の文献検索を行う必要がある。
- ・ EUDSD 分類の R-Phrase¹⁷で R33、R48、あるいはこれらを組み合わせた EUDSD 分類が附されているものには、特定標的臓器毒性(反復暴露)の懸念がある。
- T,R48 は区分1に、Xn,R48 は区分2に相当する。
- ・ OECD テストガイドラインには、特定標的臓器毒性(反復暴露)に関連する下記の 試験法がある。

OECDTG407	Repeated dose 28-day oral toxicity study in rodents
OECDTG408	Repeated dose 90-day oral toxicity study in rodents
OECDTG409	Repeated dose 28-day oral toxicity study in non-rodents
OECDTG410	Repeated dose dermal toxicity: 21 / 28-day study
OECDTG411	Repeated dermal toxicity: 90-day study
OECDTG412	Repeated dose Inhalation toxicity study : 28-day or 14-day study

OECDTG413 Subchronic Inhalation toxicity 90-day study

1

 $^{^{17}}$ R-Phrase については付録を参照のこと。

B) 複数データが存在する場合の優先順位

- ①信頼できる機関において評価されたデータ (例えば List1 に示した参考資料から得られたもの)。
- ②データに基づく適切な情報源が容易に入手できない場合は、特定標的臓器毒性 (反復暴露)に相当する EUDSD 分類の R-Phrase¹⁸、(R48) から、元となった EU の評価文書の入手を試みる。評価書が入手できた場合は、それに基づき分類 する。
- ③報告書のデータに信頼性があると判断できるもの(GLP による測定であること、 あるいは判断の根拠となるデータが明記されて評価されていること等)
- ④その他の情報源から収集したデータ (例えば List2、3 に示した参考資料から得られたもの)

C) 従来の分類システムとの比較

一致するシステムとして、EUDSD 分類の R48 がある。

また、EU CLP 分類では H372 に分類されるものが区分 1、H373 に分類されるものが区分 2 に一致する。

D) データに係る手引き

- ・ 反復暴露で起きる特異的な非致死性の特定標的臓器毒性に関する情報が得られた場合、それがヒトの健康に対して有意の毒性作用であるかどうか、専門家が判断しなければならない。
- 分類した物質が損傷を起こした暴露経路を明示すべきである。
- ・ 特定標的臓器毒性の分類において考慮を払う必要があるヒトまたは実験動物にお ける毒性影響の実例を以下に示す。

【国連 GHS 改訂 3 版】(3.9.2.7.3)

実験動物での適切な試験からの証拠は、臨床所見、血液学検査、臨床化学検査、 肉眼および顕微鏡による病理組織学的検査の形で、はるかに詳細な内容を提供する ことができ、そして、これは生命への危険には至らないが機能障害を起こすかもし れない有害性を、しばしば明らかにすることができる。したがって、入手されたす べての証拠およびヒトの健康との関連性は、分類の過程において考慮を払う必要が ある。ヒトまたは実験動物における関連のある毒性影響の例を、以下に示す。

(a) 反復あるいは長期暴露に起因する罹患または死亡。比較的低い用量/濃度においても、当該物質またはその代謝物の生物蓄積によって、あるいは反復暴露によって解毒過程が機能しなくなることによって、反復暴露で罹患または死亡に至る可能性がある;

172

¹⁸ R-Phrase については付録を参照のこと。

- (b)中枢神経系抑制、および特定の感覚器(例えば視覚、聴覚および嗅覚)に及ぼす 影響を含む、中枢または末梢神経系あるいはその他の器官系における重大な機能 変化;
- (c)臨床生化学的検査、血液学的検査または尿検査の項目における、一貫した重大で有害な変化;
- (d)剖検時に観察され、またはその後の病理組織学的検査時に認められ、または確認 された、重大な臓器損傷;
- (e)再生能力を有する生体臓器における多発性またはびまん性壊死、線維症または肉芽腫形成;
- (f)潜在的に可逆的であるが、臓器の著しい機能障害の明確な証拠を提供する形態学的変化(例えば、肝臓における重度の脂肪変化);
- (g)再生が不可能な生体臓器における明白な細胞死の証拠 (細胞の退化および細胞数の減少を含む);
- ・ 以下に記載されている有害性は、国連 GHS 改訂 3 版において別の有害性として扱われているので、特定標的臓器毒性には含まれない。
 - -急性毒性(3-2-1)
 - 一皮膚腐食性/刺激性(3-2-2)
 - -眼に対する重篤な損傷性/眼刺激性(3-2-3)
 - 呼吸器感作性または皮膚感作性(3-2-4)
 - -生殖細胞変異原性(3-2-5)
 - 発がん性(3-2-6)
 - 生殖毒性(3-2-7)
 - -吸引性呼吸器有害性(3-2-10)

(4)分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。

分類に際しては、以下の点を留意すること。

- ※「区分外」の取扱いについて、List 1 において明確に有害性を否定する、又は有害性が極めて低いと記述している場合をのぞき、「区分外」の判定は慎重に行うこと。「区分外」とする際には、経路や判断の根拠となる試験方法など、「区分外」とした根拠を明確にすること。疑義があれば、むしろ判断を行うに十分な情報が無く「分類できない」としたほうが望ましい。
- ※影響を受ける臓器が特定できる場合は、該当する区分と括弧を付して影響を受ける臓器を記載すること。臓器が特定できない場合は、括弧内に「全身毒性」

と記載すること。(記載例:区分1(肝臓、腎臓、血液)、又は区分1(全身毒性))

- ※影響を受ける臓器ごとに区分が異なる場合は、それぞれの臓器ごとに区分を記載すること(記載例:区分1(肝臓、腎臓)、区分2(血液))
- ※混合物のデータしかないもの(毒性のない溶媒等によって混合・希釈されている場合に限る)については、適宜濃度等から推算して化学物質の場合の GHS 分類を行い、根拠としてその推定の過程を記載する。

B)分類手順について

①以下の【判定基準 1a】または【判定基準 1b】に適応するものを「区分 1」 とする。

【判定基準 1a】List1 で人への毒性症状を誘発する証拠がある。

(注意事項)

- 1)影響を受ける臓器のうち、明らかに二次的影響とわかる場合は記載から除外する こと。二次的影響か否かについては、必要に応じて専門家の判断を求めること。 二次的影響かどうか判断が難しい場合は、影響を受ける全ての器官をあげるこ と。
- 2)呼吸器系への局所影響 (site of contact) による影響については、ここに適用し、 区分1 (じん肺など) とする。ただし、気道以外の局所影響 (site of contact)、 例えば腐食性/刺激性物質を経口投与した場合の消化器系での刺激性/炎症性反 応は、皮膚腐食性などの他の毒性項目でフォローしているので、特定標的臓器 の分類には考慮しない。
- 3)軽微な毒性症状(微熱、だるいなど)のみが記載されている場合は、「区分外」とする。
- 4)List1 に記載された影響を受けた臓器は、すべて書き出すこと。ただし、同じ試験に基づいて複数の評価書での臓器の記載が異なるときは、共通に記載されている臓器を記載すること。また、毒性症状のみが記載され、影響を受けた臓器が特定できない場合は、全身毒性として記載する。なお、標的臓器が特定された場合は、毒性症状の記載は基本的には記載する必要はない。
- 5)影響を受ける臓器が特定できる場合は、該当する区分と括弧を付して影響を受ける臓器を記載すること。臓器が特定できない場合は、括弧内に「全身毒性」と記載すること。

【判定基準 1b】次の条件をすべて満たしている動物試験

- 1)動物種は問わない
- 2) 暴露量が明らかで、ガイダンス値の区分1の範囲で毒性症状がみられる。
- 3)List1 に記載されている、又は List2 で OECD TG 試験であり、かつ GLP 適合試験であり、かつ一定の評価(複数者のレビュー)を受けているもの

(動物試験について)

- ・ 標準的動物試験はラットまたはマウスにおける 28 日間、90 日間または生涯 試験(2年間まで)であり、標的組織/臓器に対する毒性影響を確認するた めの血液学的検査、臨床化学的検査、詳細な肉眼的および病理組織学的検査 を含んでいる。
- ラットまたはマウス以外の動物種を用いて実施された反復投与試験のデータ も参照すること。
- ・ その他の長期暴露試験、例えば、発がん性試験、神経毒性試験または生殖毒性試験も、分類評価のために使用する特定標的臓器毒性の証拠を提供し得ることに留意すること。

(注意事項)

- 1)毒性影響については、国連 GHS 改訂 3 版および下記をよく読むこと
- 2)影響を受ける臓器のうち、明らかに二次的影響とわかる場合は記載から除外すること。二次的影響か否かについては、必要に応じ専門家の判断を求めること。
- 3)呼吸器系への局所影響 (site of contact) による影響については、ここに適用し、区分 1 (じん肺など) とする。ただし、気道以外の局所影響 (site of contact)、例えば腐食性/刺激性物質を経口投与した場合の消化器系での刺激性/炎症性反応は、皮膚腐食性などの他の毒性項目に該当するものとして、特定標的臓器には分類しない。
- 4)軽微な毒性症状(微熱など)のみが記載されている場合は、区分外とする。
- 5)List1 に記載された影響を受けた臓器は、すべて書き出すこと。ただし、同じ試験に基づいて複数の評価書での臓器の記載が異なるときは、共通に記載されている臓器を記載すること。また、毒性徴候のみが記載され、影響を受けた臓器が特定できない場合は、全身毒性として記載する。なお、標的臓器が特定された場合は、毒性徴候の記載は基本的には記載する必要はない。
- 6)反復暴露では14 日以上(かつ吸入暴露では1回の暴露時間が1時間以上)の反復暴露等のデータがある場合とする。暴露量とガイダンス値の比較を行う場合は、日数および1回当りの暴露時間をガイダンス値の条件(90日・6時間/日)と比較してガイダンス値を補正(暴露日数および1日暴露時間で反比例計算)する。ただし、90日を超える反復暴露データでは1日当りの暴露時間についてのみ補正を行い、日数による補正は実施しない。
- 7)影響を受ける臓器が特定できる場合は、該当する区分と括弧を付して影響を受ける臓器を記載すること。臓器が特定できない場合は、括弧内に「全身毒性」と記載すること。(記載例:区分1(肝臓、腎臓、血液)、又は、区分1(全身毒性))
- ②以下の【判定基準 2a】または【判定基準 2b】に適応するものを区分 2 とする。 【判定基準 2a】List2 で人への毒性症状を誘発する証拠がある。

(注意事項)

①の【判定基準 1a】(注意事項) 1)~5)に準じる。

【判定基準 2b】次の条件をすべて満たしている動物試験

- 1)動物種は問わない
- 2) 暴露量が明らかで、ガイダンス値の区分2の範囲で毒性症状がみられる。(複数の文献があった場合は、暴露量の最も小さいもので判断する)
- 3)List1 又はList2 に記載されている

(例外事項)

動物種は問わないが、暴露量が明らかで、ガイダンス値の区分 1 の範囲にあるものでも、List2 にのみ記載があり【判定基準 1b】 3)の条件に適合しないもの (OECD TG 試験であり、かつ GLP 適合試験であり、かつ一定の評価(複数者のレビュー)を受けている、との条件を満たさない)については、例外的に区分 2 として分類し、特記事項として『ガイダンス値から判断すると区分 1 相当であるが、List2 のデータであって、判定基準 1b 3)を満たさないため、本ガイダンスにしたがって区分 2 とした』と記載すること。

(注意事項)

- ①の【判定基準 1b】(動物試験について) および (注意事項) 1)~7)に準じる。
- C)特定標的臓器毒性(反復暴露)の分類における蒸気吸入ガイダンス値の扱いについて

特定標的臟器毒性(反復暴露)の分類については、動物データをもとに区分する際に利用する「ガイダンス値」が、p.172 表 $3\cdot16$ (国連 GHS 改訂 3 版 表 3.9.1、表 3.9.2)に示されており、いずれも蒸気吸入については mg/L を単位としたものとなっている。しかし、急性毒性用の表 3.1.1.のような蒸気吸入に関する注記はなされておらず、国連 GHS 改訂 3 版にも記載はない。したがって、特定標的臟器毒性(反復暴露)では蒸気吸入時の毒性発現濃度を mg/L で調べ、表に示された値と比較して評価することとする。原資料の記載が ppm であれば単位を mg/L に変換し比較する。

飽和蒸気圧超える濃度であればミスト(あるいはダスト)として急性毒性の場合 を参考に取り扱う。

3-2-10 吸引性呼吸器有害性

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】(3.10.1)

- 3.10.1.1 この章の目的は、ヒトに吸引性呼吸器有害性をもつ物質または混合物を分類する方法を示すことである。
- 3.10.1.2 誤嚥とは、液体または固体の化学品が口または鼻腔から直接、または嘔吐によって間接的に、気管および下気道へ侵入することをいう。(訳者注: Aspiration を「誤嚥」、Aspiration Hazard を「吸引性呼吸器有害性」と訳している)
- 3.10.1.3 吸引性呼吸器有害性は、誤嚥後に化学肺炎、種々の程度の肺損傷を引き起こす、あるいは死亡のような重篤な急性の作用を引き起こす。
- 3.10.1.4 誤嚥は、原因物質が喉頭咽頭部分の上気道と上部消化官の岐路部分に入り込むと同時になされる吸気により引き起こされる。
- 3.10.1.5 物質または混合物の誤嚥は、それを摂取した後に嘔吐した時も起こりうる。このことは、急性毒性を有するため摂取後吐かせることを推奨している場合、表示に影響を及ぼすかもしれない。物質/混合物が誤嚥の危険性に分類される毒性も示す場合は、吐かせることについての推奨は修正する必要があるであろう。
- 3.10.1.6 特殊な考慮
- 3.10.1.6.1 化学物質の誤嚥に関する医学文献レビューでは、ある炭化水素(石油 留分)およびある種の塩素化炭化水素は、ヒトに吸引性呼吸器有害性をもつことを明らかにした。一級アルコール、およびケトンは動物実験にのみ吸引性呼吸器有害性が示されている。
- 3.10.1.6.2 動物における吸引性呼吸器有害性を決定するための方法論は活用されているが、標準化されたものはない。動物実験で陽性であるという証拠は、ヒトに対して、吸引性呼吸器有害性に分類される毒性があるかもしれないという指針として役立つ程度である。吸引性呼吸器有害性に関する動物データを評価する際は、特別な配慮をしなければならない。
- 3.10.1.6.3 分類基準は動粘性率を参照している。以下に、粘性率と動粘性率の変換を示す。

粘性率 (mPa·s) ÷ 密度 (g/cm3) = 動粘性率 (mm2/s)

- 3.10.1.6.4 3.10.1.2 における吸引性呼吸器有害性の定義には呼吸器系への固体の侵入を 含んでいるが、区分 1 あるいは区分 2 に対する表 3.10.1 の(b)による分類は液体の物質 及び混合物のみへの適用を意図したものである。
- 3.10.1.6.5 エアゾール/ミスト製剤の分類

エアゾールおよびミスト製剤は通常、自己加圧式容器、引き金となる装置、ポンプなど

で形成される容器から噴霧される。これらの製剤の分類の鍵は、製剤が噴霧後に誤嚥されるほどに口内に溜まるかどうかである。容器からのミストまたはエアゾールが微細であれば、口内には溜まらないかもしれないが、製剤が(霧状ではなく)流れのようになって噴霧されれば、口内に溜まり誤嚥される可能性がある。通常、引き金となる装置とポンプで形成される噴霧器によって噴霧されるミストは粗い粒子であるため、口内に溜まり誤嚥される場合がある。ポンプ装置を取り外すことができ、直接内容物を飲み込むことが可能な場合には、分類を考慮すべきである。

(2) 分類基準

A)分類 JIS による分類基準

表 3-17 吸引性呼吸器有害性の区分

区分	判定基準
区分 1:ヒトへの吸引性呼吸器有害	区分1に分類される物質は、次による。
性があると知られている物質、又	a)ヒトに関する信頼度が高く、かつ質のよい有効な証
はヒトへの吸引性呼吸器有害性が	拠に基づく (注記を参照);または
あるとみなされる化学物質	b)40℃で測定した動粘性率が 20.5 mm²/s 以下の炭
	化水素の場合

注記: 区分1に含まれる物質の例はある種の炭化水素であるテレビン油およびパイン油である。

B) GHS における分類基準 (参考情報)

GHS 分類では、分類 JIS に加えて、区分 2 を設定している。GHS 分類について以下に示す。

【国連 GHS 改訂 3 版】

表 3.10.1* 吸引性呼吸器有害性の区分

衣 3.10.1 效引注呼吸磁有音性仍凸为		
区分	判定基準	
区分 1:ヒトへの吸引性呼	区分1に分類される物質:	
吸器有害性があると知られ	(a) ヒトに関する信頼度が高く、かつ質の良い有効な	
ている、またはヒトへの吸	証拠に基づく (注記1を参照);または	
引性呼吸器有害性があると	(b) 40℃で測定した動粘性率が 20.5mm²/s 以下の炭	
みなされる化学物質	化水素の場合。	
区分 2:ヒトへの吸引性呼	40℃で測定した動粘性率が14mm²/s以下で区分1に分	
吸器有害性があると推測さ	類されない物質であって、既存の動物実験、ならびに	
れる化学物質	表面張力、水溶性、沸点および揮発性を考慮した専門	

家の判断に基づく。(注記2を参照)

注記 1:区分 1 に含まれる物質の例はある種の炭化水素であるテレビン油およびパイン油である。

注記 2: この点を考慮し、次の物質をこの区分に含める所管官庁もあると考えられる: 3 以上 13 を超えない炭素原子で構成された一級のノルマルアルコール; イソブチルアルコールおよび 13 を超えない炭素原子で構成されたケトン。

*国連GHS改訂3版では、「吸引性呼吸器有害性の定義には呼吸器系への固体の侵入を含んでいるが、区分1あるいは区分2に対する国連GHS 表3.10.1の(b)による分類は液体の物質及び混合物のみへの適用を意図したものである」 (3.10.1.6.4) とされたので注意が必要である。

(3)情報源およびデータに関する事項

※分類の手順については、「3-1-1 分類判定に利用可能な情報源」を参照のこと。

A) データの入手可能性

動物における吸引性呼吸器有害性を決定するための方法論は活用されているが、標準化されたものはない。動物試験で陽性であるという証拠は、ヒトに対して、吸引性呼吸器有害性に分類される毒性があるかもしれないという指針として役立つ程度である。

B) 複数データが存在する場合の優先順位

「3-1-2 複数データが存在する場合の優先順位」(p.90) を参照のこと。

C) 従来の分類システムとの比較

新しい分類の考え方であり、一致するシステムとして、EU DSD 分類の R65 がある。

EU CLP 分類では、H304 が区分1に一致する。

D) データに係る手引き

- ・ 化学物質の誤嚥に関する医学文献レビュー (例えば p45.2-2: ICSC)では、ある炭化水素 (石油留分) およびある種の塩素化炭化水素は、人に吸引性呼吸器有害性をもつことを明らかにした。一級アルコール、およびケトンは動物試験にのみ吸引性呼吸器有害性が示されている。
- ・ 区分 1、区分 2 に該当する物質の例が(2)分類基準 B) 【国連 GHS 改訂 3 版】(表 3.10.1)の注 1 および注 2 に記載されている。
- ・ 分類基準は動粘性率を参照している。以下に、粘性率と動粘性率の変換式を示す。 粘性率 (mPa·s) / 密度 (g/cm³) = 動粘性率 (mm²/s)

(4) 分類・判定等に係る指針

A)本項の背景および留意点

本項の背景については、第1部序を参照のこと。

分類に際しては、以下の点を留意すること。

- ※「区分外」の取扱いについて、List 1 において明確に有害性を否定する、又は有害性が極めて低いと記述している場合をのぞき、「区分外」の判定は慎重に行うこと。疑義があれば、むしろ判断を行うに十分な情報が無く「分類できない」としたほうが望ましい。
- ※混合物のデータしかないものについては、混合物そのものの分類を行い、「根拠」 にその旨を記載する。
- ※吸引性呼吸器有害性については、国連GHS区分2に該当することを根拠に区分1に該当しないと判断しJIS分類で区分外とすることはできない。区分2相当の物質については、ヒトで事故例が報告されれば区分1に新たに分類されることになるので、区分2に該当する場合は区分1の判定はできないこととなる。

B)分類手順について

①【判定基準 1a】または【判定基準 1b】に適合するものを区分 1 とする。

【判定基準 1a】List1 又はList2 資料で人で誤嚥により化学性肺炎を引き起こした 旨の記述がある。

(注意事項)

- 1)動粘性率は考慮しない
- 2)液体および固体が対象であり、気体は除外する。気相に浮遊したものの吸入ではなく、液体・固体の誤嚥に関わるものであるので、エアロゾル・ダスト・ミストについては国連 GHS 改訂 3 版 3.10.1.6.5.を参照し、当該物質の性状や提供される容器 (スプレー缶等) の性能等を加味して判断する (気相に浮遊した状態で気道・呼吸器に吸入される場合は対象外となる)。

【判定基準 1b】炭化水素であって、かつ動粘性率が 40℃で 20.5mm²/s 以下である。 (注意事項)

- 1) ヒトの証拠の有無は考慮しない
- 2) 粘性率は温度に依存し、液体の場合、一般には温度が高いほど粘性率は小さくなるよって、液体の場合、常温で動粘性率が20.5mm²/s以下なら、区分1とする。ただし、液体の粘性率の温度依存性は、直線的でないものがほとんどなので、化学工学便覧等の化学工学系の本を活用して当該物質の40℃での粘性率を確認、又は個別物質で認められた経験式より推定した方が望ましい。

粘性率の数値および測定温度等、参考としたデータと典拠を「根拠」に記載しておくこと。

- 3) 液体および固体が対象であり、気体は除外する。気相に浮遊したものの吸入ではなく、液体・固体の誤嚥に関わるものであるので、エアロゾル・ダスト・ミストについては国連 GHS 改訂 3 版 3.10.1.6.5.を参照し、当該物質の性状や提供される容器(スプレー缶等)の性能等を加味して判断する(気相に浮遊した状態で気道・呼吸器に吸入される場合は対象外となる)。
- 4) 炭化水素とは、今回の事業においては、炭素と水素からなるもの。直鎖ではない場合もここに含めるとする。ハロゲン置換体等は含めないものとする。

(動粘性率に係る一般的注意)

(注1) 粘性率は、cgs 単位で書かれることが多い ($dyn \cdot s/cm^2 = poise$ (又はP))。下記に換算式を記述するので適宜活用してほしい。

1 poise = 0.1Pa·s

(注2) 分類基準は動粘性率を参照している。以下に、粘性率と動粘性率の変換を示す。なお、下記の変換式は、SI 単位と cgs 単位が混在しているので留意すること。

粘性率 (mPa·s) / 密度 (g/cm³) = 動粘性率 (mm²/s)

第4部 環境有害性分類ガイダンス

4-1 分類判定に利用可能な情報

4-1-1 分類判定に利用可能な情報源

国連 GHS では、分類に当たっては入手可能なデータを当てることとしている。 本ガイダンスでは、分類結果のばらつきを極力低減しつつ、分類作業を効率的に進める ための手順を以下に示す。

分類調査に際しては、まず、List 1 にある既入手済みあるいは閲覧可能なすべての評価文書にあたり、当該物質情報の有無を確認するとともに、選択した情報源に必要な情報がない、あるいは不足している場合は他の情報源を追加して調べる。

List 1 で必要な情報が確保できない場合は、List 2 にあたり、同様に調査を進める。

なお、下記に示したものは、総説的なものあるいはデータベースとして参考となる主な情報源の一例である。各々の List の中では、情報源の信頼性に大きな差はないが、それぞれの情報源の対象毒性指標や対象物質には違いのある場合がある。また、ここに挙げたもの以外の信頼性のある有用な情報源の利用を制限するものではない。

なお、以下に示す各種オンライン情報の中には、適宜改訂されるものがあり、最新の 情報入手が望ましい。

(1) 水生環境有害性試験データの情報源

List1:

国際機関、主要各国等で作成され、信頼性が確認されている情報源であり、原則として、一次資料に遡ることができ、必要な場合に情報の確からしさを確認できる評価文書や成書である。

ただし、個々の情報で、信頼性の確認が必要とされた情報は原文献にあたり、信頼性 に問題がある場合は分類の根拠に利用しない。

また、以下に紹介する情報は、例えば独立行政法人国立環境研究所の Webkis-plus 化学物質安全データベース(http://db-out3.nies.go.jp/kis-plus/) からも検索可能である。

	L/I/ HH	mr da do
1-1)	機関	環境省
	情報源名	化学物質の生態影響試験について
	URL	http://www.env.go.jp/chemi/sesaku/seitai.html
1-2)	機関	環境省環境リスク評価室
	情報源名	化学物質の環境リスク評価(第1巻~第6巻)
	URL	http://www.env.go.jp/chemi/report/h15-01/index.html
1-3)	機関	(独)製品評価技術基盤機構(NITE)
	情報源名	化学物質の初期リスク評価書
	URL	http://www.safe.nite.go.jp/risk/riskhykdl01.html
	備考	(財)化学物質評価研究機構(CERI)·(独)製品評価技術基盤機構(NITE)
		「化学物質有害性評価書」
		http://www.cerij.or.jp/db/sheet/yugai_indx.htm
		http://www.safe.nite.go.jp/japan/sougou/view/SystemTop_jp.faces?
		child_flg=child&service_id=APSelectingListsList_jp
1-4)	機関	OECD
	情報源名	SIDS レポート (SIDS)
	URL	http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html
	備考	SIAP(SIDS Initial Assessment Report)日本語版
		日本化学物質安全情報センター
		http://www.jetoc.or.jp/HP_SIDS/SIAPbase.htm
1-5)	機関	WHO/IPCS
	情報源名	環境保健クライテリア(EHC)(2008/9 現在、No.1~No.237)
	URL	http://www.who.int/ipcs/publications/ehc/en/index.html
		http://www.inchem.org/pages/ehc.html
	備考	EHC 日本語版:http://www.nihs.go.jp/hse/ehc/index.html

1-6)	機関	WHO/IPCS
	情報源名	国際簡潔評価文書(CICAD)
		(Concise International Chemical Assessment Documents)
	URL	http://www.who.int/ipcs/publications/cicad/pdf/en/
	備考	CICAD 日本語版 http://www.nihs.go.jp/hse/cicad/cicad.html
1-7)	機関	EU European Chemicals Bureau (ECB: 欧州化学品局)
	情報源名	EU リスク評価書(EU Risk Assessment Report: EU RAR) (2008/9 現在 1 巻~91 巻)
	URL	http://ecb.jrc.it/esis/esis/php?PGM=ora (Full list では CAS 番号順)
		http://ecb.jrc.it/home.php?CONTENU=/DOCUMENTS/Existing-C
		hemicals/RISK_ASSESSMENT/REPORT/
1-8)	機関	カナダ環境省/保健省
	情報源名	Assessment Report Environment Canada : Priority Substance
		Assessment Reports(優先物質評価報告書)
	URL	http://www.ec.gc.ca/substances/ese/eng/psap/final/main.cfm
		WEB では要約のみ。
1-9)	機関	Australia NICNAS
	情報源名	Priority Existing Chemical Assessment Reports
	URL	http://www.nicnas.gov.au/publications/car/pec/default.asp
1-10)	機関	European Center of Ecotoxicology and Toxicology of
		Chemicals(ECETOC)
	情報源名	Technical Report シリーズ・TR91(Aquatic Hazard Assessment II) (TR91)
	URL	http://staging.idweaver.com/ECETOC/Documents/TR%20091.pdf
	備考	http://www.ecetoc.org/publications
		WEBではリスト一覧のみ。
1-11)	機関	WHO/FAO
	情報源名	Pesticide Data Sheets (PDSs)
	URL	http://www.inchem.org/pages/pds.html
1-12)	機関	United States Environmental Protection Agency (EPA)
	情報源名	Pesticides "Reregistration Eligibility Decision"
1	URL	http://www.epa.gov/pesticides/reregistration/status.htm

 List 2:

 List1 に記載された評価文書以外の有用な情報源。

2-1)	機関	AQUIRE
	情報源名	Aquatic Toxicity Information Retrieval (AQUIRE)
	URL	http://cfpub.epa.gov/ecotox/
	備考	1981 年に米国 EPA が設立した化学物質・水生毒性データベースで、
		現在は Ecotox database に含まれている。
		日本語版:http://www.jaici.or.jp/stn/dbsummary/db.html
2-2)	機関	EU European Chemicals Bureau (ECB: 欧州化学品局)
	情報源名	International Uniform Chemical Information Database (IUCLID)
		IUCLID CD-ROM (Update 版 Edition 2 - 2000)
	URL	http://ecb.jrc.it/esis/esis.php?PGM=hpv&DEPUIS=autre
2-3)	機関	米国国立医学図書館(NLM)
	情報源名	Hazardous Substance Data Bank (HSDB)
	URL	http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
2-4)	機関	EU European Chemicals Bureau (ECB : 欧州化学品局)
	情報源名	The N-CLASS Database on Environmental Hazard Classification
		(N-Class)
	URL	http://www.kemi.se/nclass/
	備考	ECB と北欧 The Nordic Council of Ministers との共同開発データ
		ベースで、EU 危険物質リストの N(R50-53)の情報が得られる。
2-5)	機関	German Chemical Society-Advisory Committee on Existing
		Chemicals of Environmental Relevance
	情報源名	BUA Report (BUA)
	URL	http://www.hirzel.de/bua-report/download.html
	備考	公開サイトからは full report は入手できない。

List 3:

一次文献検索および参考データベースである。List1、2のデータがある場合に、必要に応じて参照する。

なお、既存の MSDS 等から各製品の有害性情報は入手可能であるが、GHS 分類への直接的利用は避ける。

3-1)文献データベース (一次文献情報の検索)

- Pub-Med/NLM(原文献調査) http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
- NLM TOXNET (TOXLINE (原文献調査) を含むオンライン検索) http://toxnet.nlm.nih.gov/index.html
- JICST 科学技術(医学)文献ファイル (JOIS オンライン検索) http://pr.jst.go.jp/db/db.html

3-2) 化学物質に関する総合情報データベース

- (独)製品評価技術基盤機構「化学物質総合情報提供システム」(CHRIP): http://www.safe.nite.go.jp/japan/db.html
- ドイツ労働安全研究所 (BIA)「GESTIS-database on hazardous substances」 (GESTIS): http://www.hvbg.de/e/bia/fac/stoffdb/index.html
- 環境省「化学物質ファクトシート」: http://www.env.go.jp/chemi/communication/factsheet.html
- (独)国立環境研究所「WebKis-Plus 化学物質データベース」(WebKis-Plus): http://w-chemdb.nies.go.jp/
- (独) 産業技術総合研究所「詳細リスク評価書」: http://unit.aist.go.jp/riss/crm/mainmenu/1.html
- (財)化学物質評価研究機構(CERI)「化学物質安全性(ハザード)データ集」: http://www.cerij.or.jp/db/sheet/sheet_indx.htm
- Hazardous Substance Fact Sheet (New Jersey Department of Health and Senior Services): http://web.doh.state.nj.us/rtkhsfs/indexfs.aspx
- 「Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens (4th edition,2002)」(Sittig)
- 米国国立労働安全衛生研究所(NIOSH)「RTECS [Registry of Toxic Effects of Chemical Substances] (化学物質毒性影響登録)」(RTECS): http://www.cdc.gov/niosh/npg/npgdrtec.html
- WHO/IPCS「ICSC カード (International Chemical Safety Cards)」(ICSC): http://www.ilo.org/public/english/protection/safework/cis/products/icsc/dtasht/index.htm (ICSC カード日本語版:http://www.nihs.go.jp/ICSC/)

3-3)EU の分類

- ・ EU CLP 規則の Annex VI Table 3-1 に基づく分類(以下、本ガイダンスで「EU CLP 分類」という。R-フレーズについては EU DSD 分類とする。)が、その根拠となる情報とともに入手できない場合は、「分類できない」とする。
- ・ EU CLP 分類及び EU DSD 分類が、その根拠となる情報とともに入手できる場合で、これらの分類と GHS 分類の分類基準が異なっている場合には、分類の根拠とした情報が科学的に妥当なものであれば、GHS 分類に使用することができる。
- ・ また、EU CLP 分類及び EU DSD 分類がその根拠となる情報とともに入手でき、 かつ、これらの分類と GHS 分類の基準が一致する場合には、これらの EU 分類に 従って GHS 分類を行うことができる。

なお、本ガイダンスでは、EU CLP 規則の AnnexVIに基づく分類を EU CLP 分類、R-フレーズを EU DSD 分類とする。特段の表記がなく EU 分類とある場合は、CLP 分類と DSD 分類の双方を指すこととする。

基本的には、情報源から得られる証拠の質、信頼性、一貫性などを基に、証拠の重み付けにより、必要に応じ、専門家判断を加えて分類する。

なお、OECD の化学物質情報ポータルサイト (http://webnet3.oecd.org/echemportal/) から複数のデータベース (CHRIP、EnviChem、ESIS、HPVIS、HSNO CCID、INCHEM、NICNAS PEC、OECD HPV、SIDS IUCLID、SIDS UNEP) の情報検索が可能である。

(2) 生物蓄積性、急速分解性データの情報源

<u>List 1 :</u>

国際機関、主要各国等で作成され、信頼性が確認されている情報源。これらの情報源からデータを得られない場合には、前述のList 1 の情報源からデータを入手する。

1-1)	情報源名	化審法データベース
	URL	http://www.safe.nite.go.jp/jcheck/
1-2)	情報源名	PHYSPROP Database (SRC,2005)
	URL	http://www.syrres.com/esc/physprop.htm

<u>List 2:</u>

List1 に挙げた評価文書以外の有用な情報源。

2-1)	情報源名	AQUIRE(Aquatic Toxicity Information Retrieval) (AQUIRE)
	URL	http://cfpub.epa.gov/ecotox/
	備考	1981 年に米国 EPA が設立した化学物質・水生毒性データベースで
		現在は、陸生毒性データベースと統合されて Ecotox データベースと
		なっている。
2-2)	機関	EU European Chemicals Bureau (ECB: 欧州化学品局)
	情報源名	International Uniform Chemical Information Database (IUCLID)
		IUCLID CD-ROM (Update 版 Edition 2 - 2000)
	URL	http://ecb.jrc.it/esis/esis.php?PGM=hpv&DEPUIS=autre
2-3)	機関	米国国立医学図書館(NLM)
	情報源名	Hazardous Substance Data Bank (HSDB)
	URL	http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
2-4)	情報源名	logKow 推算ソフト (KOWWIN、CLOGP)
	URL	http://www.syrres.com/esc/est_kowdemo.htm
		http://www.biobyte.com/bb/prod/clogp40.html
2-5)	情報源名	生分解性予測ソフト (BIOWIN)
	URL	http://www.syrres.com/esc/est_kowdemo.htm

4-2 水生環境有害性の分類

環境有害性に関する GHS 基準は、分類 JIS において、「水生環境有害性」のみが定められている。国連 GHS 改訂 3 版においては「水生環境有害性」及び「オゾン層への有害性」が定められ、各々4.1 章、4.2 章で述べられている。。「水生環境有害性」には、さらに国連 GHS 改訂 3 版附属書 9「水生環境有害性に関する手引き」、国連 GHS 改訂 3 版附属書 10「水性媒体中の金属および金属化合物の変化/溶解に関する手引き」がある。これらを参照して、GHS 分類を行う。

なお、「オゾン層への有害性」の分類は国連 GHS 改訂 3 版 4.2 章を参照して実施する。

(1) 定義

国連 GHS では、以下のとおり定義されており、本ガイダンスではこれを採用する。

【国連 GHS 改訂 3 版】(4.1.1.1)

急性水生毒性とは、物質への短期的な水生暴露において、生物に対して有害な、当該 物質の本質的な特性を意味する。

急性(短期間)有害性は、分類の目的では、化学品への短期の水生暴露の間にその急性毒性によって生物に引き起こされる化学品の有害性を意味する。

物質の利用性とは、物質が溶解性ないし解離性を有するようになる程度を意味する。 金属の利用性とは、金属化合物の金属イオン化した部分が同化合物の他の部分(分子) から解離する程度を意味する。

生物学的利用性とは、物質が生物に取り込まれ、生物内のある部位に分布する程度を意味する。これは物質の物理化学的特質、生物の体内組織および生理機能、ファーマコキネティクスならびに暴露の経路に依存する。単なる利用性は、生物学的利用性の必要条件とはならない。

生物蓄積性とは、あらゆる暴露経路(すなわち、空気、水、底質/土壌および食物)からの、生物体内への物質の取り込み、生物体内における物質の変化、および排泄からなる総体的な結果を意味する。

生物濃縮とは、水を媒体とする暴露による、生物体内への物質の取り込み・生物体内における物質の変化および排泄からなる総体的な結果を意味する。

慢性水生毒性とは、水生生物のライフサイクルに対応した水生暴露期間に、水生生物に悪影響を及ぼすような、物質の本質的な特性を意味する。

複合混合物、または多成分物質もしくは複合物質とは、それぞれ異なる溶解性および物理化学的性質を有する個々の物質の複合体からなる混合物を意味する。多くの場合、これらはある範囲の炭素鎖の長さ/置換基の度数を持つ一連の類似物質として特徴付けられる。

分解とは、有機物分子がより小さな分子に、さらに最終的には二酸化炭素、水および

塩類に分解することを意味する。

EC、とはx%の反応を示す濃度を言う。

長期間有害性は、分類の目的では、水生環境における化学品への長期間の暴露を受けた後にその慢性毒性によって引き起こされる化学品の有害性を意味する。

NOEC (無影響濃度) とは、統計的に有意な悪影響を示す最低の試験濃度直下の試験濃度をいう。NOEC ではコントロール群と比べて有意な悪影響は見られない。

(2) 分類基準

A)分類 JIS による分類基準

急性毒性

区分:急性1

96 時間 LC₅₀ (魚類) ≦1 mg/L,

又は、48 時間 EC_{50} (甲殻類) ≤ 1 mg/L 若しくは 72 又は 96 時間 ErC_{50} (藻類又は他の水生植物) ≤ 1 mg/L

区分:急性2

1 mg/L < 96 時間 LC₅₀ (魚類) ≦10 mg/L、

1~mg/L < 48 時間 EC_{50} (甲殻類) $\leq 10~\text{mg/L}$ 又は1~mg/L < 72、

又は、96 時間 ErC₅₀ (藻類又は他の水生植物) ≦10 mg/L

区分:急性3

10 mg/L <96 時間 LC₅₀ (魚類) ≦100 mg/L、

 $10 \text{ mg/L} < 48 時間 EC_{50}$ (甲殻類) $\leq 100 \text{ mg/L}$ 又は 10 mg/L < 72、

又は、96 時間 ErC₅₀ (藻類又は他の水生植物)≦100 mg/L

慢性毒性

区分:慢性1

96 時間 LC₅₀ (魚類) ≦1 mg/L,

48 時間 EC50 (甲殻類) ≦1 mg/L, 又は,

72 若しくは 96 時間 ErC_{50} (藻類又は他の水生植物) ≤ 1 mg/L であって,

急速分解性ではないか、又は $\log \text{Kow} \ge 4$ であること(実験的に求められた BCF < 500 でない場合に限る)。

区分:慢性2

1 mg/L < 96 時間 LC₅₀ (魚類) ≤ 10 mg/L、

1 mg/L <48 時間 EC50 (甲殻類) ≦10 mg/L、又は、

1~mg/L < 72~若しくは 96 時間 ErC_{50} (藻類又は他の水生植物) $\leq 10~\text{mg/L}$ であって、

急速分解性ではないか、又は $\log Kow \ge 4$ であること(実験的に求められた BCF <500 でない場合に限る)。ただし慢性毒性 NOEC>1 mg/L の場合を除く。

区分:慢性3

10 mg/L < 96 時間 LC₅₀ (魚類) ≦100 mg/L、

10 mg/L <48 時間 EC50 (甲殻類) ≦100 mg/L、又は、

10 mg/L < 72 若しくは 96 時間 ErC_{50} (藻類又は他の水生植物) $\leq 100 \text{ mg/L}$ であって、急速分解性ではないか、又は $\log \text{Kow} \geq 4$ であること (実験的に求められた BCF < 500 でない場合に限る)。ただし慢性毒性 NOEC > 1 mg/L の場合を除く。

区分:慢性4

水溶性が低く水中溶解度までの濃度で急性毒性が報告されていないものであって、急速分解性ではなく、生物蓄積性を示す $\log Kow \ge 4$ であるもの。他に科学的証拠が存在して分類が必要でないことが判明している場合は、この限りでない。そのような証拠とは、実験的に求められた BCF < 500 であること、慢性毒性 NOEC > 1 mg/L であること、又は環境中において急速分解性であることの証拠などである。

B) GHS における分類基準(参考情報)

国連 GHS 改訂 3 版 4.1.2 に記載された分類基準は以下のように要約される。

(a) 急性 (短期間)水生有害性

区分:急性1

96 時間 LC₅₀(魚類) ≦1mg/L、または

48 時間 EC₅₀ (甲殻類) ≦1mg/L、または

72 または 96 時間 ErC₅₀(藻類または他の水生植物) ≦1mg/L

区分:急性2

1mg/L <96 時間 LC₅₀ (魚類) ≦10mg/L、または

1mg/L <48 時間 EC₅₀ (甲殻類) ≤10mg/L、または

1 mg/L < 72 または 96 時間 ErC_{50} (藻類または他の水生植物) $\leq 10 mg/L$

区分:急性3

10mg/L <96 時間 LC₅₀ (魚類) ≦100mg/L、または

10mg/L <48 時間 EC₅₀ (甲殻類) ≦100mg/L、または

10mg/L <72 または 96 時間 ErC₅₀(藻類または他の水生植物)≦100mg/L

(b) 長期間水生有害性

(i)慢性毒性の十分なデータが得られる、急速分解性のない物質

区分:慢性1

慢性 NOEC または ECx (魚類) ≦0.1mg/L または

慢性 NOEC または EC_x (甲殻類) $\leq 0.1 mg/L$ または

慢性 NOEC または ECx (藻類または他の水生植物) ≦0.1mg/L

区分:慢性2

慢性 NOEC または ECx (魚類) ≦1mg/L または

慢性 NOEC または ECx (甲殻類) ≦1mg/L または

慢性 NOEC または ECx(藻類または他の水生植物)≦1mg/L

(ii)慢性毒性の十分なデータが得られる、急速分解性のある物質

区分:慢性1

慢性 NOEC または ECx (魚類) ≦0.01mg/L または

慢性 NOEC または EC_x (甲殻類) $\leq 0.01 mg/L$ または

慢性 NOEC または EC_x (藻類または他の水生植物) $\leq 0.01 mg/L$

区分:慢性2

慢性 NOEC または EC_x (魚類) $\leq 0.1 \text{mg/L}$ または

慢性 NOEC または ECx (甲殻類) ≦0.1mg/L または

慢性 NOEC または EC_x (藻類または他の水生植物) $\leq 0.1 mg/L$

区分:慢性3

慢性 NOEC または ECx (魚類) ≦1mg/L または

慢性 NOEC または EC_x (甲殻類) $\leq 1 mg/L$ または

慢性 NOEC または ECx (藻類または他の水生植物) ≦1mg/L

(iii)慢性毒性の十分なデータが得られない物質

区分:慢性1

96 時間 LC₅₀ (魚類) ≦1mg/L または

48 時間 EC₅₀ (甲殻類) ≦1mg/L または

72 または 96 時間 ErC₅₀(藻類または他の水生植物)≤1mg/L

であって急速分解性がないか、または実験的に求められた $BCF \ge 500$ (または データがないときは $logKow \ge 4$) であること

区分:慢性2

1mg/L <96 時間 LC₅₀ (魚類) ≦10mg/L または

1mg/L <48 時間 EC50 (甲殻類) ≦10mg/L または

1 mg/L < 72 または 96 時間 ErC_{50} (藻類または他の水生植物) $\leq 10 \text{mg/L}$

であって急速分解性がないか、または実験的に求められた $\mathrm{BCF} \! \geq \! 500$ (または データがないときは $\log \mathrm{Kow} \! \geq \! 4$) であること

区分:慢性3

10mg/L <96 時間 LC₅₀ (魚類) ≦100mg/L または

10mg/L <48 時間 EC50 (甲殻類) ≦100mg/L または

10 mg/L < 72 または 96 時間 ErC_{50} (藻類または他の水生植物) $\leq 100 mg/L$ であって急速分解性がないか、または実験的に求められた $BCF \geq 500$ (またはデータがないときは $logKow \geq 4$) であること

(c) 「セーフティネット」分類

区分:慢性4

水溶性が低く水中溶解度までの濃度で急性毒性がみられないものであって、急速分解性ではなく、生物蓄積性を示す $\log K_{\rm ow} \ge 4$ であるもの。他に科学的証拠が存在して分類が必要でないことが判明している場合はこの限りでない。そのような証拠とは、実験的に求められた BCF< 500 であること、慢性毒性 NOEC> 1 mg/l であること、あるいは環境中において急速分解性であることの証拠などである。

(3)情報源およびデータに関する事項

A) データの入手可能性

分類に用いる急性水生毒性、生物濃縮性(生物濃縮係数、オクタノール水分配係数)、急速分解性(生物的または非生物的)、慢性水生毒性のデータの情報源(4-1に示す情報源)のほとんどは、ウェブサイトから容易に入手できる。このほか、物質の水中での安定性や水溶解度などのデータも分類上利用するので、関連情報を幅広く収集することが重要である。

参考情報として、GHS 区分に類似した EU 分類による分類結果が入手可能であるが、慢性水生毒性の分類要件に相違があるとともに、根拠情報を入手することは困難であるため、そのまま GHS 分類に用いることはできない。

B)収集するデータおよび利用可能なデータの条件

- ①水生環境有害性情報;水中暴露による急性毒性値
 - 1) 収集するデータの条件

試験生物は魚類、甲殻類、藻類(または他の水生植物)とし、OECD テストガイドライン、ASTM などの標準試験法等で推奨する生物種および推奨生物種と同属の種とする。

暴露時間、エンドポイント(影響指標)は、次による。

- ◆魚 類:96 時間 LC₅₀ (致死)
- ◆甲殻類: 24 または 48 時間 EC50 (遊泳阻害)、LC50 (致死)
- ◆ミジンコ類:24 または 48 時間、EC₅₀ (遊泳阻害)、LC₅₀ (致死)
- ◆エビ類・ヨコエビ類・アミ類: 24、48 または 96 時間 EC₅₀ (遊泳阻害)、LC₅₀ (致死)

◆藻類(または他の水生植物): 藻類、シアノバクテリアでは 72 または 96 時間 ErC50(生長速度法: 試験期間の平均生長速度を 50%阻害する濃度)、他の高等 水生植物(例えばウキクサ、Lemna spp)では 7 日間または 14 日間 ErC50(生 長速度を 50%阻害する濃度)。なお、7 日未満のデータも入手できるが、試験期間が短い毒性値の多くは毒性を過小評価する傾向が強いので使用してはならない。

なお、毒性値でTLm (meadian Tolerance Limit) はLC₅₀と、IC₅₀(50%阻害濃度)はEC₅₀と同等に扱う。

また、GLP 準拠試験が不明もしくは該当しない場合、QSAR などの手法を用いて推算を行い、分類してもよい。QSAR については、以下の情報が参考となる。 (独)国立環境研究所環境リスク研究センター「生態毒性予測システム(KATE)」

2) 利用可能なデータの条件

原則として、GLP に準拠したデータを用いる。ただし GLP 準拠試験であるかが不明もしくは該当しない場合でも、詳しい試験情報(1次文献であることが望ましい)から専門家が信頼できると判断した場合には分類区分の判定に用いる。しかしながら、GLP 準拠試験であっても、専門家が判断してその物質の評価には科学的な観点から判断して適用試験手順が疑わしい場合は、分類の根拠として利用しない。特に、水生急性毒性値が水溶解度以上の場合には、原則として分類に利用しない。

なお難水溶性物質の有害性評価の考え方(水溶解度を超える毒性値の扱い)については、国連 GHS 改訂 3 版附属書 9 の試験困難物質に関わる記述を参照すること。また試験期間中に親物質のほとんどが分解し、残る分解産物に毒性が認められる場合、分解産物の毒性を親物質の毒性として扱う(分解産物の扱いは国連 GHS 改訂 3 版附属書 9 の A9.2.6.3 を参照のこと)。なお、そのような場合には特に分解産物に由来する有害性による分類である旨を付記しておくことが望ましい。

以下に個別分類群別に適用すべき標準的な試験法と試験条件を示す。

なお、下記において List1 のデータのうち、下記テストガイドライン等に準拠した試験結果である旨の記載がないものについては、生物種、暴露時間、エンドポイントがそれぞれテストガイドライン等に規定した生物種、暴露時間、エンドポイントに一致するものを採用する。

- ◆魚 類: 魚類を用いた試験は、OECD テストガイドライン 203 またはこれに相当する試験法による 96 時間 LC_{50} 値を用いる。
- ◆甲殻類:甲殻類を用いた試験は、OECD テストガイドライン 202 (ミジンコ 急性毒性試験) またはこれに相当する試験による 48 時間 EC50値を標準とす

る。48 時間 EC_{50} 値がない場合には、24 時間 EC_{50} 値(旧 OECD テストガイドライン 202 に準じたもの)を採用することができる。

なお、ミジンコ 24 時間未満齢の試験を除き、例えばアミやその他の生物種を用いた試験法 US EPA850.1035 (アミ急性毒性) あるいはこれに相当する試験による 96 時間 LC_{50} 値を用いてもよい。なお、OECD-TG (1984 または 2004) のデータが入手できない場合には、24 または 48 時間の LC_{50} (遊泳阻害ではなく致死影響の意味)を採用することができる。ただし、List2のデータについては、専門家判断を仰ぐ必要がある。

- ◆藻類・シアノバクテリア(藍藻類)および高等水生植物: OECD テストガイドライン 201(2006 年改訂)は藻類およびシアノバクテリア(らん藻類)の生長阻害試験である。藻類生長阻害試験の毒性値を算出する際の反応変数 (Response variable)として、生長速度(速度、rate 法)、生長曲線下面積(面積、area 法)、最終細胞数 (FCC 法)、収量 (yield 法)などが使用されてきた。 GHS 分類ではその中で、OECD テストガイドラインが科学的に妥当であると判断した 72 時間生長速度法を優先して用いることにする。入手したデータが速度法によるデータか、それ以外であるか明確でない場合には、利用はするが、暫定的とする(速度法データが得られた時点で見直す)。暴露時間が 96 時間以上のデータは使用しない。
- ◆他の水生植物: 高等植物のウキクサを用いた生長阻害試験 OECD テストガイドライン 221 (2004 年採択)、および US EPA850.4400 による急性 EC50 値を用いることができる。藻類と同様に速度法 ErC50が、その他の毒性値よりも優先する。速度法によるデータか面積法などのその他の算出法によるデータかが明確でない場合には、暫定的に採用する。また、暴露時間が7日間のデータは14日間のデータよりも優先し、暴露期間7日未満のデータは毒性を過小評価している可能性が大きいことから使用しない。

②慢性水生毒性試験データ

国連 GHS 改訂 3 版で慢性水生毒性区分は慢性水生毒性値を用いて区分することが合意された。ただしここでは、急性毒性区分を使う方法を示す。慢性水生毒性試験データは、慢性水生毒性分類を行う際に NOEC が 1 mg/L を超えている場合に区分外と判断する根拠に用いられる。例えば、メダカとミジンコの急性水生毒性値がどちらも急性区分 2 に分類され、急速分解性および生物蓄積性から慢性区分 2 に分類され得る場合、メダカとミジンコ両方の NOEC が 1 mg/L を超えていなければ慢性区分 2 から除外することはできない。

1) 収集するデータの条件

試験生物は魚類、甲殼類、藻類(または他の水生植物)とし、OECD テストガ

イドライン、ASTM 標準試験法等に規定される推奨生物種および推奨生物種と同属の生物種とする。

暴露時間、エンドポイント(影響指標)は、次による。

- ◆魚 類:初期生活段階試験においては 28 日間以上、NOEC (孵化成功率、成長 (体長および体重変化)、繁殖率、および生存率)
- ◆甲殻類:7日間以上、NOEC(最初の産卵までの期間、雌1匹あたりの出生個体数、成長および生存率)
- ◆藻類(または他の水生植物):
 - ・藻類:72 または96 時間、NOEC(生長阻害)
 - ・他の水生植物:長期慢性毒性試験(分類に利用できると公認された試験法) は現在のところ存在しない

2)利用可能なデータの条件

水生環境有害性データが水溶解度以上の場合には、原則として分類に適用しない。

加水分解性を有するなど不安定な物質(分解生成物の有害性の扱い)、あるいは 難水溶性物質についての考え方(水溶解度を超える毒性値の扱い)などについて は、国連 GHS 改訂 3 版附属書 9 の試験困難な物質に関わる記述を参照する必要が ある(例えば、試験期間中に被験物質のほとんどが加水分解するが、加水分解物 に水生環境有害性が認められる場合、加水分解物の毒性を被験物質(親物質)の 毒性として判断する。その他、分解生成物の扱いについての詳細は、国連 GHS 改 訂 3 版附属書 9 の A9.2.6.3 を参照のこと)。なお、この際、加水分解物に由来する 有害性による分類である旨を付記しておくことが望ましい。

原則として、GLP に準拠したデータを用いるが、明確な記載がない場合には、 試験条件などから判断して、専門家により一定の信頼性がおけると判断されたデータは採用する。判断に迷う場合には最終的には専門家判断にゆだねる。

個別の生物種については、下記を参照する。なお、下記において、List 1 のデータのうち、下記テストガイドライン等に準拠した試験結果である旨の明確な記載がないものについては、生物種、暴露時間、エンドポイントがそれぞれテストガイドライン等に規定した生物種、暴露時間、エンドポイントに一致するものを採用するものとする。

◆魚 類:

魚類を用いた慢性試験または長期試験は、OECD テストガイドライン 210(魚類初期生活段階毒性試験)、魚類ライフサイクル試験(US EPA 850.1500)またはこれらに相当する試験法(1世代試験もしくは2世代試験)とする。OECD テストガイドライン 210 は亜慢性試験であるが、試験結果は慢性毒性のよい指標とな

るので慢性水生毒性値として利用してよい。

暴露期間については、OECD テストガイドライン 210 の付表に種別に規定されている(例えばメダカの場合、卵から孵化後 30 日まで(最短 28 日))ものの、魚類ライフサイクル試験(US EPA850.1500)については、特に定まった期間はない。したがって、信頼性の確認が必要とされたデータについては、OECD テストガイドライン 210、魚類ライフサイクル試験またはこれらに相当する試験法を用いたことが明記されていれば、暴露期間は適切に設定されていると判断するものとする。

エンドポイントは、孵化成功率、成長(体長および体重変化)、産卵成功率および生存率である。

◆甲殼類:

甲殻類を用いた慢性試験は、OECD テストガイドライン 211(ミジンコ生殖)または US EPA OPPTS 850.1035 (アミ慢性毒性) またはこれに相当する試験の結果 (Daphnia 属では 21 日間 NOEC 値、Ceriodaphnia 属では 7 日間以上の NOEC 値) とする。

エンドポイントは、最初の産卵までの期間、雌 1 匹あたりの出生個体数、成長および生存率である。

◆藻類(または他の水生植物):

・藻類: OECD テストガイドライン 201(藻類生長阻害試験、72 または 96 時間)は長期試験ではないため、原則として、その NOEC 値は慢性水生分類の除外根拠としては利用できない。ただし、急性水生毒性の分類が単一の藻類(または他の水生植物)の試験結果によって行われており、他の藻類での NOEC 値が 1 mg/L を超える場合に限り、除外根拠として利用できる。

エンドポイントは、原則として生長速度法による生長阻害 (NOEC) を用いる。 生長速度法かその他の手法か明確でない場合は、暫定的な措置としてその NOEC 値を用いてよい。

・他の水生植物:長期慢性水生毒性試験法として合意された試験法はまだないため、List2とし、慢性水生毒性分類から除外するための根拠とするには専門家の判断が必要である。

③生物蓄積性、急速分解性データ

1)利用可能なデータの条件

生物蓄積性 (BCF、logKow)、急速分解性 (生分解性、加水分解性など) のデータは、化審法に規定する試験法、OECD テストガイドライン、ASTM 標準試験法等に準拠し信頼のおけるものとする。原則として、GLP に準拠したデータを

用いるが、明確な記載がない場合には、試験条件などから判断して、専門家により一定の信頼性がおけると判断されたデータは採用する。

ア) 生物蓄積性データ

生物蓄積性データは、既存化学物質の微生物等による分解性および魚介類の体内における濃縮性点検データなどの魚類の BCF の実測値がある場合には、それを優先するが、低濃縮性等の判定結果は直接的に利用することはできない。 BCF の実測値が得られない場合は、log Kow の実測値を指標とする。log Kow の実測値が入手できない場合や実測値に信頼性がないと判断される場合、QSAR などの検証された手法を用いて log Kow の推算を行ってよい。

次に掲げる種類の試験およびそれに相当する試験の結果は、受け入れることができる。

OECD テストガイドライン 305 および旧 305A~D の BCF、OECD テストガイドライン 107 および 117 の Kow なお、上記の試験結果がない場合、OECD テストガイドライン 123 (Draft) およびそれに相当する試験の結果 (Kow) は、専門家の判断を仰ぎつつ、採用することもできる。

イ) 急速分解性データ

生分解性と非生物的な分解(例えば、加水分解)を考慮する必要がある。現実的な水環境中で 28 日間における分解度が 70%を超える場合、あるいは酸素消費量または二酸化炭素生成量による試験結果が 60%を超えるか溶存有機炭素による試験結果が 70%を超える場合、急速分解性であるとする。化審法既存化学物質点検によって酸素消費量または二酸化炭素生成量による試験結果が 60%を超えるか溶存有機炭素による試験結果が 70%を超え良分解性と判定された物質は GHS 分類でも急速分解性としてよいが、難分解性の判定結果を GHS 分類に適用する場合には、他の分解性データも考慮する必要がある。これらの試験結果が得られない場合には、生分解性予測ソフトによる予測結果を利用できる。予測結果は急速分解性でないとする判定にのみ利用できる。易加水分解性は、加水分解物が水生環境有害性の区分に当たらない場合に考慮することができる。

急速分解性に関するデータが入手できない場合には、急速分解性でないと取り 扱う。

OECD テストガイドライン $301A\sim F$ (易分解性試験) およびそれに相当する試験の結果は、受け入れることができる。

なお、上記の試験結果がない場合、次に掲げる種類の試験およびそれに相当する試験の結果は、専門家の判断を仰ぎつつ、採用することもできる。

OECD テストガイドライン 302A、302B、302C、303A、303B、304A、306、307、308 および 309

OECD テストガイドライン 310 および 311 (いずれも Draft)

- C) 複数データが存在する場合のデータ採用優先順位
 - ①List 1 のデータがある場合
 - 1)国際的に認められているテストガイドライン (OECD 等) に従って GLP にて 実施されているデータを優先する。
 - 2) 1)に該当するデータがない場合は、GLP 準拠は不明だが、国際的に認められているテストガイドライン (OECD 等) に従って実施されているデータを優先する。
 - 3) 1)および 2) で示したようなデータの信頼性によって分類することができない場合は、できるだけ最新のデータを優先する。
 - 4) 同じ信頼度で複数のデータがあった場合は、原則として安全サイドのデータ (水生環境有害性試験データについては最も低い濃度、生物蓄積性データに ついては最も高い値、急速分解性データについては最も低い値)を採用する。 ただし、その際、同一生物種の同一ライフステージ、条件、試験期間につい て 4 個以上のデータが入手されたときは、幾何平均値をその生物種を代表す るデータとして用いる。
 - 5)なお、1つだけがその他のデータと大きく異なる結果であるような場合には原 典にあたって、データの信頼性について確認することが望ましい。また、確 認する時点で該当する情報源が最新のものであることを確認する。

②List 1 のデータがない場合

- 1)その他の情報源 (例えば List2 に示した情報源) から収集したデータの中から、信頼性があると判断できるデータ (GLP に準拠したデータであること、あるいは判断の根拠となるデータが明記されて評価されていること等) を採用する。この際、判断に迷う場合には専門家の判断を仰ぐ。
- 2)また、その際、評価文書・データベースについてはできるだけ最新のものであること、あるいは引用文献が信頼性のあるものであること等を考慮する。
- 3)専門家により一定の信頼性がおけると判断されたデータの中から最終的に安全サイドのデータ(水生環境有害性試験データについては最も低い濃度、生物濃縮性データについては最も高い値)を採用する。ただし、その際、同一生物種の同一ライフステージ、条件、試験期間について 4 個以上のデータが入手されたときは、幾何平均値をその生物種を代表するデータとして用いる。

D) 従来の分類システムとの比較

EU DSD 分類で定められた定義は GHS 区分とおおむね一致している。

R50: Very toxic to aquatic organisms. (水生生物に猛毒)

R51: Toxic to aquatic organisms. (水生生物に有毒)

R52: Harmful to aquatic organisms. (水生生物に有害)

R53: May cause long-term adverse effects in the aquatic environment. (水生環 境中で長期の悪影響を及ぼすおそれがある)

以上4件のR-Phrase¹⁹が関係し、下記のように区分を推定できる。

区分 急性 1 = EU·R50 (および R50/53)

区分 急性 2 = EU·R51 (および R51/53)

区分 急性 3 = EU·R52 (および R52/53)

区分 慢性 1 ≒EU·R50/53

区分 慢性 2 ≒EU·R51/53

区分 慢性 3 ≒EU·R52/53

(注)「4.3水生環境有害性の分類 (2)分類基準 B)GHS における分類基準 (参考情報)」に記載したように、特に慢性毒性について、国連 GHS 改訂 3 版 4.1.2 に記載された分類基準が国連 GHS 改定 3 版における分類基準と異なることに注意が必要である。

EU CLP 分類では、以下のように一致する。

区分 急性 1 = EU CLP·H400

区分 慢性 1 = EU CLP·H410

区分 慢性 2 = EU CLP·H411

区分 慢性 3 = EU CLP·H412

区分 慢性 4 = EU CLP·H413

R50、51、52 の定義はそれぞれ GHS の急性 1、2、3 に対応するが、甲殻類がミジンコ類に限られていること、藻類の試験時間が 72 時間のみに決められていることが GHS と異なる。また R53 の要件は、 \log Kow \ge 3.0 または BCF>100 となっており、 GHS よりも若干広く定義されている上、根拠となる試験データの公表が不十分であること、構造活性相関ないし類似物質のデータから判定したと思われる場合も見受けられることなどから、生分解性、生物濃縮性データの確認が必要である。また、R-Phrase は、分類の参考にとじめる。

なお、EU DSD 分類で水生毒性区分されているのは、ベースセット試験がなされた ELINCS 物質 (届出企業だけが製造・輸入できる) に多く、一般に使用される EINECS 物質の情報は、農薬等を除いては、限られている。

日本では化審法の第一種・第二種特定化学物質、第一種・第三種監視化学物質、あるいは農薬取締法による農薬登録データの魚類急性毒性分類(A~D類)がある。これ

¹⁹ R-Phrase については付録を参照のこと。

²⁰ R-Phrase については付録を参照のこと。

らの定義と GHS 分類の対応は明確にされていないため今のところ利用できない。

付録:ガイダンスに記載している EU R-Phrase

R10 引火性がある

R11 強い引火性がある

R12 極めて強い引火性がある

R15 水と接触すると極めて強い引火性ガスを放出する

R20 吸引すると有害

R21 皮膚に接触すると有害

R22 飲み下すと有害

R23 吸引すると毒性がある

R24 皮膚に接触すると毒性がある

R25 飲み下すと毒性がある

R26 吸引すると強い毒性がある

R27 皮膚に接触すると強い毒性がある

R28 飲み下すと強い毒性がある

R34 火傷を引き起こす

R35 重度の火傷を引き起こす

R36 眼に刺激性がある

R36/37 眼及び呼吸器系に刺激性がある

R36/38 眼及び皮膚に刺激性がある

R36/37/38 眼、呼吸器系、皮膚に刺激性がある

R37 呼吸器系に刺激性がある

R37/38 呼吸器系及び皮膚に刺激性がある

R38 皮膚に刺激性がある

R39 非常に重度の不可逆的影響の危険性がある

R39/23 (毒性がある)吸引すると非常に重度の不可逆的影響の危険性がある

R39/24 (毒性がある)皮膚に接触すると非常に重度の不可逆的影響の危険性がある

R39/25 (毒性がある)飲み下すと非常に重度の不可逆的影響の危険性がある

R39/23/24 (毒性がある)吸引及び皮膚に接触すると非常に重度の不可逆的影響の危

険性がある

R39/23/25 (毒性がある)吸引及び飲み下すと非常に重度の不可逆的影響の危険性が

ある

R39/24/25 (毒性がある)皮膚に接触及び飲み下すと非常に重度の不可逆的影響の危

険性がある

R39/23/24/25 (毒性がある)吸引、皮膚に接触、飲み下すと非常に重度の不可逆的影響

の危険性がある

R39/26 (非常に毒性がある)吸引すると非常に重度の不可逆的影響の危険性がある

R39/27 (非常に毒性がある)皮膚に接触すると非常に重度の不可逆的影響の危険

性がある

R39/28 (非常に毒性がある)飲み下すと非常に重度の不可逆的影響の危険性がある

R40 発がん性の影響について限定的知見

R41 眼に重度な損傷のリスク

R42 吸入により感作性を引き起こすことがある

R42/43 吸入及び皮膚に接触すると感作性を引き起こすことがある

R43 皮膚に接触すると感作性を引き起こすことがある

R45 癌を引き起こすことがある

R46 遺伝性の遺伝子損傷を引き起こすことある

R48 長期ばく露により健康に重度の損傷の危険性がある

R48/20 (有害) 吸入による長期ばく露により健康に重度の損傷の危険性がある

R48/21 (有害) 皮膚への接触による長期ばく露により健康に重度の損傷の危険性

がある

R48/22 (有害) 飲み下すことによる長期ばく露により健康に重度の損傷の危険性

がある

R48/20/21 (有害) 吸入及び皮膚への接触による長期ばく露により健康に重度の損

傷の危険性がある

R48/20/22 (有害) 吸入及び飲み下すことによる長期ばく露により健康に重度の損

傷の危険性がある

R48/21/22 (有害) 皮膚への接触及び飲み下すことによる長期ばく露により健康に

重度の損傷の危険性がある

R48/20/21/22 (有害) 吸入、皮膚への接触、飲み下すことによる長期ばく露により健

康に重度の損傷の危険性がある

R48/23 (毒性がある)吸入による長期ばく露により健康に重度の損傷の危険性が

ある

R48/24 (毒性がある) 皮膚への接触による長期ばく露により健康に重度の損傷

の危険性がある

R48/25 (毒性がある)飲み下すことによる長期ばく露により健康に重度の損傷の

危険性がある

R48/23/24 (毒性がある) 吸入及び皮膚への接触による長期ばく露により健康に重

度の損傷の危険性がある

R48/23/25 (毒性がある)吸入及び飲み下すことによる長期ばく露により健康に重度

の損傷の危険性がある

R48/24/25 (毒性がある)皮膚への接触及び飲み下すことによる長期ばく露により健

康に重度の損傷の危険性がある

R49 吸引により癌を引き起こすことがある

R50 水生生物に強い毒性がある

R50/53 水生生物に強い毒性があり、水生環境中で長期悪影響を引き起こすことが

ある

R51 水生生物に毒性がある

R51/53 水生生物に毒性があり、水生環境中で長期悪影響を引き起こすことがある

R52 水生生物に有害である

R52/53 水生生物に有害であり、水生環境中で長期悪影響を引き起こすことがある

R53 水生環境中で長期悪影響を引き起こすことがある

R60 生殖機能を害することがある

R61 胎児に危害を引き起こすことがある

R62 生殖機能を害するリスクの可能性がある

R63 胎児への危害のリスクの可能性がある

R64 乳幼児に危害を引き起こすことがある

R65 (有害) 飲み下すと肺損傷を引き起こすことがある

R67 気体は眠気や目まいを引き起こすことがある

R68 不可逆的影響のリスクの可能性がある

注:三菱総合研究所において英訳。その際、国連 GHS を参照して翻訳を行なった。