対象事例:川崎重工業株式会社トランジション・ボンド

■ 企業概要

業種

重工業

所在地

日本

事業

船舶・鉄道車両・航空機・モーターサイクル・ガスタービン・ガスエ ンジン・産業プラント・油圧機器・ロボットなどの多彩な事業を 展開

基本指針四要素への対応

要 素

- トランジション戦略: Scope1,2,3で、2050年にグループ全体での CN実現を目指す。マイルストーンとして、Scope1,2においては2030 年国内グループ会社Net Zero、Scope3においては、材料や部品の 調達先における2040年のCO2排出量を2021年度比で80%削減 (カテゴリ1) および2040年までに全事業においてカーボンフリーなソ リューションを標準ラインアップ(カテゴリ11)することを目指す。
- ガバナンス: 社長を委員長とするサステナビリティ委員会を設置。

要 素 2

- 社会・ステークホルダーにとっての重要度と川崎重工グループにとっての 重要度を加味し、2018年に重要課題(マテリアリティ)を特定。
- さらに、2020年には「グループビジョン2030 lを受け、重要課題の見 直しを行い、3つの注力フィールドである「安全安心リモート社会」「近 未来モビリティバエネルギー・環境ソリューショントを最重要課題として 定義。

要 素 3

要

素

4

- 川崎重工が掲げる、「2030年国内グループ会社Net Zero」は 2021年度を基準とした場合、海外を含めた川崎重工グループ全体 で平均減少率7.6%/年となる。これはSBT認定における1.5℃水準 (4.2%/年)を満たす。
- Scope3もカーボンフリーなソリューションを標準ラインアップという多数 の分野別ロードマップ等と整合的な、適切な目標を設定

CN関連投資額を3,500億円(20-30年)と想定、Scope1,2目 標の「ゼロエミッション工場」を世界に先駆けて実現するため、100MW 級の水素発電事業に500億円規模、Scope3目標に向け水素エン ジン等のパワースポーツ&エンジン事業に1,500億円の投資を計画

■ トランジション・ボンド概要

発行体	川崎重工業株式会社
ストラクチャリング エージェント	みずほ証券株式会社
評価機関	株式会社日本格付研究所
調達予定額	100億円程度
調達予定日	2024年2月以降

資金使途候補とKPI・SPT

※太字:本件の資金使途候補 G:グリーン、T:トランジション、S:ソーシャル、B:ブルー

クルーノビジョン2030	0	分類	王なノロジェクト
安全安心 リモート社会	手術支援□ボット	S	hinotori™サージカルロボットシステム
近未来 モビリティ	配送ロボット・無人輸送ヘリコプター	S	配送ロボット、VTOL無人機
	水素のクリーンな輸送・貯蔵	G∙B	液化水素貯蔵タンク、液化水素運搬船、 水素燃料船 等
	水素のクリーンエネルギー利用	G·T·B	水素ガスタービン(専焼)、舶用水素エンジン 等
	水素のクリーンエネルギー利用(混焼)	T	水素ガスタービン(混焼) 等
	CCUS	G	Kawasaki CO2 Capture 等
エネルギー・	ガスエネルギー利用	Т	高効率ガスタービン 等
環境ソリュー	輸送機器(電動)	G	EVモーターサイクル・ビークル 等
ション	輸送機器(ハイブリッド)	T (G)	ハイブリッドモーターサイクル・ビークル 等
	廃棄物処理	G	ごみ炭化燃料化システム
	建設・セメント	Т	建機用コントローラー、CKミル 等
	下水処理	G∙B	メガMAGサーボ
	その他・省エネ製品	G (T)	コージェネレーションシステム 等
KPI			SPT
VDI1 · CO2提出	= (Coopol 2)	ヮガゖ゠ヲ゚゚゚゚゚゚゠ゔ	+Not Zoro×

KPI1:CO2排出量(Scope1,2) SPT1:2030年国内グループ会社Net Zero※

KPI2:水素サプライチェーン構築 SPT2-1:2027年度までに商用化実証大型液化水素運搬船1隻の建造完了

SPT2-2:2031年度までに日本への水素運搬可能量22.5万t/年以上

※川崎重工・川崎車両・カワサキモータース+国内関連企業の国内CO2排出が対象

※集計対象の拠点は計測の精緻化等により適宜変動する

トランジション戦略とガバナンス(要素1)

カーボンニュートラル関連目標

2030年 : Scope1,2 国内ネットゼロ達成

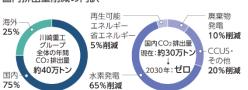
2040年 : Scope3

-カテゴリ1:80%削減(2021年度比)

-カテゴリ11:全事業においてカーボンフリーなソリューションを標準ラインアップ

2050年 : Scope1,2,3 グループ全体でのネットゼロ達成

CO2排出量内訳(2022年度)



- Scope 1 & 2 (事業活動)
- Scope 3 カテゴリ1 (購入した物品・サービス)
- Scope 3 カテゴリ11 (消費者による製品の使用)
- Scope 3 その他

Scope 1,2

• 川崎重工グループ全体のCO2排出 量の3/4を占める国内において、自 社製の水素発電を軸に、自社におい て「ゼロエミッション工場」を実現

国内排出量削減の内訳

トランジション戦略

水素発電を軸に、省エネルギーの進展、再生可能エネルギー拡大、廃棄物発電の拡充、CCUSの推進により、2030年に国内カーボンニュートラルを目指す。更に、脱炭素ソリューションを部品の調達元、顧客等に提供し、社会全体のカーボンニュートラルの早期実現に貢献する

Scope 3カテゴリ1

- 各業界における取り組みを水素 & CCUSソリューションでサポート
- 取引先と排出情報の共有等の連携深化

Scope 3 カテゴリー①(CO2削減シナリオ)

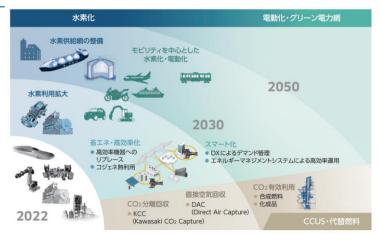
Scope3カテゴリ11排出削減に向けた取組

- ① 水素事業を中心に自社グループからCO2フリー燃料および電力を提供
- ② 各種モビリティやロボットなど、取引先が自社ソリューションを利用する際に、 電動化やCO2フリー燃料を選択肢として提供
- ③ CCUSやDACの取組促進

以上を3つの柱とし、2040年までに顧客がカーボンニュートラルに資する製品・サービスを選べるように選択肢を準備(防衛関係・非常時用製品を除く)

事業別のシフトの方向性

チ来がつりとうしつけば							
事業	水素化	電動化・ グリーン電力網	CCUS·代替燃料				
航空宇宙システム	0	0	0				
車両	0	0	0				
精密機械	0	0	0				
ロボット		0					
モーターサイクル& エンジン	0	0	0				
エネルギー	0	0	0				
舶用推進	0	0	0				
プラント	0	0	0				
船舶海洋	0	0	0				


将来のソリューション別 事業規模イメージ

ポイント

- 水素発電、水素電力供給、水素燃料供給、カーボンフリー燃料の輸送などの水素社会の実現を軸に、再生可能エネルギー拡大、CCUSの推進等の取組も併せて実施することにより、カーボンニュートラルを達成する道筋を描いている。
- Scope1,2の水素電力、再エネ、省エネ、廃棄物発電、CCUSの拡充による2030年国内ネットゼロ達成だけでなく、Scope3についても、脱炭素ソリューションの世の中への普及による2050年グループ全体でのネットゼロ目標を定めている。

科学的根拠のあるクライメート・トランジション戦略(目標と経路を含む)(要素3)

川崎重工における脱炭素ソリューション

川崎重工における

CO2排出量 の排出削減経路

各分野ロードマップと整合する取組

CCUSに関する取組

※その他IATA Net zero carbon 2050 resolution等の ロードマップとの整合も確認

川崎重丁グループ 地域別のCO2排出量

							(年度)
地域	単位	2017	2018	2019	2020	2021	2022
日本	千t	363.88	336.37	320.24	281.17	276.35	-
北米	∓t	79.29	80.43	76.2	50.92	64.55	-
欧州	千t	2.12	2.18	2.03	2.06	3.03	-
南米	ft	0.14	0.14	0.13	0.13	0.15	-
アジア太平洋	∓t	56.57	54.41	59.97	60.28	57.95	-
合計	∓t	502.00	473.53	458.57	394.56	402.03	-

※Scope1,2の目標は、全地域の約7割程度を占める 国内でのCO2排出量を2030年までにNet Zeroと することであり、「2021年時点のCO2排出量を約7 割削減」する目標と言い換えられる。

電力分野ロードマップと整合する取組

水素専焼・混焼に関する取組

ガス分野ロードマップと整合する取組

- 水素輸送等に関する取組
- 天然ガスに関する取組

自動車分野ロードマップと整合する取組

水素ステーションに関する取組

セメント分野ロードマップと整合する取組

省エネ・高効率機器に関する取組

国際海運ロードマップと整合する取組

- 水素燃料に関する取組
- LNGに関する取組

航空分野ロードマップと整合する取組

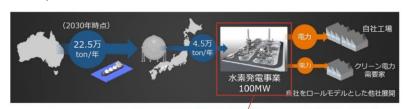
水素航空機に関する取組

内航海運ロードマップと整合する取組

・ 舶用ハイブリッド/電機推進システムに関する取組

生産活動におけるCO2排出量(国内・海外)

※ 川崎重工サステナビリティレポート2022 よりJCR作成


ポイント

- 脱炭素ソリューションの標準ラインアップ に向けた取組は経済産業省や国土交 通省が策定した分野別ロードマップと整 合している。
- 「2030年国内グループ会社Net Zero」は2021年度を基準とした場合、 海外を含めた川崎重工グループ全体で 平均減少率7.6%/年となる。これは SBT認定における1.5℃水準(4.2%/年)を満たす。

実施の透明性(要素4)

- 「グループビジョン2030」の施策の実行により、CN関連売上高6,000億円(2030年度)と、その実現に向けたCN関連投資額3,500億円(2020~2030年度)を想定
- CN戦略の軸となる水素事業に対する全体の投資計画は、守秘義務等の観点から非開示だが、「ゼロエミッション工場」を世界に先駆けて実現するために500億円規模の投資を予定。また、パワースポーツ&エンジン事業においては、水素エンジン等への投資に1,500億円(2023~2027年度)を予定。

水素発電事業における投資計画

「ゼロエミッション工場」を世界に先駆けて実現するため、500億円規模の投資を予定

川崎重工は、液化水素サプライチェーン構築に向けた3つのステップを進めている。

- ①2022年春、世界初の液化水素国際間輸送を実現し、パイロット実証を完遂
- ②商用規模の機器開発により2030年度までの商用化実証
- ③その後、商用チェーンを運用開始

2030年度は、他社へのキーパーツ供給やライセンス供与も想定し、他の水素供給を開始予定の事業者を含めた事業規模は4,000億円に達する計画。

ポイント

- 2030年にCN関連売上高6,000 億円と、その実現に向けたCN関連 投資を3,500億円と想定
- ・ 輸入水素を自社で活用し、水素発電所による電力を自社工場または クリーン電力を必要とする調達先へ 供給していく。川崎重工は、水素 発電所を2030年までに運転開始 させるために500億円規模の投資 を予定している。
- ・ 主力事業であるパワースポーツ&エンジン事業での水素エンジン等への 投資に1,500億円を予定し、投資 計画の透明性は高いと言える。
- また、川崎重工では、2025年に 520億円、2026年に1,300億円、 2030年に4,000億円の水素事業 規模を見込み、それに向け技術実 証や商用化実証を行っている。

水素事業計画

補助金審査委員会|結果概要

対象事例:川崎重工業株式会社トランジション・ボンド

審査結果:承認

クライメート・イノベーション・ファイナンス推進事業の補助金事例として承認

主なご意見

トランジション戦略

- 水素に対し、先進的に取り組んでおり、ネットゼロに向けて野心的な目標を掲げている。引き続き取り組みを進めてもらいたい。
- 液化水素の移送のコスト低減が重要だが、タンクの大型化はハードルが高い技術である。この技術開発が日本の液化水素の今後を担っているので、ぜひ重点的に技術開発してもらいたい。
- 複数の技術に取り組み十分リスクヘッジを行っているが、水素活用に加え、電化など他技術でもリスクヘッジを行いつつ、取組を進めていくことが重要。

他の要素・その他

- CCUSについて、川崎重工はCCUでCO2をキャ プチャーする効率的な手法を持つ。キャプチャーし たCO2の活用により、合成炭化水素燃料を醸 成するマーケットも拡大できると良い。
- カーボンフリーの水素供給が可能という点は顧客 ニーズ、市場への訴求という意味でも非常に重 要。使用される水素の排出量についても、排出 削減もしくは排出量目標等の方針を明確に示 せるとよい。

本資料は、トランジション・ファイナンスによる我が国の 2050 年カーボンニュートラルとパリ協定の実現への寄与に焦点を当てて行うものであり、トランジション・ファイナンスの金融商品としてのリスクについては、一切評価の対象としていません。本事業のモデル事例であっても、通常のファイナンスと同様、信用リスク及びその他のリスク(債券の場合は価格変動リスク、流動性リスク等)は存在することに留意が必要です。