化審法における優先評価化学物質に関する リスク評価の技術ガイダンス

X. 性状等に応じた暴露評価における扱い

Ver.1.0

令和2年5月

厚生労働省・経済産業省・環境省

X. 性状等に応じた暴露評価における扱い Ver.1.0 令和2年5月

改訂履歴

Version	日付	改訂内容
Ver .1.0	令和2年5月	初版

目 次

X. 性状等	等に応じた暴露評価における扱い	1
X.1	はじめに X.1.1 本章の位置づけ	1
X.2	解離性物質の評価	2
	X.2.1 はじめに	2
	X.2.2 解離性物質の評価の準備	7
	X.2.3 解離性物質の排出量推計	
	X.2.4 解離性物質の暴露評価	
X.3	付属資料	
	X.3.1 解離性物質の評価	
X.4	出典	

1 X. 性状等に応じた暴露評価における扱い

2 X.1 はじめに

3 X.1.1 本章の位置づけ

4 本章では、優先評価化学物質のリスク評価における暴露評価のうち、性状等に応じた暴

5 露評価手法が必要になるケースについて記載する。例えば、解離性物質の場合である。

6 図表 X-1 に、リスク評価の手順フロー全体における本章で扱う部分を示す。リスク評価

7 の準備は、リスク評価段階に応じて実施する。評価Ⅱ以降のリスク評価の準備では、解離

8 性物質等に特有な物理化学的性状等データを収集する。評価II以降の暴露評価では、解離

9 性物質等に特有な環境中動態推計を実施する。

10 本章では、性状等に応じた暴露評価手法が必要になるケースごとに、物理化学的性状等

11 データに関する留意点及び暴露評価で用いる数理モデルの一部の数式やパラメータの変更

12 点について説明する。今後、新たに性状等に応じた暴露評価を行う必要が生じた場合は、

13 随時その評価手法を検討し、このX章に追記していくこととする。

図表 X-1 リスク評価の手順フローにおいて本章で扱う部分

 $\frac{2}{3}$

1

4 X.2 解離性物質の評価

5 X.2.1 はじめに

6 (1) 他の章との関係

7 解離性物質の暴露評価では、基本的には I~IX 章に示した共通の評価手法を用いる。本
8 節では、解離性物質に特有の評価の準備方法と暴露評価手法について、評価 II 以降で必要
9 となる部分を記載する。図表 X・2 に、共通の評価手法が示されている他の章とそれに対応
10 する本章の該当箇所との対応表を示す。また、本文中でも適宜、該当する章を引用するの
11 で詳細はそちらを参照されたい。

12 なお、「VIII 章 環境モニタリング情報を用いた暴露評価」については、解離性物質につ13 いても同章に記載されている方法で暴露を評価する。

1

$\mathbf{2}$

図表 X-2 他の章と本章における該当箇所の対応表

他の章	本章の該当箇	箇所とその概要
I 章 評価の準備	 本編:X.2.2 解離性物質の評価 の準備 	評価Ⅱにおける、物理化学的性状及 び生物蓄積性データの精査とキース タディの見直しにあたり、考慮すべ き解離性物質特有の留意点や推計手 法について解説する。
IV 章 排出量推計	 本編:X.2.3 解離性物質の排出 量推計 	評価 II における、解離性物質の環境 中への排出量推計手法について解説 する。
V 章 暴露評価~ 排出源ごとの暴露 シナリオ~	 本編:X.2.4 解離性物質の暴露 評価 付属資料(数式・パラメー タ):X.3.1.2 排出源ごとの暴 露シナリオにおける解離性 モデルの数式とパラメータ 付属資料(導入の経緯): X.3.1.3 排出源ごとの暴露シ ナリオにおける解離性モデ ル設定の経緯等 	評価 II 以降において、解離性物質特 有の動態を考慮できるように、排出 源ごとの暴露シナリオの評価用数理 モデルやパラメータの一部を解離性 物質用に変更したモデルについて解 説する。
VI 章 暴露評価~ 用途等に応じた暴 露シナリオ~	 本編:X.2.4.2 用途等に応じた 暴露シナリオにおける解離性 物質の推計 	評価 Ⅱ 以降において、解離性物質特 有の動態を考慮できるように、用途 等に応じた暴露シナリオの評価用数 理モデルやパラメータの一部を解離 性物質用に変更したモデルについて 解説する。
VII章 暴露評価~ 様々な排出源の影 響を含めた暴露シ ナリオ及び残留性 の評価~	 本編:X.2.4.3 様々な排出源の 影響を含めた暴露シナリオ及 び残留性の評価における解離 性物質の推計 	評価Ⅱ以降において、様々な排出源の影響を含めた暴露シナリオ及び残留性の評価では、解離性物質特有の動態を考慮する。

3

4 (2) 解離性物質とは

本章で取り扱う解離性物質は、Brønsted-Lowryの酸塩基理論に従って、環境中の水 1中
 で一塩基酸又は一酸塩基となりうる物質である。Brønsted-Lowryの酸塩基の定義によれば、
 酸はプロトン供与体であり、塩基はプロトン受容体である 2。例えば、水中では、中性種 3の
 酢酸は水分子にプロトンを供与し、自身はアニオンとなる一塩基酸である。

9

10 $CH_3COOH + H_2O \xleftarrow{Ka} CH_3COO^- + H_3O^+$

酸 塩基 塩基 酸

¹本章では、河川水、海水、土壌や底質の間隙水、大気中に存在する水を環境中の水とする。

² 日本化学会(2004)化学便覧 改訂 5 版, 基礎編. 丸善.

³本章では、電気的に中性な非解離種に加えて、一つの分子内に正電荷と負電荷を持っていても、 全電荷数が0の双性イオン種も中性種とする。

1 この解離平衡における酸解離定数 (Ka)は次式 1で表される 2。 $\mathbf{2}$ $Ka = Ka'[H_2O] = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$ 3 4 $\mathbf{5}$ 一方、典型的な塩基であるアンモニアは、水中で以下のように解離する。中性のアンモ ニアはプロトンを受容し、自身はカチオンとなる一酸塩基である。 6 7 $NH_3 + H_2O \longleftrightarrow NH_4^+ + OH^-$ 8 塩基 塩基 酸 酸 9 この場合、アンモニウムイオン (NH4+)が、定義により酸となり、アンモニウムイオンの 10 11 酸解離定数 (Ka)³は、次のようになる。 12 $Ka = Ka' \frac{[H_3O^+][OH^-]}{[H_2O]} = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$ 1314上記の酸解離定数(Ka)は通常、逆数の常用対数をとって、pKaの形で用いられる。 1516 $pKa = pH - \log\left[\frac{[CH_{3}COO^{-}]}{[CH_{3}COOH]}\right]$ $pKa = pH - \log\left[\frac{[NH_{3}]}{[NH_{4}^{+}]}\right]$ 17式 X-1 181920ここで、pHは、水素イオン濃度指数であり、以下の式で表される。 21 $pH = -log[H_3O^+]$ 222324式 X-1 から明らかなように、pH = pKaの時に、非解離種とイオン種の濃度が等しくな る。そして、酢酸等の酸では、pH が高くなるにつれてイオン種が増加し、逆に、アンモニ 25ア等の塩基では、pH が高くなるにつれて非解離種が増加する。 2627

¹ 水分子は圧倒的な量が存在しており、一定とみなせるのでこれを左辺に移動する。

²本章では、理想希薄溶液であることを前提に記載しており、[CH₃COO]等はモル濃度を表す。 ³[H₃O+][OH]、水素イオン濃度と水酸イオン濃度の積(水のイオン積)は、温度一定であれば定

数である (10^{-k}≒10⁻¹⁴ 正確には、*k*=13.995(25℃)、14.000(24℃)、14.9435(0℃)、13.5348 (40℃)である)。

なお、Brønsted-Lowryの酸塩基の定義に従えば、酢酸ナトリウムのような弱酸と強塩基
 の塩も水中では塩基となる¹。酢酸ナトリウムを水に溶解すると水中で解離して、酢酸アニ
 オンはプロトンを受容し、酢酸となり、プロトン濃度が下がるため、水溶液は塩基性を示
 す。

$\mathbf{5}$

$CH_3COONa \rightarrow CH3COO^- + Na^+$

 $6 \qquad CH_{3}COO^{-} + H_{2}O \xleftarrow{Ka} CH_{3}COOH + OH^{-}$

	酸	酸	塩基
--	---	---	----

 $\mathbf{7}$

8 逆に、塩化アンモニウムのような強酸と弱塩基の塩では、アンモニアが生成し、プロト
9 ン濃度が増加するため、水溶液は酸性を示す(姫野と市村, 2009²)。

10

11 本章で取り扱う解離性物質は、上記のように、環境中の水中で一塩基酸又は一酸塩基と
12 なりうる物質であるが、複数の酸解離基を分子内に有する多塩基酸や複数の塩基解離基を
13 分子内に有する多酸塩基であっても、環境中の水中では1段しか解離せず、一塩基酸又は
14 一酸塩基とみなしうる物質も本章での取り扱いの対象となる。

15

16 解離性物質には、上記の物質に加えて、酸解離基と塩基解離基の両方を一分子内に含む

17 双性イオン物質と両性物質がある(図表 X-3)。

¹ 酢酸ナトリウムを塩基とは言わない。本文では「水溶液中では」という限定付で使用している。

² 姫野貞之, 市村彰男 (2009) 溶液内イオン平衡に基づく分析化学 第2版, 化学同人.

 $\begin{array}{c}
 1 \\
 2 \\
 3
 \end{array}$

3 4

 $\mathbf{5}$

図表 X-3 双性イオン物質と両性物質の例

グリシンの pKa 値は HSDB、スルファメタジンの pKa 値は PubChem からの情報である。

双性イオン物質は分子内イオンとも呼ばれ、中性種は分子内の酸解離基と塩基解離基の 6 両方が解離しているが、電気的に中性となっている。本章では、双性イオン物質の酸官能 78 基又は塩基官能基のいずれかのみが解離した状態のものをイオン種とする。酸解離基の酸 9 解離定数 (pKaacid)、塩基解離基の酸解離定数 (pKabase)及び水溶液の pH の間に、pKaacid < $pH < pKa_{base}$ の関係が成り立つ解離性物質が双性イオン物質となる¹。図表 X-3 のグリシ 10 ン (pKaacid = 2.34、pKabase = 9.60)の場合、pH7 では、水酸基 (-OH)は解離しアニオン種 (A) 11 に、アミノ基 (-NH2)はプロトンが付加しカチオン種 (C)となっており、双性イオン型 (N2) 12の中性種として存在する。双性イオン物質は、中性種が酸解離基と塩基解離基の両方が解 13 離した状態にあるため、本章での取り扱いの対象外である。 14

15 両性物質は、その中性種において両官能基が非解離で、低pHでは正荷電を、高pHでは負

16 荷電を持つ物質とする²。pKa_{acid}、pKa_{base}及び水溶液のpHの間に、pKa_{base} < pH < pKa_{acid}の

17 関係が成り立つ物質が両性物質となる²。図表 X-3のスルファメタジン (pKaacid = 7.65、

¹ Franco, A. and Trapp, S. (2008) Estimation of the Soil-Water Partition Coefficient Normalized to Organic Carbon for Ionizable Organic Chemicals. Environ. Chem., 27(10), 1995–2004.

²「両性物質 (amphoteric substances)」、「双性イオン (zwitterions)」、「双極イオン (dipolar ions)」の定義はあいまいで、人によりさまざまである (IUPAC Gold, zwitterions; 標準化学 用語辞典 第2版, 双極イオン、双性イオン、両性イオン)。本章では、双性イオン物質と両性 物質を、Franco and Trapp (2008)と同様の定義で解釈する。

pKabase = 2.65)の場合、pH7では、NH基は解離せず、NH2基にプロトンも付加せず、非解
 離型(N1)の中性種として存在し、両性イオン物質となる。本章では、非解離の中性種が存
 在し、環境中の水中では1段しか解離せず、一塩基酸又は一酸塩基とみなしうる両性物質も
 取り扱いの対象である。

 $\mathbf{5}$

6 環境中の水の pH は環境媒体ごとに変化する 1ため、解離性物質の非解離種とイオン種 (カチオン種とアニオン種をまとめてイオン種とする)の存在率(化学種分率)は、環境媒体ご 7とに異なる比率で存在する²。酸解離定数 (pKa)と物質を取り囲む水の pH から、その水中 8 での、化学物質の全量に対する非解離種分率(4,)、アニオン種分率(4,)及びカチオン種 9 10 分率 (φ∂が、Henderson-Hasselbalch 式により算出できる (詳細は X.3.1.2 (2) 化学種分 率の計算を参照)。ある環境媒体中の解離性物質のモル濃度 [mol/m³]を Cとし、非解離種分 11 率を ø n、アニオン種分率を ø a、カチオン種分率 ø c をすると、非解離種及び各イオン種の 12 濃度 [mol/m³]は、以下の式で表される。 13

- 15 $C_{n} = \phi_{n} \times C$ $C_{i} = \phi_{i} \times C \quad (i = a) \downarrow t c)$ 16 $C = \sum_{k} C_{k} \quad (k = n, \ a) \cup t c)$ 式 X-3
- 17

14

非解離種とイオン種では水に対する溶解度、1-オクタノールと水との間の分配係数等の物 18 理化学的性状等の値が異なるため、環境中の動態も異なる。例えば、イオン種は一般に、 19ガス態としては存在できないため、従来の暴露評価モデル (V 章の排出源ごとの暴露シナリ 20オで用いる数理モデル)で、解離性物質を非解離性の物質として評価すると大気中及び土壌 2122空気中のガス態濃度を過大に推計する可能性がある。また、非解離種は土壌や底質中の有 機物や生体内の脂質に対する親和性が高いが、イオン種は水と水素結合しやすく、水に溶 23解しやすくなる一方、正電荷と負電荷を持つ土壌鉱物等との親和性も高くなる傾向にある。 24このような傾向は、分子種によって顕著になる場合とそうでない場合がある。さらに、ア 25ニオンとカチオンでは、生体内の電場でその振る舞いは逆転する。 26

27 次項以降に、上記のような特徴を有する解離性物質の定量的な暴露評価を進めるにあた28 って必要となる事項について、順次解説する。

29

30 X.2.2 解離性物質の評価の準備

31 本項では、「I. 評価の準備」の「I.4 評価Ⅱのための準備」、「I.4.4 物理化学的性状及び
 32 生物蓄積性データの精査と選定」、「I.4.4.3 精査を踏まえたキースタディの見直し」におけ

¹ 環境中の水の pH については、X.3.1.2 (1)③ii)を参照されたい。水の pH として、3~8.2 の値 が媒体ごとに設定されている。

² 化学種分率の計算については、X.3.1.2 (2)を参照されたい。

る項目別の精査について、精査とキースタディの見直しにあたり、考慮すべき解離性物質
 特有の留意点や推計方法について述べる。

3 なお、第1章の他の項目については、解離性物質についても同章に記載されている方法で4 評価する。

 $\mathbf{5}$

6 X.2.2.1 物理化学的性状・生物蓄積性及び分解性データの収集及び精査

7 解離性物質は、水中で解離して、非解離種とイオン種が生じるため、解離性物質の水に
8 対する溶解度、1-オクタノールと水との間の分配係数、有機炭素補正土壌吸着係数、ヘンリ
9 一係数、酸解離定数及び生物濃縮係数は、水のpHにより値が変化する。これらの解離性物
10 質特有のデータに関する留意点などを以下に示す。

11

12 (1) 水に対する溶解度

13 非解離種とイオン種で水に対する溶解度は異なり、解離性物質の水に対する溶解度は一
 14 般にpHにより異なる。イオン種は、非解離種よりも数桁、水に対する溶解度が高い。

本章で扱う解離性モデルでは、環境媒体中 pH で補正した水に対する溶解度を用いる。各
 媒体を構成する要素 (*xe*)¹ごとの見かけの水に対する溶解度 (*WSxe*)は、非解離種の水に対
 する溶解度 (*WSn*)と非解離種の *xew*ごとの非解離種分率 (φ *xew,n*)から式 X-4 で求めること
 ができる (Schwarzenbach et al., 2003²)。

19

20

21

$$WS_{xe} = \frac{WS_{n,mol}}{\phi_{xew,n}}$$

式 X-4

記号	説明	単位	値	出典・参照先
WS_{xe}	<i>xe</i> ごとの見かけの水に対 する溶解度 [※]	mol/L		
WS _{n,mol}	非解離種の水に対する溶 解度	mol/L		
ф xew.n	xew ごとの非解離種分率 [※]	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。

- *WSxe*は、環境媒体の構成要素の水 (*xew*)pH における化学種分率 (φ *xew*)を用いて計算する。φ *xew*については、X.3.1.2 (2)を参照されたい。本式で対象にする環境媒体の構成要素の水 (*xew*)は、土壌間隙水 (*sw*)、淡水域の水 (*wfw*)、海水域の水 (*wsw*)である。
- $\frac{24}{25}$

 ¹ 本章では、環境媒体 (*xm*)として、大気、土壌、水域、底質を考慮する。また、植物体内の媒体 (*xm*)として、細胞質、木部、液胞を、牛体内の媒体(*xm*)として、牛の小腸を考慮する。環境媒体を構成する要素 (*xe*) としては水 (*xew*)と粒子及びその近傍水 (*xep*) に分けて考える。なお、*xm* と *xe* の総称として *x* を用いることがある。詳細については、付属資料 X.3.1.2 (1)
 ②の図表 X-12 (36 ページ)を参照されたい。

² Schwarzenbach, R. P., Gschwend, P. M. and Imboden, D. M. (2003) Environmental Organic Chemistry, 2nd ed. John Wiley and Sons. New York.

実測値を収集する場合には、測定時のpHを把握し、望ましくは環境中pHの範囲内で測
 定されているデータを選択し、式 X-4により適切なpHにおける WSに補正する。

3

4 ① **測定**値

5 REACH IR & CSA R.7a (ECHA, 2008)¹では、水に対する溶解度に関する統合試験戦略 6 (ITS: Integrated Testing Strategy)において、p*K*a が 3~10 の酸や塩基は、環境中の pH (例 7 えば4~9程度)での水に対する溶解度を測定できるようにpH 緩衝液を用いることが推奨さ 8 れている。また、REACH IR & CSA R.7a (ECHA, 2015)²では、水に対する溶解度と pH 9 との関係を把握することが望ましく、測定時の pH を最低限把握するようにと記述されてい 10 る。また、p*K*a が 8 に近い物質の海域における評価を実施する際には、海水にて測定され 11 たデータが必要かもしれないと記述されている。

OECD (1995)の試験ガイドライン No105³や U.S. EPA の OPPTS 830.7840⁴ (両ガイド
 ラインともにカラム抽出法とフラスコ法)には、pH を報告するようにとの記述がある。また、
 U.S. EPA の OPPTS 830.7860⁵ (水溶解度ジェネレータカラム法)では、酸解離定数 (pKa)
 又は塩基解離定数 (pKb)が 3~11 の物質については、pH5.0、7.0、9.0 等で水に対する溶
 解度を測定するようにとの記述がある。

17 解離性物質については、環境中の pH 範囲での水に対する溶解度データを収集し、採用の
 18 可否を検討する。

19

20 ② 推計値

21 水に対する溶解度の推計に使用される EPI Suite (U.S. EPA, 2012)⁶には、WSKOWWIN
22 とWATERNT の二つの推計法が搭載されている。(WSKOWWIN と WATERNT の詳細に
23 ついては、I.7.3 参照)

- 24 非解離種の水に対する溶解度(WSn)を推計する場合には、信頼できる非解離種の Pow
 25 (Pown)測定値を用い、なければ、KOWWIN に非解離種の構造を示す SMILES を入力し、
 26 非解離種の Pow 値 (Pown)を推計する。次に WSKOWWIN に非解離種の Pow 値 (Pown)
 27 を入力し、非解離種の水に対する溶解度(WSn)を推計する。
- 28 イオン種の水に対する溶解度(WS)を推計する場合には、同様に、KOWWINに解離種の
 29 構造を示すSMILESを入力し(U.S. EPA, 2012, SMILES Help, Estimating Dissociated

¹ ECHA (2008) Guidance on Information Requirements and Chemical Safety Assessment Chapter R.7a: Endpoint Specific Guidance.

² ECHA (2015) Guidance on Information Requirements and Chemical Safety Assessment Chapter R.7a: Endpoint Specific Guidance, Version 4.1.

³ OECD (1995) TG 105: OECD Guideline for Testing of Chemicals - Water Solubility. No. 105.

⁴ U.S. EPA (1998b) Product Properties Test Guidelines: OPPTS 830.7840 Water Solubility: Column Elution Method; Shake Flask Method.

⁵ U.S. EPA (1996) Product Properties Test Guidelines: OPPTS 830.7860 Water Solubility (Generator Column Method).

⁶ U.S. EPA (2012) Estimation Programs Interface Suite. Ver. 4.11.

Structures in EPI Suite Programs¹)、イオン種のPow (Pow)を推計し、これを
 WSKOWWINに入力し、イオン種の水に対する溶解度 (WS)を推計する。イオン種のPowi
 に、信頼できる測定値や推計値がない場合には、X.2.2.1 (2)②に示す簡易推計式を用いるこ
 とも可能である。

5 なお、KOWWINによる*Powi*の推計、WSKOWWINによる*WSi*の推計を順次実施する代
 6 わりに、WSKOWWINにイオン性種の構造を示すSMILESを直接入力することによっても
 7 イオン種の水に対する溶解度(*WS*)を推計できる(U.S. EPA, 2012¹)。

8

9 (2) 1-オクタノールと水との間の分配係数²

解離性物質の1-オクタノールと水との間の分配係数は、pHとその物質のpKa値により変
 動し、主に非解離種で存在する場合と比較すると、見かけの分配係数 (logD)の値は、解離
 状態では低くなる (U.S. EPA, 2012¹)。

13 解離性物質については、非解離種の1・オクタノールと水との間の分配係数 (*Pown*)とイオ ン種の1・オクタノールと水との間の分配係数 (*Pow*)を収集する。1・オクタノールと水との 間の分配係数の測定は、非解離状態での測定が推奨されている(OECD, 1995, 試験ガイドラ イン No.107³; OECD, 2004, 試験ガイドライン No.117⁴)。強酸や強塩基では非解離状態で の測定が困難なため、pH=7 で log*D* が測定されている場合がある (厚労省/経産省/環境省
18 2014⁵)6。また、医薬品データとして、生理学的に重要な pH 7.4 での測定値が報告されてい る場合がある。

20

21 (1) Pow_n

22 i) 測定値

23 収集した測定値とともに、測定 pH が記載されており、非解離種の値であることが確認で

24 きる場合は、この値を非解離種の測定値とする。なお、酸の場合、測定 pH が、pKa より、

- 25 2以上低い時、塩基の場合、測定 pH が、pKa より 2以上高い時は、非解離種の値と判断し
- 26 てよい。
- 27 収集した測定値が、解離状態の値で、測定 pH が記載されている logD値の場合は、酸に

⁴ OECD (2004) TG 117: OECD Guideline for Testing of Chemicals - Partition Coefficient (n-octanol/water), High Performance Liquid Chromatography (HPLC) Method. No.117.

¹ U.S. EPA (2012) Estimation Programs Interface Suite. Ver. 4.11.

² 1-オクタノールと水との間の分配係数の略号としては log Pow が用いられるが、log Pow が非 解離種のオクタノール・水分配係数として用いられている場合もある。そのため、解離性物質 を扱う本章では非解離種とイオン種の存在比で重み付けした見かけのオクタノール・水分配係 数を log D と記す。

³ OECD (1995) TG 107: OECD Guideline for Testing of Chemicals - Partition Coefficient (n-octanol/water): Shake Flask Method. No.107.

⁵ 厚労省/経産省/環境省 (2014) イオン性を有する新規化学物質の生物蓄積性の判定について (お知らせ).

⁶ Powの値は、化審法で高濃縮性の判断に使用されるが、一部の強酸、強塩基等では、 pH7 での測定値による高濃縮性の判断がなされる場合がある。

1 ついては、式 X-5、塩基については、式 X-6 で非解離種の log Pown を推計する 1。

 $\mathbf{2}$

- $3 \qquad \log Pow_n = \log D + \log(1 + 10^{\text{pH}-\text{pKa}_{acid}})$
- 4 $\log PoW_n = \log D + \log(1 + 10^{pKa_{base} pH})$

式 X-5 式 X-6

式 X-7

 $\mathbf{5}$

記号	説明	単位	値	出典・参照先
$\log Pow_n$	非解離種の 1-オクタノー		—	—
	ルと水との間の分配係数			
$\log D$	見かけの 1-オクタノール		—	—
	と水との間の分配係数			
pН	測定 pH		—	_
p <i>K</i> a <i>_{acid}</i>	酸解離基の pKa		—	X.2.2.1 (5)
p <i>K</i> a <i>base</i>	塩基解離基の pKa		—	X.2.2.1 (5)

6

7 pH と pKa の違いが 1 以上であれば、logD にこの違いを足すだけで良い (Hansch and
 8 Leo, 1995²)という記述もある。

9

10 ii) 推計值

11 適切な 1-オクタノールと水との間の分配係数値が得られない場合は、物性推算ソフトを
 12 使用する³。EPI Suite 搭載の KOWWIN では、通常は非解離性物質として推算が行われる
 ため、推計値を Pownとしてよいが、例外もある。例えば、ヘキサン酸 (CAS: 142-62-1)の
 14 KOWWIN 推計値は 2.05 であるのに対して、その塩であるヘキサン酸ナトリウム (CAS:
 10051-44-2)の KOWWIN の推計値は-1.76 と大きく異なる。なお、ヘキサン酸とヘキサン
 16 酸ナトリウムの log Pow 測定値はそれぞれ、1.92 及び-2.17 と KOWWIN に掲載されている。
 17

18 **(2**) *Powi*

イオン種の *Powi*は、信頼できる測定値や EPI Suite などによる推計値があれば、それを
 用いる。ない場合は、次の推計式を用いる。双性イオン物質でない場合、以下の式を用い
 る (Franco and Trapp, 2008⁴; Trapp and Horobin, 2005⁵)。

22

 $23 \qquad \log Pow_i = \log Pow_n - 3.5$

¹ これらの式は、オクタノール相に分配される解離種が無視できるとした近似式である(Kah and Brown, 2008 Hansch and Leo, 1995)。

 ² Hansch, C. and Leo, A. (1995) Exploring QSAR: Volume 1: Fundamentals and Applications in Chemistry and Biology. American Chemical Society, Washington, DC.
 ³ U.S. FPA KOWWIN Z kt ACD/LogP

³ U.S. EPA KOWWIN 又は ACD/LogP

⁴ Franco, A. and Trapp, S. (2008) Estimation of the Soil-Water Partition Coefficient Normalized to Organic Carbon for Ionizable Organic Chemicals. Environ. Chem., 27(10), 1995–2004.

⁵ Trapp, S. and Horobin, W. (2005) A Predictive Model for the Selective Accumulation of Chemicals in Tumor Cells. Eur. Biophys. J., 34(7), 959–966.

X.3.1.2 (2)の式を適

1 0	記明	単位	値	出典・参照先
log <i>Powi</i>	イオン種の1-オクタノー		—	Franco and Trapp
	ルと水との間の分配係数			$(2008)^{1}$; Trapp and Horobin $(2005)^{2}$
$\log Pow_n$	非解離種の 1-オクタノー			
0	ルと水との間の分配係数			
双性イオン物	質の場合の式を参考に示す(Tr	app, 2009 ³)。	
$\log Pow_i = 1$	$\log Pow_n - 2.3$			式 X-
記号	説明	単位	値	出曲・参昭先
	イオン種の 1-オクタノー	— —		Trapp (2009 ³)
0	ルと水との間の分配係数			* *
$\log Pow_n$	非解離種の 1-オクタノー			—
できる (U.S. ③ log <i>D</i>	EPA, 2012, SMILES Help ⁴) _°			
できる (U.S. ③ log <i>D</i> 環境媒体の 間の分配係数	EPA, 2012, SMILES Help ⁴)。 構成要素と植物及び牛体内媒((log <i>Dx</i>)は、次式で計算した値	本 (x) ごとの [の常用対数	の見かけの 1-> 対値である。	オクタノールと水との
できる(U.S. ③ $\log D$ 環境媒体の 間の分配係数 $D_x = \phi_{x,n} \times D$	EPA, 2012, SMILES Help ⁴)。 構成要素と植物及び牛体内媒体 (log <i>D</i> _x)は、次式で計算した値 <i>Pow_n</i> + <i>φ</i> _{x,i} × <i>Pow_i</i>	本 (x) ごとの [の常用対数	の見かけの 1-ス 文値である。	オクタノールと水との 式 X-
できる(U.S. ③ $\log D$ 環境媒体の 間の分配係数 $D_x = \phi_{x,n} \times D_{x}$	EPA, 2012, SMILES Help ⁴)。 構成要素と植物及び牛体内媒体 $(\log D_x)$ は、次式で計算した値 $Pow_n + \phi_{x,i} \times Pow_i$	本 (x)ごとの 〔の常用対数	の見かけの 1-ス 対値である。	オクタノールと水との 式 X-
できる (U.S. ③ $\log D$ 環境媒体の 間の分配係数 $D_x = \phi_{x,n} \times D_x$	EPA, 2012, SMILES Help ⁴)。 構成要素と植物及び牛体内媒体 $t(\log D_x)$ は、次式で計算した値 $Pow_n + \phi_{x,i} \times Pow_i$ <u>説明</u>	本 (x)ごとの この常用対数 単位 一	D見かけの 1-z 対値である。 <u>値</u>	ナクタノールと水との 式 X-5 <u>出典・参照先</u> 一
できる(U.S. ③ $\log D$ 環境媒体の 間の分配係数 $D_x = \phi_{x,n} \times D$ 記号 $\log D_x$	EPA, 2012, SMILES Help ⁴)。 構成要素と植物及び牛体内媒体 $(\log D_x)は、次式で計算した値$ $Pow_n + \phi_{x,i} \times Pow_i$ <u>説明</u> <u>x</u> ごとの見かけの 1-オクタ ノールと水との間の分配 (気料*)	本 (x)ごとの この常用対数 <u>単位</u> 一	D見かけの 1-z y値である。 一	ナクタノールと水との 式 X- <u>出典・参照先</u> 一
できる (U.S. ③ $\log D$ 環境媒体の 間の分配係数 $D_x = \phi_{x,n} \times D_x$ 記号 $\log D_x$ $\phi_{x,n}$	EPA, 2012, SMILES Help ⁴)。 構成要素と植物及び牛体内媒((log <i>Dx</i>)は、次式で計算した値 <i>Pow_n</i> + <i>φ</i> _{x,i} × <i>Pow_i</i> <u>説明</u> <u>x</u> ごとの見かけの1-オクタ ノールと水との間の分配 係数 [※] <u>x</u> ごとの非解離種分率 [※]	本 (x)ごとの この常用対数 <u>単位</u> ー	D見かけの 1-z 文値である。 	tクタノールと水との 式 X- 出典・参照先 一 酸、塩基、両性物質 に対してそれぞれ X.3.1.2 (2)の式を通 用する。
できる (U.S. ③ $\log D$ 環境媒体の 間の分配係数 $D_x = \phi_{x,n} \times D$ 記号 $\log D_x$ $\phi_{x,n}$	 EPA, 2012, SMILES Help⁴)。 構成要素と植物及び牛体内媒体 (log D_x)は、次式で計算した値 Pow_n + φ_{x,i} × Pow_i 説明 xごとの見かけの1・オクタ ノールと水との間の分配 係数* xごとの非解離種分率* 非解離種の1・オクタノー ルと水との間の分配係数 	本 (x)ごとの この常用対数 <u>単位</u> 一 一	D見かけの 1-z 対値である。 <u>値</u> ー ー	オクタノールと水との 式 X-4 <u>出典・参照先</u> 一 酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を通 用する。 一

¹ Franco, A. and Trapp, S. (2008) Estimation of the Soil-Water Partition Coefficient Normalized to Organic Carbon for Ionizable Organic Chemicals. Environ. Chem., 27(10), 1995–2004.

² Trapp, S. and Horobin, W. (2005) A Predictive Model for the Selective Accumulation of Chemicals in Tumor Cells. Eur. Biophys. J., 34(7), 959–966.

³ Trapp, S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299–353.

⁴ U.S. EPA (2012) Estimation Programs Interface Suite. Ver. 4.11.

X. 性状等に応じた暴露評価における扱いVer.1.0 令和2年5月

記号	説明	単位	値	出典・参照先
				用する。
$\log Pow_i$	イオン種の 1-オクタノー	_		
	ルと水との間の分配係数			

※ log *D*_xは、環境媒体の構成要素と植物及び牛体内媒体(*x*) pH における化学種分率(φ_x)を用いて計算す
 る。φ_xについては、X.3.1.2 (2)を参照されたい。本式で対象にする環境媒体の構成要素と植物及び牛
 4 体内媒体(*x*)は、土壌間隙水(*sw*)、牛の小腸(*cow*)である。

4

5 (3) 有機炭素補正土壤吸着係数

6 有機炭素補正土壌吸着係数(*Koc*)値は、吸着平衡時の土壌粒子と水中の化学物質濃度から
7 計算される土壌吸着係数(*Ka*)の値をその土壌粒子の有機炭素含有率(*OCsos*)で除した値
8 である。*Kd*値は、土壌によるばらつきが大きい(U.S. EPA, 2012, KOCWIN User Guide¹)
9 が、*OCsos*で土壌による非極性有機化学物質の*Kd*値の差異をよく説明できるため、*Koc* が
10 物質の特性値として用いられている。(OECD, 2000,試験ガイドライン No106²)

11 土壌粒子は、高いカチオン交換容量とアニオン交換容量を有している(松中,2003³)ため、

12 解離性物質のイオン種の固体吸着メカニズムは非解離種とは異なり、解離性物質の Koc は、

13 pH によって大きく変動する。OECD (2000), 試験ガイドライン No. 106² では、解離性物質

14 の吸着に対して土壌 pH は重要なパラメータであるため、様々な土壌 pH での測定を求めて

- 15 いる。REACH IR & CSA R.7a (ECHA, 2015)4では、解離性物質については、通常、測定
 16 値が必要であり、環境媒体中の pH に応じて補正が必要であるとしているが、補正方法の記
- 17 述はない。

EU では、REACH の ITS を具体化するためのプロジェクト OSIRIS (Optimized
Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-Test
and Test Information)の中で、解離性物質の環境動態モデルの研究が進められていた。い
くつかの物質の REACH に基づく化学安全アセスメント書を含む登録書 (REACH
Resistration Dossier)⁵ には、プロジェクトの成果として、開発されたモデル (Franco and
Trapp, 2008)⁶による、異なる環境 pH に対する *Koc* 推計値が報告されている。
なお、*Koc* は、土壌での粒子と土壌間隙水との間の物質の分配だけでなく、水域懸濁粒子

25 や底質粒子と水相との間の分配の計算にも使用される。また、Francoらは、大気中の浮遊
 26 粒子固体と粒子水分の間での分配の計算にも Koc を使用している。ここでは、Koc を粒子

27 固体(有機炭素で補正した値)と粒子水分の間の分配を表す式と考える。

¹ U.S. EPA (2012) Estimation Programs Interface Suite. Ver. 4.11.

² OECD (2000) TG 106: OECD Guideline for Testing of Chemicals - Adsorption - Desorption Using a Batch Equilibrium Method. No.106.

³ 松中照夫 (2003) 土壌学の基礎 生成・機能・肥沃度・環境. 農山魚村文化協会.

⁴ ECHA (2015) Guidance on Information Requirements and Chemical Safety Assessment Chapter R.7a: Endpoint Specific Guidance, Version 4.1.

⁵ ECHA, REACH Resistered Dossier, N-(3-aminopropyl)iminodiethanol (CAS: 4985-85-7), Adsoption/desorption.

⁶ Franco, A. and Trapp, S. (2008) Estimation of the Soil-Water Partition Coefficient Normalized to Organic Carbon for Ionizable Organic Chemicals. Environ. Chem., 27(10), 1995–2004.

1 2 ① *Koc と Kd* 3 式 X-10に示すように、*Koc*は、*Kd*植を*OCsos*で除した値である(OECD, 2000, 試験ガ 4 イドラインNo. 106り。 5 6 *Koc* = Kd × <u>1</u> *OCsos* 式 X-10

 $\mathbf{7}$

記号	説明	単位	値	出典・参照先	
Koc	有機炭素補正土壤吸着係	L/kg	—	—	
	数				
Kd	土壤吸着係数	L/kg	—	—	
OCsos	土壌粒子の有機炭素含有	—	—	—	
	本				

8

9 前述のとおり Koc は、土壌粒子だけでなく、大気粒子(浮遊粒子)、水域の懸濁粒子、底
 10 質粒子にも適用される。大気粒子、土壌粒子、水域の懸濁粒子、底質粒子の有機炭素含有
 11 率については、付属資料 X.3.1.2 (1)③vi)を参照されたい。

12

13 ② 測定値

14 Kocの測定には、有機炭素含有量が 0.3%以上の土壌を使用することが推奨されており、

15 解離性物質に対しては、非解離種とイオン種の吸着を確認するために、広い pH 範囲の複数

16 の土壌を使用することが推奨されている (OECD, 2000, 試験ガイドライン No. 106¹)。し

17 かし、広い pH 範囲の土壌サンプルで測定値が報告されている例はほとんどなく、また、測

18 定 pH が記載されていないことも多い。

Koc を収集する際には、有機炭素含有率及び測定 pH をあわせて収集することが望ましく、
 Kd 値の場合には、測定粒子種もあわせて収集することが望ましい。

21 解離性物質については、測定値が得られた場合でも、念のために、次に述べる Franco ら
 22 の推計式による計算も実施し、両方の計算結果を比較して採用の可否を検討することが望
 23 ましい。

24

25 ③ 推計值

26 解離性物質の*Koc*を限定的な物性情報から推計できる手法は、Franco and Trapp (2008)²

- 27 のみである。これには、彼らの提案した*Koc*回帰式を推計に用いる。なお、この回帰式は、
- 28 オランダRIVM の暴露評価モデル SimpleBoxのバージョン4.0 に組み込まれているもの

¹ OECD (2000) TG 106: OECD Guideline for Testing of Chemicals - Adsorption - Desorption Using a Batch Equilibrium Method. No.106.

² Franco, A. and Trapp, S. (2008) Estimation of the Soil-Water Partition Coefficient Normalized to Organic Carbon for Ionizable Organic Chemicals. Environ. Chem., 27(10), 1995–2004.

式 X-11

1 と同じである。

Franco and Trapp (2008)¹は、解離性物質の Koc データを収集し、回帰式を作成²してい
る。回帰に用いた物質数は、酸の場合はトレーニングセットとして 63 物質及びバリデーシ
ョンセットとして 31 物質、塩基の場合はトレーニングセットとして 43 物質及びバリデー
ションセットとして 22 物質であり、非解離種、カチオン、アニオンに対してそれぞれ、Koc
値と Pown値の回帰式を作成した³。さらに、両性物質に関してもバリデーションを行って
いる(物質数 4)。しかし、他の一酸塩基や一塩基酸に比べて、根拠となる Koc 測定データ
が少ないため信頼性は高くない。
トレーニングセットとバリデーションセットに対する回帰式における決定係数は、酸に

9 トレーニングセットとバリデーションセットに対する回帰式における決定係数は、酸に
 10 対して *R*²=0.54 (0.44)、塩基に対して *R*²=0.76 (0.55) (カッコ内の値はバリデーションセッ
 11 トに対する値)と報告されている。

Koc の推計には、非解離種の 1-オクタノールと水との間の分配係数 Pown⁴、塩基に対す
 3 pKa 値、環境 pH に依存する化学種分率が必要となる。実際の環境での粒子と水相の間
 の分配の計算に際しては、X.3 付属書に詳細を記述するように、環境中の構成要素 (xe)ごと
 に計算する。

16

17 i) pH7 における *D*値 *D*7

pH7における 1-オクタノールと水との間の分配係数 (log*Dx*)の非対数値である *D*値 (*D*[∂])
 は、塩基と両性物質の *Koc* 推計時のみ使用する。

- $\begin{array}{c} 20\\ 21 \end{array}$
- $D_7 = \phi_{n7} \times Pow_n + \phi_{c7} \times Pow_c$
- 22

記号	説明	単位	値	出典・参照先
D_7	pH7 における <i>D</i> 値	L/kg	—	Franco and Trapp (2008) ¹
φ <i>n</i> 7	pH7 における非解離種の 化学種分率	_	—	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
$\log Pow_n$	非解離種の 1-オクタノー ルと水との間の分配係数		—	X.2.2.1 (2)①
φ c7	pH7 におけるカチオン種 の化学種分率	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。

¹ Franco, A. and Trapp, S. (2008) Estimation of the Soil-Water Partition Coefficient Normalized to Organic Carbon for Ionizable Organic Chemicals. Environ. Chem., 27(10), 1995–2004.

² 広い pH 範囲での Koc 測定データがあれば回帰式の精度を高めることができるが、得られる Koc のデータは OECD TG の要求からすると不十分なものが多い。Franco and Trapp (2008) の回帰式はそれを前提に作成されている。

³ 塩基の回帰式は最終的に、pKaも独立変数となる。

⁴ この値は、環境に依存しない物質固有の値である。

記号	成功	-+ <u> 1</u>	크	-	1121 21102
$\log Pow_c$	カチオン種の 1-オクタノ ールと水との間の分配係			-	X.2.2.1 (2)②
	数数				
ii)【参考】	】非解離種 Koc(回帰式)				
Franco an	d Trapp (2010) ¹ が公開してい	いる解離性物	質への適	用が同	「能な多媒体モデ
MAMI (a Mu	ultimedia Activity Model app	licable to n	eutral an	d Ioni	zable molecules)
Excel 版で使	用されている非解離種の log K	foc の推計式	である Sa	ubjlić Ø)式を参考に示す。
log Koc _{noni}	$_{onizable.sablijic} = 0.81 \times \log Pow_n + 0.1$				式 X-
記号	説明		単位	値	出典・参照先
<i>Koc</i> nonionizabl	<i>le.sabliji</i> c 非解離性物質の有機炭素 善係数 (Sablijić 注による	補正土壌吸 堆計)	L/kg	_	Sabljić et al. (1995)2
$\log Pow_n$	1 休飯 (Gabilje 伝によう) 非解離種の 1・オクタノー	ルと水との	_	—	X.2.2.1 (2)①
iii)酸Ko	c(回帰式)				
iii) 酸 <i>Ko</i> 環境媒体を	<i>c</i> (回帰式) ·構成する要素 (<i>xe</i>)における酸(の <i>Koc_{xe}は、</i>	次式で計	算する	٥
iii) 酸 <i>Ko</i> 環境媒体を	<i>c</i> (回帰式) ·構成する要素 (<i>xe</i>)における酸6	の <i>Koc_{xe}は、</i>	次式で計	算する	0
iii) 酸 Ko 環境媒体を Koc _{xe} = ø _{xe}	c (回帰式) □構成する要素 (xe)における酸© _{p,n} × Koc _n + φ _{xep,a} × Koc _a	の <i>Koc</i> xeは、	次式で計	算する	° ₹* ¥-
iii) 酸 Ko 環境媒体を $Koc_{xe} = \phi_{xe_{f}}$ $Koc_{xe} = 10^{0}$	c(回帰式) •構成する要素($x ho$)における酸 c $_{p,n} imes Koc_n + \phi_{xep,a} imes Koc_a$ 54×log Pow_n+1 11	の <i>Koc_{xe}は、</i>	次式で計	算する	。 式 X- 式 X-
iii) 酸 Ko 環境媒体を $Koc_{xe} = \phi_{xe_{t}}$ $Koc_{n} = 10^{0}$ $Koc_{n} = 10^{0}$	c(回帰式) ・構成する要素 (xe)における酸 c $_{p,n} imes Koc_n + \phi_{xep,a} imes Koc_a$ $_{54 imes log Pow_n + 1}$ 11 $_{11 imes log Pow_n + 1}$ 54	の <i>Koc_{xe}は、</i>	次式で計	算する	。 式 X- 式 X- 式 X-
iii) 酸 Ko 環境媒体を $Koc_{xe} = \phi_{xe_{f}}$ $Koc_{n} = 10^{0}$ $Koc_{a} = 10^{0}$	c(回帰式) ・構成する要素 (xe)における酸 $c_{p,n} imes Koc_n + \phi_{xep,a} imes Koc_a$ 54×log Pow_n +1 11 11×log Pow_n +1 54	の <i>Koc_{xe}は、</i>	次式で計	算する	。 式 X- 式 X- 式 X-
iii) 酸 Ko 環境媒体を $Koc_{xe} = \phi_{xe_{f}}$ $Koc_{n} = 10^{0}$ $Koc_{a} = 10^{0}$ 記号	c(回帰式) ・構成する要素 (xe)における酸($p_{p,n} \times Koc_n + \phi_{xep,a} \times Koc_a$ $54 \times \log Pow_n + 1 11$ 11× $\log Pow_n + 1 54$ 説明	の <i>Kocxe</i> は、 単位	次式で計	算する 	。 式 X- 式 X- 式 X- 式 X- 出典・参照先
iii) 酸 Ko 環境媒体を $Koc_{xe} = \phi_{xe_{f}}$ $Koc_{n} = 10^{0}$ $Koc_{a} = 10^{0}$ 記号 Koc_{xe}	c(回帰式) ・構成する要素 (xe)における酸($p_{p,n} \times Koc_n + \phi_{xep,a} \times Koc_a$ $54 \times \log Pow_n + 1 11$ 11×log $Pow_n + 1 54$ 説明 環境媒体を構成する要素	の <i>Koc_{xe}は、</i> 単位 L/kg	次式で計 (値 一	算する 	。 式 X- 式 X- 式 X- 式 X- 出典・参照先 Franco and Trap
iii)酸Ko 環境媒体を $Koc_{xe} = \phi_{xe_{f}}$ $Koc_{n} = 10^{0}$ $Koc_{a} = 10^{0}$ 記号 Koc_{xe}	c (回帰式) ・構成する要素 (xe)における酸(p,n × Koc _n + $\phi_{xep.a}$ × Koc _a 54×logPow _n +1 11 11×logPow _n +1 54 <u> 説明</u> 環境媒体を構成する要素 (xe)における有機炭素補 正土罐吸差体数**	の <i>Koc_{xe}は、</i> 単位 L/kg	次式で計 (一 一	算する <u>-</u>	。 式 X- 式 X- 式 X- 式 X- 出典・参照先 Franco and Trap (2010) ¹
iii)酸Ko 環境媒体を $Koc_{xe} = \phi_{xe_{f}}$ $Koc_{n} = 10^{0}$ $Koc_{a} = 10^{0}$ 記号 Koc_{xe} ϕ xep.n	c(回帰式) ・構成する要素 (xe)における酸(_{p,n} × Koc _n + $\phi_{xep,a}$ × Koc _a 54×logPow _n +1 11 11×logPow _n +1 54 説明 環境媒体を構成する要素 (xe)における有機炭素補 正土壌吸着係数 ^{**} xepごとの非解離種分率 ^{**}	の <i>Koc_{xe}は、</i> 単位 L/kg	次式で計 値 一	算する <u>-</u>	。 式 X- 式 X- 式 X- 式 X- 出典・参照先 Franco and Trap (2010) ¹ 酸に対して、X.3.
 iii)酸Ko 環境媒体を Koc_{xe} = Ø_{xe} Koc_a = 10⁰ Koc_a = 10⁰ 記号 Kocxe Ø xep.n 	e (回帰式) ・構成する要素 (xe)における酸(p,n × Koc _n + $\phi_{xep,a}$ × Koc _a 54×log Pow _n +1 11 11×log Pow _n +1 54 <u> 説明</u> 環境媒体を構成する要素 (xe)における有機炭素補 正土壌吸着係数 ^{**} xep ごとの非解離種分率 ^{**}	の <i>Koc_{xe}は、</i> 単位 L/kg	次式で計 値 - -	算する <u>-</u>	。 式 X- 式 X- 式 X- 式 X- 出典・参照先 Franco and Trap (2010) ¹ 酸に対して、X.3. (2)の式を適用す
 iii) 酸 Ko 環境媒体を 塚oc_{xe} = Ø_{xej} Koc_n = 10⁰ Koc_a = 10⁰ 記号 Kocxe Ø xep.n 	c (回帰式) ・構成する要素 (xe)における酸(p,n × Koc _n + $\phi_{xep,a}$ × Koc _a 54×log Pow _n +1 11 11×log Pow _n +1 54 説明 環境媒体を構成する要素 (xe)における有機炭素補 正土壌吸着係数 ^{**} xep ごとの非解離種分率 ^{**} 北敏離種の有機炭素補正	の <i>Koc_{xe}は、</i> 単位 L/kg ―	次式で計 値 一	算する <u>-</u>	。 式 X- 式 X- 式 X- 式 X- 式 X- Exact and Trap (2010) ¹ 酸に対して、X.3. (2)の式を適用す る。 —
iii)酸Ko 環境媒体を $Koc_{xe} = \phi_{xe_{l}}$ $Koc_{n} = 10^{0}$ $Koc_{a} = 10^{0}$ 記号 Kocxe ϕ xep.n Kocn	e (回帰式) ・構成する要素 (xe)における酸(p,n × Koc _n + $\phi_{xep,a}$ × Koc _a 54×log Pow _n +1 11 11×log Pow _n +1 54	の <i>Koc_{xe}は、</i> 単位 L/kg L/kg	次式で計 値 一 一	算する <u>-</u> -	。 式 X- 式 X- 式 X- 式 X- <u>出典・参照先</u> Franco and Trap (2010) ¹ 酸に対して、X.3. (2)の式を適用す る。 —
 iii) 酸 Ko 環境媒体を <i>Koc_{xe}</i> = <i>φ_{xej}</i> <i>Koc_n</i> = 10⁰ <i>Koc_a</i> = 10⁰ <i>Roc_a</i> = 10⁰ <i>Koc_{xe}</i> <i>φ xep.n</i> <i>Koc_n</i> <i>φ xep.a</i> 	c (回帰式) ・構成する要素 (xe)における酸(p,n × Koc _n + $\phi_{xep,a}$ × Koc _a 54×log Pow _n +1 11 11×log Pow _n +1 54 説明 環境媒体を構成する要素 (xe)における有機炭素補 正土壤吸着係数 [※] xep ごとの非解離種分率 [※] 非解離種の有機炭素補正 土壤吸着係数 xep ごとのアニオン種分率 **	の <i>Koc_{xe}は、</i> 単位 L/kg ー L/kg	次式で計 値 一 一 一	算する <u>-</u> -	 ・ 式 X- 式 X- 式 X- 式 X- 出典・参照先 Franco and Trag (2010)¹ 酸に対して、X.3. (2)の式を適用する。 酸に対して、X.3. (2)の式を適用する。
 iii) 酸 Ko 環境媒体を 環境媒体を Koc_{xe} = Ø_{xe} Koc_a = 10⁰ Koc_a = 10⁰ 記号 Kocxe φ xep.n Kocn φ xep.a 	e (回帰式) ・構成する要素 (xe)における酸(p,n × Koc _n + $\phi_{xep,a}$ × Koc _a 54×logPow _n +1 11 11×logPow _n +1 54	の Koc _{xe} は、 単位 L/kg ー L/kg	次式で計 値 - - -	算する <u>-</u> -	。 式 X- 式 X- 式 X- 式 X- 式 X- <u>出典・参照先</u> Franco and Trap (2010) ¹ 酸に対して、X.3. (2)の式を適用す る。 — 酸に対して、X.3. (2)の式を適用す る。
 iii) 酸 Ko 環境媒体を 塚oc_{xe} = \$\phi_{xe_l}\$ Koc_n = 10⁰ Koc_a = 10⁰ Roc_a = 10⁰ Roc_{xe} \$\phi\$ xep.n Koc_n \$\phi\$ xep.a Koca 	c(回帰式) *構成する要素(xe)における酸(p,n × Koc _n + $\phi_{xep,a}$ × Koc _a 54×log Pow _n +1 11 11×log Pow _n +1 54 説明 環境媒体を構成する要素(xe)における有機炭素補正 工壌吸着係数** xep ごとの非解離種分率** 非解離種の有機炭素補正 土壌吸着係数 xep ごとのアニオン種分率 ** アニオン種の有機炭素補 正土壌吸着係数	の Koc _{xe} は、 単位 L/kg ー L/kg	次式で計 値 一 一 一	算する <u>-</u> -	。 式 X- 式 X- 式 X- 式 X- 式 X- 式 X- 世典・参照先 Franco and Trap (2010) ¹ 酸に対して、X.3. (2)の式を適用す る。 ─ 酸に対して、X.3. (2)の式を適用す る。 ─

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789-799.

² Sabljić, A., Güsten, H., Verhaar, H. and Hermens, J. (1995) QSAR Modelling of Soil Sorption. Improvements and Systematics of log KOC vs. log KOW Correlations. Chemosphere, 31(11–12), 4489–4514.

記号	<u>説明</u> ルと水との間の分配係数	単位	值	出典・参照先
 ※ KOCxe は 計算する 子及びそ 海水域の 	、環境媒体の構成要素の粒子及びその 。φ _{xep} については、X.3.1.2 (2)を参照 の近傍水 (xep)は、大気中の粒子固体 懸濁粒子 (wsp)、淡水域の底質粒子 (D近傍水(xep)pl 気されたい。本式 (ap)、土壌中の efp)、海水域のD	H における化: たで対象にする 0粒子 (<i>sp</i>)、淡 底質粒子 (<i>esp</i>)	学種分率 (_{ф xep})を用 環境媒体の構成要素 水域の懸濁粒子 (w である。
iv) 塩基	Koc (回帰式)			
環境媒体	を構成する要素 (xe)における塩素	基の Kocxe は、	次式で計算	する。
$Koc_{xe} = \phi$	$\sum_{xep.n} \times Koc_n + \phi_{xep.c} \times Koc_c$			式、2
$K_{0C} = 10$	$0.37 \times \log Pow_n + 1.70$			式
$Koc_c = 10$	$pKa_{base} \propto \left(\frac{D_7}{D_7 + 1}\right)^{411}$			式】
-				
記号	説明	単位	値	出典・参照先
記号 Koc _{xe}	説明 環境媒体を構成する要素 (<i>xe</i>)における有機炭素補 正土壌吸着係数	単位 L/kg	値 	出典・参照先 Franco and Tr (2010) ¹
記号 Kocxe ¢ xep.n	説明 環境媒体を構成する要素 (<i>xe</i>)における有機炭素補 正土壌吸着係数 <i>xep</i> ごとの非解離種分率 [*]	単位 L/kg —	値 	出典・参照先 Franco and Tr (2010) ¹ 塩基に対して、 X.3.1.2 (2)の式 用する。
記号 Kocxe \$\$ xep.n Kocn	説明 環境媒体を構成する要素 (<i>xe</i>)における有機炭素補 正土壌吸着係数 <i>xep</i> ごとの非解離種分率** 非解離種の有機炭素補正 土壌吸着係数	単位 L/kg — L/kg	値 	出典・参照先 Franco and Tr (2010) ¹ 塩基に対して、 X.3.1.2 (2)の式 用する。 一
記号 Kocxe \$\$ xep.n Kocn \$\$ xep.c	説明 環境媒体を構成する要素 (<i>xe</i>)における有機炭素補 正土壌吸着係数 <i>xep</i> ごとの非解離種分率* 非解離種の有機炭素補正 土壌吸着係数 <i>xep</i> ごとのカチオン種分率 *	単位 L/kg — L/kg —	值 	 出典・参照先 Franco and Tr. (2010)¹ 塩基に対して、 X.3.1.2 (2)の式 用する。 塩基に対して、 X.3.1.2 (2)の式 用する。
記号 Kocxe \$\overline{kocn}\$ \$\vee xep.c Kocc	説明 環境媒体を構成する要素 (xe)における有機炭素補 正土壌吸着係数 xepごとの非解離種分率** 非解離種の有機炭素補正 土壌吸着係数 xepごとのカチオン種分率 カチオン種の有機炭素補 正土壌吸着係数	単位 L/kg — L/kg L/kg	値 	 出典・参照先 Franco and Tra (2010)¹ 塩基に対して、 X.3.1.2 (2)の式 用する。 塩基に対して、 X.3.1.2 (2)の式 用する。 ー
記号 Kocxe \$\phi_xep.n Kocn \$\phi_xep.c Kocc logPown	説明 環境媒体を構成する要素 (xe)における有機炭素補 正土壌吸着係数 xepごとの非解離種分率** 非解離種の有機炭素補正 土壌吸着係数 xepごとのカチオン種分率 ガチオン種の有機炭素補 正土壌吸着係数 非解離種の 1・オクタノー ルと水との間の分配係数	単位 L/kg — L/kg — L/kg —	值 	 出典・参照先 Franco and Tra (2010)¹ 塩基に対して、 X.3.1.2 (2)の式 用する。 塩基に対して、 X.3.1.2 (2)の式 用する。 X.2.2.1 (2)①
記号 Kocxe \$\overline{sep.n}\$ Kocn \$\overline{sep.c}\$ Kocc logPown pKabase	説明 環境媒体を構成する要素 (xe)における有機炭素補 正土壌吸着係数 xepごとの非解離種分率** 非解離種の有機炭素補正 土壌吸着係数 xepごとのカチオン種分率 カチオン種の有機炭素補 正土壌吸着係数 xepごとのカチオン種分率 次 カチオン種の有機炭素補 正土壌吸着係数 非解離種の 1・オクタノー ルと水との間の分配係数 塩基の pKa	単位 L/kg — L/kg — L/kg —	值 	 出典・参照先 Franco and Tra (2010)¹ 塩基に対して、 X.3.1.2 (2)の式 用する。 塩基に対して、 X.3.1.2 (2)の式 用する。 X.2.2.1 (2)① X.2.2.1 (5)

子及びその近傍水 (xep)は、大気中の粒子固体 (ap)、土壌中の粒子 (sp)、淡水域の懸濁粒子 (wfp)、 海水域の懸濁粒子 (wsp)、淡水域の底質粒子 (efp)、海水域の底質粒子 (esp)である。

17

16

18 v) 両性物質 Koc (回帰式)

19 環境媒体を構成する要素 (xe)における両性物質の Kocxe は、次式で計算する。

21	$Koc_{xe} = \phi_{xep.n} \times Koc_n + \phi_{xep.a} \times Koc_a + \phi_{xep.c} \times Koc_c$	式 X-19
22	$Koc_n = 10^{0.50 \times \log Pow_n + 1.13}$	式 X-20
23	$Koc_a = 10^{0.11 \times \log Pow_n + 1.54}$	式 X-21

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

1
$$Koc_{c} = 10^{pKa_{base}^{0.65} \times \left(\frac{D_{7}}{D_{7}+1}\right)^{0.14}}$$

式 X-22

記号	説明	単位	値	出典・参照先
Koc _{xe}	環境媒体を構成する要素 (<i>xe</i>)における有機炭素補 正十壌吸着係数	L/kg	_	Franco and Trapp (2010) ¹
φ xep.n	xep ごとの非解離種分率	—	—	両性物質に対して、 X.3.1.2 (2)の式を適 用する。
Koc_n	非解離種の有機炭素補正 土壌吸着係数	L/kg	—	—
ф xep.a	<i>xep</i> ごとのアニオン種分率 ※	_	_	両性物質に対して、 X.3.1.2 (2)の式を適 用する。
Koca	アニオン種の有機炭素補 正土壌吸着係数	L/kg	—	
ф хер.c	<i>xep</i> ごとのカチオン種分率 ※	_	_	両性物質に対して、 X.3.1.2 (2)の式を適 用する。
Koc_c	カチオン種の有機炭素補 正土壤吸着係数	L/kg		—
$\log Pow_n$	非解離種の 1-オクタノー ルと水との間の分配係数			X.2.2.1 (2)①
p <i>K</i> a <i>base</i>	塩基の pKa		—	X.2.2.1 (5)
D_7	pH7 における <i>D</i> 値	—	—	X.2.2.1 (3)③i)

3 ※ KOC_{xe}は、環境媒体の構成要素の粒子及びその近傍水 (xep)pH における化学種分率 (φ xep)を用いて
 4 計算する。φ xep については、X.3.1.2 (2)を参照されたい。本式で対象にする環境媒体の構成要素の粒
 5 子及びその近傍水 (xep)は、大気中の粒子固体 (ap)、土壌中の粒子 (sp)、淡水域の懸濁粒子 (wfp)、
 6 海水域の懸濁粒子 (wsp)、淡水域の底質粒子 (efp)、海水域の底質粒子 (esp)である。

 $\overline{7}$

8 (4) ヘンリー係数

9 解離性物質は、環境中の水相で非解離種とイオン種を生成する。気相にはイオン種が存
 10 在しえないため、気相中と水相中の非解離種の濃度の比が一定となる。非理想溶液 ²では、
 11 ヘンリー係数は気相濃度を活量 ³で除した値になる。気相の活量は、平衡状態では水相の非
 12 解離種の活量と等しい (Trapp et al., 2010⁴)。
 13 このため、見かけの無次元のヘンリー係数と非解離種の無次元のヘンリー係数は、式

- 14 X-23 で関連づけられる。
- 15

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

² 溶媒についてラウールの法則が成り立ち、溶質についてヘンリーの法則が成り立つ溶液を理 想希薄溶液という。これに該当しない溶液をここでは、非理想溶液とする。

³ 活量は活量係数と濃度の積 $(a = y \times C)$ であり、yにより理想希薄溶液と非理想溶液の違いを表す。

⁴ Trapp, S., Franco, A. and Mackay, D. (2010) Activity-Based Concept for Transport and Partitioning of Ionizing Organics. Environ. Sci. Technol., 44, 6123–6129.

 $\mathbf{2}$

記号	説明	単位	値	出典・参照先
H_n	非解離種の無次元ヘンリー 係数			_
$C_{n.a}$	非解離種の気相濃度	mg/m ³	_	_
$A_{ct.a}$	気相活量	mg/m ³	—	—
C_a	気相濃度	mg/m ³	$=C_{n a}$	—
$A_{ct.n.w}$	非解離種水相活量(溶媒が	mg/m ³	=A _{cta} (平衡状態	—
	純水の場合の値)		において)	
γ_n	活量係数(非解離種)	—	—	—
C _{n.w.eq.a}	気相と平衡状態にある非解 離種の水相濃度	mg/m ³	—	—
$A_{ct.w}$	水相総活量	mg/m ³	—	—
φ _n	非解離種分率		_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
HENRY	見かけの無次元ヘンリー係 数		—	—

3

4 収集する解離性物質のヘンリー係数が測定値の場合には、測定 pH と、できれば、イオン
 5 強度も併せて収集しておく必要がある。

6 非解離種の値であることが確認できれば、その値を用いる。環境中 pH において解離した
 7 状態である場合には、式 X-23 を用いて非解離種の値に補正する。

8 本章で解説する解離性モデルは、Francoらのモデルに倣って、活量、活量係数、活量容
 9 量に基づいた計算を行っており、活量はヘンリー係数に基礎を置いている。

ヘンリー係数は、環境条件下では、気相と水相の間の特定の物質が希薄水溶液に存在す
 る時の当該物質の平衡係数である。典型的には、希薄水溶液のモル分率は 0.001 ~ 0.01
 であり、これは 100 g/mol のモル質量の物質の場合に 5 ~50 g/L の濃度以下を意味する
 (Staudinger and Roberts, 2001¹)。

14 測定値が得られない場合は、HENRYWIN を用いて、非解離種の値を推計し(ガイダン
 15 ス I.7.3 (7)を参照されたい)、式 X-26 (33 ページ)で非解離種の無次元ヘンリー係数 (*H_a*)
 16 に変換後、使用する。

17

18 (5) 酸解離定数

- 19 酸解離定数 (pKa)の値と、環境中の水の pH から、化学種分率が決定される。
- 20 対象物質の酸官能基及び塩基官能基ごとに、その種別と pKa を収集する。また、併せて
- 21 当該物質のイオン種 i の電荷 (z)を設定する必要がある。本章では、多塩基酸や多酸塩基で

¹ Staudinger, J. and Roberts, P. V. (2001) A Critical Compilation of Henry's Law Constant Temperature Dependence Relations for Organic Compounds in Dilute Aqueous Solutions. Chemosphere, 44(4), 561–576.

あっても、環境の水中では1段しか解離せず、一塩基酸又は一酸塩基とみなしうる物質を
 対象としているため、酸であれば-1、塩基であれば+1を用いる。

3

4 ① 実測値

pKa 値は、I 章に示したように、各種の物性データベースやデータハンドブックから得る
 ことができる。

- 7 実測値を収集する場合には、測定した pKa ごとに、対象物質の酸官能基及び塩基官能基
 8 を把握しておくことが望ましい。
- 9

10 ② 推計值

SPARC¹、ACD/Percepta²等の推算ソフトにより、p*K*aの推計値と化学種分率を得ること
 が可能である。

13

14 (6) 生物濃縮係数

一般的に、化学物質の魚類における生物濃縮性は、鰓の呼吸細胞経由の受動拡散が主要 15な吸収経路であり、logBCFと logPowとの間に相関関係があることが知られている。他方、 16 17解離性物質の生物濃縮性は、水分子との水和による水相でのエネルギー的安定化や生体膜 とのイオン性相互作用の働きなどによって、単純な受動拡散によって生体内に取り込まれ 1819 る化学物質とは生物濃縮挙動が異なり、logBCFと logPowとの相関が弱く、生物濃縮され にくいと考えられている。ただし、パーフルオロカルボン酸 (PFCA)及びパーフルオロスル 2021ホン酸 (PFOS)は、他の解離性化学物質とは生物濃縮挙動が異なり、経験的に高濃縮性が懸 22念される。この PFCA 又は PFOS の高濃縮傾向は、魚類の血清中のタンパク質と結合しや 23すく、生体内から排せつされにくいことに起因している。

24また、解離性物質の生体内への取り込み速度(k1)は、pHの影響を受けることも知られて いる。Saarikoski et al. (1986)³は、グッピーにおける pH=3~9下での 4-Phenylbutyric acid 25などのアニオン性化学物質の k1を測定し、pH の増加に伴い k1 が減少したことを報告して 26いる。この試験結果から、解離性の化学物質の生物濃縮性は pH によって異なることが示唆 27されている。また、この試験結果において pH の増加に伴い k1 が減少したことなどから、 28解離性物質は一般的にイオン化状態では生体内に取り込まれにくく、水中のカウンターイ 2930 オンとペアを形成した中性種として生体内に取り込まれると考えられている。また、生体 31膜はホスファチジルコリンなどのリン酸で構成されており、膜表面の電荷がマイナスであ

詳細は以下 URL で紹介されている。 (http://www.archemcalc.com/sparc.html, 2016/12/13 アクセス)
 詳細は以下 URL で紹介されている。

⁽http://www.acdlabs.com/products/percepta/, 2017/3/28 アクセス)

³ Saarikoski, J., Lindström, R., Tyynelä M, Viluksela M. (1986) Factors Affecting the Absorption of Phenolics and Carboxylic Acids in the Guppy (Poecilia Reticulata). Ecotoxicol. Environ. Saf., 11(2), 158–173.

1 るから、カチオン性の化学物質は生体膜へ吸着しやすい傾向にある。(NITE, 20121)

 $\mathbf{2}$

3 ① 測定値

4 非解離性物質と同様に、化審法における生物濃縮性の判定がある場合やその他の信頼性5 が高い測定値がある場合には、それらの値を優先する。

6

7 ② 推計值

8 I 章では、評価Ⅱにおける BCF の精査とキースタディ見直しに用いる推計法として、

9 NITE カテゴリーアプローチ、EPI Suite の *BCFBAF* (U.S. EPA, 2012²)、*BCF* base-line
10 モデル (OASIS Cagtalogic)があげられている。

11 解離性物質は、NITEカテゴリーアプローチのカテゴリーⅢになる。NITE (2012)¹では、
カテゴリーⅢの「イオン性の官能基を持つ物質」として、「化学物質と生体分子との相互作
13 用において、イオン性相互作用が主要な分子間相互作用として働く物質」のカテゴリーア
14 プローチによる生物濃縮性予測についてまとめている。同書において、カテゴリーⅢの物
15 質は、さらに以下の5つの物質群に分類されている。

- 16 (i) アニオン性物質
- 17 (ii) カチオン性物質
- 18 (iii) 双性イオン性物質
- 19 (iv) パーフルオロカルボン酸 (PFCA)
- 20 (v) パーフルオロスルホン酸 (PFSA)

NITE (2012)¹では、カテゴリーⅢの物質について、log*Pow*やp*K*aなどを用いた生物濃縮
 性予測式を統計的に求めたが、相関性が良いパラメータは見つからず、予測式を用いた定
 量的な*BCF*の予測は困難であったと結論づけられている。このため、カテゴリーⅢに属す
 る物質については、以下の2つの手法を用いた生物濃縮性予測が示されている。

- 25
- 26 手法1:物質群 (i)と (ii)については、log*BCF*<3とする。
- 27 手法 2: Read-across (類推)による定量的又は定性的な予測を行う。
- 28

29 NITE (2012)¹では、26物質の解離性物質データを用いて、EPI SuiteのBCFBAF (U.S.

30 EPA, 2012²)及びBCF base-lineモデル (OASIS Catalogic)の検証を行っている。この結果、

31 log BCFの予測値と実測値との間の決定係数(R)が、EPI Suiteの BCFBAF (U.S. EPA,

32 20122)では8.0×10⁻⁵、BCFbase-lineモデル (OASIS Catalogic)では8.6×10⁻³となっており、

33 相関性は非常に低く、予測精度は低い傾向にあったとされている。

34 本章では、解離性物質の BCF に関する情報が得られない場合には、適宜 Read Across (類

¹ NITE (2012) カテゴリーアプローチによる生物濃縮性予測に関する報告書 (カテゴリーⅢ).

² U.S. EPA (2012) Estimation Programs Interface Suite. Ver. 4.11.

1 推)を実施することとした 1。

 $\mathbf{2}$

3 X.2.3 解離性物質の排出量推計

4 上述したとおり解離性物質は水中で解離し、中性の非解離種とイオン種を生じ、それら
5 の存在比率は使用状況 (pH 等)に依存する。このため、物理化学的性状が大きく変化する可
6 能性があり、現実に即した排出量推計を行うためには、実際に解離性物質が使用されてい
7 る状況での物理化学的性状等に従い排出係数を設定することが必要になる。一方、化審法
8 で得られる情報には、使用状況等に関する情報等はほぼ含まれていない。

9 評価Ⅱでは安全側のシナリオとして、原則、水域への排出については最大水溶解度区分²、
 10 大気への排出については非解離状態の蒸気圧区分の排出係数を採用する。また、使用状況
 第の情報がある場合には、排出係数区分を見直すことで現実の値に近づくと考えられる。

12 なお、考えうるシナリオについて、非解離種とイオン種の存在比の観点から以下の①~
13 ③が考えられたが、現実の使用実態が不明のため、安全側のシナリオとして排出係数は上
14 記の仮想的区分を用いることとした。

15 ① 非解離状態で使用されている場合

16 非解離状態の場合には、蒸気圧及び水に対する溶解度は非解離種の値であると考えら
17 れるため、排出係数を決定する際の物理化学的性状区分は非解離種の物理化学的性状に
18 該当する区分となる。

19 ② 完全に解離している状態で使用されている場合

20 完全に解離している場合には、全量がイオン種として水に溶解していると考えられる
 21 ことから、水溶解度は大きく、また、みかけの蒸気圧については限りなく小さくなると
 22 考えられることから、排出係数を決定する際の物理化学的性状区分は、最大水溶解度区
 23 分2及び最小蒸気圧区分2となる。

24 ③ 一部が解離し、非解離種とイオン種が共存する状態で使用されている場合

25 一部が解離している場合には、イオン種は水により溶解しやすく、蒸発しにくくなる
26 ため、非解離状態と比べ、水溶解度は大きく、みかけの蒸気圧は小さくなると考えられ
27 る。しかし、使用状況により非解離種とイオン種の存在比が異なるため、一つの水溶解
29 席刊び幕年にに時完中スことはできない。

- 28 度及び蒸気圧に特定することはできない。
- 29

30 X.2.4 解離性物質の暴露評価

31 解離性物質の非解離種は、非解離性物質と同様の環境中動態を示すが、イオン種は、異

¹ 類推の結果、類縁物質が2物質以上となった場合、基本的には、それらの物質の算術平均値を 用いる。

² Ⅳ章(Ⅳ.3.2.4 物理化学的性状データが得られない優先評価化学物質の扱い)に詳細を記しているが、特定の詳細用途においては、排出係数の値がハイフン「−」となっている場合がある。その場合は、当該詳細用途のハイフンを除いた最大又は最小の区分を採用することとする。

なる動態を示す場合がある。例えば、イオン種は揮発しづらいため、大気中では、エアロ
 ゾルや霧、雨、雪などに分配している (Trapp et al., 2010¹)。また、静電相互作用により粒
 子に強く吸着する性質がある (van Beelen, 1998²)。

4 土壌中では、非解離種のように有機物質に浸透し、鉱物質表面に保持されるほか、逆の
 5 電荷を持つ表面部に吸着される (Schwarzenbach et al., 2003³)。

6 生体内への取込についても、イオン種は、非解離種では主な取込経路と考えられる受動
7 拡散以外の水和による水相でのエネルギー的安定化や生体膜とのイオン性相互作用などに
8 よる影響を受けると考えられる (NITE, 20124)。非解離種として生体膜を通過した物質が体
9 内でイオン種となり、体外に排出されにくくなり、体内に蓄積されるイオントラップが起
10 こる可能性なども考えられている (Bromilow and Chamberlain, 20005)。

11 このような解離性物質を環境中濃度等推計モデルに適用する方法は、二つに大別できる。
12 一つは、環境中濃度等推計モデルに用いられる物理化学的性状の値をイオン種や非解離種
13 の存在割合などにより補正するか、イオン種の特性を考慮した方法で推計して一般的な有
14 機化学物質と同様に計算する方法である。もう一つはイオン種と非解離種をそれぞれ別の
15 種として扱い、環境中動態を並行して推計する方法である。

- 一つ目の方法の例として、ECB (2003)⁶に示された解離性物質の環境評価方法や USES
 (van Beelen, 1998², 2000⁷)、多媒体モデルの RAIDAR (Arnot and Mackay, 2007⁸)及び水
 系 2 コンパートメントモデル SAFECAS (Yoshida et al., 1987⁹)では、イオン種に対してパ
- 19 ラメータを補正している。
- 20 二つ目の方法の例として、解離性物質への適用が可能な多媒体モデル MAMI では、非解
- 21 離種とイオン種の動態も考慮可能である(Franco and Trapp, 2010¹⁰)。EUSES (European
- 22 Union System for the Evaluation of Substances)にも組み込まれている多媒体モデル

- 4 NITE (2012) カテゴリーアプローチによる生物濃縮性予測に関する報告書 (カテゴリーⅢ).
- ⁵ Bromilow, R. H. and Chamberlain, K. (2000) Principles Governing Uptake and Transport of Chemicals. In: Trapp, S. and Mc Farlane, C. (ed.), Plant Contamination; Modeling and Simulation of Organic Chemical Processes, Lewis/CRC Press, Boca Raton, FL, 37–68.
- ⁶ ECB (2003) Technical Guidance Document on Risk Assessment, Part II.
- ⁷ van Beelen, P. (2000) The Risk Evaluation of Difficult Substances in USES 2.0 and EUSES. A Decision Tree for Data Gap Filling of Kow, Koc and BCF. RIVM report 679102050.
- ⁸ Arnot, J. and Mackay, D. (2007) Risk Prioritization for a Subset of Domestic Substances List Chemicals Using the RAIDAR Model. CEMC Report, No.200703.
- ⁹ Yoshida, K., Shigeoka, T. and Yamauchi, F. (1987) Evaluation of Aquatic Environmental Fate of 2,4,6-Trichlorophenol with a Mathematical Model. Chemosphere, 16(10–12), 2531–2544.
- ¹⁰ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

¹ Trapp, S., Franco, A. and Mackay, D. (2010) Activity-Based Concept for Transport and Partitioning of Ionizing Organics. Environ. Sci. Technol., 44, 6123–6129.

² van Beelen, P. (1998) Environmental Risk Evaluation of Difficult Substances in USES 2.0. RIVM report 679102045.

³ Schwarzenbach, R. P., Gschwend, P. M. and Imboden, D. M. (2003) Environmental Organic Chemistry, 2nd ed. John Wiley and Sons. New York.

Simplebox のバージョン 4.0 では、MAMI の一部の計算式を取り入れて、解離性物質の環
 境中動態推計を可能にしている。

3 一つ目の方法では、イオン種特有の動態を考慮することは難しい。本章では、イオン種
 4 の影響が大きい物質も評価できるように、イオン種と非解離種をそれぞれ別の種として扱
 5 い、環境中動態を並行して推計する方法を導入する。

6 本項では、V章、VI章及び VII 章に記載されている数理モデル 1において、各暴露シナ
7 リオごと、また使用している各モデルごとに解離性物質の環境中動態を推計する方法を記
8 載する。

9

10 X.2.4.1 排出源ごとの暴露シナリオにおける解離性物質の推計

11 排出源ごとの暴露シナリオにおいて、解離性物質特有の動態を考慮できるように、V章の
12 排出源ごとの暴露シナリオで用いる数理モデル(以下、「従来の暴露評価モデル」という)
13 の一部の数式やパラメータを変更したモデル(以下、「解離性モデル」という)について解説
14 する。

15 従来の暴露評価モデルについては、「V.3.3 環境中濃度推計」及び「V.7.3 環境中濃度16 推計に用いる数理モデル」を参照されたい。

17 なお、解離性モデルは暴露評価Ⅱ以降に適用される。よって、暴露評価Ⅰでは、V章に記
 18 載されている方法で評価する。また、暴露評価Ⅱ以降では、本章において解離性モデルに
 19 ついて記載した箇所以外は、V章に記載されている方法で評価する。

20 イオン種の環境中動態を考慮できる数式を従来の暴露評価モデルに組み込むため、図表

21 X-4 に示すように、Franco and Trapp (2010)²の MAMI の考え方をモデルに導入する。

 ¹ 化審法リスク評価ツール (PRAS-NITE)により、本数理モデルと同等の数式を用いた計算を 実施することができる(評価 I 及び評価 II (一部))。以下 URL からダウンロード可能である。 (http://www.nite.go.jp/chem/risk/pras-nite.html, 2017/1/20 アクセス)

² Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

1

 $\mathbf{2}$

図表 X-4 イオン種の環境中動態とその濃度推計手法の概要

3

MAMI は、多媒体モデルであり、局所モデルである従来の暴露評価モデルとは、想定し 4 ている環境条件や計算のための仮定などが異なる。そのため、従来の暴露評価モデルに、 5 6 イオン種の環境中動態を考慮するために必要となる MAMI の考え方や計算式を一部導入し た。解離性物質は、環境中において非解離種とイオン種として存在する。イオン種は、非 7 8 解離性の有機化合物や非解離種とは異なる性状を持つ。このため、本章で導入した考え方 では、非解離種とイオン種の動態をそれぞれに適した方法で推計するため、環境媒体ごと 9 の pH における非解離種とイオン種の化学種分率を計算し、推計に用いる物理化学的性状・ 10 生物蓄積性及び分解性データについては、必要に応じて、非解離種とイオン種それぞれの 11 値を準備するか、化学種分率をあらかじめ考慮するための補正を行う。また、環境媒体ご 12

1 とのイオン強度による影響も考慮する。さらに、大気において、イオン種はガス態として $\mathbf{2}$ は存在せず、粒子や霧、雨、雪などに分配しやすい傾向にある (Trapp et al., 2010)ため、 従来の暴露評価モデルでは考慮していなかった大気中浮遊粒子中の水分や大気中雲への溶 3 解を考慮する。また、非解離種では、土壌吸着係数と有機炭素の存在割合との相関が高い 4 と考えられているが、イオン種では、土壌中の有機及び無機の粒子表面の電荷による影響 $\mathbf{5}$ 6 も考えられる。このため、X.2.2.1 (3)に解離性物質の有機炭素補正土壌吸着係数に関する留 7意点を示したように、本章では解離性物質の特性を考慮した方法で環境中の粒子への吸着 を考慮する。(詳細は付属資料 X.3.1.2 (1)~X.3.1.2 (6)、X.3.1.2 (9)を参照されたい) 8 解離性物質は、生体への蓄積に対して、解離やイオントラップ、電気的な誘引と反発に 9 10 よる影響がある(Trapp, 20092)。イオン種は、非解離種と比較して、細胞膜を通過しにく 11 いため、環境中において非解離種として存在する化学物質が、植物体内に吸収されて植物 体内でイオン種として解離すると、そこに蓄積される場合がある。このような状態を「イ 12オントラップ」という (Bromilow and Chamberlain, 2000³)。このため、弱い電解質の物 13質は、そうでない物質と比較して植物体内に蓄積されやすい傾向がある(Trapp, 20004)。 14本章では、農産物については、Trapp (2009)2による解離性物質の植物モデルに関する考 15え方や計算式を一部導入した。この手法では、環境中と同様に、非解離種とイオン種の動 1617態をそれぞれに適した方法で推計するため、植物体内の媒体ごとの pH における非解離種と イオン種の化学種分率を考慮し、それぞれの物理化学的性状・生物蓄積性及び分解性デー 18タを用いて、植物体内の動態を推計する。この時、植物体内の各媒体の pH の違いによる化 1920学種分率の違いを考慮することにより、イオントラップを推計する。非解離種の媒体間の 21拡散は、濃度勾配を駆動力とする Fick の第一法則に基づいて計算するが、イオン種の拡散 22は、濃度勾配の他に電位勾配も考慮にいれた Nernst 式に基づいて計算する。また、根から の土壌間隙水の取り込みや葉からの大気中のガス態の化学物質の取り込み、植物体内の分 2324配の計算時には、植物体内の媒体ごとのイオン強度による影響も考慮する。(詳細は付属資 料 X.3.1.2 (7)を参照されたい)。 25

26 畜産物については、U.S. EPA (2005)⁵の HHRAP (Human Health Risk Assessment
27 Protocol for Hazardous Waste Combustion Facilities)と同様に、小腸内のpH を考慮した
28 見かけの1-オクタノールと水との間の分配係数 (logD)を用いて、基本的にはイオン種は生
29 体に取り込まれないことを仮定して、牛肉及び牛乳への移行係数を推計する。(詳細は付属

¹ Trapp, S., Franco, A. and Mackay, D. (2010) Activity-Based Concept for Transport and Partitioning of Ionizing Organics. Environ. Sci. Technol., 44, 6123–6129.

² Trapp, S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299–353.

³ Bromilow, R. H. and Chamberlain, K. (2000) Principles Governing Uptake and Transport of Chemicals. In: Trapp, S. and Mc Farlane, C. (ed.), Plant Contamination; Modeling and Simulation of Organic Chemical Processes, Lewis/CRC Press, Boca Raton, FL, 37–68.

⁴ Trapp, S. (2000) Modelling Uptake into Roots and Subsequent Translocation of Neutral and Ionisable Organic Compounds. Pest. Manag. Sci., 56(9), 767–778.

⁵ U.S. EPA (2005) Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities Final, EPA530-R-05-006.

1 資料 X.3.1.2 (8)を参照されたい)

2 魚介類中濃度については、従来の暴露評価モデルと同様の方法で推計する。ただし、生
 3 物濃縮倍率(*BCF*)は、X.2.2.1 (6)に示してある物質の解離性を考慮した値を用いる。

4

5 X.2.4.2 用途等に応じた暴露シナリオにおける解離性物質の推計

6 評価Ⅱの用途等に応じた暴露シナリオにおいて、解離性物質特有の動態を考慮する方法7 について、解説する。

8 従来の水系の非点源シナリオの暴露評価に用いる数理モデルでは、VI 章の「VI.2 水系
9 の非点源シナリオ」、「VI.2.1 水系の非点源シナリオの暴露評価 I」、「VI.2.1.4 水系の非
10 点源シナリオの環境中濃度の推計」及び「VI.6.2 水系の非点源シナリオ」に示されている
11 ように、V 章の環境中濃度推計に用いる数理モデルの式を用いている。解離性物質について
12 は、X.2.4.1 に示すような解離性物質の環境中動態を考慮し、従来の暴露評価モデルと同様
13 の方法で推計する。

14 従来の大気系の非点源シナリオの暴露評価に用いる数理モデルは、VI 章の「VI.3 大気
15 系の非点源シナリオ」、「VI.3.1 大気系の非点源シナリオの暴露評価 I」、「VI.3.1.4 大気
16 系の非点源シナリオの環境中濃度の推計」及び「VI.6.3 大気系の非点源シナリオ」、
17 「VI.6.3.1 環境中濃度の推計」に示されているように、V 章の環境中濃度推計に用いる数
18 理モデルの式を用いている。解離性物質については、X.2.4.1 に示すような解離性物質の環
19 境中動態を考慮し、従来の暴露評価モデルと同様の方法で推計する。

20 地下水汚染の可能性シナリオの暴露評価に用いる数理モデルも同様に、「VI.4 地下水汚
 21 染の可能性シナリオ」及び「VI6.4 地下水汚染の可能性シナリオ」に示されているように
 22 V 章の環境中濃度推計に用いる数理モデルの式を用いている。解離性物質については、

23 X.2.4.1 に示すような解離性物質の環境中動態を考慮し、従来の暴露評価モデルと同様の方
24 法で推計する。また、「VI6.4.3 地下水へ移行の可能性のある物質の抽出と順位付け」、
25 「VI6.4.3 (1) 地下水へ移行する可能性のある物質の抽出」、「VI6.4.3 (1)② log*Koc*を用
26 いた地下水へ以降する可能性がある物質の抽出」においてふるい分けに用いている log*Koc*27 (X.2.2.1 (3)で説明した有機炭素補正土壌吸着係数 (*Koc*)の常用対数値)は、土壌間隙水にお
28 ける値を用いる。

29 船底塗料用・漁網用防汚剤シナリオの暴露評価は、本章に示したような解離性物質特有
30 の性質について、十分に考慮したうえで、基本的には「VI.5 船底塗料用・漁網用防汚剤シ
31 ナリオ」の手法のとおりに実施する。例えば、船底塗料用・漁網用防汚剤シナリオで用い
32 るソフトウェアには、*Koc* 推計モジュールがあるが、基本的には X.2.2.1 (3)に記載した値を
33 用いる。

34

35 X.2.4.3 様々な排出源の影響を含めた暴露シナリオ及び残留性の評価における解離性 36 物質の推計

37 様々な排出源の影響を含めた暴露シナリオ及び残留性の評価で用いるモデルやデータに

1 応じて、X.2.4.1 に示すような解離性物質の環境中動態を考慮する。

 $\mathbf{2}$

1 X.3 付属資料

2 X.3.1 解離性物質の評価

3 X.3.1.1 はじめに

4 この付属資料では、X.2.4.1 に解説した排出源ごとの暴露シナリオにおける解離性モデル

5 の数式とパラメータ及びその設定の経緯等について説明する。X.3.1.2(1)~X.3.1.2(4)では、

6 各環境媒体中濃度の計算で共通して用いられるパラメータや計算式について説明し、

7 X.3.1.2 (5)以降では、環境媒体中濃度の計算方法について説明する。X.3.1.3 では、推計式

8 と環境中 pH の設定経緯について説明する。

9 解離性モデルでは、解離性物質特有の性質を留意(X.2.2.1)して収集及び精査された化学

10 物質に関するデータ (X.3.1.2 (1)①)を用い、必要に応じて pH により補正する (X.3.1.2 (3))。

11 各媒体中濃度は、基本的には従来の暴露評価モデルと同様に推計するが、水中では pH に応

12 じた化学種分率 (X.3.1.2 (2))を考慮し、イオン種の動態を推計する数式を導入する。

イオン種の環境中動態を考慮するためには、図表 X-5 に示すように、Franco and Trapp
 (2010)¹の MAMI の考え方をモデルに導入する。導入した数式については、以下のとおり
 である。

16

17 · 大気中濃度及び沈着量: X.3.1.2 (5)

18 · 土壌中濃度及び土壌間隙水濃度: X.3.1.2 (6)

19 · 水域濃度及び底質中濃度:X.3.1.2(9)

20

21 イオン種がガス態として存在せずに、粒子吸着態の他、粒子水分や雲への溶存態として
22 存在することを計算するため、対応する環境構成要素として大気粒子水分と雲を追加する。
23 本章で対象とする環境構成要素については、X.3.1.2 (1)②に説明し、計算に用いる環境構成
24 要素の特性データについて X.3.1.2 (1)③で説明する。また、これらの環境構成要素間におけ
25 る化学物質の分配を推計するためには、活量モデルを用いる。活量モデルについては、
26 X.3.1.3 (1)①で説明する。また、新たに使用することになった大気粒子固体・水分配係数

27 (Ksw)については、X.3.1.2(4)で説明する。

28 これらの環境中動態モデルの設定経緯については、X.3.1.3 (1)で説明する。

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

図表 X-5 イオン種環境中動態とその推計式の導入

4 農作物については、非解離種として生体膜を通過した物質が、体内でイオン種となり、
5 体外に排出されにくくなることにより、体内に蓄積されるイオントラップなどを考慮する
6 ため、Trapp (2009)¹の考え方をモデルに導入する。Trapp (2009)¹は、植物体内の分配係
7 数の計算の際に、植物体内構成要素ごとの pH による化学種分率と非解離種とイオン種の動
8 態の違いを考慮し、活量モデルを用いている。
9 本章でも図表 X-6 に示すように、この植物体内分配係数を大気中のガス態物質の葉・茎
10 への濃縮係数 (*Kleafair*)、植物の導管を流れる水分と土壌中水分の間の分配係数 (*TSCF*)及

11 び地下部農作物濃縮係数 (*RCF*)の推計に用いる。分配係数を適用する植物体内の構成要素
12 については、X.3.1.2 (1)②iv)で説明する。また、計算式はX.3.1.2 (7)④に示し、その導入方
13 法はX.3.1.3 (2)⑤に示す。

14

1

 $\mathbf{2}$

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

図表 X-6 イオン種植物体内動態とその推計式の導入

3

 $\mathbf{2}$

1

4 畜産物については、U.S. EPA (2005)の HHRAP¹にあるように、解離性物質の牛肉及び牛

5 乳への移行係数 (*BTF_{meat}* 及び *BTF_{milk}*)を推計するために、見かけの 1-オクタノールと水

6 との間の分配係数 (log*D*)を用いる。計算式は X.3.1.2 (8)に、その設定経緯は X.3.1.3 (3)で

7 説明する。

8 魚介類については、X.3.1.2 (9)③に説明するように、解離性物質特有の性質を留意した生
 9 物濃縮係数 (*BCF*)を用いて従来どおりの式で計算する。

10

11 X.3.1.2 排出源ごとの暴露シナリオにおける解離性モデルの数式とパラメータ

- 12 (1) 数理モデルに用いるパラメータ
- 13 ① 化学物質に関するデータ
- 14 本章で解説する数理モデルは、評価の準備 (I 章及び X.2.2)で選定された化学物質のデー
- 15 タの数値を用いる。
- 16

¹ HHRAP : U.S.EPA (2005) Humam Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities Final, EPA530-R-05-006.

記方	元 9月	単位	出典・	豕 煦先
MW	分子量	_	_	
$M\!P$	融点	°C	I 章	
$V\!P$	蒸気圧	Pa	I 章	
WS_n	非解離種の水に対する溶解度 ^{*1}	mg/L	X.2.2.	1 (1)
$\log Pow_n$	非解離種の 1-オクタノールと水との	間 —	X.2.2.	1 (2)
$\log Pow_i$	の分配係数 イオン種の 1-オクタノールと水との の分配係数	間	X.2.2.	1 (2)
Henrvn	非解離種のヘンリー係数	Pa•m³/mol	X.2.2.	1 (4)
Koc	有機炭素補正土壤吸着係数※2	L/kg	X.2.2.	1 (3)
Kd	土壤吸着係数*2	L/kg	X.2.2.	1 (3)
BCF	生物濃縮係数	L/kg	X.2.2.	1 (6)
BMF	生物蓄積係数	_	I章、	V 章
p <i>K</i> a <i>acid</i>	酸の酸解離定数		X.2.2.	1 (5)
p <i>K</i> a _{base}	塩基の酸解離定数		X.2.2.	1 (5)
Z	当該物質のイオン種の電荷※3		X.2.2.	1 (5)
$t_{1/2.sobio}$	土壌における生分解の半減期	dav	I 章	
+-10	土壌における加水分解の半減期	day	I章	
<i>l</i> 1/2.sowater		v	I 音	
t1/2,sowater <u>t1/2,sototal</u> ※1 「混和」の ※2 Kocの実測 した方法で、 算する。有機 (1)③vi)の(※3 本章では、	土壌における総括分解半減期 つ場合、pH で補正せず、最大値又は1× 別値が入手できない場合には、log <i>Pown及</i> 、 <i>Kocnと Koci</i> を推計する。また、入手し 送炭素含有率 (<i>OC</i>)は、入手した <i>Kd</i> 測定時 <i>OCsp</i> を用いる。 多塩基酸や多酸塩基であっても、環境の	<u>day</u> 10 ⁶ mg/L ¹ として想 び pKaacid、 pKab た実測値が Kd の 所の有機炭素含有率 の水中では 1 段しか	<u>1</u> 及う。 <i>ase</i> を用い 場合にに 3、又はデ か解離せず	って、X.2.2.1 (3)の た、式 X-10 で K フォルトとしてご げ、一塩基酸又は
 <i>t1/2,sowater</i> <i>t1/2,sototal</i> ※1 「混和」の ※2 Kocの実測 した方法で、 算する。有機 (1)③vi)のの ※3 本章では、 基とみなし 	<u>土壌における総括分解半減期</u> つ場合、pHで補正せず、最大値又は1× 則値が入手できない場合には、log <i>Pown及</i> 、 <i>Kocnと Kociを</i> 推計する。また、入手し 歳炭素含有率(<i>OC</i>)は、入手した <i>Kd</i> 測定時 <i>OCsp</i> を用いる。 多塩基酸や多酸塩基であっても、環境の うる物質を対象としているため、酸であ	<u>day</u> 10 ⁶ mg/L ¹ として想 び p <i>K</i> a _{acid} 、p <i>K</i> ab た実測値が <i>Kd</i> の 所の有機炭素含有率 の水中では1段しか れば-1、塩基であざ	<u>1</u> 吸う。 aseを用い 場合には こ、又はデ い解離せず れば+1 を	って、X.2.2.1 (3)の 、式 X-10 で K フォルトとして 、一塩基酸又は と用いる。
t1/2,sowater t1/2,sototal ※1 「混和」の ※2 Koc の実測 した方法で、 算する。有機 (1)③vi)のの (3) ※3 本章では、 本章では、	土壌における総括分解半減期 つ場合、pHで補正せず、最大値又は1× 別値が入手できない場合には、logPown及 、Kocnと Kociを推計する。また、入手し 後炭素含有率(OC)は、入手した Kd測定時 OCspを用いる。 多塩基酸や多酸塩基であっても、環境の うる物質を対象としているため、酸であ 質量濃度ではなく、モル濃度で計	<u>day</u> 10 ⁶ mg/L ¹ として想 び p <i>K</i> a <i>acid</i> 、 p <i>K</i> a <i>bi</i> た実測値が <i>Kd</i> の 所の有機炭素含有率 か水中では 1 段しか れば-1、塩基であえ 算する。 質量と	1 取う。 aseを用い 場合には こ スロビデ い解離せる れば+1 を モル間(って、X.2.2.1 (3)の た、式 X-10 で <i>K</i> フォルトとして デ、一塩基酸又は と用いる。 の換算には、 ²
t1/2,sowater <u>t1/2,sototal</u> ※1 「混和」の ※2 Koc の実測 した方法で 算する。有機 (1)③vi)のの ※3 本章では、 基とみなし 本章では、 量を用いる。	土壌における総括分解半減期 つ場合、pHで補正せず、最大値又は1× 別値が入手できない場合には、logPown及 、KocnとKociを推計する。また、入手し 歳炭素含有率(OC)は、入手したKd測定時 OCspを用いる。 多塩基酸や多酸塩基であっても、環境の うる物質を対象としているため、酸であ 質量濃度ではなく、モル濃度で計算 非解離種の水に対する溶解度(WS	<u>day</u> 10 ⁶ mg/L ¹ として想 び pKa _{acid} 、 pKab た実測値が Kd の 所の有機炭素含有率 の水中では 1 段しか れば-1、塩基であえ 算する。 質量と のもモルに換算	1 型う。 aseを用い 場合には ジスはデ い解離せず れば+1を して扱う	って、X.2.2.1 (3)(、式 X-10 で K フォルトとして デ、一塩基酸又は そ用いる。 の換算には、 う。
1/2,sowater <u>t1/2,sototal</u> ※1 「混和」の ※2 Koc の実測 した方法で、 算する。有機 (1)③vi)ののの (3) ※3 本章では、 基とみなし 本章では、 量を用いる。 (4) M = MW (4)	土壌における総括分解半減期 つ場合、pHで補正せず、最大値又は1× 別値が入手できない場合には、logPown及 、Kocnと Kociを推計する。また、入手し 総炭素含有率(OC)は、入手した Kd測定時 OCspを用いる。 多塩基酸や多酸塩基であっても、環境の うる物質を対象としているため、酸であ 質量濃度ではなく、モル濃度で計 非解離種の水に対する溶解度(WS	<u>day</u> 10 ⁶ mg/L ¹ として想 び pKa _{acid} 、pKab た実測値が Kdの 所の有機炭素含有率 か水中では1段しか れば-1、塩基であざ 算する。質量と る)もモルに換算	<u>1</u> 吸う。 aseを用い 場合ににデ 外閣社+1 を して扱う して扱う	って、X.2.2.1 (3)(3 、式 X-10 で <i>K</i> フォルトとして デ、一塩基酸又は さ用いる。 の換算には、 ² う。 式
$t_{1/2,sowater}$ $t_{1/2,sototal}$ ※1 「混和」の ※2 Kocの実測 した方法で 算する。有機 (1)③vi)のの ※3 本章では、 基とみなし 本章では、 量を用いる。 M = MW $WS_{n,mol} = - M$	土壌における総括分解半減期 つ場合、pHで補正せず、最大値又は1× 別値が入手できない場合には、log $Pow_n B$ 、 $Koc_n \ge Koc_i \ge t$ 推計する。また、入手し 後炭素含有率 (OC)は、入手した Kd 測定時 $DC_{sp} \ge \pi$ いる。 多塩基酸や多酸塩基であっても、環境の うる物質を対象としているため、酸であ 質量濃度ではなく、モル濃度で計 非解離種の水に対する溶解度(WS <u>WS_n</u> <u>I×1000</u>	<u>day</u> 10 ⁶ mg/L ¹ として想 び pKa _{acid} 、 pKab た実測値が Kd の 所の有機炭素含有率 か水中では 1 段しか れば-1、塩基であ 算する。 質量と のもモルに換算	1 型う。 aseを用い は 場合には デ い 解 能 +1 を 用い に に デ ・ 和 に に デ ・ 、 又 解 能 十 1 を の に に デ ・ 、 又 に に デ ・ 、 又 に に 、 、 又 に に 、 、 、 、 和 に 、 、 、 、 和 に 、 、 、 、 、 、 、 、 和 に 、 、 、 、 、 、 、 、 、 、 、 、 、	Nて、X.2.2.1 (3)(た、式 X-10 で K フォルトとして ず、一塩基酸又は さ用いる。 の換算には、 ³ う。 式
$t_{1/2,sowater}$ $t_{1/2,sototal}$ ※1 「混和」の ※2 Kocの実測 した方法で 算する。有機 (1)③vi)のの ※3 本章では、 基とみなし 本章では、 量を用いる。 M = MW $WS_{n,mol} = -$ 和量	土壌における総括分解半減期 つ場合、pHで補正せず、最大値又は1× 割値が入手できない場合には、logPown及、KocnとKociを推計する。また、入手し 歳炭素含有率(OC)は、入手したKd測定時 20%pを用いる。 多塩基酸や多酸塩基であっても、環境の うる物質を対象としているため、酸であ 質量濃度ではなく、モル濃度で計算 非解離種の水に対する溶解度(WS イ×1000 説明	day 10 ⁶ mg/L ¹ として想 び p/Ka _{acid} 、 p/Ka _b た実測値が Kdの 所の有機炭素含有率 の水中では 1 段しか れば-1、塩基であえ 算する。 質量と 分もモルに換算	1 上 値 Bojo asse を用いる 1 asse を用いる 小 1 小 水 1 ボン エレ ル して ひ	Aて、X.2.2.1 (3)(、式 X-10 で K フォルトとして デ、一塩基酸又は デ、一塩基酸又は デ、一塩基酸又は ご ご こ の換算には、 う 。 式 式
$t_{1/2,sowater}$ $t_{1/2,sototal}$ ※1 「混和」の ※2 Kocの実測 した方法で 算する。有機 (1)③vi)のの ※3 本章では、 基とみなし 本章では、 量を用いる。 M = MW $WS_{n,mol} = -\frac{1}{N}$	土壌における総括分解半減期 0場合、pHで補正せず、最大値又は1× 1値が入手できない場合には、logPown及、KocnとKociを推計する。また、入手し 歳炭素含有率(OC)は、入手したKd測定時 20%のを用いる。 多塩基酸や多酸塩基であっても、環境のうる物質を対象としているため、酸であ 質量濃度ではなく、モル濃度で計算 非解離種の水に対する溶解度(WS イ×1000 説明	<u>day</u> 10 ⁶ mg/L ¹ として想 び pKa _{acid} 、 pKab た実測値が Kd の 所の有機炭素含有率 か水中では 1 段しか れば-1、塩基であが 算 する。 質量と のもモルに換算	1 型う。 aseを用い は 調 か 調 の して扱 値	Nて、X.2.2.1 (3) は、式 X-10 で K フォルトとして ボ、一塩基酸又は さ用いる。 の換算には、 う。 式 式 出典・参照先
$t_{1/2,sowater}$ $t_{1/2,sototal}$ ※1 「混和」の ※2 Kocの実測 した方法で 算する。有機 (1)③vi)のの ※3 本章では、 基とみなし 本章では、 量を用いる。 M = MW $WS_{n,mol} = -\frac{1}{M}$ 記号 M	土壌における総括分解半減期 D場合、pHで補正せず、最大値又は1× 創値が入手できない場合には、logPown及、KocnとKociを推計する。また、入手し 炭素含有率(OC)は、入手したKd測定時 炭素含有率(OC)は、入手したKd測定時 OCspを用いる。 多塩基酸や多酸塩基であっても、環境のうる物質を対象としているため、酸であ 質量濃度ではなく、モル濃度で計算 非解離種の水に対する溶解度(WS WSn イ×1000 説明 モル質量 ハス長	<u>day</u> 10 ⁶ mg/L ¹ として想 び pKa _{acid} 、 pKab た実測値が Kd の 所の有機炭素含有率 か水中では 1 段しか れば-1、塩基であが 算する。 質量と 分)もモルに換算 単位 /mol	1 上 By 3 (1) asse character (1) asse character (1) (1) (1) <td< td=""><td>Nて、X.2.2.1 (3) は、式 X-10 で K フォルトとして デ、一塩基酸又は さ用いる。 の換算には、 つ の換算には、 式 式 出典・参照先</td></td<>	Nて、X.2.2.1 (3) は、式 X-10 で K フォルトとして デ、一塩基酸又は さ用いる。 の換算には、 つ の換算には、 式 式 出典・参照先
$t_{1/2,sowater}$ $t_{1/2,sototal}$ ※1 「混和」の ※2 Kocの実測 した方法で 算する。有機 (1)③vi)のの ※3 本章では、 基とみなし 本章では、 量を用いる。 M = MW $WS_{n,mol} = -\frac{1}{N}$ 記号 MW WC	土壌における総括分解半減期 D場合、pHで補正せず、最大値又は1× 順値が入手できない場合には、logPown及、Kocnと Kociを推計する。また、入手し 歳炭素含有率(OO)は、入手した Kd測定時のCspを用いる。 多塩基酸や多酸塩基であっても、環境のうる物質を対象としているため、酸であ 質量濃度ではなく、モル濃度で計算 非解離種の水に対する溶解度(WS イ×1000 説明 モル質量 ア子量 北欧難種の水に対する溶解度	<u>day</u> 10 ⁶ mg/L ¹ として想 び pKa _{acid} 、 pKab た実測値が Kdの 所の有機炭素含有率 か水中では 1 段しか れば-1、塩基であが 算 する。 質 量 と の)もモルに換算 単位 /mol	1 上 By 3 Amountain and a structure asse を用いる Amountain and a structure 小 Amountain and a structure 加 ア し 1 値 1	Aて、X.2.2.1 (3) な、式 X-10 で K フォルトとして デ、一塩基酸又は デ、一塩基酸又は デ、一塩基酸又は の換算には、 の換算には、 つ 立 式 式 出典・参照先 化学物質情報
$t_{1/2,sowater}$ $t_{1/2,sototal}$ ※1 「混和」の ※2 Koc の実測 した方法で 算する。有機 (1)③vi)のの ※3 本章では、 基とみなし 本章では、 量を用いる。 M = MW $WS_{n,mol} = -\frac{M}{N}$ 記号	土壌における総括分解半減期 つ場合、pH で補正せず、最大値又は 1× 川値が入手できない場合には、log Pown 及、Kocn と Kociを推計する。また、入手し 炭炭素含有率(OC)は、入手した Kd測定時 シ炭炭素含有率(OC)は、入手した Kd測定時 シワシッを用いる。 多塩基酸や多酸塩基であっても、環境の うる物質を対象としているため、酸であ 質量濃度ではなく、モル濃度で計算 非解離種の水に対する溶解度(WS) 松Sn イ×1000 説明 」 モル質量 g 分子量 非解離種の水に対する溶 非解離種の水に対する溶 n 解度(モル) n	<u>day</u> 10 ⁶ mg/L ¹ として想 び pKa _{acid} 、 pKab た実測値が Kd の 所の有機炭素含有率 の水中では 1 段しか れば・1、塩基であが 算 する。 質量と 分)もモルに換算 単位 /mol — nol/L	1 上 By 3 Amountain and the second	Aて、X.2.2.1 (3) な、式 X-10 で K フォルトとして デ、一塩基酸又は 2用いる。 の換算には、 ² う。 式 式 出典・参照先 化学物質情報

図表 X-7 数理モデルに使用する化学物質のデータ

 水と混和する物質について計算するときには、参考値として 1×10⁶ mg/L を用いる。EPI Suite の WSKOWWIN (U.S. EPA, 2012)の推計手法をまとめた文献 (Meylan and Howard, 1994) では、推計に用いる回帰式を求める際に、水に混和する物質の溶解度を 1×10⁶ mg/L として いる。また、水に対する溶解度の推計結果が 1×10⁶mg/L を超える場合には、最大値として 1 ×10⁶ mg/L を出力するとしている。

32

非解離種の無次元へンリー係数 (*H_n*)は、図表 X-7 の非解離種のヘンリー係数 (*Henry_n*)
 と式 X-26 で関係づけられる。

4

 $\mathbf{5}$

1

$$H_n = \frac{Henry_n}{R \times T}$$

式 X-26

6

記号	説明	単位	値	出典・参照先
H_n	非解離種の無次元ヘンリ 一係数	—		Franco and Trapp (2010)1
Henryn	非解離種のヘンリー係数	Pa•m³/mol		化学物質情報
R	気体定数	J/mol/K	8.314	—
T	絶対温度における環境温	Κ	293.15	V 章 p.67
	度			

7

8 **2**環境の構成要素

9 環境及び植物と牛体内の媒体及びそれらを構成する要素について説明する。

10

11 i) **大気**

12 大気は、その容積のほとんどを占める空気と、微量の浮遊粒子で構成される。浮遊粒子
 13 は、一般的に、硫酸、炭素(煤)、多種類の微量金属、そして水から成る (Kim and
 14 Seinfeld,1993²)。

15 従来の暴露評価モデルでは、図表 X-8に示すように、晴天時にはガス態と粒子への吸着
を考慮し、雨天時には、さらにそれぞれの雨水への取り込みを考慮している。イオン種が
大気中水分へ分配することを考慮するため、本章のモデルでは、Franco and Trapp (2010)¹
に倣って、大気中の浮遊粒子中水分と雲への分配についてもモデル化する。大気中の浮遊
粒子は、均質な水と均質な固体で構成されており、これらに化学物質が分配されるとして
20 いる。また、雲³を新たに均質な水⁴から成る大気の構成要素として組み込んでいる。浮遊粒
21 子の水分と雲の中で解離性物質は解離しうる。

22 以下に示すように、本章のモデルでは、晴天時の大気は、空気 (aa)、粒子固体 (浮遊粒

23 子固体) (aps) 及び粒子水分 (浮遊粒子水分) (apw) で構成されるとする。一方、雨天時の大気

24 は、空気 (aa)、粒子固体 (aps)、粒子水分 (apw)及び雲 (ac)で構成されるとする。

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

² Kim, Y. P., Seinfeld, J. H. and Saxena, P. (1993) Atmospheric Gas-Aerosol Equilibrium I. Thermodynamic model. Aerosol Sci. Tech., 19(2), 157–181.

³ Franco and Trapp (2010)では、大気中水蒸気量の想定値と大気柱雲水量/大気柱水蒸気量比の 積を大気中の雲の体積分率としている。

⁴ 様々な物質を溶解した均質な水であり、温度は 20℃、密度は 1 kg/L、pH は 4.8、イオン強度 は 2×10⁻⁴mol/L とする。

6 晴天時と雨天時の大気中での質量分布比を従来の暴露評価モデルと同様に、以下のよう7 に定義する。

8 FA:晴天時に大気空気 (aa)中に存在する物質量/大気中に存在する物質全量 (=1-FP)

9 FP:晴天時に大気粒子 (aps+apw) 中に存在する物質量/大気中に存在する物質全量

10 FAA: 雨天時に大気空気 (aa)中に存在する物質量/大気中に存在する物質全量

11 FAP: 雨天時に大気粒子 (aps+apw)中に存在する物質量/大気中に存在する物質全量

12

2

 $\frac{3}{4}$

 $\mathbf{5}$

1

13 ii) 土壤

14 土壌については、従来の暴露評価モデルと解離性モデルの構成要素で違いはない(図表

- $15 \quad X-9)_{\circ}$
- 16

¹ 活量容量:フガシチーモデルで、濃度(C)を、フガシチー(f)とフガシチー容量(Z)の積で計算するのと同様に、解離性モデルでは、濃度(C)を、活量(a)と活量容量(B)の積として計算している(Franco and Trapp, 2010)。本章で解説する解離性モデルでは、環境媒体を構成する各要素への質量分布比を計算する際に、活量容量 B 値を使用している。

9 iii) 水域及び底質

10 水域及び底質については、淡水域と海水域のpHの違いを考慮することを除き、従来の暴

11 露評価モデルの構成要素に違いはない (図表 X-10)。

12

13

図表 X-10 水域及び底質の構成要素

 $\frac{14}{15}$

16 iv) 植物

- 17 植物の解離性モデルでは、植物体内の電荷や pH によるイオン種への影響を考慮するため、
- 18 Trapp (2009)1に倣って、植物体内の細胞小器官を含めてモデル化する。Trapp (2009)1では、
- 19 植物細胞は細胞質と液胞で構成されると考えている。細胞の外は、アポプラスト(細胞膜の
- 20 外側にある細胞壁と空間)である。また、植物は、植物細胞を構成する細胞質と液胞の他、

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

木部と師部から構成されるとしている。土壌間隙水は、毛根から植物体内に吸収され、油
 性のカスパリー線の外側に存在する表皮細胞間の隙間(つまりアポプラスト)を自由に通る
 ことができる(Mc Farlane, 1995¹)。根から吸収された水分を葉や茎へ運ぶ木部と葉から養
 分を運ぶ師部は、このカスパリー線内側に存在する。

5 本章でも同様に、図表 X-11 に示すように、植物は細胞質、液胞、木部から構成されると
6 し、環境中化学物質は、細胞質を通じて植物体内に取り込まれるとする。師部は果実のモ
7 デル化のため使われているため、本章では考慮しない。

8

9 10

図表 X-11 本章における植物体内の構成要素

11

12 図表 X-12 に環境媒体 (*xm*)やそれを構成する要素 (*xe*)を示し、図表 X-13 に植物及び牛
 13 体内の媒体 (*xm*)を示す。本章では数式中では、これらの媒体や要素を特定するために、変
 14 数の添え字としてここで示した記号を用いる。なお、*xm* と *xe* の総称として *x* を用いるこ
 15 とがある。

16

17 ③ 環境及び環境構成要素の特性データ

18 解離性モデルで考慮する環境及び植物等の構成要素の特性には、体積分率 (f)、pH、イ
 19 オン強度(I)、活量係数 (y)、有機炭素含有率 (OC) がある。いずれも、図表 X-12 と図表
 20 X-13 に示した各媒体やその構成要素ごとの値である。

21

22

図表 X-12 環境中の媒体 (xm)と構成要素 (xe)

環境媒体(<i>xm</i>)					
		構成要素 (xe)			_
			構成要素の水	構成要素の粒	
			(<i>xew</i>)**	子及びその近	
	記号			傍水 (xep) *	記号
		空気			aa
十与		粒子			ар
ЛЖ	a	水分	0		apw
		固体		0	aps

¹ Mc Farlane, J.C. (1995) Anatomy and Physiology of Plant Conductive Systems. .In: Trapp, S. and Mc Farlane, C. (ed.), Plant Contamination; Modeling and Simulation of Organic Chemical Processes, Lewis/CRC Press, Boca Raton, FL, 13-34.

X. 性状等に応じた暴露評価における扱い Ver.1.0 令和2年5月

			雲	0		ac	
			空気			sa	
土壌		\boldsymbol{S}	水	0		SW	
			粒子		0	sp	
	淡水 海水	f	水	0		wfw	
		W1	懸濁粒子		0	wfp	
小坝			水	0		WSW	
		毋小 WS	懸濁粒子		0	wsp	
	淡水	of	水	0		efw	
底質		灾小 ei	懸濁粒子		0	efp	
	流水	00	水	0		esw	
	海水	海水	海水	es	懸濁粒子		0

1

※ 本章の解離性モデルで取り扱う環境構成要素であることを示す。

$\frac{2}{3}$

また、植物及び牛体内の媒体 (xm)は、図表 X-13 に示すとおりである。

4

 $\mathbf{5}$

図表 X-13 植物及び牛体内の媒体 (xm)

植物	及び牛体内の媒体 (<i>xm</i>)	記号
植物 細胞質		cytosol
	木部	xylem
	液胞	vacuole
牛	牛の小腸	COW

6

7 i) 体積分率 (f)

8 環境媒体中の各要素 (xe)の体積分率 (fxe)を図表 X-14 に示す。

9

10

図表 X-14 環境媒体中の構成要素 (xe)の体積分率 (fre)

記号	説明	単位	値	出典・参照先
f_{aa}	大気空気の体積分率		≒1	Franco and Trapp
				(2010), Sup. Table
				$S1^1$
f_{apw}	大気粒子水分の体積分率	—	2×10^{-11}	Franco and Trapp
	(従来の暴露評価モデルで			(2010), Sup. Table
	は0に設定)			$S1^1$
f_{aps}	大気粒子固体の体積分率	—	2×10^{-11}	Franco and Trapp
				(2010), Sup. Table
				$S1^1$
f_{ac}	大気雲の体積分率(従来	—	雨天時:3×10 ⁻⁷	Franco and Trapp
	の暴露評価モデルでは 0			(2010), Sup. Table
	に設定)			$S1^{1\!$
				(晴天時は0とした)
f_{wfw}	淡水域の水の体積分率	—	≒1	Franco and Trapp

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

X. 性状等に応じた暴露評価における扱いVer.1.0 令和2年5月

記号	説明	単位	値	出典・参照先
				$(2010)^1$
$f_{\scriptscriptstyle WSW}$	海水域の水の体積分率	—	—	—
f_{wfp}	淡水域の懸濁粒子の体積	—	$2 imes10^{-5}$	=CWss/RHOsolid V
	分率			章 p.102、p.106
f_{wsp}	海水域の懸濁粒子の体積	—	—	_
	分率			
f_{efw}	淡水域の底質間隙水の体	—	0.9	=Fwater _{susp} V 章
	積分率			p.106
f_{esw}	海水域の底質間隙水の体	—	—	
	積分率			
f_{efp}	淡水域の底質粒子の体積	—	0.1	=Fsolid _{susp} V 章
-	分率			p.106
f_{esp}	海水域の底質粒子の体積	—	—	_
-	分率			

 ※ Franco and Trapp (2010)¹では、大気中水蒸気量の想定値(7.5×10⁻⁶ [m³ / m³])と大気柱雲水量 / 大気 柱水蒸気量比 (900 [g/m²] / (2×10⁴) [g/m²])の積を大気中の雲の体積分率(3×10⁻⁷)としている。

$\frac{2}{3}$

1

4 ii) 水素イオン濃度指数 (pH)

5 環境媒体中の構成要素の水 (*xew*)の pH_{xew} を図表 X-15 に示す。

6

 $\overline{7}$

図表 X-15 環境媒体中の構成要素の水 (xew)の pH zew

	114 日	光存	は	山曲
記万	記明	- 甲位	10.	山典・参照元
pH_{apw}	大気粒子水分の pH	—	3	Franco and
				Trapp (2010) ,
				Sup. Table S1 ¹
pH_{ac}	大気雲の pH	—	4.8	X.3.1.3 (4)
pH_{sw}	土壤間隙水の pH	—	5.9	X.3.1.3 (4)
pH_{wfw}	淡水域の水の pH	—	7.6	X.3.1.3 (4)
pH_{wsw}	海水域の水の pH	—	8.2	X.3.1.3 (4)
$\mathrm{pH}_{\mathit{efw}}$	淡水域の底質間隙水の pH	—	7.6	X.3.1.3 (4)
pH_{esw}	海水域の底質間隙水の pH	_	8.2	X.3.1.3 (4)

8

9 Franco and Trapp (2010) は、土壌と底質では粒子中の有機物の影響により、それらの

10 粒子近傍水とバルク水のpHは異なると仮定している。粒子近傍水のpHには、X.2.2.1 (3)

11 ③iiii)~X.2.2.1 (3)③v)に示した*Koc*回帰式のpHを調整して、最適化したpHを採用してい

12 (Franco and Trapp, 2008², Franco and Trapp, 2010¹) $_{\circ}$

13 本章でも同様に、環境媒体中の構成要素の粒子近傍水 (xep)のpH_{xep}にFranco and

- 14 Trapp (2010)¹の値を設定する。
- 15 大気と水域の粒子及びその近傍水 pHxep は、その粒子が含まれる環境媒体要素の水の

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

² Franco, A. and Trapp, S. (2008) Estimation of the Soil-Water Partition Coefficient Normalized to Organic Carbon for Ionizable Organic Chemicals. Environ. Chem., 27(10), 1995–2004.

1	nH レ同じレオス	
1	$DII_{XeW} \subseteq PI \cup \subseteq \mathscr{Y} \mathcal{A}_{O}$	

2

3 $pH_{xep} = pH_{xew}$

式 X-27

4 説明 出典・参照先 記号 単位 値 Franco and Trapp pH_{xep} *xep*ごとの pH *1 (2010)1, Franco et.al $(2009)^2$, Franco and Trapp $(2008)^3$ *xew*ごとの pH *2 pH_{xew} 図表 X-15 本式で対象にする環境媒体の構成要素の粒子及びその近傍水(xep)は、大気中の粒子固体(aps)、淡 $\mathbf{5}$ ₩1 6 水域の懸濁粒子 (wfp)、海水域の懸濁粒子 (wsp)である。 7※2 本式で対象にする環境媒体の構成要素の水 (xew)は、大気中の粒子水分 (apw)、淡水水 (wfw)、海水 8 水 (wsw)である。 9 10 土壌と底質粒子及びその近傍水の pHxepは、以下の式で、その粒子が含まれる環境媒体要 素の水のpHxewを用いて計算する。 11 12酸: 13 $pH_{xep} = pH_{xew} - 0.6$ 14式 X-28 塩基: 15 $pH_{xep} = 4.5$ 16式 X-29 両性物質: 17 $pH_{xep} = 5$ 18式 X-30 記号 説明 単位 値 出典・参照先 *xep*ごとの pH ^{※1} pH_{xep} Franco and Trapp (2010)¹, Franco et.al (2009)², Franco and Trapp $(2008)^3$ *xew*ごとの pH *2 pH_{xew} 図表 X-15 ※1 本式で対象にする環境媒体の構成要素の粒子及びその近傍水 (xep)は、土壌中の粒子 (sp)、淡水域の 19

20 底質粒子 (efp)、海水域の底質粒子 (esp)である。

21 ※2 本式で対象にする環境媒体の構成要素の水 (xew)は、土壌間隙水 (sw)、淡水域の底質間隙水 (efw)、

22 海水域の底質間隙水 (esw)である。

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

² Franco, A., Fu, W. and Trapp, S. (2009) Influence of Soil pH on the Sorption of Ionizable Chemicals: Modeling Advances.Environ. Tech. Chem., 28(3), 458–464.

³ Franco, A. and Trapp, S. (2008) Estimation of the Soil-Water Partition Coefficient Normalized to Organic Carbon for Ionizable Organic Chemicals. Environ. Chem., 27(10), 1995–2004.

2 植物及び牛体内の媒体 (xm)ごとの pH_{xm}を図表 X-16 に示す。

3

1

4

図表 X-16 植物及び牛体内の各媒体 (xm)の pHxm

記号	説明	単位	値	出典・参照先
$pH_{cytosol}$	細胞質の pH	_	7	X.3.1.3 (2)⑦
$\mathrm{pH}_{\mathit{vacuole}}$	液胞の pH	—	5.5	X.3.1.3 (2)⑦
pH_{xylem}	木部の pH	—	5.5	X.3.1.3 (2)⑦
pH_{cow}	牛の小腸の pH	—	7	X.3.1.3 (3)

 $\mathbf{5}$

6 iii) イオン強度 (*I*)

7 イオン強度 (I)は、溶液中の各イオン種 (ion)のモル濃度を (mion[mol/L])、その電荷を
 8 (zion)とした時、次式で表される。

9

10
$$I = \frac{1}{2} \times \sum_{ion} (m_{ion} \times z_{ion}^2)$$
 (ion = 全てのイオン種) 式 X-31

11

記号	説明	単位	値	出典・参照先
Ι	イオン強度	mol/L		日本化学会, 2004 ¹
mion	溶液中の各イオンのモル	mol/L	_	—
	濃度			
Zion	溶液中の各イオンの電荷			—

12

イオン強度は、環境媒体の要素の水分ごとの特性値である。本章では、Franco and Trapp
 (2010)²と同様に、大気中の粒子水分、雲、雨は同じイオン強度をもつことを仮定する。環
 境媒体 (*xm*)ごとのイオン強度 (*I_{xm}*)を図表 X-17 に示す。

16

17

図表 X-17 環境媒体 (xm)のイオン強度 (Ixm)

記号	説明	単位	値	出典・参	☆照先	
Ia	大気中のイオン強度	mol/L	2×10^{-4}	Franco	and	Trapp
				(2010),	Sup. Ta	able $S1^2$
I_s	土壌のイオン強度	mol/L	0.03	Franco	and	Trapp
				(2010),	Sup. Ta	able $\mathrm{S1^2}$
I_{wf}	淡水域のイオン強度	mol/L	0.003	Franco	and	Trapp
				(2010),	Sup. Ta	able $S1^2$
I_{ws}	海水域のイオン強度	mol/L	0.5	Franco	and	Trapp
				(2010),	Sup. Ta	able $\mathrm{S1^2}$
I_{ef}	淡水域底質のイオン強度	mol/L	0.003	Franco	and	Trapp
				(2010),	Sup. Ta	able $\mathrm{S1^2}$
I_{es}	海水域底質のイオン強度	mol/L	0.5	Franco	and	Trapp

1 日本化学会 (2004) 化学便覧 改訂 5 版, 基礎編. 丸善.

² Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

-				
記号	説明	単位	値	出典・参照先
				(2010), Sup. Table $S1^1$

 $\frac{1}{2}$

植物体内の媒体 (xm)ごとのイオン強度 (Ixm)を図表 X-18 に示す。

 $\frac{3}{4}$

図表 X-18 植物体内の各媒体 (xm)のイオン強度 (Ixm)

記号	説明	単位	値	出典・参照先
Icytosol	細胞質のイオン強度	mol/L	0.3	X.3.1.3 (2)⑦ 図表 X-32
$I_{vacuole}$	液胞のイオン強度	mol/L	0.3	X.3.1.3 (2)⑦ 図表 X-32
Ixylem	木部のイオン強度	mol/L	0.01	X.3.1.3 (2)⑦ 図表 X-32

 $\mathbf{5}$

6 iv) 活量係数 (*Y*)

7 活量係数は、環境媒体の要素の水分ごとの特性値であり、粒子近傍水 (*xep*)の活量係数は、
8 同じ要素の水に等しいと仮定する。イオン強度(*I_{xm}*)は環境媒体 (*xm*)ごとの値であり、イオ
9 ン強度から計算される活量係数も、*xm* ごとの値である。非解離種 (*n*)の活量係数 (*γ_{xm}*)
10 及びイオン種 (*i*) の活量係数 (*γ_{xm}*)は、それぞれ Setchenov 式である式 X-32 及び
11 Debye-Hückel 式の Davis 近似式である式 X-33 で計算する。

は3
$$\gamma_{xmn} = 10^{k_s \times I_{xm}}$$
 式 X-32

14
$$\log \gamma_{xm\,i} = -A \times z_i^2 \times \left(\frac{\sqrt{I_{xm}}}{\sqrt{I_{xm}}+1} - 0.3 \times I_{xm}\right)$$
 $\not{\mathbb{R}} X-33$

15

16 ここで、*xm*は、環境媒体(*xm* = *a*、*s、wf、ws、ef、es*)、植物体内の各媒体(*xm* = *cytosol*、
 17 *xylem、vacuole*)又は測定環境を表す。

18

記号	説明	単位	値	出典・参照先
γ xm,n	<i>xm</i> ごとの非解離種活量係 数		—	Franco and Trapp (2010)1
γ xm,i	<i>xm</i> ごとのイオン種活量係 数		—	Franco and Trapp (2010) ¹
k_s	Setchenov 係数	L/mol	0.3	Franco and Trapp (2010) ¹
A	Debye-Hückel 式定数	_	0.5	Franco and Trapp (2010) ¹ (20℃、1 気 圧 における値)
Zion	当該物質のイオン種 (j)の 電荷		—	化学物質情報
Ixm	xmごとのイオン強度	mol/L	—	図表 X-17、図表 X-18

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

- 1 v) 粒子の密度 (*ρ*)
- 2 各環境媒体を構成する要素の粒子 (xep)の密度 (ρxep)を図表 X-19 に示す。
- 3

4

図表 X-19 環境媒体を構成する粒子要素の密度 (pxp)

記号	説明	単位	値	出典・参照先
$ ho_{aps}$	大気粒子固体の密度	kg/L	1.5	= _{ク p} [kg/m³]/1000 V 章 p.67
$ ho_{sp}$	土壌粒子の密度	kg/L	1.5	=DEN _{SOS} V 章 p.67
$ ho_{efp}$	淡水域の底質粒子の密度	kg/L	2.5	=RHOsolid[kg/m³] /1000 V 章 p.106、 p.107
$ ho_{esp}$	海水域の底質粒子の密度	kg/L	2.5	=RHOsolid[kg/m³] /1000 V 章 p.106、 p.107

5 6

vi) 有機炭素含有率 (OC)

7 各環境媒体を構成する要素の粒子 (xep)の有機炭素含有率 (OCxep)を図表 X-20 に示す。

8

9

図表 X-20 粒子 (xep)の有機炭素含有率 (OCxep)

記号	説明	単位	値	出典・参照先
OC_{aps}	大気粒子固体の有機炭素 含有率	_	0.1	Franco and Trapp (2010) Sup. Table S1 ¹
OC_{sp}	土壌粒子の有機炭素含有 率		0.04	=OCsos V章 p.67
OC_{wfp}	淡水域の懸濁粒子の有機 炭素含有率		0.1	= <i>FOC</i> susp V 章 p.67
OC_{wsp}	海水域の懸濁粒子の有機 炭素含有率		0.1	= <i>FOC</i> susp V 章 p.67
OC_{efp}	淡水域の底質粒子の有機 炭素含有率		0.1	= <i>FOC</i> susp V章 p.67
OC_{esp}	海水域の底質粒子の有機 炭素含有率	—	0.1	= <i>FOC</i> susp V 章 p.67

10

11 (2) 化学種分率の計算

12 解離性物質は水中で一部又は完全に解離して、非解離種	やイオン種を生じる。その化	ጏ学
------------------------------	---------------	----

- 13 種の生じる割合、化学種分率 (φ)は、水の pH と酸及び塩基の酸解離定数 (pKa.acid、
- 14 pKa.base)から Henderson-Hasselbalch 式で算出できる。
- 15 非解離種 (n)、アニオン (a)及びカチオン (c)の化学種分率は、図表 X-21 に示す環境媒

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

体の構成要素と植物及び牛体内媒体 (x)ごとに計算する。x ごとの pHxは、環境媒体の構成
 要素の粒子及びその近傍水 (xep)については、式 X-27~式 X-30 (39~39 ページ)の方法で
 推計し、それら以外については、図表 X-15 (38 ページ)及び図表 X-16 (40 ページ)の値を用
 いる。

 $\mathbf{5}$

6 図表 X-21 化学種分率 (φ)を計算する環境媒体と植物及び牛体内媒体及びその構成要素 (x)

環境媒体と植物及び牛体内媒体 (xm)					
		構成要素(xe)	構成要素の水	構成要素の粒	
			(xew)	子及びその近	
				傍水 (<i>xep</i>)	記号
大気		粒子 水分	0		apw
		固体		0	aps
		雲	0		ac
上垴		粒子		0	sp
工壌		水	0		SW
	淡水	懸濁粒子		0	wfp
	砍爪	水	0		wfw
小坝	海水	懸濁粒子		0	wsp
		水	0		WSW
	淡水	懸濁粒子		0	efp
庌斦		水	0		efw
広貝	海水	懸濁粒子		0	esp
		水	0		esw
	細胞質	—	—	—	cytosol
植物	木部	—	—	—	xylem
	液胞	—	—	—	vacuole
牛	牛の小	—	—	—	COW
	腸				

7

8 非解離性物質の計算を実施する場合には、*x*ごとの非解離種分率(φ_{xn})、アニオン種分率
 9 (φ_{xa})及びカチオン種分率(φ_{xa})はそれぞれ1、0、0となる。酸、塩基及び両性物質につい
 10 ては、式 X-34~式 X-43 で計算する。

11 12酸: 酸解離基をもつ物質 13 $\phi_{x.n} = \frac{1}{1 + 10^{\text{pH}_x - \text{pKa}_{acid}}}$ 式 X-34 14 $\phi_{x.a} = 1 - \phi_{x\,n}$ 式 X-35 15 $\phi_{rc} = 0$ 式 X-36 161718 19

記号	説明	単位	値	出典・参照先
ф х.п	xごとの非解離種分率**	—		Franco and Trapp

X. 性状等に応じた暴露評価における扱い Ver.1.0 令和2年5月

記号	説明	単位	値	出典・参照先
				$(2010)^1$
ф х.а	xごとのアニオン種分率**	—		Franco and Trapp (2010) ¹
ф х.с	xごとのカチオン種分率※	—	0	Franco and Trapp (2010) ¹
pH _x	x ごとの pH^*	—	—	図表 X-15、図表 X-16、式 X-27~式
17				

	p <i>K</i> a _{acid}	酸の酸解離定数			化学物質情報
1	※ 本式で	対象にする媒体やそれを構成する	要素 (x)は、大気中の料	位子水分(apw))、大気中の雲 (ac)、土
2	壤間隙;	水 (sw)、淡水域の水 (wfw)、海水垣	成の水 (wsw)、大気中	の粒子固体 (ap) 、土壌中の粒子 (<i>sp</i>)、
3	淡水域	の懸濁粒子(wfp)、海水域の懸濁粒	子 (wsp)、淡水域の底質	質粒子(efp)、海	i水域の底質粒子 (esp)、
4	植物の	細胞質(<i>cytosol</i>)、植物の液胞(va	<i>cuole</i>)、植物の木部(x	<i>ylem</i>)、牛の小	腸 (<i>cow</i>)である。
5					
6	塩基:均	塩基解離基をもつ物質			
7					
8	$\phi_{xn} = \frac{1}{1}$	$\frac{1}{+10^{pKa_{base}-pH_x}}$			式 X-37
9	$\phi_{x.a}=0$				式 X-38
10	$\phi_{x.c} = 1$	$-\phi_{x.n}$			式 X-39
11					
	記号	説明	単位	値	出典・参照先
	ф х.п	xごとの非解離種分率			Franco and Trapp (2010) ¹
	4	ブレのマーナン任八本	1	0	T

Ф х.а	xことのアニオン種分率	—	0	Franco and Trapp
				$(2010)^{1}$
$\phi_{x.c}$	xごとのカチオン種分率	—		Franco and Trapp
				$(2010)^1$
p <i>K</i> a _{base}	塩基の酸解離定数	—		化学物質情報
${}_{\mathrm{pH}_{x}}$	xごとの pH	—	_	図表 X-15、図表
				X-16、式 X-27~式
				X-30

12	*	本式で対象にする環境媒体やそれを構成する要素(x)は、大気中の粒子水分(apw)、大気中の雲(ac)、
13		土壤間隙水 (sw)、淡水域の水 (wfw)、海水域の水 (wsw)、大気中の粒子固体 (ap)、土壤中の粒子 (sp)、
14		淡水域の懸濁粒子 (wfp)、海水域の懸濁粒子 (wsp)、淡水域の底質粒子 (efp)、海水域の底質粒子 (esp)、
15		植物の細胞質 (cytosol)、植物の液胞 (vacuole)、植物の木部 (xylem)、牛の小腸 (cow)である。
16		

17 両性物質(双性イオン以外):酸解離基と塩基解離基をもつ物質²

19
$$\phi_{xn} = \frac{1}{1 + 10^{pH_x - pKa_{acid}} + 10^{pKa_{base} - pH_x}}$$
式 X-40
20 $\phi_{xa} = \phi_{xn} \times 10^{pH_x - pKa_{acid}}$ 式 X-41

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

² 両性物質の詳細については、X.2.1(2)を参照されたい。

1 $\phi_{xc} = \phi_{xn} \times 10^{pKa_{base} - pH_x}$

式 X-42

3					
	記号	説明	単位	値	出典・参照先
	φ x.n	xごとの非解離種分率			Franco and Trapp (2010) ¹
	ф <i>х.</i> а	xごとのアニオン種分率	—		Franco and Trapp (2010) ¹
	ф х.с	xごとのカチオン種分率	_		Franco and Trapp (2010) ¹
	pH _x	xごとの pH		_	図表 X-15、図表 X-16、式 X-27~式 X-30
	p <i>K</i> a <i>_{acid}</i>	酸の酸解離定数			化学物質情報
	p <i>K</i> a <i>base</i>	塩基の酸解離定数	—		化学物質情報

4 ※ 本式で対象にする環境媒体やそれを構成する要素(x)は、大気中の粒子水分(apw)、大気中の雲(ac)、
5 土壌間隙水(sw)、淡水域の水(wfw)、海水域の水(wsw)、大気中の粒子固体(ap)、土壌中の粒子(sp)、
6 淡水域の懸濁粒子(wfp)、海水域の懸濁粒子(wsp)、淡水域の底質粒子(efp)、海水域の底質粒子(esp)、
7 植物の細胞質(cytosol)、植物の液胞(vacuole)、植物の木部(xylem)、牛の小腸(cow)である。
8

9 イオン種分率は、式 X-43 の示すようにアニオン種分率とカチオン種分率の和である。

10

 $\mathbf{2}$

 $\phi_{x,i} = \phi_{x,a} + \phi_{x,c}$ 11

式 X-43

12

記号	説明	単位	値	出典・参照先
ф х.і	xごとのイオン種分率	—	—	—
ф х.а	xごとのアニオン種分率	—	—	式 X-35、式 X-38、
				式 X-41
ф х.с	xごとのカチオン種分率	—	—	式 X-36、式 X-39、
				式 X-42
	たい レス 畑 は (世山 た ス し よ) 世 小 レスコ			

※ 本式で対象にする環境媒体やそれを構成する要素 (x)は、大気中の粒子水分 (apw)、大気中の雲 (ac)、
 土壌間隙水 (sw)、淡水域の水 (wfw)、海水域の水 (wsw)、大気中の粒子固体 (ap)、土壌中の粒子 (sp)、
 淡水域の懸濁粒子 (wfp)、海水域の懸濁粒子 (wsp)、淡水域の底質粒子 (efp)、海水域の底質粒子 (esp)、
 植物の細胞質 (cytosol)、植物の液胞 (vacuole)、植物の木部 (xylem)、牛の小腸 (cow)である。

17

18 (3) pH で補正が必要な化学物質に関するデータ

各媒体を構成する要素 (*xe*)ごとの見かけの水に対する溶解度 (*WS_{xe}*)は、非解離種の水に
 対する溶解度 (モル) (*WS_{n,mol}*)を、式 X-4 (8 ページ)を用い pH で補正して求める。環境媒
 体の構成要素と植物及び牛体内媒体 (*x*)ごとの見かけの 1-オクタノールと水との間の分配
 係数 (log*D_x*)は、非解離種及びイオン種の 1-オクタノールと水との間の分配係数 (log*Pown* と log*Powi*)を、式 X-9 (12 ページ)を用い pH で補正して求める。補正には、対応する環境
 媒体やその構成要素の pH (38 ページの図表 X-15 及び 40 ページの図表 X-16)を用いる。

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

なお、有機炭素補正土壌吸着係数(*Koc*)には、実測値があればそれを用い、実測値がない
 場合には、X.2.2.1 (3)③に示した回帰式により求めた非解離種とイオン種それぞれの Koc
 値を用いる。

4

5 (4) 大気粒子固体-空気分配係数 (Kpn)と粒子固体-水分配係数 (Ksw)

6 本章では大気粒子固体への分配を計算するために、粒子固体-水分配係数(*Ksw*)を用いる
7 (詳細は X.3.1.3 (1)②に説明)。非解離種の *Ksw* 算出には、大気粒子固体-空気分配係数(*Kpn*)
8 を用いる。*Kpn*の算出には、V章のモデルで用いた Junge 式に基づく式(式 X-45)を使用
9 する。また、参考までに、Harner と Bidleman の式に基づく Franco の式(式 X-46)
10 (Harner and Bidleman,1998¹; Franco and Trapp,2008²)も以下に示す。

11

12
$$Kp_n = Kp_{n.Junge}$$
 or $Kp_{n.Harner_and_Bidleman}$ 式 X-4413 $Kp_{n.Junge} = \frac{CJ \times SP}{VPL \times f_{aps}}$ 式 X-45

14

15 【参考】Harner と Bidleman の式に基づく Franco の式

$$Kp_{n.Harner_and_Bidleman} = 0.54 \times \frac{Pow_n}{H_n} \times OC_{aps} \times \rho_{aps}$$

$$\vec{\mathbf{x}} \ \mathbf{X} \cdot 46$$

16 17

⇒ D		<u> </u>	1++	
記号	記明	甲位	値	出典・参照先
Kp_n	大気粒子固体·空気分配係			X.3.1.3 (1)2
1	数*			-
Kpn Junge	Junge 式による Kpn	—	_	X.3.1.3 (1)2
$K\!p_{n}$ Harner_and_Bid	Harner and Bidleman 式	—		X.3.1.3 (1)2
leman	による Kpn			
$CJ \times SP$	Junge 式の定数(<i>CJ</i>)と浮	Pa	0.0001	V 章 p.71
	遊粒子の表面積 (SP)の積			
VPL	液体状態の 20℃における	Pa		式 V-43、式 V-44
	飽和蒸気圧又は過冷却液			·
	体状態の飽和蒸気圧			
faps	大気粒子固体の体積分率		2 x 10 ⁻¹¹	図表 X-14
Pown	非解離種の1-オクタノー			化学物質情報
1000	ルと水との間の分配係数			
H_n	非解離種の無次元ヘンリ			式 X-26
1 1 1	一係数			
OC_{aps}	大気粒子固体の有機炭素		0.1	図表 X-20
~r~	含有率			
$ ho_{aps}$	大気粒子固体の密度	kg/L	1.5	図表 X-19

18 ※ Kpnの定義は以下のとおり。

¹ Harner, T. and Bidleman, T. F. (1998) Octanol-Air Partition Coefficient for Describing Particle/Gas Partitioning of Aromatic Compounds in Urban Air. Environ. Sci. Technol., 32(10), 1494–1502.

² Franco, A. and Trapp, S. (2008) Estimation of the Soil-Water Partition Coefficient Normalized to Organic Carbon for Ionizable Organic Chemicals. Environ. Chem., 27(10), 1995–2004.

式 X-26

0.1

1.5

化学物質情報

化学物質情報

図表 X-20

図表 X-19

大気における粒子容量あたりの粒子吸着態の化学物質の濃度を Cadsorption/particle [mg/m3-particle]、大気 1 $\mathbf{2}$ におけるガス態の化学物質の濃度を $C_g[mg/m^3-air]$ とすると、 $Kp_n = C_{adsorption/particle}/C_g$ 3 4 Junge 式の計算に用いる液体状態の 20℃における飽和蒸気圧又は過冷却液体状態の飽和 蒸気圧(VPL)は、従来の暴露評価と同様に式 V-43 及び式 V-44 で計算する。 $\mathbf{5}$ 大気粒子固体 (aps)における、非解離種 (n)とイオン種 (i)の粒子固体・水分配係数 6 (Kswaps)は、式 X-47 及び式 X-48 若しくは式 X-49 で計算する。Kswの単位は、粒子重量 7当たりの化学物質量[mg/kg]と、水中濃度[mg/L]の比[L/kg]として表されることも多いが、 8 本章では、Franco and Trapp (2010)¹に倣い、無次元量[L/L]としている。 9 10 11 非解離種の Ksw: 12式 X-47 $Ksw_{ans,n} = Kp_n \times H_n$ 13イオン種の Ksw: 1415Koc 又は Kd の実測値がある場合は、以下の式で算出する。 1617式 X-48 $Ksw_{ans\,i} = Koc \times OC_{ans} \times \rho_{ans}$ 18Koc 又は Kd の実測値がない場合は、以下の式で算出する。 1920式 X-49 21 $Ksw_{aps,i} = Koc_i \times OC_{aps} \times \rho_{aps}$ 22記号 説明 単位 値 出典・参照先 X.3.1.3 (1)2 Kswaps.n 非解離種の大気粒子固体・ 水分配係数※ Kswaps.i イオン種の大気粒子・水分 X.3.1.3 (1)2) 配係数※ Kp_n 大気粒子固体-空気分配係 式 X-44

23Kswapsの定義は以下のとおり。

 H_n

Koc

Koci

 OC_{aps}

 ho_{aps}

数

数

一係数

含有率

土壤吸着係数

非解離種の無次元ヘンリ

有機炭素補正土壤吸着係

イオン種の有機炭素補正

大気粒子固体の有機炭素

大気粒子固体の密度

L/kg

L/kg

kg/L

大気における粒子容量あたりの粒子吸着態の化学物質の濃度を Cadsorption/particle [mg/m3-particle]、水へ $\mathbf{24}$ 25

の溶存態の化学物質の濃度を Cw [mg/m³-air]とすると、Kswaps = Cadsorption/particle/Cw

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789-799.

1

2 (5) 大気中濃度及び沈着量の推計

3 X.3.1.2 (5)では、大気中濃度及び沈着量の推計に用いる数式やパラメータについて説明す
 4 る。

5 大気中濃度及び沈着量の推計の手順を図表 X-22 に示す。

6 従来の暴露評価モデルでは、大気中濃度(沈着による減少を考慮する前)(*Co(1.5)*)を計算
7 し、それに沈着による補正係数(*K_{dep}*)を考慮して、大気中濃度(沈着による減少を考慮した
8 後)(*C(1.5)*)を計算している。また、土壌中濃度や地上部農作物中濃度の推計に、沈着量を
9 用いている。解離性モデルでは、沈着量の計算時に用いている大気における質量比(*FAA*、
10 *FAP*、*1-FP*、*FP*)や雨水中ガス態濃度(*Cr_g*)、ガス態乾性沈着速度(*Rag*)等の計算に Franco
11 and Trapp (2010) ¹の考え方を導入する。

12 なお、導入にあたっての考え方や方法については、X.3.1.3 (1)にで述べる。

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

(沈着による減少を考慮した後)(*C (1.5)*は、従来の暴露評価モデルと同様に式 V-38~式
 V-40によりモル濃度で計算する。

3 $C_0(1.5) = \frac{a \times Q'}{1000 \times M}$ 式 V-38 置換 式 X-50 4 $Q' = TEMA \times 10^{-3}$ 再揭 式 V-39 $\mathbf{5}$ $C(1.5) = C_0(1.5) \times K_{den}$ 6 再掲(単位を修正) 式 V-40 7 出典・参照先 記号 説明 単位 値 $C_0(1.5)$ 大気中濃度(沈着による mol/m³ V章 p.69 減少を考慮する前) 大気中濃度換算係数※1 mg/m³/(t/yea V章 p.70 α $\gtrsim 2$ r) Q'排出量 t/vear V章 p.69 Mモル質量 式 X-24 g/mol TEMA 評価対象物質の大気への IV 章、V 章 p.69 kg/year 排出量 C(1.5) 大気中濃度(沈着による mol/m³ V章 p.69 減少を考慮した後) Kdep 沈着による補正係数 式 V-52 ※1 アメダス気象観測データと METI-LIS (経済産業省ー低煙源工場拡散モデル)を用いて計算した値 8 9 ※2 評価エリア半径により変化する(V.7.3.1(1) 図表 V-38) 10 (2) 大気から土壌への沈着量 11 i) 乾性・湿性沈着で共通のパラメータ 1213 参照: V.7.3.1 大気中濃度と沈着量の推計 (2) 大気から土壌への沈着量 14① 乾性・湿性沈着で共通のパラメータ 15大気中ガス態物質の質量分布比 1、大気中粒子吸着態物質の質量分布比 2(雨に捕捉され 1617た粒子吸着物質を含まない)は、晴天時と雨天時で異なる。 18 晴天時の大気中ガス態質量分布比は、大気中ガス態質量分布比(FA=1-FP)であり、雨天 時の場合は、雨天時の大気中ガス態質量分布比 (FAA)である。晴天時の大気中粒子吸着態 19質量分布比は、大気粒子吸着態質量分布比 (FP)であり、雨天時の場合は、雨天時の大気中 2021粒子吸着態質量分布比(FAP)である。 従来の暴露評価モデルは、晴天時にはガス態と粒子吸着態を考慮し、雨天時にはこれら 22に加えて雨水を考慮している。解離性モデルでは、雲と粒子吸着態の水相への吸着を考慮 23する。さらに、各媒体における非解離種とイオン種の存在割合を考慮し、X.3.1.3(1)①で説 24明するように、Franco and Trapp (2010)³ で導入された活量容量の考え方を取り入れて、 25

¹ 大気空間全体に存在する物質量に対する、大気空気に存在する物質量の比

² 大気空間全体に存在する物質量に対する、大気粒子固体に存在する物質量の比

³ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

1 以下の式 X-51~式 X-54 でこれら 4 つの質量比を計算する。

なお、式 X-51 ~式 X-54 の右辺の Bxxeは xe ごとの体積分率で重み付けした見かけの
 活量容量であり、式 X-55~式 X-58 で計算する。なお、FPと 1-FPの右辺の分母は晴天時
 の大気総活量容量、FAAと FAPの右辺の分母は雨天時の大気総活量容量である。

 $\mathbf{5}$

6

 $\overline{7}$

8

9

$$FP = \frac{Bx_{aps} + Bx_{apw}}{Bx_{aa} + Bx_{aps} + Bx_{apw}}$$

$$1 - FP = \frac{Bx_{aa}}{Bx_{aa} + Bx_{aps} + Bx_{apw}}$$

$$FAA = \frac{Bx_{aa}}{Bx_{aa} + Bx_{aps} + Bx_{apw} + Bx_{ac}}$$
$$FAP = \frac{Bx_{aps} + Bx_{apw}}{Bx_{aa} + Bx_{aps} + Bx_{apw} + Bx_{ac}}$$

式 V-42 置換 式 X-52

式 V-41 置換 式 X-51

式 V-45 置換 式 X-53

式 V-46 置換 式 X-54

式 X-55

10

記号	説明	単位	値	出典・参照先
FP	大気中粒子吸着態質量分	—	_	X.3.1.3 (1)④
	布比			
FA=1-FP	大気中ガス態質量分布比	—		X.3.1.3 (1)④
FAA	雨天時の大気中ガス態質	—	—	X.3.1.3 (1)④
	量分布比			
FAP	雨天時の大気中粒子吸着	—		X.3.1.3 (1)④
	態質量分布比			
Bx_{xe}	<i>xe</i> ごとの体積分率で重み	—	—	<i>xe</i> ごとに参照
	付けした見かけの活量容			<i>aa</i> :式 X-55
	量**			aps:式 X-56
				apw:式 X-57
				<i>ac</i> :式 X-58

 11
 ※ 本式で対象にする環境媒体の構成要素 (xe)は、大気中の空気 (aa)、大気中の粒子固体 (aps)、大気中

 12
 の粒子水分 (apw)、大気中の雲 (ac)である。

13

14 大気中の各構成要素における体積分率で重み付けした見かけの ¹活量容量 (*Bxxe*)は以下
 15 の式で計算する。

16

17 ガス態:

18
$$Bx_{aa} = f_{aa} \times H_n \times \phi_{ac.n}$$

19 粒子固体:

21 粒子水分:

1 非解離種とイオン種の合計なので「見かけの」としている。

$$1 \qquad Bx_{apw} = f_{apw} \times \left(\frac{\phi_{apw,n}}{\gamma_{a,n}} + \sum \frac{\phi_{apw,i}}{\gamma_{a,i}}\right)$$
$$2 \quad \Xi :$$

3
$$Bx_{ac} = f_{ac} \times \left(\frac{\phi_{ac.n}}{\gamma_{a.n}} + \sum \frac{\phi_{ac.i}}{\gamma_{a.i}}\right)$$

式 X-57

式 X-58

4					
	記号	説明	単位	値	出典・参照先
	Bxxe	<i>xe</i> ごとの体積分率で重み 付けした見かけの活量容 量 ^{※1}		_	X.3.1.3 (1)④
	f_{xe}	<i>xe</i> ごとの体積分率 ^{*1}	_	xeごとの値 aa : ≒1 $aps : 2×10^{-11}$ $apw : 2×10^{-11}$ $ac : 3×10^{-7}$	図表 X-14
	H_n	非解離種の無次元ヘンリ 一係数	—		化学物質情報
	φ xe.n	xe ごとの非解離種分率 ^{※1}	_	—	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
	φ xe.i	<i>xe</i> ごとのイオン種分率 ^{**1}	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
	$K\!sw_{aps.n}$	大気粒子固体における非 解離種の粒子・水分配係数		—	式 X-47
	$Ksw_{aps.i}$	大気粒子固体におけるイ オン種の粒子-水分配係数	—	—	式 X-48
	γ xmn	xm ごとの非解離種活量係 数 ^{※2}		_	式 X-32
	γ xm.i	<i>xm</i> ごとのイオン種活量係 数 ^{※2}			式 X-33
5 6 7 8	※1 本式で対象 中の粒子水※2 本式で対象	&にする環境媒体の構成要素 (xe)は 分 (apw)、大気中の雲 (ac)である。 &にする環境媒体の構成要素 (xm)は	、大気中の空 t、大気 (a)で	気 (<i>aa</i>)、大気中の ある。	粒子固体 (<i>aps</i>)、大気
9 10	雨の日の1	日当たり平均降水量(日平均降	译水量)(TRF)は、式 V-48 に	より計算する。
11	ii) 沈着 量				
12	(a) 総沈着量 」	DEP _{total}			
13			参照:	V.7.3.1 大気中濃	と沈着量の推計
14				(2) 大気カ	ら土壤への沈着量
15					② 沈着量の推計
16 17					i) 総沈着量の推計
18	総沈差量()	DEP _{tota})は、式 V-49 により計算	算する。雨天	時の沈着によろね	甫正係数(K _{den} →)
19	晴天時の沈着	による補正係数 (K _{dep_s})は、式	X-59と式	X-60 のように、	モルに換算して計

算する。沈着による補正係数 (*K_{dep}*)は、式 V-52 で雨天時と晴天時の沈着による補正係数を
 用いて、計算する。また、それらを計算するために用いる評価対象エリア面積 (*SUA*)と排
 出量 (*Q_d*)は、式 V-53 と式 V-54 で計算する。

4

5
$$DEP_{total} = \frac{rainyday}{365} \times DEP_r \times K_{dep_r} + (1 - \frac{rainyday}{365}) \times DEP_s \times K_{dep_s}$$
再掲(単位を修正) 式 V-49

6
$$K_{dep_r} = \frac{Q_d}{DEP_r \times M \times 1000 \times SUA} \times (1 - \exp(-\frac{DEP_r \times M \times 1000 \times SUA}{Q_d}))$$
式 V-50 置換 式 X-59

7
$$K_{dep_s} = \frac{Q_d}{DEP_s \times M \times 1000 \times SUA} \times (1 - \exp(-\frac{DEP_s \times M \times 1000 \times SUA}{Q_d}))$$
式 V-51 置換 式 X-60
 $K_{dep} = \frac{rainyday}{365} \times K_{dep_r} + (1 - \frac{rainyday}{365}) \times K_{dep_s}$

9 $SUA = \pi \times ((R \times 1000)^2 - 100^2)$

10 $Q_d = TEMA \times 10^6 / 365$

Fight TV-54

11

記号	説明	単位	値	出典・参照先	
DEP_{total}	総沈着量	mol/day/m ²	—	V章 p.74	
rainyday	雨天日数	day/year	100	V章 p.67	
DEP_r	雨天時の総沈着量	mol/day/m ²	—	式 V-55	
K_{dep_r}	雨天時の沈着による補正	—	—	式 V-50	
-	係数				
DEP_s	晴天時の総沈着量	mol/day/m ²	—	式 V-56	
K_{dep_s}	晴天時の沈着による補正	—	—	式 V-51	
	係数				
Q_d	排出量 (mg/day)	mg/day	—	—	
SUA	評価対象エリア面積	m^2	—	—	
M	モル質量	g/mol	—	式 X-24	
K_{dep}	沈着による補正係数	—	—	—	
R	評価対象半径	km	$1 \sim 10$	—	
TEMA	評価対象物質の大気への	kg/year	—		
	排出量				

12 13

14 (b) 乾性沈着・湿性沈着量

15	参照: V.	.7.3.1 大気中濃度と沈着	量の推計
16		(2) 大気から土壌へ	の沈着量
17		② 沈着	量の推計
18	ii)乾性沈着量・湿性沈着	量の推計
19	晴天時の総沈着量(DEPs)と雨天時の総沈着量(DEPs)	は、式 V-55 と式 V-56 に	より計算
20	する。		
21			
22	$DEP_{r} = DEP_{dry_{g},r} + DEP_{dry_{p},r} + DEP_{wet_{g},r} + DEP_{wet_{g},r} + DEP_{wet_{g},r}$	再掲 (単位を修正)	式 V-55
23	$DEP_s = DEP_{dry_g_s} + DEP_{dry_p_s}$	再掲 (単位を修正)	式 V-56

1

記号	説明	単位	値	出典・参照先
DEP_r	雨天時の総沈着量	mol/day/m ²		V章 p.75
DEP_s	晴天時の総沈着量	mol/day/m ²	—	V 章 p.75
$DEP_{dry_g_r}$	雨天時のガス態乾性沈着 量	mol/day/m ²	_	式 V-57
$DEP_{dry_p_r}$	雨天時の粒子吸着態乾性 沈着量	mol/day/m ²	_	式 V-58
$DEP_{dry_g_s}$	晴天時のガス態乾性沈着 量	mol/day/m ²	—	式 V-59
$DEP_{dry_p_s}$	晴天時の粒子吸着態乾性 沈着量	mol/day/m ²	—	式 V-60
DEP_{wet_g}	ガス態湿性沈着量	mol/day/m ²	—	式 V-61
DEP_{wet_p}	粒子吸着態湿性沈着量	mol/day/m ²	_	式 V-62

 $\mathbf{2}$

3 雨天時のガス態乾性沈着量 (DEP_{dry_g_r})、雨天時の粒子吸着態乾性沈着量 (DEP_{dry_p_r})、

4 晴天時のガス乾性沈着量 (DEP_{dry_g_s})、晴天時の粒子吸着態乾性沈着量 (DEP_{dry_p_s})、ガス

5 態湿性沈着量 (*DEP_{wet_g}*)及び粒子吸着態湿性沈着量 (*DEP_{wet_p}*)は、式 V-57~式 V-62 によ
 6 り計算する。

7

8	$DEP_{dry_{g_r}} = C_0(1.5) \times FAA \times Rag$	再揭	(単位を修正)	式 V-57
9	$DEP_{dry_{p_r}} = C_0(1.5) \times FAP \times V_d$	再揭	(単位を修正)	式 V-58
10	$DEP_{dry_{g_s}} = C_0(1.5) \times (1 - FP) \times Rag$	再揭	(単位を修正)	式 V-59
11	$DEP_{dry_{-}p_{-}s} = C_0(1.5) \times FP \times V_d$	再揭	(単位を修正)	式 V-60
12	$DEP_{wet_{g}} = Cr_{g} \times TRF$	再揭	(単位を修正)	式 V-61
13	$DEP_{wet_p} = Cr_p \times TRF$	再揭	(単位を修正)	式 V-62

記号	説明	単位	値	出典・参照先
$DEP_{dry_g_r}$	雨天時のガス態乾性沈着 量	mol/day/m ²	—	V章 p.75-76
$DEP_{dry_p_r}$	雨天時の粒子吸着態乾性 沈着量	mol/day/m ²	_	V章 p.75-76
$DEP_{dry_g_s}$	晴天時のガス態乾性沈着 量	mol/day/m ²	—	V章 p.75-76
$DEP_{dry_p_s}$	晴天時の粒子吸着態乾性 沈着量	mol/day/m ²	—	V章 p.75-76
DEP_{wet_g}	ガス態湿性沈着量	mol/day/m ²		V 章 p.75-76
DEP_{wet_p}	粒子吸着態湿性沈着量	mol/day/m ²		V 章 p-75-76
$C_0(1.5)$	大気中濃度(沈着による 減少を考慮する前)	mol/m ³	_	式 V-38
FAA	雨天時の大気中ガス態質 量分布比	—	—	式 X-53
FAP	雨天時の大気中粒子吸着 態質量分布比	—	—	式 X-54
R_{ag}	ガス態乾性沈着速度	m/day		式 X-61
Vď	粒子吸着態乾性沈着速度 (1日当たり)	m/day	—	式 V-65
FP	大気中粒子吸着態質量分 布比	_	—	式 X-51

X. 性状等に応じた暴露評価における扱い Ver.1.0 令和2年5月

記万	説明	単位	值	出典・参照先
1-FP	大気中ガス態質量分布比	—	—	式 X-52
Cr_{g}	雨水中ガス態濃度	mol/m ³	—	式 X-62
Cr_p	雨水中粒子吸着態濃度	mol/m ³		式 V-68
<i>I'RF</i>	日平均降水量	m/day	0.015	式 V-48
(c) 沈着速度。	と雨水中濃度			
		参照: V	7.7.3.1 大気中	濃度と沈着量の推計
			(2) 大気	から土壌への沈着量
				② 沈着量の推計
			iii)沈着速度	と雨水中濃度の推計
ガス能苗地	は沈差島の計算に用いるガス	能莳烛沈差演	唐 (R)け 備	20部性を考慮した式
	に相重の前昇に用いるが不知		\mathcal{T} (1_{ag}) (\mathcal{T})	中間上で写感しため
X-61 を用いて	て計算する。			
KG×	$KASLSA + \frac{KG \times KASLSW}{W}$			
$R_{ag} = \frac{KG \times KG}{KG}$	$\frac{KASLSA + \frac{KG \times KASLSW}{H_n \times \phi_{sw.n}}}{G + KASLSA + \frac{KASLSW}{H_n \times \phi_{sw.n}}}$		式	V-63 置換 式 X-61
$R_{ag} = \frac{KG \times KG}{KG}$ 記号	$KASLSA + \frac{KG \times KASLSW}{H_n \times \phi_{sw.n}}$ $G + KASLSA + \frac{KASLSW}{H_n \times \phi_{sw.n}}$ 說明	単位	式	V-63 置換 式 X-61 出典・参照先
$KG imes$ $R_{ag} =$	$\frac{KASLSA + \frac{KG \times KASLSW}{H_n \times \phi_{swn}}}{G + KASLSA + \frac{KASLSW}{H_n \times \phi_{swn}}}$ 説明 ガス態乾性沈着速度	単位 m/day	式 値 一	V-63 置換 式 X-61 <u>出典・参照先</u> X.3.1.3 (1)④
$R_{ag} = \frac{KG \times KG}{KG}$ 記号 R_{ag} KG	$ KASLSA + \frac{KG \times KASLSW}{H_n \times \phi_{sw.n}} $ $ G + KASLSA + \frac{KASLSW}{H_n \times \phi_{sw.n}} $ 説明 ガス態乾性沈着速度 気相質量移動係数	単位 m/day m/day	式 値 一 一	V-63 置換 式 X-63 出典・参照先 X.3.1.3 (1)④ 式 V-64
$R_{ag} = rac{KG imes}{KG}$ 記号 R_{ag} KG KASLSA	$ KASLSA + \frac{KG \times KASLSW}{H_n \times \phi_{sw.n}} $ $ G + KASLSA + \frac{KASLSW}{H_n \times \phi_{sw.n}} $ 説明 ガス態乾性沈着速度 気相質量移動係数 土壌中空気質量移動係数	単位 m/day m/day m/day	式 値 二 0.48	V-63 置換 式 X-6 <u>出典・参照先</u> X.3.1.3 (1)④ 式 V-64 V章 p.77、p.83
$KG imes$ $R_{ag} =$	$KASLSA + \frac{KG \times KASLSW}{H_n \times \phi_{swn}}$ G + KASLSA + $\frac{KASLSW}{H_n \times \phi_{swn}}$	単位 m/day m/day m/day m/day	式 値 0.48 4.8×10 ⁻⁵	V-63 置換 式 X-63 出典・参照先 X.3.1.3 (1)④ 式 V-64 V章 p.77、p.83 V章 p.77、p.83
$R_{ag} = rac{KG imes}{KG}$	$KASLSA + \frac{KG \times KASLSW}{H_n \times \phi_{sw.n}}$ $G + KASLSA + \frac{KASLSW}{H_n \times \phi_{sw.n}}$	单位 m/day m/day m/day m/day 	<u>値</u> 4.8×10 ⁻⁵ 	V-63 置換 式 X-6 出典・参照先 X.3.1.3 (1)④ 式 V-64 V章 p.77、p.83 V章 p.77、p.83 化学物質情報

12

13 気相質量移動係数(KG)、粒子吸着態乾性沈着速度(Vd)及び重力沈降速度(Vs)は、式

14 V-64、式 V-65、式 V-66 により計算する。

15 雨水中ガス態濃度 (*Cr_g*)は、雲中のガス態濃度と同じであるとし、式 X-62 で計算する。
16 雨水中粒子吸着態濃度 (*Cr_p*)は、従来どおり、大気粒子の一部が雨水中に捕集されるとして、
17 式 V-68 により計算する。

18

19

$$Cr_g = Ca_0 \times \frac{Bx_{ac}}{Bx_{aa} + Bx_{aps} + Bx_{ac}} \times \frac{1}{f_{ac}}$$
 式 V-67 置換 式 X-62

 20
 $Cr_p = Ca_0 \times FAP \times CEP$
 再掲(単位を修正)式 V-68

 21
 $Ca_0 = \frac{C_0(1.5)}{Kc}$
 再掲(単位を修正) 式 V-69

記号	説明	単位	値	出典・参照先
Cr_{g}	雨水中ガス態濃度	mol/m ³		X.3.1.3 (1)④

X. 性状等に応じた暴露評価における扱いVer.1.0 令和2年5月

記号	説明	単位	値	出典・参照先
Cr_p	雨水中粒子吸着態濃度	mol/m ³	—	V 章 p.79
Ca_0	大気柱*1中化学物質平均	mol/m ³	—	V 章 p.79
	濃度(沈着による減少を			
	考慮する前)			
$B_{X_{Xe}}$	xeごとの体積分率で重み			<i>xe</i> ごとに参照
	付けした見かけの活量容			aa:式 X-55
	量 ^{※2}			aps:式 X-56
				apw:式 X-57
				ac:式 X-58
f_{xe}	<i>xe</i> ごとの体積分率 ^{※2}		xe ごとの値	図表 X-14
-AC			<i>aa</i> : ≒1	
			ans: 2×10^{-11}	
			$apw: 2 \times 10^{-11}$	
			$ac: 3 \times 10^{-7}$	
FAP	雨天時の大気中粒子吸差			式 X-54
1111	能量分布比			20 11 01
CEP	浮游粒子の捕集索		9×10^{5}	V音 n 79
	十年廿※1 中連座。の按答		2/10	V 平 p.15
ΛC	人気性や中康度への換昇		2.4	V 早 p.79
α (z, z)	係奴			h
$C_0(1.5)$	大気中濃度(沈着による	mol/m ³		式 V-38
	減少を考慮する前)			

1 ※1 雨水中濃度を求める際には、地表から十分な高さまでの大気の柱を想定し、その柱の中の濃度平均値
 2 である「大気柱中化学物質平均濃度」*Cao*を用いる。

3 ※2 本式で対象にする環境媒体の構成要素 (xe)は、大気中の空気 (aa)、大気粒子固体 (aps)、大気粒
 4 子水分 (apw)、雲 (ac)である。

 $\mathbf{5}$

6 (6) 土壌中濃度及び土壌間隙水中濃度の推計

7 X.3.1.2 (6)では土壌中濃度及び土壌間隙水中濃度の推計に用いる数式やパラメータにつ
 8 いて説明する。土壌中濃度及び土壌間隙水中濃度の推計の手順を図表 X-23 に示す。

9 従来の暴露評価モデルでは、大気からの総沈着量(DEPtota)と土壌における消失の1次速

10 度定数(*k*)から土壌中濃度を推計し、土壌・水分配係数(*K_{soil water}*)を用いて土壌間隙水中濃
 11 度を推計している。

12 解離性モデルでは、土壌における消失の1次速度定数(揮発)(ksa)の計算や土壌における

13 質量分布比 (FSOA、FSOW、FSOS)、土壌・水分配係数 (Ksoil water)等の計算に Franco and

14 Trapp (2010)¹の考え方を導入する。

15 なお、導入にあたっての考え方や方法については、X.3.1.3 (1)に述べる。

- 16
- 17

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

1
$$D_{air} = \frac{DEP_{total}}{BD_{soil} \times DEP_{so}}$$

再掲(単位を修正) 式 V-74

 $\frac{2}{3}$

記号	説明	単位	値	出典・参照先
Csoil	土壤中濃度(10年平均)	mol/kg		V章 p.80-81
D_{air}	総沈着量(土壌 1kg 当た り)*	mol/kg/day		式 V-74
k_{soil}	土壌における消失の総1次 速度定数	1/day		式 V-76
T	平均化期間	day	3650	V章 p.81
DEP_{total}	総沈着量	mol/day/m ²	—	式 V-49□
BD_{soil}	土壌バルク密度	kg/m ³	—	—
DEP_{so}	土壤深度	m	0.2	<u> </u>

4 ※ 総沈着量は地表面積1【m²】当たり、土壌1【kg】当たりの総沈着量を示す。

$$\mathbf{5}$$

6 土壌バルク密度 (*BD*soil)は、式 V-75 により計算する。

7 土壌における消失の総1次速度定数(ksoil)も従来と同様に、式V-76で計算する。

8

9
$$k_{soil} = k_{sa} + (k_{sro} + k_{sle}) \times FSOW + (k_{srsup} + k_{ser}) \times FSOS + k_{sot}$$
再掲(一部数式を修正) 式 V-76

10

記号	説明	単位		出典・参照先
ksoil	土壤における消失の総1次	1/day		V章 p.81-82
	速度定数			
k_{sa}^{st}	土壌における消失の1次速	1/day	—	=Ksa、式 V-80、式
	度定数 (揮発)			X-69
k_{sro} *	土壌における消失の1次速	1/day		=Ksro, 式 V-89
	度定数 (表面流出)			
k_{sle}^{st}	土壌における消失の1次速	1/day		=K _{sle} 、式 V-91
	度定数(溶脱)	-		
FSOW	溶存態質量分布比	_		式 X-64、式 X-67
k_{srsup} ^{$stimes$}	土壌における消失の1次速	1/day	_	=K _{srsup} 式 V-95
	度定数 (巻上げ)	·		
k_{ser} st	土壌における消失の1次速	1/day	_	=Kser. 式 V-94
	度定数 (浸食)	·		
FSOS	粒子吸着態質量分布比	_		式 X-65、式 X-68
k_{sot} *	土壤における消失の1次速	1/day	—	=K _{sot、} 式 V-85、式
	度定数 (分解)			V-86、式 V-87
※ V音でけ	これくの連座字粉な土立字の ビズ書	ヨーたが	大音べけ海底空粉には	小女学のト

 [※] V章では、これらの速度定数を大文字の Kで表記したが、本章では速度定数には小文字の k を用いる。
 土壌におけるガス態、溶存態及び粒子吸着態への化学物質の質量分布比 (FSOA、FSOW、 FSOS)は、Koc の実測値の有無により、式 X-63、式 X-64、式 X-65 又は式 X-66、式 X-67、
 式 X-68 で計算する。

18 Koc 又は Kd の実測値がある場合は、以下の式で算出する。

19

20 $FSOA = \frac{H_n \times \phi_{sw.n} \times SOAF}{(H_n \times \phi_{sw.n} \times SOAF + SOWF + Koc \times OC_{sp} \times (1 - SOAF - SOWF) \times \rho_{sp})}$ 式 V-77 置換 式 X-63

1	FSOW -	SOWF	式 V-78 置換	式 X-64
	$H_{sw.n} \times \phi_{sw.n} \times$	$SOAF + SOWF + Koc \times OC_{sp} \times (1 - SOAF - SOWF) \times (1 - SOWF) \times ($	(ρ_{sp})	
2	FSOS –	$Koc \times OC_{sp} \times (1 - SOAF - SOWF) \times \rho_{sp}$	式 V-79 置換	式 X-65
	$(H_n \times \phi_{sw.n} \times K)$	$SOAF + SOWF + Koc \times OC_{sp} \times (1 - SOAF - SOWF) \times f$	(ho_{sp})	
3				

Koc 又は Kdの実測値がない場合は、以下の式で算出する。 4

5	$H_n \times \phi_{swn} \times SOAF$
	$H_{n} \times \phi_{sw.n} \times SOAF + \left(\frac{\phi_{sw.n}}{\gamma_{s.n}} + \sum_{i} \frac{\phi_{sw.i}}{\gamma_{s.i}}\right) \times SOWF + \left(\frac{Koc_{n} \times OC_{sp} \times \phi_{sp.n}}{\gamma_{s.n}} + \sum_{i} \frac{Koc_{i} \times OC_{sp} \times \phi_{sp.i}}{\gamma_{s.i}}\right) \times (1 - SOAF - SOWF) \times$
7	式 V-77 置換 式 X-6
8	$\left(\frac{\phi_{sw.n}}{\gamma_{s.n}} + \sum_{i} \frac{\phi_{sw.i}}{\gamma_{s.i}}\right) \times SOWF$
	$= \frac{1}{H_n \times \phi_{sw.n} \times SOAF} + \left(\frac{\phi_{sw.n}}{\gamma_{s.n}} + \sum_i \frac{\phi_{sw.i}}{\gamma_{s.i}}\right) \times SOWF + \left(\frac{Koc_n \times OC_{sp} \times \phi_{sp.n}}{\gamma_{s.n}} + \sum_i \frac{Koc_i \times OC_{sp} \times \phi_{sp.i}}{\gamma_{s.i}}\right) \times (1 - SOAF - SOWF) \times ($
9	式 V-78 置換 式 X-6
10	$\left(\frac{Koc_n \times OC_{sp} \times \phi_{sp,n}}{\gamma_{s,n}} + \sum_i \frac{Koc_i \times OC_{sp} \times \phi_{sp,i}}{\gamma_{s,i}}\right) \times (1 - SOAF - SOWF) \times \rho_{sp}$
	$= \frac{1}{H_n \times \phi_{sw.n} \times SOAF + \left(\frac{\phi_{sw.n}}{\gamma_{s.n}} + \sum_i \frac{\phi_{sw.i}}{\gamma_{s.i}}\right) \times SOWF + \left(\frac{Koc_n \times OC_{sp} \times \phi_{sp.n}}{\gamma_{s.n}} + \sum_i \frac{Koc_i \times OC_{sp} \times \phi_{sp.i}}{\gamma_{s.i}}\right) \times (1 - SOAF - SOWF) \times (1$
11	式 V-79 置換 式 X-6

12

記号	説明	単位	値	出典・参照先
FSOA	ガス態質量分布比	—		X.3.1.3 (1)5
FSOW	溶存態質量分布比	—	—	X.3.1.3 (1)⑤
FSOS	粒子吸着態質量分布比			X.3.1.3 (1)⑤
SOAF	土壤空気容積比		0.2	V章 p.67
SOWF	土壤間隙水容積比		0.3	V章 p.67
H_n	非解離種の無次元ヘンリ 一係数	—		式 X-26
Koc	有機炭素補正土壤吸着係 数	L/kg		化学物質情報
Kocn	非解離種の有機炭素補正 土壌吸着係数	L/kg	—	化学物質情報
Koci	イオン種の有機炭素補正 土壌吸着係数	L/kg	—	化学物質情報
OC_{sp}	土壌粒子の有機炭素含有 率	—	0.04	図表 X-20
$ ho_{ m sp}$	土壌粒子の密度	kg/L	1.5	図表 X-19
ф xe.n	xe ごとの非解離種分率 ^{※1}	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
ф хе.і	<i>xe</i> ごとのイオン種分率 ^{※1}	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
Yxm.n	x <i>m</i> ごとの非解離種活量係 数 ^{※2}	_	—	式 X-32
γ _{xm.i}	x <i>m</i> ごとのイオン種活量係 数 ^{※2}	—	—	式 X-33
V1 ++	A ストマ 四 広 世 仕 の 世 上 西 主 () い	「探問座」()	しお市のかっ	()

13※1 本式で対象にする環境媒体の構成要素 (xe)は、土壌間隙水 (sw)、土壌中の粒子 (sp)である。

14※2 本式で対象にする環境媒体 (xm)は、土壌 (s)である。

1 2 2 土壌における消失の総1次速度定数 k_{soil}¹ 3 i) 土壌における消失の1次速度定数(揮発) k_{sa}1 4 参照: V.7.3.2 土壤中濃度及び土壤間隙水中濃度の推計 $\mathbf{5}$ 6 (2) 土壌における消失の総1次速度定数 ① 土壌における揮発の1次速度定数(Ka) $\overline{7}$ 土壌における消失の1次速度定数(揮発)(ksa)の算出には以下の式 X-69 を使用する。 8 9 $\frac{FSOA \times R_{ag}}{SOAF \times DEP_{so}}$ 10 式 V-80 置換 式 X-69 11 単位 説明 値 出典・参照先 記号 k_{sa} 十 集における 消失の 1 次 1/day X.3.1.3 (1)6 速度定数 (揮発) FSOA ガス態質量分布比 式 X-63、式 X-66 ガス態乾性沈着速度 式 X-61 R_{ag} m/day SŎAF 土壤空気容積比 0.2V章 p.67 **DEPso** V章 p.67 土壤深度 m 0.212 13ii) 土壌におけるその他の消失の1次速度定数 ksot, ksro, ksel, kser, ksrsup¹ 参照: V.7.3.2 土壌中濃度及び土壌間隙水中濃度の推計 14(2) 土壌における消失の総1次速度定数 15 $2 \sim 6$ 1617 土壌における消失の1次速度定数(分解)(ksov)は、式 V-82~V-88により計算する。土壌 における消失の1次速度定数(表面流出)(ksro)は式 V-89 と V-90 により計算する。土壌に 18おける消失の1次速度定数(溶脱)(kse)は式 V-91~V-93により計算する。土壌における消 19失の1次速度定数(浸食)(kser)は式 V-94 により計算する。土壌における消失の1次速度定 20数 (巻上げ) (ksrsup)は式 V-95 により計算する。 2122③ 土壤間隙水中濃度 Cporewater 23 $\mathbf{24}$ 参照: V.7.3.2 土壌中濃度及び土壌間隙水中濃度の推計 (3) 土壤間隙水中濃度 25土壌間隙水中濃度(Cporewater)は、式V-96により計算する。 2627 $C_{soil} imes rac{BD_{soil}}{1000}$ 28再揭 式 V-96 $C_{porewater} = -$ K soil water

¹ V 章では1次速度定数を大文字の *K*で表していたが、本章では分配係数に用いる大文字の *K* との区別をするため小文字の *k*を用いる。

式 V-97 置換 式 X-71

1

	記号	説明	単位	値	出典・参照先
	$C_{porewater}$	土壤間隙水中濃度	mol/L	*	V章 p.88
	C_{soil}	土壤中濃度(10 年平均)	mol/kg	—	V章 p.80-81
	BD_{soil}	土壌バルク密度	kg/m^3		式 V-75
	K_{soil_water}	土壤·水分配係数	_		式 X-70
	WS_{sw}	土壤間隙水での見かけの	mol/L	—	X.3.1.2 (3)
		水に対する溶解度*			
2	※ 本章では、	土壌間隙水中濃度の上限値とし	て、土壌間隙水	での見かけの水に	ニ対する溶解度(<i>WSsw</i>)
3	を採用する	0			
4					
5	Koc 又は Kd	の実測値がある場合は、以	下の式で算出す	する。	
6					
7	$K_{soil-water} = 1$	$H_n \times \phi_{swn} \times SOAF + SOWF +$	- $Koc \times OC_{sn} \times \mu$	$p_{\rm sn} \times (1 - SOAF -$	– SOWF)
8	son-water	n i sw.n	sp ,	<i>[*]</i> 式 V	-97 置換 式 X-70
9					
10	Koc 又は Kd	の実測値がない場合は、以	下の式で算出す	する。	
11					
12	$K_{soil-water} = \frac{H_n \times \phi_{sw.}}{}$	$_{n} \times SOAF + \left(\frac{\phi_{swin}}{\gamma_{s.n}} + \sum_{i} \frac{\phi_{swi}}{\gamma_{s.i}}\right) \times SOWF + \left(\frac{\phi_{swin}}{\gamma_{s.i}}\right) \times SOW$	$\frac{\left(\frac{Koc_n \times OC_{sp} \times \phi_{sp,n}}{\gamma_{s,n}} + \frac{\varphi_{sw,n}}{\varphi_{sw,n}}\right)}{\left(\phi_{sw,n} + \sum \phi_{sw,n}\right)}$	$+\sum_{i}\frac{Koc_{i}\times OC_{sp}\times\phi_{sp,i}}{\gamma_{s,i}}$	$\left) \times \left(1 - SOAF - SOWF\right) \times \rho_{sp}\right)$
			$\left(\frac{\gamma_{s.n}}{\gamma_{s.n}} + \sum_{i} \frac{\gamma_{s.i}}{\gamma_{s.i}} \right)$		

13

14

記号	説明	単位	値	出典・参照先
K_{soil} -water	土壤·水分配係数	—	—	X.3.1.3 (1)⑦
H_n	非解離種の無次元ヘンリ	—	—	式 X-26
	一係数			
SOAF	土壤空気容積比	—	0.2	V章 p.67
SOWF	土壤間隙水容積比	—	0.3	V章 p.67
Koc	有機炭素補正土壤吸着係 数	L/kg	—	化学物質情報
Kocn	非解離種の有機炭素補正 土壌吸着係数	L/kg	—	化学物質情報
Koc_i	イオン種の有機炭素補正 土壌吸着係数	L/kg	—	化学物質情報
OC_{sp}	土壌粒子の有機炭素含有 率		0.04	図表 X-20
$ ho_{ m sp}$	土壌粒子の密度	kg/L	1.5	図表 X-19
φ xe.n	xe ごとの非解離種分率 ^{※1}	_	—	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
φ xe.i	<i>xe</i> ごとのイオン種分率 ^{*1}	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
Yxm.n	<i>xm</i> ごとの非解離種活量係 数 ^{※2}	—	—	式 X-32
Υxmi	<i>xm</i> ごとのイオン種活量係 数 ^{*2}		—	式 X-33

15 ※1 本式で対象にする環境媒体の構成要素 (xe)は、土壌間隙水 (sw)、土壌中の粒子 (sp)である。

- 1 ※2 本式で対象にする環境媒体 (xm)は、土壌 (s)である。
- $\mathbf{2}$
- 3 (7) 農作物中濃度の推計

4 X.3.1.2 (7) では、農作物中濃度の推計に用いる数式やパラメータについて説明する。農
 5 作物中濃度の推計の手順を図表 X-24 に示す。

6 従来の暴露評価モデルでは、地上部農作物中濃度の推計時に、大気中の粒子吸着態物質7 の沈着、ガス態物質の吸収及び根からの化学物質の吸収による取り込みを考慮している。

8 解離性モデルでは、粒子吸着態の沈着については従来どおりの方法で推計し、地下部農 9 作物中濃度の推計と地上部農作物中濃度推計において、ガス態の吸収(*K_{leafai}*)及び根から 0 の吸収による取り込み(*TSCF、RCF*)の計算に、Trapp (2009) による解離性物質の植物モ デルを用いて計算した植物体内分配係数(X.3.1.2(7)④)を導入することにより、植物体内構 1 成要素ごとのpHによる化学種分率、非解離種とイオン種の動態の違い及びイオン強度によ 3 影響を考慮する。

14 なお、導入にあたっての考え方や方法については、X.3.1.3 (2)に述べる。

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

6

 $\frac{1}{2}$

3

4

 $\mathbf{5}$

(1) 地下部農作物中濃度

2 地下部農作物中濃度は、式 V-98 により計算する。

3

1

 $C_{rootveg} = C_{porewater} \times RCF \times VG_{rootveg}$

再揭	(単位を修正)	式	V-98
1 1 1 2		-V	v 50

V-99 と V-100 置換 式 X-72

4	
5	

記号	説明	単位	値	出典・参照先
$C_{rootveg}$	地下部農作物中濃度	mol/kg	—	V章 p.90
$C_{porewater}$	土壤間隙水中濃度	mol/L	—	式 V-96
RCF	地下部農作物濃縮係数	L/kg	—	式 X-72
$VG_{rootveg}$	地下部農作物の補正係数	—	*	HHRAP $5.3.3^1$
				Equation 5-20B

6 ※ VG_{rootveg}は、土壌間隙水 (pH5.9)での見かけの 1・オクタノールと水との間の分配係数 (logD_{sw}) ≥4 の
 7 場合は「0.01」、logD_{sw}<4の場合は「1.0」とする。 (logD_{sw}の計算方法は X.3.1.2 (3)に記載)

9 従来の暴露評価モデルにおける非解離性物質の *RCF*を推計する式 V-99 と V-100 は、実
 10 測値に基づく回帰式である。解離性物質の *RCF*については、Trapp (2009)²の解離性物質の
 11 植物モデルから導出した式 X-72 により推計する。

12 13

8

$$RCF = K_{root-sw}$$

14

RCF 地下部農作物濃縮係数 L/kg — X.3.1.3 (2)②	記号	説明	単位	値	出典・参照先
Λ rootsw W^{-} χ^{-} χ^{-} Λ^{-} Λ^{-} Λ^{-}	RCF Kroot-sw	地下部農作物濃縮係数 根−土壤間隙水分配係数	L/kg L/kg		X.3.1.3 (2)② 式 X-73

15

16 根-土壌間隙水分配係数(*Kroot-sw*)は式 X-73 により推計する。根の主要成分と仮定してい
 17 る液胞と細胞質の分配係数の容積による加重平均である。また、根の密度で補正し重量濃
 18 度となる様補正している。

19

20

21

記号	説明	単位	値	出典・参照先
$K_{root\text{-}sw}$	根·土壤間隙水分配係数	L/kg		X.3.1.3 (2)②
$K_{cytosol\text{-}sw}$	木部·土壤間隙水分配係数	—	—	式 X-78
$V_{cytosol}$	細胞質体積	\mathbf{L}	0.1	図表 X-32
$K_{vacuole^{-sw}}$	液胞·土壤間隙水分配係数	—	_	式 X-76
$V_{vacuole}$	液胞体積	\mathbf{L}	0.9	図表 X-32
$ ho_{root}$	根の密度	kg/L	1	Trapp (2000) ³

¹ HHRAP : U.S.EPA (2005) Humam Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities Final, EPA530-R-05-006. (section 5.3.3)

² Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

³ Trapp, S. (2000) Modelling Uptake into Roots and Subsequent Translocation of Neutral and Ionisable Organic Compounds. Pest. Manag. Sci., 56(9), 767–778.

1 $\mathbf{2}$ ② 地上部農作物中濃度 (Exposed) 参照: V.7.3.3 農作物中濃度の推計 3 (2) 地上部農作物中濃度(Exposed) 4 解離性物質の地上部農作物中濃度(Exposed)(Cag exp)と牧草中濃度(Cgrass)は、非解離性 $\mathbf{5}$ 物質と同様に、式 V-101 と V-102 を用いて、大気中の粒子吸着態物質の沈着、ガス態物質 6 の吸収及び根からの化学物質の吸収による取り込みを考慮して計算する。 $\overline{7}$ 8
 i) 大気中の粒子吸着熊物質の沈着による地上部農作物中濃度
 9 10 参照: V.7.3.3 農作物中濃度の推計 (2) 地上部農作物中濃度(Exposed) 11 大気相中の粒子吸着態中の化学物質の沈着による地上部農作物中濃度 12 13粒子吸着態の化学物質の沈着については、粒子自体の植物への吸着をモデル化したもの 14と考えられるため、従来と同様に式 V-106~V108を用いて推計する。 1516 $C_{ag_aer} = \frac{DEP_{total_P_ag}}{Mf \times Rv} [1 - \exp(-Rv \times 60)]$ 再掲 (単位を修正)式 V-106 17再掲 (単位を修正)式 V-107 18 $C_{grass_aer} = C_{ag_aer}$ $DEP_{total_{p_{ag}}} = RES_{wetdep} \times \frac{rainyday}{365} \times DEP_{wet_{p}} \times K_{dep_{r}}$ 19 $+ RES_{drydep} \times \left\{ \frac{rainyday}{365} \times DEP_{dry_{p_r}} \times K_{dep_r} + (1 - \frac{rainyday}{365}) \times DEP_{dry_{p_s}} \times K_{dep_s} \right\}$ 20再掲 (単位を修正)式 V-108 21単位 記号 説明 出典・参照先 値 Cag aer 大気相粒子吸着態由来の地上部農作 mol/kg 物中濃度 DEP_{total_p_ag} 農作物への粒子吸着熊沈着量(乾性+ mol/day/m² 湿性) Mf 生産性 kg/m² 3.0Rv風化·枯死 (老化)率 /day 0.03 Cgrass_aer 大気相粒子吸着態由来の牧草中濃度 mol/kg RESwetdep 農作物への粒子吸着態湿性沈着のう 0.3ち農作物上に残留する割合 rainyday 降雨日数 day/year 100 DEP_{wet} p 粒子吸着態湿性沈着量※2 mol/day/m² 式 V-62□ K_{dep} r 降雨時の沈着による補正係数 ____ 式 V-50□ RESdrydep 農作物への粒子吸着態乾性沈着のう 0.8ち農作物上に残留する割合 $DEP_{dry_p_r}$ 降雨時の粒子吸着態乾性沈着量 mol/day/m² 式 V-58□ ____ $DEP_{dry_p_s}$ 晴天時の粒子吸着態乾性沈着量 mol/day/m² 式 V-60□ K_{dep_s} 晴天時の沈着による補正係数 式 V-51□

ii) 大気中のガス態及び土壌由来の地上部農作物中濃度 1 $\mathbf{2}$ 参照: V.7.3.3 農作物中濃度の推計 (2) 地上部農作物中濃度(Exposed) 3 ② 大気相ガス態及び土壌由来の地上部農作物中濃度 4 大気中のガス態及び土壌由来の地上部農作物中濃度(Cag_gas_r)は、式V-112により計算す $\mathbf{5}$ 6 る。 $\overline{7}$ C_{ag gas r}及び C_{grass gas r} $\frac{C_{air_g} \times g_{plant} \times Area_{plant}}{V_{leaf} \times BD_{plant}} + \frac{C_{porewater} \times 1000[L/m^3] \times TSCF \times Qtransp}{V_{leaf} \times BD_{plant}}$ $\frac{Area_{plant} \times g_{plant}}{K_{leaf-air} \times V_{leaf}} + \lambda_E + \lambda_G$ 8 9 再掲(単位を修正) 式 V-112 10 単位 記号 説明 値 出典・参照先 V章 p.93-94 $C_{ag_gas_r}$ 大気中のガス態及び土壌由 mol/kg 来の地上部農作物中濃度 V章 p.93-94 Cgrass_gas_r 大気中のガス態及び土壌由 mol/kg 来の牧草中濃度 Cair g 大気中のガス態濃度 mol/m³ 式 V-113 コンダクタンス V章 p.94 m/day 86.4 **g**plant Area_{plant} V章 p.94 葉の表面積 m^2 $\mathbf{5}$ Vleaf 葉の体積 m^3 0.002 V章p.94 Cporewater 土壤間隙水中濃度 式 V-96 mol/L TSCF 植物の導管を流れる水分と 式 X-75 土壌中水分の間の分配係数 Qtransp V章p.94 蒸散流量 m³/day 0.001 Kleaf-air 大気中ののガス態物質の m³/m³ 式 X-74 葉・茎への濃縮係数 λE 消失速度係数(代謝と光分 1/day 0 V章p.94 解) λG 成長速度係数 1/day 0.035 V章p.94 VG_{ag} 地上部農作物のための補正 HHRAP 5 .3.2 * 1 係数 Equation 5-18 **BD**_{plant} 植物のバルク密度

 VG_{ag} は土壌間隙水 (pH5.9)での見かけの 1-オクタノールと水との間の分配係数 ($\log D_{sw}$) \geq 4 のとき 11 * 12「0.01」、log*D*_{sw}<4の場合「1.0」、牧草については常に「1.0」

(log D_{sw}の計算方法は X.3.1.2 (3)に記載)

15大気中のガス態濃度(Cairg)の推計には、非解離性物質の式 V-113を用いる。

kg/m³

800

Calamari

 $(1987)^2$

 \mathbf{et} al.

¹³ 14

¹ HHRAP : U.S.EPA (2005) Humam Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities Final, EPA530-R-05-006. (section 5.3.2)

² Calamari, D., Vighi, M. and Bacci, E. (1987) The use of terrestrial plant biomass as a parameter in the fugacity model. Chemosphere, 16(10-12), 2359-2364.

.

$C_{air_g} = \frac{ran}{r}$	$\frac{inyday}{365} \times C_0(1.5) \times K_{dep_r} \times FAA +$	$+(1-\frac{rainyday}{365})$	×C ₀ (1.5)×K 再掲(単	Z _{dep_s} ×(1− <i>FP</i>) 位を修正) 式 V-11	3
記号	説明	単位	値	出典・参照先	
C_{air_g}	大気中のガス態濃度	[mol/m ³]	—	V 章 p.94-95	
rainyday	降雨日数	[day/year]	100	V 章 p.94	
$C_{0}(1.5)$	大気中濃度(沈着による減少 を考慮する前)	[mol/m ³]	—	式 V-38	
K_{dep_r}	雨天時の沈着による補正係 数			式 V-50	
FAA	雨天時の大気中ガス態質量 分布比			式 X-53	
K_{dep_s}	晴天時の沈着による補正係 数	—	—	式 V-51	
1-FP	大気中ガス熊質量分布比		_	式 X-52	

 $\mathbf{5}$

6 Kleaf_air 及び TSCF は、RCF と同様に Trapp (2009)1の解離性物質の植物モデルを反映し

た式 X-74 及び式 X-75 により推計する。式 V-115 で推計する水・植物濃度換算係数 $\overline{7}$

8 (Kplant water)は、解離性モデルでは使用しない。

9

10
$$K_{leaf-air} = FPA + (1 - FPA) \times \frac{\left(\frac{V_{cytosol} + V_{vacuole} \times K_{vacuol-cytosol}}{V_{cytosol} + V_{vacuole}}\right)}{K_{air-water} \times G_{cytosol n}}$$
式 V-114 置換 式 X-74

11

記号	説明	単位	値	出典・参照先
Kleaf-air	大気中のガス態物質の葉・茎	—	—	X.3.1.3 (2)③
	への濃縮係数			
$K_{vacuole}$ -cytosol	液胞·細胞質分配係数		—	式 X-78
$K_{air-water}$	空気·水分配係数		—	無次元ヘンリー係
				数と同じ値
$G_{cytosol.n}$	細胞質における総濃度あた		—	式 X-86
	りの非解離種活量			
FPA	葉の空気含有割合		0.5	V 章 p.95
$V_{cytosol}$	細胞質体積	\mathbf{L}	0.1	図表 X-32
Vvacuole	液胞体積	\mathbf{L}	0.9	図表 X-32
TSCF = K			式V	-116 置換 式 X-75
λ	cytem-sw			
記号	説明	単位	値	出典・参照先

14

1213

記号	説明	単位	値	出典・参照先
TSCF	植物の導管を流れる水分と 土壌中水分の間の分配係数	—		X.3.1.3 (2)③
$K_{xylem \cdot sw}$	木部·土壤間隙水分配係数	_		式 X-77

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

1 $\mathbf{2}$ ③ 地上部農作物中濃度 (Protected) 3 参照 : V.7.3.3 農作物中濃度の推計 4 (3) 地上部農作物中濃度 (Protected) 解離性物質の地上部農作物中濃度 (Protected) (Cag prot)は、式 V-117 により計算する。 $\mathbf{5}$ 6 7 ④ 植物体内分配係数 8 液胞・土壤間隙水分配係数(Kvacuole-sw)及び木部・土壤間隙水分配係数(Kxvlem-sw)はそれぞ れ式 X-76 及び式 X-77 により推計する。 9 10 11 $K_{vacuole-sw} = K_{vacuole-cvtosol} \times K_{cvtosol-sw}$ 式 X-76 $K_{xylem-sw} = K_{xylem-cytosol} \times K_{cytosol-sw}$ 12式 X-77 13説明 出典・参照先 記号 単位 値 液胞-土壤間隙水分配係数 X.3.1.3 (2)2 Kvacuole-sw 液胞·細胞質分配係数 式 X-78 Kvacuole- cytosol 細胞質-土壤間隙水分配係 式 X-78 Kcytosol-sw 数 木部·土壤間隙水分配係数 Kxylem-sw X.3.1.3 (2)2 Kxylem-cytosol 木部·細胞質分配係数 式 X-78 14図表 X-11 (36 ページ)に示すように、細胞質の外側には土壌間隙水、液胞や木部の外側に 15は細胞質があると考え、細胞質・土壤間隙水分配係数(Kevtosel-sw)、液胞・細胞質分配係数 1617(Kvacuole-cytosol)及び木部・細胞質分配係数 (Kxylem-cytosol)・は、式 X-78 のように外側の媒体 (out)と内側の媒体 (in)の組み合わせにより推計する。 1819 $K_{in-out} = \frac{E_{(in)-out}}{E_{in-(out)}}$ 20式 X-78 21式 X-78 の分子 (E(in)-out)は式 X-79 で推計し、分母 (Ein-(out))は式 X-80 で推計する。 2223 $E_{(in)-out} = MTC_{membrane\ n} \times G_{out\ n} + MTC_{membrane\ i} \times \frac{N_{in-out}}{(\exp(N_{in-out})-1)} \times G_{out\ i}$ 24式 X-79 $E_{in-(out)} = MTC_{membrane\ n} \times G_{in\ n} + MTC_{membrane\ i} \times \frac{N_{in-out}}{\left(\exp(N_{in-out})-1\right)} \times \exp(N_{in-out}) \times G_{in\ i}$ 25式 X-80 2627記号 説明 単位 出典・参照先 値 Kin-out 内側の媒体-外側の媒体分 X.3.1.3 (2)5 配係数※ 内側の媒体-外側の媒体分 E(in)-out m/sec X.3.1.3 (2)5 配係数計算式の分子※

X. 性状等に応じた暴露評価における扱い Ver.1.0 令和2年5月

記号	説明	単位	値	出典・参照先
Ein-(out)	内側の媒体-外側の媒体分 配係数計算式の分母※	m/sec	_	X.3.1.3 (2)5
MTCmembrane.n	非解離種の外側の媒体か ら内側の媒体への質量移 動係数※	m/sec	_	式 X-81、式 X-8
MTCmembrane.i	ゴボダ イオン種の外側の媒体か ら内側の媒体への質量移 動係数 [※]	m/sec	—	式 X-82、式 X-8
G _{out.n}	外側の媒体における総濃 度あたりの非解離種活量 ※	_	_	植物体内の媒体は X-86、土壌間隙水 式 X-87
$G_{out.i}$	外側の媒体における総濃 度あたりのイオン種活量 ※	—	—	式 X-88
G _{in.n}	内側の媒体における総濃 度あたりの非解離種活量 ※	—	_	植物体内の媒体に X-86、土壌間隙水 式 X-87
G _{in.i}	内側の媒体における総濃 度あたりのイオン種活量 **	_	_	式 X-88
Nin-out	内側の媒体-外側の媒体間 の Normat 式の教業		—	式 X-85
 ※本式で対象とて せは、図表 X- 1 細胞質・土壌 内側:細胞質<2 液胞・細胞質<2 液胞・細胞質 2 液胞・細胞質 カ側:液胞 	tる内側の媒体 (<i>in</i>)と外側の媒体 11 (36 ページ)に示す以下の3通 間隙水分配係数 (<i>K</i> _{cytosol} ,sw): <i>(cytosol)</i> 、外側:土壤間隙水 分配係数 (<i>K</i> _{vacuole} cytosol): (<i>vacuole</i>)、外側:細胞質 (<i>cytos</i>)	↓(out)、媒体間 1りである: (<i>sw</i>)、膜:細胞 o) 、膜:生体膜	引に存在する膜 壁と生体膜(c ^夏 (biomembra	(membrane)の組み合 ell) ne)
 ※本式で対象とて せは、図表 X- 1 細胞質・土壌 内側:細胞質 2 液胞・細胞質 2 液胞・細胞質 カ側:液胞 3 木部・細胞質 内側:木部 植物細胞は、 	 (a) Kullist シ(v) (M) (b) Kullist シ(v) (M) (c) (M) (c) (M) (c) (M) (c) (C) (M) (c) (M) (m) <l< td=""><td> (out)、媒体間 りである: (sw)、膜:細胞 o)、膜:生体膜 0、膜:生体膜 おり、細胞外 </td><td>記に存在する膜 壁と生体膜(c ፪(biomembra (biomembran から細胞内~</td><td>(<i>membrane</i>)の組み合 ell) ne) e) への非解離種及びイ</td></l<>	 (out)、媒体間 りである: (sw)、膜:細胞 o)、膜:生体膜 0、膜:生体膜 おり、細胞外 	記に存在する膜 壁と生体膜(c ፪(biomembra (biomembran から細胞内~	(<i>membrane</i>)の組み合 ell) ne) e) への非解離種及びイ
 ※本式で対象とすせは、図表X- 1細胞質・土壌内側:細胞質2液胞・細胞質<2液胞・細胞質3、細胞質が一般胞・細胞質の側: 細胞質内側: 木部 植物細胞は、デン種の質量移動(する内側の媒体 (<i>in</i>)と外側の媒体 11 (36 ページ)に示す以下の 3 通 間隙水分配係数 (<i>K</i> _{vytosol} -sw): 質 (<i>cytosol</i>)、外側:土壤間隙水 分配係数 (<i>K</i> _{vacuole} -cytosol): (<i>vacuole</i>)、外側:細胞質 (<i>cytos</i> 分配係数 (<i>K</i> _{xylem} -cytosol): (<i>xylem</i>)、外側:細胞質 (<i>cytoso</i>) 細胞膜と細胞壁に包まれて、 系数 ¹ は、式 X-81 及び式 X	 (out)、媒体間 (りである: (sw)、膜:細胞 (sw)、膜:生体膜 の)、膜:生体膜 (動、膜:生体膜 (加)、細胞外 (-82により推 	記存在する膜 壁と生体膜(c ^{夏(biomembran} (biomembran から細胞内~ 計する。	(<i>membrane</i>)の組み合 ell) ne) e) への非解離種及びイ
 ※本式で対象とすせは、図表 X-1 細胞質・土壌内側:細胞質 2 液胞・細胞質 2 液胞・細胞質 3 木部・細胞質 内側:木部 植物細胞は、デン種の質量移動体 MTC_{cell n} = 人 	する内側の媒体 (<i>in</i>)と外側の媒体 11 (36 ページ)に示す以下の 3 通 間隙水分配係数 ($K_{cytosol}$ -sw): 質 ($cytosol$)、外側:土壤間隙水 分配係数 ($K_{vacuole-cytosol$): ($vacuole$)、外側:細胞質 ($cytosol$ 分配係数 ($K_{xylem-cytosol): (xylem)、外側:細胞質 (cytosol)細胞膜と細胞壁に包まれて系数 1は、式 X-81 及び式 X111\frac{1}{MTC_{biomembrane n}} + \frac{1}{MTC_{cellwall}}$	 (out)、媒体間 (りである: (sw)、膜:細胞 (o)、膜:生体膜)、膜:生体膜 おり、細胞外 (-82 により推 	lに存在する膜 壁と生体膜(c ^度 (biomembran (biomembran から細胞内~ 計する。	(<i>membrane</i>)の組み合 ell) ne) e) への非解離種及びイ 式 X-
 ※本式で対象とすせは、図表X-1 細胞質・土壌内側:細胞質2 液胞・細胞質2 液胞・細胞質2 液胞・細胞質3 木部・細胞質内側:木部 植物細胞は、デン種の質量移動体 MTC_{cell n} =	する内側の媒体 (<i>in</i>)と外側の媒体 11 (36 ページ)に示す以下の 3 通 間隙水分配係数 ($K_{cytosol-sw}$): 質 (<i>cytosol</i>)、外側:土壤間隙水 分配係数 ($K_{vacuole-cytosol}$): (<i>vacuole</i>)、外側:細胞質 (<i>cytosol</i>) 分配係数 ($K_{xylem-cytosol}$): (<i>xylem</i>)、外側:細胞質 (<i>cytosol</i>) 細胞膜と細胞壁に包まれて、 系数 ¹ は、式 X-81 及び式 X 1 1 1 1 1 1 1 1 1 1 1 1 1	 ▲ (out)、媒体間 りである: (sw)、膜:細胞 の)、膜:生体膜 り、膜:生体膜 おり、細胞外 ζ-82により推 	記存在する膜 壁と生体膜(c g (biomembran (biomembran から細胞内~ 計する。	^(membrane) の組み合 ell) ne) e) への非解離種及びイ 式 X- 式 X-
 ※本式で対象とす せは、図表 X- 1 細胞質・土壌 内側:細胞質 2 液胞・細胞質 2 液胞・細胞質 3 木部・細胞質 内側:木部 植物細胞は、i ン種の質量移動体 MTC_{cell n} = - M MTC_{cell i} = - M 2 記号 	する内側の媒体 (<i>in</i>)と外側の媒体 11 (36 ページ)に示す以下の 3 通 間隙水分配係数 ($K_{cytosol}$ -sw): \mathfrak{g} (<i>cytosol</i>)、外側:土壤間隙水 分配係数 ($K_{vacuole-cytosol}$): (<i>vacuole</i>)、外側:細胞質 (<i>cytosol</i>) 分配係数 ($K_{xylem-cytosol}$): (<i>xylem</i>)、外側:細胞質 (<i>cytosol</i>) 細胞膜と細胞壁に包まれてま 系数 ¹ は、式 X-81 及び式 X 1 1 1 1 1 1 1 1 1 1 1	 (out)、媒体間 りである: (sw)、膜:細胞 の)、膜:生体膜)、膜:生体膜 おり、細胞外 ζ-82 により推 	iに存在する膜 壁と生体膜(c g (biomembran から細胞内~ 計する。	[〒] (<i>membrane</i>)の組み合 ell) ne) e) への非解離種及びイ 式 X-3 式 X-3
 ※本式で対象とす せは、図表 X- 1 細胞質・土壌 内側:細胞質 2 液胞・細胞質 3 木部・細胞質 内側:木部 1 植物細胞は、; 2 本部の質量移動体 MTC_{cell n} = <u>M</u> MTC_{cell i} = <u>M</u> MTC_{cell i} = <u>M</u> 	する内側の媒体 (<i>in</i>)と外側の媒体 11 (36 ページ)に示す以下の 3 通 間隙水分配係数 ($K_{cytosol}$ -sw): \mathfrak{g} (<i>cytosol</i>)、外側:土壤間隙水 分配係数 ($K_{vacuole}$ - <i>cytosol</i>): (<i>vacuole</i>)、外側:細胞質 (<i>cytosol</i>) 分配係数 (K_{xylem} - <i>cytosol</i>): (<i>xylem</i>)、外側:細胞質 (<i>cytosol</i>) 細胞膜と細胞壁に包まれてま 系数 ¹ は、式 X-81 及び式 X 1 1 1 1 1 1 1 1 1 1 1 1 1	 k (out)、媒体間 (りである: (sw)、膜:細胞 の)、膜:生体膜)、膜:生体膜 わ、瓶:生体膜 とり、細胞外 C-82 により推 単位 m/sec 	Iに存在する膜 壁と生体膜(c g (biomembran から細胞内~ 計する。 値 	[〒] (membrane)の組み合 ell) ne) e) への非解離種及びイ 式 X-3 式 X-3 式 X-3 <u>出典・参照先</u> X.3.1.3 (2)⑤

¹ 原文には、pearmeability (P)とあったが、ここでは質量移動係数 (MTC: Mass Transfer Coefficient)とする。

² Trapp, S. (2000) Modelling Uptake into Roots and Subsequent Translocation of Neutral
HC \$	記明		1位	値	出典・参照先
MAC	内への質量移動係数	14 千1	,		-the Wass
MTC biomembrane.	非解離種の生体膜質量	【移動 m	/sec		т\ X-83
n MTChiamamhuana	休奴 イオン種の生体間唇量	·移動 m	1800		₹ X-8 4
i Uniomembrane.	イオン催の生体族員重	小沙野 III	/sec		Д А 04
MTCcellwall	細胞壁質量移動係数	m	/sec	0.00025	Trapp(2000)1
非解離種及び	イオン種の生休聴質量	移動係数(MTChiama	whereas a b M'	TChiamamhuana di
かぞれ式 X-83 〕	「スジ 催り上件族員重 のバオ X-8 4 に と 9 推	や あ 小 奴 へ			
AUCAUL AOD	XUX A GA (CS 9)E	コ ソ ′Q o			
MTC	$= 10^{\log Pow_n - 6.7}$				式
MTC biomembran	$m_{e,i} = 10^{-3162} \times MTC_{biom}$	$_{embrane n} = 6$	$.89 \times 10^{-4}$	$\times MTC_{biomen}$	abrane n 式
⇒n D	3⊻ ⊓□				
記号 <i>MTC</i>		ゆまな米	里位	<u> </u>	出典・参照先 V 2 1 2 (2) ©
MTC.	非解離性の生体展員重 イオン番の生体時度 昌	1 移動係数 - 移動係数	m/sec	*	X.3.1.3(2)
IVI I Obiomembrane.i	イオン性の生体族員里	的助你致	m/sec		$(2000)^2$
_	非鼦離種の 1-オクタ	ノールと水と	_	_	化学物質情報
log <i>Pow</i> ⁿ ※ ただし、地下著 下限値あるい <i>i</i> とすろ	の間の分配係数 部農作物の計算時には、lo よ上限値に置き換える。ま	g <i>Pown</i> の下随 た、地上部農	良値は-0.57、 最作物の計算	上限値は 8.2 『時には、下限	として、範囲外 値は-0.5、上限値
log <i>Pown</i> ※ ただし、地下音 下限値あるい とする。	の間の分配係数 の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま	g <i>Pown</i> の下随 た、地上部農	と値は-0.57、 後作物の計算	上限値は 8.2 『時には、下限	として、範囲外 値は-0.5、上限値
log <i>Pown</i> ※ ただし、地下部 下限値あるい とする。 Nernst式の数	の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま (<i>N_{x-x}</i>)は、媒体間の電	g <i>Pow</i> _n の下隙 た、地上部農 位差で決ま	^{設値は-0.57、} 影作物の計算 、 、 、 、	上限値は 8.2 ^{II} 時には、下限 Trapp (200 9	として、範囲外 値は-0.5、上限値))2に示されてい
log <i>Pown</i> ※ ただし、地下語 下限値あるいけ とする。 Nernst式の数 X-85により推計	の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま (<i>N_{x-x}</i>)は、媒体間の電 する。	g <i>Pow</i> nの下限 た、地上部農 位差で決ま	^{漫値は-0.57、} ^{襲作物の計算} こる値で、'	上限値は 8.2 ^{II時には、下限} Trapp (2009	として、範囲外 値は-0.5、上限値))2に示されてい
log <i>Pown</i> ※ ただし、地下語 下限値あるい とする。 Nernst式の数 X-85により推計		gPow _n の下随 た、地上部農 に 位差で決ま	^{漫値は-0.57、} 豪作物の計算 こる値で、'	上限値は 8.2 ^{II時には、下限 Trapp (2009}	として、範囲外 値は-0.5、上限値)) ² に示されてい
$\log Pow_n$ ※ ただし、地下手 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times Eh}{p}$	$primeteo T スクタンの間の分配係数部農作物の計算時には、loは上限値に置き換える。ま(N_{x-x})は、媒体間の電する。f_{x-x} \times F_{x-x}$	g <i>Pown</i> の下随 た、地上部農 に 位差で決ま	^{漫値は-0.57、} ^{最作物の計算}	上限値は 8.2 ^{II} 時には、下限 Trapp (200 9	として、範囲外 値は-0.5、上限値))2に示されてい 式
$\log Pow_n$ ※ ただし、地下手 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times Eh}{R}$	の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $t (N_{x-x})$ は、媒体間の電 する。 $t = \frac{V_{x-x} \times F}{\times T}$	gPownの下随 た、地上部農 だ 位 差 で 決ま	^{漫値は-0.57、} ^{漫作物の計算} こる値で、'	上限値は 8.2 ^{II} 時には、下限 Trapp (200 9	として、範囲外 値は-0.5、上限値)) ² に示されてい 式
log <i>Pown</i> ※ ただし、地下音 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号	の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $f(N_{x-x})$ は、媒体間の電 する。 $f(x_{x-x} \times F)$ 来 X 説明	gPow 』の下随 た、地上部農 に 位差で決ま 単位	^{最値は-0.57、} &作物の計算 : る値で、'	上限値は 8.2 ^{II} 時には、下限 Trapp (2009 値	として、範囲外 値は-0.5、上限値))2に示されてい 式
log <i>Pown</i> ※ ただし、地下手 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号 N_{x-x}	の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $t (N_{x-x})$ は、媒体間の電 する。 $t = \frac{V_{x-x} \times F}{\times T}$ <u>説明</u> Nernst 式の数 [*]	gPownの下隙 た、地上部農 位差で決ま 単位 一	 健作物の計算 こ る 値 で、 '	上限値は 8.2 ^{III} 時には、下限 Trapp (2009 <u>値</u> 一	<u>として、範囲外</u> 値は-0.5、上限値)) ² に示されてい 式 <u>出典・参</u> <u>X.3.1.3</u>
log Pown ※ ただし、地下手 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号 N_{x-x}	の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $f(N_{x-x})$ は、媒体間の電 する。 $f_{x-x} \times F$ $\times T$ 説明 Nernst 式の数 [*]	gPow _n の下随 た、地上部農 位差で決ま <u>単位</u>	 健 信 他 で、 '	上限値は 8.2 ^{II時} には、下限 Trapp (2009 <u>値</u> 一	として、範囲外 値は-0.5、上限値)) ² に示されてい 式 <u>出典・参</u>] X.3.1.3 ⑤
log <i>Pown</i> ※ ただし、地下語 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号 N_{x-x}	の間の分配係数 の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $f(N_{x-x})は、媒体間の電 する。 f_{x-x} \times F\times T説明Nernst 式の数*$	gPow _n の下随 た、地上部農 たで決ま 一 単位 一	^最 値は-0.57、	上限値は 8.2 ^{II} 時には、下限 Trapp (2009 <u>値</u> 一	として、範囲外 値は-0.5、上限値)) ² に示されてい 式 <u>出典・参</u> X.3.1.3 ⑤ (2009) ²
log <i>Pown</i> ※ ただし、地下手 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号 N_{x-x}	の間の分配係数 の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $f(N_{x-x})は、媒体間の電 する。 f_{x-x} \times F\times T説明Nernst 式の数**価数$	gPow _n の下障 た、地上部農 た、地上部農 位差で決ま	そ 値は・0.57、 そ 作物の計算 ころ値で、	上限値は 8.2 E時には、下限 Trapp (2009 値 一	として、範囲外 値は-0.5、上限値)) ² に示されてい 式 <u>出典・参</u> X.3.1.3 (5) (2009) ² 化学物質(
log <i>Pown</i> ※ ただし、地下手 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号 N_{x-x}	の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $f(N_{x-x})$ は、媒体間の電 する。 $f_{x-x} \times F$ $\times T$ <u>説明</u> Nernst 式の数 [*] 価数 植物体内の電位差 [*]	gPow _n の下障 た、地上部農 だ位差で決ま <u>単位</u> 一 V	<u>≹</u> 値は-0.57、 操作物の計算 : る値で、' 細胞質・±	上限値は 8.2 E時には、下限 「rapp (2009 <u>値</u> 	として、範囲外 値は-0.5、上限値)) ² に示されてい 式 <u>出典・参</u> X.3.1.3 ⑤ (2009) ² 化学物質 0.12 X.3.1.3 (2
log Pown ※ ただし、地下手 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号 N_{x-x}	の間の分配係数 の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $f(N_{x-x})$ は、媒体間の電 する。 $f_{x-x} \times F$ $\times T$ <u>説明</u> Nernst 式の数 [*] 価数 植物体内の電位差 ^{**}	gPow _n の下随 た、地上部農 に位差で決ま <u>単位</u> 一 V	Addit - 0.57、 Addit - 0.57 Addit - 0.57 A	上限値は 8.2 に時には、下限 Trapp (2009 <u>値</u> 一 に壊間隙水間:0 2質間:-0.02	として、範囲外 値は-0.5、上限値)) ² に示されてい 式 <u>出典・参</u> X.3.1.3 ⑤ (2009) ² 化学物質 0.12 X.3.1.3 (2
log <i>Pown</i> ※ ただし、地下手 下限値あるい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号 N_{xx}	の間の分配係数 の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $f(N_{x-x})は、媒体間の電 する。 f_{x-x} \times F×T説明Nernst 式の数*価数植物体内の電位差*$	gPow _n の下随 た、地上部農 た、地上部農 位差で決ま <u>単位</u> 一 V	 deは-0.57、 ま作物の計算 Ca値で、' m胞で、 加胞ず細胞 m胞・細胞 	上限値は 8.2 E時には、下限 Trapp (2009 値 一 空環間 : -0.02 2質間 : -0.02 2質間 : 0.12 06485	として、範囲外 値は-0.5、上限値)) ² に示されてい 式 <u>出典・参</u> X.3.1.3 ⑤ (2009) ² 化学物質 0.12 X.3.1.3 (2
log <i>Pown</i> ※ ただし、地下手 下限値あるいい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号 N_{x-x} <i>Z</i> <i>Elx-x</i>	の間の分配係数 の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $f(N_{x-x})は、媒体間の電 する。 f(N_{x-x})は、媒体間の電 する。 f(N_{x-x}) k (K) (K) (K) (K) (K) (K) (K) (K) (K) (K)$	gPow _n の下障 た、地上部農 た、地上部農 位差で決ま 単位 一 V C/mol I/mol ¹ /K	 deは-0.57、 ま作物の計算 a 値で、' m胞で、' m胞質・土 液部・細胞 	上限値は 8.2 E時には、下限 Trapp (2009 値 一 空職間隙水間:・0 空間: 0.02 空間: 0.12 96485 8 214	として、範囲外 値は-0.5、上限値)) ² に示されてい 式 <u>出典・参</u> X.3.1.3 (5) (2009) ² 化学物質 0.12 X.3.1.3 (2 NIST ³ ,
log Pown ※ ただし、地下手 下限値あるいい とする。 Nernst式の数 X-85により推計 $N_{x-x} = \frac{z \times El}{R}$ 記号 $\overline{N_{x-x}}$ <i>Elx-x</i> <i>F</i> <i>R</i> <i>T</i>	の間の分配係数 部農作物の計算時には、lo は上限値に置き換える。ま $f(N_{x-x})$ は、媒体間の電 する。 $f(N_{x-x})$ は、媒体間の電 する。 $f(N_{x-x})$ は、媒体間の電 する。 $f(N_{x-x})$ は、媒体間の電 電 する。 $f(N_{x-x})$ は、媒体間の電 する。 $f(N_{x-x})$ は、媒体間の電 する。	gPow _n の下障 た、地上部農 だ位差で決ま 位差で決ま 上 位 上 で 決ま し て 、 W て /mol J/mol/K	 値は・0.57、 後作物の計算 る値で、' 細胞で、' 細胞皆・細胞 木部・細胞 	上限値は 8.2 E時には、下限 Trapp (2009 値 一 空間隙水間:・ 空間: -0.02 空間: 0.12 96485 8.314 293 15	として、範囲外 値は-0.5、上限値)) ² に示されてい 式 <u>出典・参</u> X.3.1.3 (5) (2009) ² 化学物質 0.12 X.3.1.3 (2 NIST ³ , V 章 x 67

and Ionisable Organic Compounds. Pest. Manag. Sci., 56(9), 767-778.

¹ Trapp, S. (2000) Modelling Uptake into Roots and Subsequent Translocation of Neutral and Ionisable Organic Compounds. Pest. Manag. Sci., 56(9), 767–778.

² Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

³ NIST, Reference on Constants, Units and Uncertanity, Fundamental Physical Constants, Faraday constant.

	記号	説明	単位	値	出典・参照先
		境温度			
1	※ 本式で対	象とする媒体やそれを構	成する要素 (x)の組み合わ	つせは以下の3通り	である:
2	1 細胞質	(cytosol)-土壤間隙水 (s	sw)		
3	2 液胞(vacuole)-細胞質(cytosol	<i>D</i>		
4	3 木部 (2	xylem)-細胞質(cytosol)			
5					
6	植物体内(の媒体 (<i>xm</i>)における	総濃度あたりの非解离	推種活量(G _{xm.n}))	は、式 X-86 により推
7	計する。土地	襄間隙水 (<i>sw</i>)におけ	る総濃度あたりの非解	R離種活量(G _{swn})については式 X-87
8	により推計	する。また、 x におけ	ける総濃度あたりのイン	オン種活量 (<i>G_{x.i})</i>	は式 X-88 により推
9	計する。				
10					
1 1	C		1		
11	$G_{xmn} \equiv -$	W _{xm} Klipid _{xm} , (b _{xm i}	式 X-86
		$\frac{1}{1}$ + $\frac{1}{1}$ + (1)	$W_{xm} + K lipid_{xm i})$	× ¢	

12
$$G_{swn} = \frac{1}{\left(\frac{1}{\gamma_{s,n}} + \frac{\phi_{swi}}{\gamma_{s\,i} \times \phi_{swn}}\right)}$$
 $\not t X-87$

13
$$G_{xi} = G_{xn} \times \frac{\varphi_{xi}}{\phi_{xn}}$$

式 X-88

14

記号	説明	単位	值	出典・参照先
G _{xm.n}	xm ごとの総濃度あたりの	_	—	X.3.1.3 (2)5
	非解離種活量※1			
$G_{sw.n}$	土壌間隙水の総濃度あたり			X.3.1.3 (2)5
	の非解離種活量			
$G_{\mathbf{x}.i}$	x ごとの総濃度あたりのイ		—	X.3.1.3 (2)5
	オン種活量*2			() =
W_{xm}	<i>xm</i> ごとの水分含有割合**1		細胞質:0.943	X.3.1.3 (2)(7)
			液胞: 0.943	
T71· · 1			木部:1	
Klipid _{xm.n}	xm ことの非解離種の脂質-		—	式 X-89
171 1	水分配係数~1			
$K_{II}p_{1}a_{xm,i}$	xm ことのイオン種の脂質-		—	т. X-90
	水分配休毅~1			+ V oo
γ xm.n	xm ことの非 解離 裡 活 重 係			式 X-32
<i>.</i>	数 ¹¹			₹ V.99
<i>Y</i> xm.1	XIII ことのイオン 僅佔 単体 数 ^{※1}			т, х -33
Ø xm.n	xmごとの非解離種分率			酸、塩基、両性物
				質に対してそれぞ
				れ、X.3.1.2 (2)の式
				を適用する。
ϕ xm.i	xmごとのイオン種分率		—	酸、塩基、両性物
				質に対してそれぞ
				れ、X.3.1.2 (2)の式
				を適用する。
※1 木式で対象に	オス柿物休内柑休 (mm)け 細胞	」「」」「」」「」」」	液 h (upped))	大部 (walam)である

15 ※1 本式で対象にする植物体内媒体 (xm)は、細胞質 (cytosol)、液胞 (vacuole)、木部 (xylem)である。

16 ※2 本式で対象にする媒体やその構成要素(x)は、土壤間隙水 (sw)、細胞質 (cytosol)、液胞 (vacuole)、

17 木部 (xylem)である。

 $\mathbf{2}$ 環境媒体と植物及び牛体内媒体 (xm)における非解離種の脂質・水分配係数 (Klipidxm,n) は、式 X-89 により推計する。また、xm におけるイオン種の脂質・水分配係数(Klipidxm.i) 3 は、式 X-90 により推計する。 4

 $\mathbf{5}$

1

6
$$Klipid_{xm n} = L_{xm} \times (10^{\log Pow_n})^b$$

7
$$Klipid_{xm i} = L_{xm} \times (10^{\log Pow_i})^b$$

$$7 Klipid_{xm,i} = L_{xm} \times (1$$

式 X-89

式 X-90

8

記号	説明	単位	値	出典・参照先
Klipid _{xm.n}	<i>xm^{*1}</i> における非解離種 の脂質·水分配係数		※ 2	X.3.1.3 (2) (5); Trapp (2009) ¹
Klipid _{xm.i}	<i>xm^{※1}</i> におけるイオン種 の脂質-水分配係数		※ 2	X.3.1.3 (2) ⑤ ; Trapp (2009) ¹
Lxm	<i>xm^{※1}</i> における脂質含有 割合	_	細胞質:0.02 液胞:0.02 木部:0	図表 X-32
$\log Pow_n$	非解離種種の 1-オクタノ ールと水との間の分配係 数	_	_	化学物質情報
$\log Pow_i$	イオン種の 1-オクタノー ルと水との間の分配係数		—	化学物質情報
b	植物脂質と 1-オクタノー ル間の差に対する修正指 数	_	地下部:0.77 地上部:0.95	Trapp(2009) ¹

9 ※1 本式で対象にする環境媒体と植物体内媒体 (xm):は、 細胞質 (cvtosol)、液胞 (vacuole)、木部 10 (xvlem)である。

※2 ただし、地下部農作物の計算時には、logPown及び logPowiの下限値は-0.57、上限値は 8.2 として、 11 範囲外の値は下限値あるいは上限値に置き換える。また、地上部農作物の計算時には、下限値は-0.5、 1213上限値は 4.5 とする。

14

(8) 畜産物中濃度の推計 15

16 X.3.1.2 (8)では、畜産物中濃度の推計に用いる数式やパラメータについて説明する。畜産 物中濃度の推計の手順を図表 X-25 に示す。 17

従来の暴露評価モデルでは、logPowを用いて推計した牛肉及び牛乳への移行係数(BTF) 18 を用いて畜産物中濃度を推計している。解離性モデルでも同様の方法で牛肉中濃度及び乳 19製品中濃度を計算するが、1-オクタノールと水との間の分配係数(logPow)の代わりに 20X.3.1.2 (3)に説明するように、牛の小腸 pH (7.0)で補正する見かけの 1-オクタノールと水と 2122の間の分配係数 (log Dcow)を用いる。 なお、導入にあたっての考え方や方法については、X.3.1.3 (3)に述べる。 23

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

 $\mathbf{2}$

13 牛肉への移行係数 (*BTF_{meat}*)は、log*D_{cow}*を用いて、式 X-91 で推計する。土壌の換算係

14 数 (乾燥重量→湿潤重量) (*CONVsoit*)は、V-120 により計算する。

1
$$BTF_{meat} = 10^{-7.6 + \log D_{cow}}$$

$$2 \qquad CONV_{soil} = \frac{\frac{BD_{soil}}{1000}}{DEN_{SOS} \times SOSF}$$

式 V-119 置換 式 X-91

再揭 式 V-120

3

記号	説明	単位	値	出典・参照先
BTF_{meat}	牛肉への移行係数	day/kg	*	V 章 p.97-98
$\log D_{cow}$	牛の小腸での見かけの 1-オ	—		X.3.1.2 (3)、牛の小
	クタノールと水との間の分			腸 pH (7)で補正
	配係数			
CONV _{soil}	土壌の換算係数(乾燥重量	—	1.40	式 V-120
	→湿潤重量)			
BD_{soil}	土壌バルク密度	kg/m ³	1050	V-75
DENsos	土壤粒子密度	kg/L	1.5	V 章 p.67
SOSF	土壤中の粒子容積比		0.5	V章 p.67

4 ※ log D_{cow}の下限値は 1.5、上限値は 6.5 として、範囲外の値は下限値あるいは上限値に置き換える。

 $\mathbf{5}$

6 ② 乳製品中濃度

7	参照: V.7.3.4 畜産物中濃度の推計
8	(2) 乳製品中濃度
9	V 章と同様に、牛乳中濃度を推計することで、乳製品中濃度の代表値とする。牛乳中濃度
10	は、従来の暴露評価モデルと同様に式 V-121 で推計する。
11	

12
$$C_{milk} = BTF_{milk} \times \{\!\!\{C_{grass} \times CTL_{grassL} \times CONWD\}\!+\!\{C_{soil} \times CTL_{soil} \times CONV_{soil}\}\!+\!\{C(1.5) \times CTL_{inhl}\}\!\}$$
13再掲 式 V-121

14

記号	説明	単位	値	出典・参照先
C_{milk}	乳製品中濃度	mol/kg	—	V 章 p.98
BTF_{milk}	牛乳への移行係数	day/kg		式 X-92
C_{grass}	牧草中濃度	mol/kg		式 V-102
CTLgrassL	乳牛の牧草の1日当たりの	kg/day	16	V 章 p.98
	摂取量(乾燥重量当たり)			
CONWD	牧草の換算係数(乾燥重量	—	4	V 章 p.97、p.98
	→湿潤重量)			
Csoil	土壤中濃度(10 年平均)	mol/kg	—	式 V-73
CTLsoil	牛の土壌の1日当たりの摂	kg/day	0.41	V 章 p.97、p.98
	取量 (乾燥重量当たり)			
CONVsoil	土壌の換算係数(乾燥重量	—	1.40	式 V-120
	→湿潤重量)			
C(1.5)	大気中濃度(沈着による減	mol/m ³	—	式 V-40
	少を考慮した後)			
CTLinhl	牛の吸入摂取量 (大気)	m³/day	122	V章 p.97、p.98

15

16 牛乳への移行係数 (*BTF_{milk}*)は、log*D_{cow}*を用いて、式 X-92 で推計する。

17

18

 $19 \qquad BTF_{milk} = 10^{-8 \, 1 + \log D_{cow}}$

V-122 置換 式 X-92

記号	説明	単位	値	出典・参照先
BTF_{milk}	牛乳への移行係数	day/kg	*	V 章 p.99
$\log D_{cow}$	牛の小腸での見かけの 1-オ	—	—	X.3.1.2 (3)、牛の小
	クタノールと水との間の分			腸 pH (7)で補正
	配係数			

※1 log Dcowの下限値は3、上限値は6.5として、範囲外の値は下限値あるいは上限値に置き換える。

 $\frac{2}{3}$

4 (9) 水域濃度、魚介類中濃度及び底質中濃度の推計

5 ① 水域濃度、魚介類中濃度及び底質中濃度の計算手順

6 X.3.1.2 (9)では、水域濃度、魚介類中濃度及び底質中濃度の推計に用いる数式やパラメー
7 タについて説明する。水域濃度、魚介類中濃度及び底質中濃度の推計の手順を図表 X-26
8 に示す。

9 従来の暴露評価モデルでは、希釈と懸濁粒子への吸着を考慮して、水域濃度、魚介類中
 10 濃度及び底質中濃度を推計している。解離性モデルでは、懸濁粒子への吸着に Franco and

11 Trapp (2010)¹の考え方を導入する。

12 なお、水域濃度及び底質中濃度の推計について、導入にあたっての考え方や方法につい

13 ては、X.3.1.3 (1)に示す。魚介類中濃度については、従来どおりの方法で推計する。

14

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

1 図表 X-26 水域濃度と底質中濃度の計算手順要約図 2 ② 水域濃度 (人の健康に係わる評価) Cwaterbody man 3 参照: V.7.3.5 水域濃度・魚介類中濃度・底質中濃度の推計 4 (1) 河川水中濃度(人の健康に係る評価) $\mathbf{5}$ 水域濃度(人の健康に係わる評価)(Cwaterbody man)は、以下のように、モル濃度で計 6 $\overline{7}$ 算する。 排出量データに化審法推計排出量又は PRTR 届出排出量(海域以外)を用いる場合: 8 河川水中濃度 (人評価用) (Criver man): 式 X-93 9 10 海水中濃度 (人評価用) (Csea man): 式 V-124 排出量データに PRTR 届出排出量(海域)を用いる場合: 11 河川水中濃度(人評価用)(Criver man):0 mol/L 12海水中濃度 (人評価用) (Csea man): 式 X-94 13河川水及び海水中の溶存態濃度(人評価用)(Cwaterbody man ww)は、式 V-126により計算す 14 る。 1516 TEMW 式 V-123 置換 式 X-93 17 $C_{river_man} = \frac{1}{V_{river_man} \times (365 \times 24 \times 60 \times 60) [year \rightarrow sec] \times M}$ $C_{sea_man} = \frac{C_{river_man}}{DILUTION_{sea}}$ 再掲(一部数式を修正) 式 V-124 18TEMW $C_{sea_man} = \frac{V_{sea_man}}{V_{sea_man} \times (365 \times 24 \times 60 \times 60) [year \rightarrow sec] \times M}$ 式 V-125 置換 式 X-94 1920再掲(一部数式を修正) 式 V-126 21 $C_{waterbody man ww} = C_{waterbody man} \times (1 - FWS_{xm})$ 22説明 単位 出典・参照先 記号 値 水域濃度(人評価用)*1 mol/L X.3.1.3 (1)® Cwaterbody_man TEMW 評価対象物質の水域への Ⅲ章 kg/year 排出量 Vriver_man 河川流量 (人評価用) m³/sec ₩3 V章 p.100 М モル質量 g/mol DILUTIONsea 海域希釈率 10 V章 p.101 Vsea man 海域流量 (人評価用) m³/sec V章 p.101 43.5 $C_{waterbody_man_ww}$ 水域の溶存態濃度(人評 V章 p.101-102 mol/L ₩4 価用)*1 FWS_{xm} 河川の場合 xmごとの水中懸濁粒子吸 着態質量分布比※2 =FWSwf、海域の場 合 =FWS_{ws} 、式 X-95、式 X-96 WS_{wfw} 淡水域又は海水域の水で mol/L 化学物質情報

の見かけの水に対する溶

解度**3

 WS_{WSW}

- 1 ※1 水域:河川又は海域、waterbody: river 又は sea
- $\mathbf{2}$ ※2 河川の場合の環境媒体 (xm)は、淡水域 (wf)であり、海域の場合の環境媒体 (xm)は、海水域 (ws) 3 である。
- 4 ※3 排出量データの種類により以下の値を用いる。
- $\mathbf{5}$ 化審法推計排出量:20.85 6
 - PRTR 届出排出量(海域以外): 4.35
- 7 ※4 ただし、本章では、水域の溶存態濃度の上限値として、水域での見かけの水に対する溶解度を採用
- 8 する。(河川:淡水域での見かけの水に対する溶解度(WSwfw)、海域:海水域での見かけの水に対する溶
- 9 解度 (WSwsw))。

解離性物質の水中懸濁粒子吸着態質量分布比 (FWS)は、淡水域 (wf)と海水域(ws)それぞ 10 れについて計算する。Koc 又は Kdの実測値がある場合は、以下の式で算出する。 11

12

13
$$FWS_{xm} = \frac{Koc \times OC_{xep} \times (CW_{ss} \times 10^{-6})}{1 + Koc \times OC_{xep} \times (CW_{ss} \times 10^{-6})}$$
 V-127 置換 式 X-95

- 14
- 15Koc 又は Kd の実測値がない場合は、以下の式で算出する。
- 16

17

$$FWS_{xm} = \frac{\left(\frac{Koc_n \times OC_{xep} \times \phi_{xep,n}}{\gamma_{xm,n}} + \sum_i \frac{Koc_i \times OC_{xep} \times \phi_{xep,i}}{\gamma_{xm,i}}\right) \times (CW_{ss} \times 10^{-6})}{\left(\frac{\phi_{xew,n}}{\gamma_{xm,n}} + \sum_i \frac{\phi_{xew,i}}{\gamma_{xm,n}}\right) \times f_{xew}} + \left(\frac{Koc_n \times OC_{xep} \times \phi_{xep,n}}{\gamma_{xm,n}} + \sum_i \frac{Koc_i \times OC_{xep} \times \phi_{xep,i}}{\gamma_{xm,i}}\right) \times (CW_{ss} \times 10^{-6})}{V \cdot 127}$$
18
V-127 置換 式 X-96

記号	説明	単位	値	出典・参照先
FWS _{xm}	<i>xm</i> ごとの水中懸濁粒子吸 着熊質量分布比 [※]			X.3.1.3 (1)®
Koc	有機炭素補正土壤吸着係 数	L/kg	—	化学物質情報
Kocn	非解離種の有機炭素補正 土壌吸着係数	L/kg	—	化学物質情報
Koci	イオン種の有機炭素補正 土壌吸着係数	L/kg	—	化学物質情報
OC_{xep}	<i>xep</i> ごとの有機炭素含有率 *		0.1	図表 X-20
CW_{ss}	水中懸濁粒子濃度	[mg/L]	50	MNSEM UM デフ オルト
φ xep.n φ xew.n	<i>xep 又は xew</i> ごとの非解離 種分率 [*]	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
φ xep.i φ xew.i	<i>xep 又は xew</i> ごとのイオン 種分率 [*]	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
γxm.n	<i>xm</i> ごとの非解離種活量係 数 [※]	—	—	式 X-32
$\gamma_{xm.i}$	<i>xm</i> ごとのイオン種活量係 数 [※]	—	—	式 X-33
f _{xew}	<i>xew</i> ごとの体積分率 [※]	_	<i>xew</i> ごとの値	図表 X-14

記号	説明	単位	値	出典・参照先
		wfi	$w: 2 \times 10^{-5}$	
 ※ 淡水域の場合 環境媒体 (構成要素の) 	↑は以下の組み合わせで計算する。 xm):淡水域 (wf)、環境媒体中の構成 粒子及び近傍水 (xep):淡水域の懸濁料	ws 要素の水(xew): 泣子(wfp)	w:2×10 ⁻⁵ 淡水域の水	、(<i>wfw</i>)、環境媒体
海水域の場 環境媒体(構成要素の	合は以下の組み合わせで計算する。 xm) : 海水域 (ws)、環境媒体中の構成 粒子及び近傍水 (xep) : 海水域の懸濁料	要素の水(<i>xew</i>): 立子(<i>wsp</i>)	海水域の水	、(<i>wsw</i>)、環境媒体
飲料水濃度	(C _{dwater})も、従来と同様に、式 V	-128 で計算する	5 .	
③魚介類中湯	豊度 Crish			
-	参照: V.7.3.5 5	水域濃度・魚介	類中濃度	・底質中濃度の
				(2) 魚介類中
魚介類中濃	度は、式 V-129 及び式 V-130 に。	より計算する。:	ただし、	主物濃縮係数 (
の原作及で特	本時には \mathbf{V} 991(C)にテオトる		「時右の州	「「「「「「」」」の「「」」」。
			(11)1.	.дсн <i>к / 0</i> 。
$C_{fish_fresh} =$	$C_{river man ww} \times BCF \times BMF$		再掲 (単	单位を修正)式 \
$C_{fish seq} = C$	$sea man ww \times BCF \times BMF$		再揭(闻	単位を修正)式 \
記号	説明	単位	値	出典・参照先
Cfish_fresh	魚介類中濃度(淡水域)	mol/kg	—	— —
Criver_man_ww DCE	河川水中の浴存態濃度(人評価用)	mol/L		式 V 126□ 小学师所佳却
BOF	土物 辰 楠保致 生物萎藉	L/Kg	_	16子物頁情報
Cfish sea	血介類中濃度 (海水域)	mol/kg		
Csea_man_ww	河川水中の溶存態濃度(人評価用)	mol/L		式 V 126□
生物蓄積係	数 (<i>BMF</i>)については、従来の暴	露評価と同様に	、実測値	が得られない場
は図表 V-39 ź	から選ぶことにする。図表 V-39 ⁻	では、logPowフ	スは BCF	の値から BMF
択することに	なっている。解離性物質について	は非解離種の	log <i>Pown</i>	又は BCF を用い
同様に選択す	る。			
④ 生活環境重	b植物に対する暴露評価			
			生物所し	
生活環境動	植物に対する暴露評価は、基本的	には、非解離性	主物負と回	り様に V.7.3.5(3)
生活環境動 した手法で評	植物に対する暴露評価は、基本的 価する。ただし、判定に用いる\$	のには、非解離的 の化性状データ	±物質とPP や環境中i	通様に V.7.3.5(3) 濃度の推計手法

- 部分について説明する。 30
- 31

34

29

i) 水生生物の暴露濃度 Cwaterbody_env 32

参照: V.7.3.5 水域濃度・魚介類中濃度・底質中濃度の推計

(3) 生活環境動植物に対する暴露評価

				工物以來路候及世
水域濃度(生態	鴜評価用) (C _{waterbody_env})は、	式 X-97 によ	りモル濃度で	計算する。同様に
水域の溶存態濃度	度(生態評価用)(<i>C_{waterbody_e}</i>	nv_ww)も、式	V-132 により	計算する。
解離性物質の	水中懸濁粒子吸着態質量分	布比 (<i>FWS</i>)に	ついては、封	C X-95 又は式 X-
で求める				
$C_{waterbody_env} = -$	<i>TEMW</i>	<u>-0)[</u>		V-131 置換 式 X-
. –	$V_{waterbody_env} \times (365 \times 24 \times 60 \times 6)$	$50 \text{Jyear} \rightarrow \text{sec}$	c]×M	
C	$-C$ $\times (1 EW)$	7)	百垠(—— 如粉	ポセ修正) ポ ₩-1
$C_{waterbody_env_w}$	$_{W} - C_{waterbody_env} \times (1 - I' W)$)	丹抱(印刻	【 径 修 止) ↓ ↓ ↓ 1
		W/11.	1-1-	
		单位 mol/I		出典・参照先 X 9 1 9 (1) ②
TEMW	不 域 展 (土 恵 叶 仙 市) 「 評 価 対 象 物 質 の 水 域 へ の	kg/vear		X.5.1.5 (1)⊚ Ⅲ章
	排出量	8-9-04-		
$V_{waterbody}$	生態の暴露量推算に係る	m ³ /sec	13.47	V章 p.105
М	水域流量	<i>a</i> /m ol		
Cwaterbody env ww	モル員里 水域の溶存熊濃度(生熊	mol/L	*2	 V章 p.105
e waterbedy_env_ww	評価用)*1		<i>/</i> ···	· · · · · · · · · · · · · · · · · · ·
FWS	水中懸濁粒子吸着態質量			式 X-95、式 X-9
	分布比	1.07		1. 24 11. 55 14 19
		100 O I / I		
WS _{wfw} WS _{wsw}	の見かけの水に対する 家	mol/L	—	化字物質情報
WS _{wfw} WS _{wsw} ※1 水域:河川又		mol/L		化字物質情報
WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:ジ 溶解度(WSwsv	 (次小域又は海小域の水で の見かけの水に対する溶 解度^{*2} は海域、waterbody: river又は では、水域の溶存態濃度の上限(え水域での見かけの水に対する溶 w))水に対する溶解度。 	mol/L : <i>sea</i> 直として、水域 ⁻ 系解度(<i>WS_{wfw}</i>)、	での見かけの水! 海域:海水域で	化学物質情報
WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:淡 溶解度(WSwsw ii) 底生生物の	 (次小域又は海小域の水で の見かけの水に対する溶 解度*2 は海域、waterbody: river又は では、水域の溶存態濃度の上限((水域での見かけの水に対する溶 w))水に対する溶解度。 D暴露濃度 Csed 	mol/L : <i>sea</i> 直として、水域 ⁻ 译解度(<i>WS_{wfw}</i>)、	 での見かけの水り 海域:海水域で	化学物質情報 こ対する溶解度を採用 での見かけの水に対す
WS _{wfw} WS _{wsw} ※1 水域:河川又 ※2 ただし、本章 る。(河川:初 溶解度(WS _{wsv} ii) 底生生物の	 (次、吸くは海、吸の水での見かけの水に対する溶解度*2 は海域、waterbody:river又はでは、水域の溶存態濃度の上限((本域での見かけの水に対する溶 かに対する溶解度。 ひ暴露濃度 Csed 参照: V.7.3. 	mol/L <i>sea</i> 直として、水域 ⁻ 系解度(WSwfw)、 5 水域濃度・	ー での見かけの水に 海域:海水域で 魚介類中濃度	化学物質情報 こ対する溶解度を採用 ごの見かけの水に対す ・底質中濃度の推
WS _{wfw} WS _{wsw} ※1 水域:河川又 ※2 ただし、本章 る。(河川:ジ 溶解度(WS _{wsv} ii) 底生生物の	 (次小域又は海小域の水で の見かけの水に対する溶 解度*2 は海域、waterbody: river又は では、水域の溶存態濃度の上限(え水域での見かけの水に対する溶 。)) かに対する溶解度。 の暴露濃度 Csed 参照: V.7.3. 	mol/L ま <i>sea</i> 直として、水域 ⁻ 浮解度(<i>WS_{wfw}</i>)、 5 水域濃度・ (3)	での見かけの水に 海域:海水域で 魚介類中濃度 生活環境動植	化学物質情報 こ対する溶解度を採用 での見かけの水に対す ・底質中濃度の推 物に対する暴震評
WS _{wfw} WS _{wsw} ※1 水域:河川又 ※2 ただし、本章 る。(河川:初 溶解度(WS _{wsv} ii) 底生生物の	 (次、吸文は海、吸の水での見かけの水に対する溶解度*2 は海域、waterbody:river又はでは、水域の溶存態濃度の上限((本域での見かけの水に対する溶 w))水に対する溶解度。 D暴露濃度 C_{sed} 参照: V.7.3. 	mol/L : <i>sea</i> 直として、水域 ⁻ 系解度(<i>WSwfw</i>)、 5 水域濃度・ (3)	での見かけの水に 海域:海水域 魚介類中濃度 生活環境動植 の 底生	化学物質情報 こ対する溶解度を採用 での見かけの水に対す ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推
WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:ジ 溶解度(WSwsv ii) 底生生物の		mol/L <i>sea</i> 直として、水域 ⁻ 辞度(<i>WSwfw</i>)、 5 水域濃度・ (3)	での見かけの水し 海域:海水域で 魚介類中濃度 生活環境動植 ② 底生	化学物質情報 こ対する溶解度を採用 での見かけの水に対す ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推
WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:∛ 溶解度(WSwsv ii) 底生生物のの 底生生物への	 (次、取文は海、取のがでの見かけの水に対する溶解度*2 は海域、waterbody: river又はでは、水域の溶存態濃度の上限(べな、水域の溶存態濃度の上限(かする溶解度。 の見かけの水に対する溶 ())水に対する溶解度。 の暴露濃度 Csed 参照: V.7.3. 	mol/L : <i>sea</i> 直として、水域 ⁻ 系解度(<i>WSwfw</i>)、 5 水域濃度・ (3) 译で非解離性特	での見かけの水し 海域:海水域 魚介類中濃度 生活環境動植 ② 底生	 化学物質情報 こ対する溶解度を採用 ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推 W.7.3.5(3)②に示し
WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:ジ 溶解度(WSwsv ii) 底生生物のの 底生生物への 方法で考慮する。	 (次、取文は海、取のがでの見かけの水に対する溶解度*2 は海域、waterbody: river又はでは、水域の溶存態濃度の上限(それ域での見かけの水に対する溶解)の水に対する溶解度。 の暴露濃度 Csed 参照: V.7.3. 影響については、評価 II 以降非解離性物質では、logPo 	mol/L : <i>sea</i> 道として、水域 系解度(<i>WSwfw</i>)、 5 水域濃度・ (3) 降で非解離性物 wが3以上の	での見かけの水に 海域:海水域で 魚介類中濃度 生活環境動植 ② 底生 物質と同様に、 物質は、評価	 化学物質情報 こ対する溶解度を採用 での見かけの水に対す ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推 V.7.3.5(3)②に示し Ⅱ以降で底生生物
 WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:∛ 溶解度(WSwsv ii) 底生生物への 気法で考慮する。 リスク評価を行き 	 (次、取文は海、取のかでの見かけの水に対する溶解度*2 は海域、waterbody: river又はでは、水域の溶存態濃度の上限(ない域での見かけの水に対する溶解)かに対する溶解度。) 水に対する溶解度。) 暴露濃度 Csed 参照: V.7.3. 影響については、評価 II 以降 非解離性物質では、logPo うこととしている。解離性特 	mol/L <i>sea</i> 道として、水域 ⁻ 新解度(WSwfw)、 5 水域濃度・ (3) 季で非解離性料 wが3以上の 物質についてに	ー での見かけの水し 海域:海水域 魚介類中濃度 生活環境動植 ② 底生 物質と同様に、 物質は、評価 は非解離種の	 化学物質情報 こ対する溶解度を採用 ごの見かけの水に対す ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推 W.7.3.5(3)②に示し Ⅱ以降で底生生物 log<i>Pown</i>を用いて
 WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川: ※) 溶解度(WSwsv ii) 底生生物への影 方法で考慮する。 リスク評価を行き 同様に判断する。 	 (次、取文は海、取のかでの見かけの水に対する溶解度*2 は海域、waterbody: river又はでは、水域の溶存態濃度の上限((本域での見かけの水に対する溶(w))水に対する溶解度。 D暴露濃度 Csed 参照: V.7.3. 影響については、評価Ⅱ以降 非解離性物質では、logPo うこととしている。解離性特 	mol/L <i>sea</i> 直として、水域で 新解度(WSwfw)、 5 水域濃度・ (3) 峰で非解離性物 wが3以上の 物質について	での見かけの水に 海域:海水域で 魚介類中濃度 生活環境動植 ② 底生 物質と同様に、 物質は、評価 ま非解離種の	 化学物質情報 こ対する溶解度を採用 ごがする溶解度を採用 ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推 W.7.3.5(3)②に示し Ⅲ以降で底生生物 log<i>Pown</i>を用いて
 WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:∛ 溶解度(WSwsv ii) 底生生物への 方法で考慮する。 リスク評価を行き 同様に判断する。 したがって、 	 次示域又は海示域の水での見かけの水に対する溶解度*2 は海域、waterbody: river又はでは、水域の溶存態濃度の上限(なべ域での見かけの水に対する溶 かに対する溶解度。 の暴露濃度 Csed 参照: V.7.3. 影響については、評価 II 以降 非解離性物質では、logPo うこととしている。解離性特 た質中濃度(湿潤重量当たり 	mol/L <i>sea</i> 直として、水域 ⁻ S解度(WSwfw)、 5 水域濃度・ (3) 季で非解離性物 wが3以上の 物質についてに))(Csed wee)は	での見かけの水に 海域:海水域で 魚介類中濃度 生活環境動植 ② 底生 物質と同様に、 物質は、評価 は非解離種の 、式 V-133 に	 化学物質情報 こ対する溶解度を採用 での見かけの水に対す ・底質中濃度の推 物に対する暴露評 牧(7.3.5(3)②に示し Ⅱ以降で底生生物 log<i>Pown</i>を用いて より計算する。
 WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:※) 溶解度(WSwsw ii) 底生生物への影 方法で考慮する。 リスク評価を行き 同様に判断する。 したがって、「 	 次示域又は海示域の水での見かけの水に対する溶解度**2 は海域、waterbody: river又はでは、水域の溶存態濃度の上限(を水域での見かけの水に対する溶解) の水に対する溶解度。 D暴露濃度 Csed 参照: V.7.3. 影響については、評価 II 以降 非解離性物質では、logPo うこととしている。解離性特 該質中濃度(湿潤重量当たり 	mol/L <i>sea</i> 直として、水域 ⁻ 解度(<i>WSwfw</i>)、 5 水域濃度・ (3) 季で非解離性特 かが 3 以上の 物質についてに))(<i>Csed_wet</i>)は	での見かけの水に 海域:海水域で 魚介類中濃度 生活環境動植 ② 底生 物質と同様に、 物質は、評価 ま非解離種の 、式 V-133 に	 化学物質情報 こ対する溶解度を採用 での見かけの水に対す ・底質中濃度の推 物に対する暴露評 牧に対する暴露評 生物の暴露濃度推 V.7.3.5(3)②に示し Ⅲ以降で底生生物 log<i>Pown</i>を用いて より計算する。
 WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:∛ 溶解度(WSwsw ii) 底生生物への影 広生生物への影 広さる。 リスク評価を行き 同様に判断する。 したがって、「 	 次示域又は海示域の水での見かけの水に対する溶解度*2 は海域、waterbody: river又はでは、水域の溶存態濃度の上限(なべ域での見かけの水に対する溶 かに対する溶解度。 の暴露濃度 Csed 参照: V.7.3. 影響については、評価II以降 非解離性物質では、logPo うこととしている。解離性特 底質中濃度(湿潤重量当たり 	mol/L <i>sea</i> 直として、水域 ⁻ S解度(WSwfw)、 5 水域濃度・ (3) 5 水域濃度・ (3) 条で非解離性物 wが3以上の 物質についてに))(Csed_wet)は	での見かけの木に 海域:海水域で 魚介類中濃度 生活環境動植 ② 底生 物質と同様に、 物質は、評価 は非解離種の 、式V-133 に	 化字物質情報 こ対する溶解度を採用 ごの見かけの水に対す ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推 W.7.3.5(3)②に示し Ⅱ以降で底生生物 log<i>Pown</i>を用いて より計算する。
WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:∛ 溶解度(WSwsv ii)底生生物への 方法で考慮する。 リスク評価を行う 同様に判断する。 したがって、「 C _{sed_wet} = <u>K</u> susp	 (次、取文は海、取のかでの見かけの水に対する溶解度*2 は海域、waterbody:river又はでは、水域の溶存態濃度の上限(を水域での見かけの水に対する溶解) かに対する溶解度。 D暴露濃度 Csed 参照: V.7.3. 影響については、評価Ⅱ以降 非解離性物質では、logPo うこととしている。解離性特 底質中濃度(湿潤重量当たり -water > C_{waterbody_env,wv}×1000 	mol/L <i>sea</i> 直として、水域で 解度(<i>WSwfw</i>)、 5 水域濃度・ (3) 季で非解離性特 かが3以上の 物質についてが))(<i>Csed_wet</i>)は	での見かけの水に 海域:海水域で 魚介類中濃度 生活環境動植 ② 底生 物質と同様に、 物質は、評価 は非解離種の 、式 V-133 に	 化学物質情報 こ対する溶解度を採用 での見かけの水に対す ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推 W.7.3.5(3)②に示し Ⅱ以降で底生生物 log<i>Pown</i>を用いて より計算する。 再掲 式 V-1
 WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:初 溶解度(WSwsv ii) 底生生物への 方法で考慮する。 リスク評価を行き 同様に判断する。 したがって、「 C_{sed_wet} = K_{susp}/RHC 	次、取文は海、取の水で の見かけの水に対する溶 解度*2 は海域、waterbody:river又は では、水域の溶存態濃度の上限(水域での見かけの水に対する溶 か)水に対する溶解度。 の暴露濃度 C_{sed} 多照: V.7.3. 影響については、評価 II 以降 非解離性物質では、 $\log Po$ うこととしている。解離性特 底質中濃度(湿潤重量当たり C_{susp} × $C_{waterbody_env_ww}$ ×1000	mol/L <i>sea</i> 直として、水域 ⁻ S解度(WSwfw)、 5 水域濃度・ (3) 5 水域濃度・ (3) 季で非解離性特 wが3以上の 勿質についてに))(Csed_wet)は	での見かけの木に 海域:海水域で 魚介類中濃度 生活環境動植 ② 底生 物質と同様に、 物質は、評価 は非解離種の 、式V-133 に	 化字物質情報 こ対する溶解度を採用 ごの見かけの水に対す ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推 V.7.3.5(3)②に示し Ⅱ以降で底生生物 log<i>Pown</i>を用いて より計算する。 再掲 式 V-1
 WSwfw WSwsw ※1 水域:河川又 ※2 ただし、本章 る。(河川:淡溶解度(WSwsv ii) 底生生物への影 方法で考慮する。 リスク評価を行き 同様に判断する。 したがって、「 C_{sed_wet} = K_{susp} 	次小域又は御小域の水で の見かけの水に対する溶 解度*2 は海域、waterbody:river又は では、水域の溶存態濃度の上限 (水域での見かけの水に対する溶 。))水に対する溶解度。 の暴露濃度 C_{sed} 参照: V.7.3. 影響については、評価 II 以降 非解離性物質では、 $\log Po$ うこととしている。解離性特 底質中濃度(湿潤重量当たり $\frac{-water}{O_{susp}} \times C_{waterbody_env_ww} \times 1000$	mol/L <i>i sea</i> 直として、水域 ⁻ 解度(WSwfw)、 5 水域濃度・ (3) 季で非解離性特 wが3以上の 物質についてが))(<i>Csed_wet</i>)は	での見かけの木 海域:海水域で 魚介類中濃度 生活環境動植 ② 底生 勿質と同様に、 か物質は、評価 は非解離種の 、式 V-133 に	化学物質情報 こ対する溶解度を採用 での見かけの水に対す ・底質中濃度の推 物に対する暴露評 生物の暴露濃度推 V.7.3.5(3)②に示し Ⅱ以降で底生生物 log <i>Pow</i> ⁿ を用いて より計算する。 再掲 式 V-1

X. 性状等に応じた暴露評価における扱い Ver.1.0 令和2年5月

記号	説明	単位	値	出典・参照先
C_{sed_wet}	底質中濃度(湿潤重量当	mol/kg	WS_{wsw}	V章 p.106
	たり)			
$K_{susp \ water}$	懸濁物質·水分配係数	—	—	河川の場合
				=K _{susp} -water.wf、式
				X-98、式 X-99、 (神域) の場合=
				K _{susp} -water.ws
RHO_{susp}	懸濁物質のバルク密度	kg/m ³	1150	V章 p.106、p.107
$C_{waterbody_env_ww}$	水域の溶存態濃度(生態 評価用) ^{※1}	mol/L	WS_{wsw}	式 V-132
※1 水域:河川ス	スは海域、 <i>waterbody: river</i> 又に	t sea		
解離性物質の	懸濁物質·水分配係数(K _{susj}	p-water)は、淡水	域(wf)と海水	域(<i>ws</i>)それぞれにつ
いて計算する。	<i>Koc</i> 又は <i>Kd</i> の実測値があ	る場合は、次式	にで算出する。	
$K_{susp-water xm} = $	$Fwater_{susp} + Fsolid_{susp} \times Koc \times$	$OC_{xep} \times \rho_{xep}$	式 V	7-134 置換 式 X-98

10

$$K_{susp-water sm} = Fwater_{susp} + Fsolid_{susp} \times \frac{\left(\frac{Koc_n \times OC_{xep} \times \phi_{xep,n}}{\gamma_{xm,n}} + \sum_i \frac{Koc_i \times OC_{xep} \times \phi_{xep,i}}{\gamma_{xm,i}}\right)}{\left(\frac{\phi_{xew,n}}{\gamma_{xm,n}} + \sum_i \frac{\phi_{xew,i}}{\gamma_{xm,i}}\right)} \times \rho_{xep}$$
11
V-134 置換 式 X-99

記号	説明	単位	値	出典・参照先
$K_{\!susp}$ water.xm,	<i>xm</i> ごとの懸濁物質-水分 配係数			X.3.1.3 (1)®
Fwater susp	懸濁物質中の水の容積比 率		0.9	V章 p.106
Fsolid susp	懸濁物質中の懸濁粒子の 容積比率		0.1	V章 p.106
Koc	有機炭素補正土壤吸着係 数	L/kg	—	化学物質情報
Kocn	非解離種の有機炭素補正 土壌吸着係数	L/kg	—	化学物質情報
Koci	イオン種の有機炭素補正 土壌吸着係数	L/kg	—	化学物質情報
OC_{xep}	<i>xep</i> ごとのの有機炭素含有 率 ^{※1}		0.1	図表 X-20
$ ho_{xep}$	<i>xep</i> ごとの底質粒子の密度 *1	kg/L	2.5	図表 X-19
ф хер.п ф хем.п	xep 又は xew ごとの非解離 種分率 ^{*2}	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適 用する。
φ xep.i φ xew.i	<i>xep 又は xew</i> ごとのイオン 種分率* ²	_	_	酸、塩基、両性物質 に対してそれぞれ、 X.3.1.2 (2)の式を適

		説明	単位	値	出典・参照先
					用する。
	Yxm.n	xm ごとの非解離種活量係 数 ^{**3}		—	式 X-32
	Yxm.i	<i>xm</i> ごとのイオン種活量係 数 ^{※3}	—	_	式 X-33
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	※ 淡水域の場合 環境媒体(xi 環境媒体中の 海水域の場合 環境媒体(xi 環境媒体中の	☆は以下の組み合わせで計算する。 m):淡水域の底質(eð)、環境媒体 #構成要素の粒子及び近傍水(xep) ☆は以下の組み合わせで計算する。 m):海水域の底質(eð)、環境媒体 ○構成要素の粒子及び近傍水(xep)	:中の構成要素の):淡水域の底質 中の構成要素の):海水域の底質)水(<i>xew</i>):淡水 〔粒子(<i>efp</i>) 水(<i>xew</i>):海水填 〔粒子(<i>esp</i>)	域の底質間隙水 (<i>efw</i>)、 或の底質間隙水 (<i>efw</i>)、
8 9	底質中濃度	(乾燥重量当たり) (<i>C_{sed_dry}</i>)は	、式 V-135 と	式 V-136 によ	り計算する。
10					
11	$C_{sed_dry} = C_{sed}$	$_{_wet} \times conv_{susp}$			再揭 式 V-135
12	$conv_{susp} = \frac{1}{Fso}$	$\frac{RHO_{susp}}{olid_{susp} \times RHO_{solid}}$			再揭 式 V-136
13					
	記号	説明	単位	値	出典・参照先
	C_{sed_dry}	底質中濃度(乾燥重量当た り)	mol/kg	—	V章 p.106-107
	C_{sed_wet}	底質中濃度(湿潤重量当た り)	mol/kg	—	式 V-133
	CONVsusp	懸懸濁物質中の濃度の換算 係数 (湿潤重量→乾燥重量)	_	—	V章 p.107
	RHO _{susp}	懸濁物質のバルク密度	kg/m ³	1150	V章 p.106、p.107
	$Fsolid_{susp}$	懸濁物質中の懸濁粒子の容 積比率		0.1	V章 p.106、p.107
	RHOsolid	懸濁粒子の密度	kg/m ³	2500	V章 p.106、p.107

15 (10) 暴露媒体中濃度

16 暴露媒体中濃度は、図表 X-27 に示す環境媒体中濃度にモル質量を乗じ、さらに 1000 倍
 17 することで単位換算して求める。

- 18
- 19

図表 X-27 暴露暴態中濃度と環境媒体中濃度

暴露媒体中濃	度		環境媒体中濃	度	
Cexp_air	大気	mg/m ³	C(1.5)	大気中濃度(沈着による湯	礼mol/m ³ 式 V-40
				少を考慮した後)	
C_{exp_soil}	土壌	mg/kg	Csoil	土壤中濃度(10 年平均)	mol/kg 式 V-73
$C_{exp_rootveg}$	地下部農作物	mg/kg	Crootveg	地下部農作物中濃度	mol/kg 式 V-98
$C_{exp_ag_exp}$	地上部農作	物 mg/kg	C_{ag_exp}	地上部農作物中濃度	t mol/kg 式 V·101□
	Exposed			(Exposed)	
$C_{exp_ag_prot}$	地上部農作	物 mg/kg	Cag_prot	地上部農作物中濃度	t mol/kg 式 V-117□
	Protected			(Protected)	
C_{exp_meat}	肉類	mg/kg	Cmeat	牛肉中濃度	mol/kg 式 V-118
C_{exp_milk}	乳製品	mg/kg	Cmilk	乳製品中濃度	mol/kg 式 V-121

暴露媒体中濃度			環境媒体中濃	度	
Cdwater	飲料水	mg/L	Criver_man_ww	河川水中の溶存態濃度(人	mol/L 式 V-126
		-		評価用)	
$C_{exp_fish_fresh}$	淡水魚	mg/kg	Cfish_fresh	魚介類中濃度 (淡水域)	mol/kg 式 V-129□
$C_{exp_fish_sea}$	海水魚	mg/kg	Cfish_sea	魚介類中濃度 (海水域)	mol/kg 式 V-130□
$C_{exp_water_env}$	水中濃度(生態)	mg/L	$C_{waterbody_env_}$	水域の溶存態濃度(生態評	mol/L 式 V-132
			WW	価用)	
C_{exp_sed}	底質中濃度 (生態)	mg/kg	C_{sed_dry}	底質中濃度(乾燥重量当た	mol/kg 式 V-133
				り)	

 $\mathbf{2}$

3 X.3.1.3 排出源ごとの暴露シナリオにおける解離性モデル設定の経緯等

4 X.3.1.2 に解説した排出源ごとの暴露シナリオにおける解離性モデルについて、従来の暴
5 露評価モデルの数式と対応する解離性モデルの数式を並べて表示し、変更した数式につい
6 ては、その経緯を説明する。なお、従来の暴露評価モデルと解離性モデルの数式比較のし
7 やすさのため、個々の数式で使用しているパラメータの説明は省き、数式の表示が小さく
8 なっている場合がある。各々の数式については、V章及びX.3.1.2 を参照されたい。

9

10 (1) 大気中濃度、土壌中濃度、水域濃度及び底質中濃度推計式の設定経緯

11 ① 解離性物質の大気中濃度、土壌中濃度、水中濃度、底質中濃度推計方針

12

Franco and Trapp (2010)¹は、環境中動態モデルで用いられているフガシチーの代わりに活量を用いて解離性物質の非解離種とイオン種の環境中動態を推計する多媒体モデル MAMI (Multimedia Activity Model applicable to neutral and Ionizable modules)を開発している。

- 17・
フガシチーモデルでは、濃度をフガシチーとフガシチー容量の積 ($C = f \times Z$)で計算
するのと同様に、活量モデルでは、濃度を活量と活量容量の積 ($C = a \times B$)として
計算する。蒸気圧がほぼ無視できるイオン種のような物質には、空気中のガス態存
2020在量を基準とするフガシチーモデルよりも、水中での存在量を基準とする活量モデ
ルでの計算が適している。
- 27 · Franco and Trapp (2010)¹は、大気中の浮遊粒子中水分や雲への分配も考慮している。

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

 本章では、Franco and Trapp (2010) による解離性物質の環境中動態モデルの考え方 を取り入れ、環境媒体の構成要素ごとに pH を考慮して Henderson-Hasselbalch 式 (X.3.1.2 (2))で非解離種とイオン種の分率を計算する。また、イオン種がほぼガス態 として存在せずに、水分へ分配されるため、大気に新たに浮遊粒子水分と雲を構成 要素として追加する。そして、環境媒体を構成する各要素への質量分布比の計算に は、活量容量 (*B*)を使用する。化学種分率の計算のしやすさのため、質量濃度からモ ル濃度に変更する。

8

11

9 ② 粒子固体-水分配係数 (X.3.1.2 (4)大気粒子固体-空気分配係数 (*Kpn*)と粒子固体-水 10 分配係数 (*Ksw*))

- 12 ・ 粒子固体-水分配係数 (*Ksw*)は、大気における粒子容量あたりの粒子吸着態と水への
 13 溶存態の化学物質の濃度比である。
- 14 ・ 従来の暴露評価モデルでは、大気における化学物質の粒子吸着態の割合の計算に
 15 Junge 式 ²を使用している。Junge 式²は、大気における化学物質(ガス態と粒子吸着態として存在することを仮定)とガス態の化学物質の濃度比を、蒸気圧を用いて計
 17 算する数式である。
- Franco and Trapp (2010)¹では、水中での存在量を基準とする活量モデルを用いて、 18大気粒子固体への分配を考慮するため粒子固体-水分配係数(Ksw)を用いている。非 1920解離種の粒子・水分配係数(Kswaps.n)は、大気粒子固体・空気分配係数(Kpn)とヘンリ 21一係数(Hn)から計算し、Kpnの計算には、Harner and Bidlemanの式に基づいた式 22を用いている。イオン種の粒子・水分配係数(Kswaps.)は、Kocを用いて推計している。 本章では、大気における浮遊粒子固体への非解離種の吸着の推計に、従来の暴露評 2324価モデルと同様にJunge式2を使用するため、Kpn 推計式をJunge式2から導出する。 そして、Franco and Trapp (2010)¹と同様に、*Kp*nと *H*nから Kswaps.nを計算する。 25イオン種の Kswaps は、Koc 又は Kd の実測値がない場合には、Franco and Trapp 26
- 20
 100 100 100 200 1100 200
- 30

解離性モデ				式 X-44
ル	$Kp_n = Kp_{n.Junge}$	or K _l	9 _{n.Harner_and_Bidleman}	•

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

² Junge, C.E.(1977) Basic Considerations About Trace Constituents in the Atmosphere as Related to the Fate of Global Polluntants. In: Suffet, I. H. (ed.) Fate of Pollutans in the Air and Water Environments Part 1, John Wiley and Sons, New York, 7-25.

	$Kp_{n.Junge} = \frac{CJ \times SP}{VPL \times f_{aps}}$	式 X-45
	$Kp_{n.Harner_and_Bidleman} = 0.54 \times \frac{Pow_n}{H_n} \times OC_{aps} \times \rho_{aps}$	式 X-46
	$Ksw_{aps.n} = Kp_n \times H_n$	式 X-47
解離性モデ	$Ksw_{and i} = Koc \times OC_{and} \times \rho_{and}$	式 X-48
N	ups.i ups i aps	
(Koc 又は		
<i>Kd</i> の実測値		
がある場合)		
解離性モデ	$K_{SW} = K_{OC} \times OC \times \rho$	≓t X-49
1L	aps.i $aps.i$ aps p aps	
(<i>Koc</i> 又は		
<i>Kd</i> の実測値		
がない場合)		

2 ③ 大気中濃度 (X.3.1.2 (5)①大気中濃度)

3

4 ・ 従来の暴露評価モデルでは、排出量(Q)と大気中濃度換算係数(a)から求めた大気中
 5 濃度と沈着による補正係数(K_{dep})より、大気中濃度(沈着による減少を考慮した後)
 6 (C(1.5))を推計している。

7 · 本章でも従来どおりの方法で計算するが、質量濃度をモル濃度に変更する。

8

従来の暴露 評価モデル	$C_0(1.5) = a \times Q'$	式 V-38
解離性モデ ル	$C_0(1.5) = \frac{a \times Q'}{1000 \times M}$	式 X-50

9

従来の暴露	$Q' = TEMA \times 10^{-3}$	式 V-39
評価モテル	$C(1.5) = C_0(1.5) \times K_{dep}$	式 V-40
解離性モデ ル	同式を使用。	

10

11 ④ 大気から土壌への沈着量 (X.3.1.2 (5)②大気から土壌への沈着量)

12

 - 従来の暴露評価モデルでは、図表 X-8(41 ページ)に示すように、晴天時に、化学物 質はガス態と粒子吸着態として存在するとし、雨天時にはこれらのガス態と粒子吸 着態の化学物質が、雨水中へ取り込まれるとしている。 Franco and Trapp (2010)¹では、大気は図表 X-28 に示すように、空気 (aa)、粒子
 固体 (aps)、粒子水分 (apw)及び雲 (ac)で構成されるとし、各構成要素への化学物
 質の分配を考慮している。

本章でも、Franco and Trapp (2010) と同様の大気構成要素を考慮し、図表 X-8 (41
 ページ)に示すように、晴天時の大気は空気と粒子(固体と水分)で構成され、雨天時の大気は空気、粒子(固体と水分)及び雲で構成されるとする。従来の暴露評価モデ
 ルでは、大気中の水分として雨水が考慮されていたが、本章では大気中の水分は雲
 であるとし、その一部が雨となり湿性沈着すると考える。

10

11

図表 X-28 Franco and Trapp (2010)¹によるモデルにおける大気の構成要素

12

13Franco and Trapp (2010)¹及び Trapp et al. (2010)²では、各媒体中濃度は、非解離 14種とイオン種の合計活量と見かけのバルク活量容量(複数化学種の合計なので「見か けの」、複数の構成要素の合計なので「バルク」)の積 (C=a × Bx)であるとしてい 15る。媒体内の構成要素間には分配平衡が仮定されているため、媒体内の活量は同じ 16値になる。このため、媒体中濃度とその構成要素中濃度の比は、活量(a)が相殺され、 17大気中濃度と大気の構成要素濃度の比は、大気の見かけのバルク活量容量とその構 18 19成要素の体積分率で重み付けした見かけの活量容量 (Bx)の比で表すことができる。 本章でも、大気中濃度と大気の構成要素濃度の比は、大気の見かけのバルク活量容 20量とその構成要素の体積分率で重み付けした見かけの活量容量(Bx)の比とする。大 2122気の構成要素ごと(空気(aa)、粒子固体(aps)、粒子水分(apw)及び雲(ac))の活量 容量の計算には、Franco and Trapp (2010)¹の手法を用いる。 23

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

² Trapp, S., Franco, A. and Mackay, D. (2010) Activity-Based Concept for Transport and Partitioning of Ionizing Organics. Environ. Sci. Technol., 44, 6123–6129.

従来の暴露 評価モデル	$FP = \frac{CJ \times SP}{VPL + CJ \times SP}$	式 V-41
	$1 - FP = \frac{VPL}{VPL + CJ \times SP}$	式 V-42
	$FAA = \frac{1 - FP}{1 + \frac{RRT \times TRF}{V_{rain} - TRF}}$	式 V-45
	$FAP = \frac{FP}{1 + \frac{RRT \times TRF}{V_{rain} - TRF}}$	式 V-46
解離性モデ ル	$FP = \frac{Bx_{aps} + Bx_{apw}}{Bx_{aa} + Bx_{aps} + Bx_{apw}}$	式 X-51
	$1 - FP = \frac{Bx_{aa}}{Bx_{aa} + Bx_{aps} + Bx_{apw}}$	式 X-52
	$FAA = \frac{Bx_{aa}}{Bx_{aa} + Bx_{aps} + Bx_{apw} + Bx_{ac}}$	式 X-53
	$FAP = \frac{Bx_{aps} + Bx_{apw}}{Bx_{aa} + Bx_{aps} + Bx_{apw} + Bx_{ac}}$	式 X-54

解離性モデ	$Bx_{aa} = f_{aa} \times H_n \times \phi_{ac.n}$	式 X-55
<i>J</i> L	$Bx_{aps} = f_{aps} \times \left(\frac{Ksw_{aps.n} \times \phi_{apw.n}}{\gamma_{an}} + \sum \frac{Ksw_{aps.i} \times \phi_{apw.i}}{\gamma_{ai}}\right)$	式 X-56
	$Bx_{apw} = f_{apw} \times \left(\frac{\phi_{apw,n}}{\gamma_{a,n}} + \sum \frac{\phi_{apw,i}}{\gamma_{a,i}}\right)$	式 X-57
	$Bx_{ac} = f_{ac} \times \left(\frac{\phi_{ac.n}}{\gamma_{a.n}} + \sum \frac{\phi_{ac.i}}{\gamma_{a.i}}\right)$	式 X-58

 $\frac{2}{3}$

4

 $\mathbf{5}$

 ・ 従来の暴露評価モデルでは、雨天時と晴天時の沈着量 (*DEP_r* と *DEP_s*)をそれぞれの 日数で重み付けして、総沈着量 (*DEP_{tota}*)を計算している。また、沈着による大気中 濃度の減少を考慮するため、沈着による補正係数 (*K_{dep_r}* と *K_{dep_s}*)を用いている。

6 · 本章でも従来どおりの方法で計算するが、質量濃度をモル濃度に変更する。

従来の暴露 評価モデル	$DEP_{total} = \frac{rainyday}{365} \times DEP_r \times K_{dep_r} + (1 - \frac{rainyday}{365}) \times DEP_s \times K_{dep}$	式 V-49
解離性モデ	同式を使用。	
ル		

従来の暴露 評価モデル	$K_{dep_r} = \frac{Q_d}{DEP_r \times SUA} \times (1 - \exp(-\frac{DEP_r \times SUA}{Q_d}))$	式 V-50
	$K_{dep_s} = \frac{Q_d}{DEP_s \times SUA} \times (1 - \exp(-\frac{DEP_s \times SUA}{Q_d}))$	式 V-51
解離性モデ ル	$K_{dep_r} = \frac{Q_d}{DEP_r \times M \times 1000 \times SUA} \times (1 - \exp(-\frac{DEP_r \times M \times 1000 \times SUA}{Q_d}))$	式 X-59
	$K_{dep_s} = \frac{Q_d}{DEP_s \times M \times 1000 \times SUA} \times (1 - \exp(-\frac{DEP_s \times M \times 1000 \times SUA}{Q_d}))$	式 X-60

 $\mathbf{2}$

従来の暴露 評価モデル	$K_{dep} = \frac{rainyday}{365} \times K_{dep_r} + (1 - \frac{rainyday}{365}) \times K_{dep_s}$	式 V-52
	$SUA = \pi \times ((R \times 1000)^2 - 100^2)$	式 V-53
	$Q_d = TEMA \times 10^6 / 365$	式 V-54
解離性モデ ル	同式を使用。	

3

4 ・ 従来の暴露評価モデルでは、雨天時の総沈着量(DEP_r)は、ガス態乾性沈着量
 5 (DEP_{dry_g_r})、粒子吸着態乾性沈着量(DEP_{dry_p_r})、ガス態湿性沈着量(DEP_{wet_g})及
 6 び粒子吸着態湿性沈着量(DEP_{wet_p})を合計して求めている。晴天時の総沈着量
 7 (DEP_s)は、湿性沈着量を除くガス態乾性沈着量(DEP_{dry_g_s})及び粒子吸着態乾性沈着
 8 量(DEP_{dry_p_s})を合計して求めている。

9 ・ 本章でも従来どおりの方法で計算する。

送来の暴露	$DEP_{r} = DEP_{dry_{g_{r}}} + DEP_{dry_{p_{r}}} + DEP_{wet_{g}} + DEP_{wet_{g}}$	式 V-55
нтіщіс <i>у ук</i>	$DEP_s = DEP_{dry_g_s} + DEP_{dry_g_s}$	式 V-56
	$DEP_{dry_{-g_{-r}}} = C_0(1.5) \times FAA \times Rag$	式 V-57
	$DEP_{dry_{p_r}} = C_0(1.5) \times FAP \times V_d$	式 V-58
	$DEP_{dry_{g_s}} = C_0(1.5) \times (1 - FP) \times Rag$	式 V-59
	$DEP_{dry_{p_s}} = C_0(1.5) \times FP \times V_d$	式 V-60
	$DEP_{wet_g} = Cr_g \times TRF$	式 V-61
	$DEP_{wet_p} = Cr_p \times TRF$	式 V-62

	解離性モデ ル	同式を使用。	
1			

- 2 ・ 従来の暴露評価モデルでは、ガス態乾性沈着量の計算のため、ガス態沈着速度 (*R_{ag}*)
 3 を用いている。
- Franco and Trapp (2010)¹ではイオン種はほとんど揮発しないと考えられることか
 ら、イオン種の大気・水分配係数 (ヘンリー係数)は 0 であるとしている。このため、
 水中からの揮発と大気からのガス態の沈着を考慮する際には、水中の非解離種と空
 気中ガス態が平衡に達しているとして、非解離種のヘンリー係数 (*H_n*:大気中のガ
 ス態と水中の非解離種との間の分配係数)を用いている。
- 9 ・ 本章でも従来の暴露評価モデルと同様の方法で、ガス態沈着速度 (Rag)を推計するが、
- 10

Franco and Trapp (2010)¹と同様に非解離種のヘンリー係数 (H_n)を用いて計算する。

11

従来の暴露 評価モデル	$R_{ag} = \frac{KG \times KASLSA + \frac{KG \times KASLSW}{HENRY}}{KG + KASLSA + \frac{KASLSW}{HENRY}}$	式 V-63
解離性モデ ル	$R_{ag} = \frac{KG \times KASLSA + \frac{KG \times KASLSW}{H_n \times \phi_{sw.n}}}{KG + KASLSA + \frac{KASLSW}{H_n \times \phi_{sw.n}}}$	式 X-61

12

- 従来の暴露評価モデルでは、大気中のガス態の物質が、雨水に分配されるとして、
 雨水中ガス態濃度(*Cr_g*)を計算している。また、大気中の浮遊粒子が捕集されるとして、
 て、雨水中粒子吸着態濃度(*Cr_p*)を計算している。

16 · Franco and Trapp (2010)¹では、湿性沈着量の計算時に、雲と粒子 (水分と固体)が、

17 雨水に捕集される他、大気中のガス態の物質が雨水に分配されるとしている。しか
 18 し、同論文に基づいた計算ツールとして公開されている Microsoft ® Excel ファイル
 19 (Franco, 2010²)では、大気中のガス態の物質が雨水に分配されることは考慮してい
 20 ない。また、雲が雨水に捕集されるのではなく、雲中ガス態物質と雨水に捕集され
 21 た粒子中物質が沈着すると考えている。

22 ・ 本章では、雨水中ガス態は、Franco (2010)²と同様に、雨水中ガス態濃度と雲中ガス
 23 態濃度が同じであるとする。雲中に存在する物質の大気中濃度(大気体積あたりの雲

¹ Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim. Environ. Toxicol. Chem., 29(4), 789–799.

² Franco, A. (2010) Multimedia Activity Model for organic neutral and Ionizable chemicals (Microsoft ® Excel ファイル),

中物質量)と大気中濃度の比は、雲と大気の体積分率で重み付けした見かけの活量容 量(Bx)の比である。この雲中に存在する物質の大気中濃度から、雲中濃度(雲体積 あたりの雲中物質量)を求めるため、雲の体積分率(fad)で除する。

4 · 雨水中粒子吸着態濃度の計算は、従来の暴露評価モデルと同様に計算する。

 $\mathbf{5}$

1

 $\mathbf{2}$

3

従来の暴露	1	式 V-67
評価モデル	$Cr_g = Ca_0 \times FAA \times \frac{1}{\mu F N P V}$	
解離性モラ	Bx 1	式 X-62
IL	$Cr_g = Ca_0 \times \frac{Dr_{ac}}{Rr_{ac}} + Rr_{ac} + Rr_{ac}$	
	$D\lambda_{aa} + D\lambda_{aps} + D\lambda_{apw} + D\lambda_{ac} \qquad J_{ac}$	

6

従来の暴露	$Cr_p = Ca_0 \times FAP \times CEP$	式 V-68
βŦΊЩ°C / /ν	$C_{a} = C_0(1.5)$	式 V-69
	$Ca_0 = \frac{Kc}{Kc}$	
解離性モデ	同式を使用。	
ル		

7

8 ⑤ 土壤中濃度 (X.3.1.2 (6)①土壤中濃度 Csoil)

9

・ 従来の暴露評価モデルでは、大気から土壌への総沈着量(*Daii*)と揮発、分解、表面流
 出、溶脱、浸食及び巻上げによる土壌における消失の総1次速度定数(*ksoil*)を用いて、
 10年間の期間平均の土壌中濃度を推計している。

13 ・ 本章でも従来どおりの方法で計算する。

14

従来の暴露 評価モデル $C_{soil} = \frac{D_{air}}{k_{soil}} - \frac{D_{air} \times (1 - e^{-k_{soil} \times T})}{k_{soil}^2 \times T}$ $D_{air} = \frac{DEP_{total}}{BD_{soil} \times DEP_{so}}$ $k_{soil} = K_{sa} + (K_{sro} + K_{sle}) \times FSOW + (K_{srsup} + K_{ser}) \times FSOS + K_{sot}$ $K_{soil} = K_{sa} + (K_{sro} + K_{sle}) \times FSOW + (K_{srsup} + K_{ser}) \times FSOS + K_{sot}$ $K_{sa}, K_{sot}, K_{sro}, K_{sle}, K_{ser}, K_{srsup}$ $k_{sa}, K_{sot}, K_{sro}, K_{sle}, K_{ser}, K_{srsup}$ $k_{sa}, k_{sot}, k_{sro}, k_{sle}, k_{ser}, k_{srsup}$

- ・ 従来の暴露評価モデルでは、土壌におけるガス態、溶存態及び粒子吸着態の質量分
 布比(FSOA、FSOW、FSOS)を、それぞれの存在状態の濃度が平衡に達しているこ
 とを仮定して、式 V-77~式 V-79 で推計している。
- 19 ・ 本章では、Koc又は Kdの実測値がある場合には、測定条件と環境中の活量係数等が

同じであると仮定して、その実測値と非解離種のヘンリー係数 (H_n)を用いて、ガス
 態、溶存態及び粒子吸着態の質量分布比を従来の暴露評価モデルと同様に計算する。
 Koc 又は Kd の実測値がない場合には、ガス態、溶存態及び粒子吸着態の質量分布比
 は、土壌の見かけのバルク活量容量とその構成要素の体積分率で重み付けした見かけの活量容量 (Bx)の比で計算する。ただし、ここでは表示の簡略化のため、Bxをあらかじめ展開した数式を示す。

7

従来の暴露		₹ V-77
評価モデル	$FSOA = \frac{HENRY \times SOAF}{(HENRY \times SOAF + SOWF + Koc \times OCsos \times (1 - SOAF - SOWF) \times DENsos)}$	
	$FSOW = \frac{SOWF}{(HENRY \times SOAF + SOWF + Koc \times OCsos \times (1 - SOAF - SOWF) \times DENsos)}$	式 V-78
	$FSOS = \frac{Koc \times OCsos \times (1 - SOAF - SOWF) \times DENsos}{(HENRY \times SOAF + SOWF + Koc \times OCsos \times (1 - SOAF - SOWF) \times DENsos)}$	式 V-79
解離性モデ ル (<i>Koc</i> 又は	$FSOA = \frac{H_n \times \phi_{sw.n} \times SOAF}{(H_n \times \phi_{sw.n} \times SOAF + SOWF + Koc \times OC_{sp} \times (1 - SOAF - SOWF) \times \rho_{sp})}$	式 X-63
<i>Kd</i> の実測値 がある場合)	$FSOW = \frac{SOWF}{(H_n \times \phi_{sw.n} \times SOAF + SOWF + Koc \times OC_{sp} \times (1 - SOAF - SOWF) \times \rho_{sp})}$	式 X-64
	$FSOS = \frac{Koc \times OC_{sp} \times (1 - SOAF - SOWF) \times \rho_{sp}}{(H_n \times \phi_{sw,n} \times SOAF + SOWF + Koc \times OC_{sp} \times (1 - SOAF - SOWF) \times \rho_{sp})}$	式 X-65
解離性モデ ル (<i>Koc</i> 又は	$FSOA = \frac{H_n \times \phi_{men} \times SOAF}{H_n \times \phi_{swn} \times SOAF + \left(\frac{\phi_{wen}}{\gamma_{sn}} + \sum_i \frac{\phi_{wi}}{\gamma_{si}}\right) \times SOWF + \left(\frac{Koc_n \times OC_{sp} \times \phi_{spn}}{\gamma_{sn}} + \sum_i \frac{Koc_i \times OC_{sp} \times \phi_{spi}}{\gamma_{si}}\right) \times \left(1 - SOAF - SOWF\right) \times \rho_{spi}}$	式 X-66
<i>Kd</i> の実測値 がない場合)	$FSOW = \frac{\left(\frac{\phi_{nwn}}{\gamma_{sn}} + \sum_{i} \frac{\phi_{nwi}}{\gamma_{si}}\right) \times SOWF}{H_n \times \phi_{nwn} \times SOAF + \left(\frac{\phi_{nwn}}{\gamma_{sn}} + \sum_{i} \frac{\phi_{nwi}}{\gamma_{si}}\right) \times SOWF + \left(\frac{Koc_n \times OC_{sp} \times \phi_{spn}}{\gamma_{sn}} + \sum_{i} \frac{Koc_i \times OC_{sp} \times \phi_{spi}}{\gamma_{si}}\right) \times (1 - SOAF - SOWF) \times \rho_{spi}}$	式 X-67
	$FSOS = \frac{\left(\frac{Koc_{n} \times OC_{sp} \times \phi_{spn}}{\gamma_{sn}} + \sum_{i} \frac{Koc_{i} \times OC_{sp} \times \phi_{spi}}{\gamma_{si}}\right) \times (1 - SOAF - SOWF) \times \rho_{sp}}{H_{n} \times \phi_{men} \times SOAF + \left(\frac{\phi_{men}}{\gamma_{sn}} + \sum_{i} \frac{\phi_{men}}{\gamma_{si}}\right) \times SOWF + \left(\frac{Koc_{n} \times OC_{sp} \times \phi_{spn}}{\gamma_{sn}} + \sum_{i} \frac{Koc_{i} \times OC_{sp} \times \phi_{spi}}{\gamma_{si}}\right) \times (1 - SOAF - SOWF) \times \rho_{sp}}$	式 X-68

8

9 ⑥ 土壌における消失の総 1 次速度定数 (X.3.1.2 (6)②土壌における消失の総 1 次速度 10 定数 *k_{soi}*)

- 11
- 12 ・ 土壌における揮発の1次速度定数 (ksa)を推計する式 V-80 は式 X-69 のように、変
 13 換できる。本章では、表示の簡略化のため式 X-69 を用いる。
- 14

 $\frac{1}{2}$

3

4

6

本章でも、従来の暴露評価モデルと同様の方法で、土壌におけるその他の消失の1
 次速度定数 (*ksot*, *ksro*, *ksel*, *kser*, *ksrsup*)を計算する。

5 ⑦ 土壤間隙水中濃度 (X.3.1.2 (6)③土壤間隙水中濃度 Cporewater)

7 ・ 従来の暴露評価モデルでは、土壌間隙水中濃度は、土壌・水分配係数 (*Ksoil water*)を用 8 いて求めている。

9 ・本章でも同様に、*Ksoil-water*を用いる。*Ksoil water*の推計には、土壌における質量分布
 10 比の推計と同様に、*Koc*又は*Kd*の実測値がある場合には、その実測値と非解離種の
 11 ヘンリー係数(*H_n*)を用いて、従来の暴露評価モデルと同様に計算する。また、*Koc* 12 又は*Kd*の実測値がない場合には、土壌の見かけのバルク活量容量と土壌間隙水の見
 13 かけのバルク活量容量の比を用いて計算する。

14

従 来 の 暴 露 評価モデル	$C_{porewater} = \frac{C_{soil} \times \frac{BD_{soil}}{1000}}{K_{soil_water}}$	式 V-96
解離性モデ ル	同式を使用。	

15

従来の暴露	$K_{\text{soil-water}} = HENRY \times SOAF + SOWF + Koc \times OCsos \times DENsos \times (1 - SOAF - SOWF)$	式 V-97
評価モデル		
解離性モデ		式 X-70
IL		
(<i>Koc</i> 又は	$K_{soil-water} = H_n \times \phi_{sw.n} \times SOAF + SOWF + Koc \times OC_{sp} \times \rho_{sp} \times (1 - SOAF - SOWF)$	
<i>Kd</i> の実測値		
がある場合)		
解離性モデ	$H_{u} \times \phi_{wu} \times SOAF + \left(\frac{\phi_{wu}}{h} + \sum \frac{\phi_{wu}}{h}\right) \times SOWF + \left(\frac{Koc_{u} \times OC_{uv} \times \phi_{wu}}{h} + \sum \frac{Koc_{u} \times OC_{uv} \times \phi_{wu}}{h}\right) \times (1 - SOAF - SOWF) \times \rho_{wu}$	式 X-71
ル	$K_{sol-vate} = \frac{(\gamma_{sn} - \gamma_{si})}{(\gamma_{sn} - \gamma_{si})} + (\gamma_{sn} - \gamma_{si}) + (\gamma_{sn} - \gamma_{si})$	
(Koc 又は	$\left(\frac{\varphi_{iwin}}{\gamma_{sin}} + \sum_{i} \frac{\varphi_{iwi}}{\gamma_{si}}\right)$	
<i>Kd</i> の実測値		
がない場合)		

16

17 ⑧ 水域濃度・底質中濃度(X.3.1.2(9)水域濃度、魚介類中濃度及び底質中濃度の推計)

18

19 ・ 人の健康に係わる評価及び生態評価に用いる水域濃度の推計については、基本的に

は従来の暴露評価と同様の計算方法とするが、質量濃度をモル濃度に変更する。

 $\mathbf{2}$

		1
従来の暴 露評価モ	$C_{river_man} = \frac{TEMW \times 10^{6} [kg \rightarrow mg]}{V_{river_man} \times (365 \times 24 \times 60 \times 60) [wagr_{range} \times 800] \times 1000 [m^{3} \rightarrow L]}$	式 V-123
デル	$V_{river_man} \times (503 \times 24 \times 00 \times 00)$ [year \rightarrow sec] $\times 1000$ [m \rightarrow L]	
	$C = \frac{TEMW \times 10^6 [kg \to mg]}{TEMW \times 10^6 [kg \to mg]}$	式 V-125
	$ V_{sea_man} = V_{sea_man} \times (365 \times 24 \times 60 \times 60) [year \rightarrow sec] \times 1000 [m^3 \rightarrow L] $	
	$TEMW \times 10^6 [kg \to mg]$	式 V-131
	$V_{waterbody_env} = V_{waterbody_env} \times (365 \times 24 \times 60 \times 60) [year \rightarrow sec] \times 1000 [m^3 \rightarrow L]$	
解離性モ	C – TEMW	式 X-93
テル	$C_{river_man} - \frac{1}{V_{river_man}} \times (365 \times 24 \times 60 \times 60) [year \rightarrow sec] \times M$	
	C – TEMW	式 X-94
	$V_{sea_man} - V_{sea_man} \times (365 \times 24 \times 60 \times 60) [year \rightarrow sec] \times M$	
		式 X-97
	$V_{waterbody_env} = \frac{V_{waterbody_env}}{V_{waterbody_env}} \times (365 \times 24 \times 60 \times 60) [year \rightarrow sec] \times M$	

3

従来の暴露 評価モデル	$C_{sea_man} = \frac{C_{river_man}}{DILUTION_{sea}}$	式 V-124
	$C_{waterbody_man_ww} = C_{waterbody_man} \times (1 - f_w p_{waterbody})$	式 V-126
	$C_{waterbody_env_ww} = C_{waterbody_env} \times (1 - f_{wp_{waterbody}})$	式 V-132
解離性モデ ル	同式を使用。ただし、 <i>fwp_{waterbody}は、FWS_{xm}に</i> 記号を変更した。	

4 5

6

 $\overline{7}$

8

 ・ 粒子への吸着に関するパラメータである水中懸濁粒子吸着質量分布比(水域)(FWS) については、土壌中濃度や土壌間隙水中濃度と同様に、Koc 又は Kdの実測値がある 場合には、それを用いて、従来の暴露評価モデルと同様に計算する。また、Koc 又は Kdの実測値がない場合には、水域の見かけのバルク活量容量と粒子吸着態の見かけ の活量容量を用いて推計する。

従来の暴露 評価モデル	$FWS_{xm} = \frac{Koc \times OC_{xep} \times (CW_{ss} \times 10^{-6})}{1 + Koc \times OC_{xep} \times (CW_{ss} \times 10^{-6})}$	式 V-127
解離性モデ ル (Koc 又は Kdの実測値 がある場合)	$FWS_{xm} = \frac{Koc \times OC_{xep} \times (CW_{ss} \times 10^{-6} [mg \rightarrow kg])}{1 + Koc \times OC_{xep} \times (CW_{ss} \times 10^{-6} [mg \rightarrow kg])}$	式 X-95

2 ・ 生態評価に用いる底質中濃度の推計についても、基本的には従来の暴露評価と同様
 3 の計算方法とする。

4 ・ 粒子への吸着に関するパラメータである懸濁物質・水分配係数(Ksusp water)の推計に
 5 ついては、土壌中濃度や土壌間隙水中濃度と同様に、Koc 又は Kd の実測値がある場
 6 合には、それを用いて、従来の暴露評価モデルと同様に計算する。また、Koc 又は
 7 Kd の実測値がない場合には、懸濁物質の見かけのバルク活量容量と溶存態の見かけ
 8 の活量容量を用いて推計する。

9

従来の暴露 評価モデル	$C_{sed_wet} = \frac{K_{susp-water}}{RHO_{susp}} \times C_{waterbody_env_ww} \times 1000$	式 V-133
	$C_{sed_dry} = C_{sed_wet} \times conv_{susp}$	式 V-135
	$conv_{susp} = \frac{RHO_{susp}}{Fsolid_{susp} \times RHO_{solid}}$	式 V-136
解離性モデ ル	同式を使用。	

10

従来の暴露 評価モデル	$K_{susp-water} = Fwater_{susp} + Fsolid_{susp} \times \frac{FOC_{susp} \times Koc}{1000} \times RHO_{solid}$	式 V-134
解離性モデ ル	$K_{susp-water xm} = Fwater_{susp} + Fsolid_{susp} \times Koc \times OC_{xep} \times \rho_{xep}$	式 X-98
(<i>Koc</i> 又は <i>Kd</i> の実測値		
<u>がある場合)</u> 解離性モデ	$\left(\frac{Koc_n \times OC_{xep} \times \phi_{xep.n}}{Koc_i \times OC_{xep} \times \phi_{xep.i}} + \sum_{k \in \mathcal{K}} \frac{Koc_i \times OC_{xep} \times \phi_{xep.i}}{Koc_i \times OC_{xep} \times \phi_{xep.i}}\right)$	式 X-99
ル (Koc 又は Kdの実測値	$K_{susp-water.xm} = Fwater_{susp} + Fsolid_{susp} \times \frac{(\gamma_{xm.n} \gamma_{xm.n})}{(\frac{\phi_{xew.n}}{2} + \sum \frac{\phi_{xew.i}}{2})} \times \rho_{xep}$	
<u>がない場合</u>)	$\left(\gamma_{xm.n}, \frac{\gamma_{xm.i}}{i}\right)$	

11

12 (2) 農作物中濃度推計式の設定経緯

13 ① 解離性物質の農作物中濃度推計方針

14

15 ・ 解離性物質の大気中ガス態及び土壌由来の地上部農作物中モデルと地下部農作物中

16 モデルには、従来の推計法を開発した Trapp が提唱する解離性物質の植物モデルの

17 考え方を導入する。粒子吸着態の沈着については従来どおりの方法で推計する。

1 ·	Trapp は、「Plant Contamination」(Trapp and Mc Farlan, 19951)を初めとする植
2	物モデルに関する多くの論文や書籍を執筆する等、植物モデルの開発の第一人者で
3	ある。インターネット上でも、植物モデルに関するサマースクールのテキスト
4	(Trapp, 2013a2)他、各種情報を公開している。Trapp の植物モデルは、EU のリスク
5	評価ツールの EUSES (European Union System for the Evaluation of Substances)
6	等にも採用されている。
7 ·	解離性物質の植物モデルについては、Trapp (2009)3 にまとめられており、その基本
8	的な考え方 (Trapp, 20044)や根モデル (Trapp, 20005)については論文が発表されて
9	いる。さらに、これらのモデルの Microsoft ® Excel ファイル版 (Trapp, 2013b6)を
10	公開している。各文献や Excel ファイルにまとめられた情報は、完全に一致しない
11	ため、ここでは、Trapp (2009) ³ における記述を中心に検討を行い、不明な箇所は論
12	文(Trapp, 2000》やサマースクールのテキスト(Trapp, 2013a?)と Excel ファイル
13	(Trapp, 2013bの等で補った。また、Trapp らによる論文や書籍などを活用して設定
14	根拠の確認を行ったうえで、定数や手法を設定し、従来の暴露評価モデルの前提や
15	計算結果にできる限り近づけた。
16 ·	Trapp (2009) ³ の植物モデルは、図表 X-29 に示すように、大きく根と葉の2つのコ
17	ンパートメントで構成される。そして、葉のコンパートメントでは、土壌からの蒸
18	散流による流入や大気からの吸収と大気への揮発、代謝による消失と成長による希
19	釈が考慮され、根のコンパートメントでは、土壌からの蒸散流による流入と葉への
20	流出、代謝による消失と成長による希釈が考慮されている。
21	

¹ Trapp, S and Mc Farlane, C. (ed.) (1995) Plant Contamination; Modeling and Simulation of Organic Chemical Processes, Lewis/CRC Press, Boca Raton, FL.

² Trapp, S. (2013a) Uptake of Organic Chemicals into Plants Models, Models, Equations and Exercises.

³ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

⁴ Trapp S. (2004) Plant Uptake and Tansport models for Neutral and Ionic chemicals, Environ. Sci and Pollut. Res. 11(1), 33-39.

⁵ Trapp, S. (2000) Modelling Uptake into Roots and Subsequent Translocation of Neutral and Ionisable Organic Compounds. Pest. Manag. Sci., 56(9), 767–778.

⁶ Trapp, S. (2013b) 42 Standard Model for Ionics, Summer course 12906 Modeling of Plant Uptake(Microsoft ® Excel ファイル),

 $\frac{1}{2}$

3

図表 X-29 Trapp よる解離性物質の植物モデルイメージ図

4 ・ 従来の暴露評価モデルでは、地下部農作物中濃度の推計に用いる地下部農作物濃縮
 5 係数 (*RCF*)を Briggs et al. (1982)¹の実測値から求めた回帰式により計算している
 6 が、この回帰式は解離性物質を対象としていない。

7 ・本章では、地下部農作物濃縮係数 (*RCF*)の計算に、Trapp (2009)²による解離性物質
 8 の植物モデルの考え方を導入する (図表 X-30)。

従来の暴露評価モデルでは、地上部農作物中濃度の計算に Trapp and Matthies 9 (1995)³や Trapp and Matthies (1998)⁴の式を用いている。これらのモデルでは、植 10 物への粒子吸着態の沈着の影響は、非常に揮発しにくい物質に限られるとし、粒子 11 12吸着態の沈着は考慮していない (Trapp and Matthies, 1995³)。Trapp (2013a)5によ ると、現在のモデルでは、粒子吸着態の沈着も考慮しているが、ガス態の吸収の計 13算に用いるコンダクタンスと粒子の沈着速度の値を揃えることで、ガス態と粒子吸 14 着態の区別をせずに計算できるようになっている。解離性を考慮するため、環境中 15から植物体内への物質の取り込みの推計式を変更した Trapp (2009)2でも、ガス態と 16 17粒子吸着態の区別をせずに計算するようになっている。

18 ・ 本章では、粒子吸着態の沈着については、従来どおりの方法で推計し、大気中ガス
 19 態からの吸収と揮発及び根からの吸収による取り込みの計算についてのみ Trapp

¹ Briggs, G. G., Bromilow, R. H. and Evans, A. A. (1982) Relationships Between Lipophilicity and Root Uptake and Translocation of Non-Ionised Chemicals by Barley., Pest Management Science, 13(5), 495-504.

² Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In:Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

³ Trapp, S. and Matthies, M. (1995) Generic One-Compartment Model for Uptake of Organic Chemicals by Foliar Vegetation, Environ. Sci. Technol, 29, 2333-2338.

⁴ Trapp, S. and Matthies, M. (1998) 9.3 PLANT Model. In: Trapp, S. and Matthies, M., Chemodynamics and Environmental Modeling, Springer, Berlin, 118-123.

⁵ Trapp, S. (2013a) Uptake of Organic Chemicals into Plants Models, Models, Equations and Exercises.

(2009)¹による解離性物質の植物モデルの考え方を取り入れる。具体的には、大気中 ガス態からの吸収と揮発については、大気中のガス態物質の葉・茎への濃縮係数 (*K_{leaf-air}*)と植物の導管を流れる水分と土壌中水分の間の分配係数(*TSCF*)の推計に 解離性モデルの考え方を導入する(図表 X-30)。

4 5

6

 $\overline{7}$

8

1

 $\mathbf{2}$

3

図表 X-30 従来の暴露評価モデルからの変更点

9 ・ Trapp (2009)¹の植物モデルは、生体膜の内外の移動を計算するために用いる植物体
 内分配係数を計算する際に、非解離種の媒体間の拡散は濃度勾配を駆動力とする
 Fick の第一法則に基づいて計算し、イオン種の拡散は濃度勾配の他に電位勾配も考
 12 慮にいれた Nernst 式に基づいて計算する。また、植物体内の各媒体の pH の違いに
 よる化学種分率の違いを考慮することにより、イオントラップを考慮する。活量モデルを用いることにより、植物体内の媒体ごとのイオン強度による影響も考慮する。
 15 ・ 本章では、*Kleafair、TSCF*及び *RCF*の推計に植物体内分配係数を用いる。

16

17 ② 地下部農作物中濃度 (X.3.1.2 (7)①地下部農作物中濃度)

- ・ 従来の暴露評価モデルでは、Briggs et al. (1982)²の実測値から求めた回帰式により
 第出される地下部農作物中濃縮係数 (*RCF*:土壌間隙水と根中濃度の比)を用いて地
 下部農作物中濃度を推計している。
- Trapp (2009)¹は、根モデルより求められた土壌中濃度と根中濃度の比を用いて、根
 中の濃度を計算している。
- 24 ・ 本章では、土壌間隙水中濃度とTrapp (2009)¹の解離性物質の根モデルにより求めら
 25 れる根中濃度の比を *RCF*として、地下部農作物中濃度を推計する。

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

² Briggs, G. G., Bromilow, R. H. and Evans, A. A. (1982) Relationships Between Lipophilicity and Root Uptake and Translocation of Non-Ionised Chemicals by Barley, Pest Management Science, 13(5), 495-504.

Trapp (2009)¹では、根中の濃度の推計時に植物体内における代謝と成長による希釈
 を考慮している。Briggs et al. (1982)²では、24 時間又は 48 時間化学物質に暴露さ
 れた植物中濃度測定データを用いており、RCF の推計式にはその期間内の代謝や成
 長の影響も含まれているとも考えられるが、代謝の影響は、小さかったとされてい
 る。代謝・成長による影響を考慮した Trapp (2009)¹のモデルを用いた RCF 推計結
 果は、Briggs et al. (1982)²による式を用いた RCF 推計結果を大きく下回る結果とな
 ったため、本章では代謝・成長による影響は考慮しない。

- 8 ・ Trapp (2009)¹の根モデルにおいて、代謝・成長による影響を考慮しない場合、根中
 9 濃度は土壌からの蒸散流中の物質の取り込みのみを考慮することになり、定常状態
 10 における地下部農作物中濃縮係数 (*RCF*)は、Trapp (2009)¹のモデルから求められる
 11 根・土壌間隙水分配係数 (*Kroot-sw*)になる。
- *RCF* 推計式における *logPow* の下限及び上限の範囲は、根-土壌間隙水分配係数
 (*Kroot-sw*)を推計する過程で使用する生体膜の質量移動係数 (*MTCbiomembrane*)推計式
 (式 X-83)及び脂質・水分配係数 (*Klipidxm*)の推計式 (式 X-89 及び式 X-90)中の
 *logPow*に対して設定する下限及び上限の範囲となる。
- 16
- 17 地下部農作物中濃度と RCF の推計

従来の暴露 評価モデル	$C_{rootveg} = C_{porewater} \times RCF \times VG_{rootveg}$	式 V-98
解離性モデ ル	同式を使用。	

18

$0.57 \leq \log Pow < 2 のとき、$	式 V-99
$RCF = 10^{0.77 \times \log P_{OW-1.52}} + 0.82$	
$2 \leq \log Pow \leq 8.2 $ のとき、	式 V-100
$RCF = 10^{0.77 \times \log P_{OW} - 1.52}$	
$RCF = K_{root-sw}$	式 X-72
	0.57 $\leq \log Pow < 2 oblast,$ $RCF = 10^{0.77 \times \log Pow - 1.52} + 0.82$ $2 \leq \log Pow \leq 8.2 oblast,$ $RCF = 10^{0.77 \times \log Pow - 1.52}$ $RCF = K_{root-sw}$

20	•	Trapp (2009) ¹ には、根-土壌間隙水分配係数 (Kroot-sw)は定義されていないが、Trapp
21		(2013b) ³ による根・土壤間隙水分配係数 (Kroot-sw)推計式は、Trapp (2009) ¹ の根中濃度
22		推計式を土壌間隙水中濃度で割り、展開した数式である。根は、細胞質と液胞から
23		なると仮定されており、根中濃度は、細胞質中濃度と液胞中濃度をそれぞれの容積

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

² Briggs, G. G., Bromilow, R. H. and Evans, A. A. (1982) Relationships Between Lipophilicity and Root Uptake and Translocation of Non-Ionised Chemicals by Barley, Pest Management Science, 13(5), 495-504.

³ Trapp, S. (2013b) 42 Standard Model for Ionics, Summer course 12906 Modeling of Plant Uptake (Microsoft ® Excel ファイル).

で重み付けした平均値で求められる。細胞質及び液胞と土壌間隙水の濃度の間には 平衡が仮定されているため、細胞質と液胞中濃度を土壌間隙水中濃度で割ったもの は、それぞれ細胞質・土壌間隙水分配係数(K_{cytosol-sw})と液胞・土壌間隙水濃度 (K_{vacuole-sw})である。

本章では、Trapp (2013b)¹による根・土壌間隙水分配係数 (Kroot-sw)推計式を採用する。

解離性モデ
ル
$$K_{root-sw} = \frac{K_{cytosol-sw} \times V_{cytosol} + K_{vacuole-sw} \times V_{vacuole}}{V_{cytosol} + V_{vacuole}} \div \rho_{root}$$
式 X-73

 $\overline{7}$

1

 $\mathbf{2}$

3

4

5 6

8 9

10

11

③ 大気中の粒子吸着態物質の沈着による地上部農作物中濃度(X.3.1.2(7)②i)大気中の粒子吸着態物質の沈着による地上部農作物中濃度)

従来の暴露評価モデルと同じ数式を用いて、農作物への大気中の粒子吸着を推計する。

 $\frac{12}{13}$

従来の暴露 評価モデル	$C_{ag_aer} = \frac{DEP_{total_p_ag}}{Mf \times Rv} [1 - \exp(-Rv \times 60)]$	式 V-106
	$C_{grass_aer} = C_{ag_aer}$	式 V-107
	$DEP_{total_p_ag} = RES_{wetdep} \times \frac{rainyday}{365} \times DEP_{wet_p} \times K_{dep_r}$	式 V-108
	$+ RES_{drydep} \times \left\{ \frac{rainyday}{365} \times DEP_{dry_p,r} \times K_{dep,r} + (1 - \frac{rainyday}{365}) \times DEP_{dry_p,s} \times K_{dep,s} \right\}$	
解離性モデ ル	同式を使用。	

14

15 ④ 大気中のガス態及び土壌由来の地上部農作物中濃度(X.3.1.2 (7)②ii)大気中のガス
 16 態及び土壌由来の地上部農作物中濃度)

17 ・ 従来の暴露評価モデルでは、Trapp and Matthies (1998)²によるモデルを用いている。

18 ・ Trapp (2009)³では、同じモデルをベースに解離性物質にも適用できるようにするた
 10 ・ ホッキオホエのスパカナト・ホーズ・同様のホエナデニ

19 めの数式変更のみがなされているため、本章でも同様の変更を行う。

20 ・ 従来の暴露評価モデルと Trapp (2009)³による葉の濃度推計式を比較し、両者の違い

- 21 は、大気でのガス態の化学物質の葉・茎への濃縮係数 (Kleaf-air) 及び植物の導管を流
- 22 れる水分と土壌中水分の間の分配係数(TSCF)の推計方法の違いとして集約する。

¹ Trapp, S. (2013b) 42 Standard Model for Ionics, Summer course 12906 Modeling of Plant Uptake (Microsoft ® Excel ファイル),

² Trapp, S. and Matthies, M. (1998) 9.3 PLANT Model. In: Trapp, S. and Matthies, M., Chemodynamics and Environmental Modeling, Springer, Berlin, 118-123.

³ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

TSCF 推計式における *logPow* の下限及び上限の範囲は、木部-土壌間隙水分配係数
 (*K_{xylem-sw}*)を推計する過程で使用する脂質-水分配係数(*Klipid_{xm}*)の推計式(式 X-89
 及び式 X-90)中の *logPow*に対して設定する下限及び上限の範囲となる。

 $\frac{3}{4}$

 $\mathbf{5}$

6 ・ 従来の暴露評価モデルと Trapp (2009)¹による葉中の濃度推計式から、大気中のガス
 7 態物質の葉・茎への濃縮係数 (*Kleaf-air*)及び植物の導管を流れる水分と土壌中水分の
 8 間の分配係数 (*TSCF*)の推計式を導出した。

9 ・ Trapp and Matthies (1998)²及び Trapp (2009)¹では、葉は脂質と水分からなると仮
 10 定している。しかし、従来の暴露評価モデルでは、EUSES³の様に、Trapp and
 11 Matthies (1998)²の式に葉の 50%が空気という仮定を追加し、大気中でガス態物質
 12 の葉・茎への濃縮係数 (*Kleaf air*)を推計している (式 V-114)。

・ 葉肉細胞間には空気間隙が多く含まれると考えられる (Mc Farlane, 19954)ことか
 らも、本章でも、式 V-114 と同様に、葉の 50%が空気であると仮定する。

従来の暴露 評価モデル	$K_{leaf-air} = FPA + \frac{K_{plant-water}}{K_{air-water}}$	式 V-114
	$K_{plant-water} = FPW + FPLPD \times (10^{\log Pow})^b$	式 V-115
解離性モデ ル		式 X-74

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

² Trapp, S. and Matthies, M. (1998) 9.3 PLANT Model. In: Trapp, S. and Matthies, M., Chemodynamics and Environmental Modeling, Springer, Berlin, 118-123.

³ EC (2008) EUSES 2.1 background report: chapterIII model calculations

⁴ Mc Farlane, J.C. (1995) Anatomy and Physiology of Plant Conductive Systems. .In: Trapp, S. and Mc Farlane, C. (ed.), Plant Contamination; Modeling and Simulation of Organic Chemical Processes, Lewis/CRC Press, Boca Raton, FL, 13-34.

$$K_{leaf-air} = FPA + (1 - FPA) \times \frac{\left(\frac{V_{cytosol} + V_{vacuole} \times K_{vacuol-cytosol}}{V_{cytosol} + V_{vacuole}}\right)}{K_{air-water} \times G_{cytosol n}}$$

従来の暴露 評価モデル	-0.5 <logpow<4.5 th="" のとき<=""><th>式 V-116</th></logpow<4.5>	式 V-116
	$TSCF = 0.784 \times e^{-\frac{(\log Pow-1.78)^2}{2.44}}$	
解離性モデ ル	$TSCF = K_{xylem-sw}$	式 X-75

 $\frac{2}{3}$

4

5 6

⑤ 植物体内分配係数 (X.3.1.2(7)④植物体内分配係数)

Trapp (2009)¹と同様に、液胞及び木部・土壌間隙水分配係数(Kvacuole-sw 及び Kxylem-sw)
 は、液胞及び木部・細胞質分配係数(Kvacuole-cytosol 及び Kxylem-cytosol)と細胞質・土壌分配
 係数(Kcytosol-sw)の積とする。

 $\mathbf{7}$

解離性モデ ル	$K_{vacuole-sw} = K_{vacuole-cytosol} \times K_{cytosol-sw}$	式 X-76
	$K_{xylem-sw} = K_{xylem-cytosol} \times K_{cytosol-sw}$	式 X-77

8

 ^{9 ・} Trapp (2009)¹では、生体膜の内外の濃度は平衡に達しており、流入と流出のフラッ
 クスが同じになると仮定されている。図表 X-11 (36 ページ)に示す細胞質・土壌間隙
 水分配係数、液胞・細胞質分配係数及び木部・細胞質分配係数は、この平衡の仮定を置
 いて計算している。

Trapp (2009)¹では、植物体内の媒体ごとに非解離種とイオン種の分率を考慮して、
 非解離種の拡散フラックスを Fick の第一法則に基づいて推計し、イオン種の拡散フ
 ラックスを Nernst 式に基づいて推計している。
 Trapp (2009)¹では、植物体内の各媒体の pH の違いによる化学種分率の違いを考慮

¹⁷ し、また活量を用いることにより植物体内のイオン強度による影響を考慮している。
18 ・ 本章では、細胞質・土壌間隙水分配係数、液胞・細胞質分配係数及び木部・細胞質分配

¹⁹ 係数の推計に、Trapp (2009)¹による式を用いる。

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

解離性モデ ル	$K_{in-out} = \frac{E_{(in)-out}}{E_{in-(out)}}$	式 X-78
	$E_{(in)-out} = MTC_{membrane\ n} \times G_{out\ n} + MTC_{membrane\ i} \times \frac{N_{in-out}}{\left(\exp(N_{in-out}) - 1\right)} \times G_{out\ i}$	式 X-79
	$E_{in-(out)} = MTC_{memnbrane.n} \times G_{in.n} + MTC_{membrane.i} \times \frac{N_{in-out}}{(\exp(N_{in-out})-1)} \times \exp(N_{in-out}) \times G_{in.i}$	式 X-80

2 ・ 細胞質-土壌間隙水分配係数、液胞-細胞質分配係数及び木部-細胞質分配係数の推計
 3 に用いるパラメータを算出する式について、順次説明する。

4 ・ 細胞外から細胞質に進入する物質は、細胞壁と細胞膜を通過する。このため、植物
 5 細胞内外の質量移動係数 (*MTCcell*)は、細胞壁及び細胞膜 (生体膜)の質量移動係数
 6 (*MTCcellwall*及び *MTCbiomembrane*)を統合した値である。

ただし、Trapp (2009)¹では、解離性物質のような高極性物質については、ほとんど
 水分とみなせる細胞壁の質量移動係数 (*MTCcellwall*)は、細胞膜と比較して非常に大き
 いため考慮する必要がないとしている。なお、*MTCcellwall*は Trapp (2000)²で計算し
 た 0.00025 m/sec であるとしている。

11 ・ 本章では、従来の暴露評価モデルとの計算結果比較等のため、非解離性物質の計算

12 を行うことも想定し、細胞壁の質量移動係数 (*MTCcellwall*)は 0.00025 m/sec とする。

13 ・ また、従来の暴露評価モデルにおける RCF 及び TSCF 推計式における logPow の上

14 限と下限の範囲は本式に設定し、地下部農作物の計算時にはlogPownの下限値は0.57、

15 上限値は 8.2 とし、地上部農作物の計算時には下限値は 0.5、上限値は 4.5 として、
 16 範囲外の値は下限値あるいは上限値とする。

解離性モデ ル	$MTC_{cell n} = \frac{1}{\frac{1}{MTC_{biomembrane n}} + \frac{1}{MTC_{cellwall}}}$	式 X-81
	$MTC_{cell i} = \frac{1}{\frac{1}{MTC_{biomembrane i}} + \frac{1}{MTC_{cellwall}}}$	式 X-82
	$MTC_{biomembrane.n} = 10^{\log Pow_n - 6.7}$	式 X-83

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

² Trapp, S. (2000) Modelling Uptake into Roots and Subsequent Translocation of Neutral and Ionisable Organic Compounds. Pest. Manag. Sci., 56(9), 767–778.

	$MTC_{biomembrane.i} = 6.89 \times 10^{-4} \times MTC_{biomembrane.n}$	式 X-84
--	--	--------

 Nernst 式の数 (*Nx-x*)は、媒体間の電位差 (*El_{x-x}*)で決まる値で、Trapp (2009)¹に示 されている式で計算する。

解離性モデ ル $N_{x-x} = \frac{z \times El_{x-x} \times F}{R \times T}$	式 X-85
--	--------

 $\mathbf{5}$

 $\frac{1}{2}$

3

4

6 ・ Trapp (2009)¹では、非解離種の活量 (*Actn*)を総濃度 (*Ctotal*)で除した値を、活量容
 7 量と定義しているが、Franco and Trapp (2010)²では、環境媒体の構成要素ごとに非
 8 解離種とイオン種それぞれについて、その活量 (*Act*)と活量容量 (*B*)の積を濃度とし
 9 ている。

・本章では、非解離種の活量(Actn)を総濃度(Ctotal)で除した値を総濃度あたりの活
 量(G)と定義する。

12

解離性モデ	C – 1	式 X-86
	$O_{xmn} = \frac{W_{xmn}}{\gamma_{xmn}} + \frac{Klipid_{xmn}}{\gamma_{xmn}} + (W_{xm} + Klipid_{xmi})\frac{\phi_{xmi}}{\gamma_{xmi} \times \phi_{xmn}}$	
	$G_{swn} = \frac{1}{\left(\frac{1}{\gamma_{sn}} + \frac{\phi_{swi}}{\gamma_{si} \times \phi_{swn}}\right)}$	式 X-87
	$G_{xi} = G_{xn} \times \frac{\phi_{xi}}{\phi_{xn}}$	式 X-88

13

14 ・ 脂質・水分配係数 (*Klipid*)の計算にも、Trapp (2009)¹による数式を用いる。

15 ・ 同式で用いられている植物脂質と 1-オクタノール間の差に対する修正指数 (b)は植

16 物種ごとの 1-オクタノールと植物の脂質との間の補正係数である (Trapp and
 17 Matthies (1995)³)。

18

・ Trapp (2013a)⁴では、修正指数 (b)を、根では 0.77、葉では 0.95 としている。Trapp

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

² Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds: Validation Study with 2. 4-Dichlorophenoxyacetic aicd, Aniline, and Trimethoprim., Environ. Toxicol. Chem., 29(4), 789-799.

³ Trapp, S. and Matthies, M. (1995) Generic One-Compartment Model for Uptake of Organic Chemicals by Foliar Vegetation, Environ. Sci. Technol, 29, 2333-2338.

⁴ Trapp, S. (2013a) Uptake of Organic Chemicals into Plants Models, Models, Equations and Exercises.

 (2009)¹では、それらの統合案として、0.85 が提案されている。Trapp and Matthies
 (1995)²でも、根では0.77、葉では0.95 としており、根拠として、従来の暴露評価モ デルで *RCF*と *TSCF*の計算に用いている Briggs et al. (1982)³による大麦の根及び シュート(葉や茎)を用いた実測値より求めた回帰式を引用している。

5 ・本章では、従来の暴露評価モデルとの整合性を保つため、地下部農作物における計
 6 算には修正指数(b)として 0.77 を用い、地上部農作物における計算には 0.95 を用い
 7 る。

8 ・ また、従来の暴露評価モデルにおける *RCF*及び *TSCF* 推計式における *logPow*の上
 9 限と下限の範囲は本式に設定し、地下部農作物の計算時には log*Pow_n*及び log*Pow_i* 10 の下限値は 0.57、上限値は 8.2 とし、地上部農作物の計算時には下限値は 0.5、上限
 11 値は 4.5 として、範囲外の値は下限値あるいは上限値とする。

12

解離性モデ ル	$Klipid_{xmn} = L_{xm} \times \left(10^{\log P_{OW_n}}\right)^b$	式 X-89
	$Klipid_{xm,i} = L_{xm} \times \left(10^{\log Pow_i}\right)^b$	式 X-90

13

14 ⑥ 植物体内の器官や組成間の電位差 (*Elxx*)の設定値

15 ・ Trapp による各文献では、図表 X-31 のとおり文献により異なる植物体内の器官や組

16 成間の電位差 (*Elxx*)を用いている。

17 ・ 本章の式 X-85 では、Trapp (2009)¹のデータを用いる。

18

19

図表 X-31 植物体内の器官や組成間の電位差 (Elxx)[単位: V]

	Trapp (2009) ¹	Trapp (2013a) ⁴	Trapp (2013b) ⁵
細胞質·土壤間隙水	-0.12	-0.12	-0.12
液胞·細胞質	-0.02	0.02	0.02
	(液胞·土壤間隙水 [※] : -0.1)		
木部·細胞質	0.12	0.12	0.12
	(木部·土壤間隙水*:0)		

[※] 液胞、木部について、Trapp (2009)¹ では対土壌間隙水の電位差が記載されていたた

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

² Trapp, S. and Matthies, M. (1995) Generic One-Compartment Model for Uptake of Organic Chemicals by Foliar Vegetation, Environ. Sci. Technol, 29, 2333-2338.

³ Briggs, G. G., Bromilow, R. H. and Evans, A. A. (1982) Relationships Between Lipophilicity and Root Uptake and Translocation of Non-Ionised Chemicals by Barley, Pest Management Science, 13(5), 495-504.

⁴ Trapp, S. (2013a) Uptake of Organic Chemicals into Plants Models, Models, Equations and Exercises.

⁵ Trapp, S. (2013b) 42 Standard Model for Ionics, Summer course 12906 Modeling of Plant Uptake (Microsoft ® Excel ファイル).

め、細胞質·土壤間隙水の電位差分を差し引いた値とした。

1 2 3

⑦ 植物体内の生理学的データの設定値

4 · Trapp (2009)1では、図表 X-32 に示す植物体内の生理学的データを用いている。

本章でも、図表 X-32 の値を用いる。具体的には、体積 (V_{xm})は、根-土壌間隙水分 5 配係数 (Kroot-sw)の計算 (式 X-73)及び大気中のガス態物質の葉・茎への濃縮係数 6 (Kleafair)の計算 (式 X-74)に用いる。イオン強度 (Ixm) (図表 X-18、41 ページ)は、活 $\overline{7}$ 量係数 (y)の計算(式 X-32、式 X-33)に用いる。水分含有割合(Wxm)は、xmにおけ 8 る総濃度あたりの非解離種活量 (Gxm.n)の計算 (式 X-86)に用いる。脂質含有割合 9 (Lxm)は、脂質・水分配係数(Klipid)の計算(式 X-89 と式 X-90)に用いる。植物体内 10 の媒体 (xm)ごとの pH_{xm} (図表 X·16、40 ページ)は、化学種分率 (φ)の計算(式 11 X-34~式 X-43、43~45ページ)に用いる。 12

13

14

図表 X-32 植物体内の生理学的データ

植物体内の	体積	イオン強度	水分含有割合	脂質含有割合	pH
媒体 (<i>xm</i>)	V_{xm}	I_{xm}	W_{xm}	L_{xm}	pH_{xm}
	m^3	mol/L	volume	volume	
			/volume	/volume	
細胞質	0.1	0.3	0.943	0.02	7
液胞	0.9	0.3	0.943	0.02	5.5
木部	0.023	0.01	1	0	5.5

15

16 (3) 畜産物中濃度推計式の設定経緯 (X.3.1.2 (8) 畜産物中濃度の推計)

17	•	イオン種は、脂質膜を透過しにくいため、一般的な親油性の物質よりも生体に移行
18		しにくい傾向にある (Hendriks, 2007 ²)。U.S. EPA (2005)の HHRAP ³ では、解離性
19		物質の牛肉及び牛乳への移行係数 (BTFmeat 及び BTFmilk)を推計するために、見かけ
20		の1-オクタノールと水との間の分配係数(logD)を用いている。なお、牛の小腸内は
21		ほぼ中性であることから、pH=7 としている。
22	•	生理学的なモデルによる詳細な家畜の体内動態解析も可能である。しかし、RTI
23		(2005)4では、このような生理学的なモデルは、多くのデータを必要とするとしてお
24		り、HHRAP ³ では採用されていない。また、RIVM レポート (Rikken and Lijzen,

¹ Trapp S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In: Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299-353.

² Hendriks, A. J., Smitkova, H., and Huijbregts, M. A. (2007) A New Twist on an Old Regression Transfer of Chemicals to Beef and Milk in Human and Ecological Risk Assessment, Chemosphere 70, 46-56.

³ HHRAP : U.S.EPA (2005) Humam Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities Final, EPA530-R-05-006.

⁴ RTI (2005) Methodology for Predicting Cattle Biotransfer Factors. Prepared for U.S. Environmental Protection Agency (EPA) Office for Solid Waste. EPA Contract No. 68-W-03-042.

- 2004)による検討結果でも、同様の理由によりスクリーニングレベルの評価には向か
 ないとしている。
- 3 ・ 本章でも、HHRAP²と同様に、pH=7 における見かけの 1-オクタノールと水との間
 4 の分配係数 (log D)を用いて、牛肉及び牛乳への移行係数 (BTF_{meat} 及び BTF_{milk})を
 5 推計する。
- 6

7 (4) 環境中 pH の設定

- 8 ここでは、化学種分率(Ø)の計算(式 X-34~式 X-43)に用いる環境媒体中の構成要素の
 9 水 (*xew*)の pH_{xew} (図表 X-15)を設定するため、我が国における環境媒体(降水、土壌、淡
 10 水、海水)中の pH のモニタリングデータなどをまとめる。
- 11

12 ① 我が国の降水の pH モニタリングデータ

- 13 環境省 (2016)³は、酸性雨等の越境大気汚染監視の一環として、湿性沈着 (降水)中の pH
 14 をモニタリングしていている。
- 15 大気モニタリング地点 (平成 20 年度まで: 32 地点、平成 21 年度以降: 27 地点)におけ
- 16 る平成 20 年度~平成 24 年度の降水の pH (降水量による加重平均値)は 4.48~5.37 であっ 17 た。
- 18

¹ Rikken M.G.J. and Lijzen J.P.A. (2004) Update of Risk Assessment Models for the Indirect Human Exposure, RIVM reports 601516011.

² HHRAP : U.S.EPA (2005) Humam Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities Final, EPA530-R-05-006.

³環境省 (2016) 越境大気汚染・酸性雨長期モニタリング報告書 (平成 20~24 年度)
_pH分布図(平成20年度~平成24年度)

9 ラムは図表 X-34に示すとおりである。

1

 $\mathbf{2}$

3

4

5

6

7

¹ 環境省 (2016) 越境大気汚染・酸性雨長期モニタリング報告書 (平成 20~24 年度)

図表 X-34 H15~24 年度 15 地点における1日ごと降水の pH 分布

環境省 (2016)153 ページの図 3-1-36 から転載

6 日々のばらつきの幅は非常に大きいが、年間平均の pH 測定結果を参考にすると我が国の
7 降水の pH は 4~5.5 程度であると考えられる。本章では、化学種分率の計算に用いる降水
8 の pH を 4.8 (pH モニタリング結果 4.77 を小数点第 2 位で四捨五入)とする。

9

 $\mathbf{2}$

3

4 5

1

10 ② 我が国の土壌中 pH モニタリングデータ

11 農業・食品産業技術総合研究機構 農業環境変動研究センターによる「土壌情報閲覧シ
12 ステム」の「作土層の理化学性データベース」²には、60の土壌種ごと及び土地利用ごとに
13 (水田、普通畑、樹園地、牧草畑、全体)、土壌の pH がまとめられている。図表 X-35 に 1999
14 年~2003 年の値を示す。

15 蒸留水 (H₂O)を用いた測定の他、KCl 水溶液を用いた pH があるが、ここでは、H₂O に
よる測定結果を用いる。作土層における土地利用「全体」の pH (H₂O)平均値の 60 土壌種
平均は 5.9 であった。また、土地利用ごとの pH (H₂O)平均値の最小値は 4.2、最大値は 8.1
18 であった。

¹ 環境省 (2016) 越境大気汚染・酸性雨長期モニタリング報告書 (平成 20~24 年度)

² 農業・食品産業技術総合研究機構 農業環境変動研究センター 土壌情報閲覧システム 作 土層の理化学性データベース.

図表 X-35 1999 年~2003 年、作土層の土壤種ごと平均 pH (H2O)

2 農業・食品産業技術総合研究機構 農業環境変動研究センター 土壌情報閲覧システム

3 作土層の理化学性データベースから

1

土壤種	水田	普通畑	樹園地	牧草畑	全体
01A 岩屑土		5.7	5.8		5.7
02A 砂丘未熟土		6.2	5.9	5.0	6.2
<u>03A 厚層多腐植質黒ボク土</u>	6.3	6.0	5.1	5.9	5.8
	5.9	6.0	5.9	6.1	6.0
<u>03C_</u> 表層多腐度貿黒ホク土	5.5	6.1	5.1	5.8	5.8
<u>03D_衣僧腐旭筫羔ホクエ</u> 025 淡み用ギタナ	6.1	6.1	5.6	5.9	6.0
03E_次ビ赤ハクエ 04A 原属タ府姉哲タ沢里ポクナ	0.7 5.9	5.0	0.8	5.1	0.U 5.0
<u>04A_序眉夕腐恒貝夕湿黒ホノエ</u> 04B 厚層産植質多温里ボクナ	5.0	<u> </u>		5.7	5.9
04C 表層多腐植質多湿黒ボクナ	6.0	5.2	6.5	0.7	5.9
04D 表層腐植質多湿黒ボク土	5.8	6.1	5.6	6.3	5.9
	5.9	6.1	6.4		6.0
05A_多腐植質黒ボクグライ土	5.8				5.8
05B_腐植質黒ボクグライ土	5.8				5.8
05C_淡色黒ボクグライ土					
06A_細粒褐色森林土	6.4	6.0	5.9	6.1	5.9
06B_中粗粒褐色森林土	6.0	6.3	5.8	5.3	6.0
06C_礫質褐色森林土	6.0	6.3	5.9	5.9	6.1
U/A_ 細粒火色台地土	5.9	5.8	5.7	5.6	5.9
U/B_屮租杠伙巴台地土	5.7	5.4	6.7	E 0	5.8
07C_除良伙巴古地工	5.8	0.3	0.1	5.Z	0.8 0.1
07 <u>0_次巴古地工、石灰貝</u> 084 細粒グライ会地士	55	8.0	0.1	55	<u>8.1</u>
<u>00A_袖松ノノT日地工</u> 08B 由粗粒グライ会地士	5.8			0.0	5.8
<u>000_+44センティロ地工</u> 08C 礫質グライ台地十	5.5		•		5.5
<u>000_株質//11/12</u> 09A 細粒赤色土	0.0	5.7	5.6		5.7
09B 中粗粒赤色土			4.8		4.8
09C_礫質赤色土		5.1	5.6		5.5
10A_細粒黄色土	5.3	6.2	5.6	5.8	5.9
<u>10B_中粗粒黄色土</u>		6.4	5.7	6.2	5.9
10C_礫質黄色土	6.0	5.4	5.1		5.2
<u>10D_細粒黄色土・斑紋あり</u>	5.9	6.4	6.2		6.0
10E_中粗粒黄色土・斑紋あり	6.1	4.2	4.7		5.6
10F_傑賞東巴工・斑衩めり	5.9		5.9		5.9
11A_咱亦巴工 11D 磁度哈夫鱼士		7.0	0.1	0.1	0.8
	5.8	6.5	6.0	. 61	7.0
12R 由粗粒褐色低地土 斑紋なし 12B 由粗粒褐色低地土 斑紋なし	6.0	6.8	6.2	6.7	6.7
12C 礫質褐色低地土・斑紋なし	6.1	6.2	6.7	6.1	6.5
12D 細粒褐色低地土・斑紋あり	5.9	6.4	6.2	5.1	6.0
12E 中粗粒褐色低地土・斑紋あり	5.8	6.4	6.4		6.2
12F 礫質褐色低地土・斑紋あり	5.8	5.8	6.5		5.8
13A 細粒灰色低地土·灰色系	5.9	5.5	5.4		5.9
13B 中粗粒灰色低地土·灰色系	5.9	5.6	5.9		5.9
13C 礫質灰色低地土·灰色系	5.9	6.2	7.1		5.9
13D 細粒灰色低地土·灰褐系	5.8	5.8			5.8
	5.8	5.9			5.8
13F 候員火巴低地工 火椅糸	5.9	5.7	0.0 5 7		6.U 5.0
13G 灰色低地土·下眉赤小/	0.8 5.7		0.7		0.9 5.7
131 灰色低地土・下層有機員	5.7	6.4	. 6.0		6.2
14A 細粒強グライキ	5.0	0.4	5.3		5.6
148 中粗粒強グライ土	5.8		0.0		5.8
14C 礫質強グライ土	5.9	6.6			6.0
14D_細粒グライ土	5.8	7.3			<u>6.0</u>
14E_中粗粒グライ土	5.8				5.8
14F_グライ土・下層黒ボク	5.3				5.3
<u>14G_グライ土・下層有機質</u>	5.7				5.7
15A_黒泥土	5.8	6.6			5.9
16A_泥炭土	5.6	5.5		6.0	5.7
平均	5.8	6.1	5.9	5.8	5.9

環境省 (2016)¹では、19 地域 25 地点 (土壌 50 プロット)のモニタリング地点における森
 林の土壌モニタリング結果がまとめられている。日本の森林土壌は、pH4~6 の間を示すと
 されており、モニタリング結果は、図表 X-36 に示すような分布となっている。

4

 $\mathbf{5}$

6

図表 X-36 全国の土壌表層の pH モニタリング結果

7

環境省 (2016)164ページの図 3-2-1 から引用

8

9 土壌種ごと、土地利用ごとの pH データを参考にすると、我が国の作土層の pH は 4~8.5
10 程度であると考えられる。本章では、化学種分率の計算に用いる土壌の pH を 5.9 (作土層
11 における土地利用「全体」の pH 平均値 5.9)とする。

12

13 ③ 我が国の表層水中 pH モニタリングデータ

14 国立環境研究所の「環境数値データベース」2の「公共用水域水質検体値データファイル」

¹ 環境省 (2016) 越境大気汚染・酸性雨長期モニタリング報告書 (平成 20~24 年度)

² 国立環境研究所 環境数値データベース.

には、1981 年度~2009 年度における約 9,000 の全国 47 都道府県の公共用水域水質測定点
 における水質監視測定結果がまとめられている。ファイルは、年度別、都道府県別に構成
 されており、ここでは最新年度の 2009 年度における 47 都道府県のデータを対象に、公共
 用水域における pH 測定結果の概要をまとめる。
 103,341 データのうち、2,702 データは欠測であった。残りの 100,639 データについて

6 pH 測定結果の分布を図表 X-37 のヒストグラムに示した。平均値は 7.8、中央値は 7.3、最
7 大値は 11.4、最小値は 2.0 であった。

8

9 10

図表 X-37 公共用水域における pH 測定結果

12 次に、淡水として、河川及び湖沼の pH データの分布を示す。74,868 データのうち、487
13 データは欠測であった。残りの 74,381 データについて pH 測定結果の分布を図表 X-38 の
14 ヒストグラムに示した。平均値は 7.6、中央値は 7.3、最大値は 11.4、最小値は 2.0 であっ
15 た。
16

3

 $\overline{7}$

8

9

4 さらに、海水として海域のみの pH データの分布を示す。28,473 データのうち、2,215
5 データは欠測であった。残りの 26,258 データについて pH 測定結果の分布を図表 X-39 の
6 ヒストグラムに示した。平均値は 8.2、中央値は 8.3、最大値は 9.2、最小値は 6.6 であった。

図表 X-39 公共用水域 (海水)における pH 測定結果

1

2 環境省 (2016)¹では、酸性化に対する感受性が高いと考えられる河川及び湖沼 11 地点で

3 の pH のモニタリング結果がまとめられている。平成 20~24 年度の 5 年間の平均値は、最
 4 低地点で 5.30、最高地点で 7.25 であった。

5 公共用水域の pH データを参考にすると、我が国の表層水(淡水)の pH は 2~11.5 程度、
6 表層水(海水)の pH は 6.5~9.5 程度であると考えられる。本章では、化学種分率の計算に
7 用いる表層水(淡水)の pH は 7.6 (公共用水域(淡水)の pH 平均値 7.6)とし、表層水(海水)
8 の pH は 8.2 (公共用水域(海水)の pH 平均値 8.2)とする。

9

10 ④ 既存の試験法で規定されている pH

化審法の「新規化学物質等に係る試験の方法について」に示されている各種試験では、
 図表 X-40 に示すように、試験水の pH を 6~9 と設定している。

13

14 図表 X-40 「新規化学物質等に係る試験の方法について」の各種試験における pH 設定

試験	pH 調整などに関する記述
微生物等による化学物質の	合成下水などを pH7.0±1.0 に調整することとされている
分解度試験	
魚介類の体内における化学	試験用水を pH6.0~8.5 かつ変動幅±0.5 に保つこととされてい
物質の濃縮度試験	る。
藻類生長阻害試験	推奨された培地の pH は 8.1。なお、試験溶液の暴露開始時及び終
	了時の pH は測定することとされており、1.5 以上変動してはなら
	ないとされている。
ミジンコ急性遊泳阻害試験	試験用水 pH は 6~9。pH 調整を行わずに試験を行うこと、また
	試験溶液を添加後顕著な pH 変化が見られる場合には、被検物質
	添加前の pH に調整した後追加試験をすることが望ましいとあ
	る。なお、試験溶液の暴露開始時及び終了時の pH は測定するこ
	ととされており、1.5 以上変動してはならないとされている。
魚類急性毒性試験	試験用水 pH は 6.0~8.5。pH 調整を行わずに試験を行うこと、ま
	た試験溶液を添加後顕著な pH 変化が見られる場合には、被検物
	質添加前の pH に調整した後追加試験をすることが望ましいとあ
	る。なお、pH は毎日測定することとされている。

15

16 また、化審法の「既に得られているその組成性状等に関する知見としての取扱いについ
 17 て」の「高分子化合物の安全性評価のための試験方法(高分子フロースキーム)」では、試

18 験液の pH を 4.0、7.0 及び 9.0 としている。

19 本章で、化学種分率の計算に用いる環境媒体中の pH (降水: 4.8、土壌: 5.9、淡水: 7.6、

20 海水 8.2)は、いずれも、以上に示した化審法試験において、環境中 pH を想定し、指定され

- 21 ている化審法の試験環境の範囲 (pH4~9)の値である。また、土壌中の pH (5.9)は、U.S. EPA
- 22 の OPPTS 835.12202で規定されている土壌の pH (土壌と蒸留水の懸濁液) 4~8 及び

¹ 環境省 (2016) 越境大気汚染・酸性雨長期モニタリング報告書 (平成 20~24 年度)

² U.S. EPA (1998a) Fate, Transport and Transformation Test Guidelines: OPPTS 835.1220 Sediment and Soil Adsorption/Desorption Isotherm.

```
    OECD (2000)の試験ガイドライン No106<sup>1</sup>で規定されている土壌と下水場の処理槽内の pH
    5.5~7.5 の範囲内である。
    3
```

```
4 X.4 出典
```

5	Arnot, J. and Mackay, D. (2007) Risk Prioritization for a Subset of Domestic Substances
6	List Chemicals Using the RAIDAR Model. CEMC Report, No.200703.
7	
8	Briggs, G. G., Bromilow, R. H. and Evans, A. A. (1982) Relationships Between
9	Lipophilicity and Root Uptake and Translocation of Non-Ionised Chemicals by Barley.
10	Pest Manag. Sci., 13(5), 495–504.
11	
12	Bromilow, R. H. and Chamberlain, K. (2000) Principles Governing Uptake and
13	Transport of Chemicals. In: Trapp, S. and Mc Farlane, C. (ed.), Plant Contamination;
14	Modeling and Simulation of Organic Chemical Processes, Lewis/CRC Press, Boca Raton,
15	FL, 37–68.
16	
17	Calamari, D., Vighi, M. and Bacci, E. (1987) The Use of Terrestrial Plant Biomass as a
18	Parameter in the Fugacity Model. Chemosphere, 16(10–12), 2359–2364.
19	
20	EC (2008) EUSES 2.1 Background Report: Chapter III Model Calculations.
21	$(https://echa.europa.eu/documents/10162/16908203/pt4_food_contact_materials_en.pdf\# food_contact_materials_en.pdf\# food_contact_materials_en.pdf\# food_contact_materials_en.pdf\# food_contact_materials_en.pdf\# food_contact_materials_en.pdf\# food_contact_materials_en.pdf\# food_contact_materials_en.pdf\# food_contact_materials_en.pdf foo$
22	search=%27EUSES+2.1+background+report+chapterIII%27, 2016/12/13 アクセス)
23	
24	ECB (2003) Technical Guidance Document on Risk Assessment, Part II.
25	
26	ECHA (2008) Guidance on Information Requirements and Chemical Safety Assessment
27	Chapter R.7a: Endpoint Specific Guidance.
28	
29	ECHA (2015) Guidance on Information Requirements and Chemical Safety Assessment
30	Chapter R.7a: Endpoint Specific Guidance, Version 4.1.
31	
32	ECHA, REACH Resistered Dossier, N-(3-aminopropyl)iminodiethanol (CAS: 4985-85-7),
33	Adsoption/desorption.

¹ OECD (2000) TG 106: OECD Guideline for Testing of Chemicals - Adsorption - Desorption Using a Batch Equilibrium Method. No.106.

1	(https://echa.europa.eu/registration-dossier/-/registered-dossier/5587/5/5/2, 2017/1/17 $\mathcal T$
2	クセス)
3	
4	Franco, A. (2010) Multimedia Activity Model for organic neutral and Ionizable
5	chemicals (Microsoft ® Excel ファイル),
67	(<u>https://homepage.env.dtu.dk/stt/Homepage%20anf/Website.htm</u> , 2017/5/22 アクセス)
8	Franco A and Trann S (2008) Estimation of the Soil-Water Partition Coefficient
9	Normalized to Organic Carbon for Ionizable Organic Chemicals, Environ, Chem. 27(10).
10	1995–2004.
11	
12	Franco, A. and Trapp, S. (2010) A Multimedia Activity Model for Ionizable Compounds:
13	Validation Study with 2,4-Dichlorophenoxyacetic acid, Aniline, and Trimethoprim.
14	Environ. Toxicol. Chem., 29(4), 789–799.
15	
16	Franco, A., Fu, W. and Trapp, S. (2009) Influence of Soil pH on the Sorption of Ionizable
17	Chemicals: Modeling Advances. Environ. Toxicol. Chem., 28(3), 458–464.
18	
19	Hansch, C. and Leo, A. (1995) Exploring QSAR: Volume 1: Fundamentals and
20	Applications in Chemistry and Biology. American Chemical Society, Washington, DC.
21	
22	Harner, T. and Bidleman, T. F. (1998) Octanol-Air Partition Coefficient for Describing
23	Particle/Gas Partitioning of Aromatic Compounds in Urban Air. Environ. Sci. Technol.,
24	32(10), 1494-1502.
25	
26	Hendriks, A. J., Smitkova, H. and Huijbregts, M. A. (2007) A New Twist on an Old
27	Regression Transfer of Chemicals to Beef and Milk in Human and Ecological Risk
28	Assessment. Chemosphere, 70, 46–56.
29	
30	HHRAP : U.S.EPA (2005) Human Health Risk Assessment Protocol for Hazardous
31	Waste Combustion Facilities Final. EPA530-R-05-006.
32	(https://www.weblakes.com/products/iraph/protocol.html, 2016/12/13 アクセス)
33	
34	Junge, C.E. (1977) Basic Considerations About Trace Constituents in the Atmosphere
35	as Related to the Fate of Global Polluntants. In: Suffet, I. H. (ed.) Fate of Pollutans in
36	the Air and Water Environments Part 1, John Wiley and Sons, New York, 7-25.
37	
38	Kah, M. and Brown, CD. (2008) LogD: Lipophilicity for Ionisable Compounds.

1	Chemosphere, 72(10), 1401–8.
2 3	Kim Y P. Seinfeld J H and Saxena P (1993) Atmospheric Gas-Aerosol Equilibrium I
4	Thermodynamic model. Aerosol Sci. Tech., 19(2), 157–181.
5	
6	Mc Farlane, J.C. (1995) Anatomy and Physiology of Plant Conductive SystemsIn:
7	Trapp, S. and Mc Farlane, C. (ed.), Plant Contamination; Modeling and Simulation of
8	Organic Chemical Processes, Lewis/CRC Press, Boca Raton, FL, 13-34.
9	
10	NIST, Reference on Constants, Units and Uncertanity, Fundamental Physical
11	Constants, Faraday Constant.
12	(http://physics.nist.gov/cgi-bin/cuu/Value?f, 2016/12/13 アクセス)
13	
14	NITE (2012) カテゴリーアプローチによる生物濃縮性予測に関する報告書 (カテゴリー
15	ш).
16	(http://www.nite.go.jp/chem/qsar/category_approach.html, 2016/12/13 アクセス)
17	
18	OECD (1995) TG 105: OECD Guideline for Testing of Chemicals - Water Solubility. No.
19	105.
20	$(http://www.oecd-ilibrary.org/environment/test-no-105-water-solubility_9789264069589-105-water-solubility_97894-105-water-solubility_97894-105-water-solubility_9789-105-water-solubility=1000-100-100-100-100-100-100-100-100-10$
21	en, 2016/12/13 アクセス)
22	
23	OECD (1995) TG 107: OECD Guideline for Testing of Chemicals - Partition Coefficient
24	(n-octanol/water): Shake Flask Method. No.107.
25	(http://www.oecd-ilibrary.org/environment/test-no-107-partition-coefficient-n-octanol-wa
26	ter-shake-flask-method_9789264069626-en, 2016/12/13 アクセス)
27	
28	OECD (2000) TG 106: OECD Guideline for Testing of Chemicals - Adsorption -
29	Desorption Using a Batch Equilibrium Method. No.106.
30	(http://www.oecd-llibrary.org/environment/test-no-106-adsorption-desorption-using-a-ba
01 90	tcn-equilibrium-method_9789264069602-en, 2016/12/13 7 7 E A)
04 99	OFCD (2004) TC 117: OFCD Guideline for Testing of Chemicals - Partition Coefficient
37 27	(n-octanol/water) High Porformance Liquid Chromatography (HPLC) Mothed No 117
35	(http://www.oeed-ilibrary.org/environment/test-no-117-nartition-coefficient-n-octanol-wa
36	ter-hplc-method 9789264069824-en; isessionid=212ciroa0888a x-oecd-live-03
37	2016/12/13 アクセス)
- •	

1	Rikken M.G.J. and Lijzen J.P.A. (2004) Update of Risk Assessment Models for the
2	Indirect Human Exposure, RIVM reports 601516011.
3	
4	RTI (2005) Methodology for Predicting Cattle Biotransfer Factors. Prepared for U.S.
5	Environmental Protection Agency (EPA) Office for Solid Waste. EPA Contract No.
6	68-W-03-042.
7	
8	Saarikoski, J., Lindström, R., Tyynelä M, Viluksela M. (1986) Factors Affecting the
9	Absorption of Phenolics and Carboxylic Acids in the Guppy (Poecilia Reticulata).
10	Ecotoxicol. Environ. Saf., 11(2), 158–173.
11	
12	Sabljić, A., Güsten, H., Verhaar, H. and Hermens, J. (1995) QSAR Modelling of Soil
13	Sorption. Improvements and Systematics of log KOC vs. log KOW Correlations.
14	Chemosphere, 31(11–12), 4489–4514.
15	
16	Schwarzenbach, R. P., Gschwend, P. M. and Imboden, D. M. (2003) Environmental
17	Organic Chemistry, 2nd ed. John Wiley and Sons. New York
18	
19	Staudinger, J. and Roberts, P. V. (2001) A Critical Compilation of Henry's Law Constant
20	Temperature Dependence Relations for Organic Compounds in Dilute Aqueous
21	Solutions. Chemosphere, 44(4), 561–576.
22	
23	Trapp, S. (2000) Modelling Uptake into Roots and Subsequent Translocation of Neutral
24	and Ionisable Organic Compounds. Pest. Manag. Sci., 56(9), 767–778.
25	
26	Trapp S. (2004) Plant Uptake and Tansport Models for Neutral and Ionic Chemicals.
27	Environ. Sci and Pollut. Res., 11(1), 33–39.
28	
29	Trapp, S. (2009) Bioaccumulation of Polar and Ionizable Compounds in Plants. In:
30	Devillers, J. (ed.) Ecotoxicology Modeling, Springer, New York, 299–353.
31	
32	Trapp, S. (2013a) Uptake of Organic Chemicals into Plants Models, Equations and
33	Exercises.
34	(http://homepage.env.dtu.dk/stt/PhD course 2013website/index.htm (Script) _
35	2016/12/13 アクセス)
36	
37	Trapp, S. (2013b) 42 Standard Model for Ionics, Summer Course 12906 Modeling of
38	Plant Uptake (Microsoft ® Excel ファイル).

1	(http://homepage.env.dtu.dk/stt/PhD course 2013website/index.htm, 2016/12/13 アクセ
2	 ス)
3	
4	Trapp, S., Franco, A. and Mackay, D. (2010) Activity-Based Concept for Transport and
5	Partitioning of Ionizing Organics. Environ. Sci. Technol., 44, 6123–6129.
6	
7	Trapp, S. and Horobin, W. (2005) A Predictive Model for the Selective Accumulation of
8	Chemicals in Tumor Cells. Eur. Biophys. J., 34(7), 959–966.
9	
10	Trapp, S. and Matthies, M. (1995) Generic One-Compartment Model for Uptake of
11	Organic Chemicals by Foliar Vegetation, Environ. Sci. Technol, 29, 2333-2338.
12	
13	Trapp, S. and Matthies, M. (1998) 9.3 PLANT Model. In: Trapp, S. and Matthies, M.,
14	Chemodynamics and Environmental Modeling, Springer, Berlin, 118-123.
15	
16	Trapp, S. and Mc Farlane, C. (ed.) (1995) Plant Contamination; Modeling and
17	Simulation of Organic Chemical Processes, Lewis/CRC Press, Boca Raton, FL.
18	
19	U.S. EPA (1996) Product Properties Test Guidelines: OPPTS 830.7860 Water Solubility
20	(Generator Column Method).
21	(https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-830-product) and the standard sta
22	-properties-test-guidelines, 2016/12/13 アクセス)
23	
24	U.S. EPA (1998a) Fate, Transport and Transformation Test Guidelines: OPPTS
25	835.1220 Sediment and Soil Adsorption/Desorption Isotherm.
26	(https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-835-fate-translation-fate-fate-translation-fate-fate-fate-fate-fate-fate-fate-fate
27	nsport-and-transformation-test, 2016/12/13 アクセス)
28	
29	U. S. EPA (1998b) Product Properties Test Guidelines: OPPTS 830.7840 Water
30	Solubility: Column Elution Method; Shake Flask Method.
31	(https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances/series-830-product) and the standard sta
32	-properties-test-guidelines, 2016/12/13 アクセス)
33	
34	U. S. EPA (2012) Estimation Programs Interface Suite. Ver. 4.11.
35	(https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface, where the state of the
36	2016/12/13 アクセス)
37	
38	van Beelen, P. (1998) Environmental Risk Evaluation of Difficult Substances in USES

1	2.0. RIVM report 679102045.
2	
3	van Beelen, P. (2000) The Risk Evaluation of Difficult Substances in USES 2.0 and
4	EUSES. A Decision Tree for Data Gap Filling of Kow, Koc and BCF. RIVM report
5	679102050.
6	
7	Yoshida, K., Shigeoka, T. and Yamauchi, F. (1987) Evaluation of Aquatic Environmental
8	Fate of 2,4,6-Trichlorophenol with a Mathematical Model. Chemosphere, 16(10–12),
9	2531–2544.
10	
11	環境省(2016)越境大気汚染・酸性雨長期モニタリング報告書(平成 20~24 年度).
12	(http://www.env.go.jp/air/acidrain/monitoring/rep3.html, 2016/12/13 アクセス)
13	
14	厚労省/経産省/環境省(2014)イオン性を有する新規化学物質の生物蓄積性の判定について
15	(お知らせ).
16	$(http://www.meti.go.jp/policy/chemical_management/kasinhou/files/todoke/shinki/14063) and the statement of the statement of$
17	0_logD.pdf, 2016/12/13 アクセス)
18	
19	国立環境研究所 環境数値データベース.
20	(http://www.nies.go.jp/igreen/, 2016/12/13 アクセス)
21	
22	日本化学会(2004)化学便覧 改訂 5 版 基礎編. 丸善
23	
24	農業・食品産業技術総合研究機構 農業環境変動研究センター 土壌情報閲覧システム
25	作土層の理化学性データベース.
26	(http://agrimesh.dc.affrc.go.jp/soil_db/index.phtml, 2016/12/13 アクセス)
27	
28	松中照夫(2003) 土壌学の基礎 生成・機能・肥沃度・環境. 農山魚村文化協会.
29	
30	姫野貞之, 市村彰男 (2009) 溶液内イオン平衡に基づく分析化学 第2版, 化学同人