Technology Roadmap for "Transition Finance" in Chemical Sector

December, 2021 Ministry of Economy, Trade and Industry

Table of Contents

Chapter	Section	Overview	
1. Premise		 Necessity for Technology Roadmap for Chemical Sector Objectives and Positioning of Technology Roadmap 	
2. Overview of Chemical Industry		 Scale of Production of the Chemical Industry Scope of the Technology Roadmap for Chemical Sector Production Process in Chemical Industry Direction towards Decarbonization 	
3. Technology Pathways to Decarbonizat ion	 Low-Carbon and Decarbonization Technologies for Carbon Neutrality 	 Details of Short, Medium, and Long-term Technological Options for Achieving Carbon Neutrality 	
	②Technology Roadmap	 Mapping of Technological Development Assumed to Be Required in Japan to Realize 2050 Carbon Neutrality 	
	③Scientific Basis/Alignment with the Paris Agreement	 Confirmation of the Alignment with the Paris Agreement in Terms of the Technologies and CO₂ Emissions Assumed in the Technology Roadmap 	
4. Toward Decarbonization and Achievement of the Paris Agreement		 Coordination with Other Sectors Including Decarbonized Power Source, Hydrogen Supply, and CCUS Future Development of the Technology Roadmap 	

1

Table of Contents

2. Overview of Chemical Industry

3. Technology Pathways to Decarbonization

4. Toward Decarbonization and Achievement of the Paris Agreement

1. Premise | Necessity of Technology Roadmap for Chemical Sector

- Technology Roadmap for "Transition Finance" (hereinafter, technology roadmap) selects sectors of high importance of transition and those with high emissions with no alternative measures of decarbonization available today (for technological and economic reasons).
- Chemical product is integrated as material for a wide range of products that support daily life and as the chemical industry is in the upstream of the supply chain, it serves as an industrial basis. Japanese chemical industry manufactures and supplies basic chemicals in a well-balanced manner by naphtha cracking and is the source of the competitiveness of all downstream industries such as the automobile and electrical and electronic industries.
- Further, the chemical industry is expected to be an industry that can effectively utilize CO2 as a resource and is an indispensable industry for the realization of a carbon neutral society.
- At the same time, the chemical industry emits large amounts of CO2 worldwide and is the largest CO2 emitting manufacturing industry behind iron and steel industry in Japan. Transition toward net zero in the chemical sector sector is essential. Transition requires effective use of existing facilities and related equipment, R&D/implementation of innovative technologies for low-carbonization and raising significant funds, as well as updating/introduction of energy-saving facilities are needed. In this regard, we examined domestic and overseas technologies and developed a pathway to 2050.
- Technology innovation and structural change of business for decarbonization will become advantages of companies. To attract world's ESG investments which grew to ¥3,500 trillion (\$35 trillion : by GSIA) as of 2020, high-emitting industries are required to disclose their strategies with the understanding of investors' perspectives.
- In terms of contributing to increase the international competitiveness of Japanese chemical industry, the Technology Roadmap was developed through the discussion held with technology and finance experts and representatives of operators of chemical sector.

1. Premise | Objectives and Positioning of Technology Roadmap (1)

- The Technology Roadmap is designed to serve as a reference for the <u>chemical companies in Japan</u>, <u>when investigating measures against climate change using transition finance (Note)</u> based on "the Basic Guidelines on Climate Transition Finance" (Financial Services Agency, Ministry of Economy, Trade and Industry, Ministry of the Environment, May 2021).
- It is intended to help banks, securities companies and investors to assess the eligibility of the fundraiser's decarbonization strategies and approaches.
- The final goal of the Technology Roadmap is to achieve 2050 carbon neutrality and the Technology Roadmap provides envisions of low-carbonization/decarbonization technologies that are expected to be deployed by 2050 and when these technologies will be deployed based on information currently available.
- The Technology Roadmap is aligned with Nationally Determined Contribution (NDC) based on Paris Agreement^{*1}, Green Growth Strategy^{*2}, and R&D and Social Implementation Plan using Green Innovation Fund^{*3}.
- Technologies to realize carbon neutrality in the chemical industry has not been established. Towards
 decarbonization in the chemical industry in Japan, public and private sector will collaborate to develop
 technologies that are not yet mature and indispensable toward 2050 carbon neutrality.
- On the other hand, the setting of intermediate targets is required in the basic guideline^{*4} P10, and more attention is being paid to the effectiveness of emission reductions in 2030, at the chemical industry, without waiting for the establishment of decarbonization technology while referring to the technology roadmap, meanwhile, looking ahead towards 2030 and 2040, the transition period, it is essential to further advance efforts on energy saving/transition technologies in addition to R&D.

^{* 1:} https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Japan%20First/JAPAN_FIRST%20NDC%20(INTERIM-UPDATED%20SUBMISSION).pdf

^{*2:} https://www.meti.go.jp/english/policy/energy_environment/global_warming/ggs2050/pdf/ggs_full_en1013.pdf

^{* 3 :} https://www.meti.go.jp/press/2021/09/20210915001/20210915001-2.pdf

^{*4 :} https://www.meti.go.jp/press/2021/05/20210507001/20210507001.html

1. Premise | Objectives and Positioning of Technology Roadmap⁽²⁾

- Transition finance includes not only the investment on facilities and R&D toward lowcarbonization/decarbonization within the company but also for cost of dismantlement/removal of existing facilities and response to other environment or social impact (such as land contamination associated with withdrawal from business, decommissioning of furnaces etc. and impact on employment), efforts/activities that contribute to the transition of other industries arising from activities to reduce emissions.
- In the chemical sectors, products contribute to decarbonization (eco products, noted in P7) for other industries can be subject to transition finance. Moreover, Basic Guidelines on Climate Transition Finance (noted in P8) states "Transition finance is available for not only entities with strategies and plans for reducing emissions associated with their corporate economic activities, but also entities that plan to take initiatives that enable others to implement transition strategies through their own products and services".
- These are important elements for the decarbonization of whole society and economy. At the same time, as these efforts/activities are extremely broad, the Technology Roadmap will cover the "technologies" for low-carbonization/decarbonization mainly in the chemical sector.

Table of Contents

2. Overview of Chemical Industry

3. Technology Pathways to Decarbonization

4. Toward Decarbonization and Achievement of the Paris Agreement

2. Overview of Chemical Industry | Scale of Production of the Chemical Industry

- <u>Gross domestic shipments total is about 46 trillion yen.</u> <u>There are about 940,000</u> <u>employees in the industry.</u>
- Raw materials are used for chemical reactions and other methods to produce part materials and end products for all sectors.

Source: Japan Chemical Industry Association website

2. Overview of Chemical Industry | CO2 Emissions

- The industrial sector accounted for 35% of CO2 emissions in Japan in FY2019.
- About 15% of this is accounted for by the chemical industry, where reducing CO2 emissions is an urgent issue.
- In the chemical industry, in addition to energy emissions, there are also potential emissions from the use of raw materials such as naphtha.

2. Overview of Chemical Industry | Scope of the Technology Roadmap for Chemical Sector

 The Technology Roadmap <u>covers a range of processes, from upstream processes</u> such as naphtha cracking <u>to derivatives, end products, disposal and recycling</u>.

2. Overview of Chemical Industry | (1) Petrochemicals ①Trends Toward CN

- In petrochemicals, <u>the use of heat in manufacturing processes such as naphtha cracking is</u> <u>significant, and there are also CO2 emissions from the use of raw materials, so measures</u> <u>are needed to achieve CN in both fuel and raw materials.</u>
- In <u>IEA's Net Zero by 2050 scenario</u>, demand for petroleum, which is a raw material for plastics, will remain constant, and one form the chemical industry's production structure could take toward net zero by 2050 is a <u>shift of more than 90% to innovative methods</u> such as CCUS and hydrogen.

Global energy demand forecast

Source: IEA, "Net Zero by 2050"

2. Overview of Chemical Industry | (1) Petrochemicals ⁽²⁾Characteristics of Petrochemical Industry in Japan

- Naphtha cracking in Japan has the <u>advantage</u> of being <u>able to produce a good balance</u> between C2 and C8.
- Meanwhile, although it does not necessarily have a price advantage over CTO or ethane cracking, it maintains quality advantages in basic chemicals to derivatives due to Japanese technology.

	Naphtha cracking (Japan)	CTO (China)	Ethane cracking (USA)
Manufact uring method	Naphtha C2 Ethylene C3 Propylene C4 Butadiene C5 Isoprene C6-8 BTX	Coal Coal	Shale gas
Strength	 In a naphtha cracking furnace, a good balance of C2-5 olefin and C6-8 BTX can be obtained, enabling a wide range of manufacturing from plastic raw materials to rubber raw materials 	 Inexpensive and abundant coal can be used as a raw material Technological development of methanol to olefin (MTO) is underway 	 Ethylene produced from abundant shale gas is inexpensive Advantages for mass production of ethylene and propylene, the raw materials for plastics
Weakness	 Naphtha cracking furnaces have operated for many years, and aging countermeasures are an issue 	 <u>The CO2 emission coefficient of</u> <u>CTO is five times larger than that</u> <u>of the conventional naphtha</u> <u>method</u> Synthetic methanol is expensive 	 It is difficult to obtain olefins of C4 or higher, which could lead to a shortage of raw materials for rubber, etc.

* China is also engaged in production of basic chemicals from aromatics through COTC (Crude Oil To Chemicals).

Source: Prepared by the Materials Section using the Green Innovation Fund Social Implementation Plan, etc.

2. Overview of Chemical Industry | (1) Petrochemicals ③Manufacturing Process Details

In naphtha cracking furnaces, <u>off-gases such as methane are obtained</u> in addition to basic chemicals and <u>used as a heat source to raise the temperature to 850°C</u>. Since these <u>off-gases are a source of CO2 emissions</u>, <u>it is necessary to make the heat source carbon</u> <u>neutral</u> and <u>to use the off-gases as raw materials</u>.

Source: (Left) Calculated by multiplying the domestic production volume in the "Chemical Handbook 2020" by the CO₂ emission intensity in "IDEA v.2.3" and subtracting the CO₂ emissions from oil refining Japan Plastics Recycling Association, "Basic Knowledge of Plastic Recycling 2020." Calculated from general waste plastic emissions factor 2.77 kg-CO2/kg-waste plastic

2. Overview of Chemical Industry | (1) Petrochemicals ④ Movement Toward Raw Material Switching

- While upgrading naphtha cracking furnaces in this way, <u>it is also necessary to consider CO2 as</u> <u>a resource and work on switching raw materials</u> for CN by 2050.
- Promote raw material switching by improving the yield of processes (MTO, ETO) that produce ethylene and propylene through chemical raw materials such as methanol and ethanol from hydrogen production by artificial photosynthesis, a technology being developed only by Japanese companies.

Image of raw material switching

- 2. Overview of Chemical Industry | (2) End Products (Manufacturing Process and Direction)
 - Using resins, etc. produced in the industrial complex, <u>end products such as plastic and rubber</u> products are manufactured by heating and other processes using various molding <u>machines</u>.
 - Energy is used mainly in the form of electricity and steam during processing. For CN by 2050, we need to decarbonize by ①improving efficiency thorough energy saving and ② procuring renewable energy.

Source: Prepared from the website of the Japan Plastics Industry Federation, etc.

2. Overview of Chemical Industry | (3) Disposal & Recycling ①Trend Toward CN

- Of the 8.91 million tons of <u>waste plastic</u> generated annually, <u>about 84% is recycled</u>, of which <u>about 60%</u> is used as a heat source for power generation through waste incineration (<u>thermal</u> <u>recycling</u>).
- In the end, however, 16 million tons of CO₂ are emitted per year, including simple incineration, so it is important to recycle resources through chemical recycling etc. Production of raw materials derived from crude oil will decrease due to the establishment of chemical recycling technologies, which will also help to reduce emissions in the chemical industry as a whole.

Source: Excerpt from Green Innovation Fund Social Implementation Plan materials and Plastic Resource Utilization Association materials Source: Environmental Impact Assessment of Plastic Packaging Recycling Methods and Energy Recovery (LCA) https://www.nikkakyo.org/system/files/Summary_JaIME LCA report.pdf

2. Overview of Chemical Industry | (3) Disposal & Recycling ⁽²⁾Direction for Decarbonization

 Reduce the use of energy to incinerate waste plastics and <u>expand circulation-type chemical</u> recycling (CR) and material recycling (MR) to recirculate them as resources. In doing so, <u>we</u> need to work on low carbonization, such as by developing high-yield catalysts to reduce CO2 emissions during production to about half those of conventional methods.

Transition image for waste plastic and waste rubber recycling

2. Overview of Chemical Industry | Petrochemicals Reference: Trend of World's Major Chemical Manufacturers

- The world's major chemical manufacturers are also making progress toward achieving CN.
- In Europe and the USA, there are studies into reducing CO₂ by realizing electric heating through the use of inexpensive renewable electricity as a heat source for naphtha cracking furnaces and by using catalysts, etc.

Company name	Examples of Initiatives to Achieve CN	<u>Napritia C</u> BAS
BASF (Germany)	 Production of basic chemicals using electrically heated steam cracker CO₂ free hydrogen production by water electrolysis method and methane pyrolysis method Investment in wind power projects CCS 	Conventiona
DOW Chemical (USA)	 Production of basic chemicals using fluidized catalytic dehydrogenation cracker Promoting the use of renewable energy 	Furnace
LG Chemical (Korea)	 Introduction of 100% renewable energy CCUS 	gas
INEOS (UK)	 Development of clean hydrogen fuel Switching of hydrocarbon raw materials to bio raw materials 	Naphtha
SINOPEC (China)	 Clean energy development (Natural gas, biomass, etc.) CCUS (methane gas capture) 	850°C eFurnace

2. Overview of Chemical Industry | Petrochemicals Direction for Decarbonization in Japan

The petrochemical industry aims to become carbon neutral in Japan by ①switching heat sources, ②switching raw materials, and ③circulating raw materials. In doing so, cooperation with local governments and other industries is essential from the viewpoint of promoting a circular economy, and utilization of CCUS for the collection of exhaust gas, etc. is also necessary.

<u>①Heat source switching</u>

Basic chemicals production Transition image in Japan

* Although the rates in the above chart will vary depending on things such as the production status of petroleum products and technological progress, our goal is to create a system that can respond to multiple factors, including balancing the production of basic chemicals with carbon neutrality, and overseas expansion.

Source: Prepared from the Green Innovation Fund Social Implementation Plan

2. Overview of Chemical Industry | (4-1) Caustic Soda ①Manufacturing Process

- Using salt as a raw material, <u>chemicals for raw and auxiliary materials and reactants for a</u> <u>wide range of industry sectors are manufactured</u>. Electricity is added to salt water to produce caustic soda, chlorine and hydrogen by electrolysis.
- The products have an extremely high energy cost as a percentage of their added value <u>(about 50% of manufacturing costs are for electricity)</u>. For this reason, the business model is highly susceptible to energy taxation.
- Caustic soda is used as a neutralizer in the production of cathode materials (material precursors) for lithium-ion batteries such as those in EV vehicles. <u>In future, we expect increased demand</u> for caustic soda as a neutralizer for cathode material manufacturers during the phase of global EV market activation and full-scale penetration.

Industrial salt > Dissolution > Electrolysis > Various manufacturing processes > End products

In-vehicle lithium-ion batteries, EVs

Polysilicon (For solar cells, semiconductors, etc.)

etc.

2. Overview of Chemical Industry | (4-1) Caustic Soda ②Characteristics of Soda Industry in Japan

- In the soda industry, <u>energy costs are directly linked to corporate competitiveness</u>, and so the consumption of electricity from in-house power generation accounts for more than 70% of the total electricity used, far exceeding the 20% average for the whole manufacturing industry.
- In order to reduce this power consumption, <u>an ion-exchange membrane method</u> have been <u>introduced</u> which consumes less energy, and <u>by promoting research and development, we</u> <u>have improved our unit energy consumption year by year</u> to a world-class level. Licensing has also contributed to the reduction of CO2 emissions in Japan and overseas.
- We are also 100% dependent on imports of raw salt (from Mexico, Australia, and India).

<Trends in electricity consumption, purchased/private

<Electrolyzer (ion exchange membrane process)>

Source: Soda Industry Guidebook 2020 (Japan Soda Industry Association)

20

2. Overview of Chemical Industry | (4-2) Industrial Gases ①Manufacturing Process

- Industrial gases are **manufacturing infrastructure** supporting iron and steel, chemicals, electronics, etc.
- The main industrial gases are ①oxygen, nitrogen, and argon obtained by separating air, ②hydrogen and carbon dioxide obtained as byproducts of petroleum and chemical plants, ③helium obtained as a byproduct of natural gas, etc.
- The mainstream method of producing oxygen, nitrogen, and argon is cryogenic separation, which uses the different boiling points of the components of air to separate and extract them. <u>Compression and</u> <u>heat exchange consume electricity, which therefore accounts for the majority of the production</u> <u>cost.</u>

Source: Prepared from materials published on the website of Nippon Sanso Holdings Corp. and others

2. Overview of Chemical Industry | (4-2) Industrial Gases 2 Characteristics of Industrial Gases in Japan

- Industrial gases are produced by various manufacturing methods, and are <u>supplied on-site, in</u> <u>bulk, or in packages depending on the supply volume</u>, to support people's lives and manufacturing in Japan.
- In order to reduce CO2 emissions from the supply of these gases, we control CO2 emissions along the entire supply chain <u>by introducing planned deliveries and other means of shortening the</u> <u>distance traveled during delivery</u>.

2. Overview of Chemical Industry | (4) Industrial Gases and Caustic Soda Direction for Decarbonization

Both are <u>power-hungry industries</u>, consuming large amounts of electricity in their manufacturing processes. Therefore, in order to achieve carbon neutrality by 2050, we need ① <u>thorough energy conservation</u>, ②<u>non-fossil fuels for procured power sources and fuel</u> <u>switching for in-house power generation</u>, and ③<u>reduced CO2 emissions throughout the supply chain, including logistics</u>.

<Direction for Decarbonization>

 Full-scale introduction of energy-saving technologies

2 De- or low-carbonization through non-fossil fuels for procured power sources and fuel switching for in-house power generation

3 Reduction of CO2 emissions throughout supply chain, including logistics

<Trend toward CN among major Japanese manufacturers>

• Caustic soda

- Reduction of CO2 through the development and licensing of further energy-saving technologies for electrolytic cells.
- Reduction of energy-derived CO2 emissions by switching from coal to biomass, etc. for in-house power generation facilities.

• Industrial gases

- Reduction of electricity consumption through introduction of energy-saving air separation equipment, etc.
- Realization of "stable supply," "energy saving," and "reduced CO2 emissions" through regional liquefied gas plants
- Reduction of CO2 emissions along the entire supply chain by streamlining logistics

2. Overview of Chemical Industry | (5) Summary of Major Emission Sources and Methods for Decarbonization

Sector		Main emission sources	Methods for decarbonization
Petrochemicals	Basic products	 Heat and energy utilization during naphtha pyrolysis 	 Utilization of energy-saving technologies, etc. Heat source decarbonization of naphtha cracking furnaces Switching of raw materials using artificial photosynthesis, etc.
	Derivative products	 Use of heat and energy from polymerization of basic chemical products, etc. 	 Fuel switching and electrification during heat and energy use
	End products	 Use of heat and energy during product molding 	 Utilization of energy-saving technologies, etc. Fuel switching and electrification during heat and energy use
	Recycling	 Emissions from combustion of waste plastics, etc. Energy consumption during recycling 	 Expansion of chemical and material recycling Improvement in efficiency of chemical material recycling, development of low- carbon processes
Inorganic chemicals (Caustic soda, industrial gases)		 Use of heat and energy by electrolysis, etc. in the production of caustic soda and industrial gases 	 Utilization of energy-saving technologies, etc. Fuel switching and electrification during heat and energy use

2. Overview of Chemical Industry | Reference: Voluntary Efforts in Chemical Industry

 In May this year, the Japan Chemical Industry Association announced the stance of the chemical industry on carbon neutrality. Major chemical manufacturers also declared this year that they will be carbon neutral by 2050.

Chemical industry's stance on carbon neutrality (Japan Chemical Industry Association, R 3.5) (Excerpts)

- 1. Elements of chemical industry's contribution to carbon neutrality (CN) In May 2017, the Japan Chemical Industry Association (JCIA) formulated and published its "Vision for a Chemical Industry that Provides Solutions to the Problems of Global Warming." In response to the Japanese government's declaration of carbon neutrality by 2050, the chemical industry, as a solution provider, will promote and accelerate the creation of innovations that solve global issues and contribute to the growth of a sustainable society by realizing the potential of chemical.
- 2. Basic outline of the chemical industry's approach to CN
- (1) Mechanisms of generating GHG emissions in the chemical industry and efforts to reduce them
 - ① Sources of GHG emissions in production activities
 - 2 Efforts to reduce GHG emissions in production activities
 - Process streamlining (yield improvement)
 - Introduction of innovative technologies (Energy saving, BAT, DX, electrification, etc.)
 - Fuel switching at in-house power generation facilities: fuel reduction, recycling, decarbonization
 - Switching to purchased electricity (progress toward zero-emission electricity)
 - Use of renewable energy
 - Development of carbon recycling technologies
 - Separation, capture and utilization of CO2 (CCU, artificial photosynthesis, etc.)
 - Use of credit

(2) Concept of contributing to GHG emissions reduction through products and services

(3) Requests to government regarding CN initiatives

Source: Japan Chemical Industry Association (2021) "Chemical Industry's Stance on Carbon Neutrality"

Table of Contents

1. Premise

2. Overview of Chemical Industry

3. Technology Pathways to Decarbonization

4. Toward Decarbonization and Achievement of the Paris Agreement

3. Technology Pathways to Decarbonization | ①-1 "Naphtha Cracking Furnaces" Low-Carbon and Decarbonization Technology for CN

	Technology	Overview	Emission Intensity/ Reduction Range ^{*1}	Implementation year ^{*2}	Main References*3
	BPT (Ethylene production facilities)	 Improvement of operation methods, recovery of discharged energy, streamlining of processes, and improvement of facility and equipment efficiency 	390,000 tons reduction* ²	Already implemented	 ✓ Commitment to a Low Carbon Society
cking furnace	Fuel switching to natural gas	✓ Switching from coal and other fuels to natural gas during start-up	_ *5	Already implemented	 ✓ Commitment to a Low Carbon Society
Naphtha crao	Fuel switching to ammonia, hydrogen, etc.	 ✓ Fuel switching from petroleum and heavy oil to ammonia, hydrogen, etc. ✓ Use of ammonia, hydrogen burners, etc. 	0.35	2030s	 ✓ <u>Green Innovation Fund -</u> <u>Social Implementation Plan</u>
	Use of off-gas methane as raw material	 Use of methane and other off-gas emissions from naphtha cracking furnaces as raw materials for plastics, etc. 	0-0.35	2040s	 ✓ <u>Green Innovation Fund -</u> <u>Social Implementation Plan</u>

*1: Emission factors are for each process and do not include downstream processes such as the production of derivatives and resins.

*2: Regarding the Social Implementation Plan, see the start year of the introduction expansion and cost reduction phase, and for the IEA, see the available year.

*3: References to the year of implementation are underlined.

*4: The reduction range varies depending on the introduction rate and the composition of the fuel originally used.

*5: Reduction varies depending on fuel composition before switching.

3. Technology Pathways to Decarbonization | ①-2 "Raw Material Switching" Low-Carbon and Decarbonization Technology for CN

	Technolo	ogy	Overview	Emission Intensity/ Reduction Range ^{*1}	Implementation year ^{*2}	Main References*3
	Raw material	Basic chemicals	 Use of biomass to produce raw materials for chemicals such as methanol and ethanol, or basic chemicals such as ethylene, propylene, and BTX 	0-2.0 ^{*7} CO2 absorption: 3.14	Already implemented	 ✓ Green Growth Strategy, IEA ETP 2020, Material Economics, DECHEMA
	switching by biomass	Polymers and raw materials	 Production of biopolymers and their monomer raw materials using biomass Plants cultivation for bio raw materials 	[] [2030s	✓ Development of production technology for bio-derived products to accelerate the realization of carbon recycling
	Raw material s by bioma + CO2 cap	switching ass oture	 ✓ Implementation of CCS when using biomass as a chemical (including BECCS, etc.) 	-	2020s	✓ IEA ETP2020
vitching	Methanol pro from hydrogen	duction and CO2	 Production of methanol, a chemical raw material, using hydrogen and CO2 as raw materials 	CO2 use: 0.6- 1.373 tons	2030s	 ✓ Roadmap for Carbon Recycling Technologies ✓ IEA ETP2020 ✓ DECHEMA
aterial sv	ΜΤΟ·ΕΤ	0	 Production of olefins (ethylene, propylene, etc.) from methanol and ethanol 	0.0 (Renewable energy assumed)	2030s	 ✓ Green Innovation Fund - Social Implementation Plan, Material Economics
Raw ma	Productio hydrocarbons olefins fron	n of such as n CO2	 Production of hydrocarbons using electrolysis and synthesis of CO2 	-	2030s	 ✓ Moonshot R&D Program ✓ IEA ETP2020 ✓ DECHEMA
	Production of f chemicals with raw mate	unctional n CO2 as erial	 Production of polycarbonate, polyurethane raw materials, DMC, etc. from CO2 	0.95, 0.45t CO2/t reduction (DRC, MDI) 0.35kg CO2 used as raw material	2030s	 ✓ Green Innovation Fund - Social Implementation Plan
	Production of from CC	methane)2	 Methanation using hydrogen]	2020s	 ✓ First Meeting of Public-Private Council for the Promotion of Methanation (June 28, 2021) ✓ IEA ETP2020
	Artificial photo	synthesis	 Artificial photosynthesis produces hydrogen, which is used as a chemical raw material of methanol, etc. 	0.0 (Renewable energy assumed)	2040s	 ✓ Green Innovation Fund - Social Implementation Plan

*1: Emission factors are for each process and do not include downstream processes such as the production of derivatives and resins.

*2: Regarding the Social Implementation Plan, see the start year of the introduction expansion and cost reduction phase, and for the IEA, see the available year.

*3: References to the year of implementation are underlined.

3. Technology Pathways to Decarbonization | ①-3 "End Product/Recycling" Low-Carbon and Decarbonization Technology for CN

	Technolo	ogy	Overview	Emission Intensity/ Reduction Range ^{*1}	Implementation year ^{*2}	Main References*3
	High-effici production tee	iency chnology	 Production of functional chemicals is done continuously by a flow method, rather than the conventional batch method 	2030: 4.91M tons/year 2050: 11.7M tons/year	2020s	 ✓ Environment Innovation Strategy, NEDO documents
ind product	Lightweight re materia (Cellulose nar etc.)	einforced als nofibers,	 Manufacture of lightweight reinforced materials for automobiles and other applications using various CNF composite technologies. Technologies contributing to the reduction of petroleum-derived materials, etc. 	3.73M tons CO2/year reduction*4	2020s	✓ NEDO documents*4
	Technology to N ₂ O, et	o control c.	Technology to control N ₂ O control technology (technology to control GHGs other than CO2) in exhaust gas and semiconductor gas treatment; wastewater, sludge, waste, and biomass treatment; agriculture sector, etc.	-	2035	 ✓ NEDO documents^{*5}
	Material rec	cycling	 Production of plastic products, etc. from waste plastic 	0-1.0	Already partly implemented	 ✓ Environment Innovation Strategy ✓ IEA ETP2020 ✓ Material Economics, etc.
Recycling	Chemical	Waste plastic	 Production of olefins from waste plastics by gasification, liquefaction, thermal decomposition, etc. 	0.8	2030s	 ✓ Green Innovation Fund - Social Implementation Plan ✓ Material Economics
	recycling	Waste rubber	 Production of olefins from waste rubber by gasification, liquefaction, thermal decomposition, etc. 	1.2	2040s	 ✓ Green Innovation Fund - Social Implementation Plan ✓ Material Economics

*1: Emission factors are for each process and do not include downstream processes such as the production of derivatives and resins.

*2: Regarding the Social Implementation Plan, see the start year of the introduction expansion and cost reduction phase, and for the IEA, see the available year.

*3: References to the year of implementation are underlined.

*4: Excerpt from the FY2030 performance targets in the explanatory material on NEDO's Development of Cellulose Nanofiber Technologies that Contribute to a Carbon-Recycling Society

*5: NEDO, Toward the Formulation of a Technical Strategy in the Sector of N2O Greenhouse Gas Control, Vol. 105 June 2021

3. Technology Pathways to Decarbonization | ①-4 "Inorganic Chemicals/In-house Use" Low-Carbon and Decarbonization Technology for CN

• •	Technology	Overview	mission Intensity/ Reduction Range ^{*1}	Implementation year ^{*2}	Main References ^{*3}
hemicals	ВРТ	 Energy-saving/high-efficiency technologies: Introduction of high- efficiency deep-cooling separators etc., use of inverters for pumps and compressors, review of distribution bases, etc. 	_	Already implemented	 ✓ JIMGA Energy-Saving Case Studies
 Inorganic c Soda electrolysis 	ВРТ	 Energy-saving/high-efficiency technologies: Advanced control/Upgrade & use of high- efficiency equipment/Introduction of zero- cap electrolytic cells/Introduction of bipolar electrolytic cells/Heat recovery in concentration equipment, etc. 	780,000 tons reduction	Already implemented	 ✓ Commitment to a Low Carbon Society
etc.	ВРТ	 Miniaturization of boilers, operation control, energy-saving distillation technology, expanded application range of energy-saving steam traps, cogeneration, heat pumps, etc. 	780,000 tons reduction	Already implemented	 ✓ Commitment to a Low Carbon Society
ectricity, e	Fuel switching to natural gas	 ✓ For in-house electricity and steam, switch from coal, heavy oil, etc. to natural gas 	0.32~0.415 *4 (kgCO2/kwh)	Already implemented	 Commitment to a Low Carbon Society Green Growth Strategy Through Achieving Carbon Neutrality in 2050 BAT reference tables, etc.*5
use el	Fuel switching to biomass	 ✓ Biomass mixed-fuel firing/mono-fuel firing, etc. 		Already implemented	✓ IEA ETP2020
ım & in-ho	Fuel switching to hydrogen, ammonia, etc.	 Hydrogen power generation, ammonia mixed-fuel firing, ammonia mono-fuel firing technology in gas turbines, etc. 	Max. 100% reduction	2020s and beyond	 ✓ Green Innovation Fund - Social Implementation Plan ✓ Green Growth Strategy Through Achieving Carbon Neutrality in 2050 ✓ IEA ETP2020
In-house stea	Electrification	 Manufacture of steam by electric heating Introduction of renewable energy (solar cells, hydropower, etc.) 	Max. 100% reduction (when using renewable energy)	_*6	✓ DECHEMA
	Separation and capture of CO2 from exhaust gas, etc.	 CO2 capture from natural gas thermal power plants, chemical processes, incineration, etc. Chemical absorption, chemical adsorption, physical absorption, membrane separation, etc. Introduction of CCS 	Max. 100% reduction	2030s	 ✓ Green Growth Strategy Through Achieving Carbon Neutrality in 2050 ✓ Green Innovation Fund - Social Implementation Plan ✓ IEA ETP 2020

*1: Emission factors are for each process and do not include downstream processes such as the production of derivatives and resins.

*2: Regarding the Social Implementation Plan, see the start year of the introduction expansion and cost reduction phase, and for the IEA, see the available year.

*3: References to the year of implementation are underlined.

*4: CO2 emissions per unit of power generated by natural gas-fired thermal power generation (conventional LNG-fired thermal power generation and GTCC) are listed

*5: Ministry of the Environment - Evaluation of progress in global warming countermeasures in the electric utility sector

*6: Described as TRL 7 in DECHEMA (2017).

3. Technology Pathways to Decarbonization |

2-1 Technology Roadmap (Naphtha Cracking, Raw Material Switching, End Products)

3. Technology Pathways to Decarbonization | Reference: Flow to Practical Application (Naphtha Cracking, Raw Material Switching, End Products)

			Deployn	nent 🔶 🔶
2	2020	2030	2040	2050
Naphtha cracking (including fuel switching)	Promoting the improvement of existing facilities etc.	s. From 2035 onward, promoting d	ecarbonization of heat source usin	g ammonia,
Energy saving/high efficiency	←			
Natural gas	<	Demonstration in test		>
Fuel switching to ammonia, etc.	f Development of ammonia burner and furnace	urnace on a scale of tens of Demonstration i thousands of tons/year existing furnaces,	n etc. Application to commercial fi	urnaces
Use of off-gas methane as raw material	Development of elemental technologi	es Derr	ionstration Commercia	ilization
Raw material switching	Promoting the improvement of existing facilities	s. From 2035 onward, promoting d	ecarbonization of heat source usin	g ammonia,
Production of basic chemicals with biomass as raw material				>
Raw material switching by biomass Polymers and raw materials	R&D De	monstration	Commercialization	>
Production of basic chemicals with biomass as raw material +CCUS	Demonstration	Comn	nercialization	
Artificial photosynthesis	Demonstration of 100m ² -class photocatalyst panels with a photocatalytic conversion efficiency of 7%	Demonstration of photocatalytic panels of a few h very mass-producible photocatalyst and 10%	a to several sq km with Achieve CN through conversion efficiency and large-scale	overseas expansion manufacturing
Methanol production from hydrogen and CO2 (synthetic gas)	Demonstration at thousands to tens of thousands of	tons/year	Commercialization	
MTO·ETO	Development of catalyst with high selectivity, demo at thousands to tens of thousands of tons/ye	onstration ear	Commercialization	
Production of hydrocarbons such as olefins from CO2	R&D	Demonstration	Commercialization	
Production of functional chemicals with CO2 as raw material	Establishment of basic technology at Developme several hundred to several kg/year demonstration of	nt and large-scale f process CO2 reduction	Considering mass production	
Production of methane from CO2	R&D Demons	stratio	Commercialization	>
End products	Promoting higher efficiency and switching to re	newable energy		
Energy saving/high efficiency Lightweight reinforced materials (Cellulose nanofibers, etc.)	Cost reduction, development	of applications, etc.		→ →
High-efficiency production technology	Catalyst development	implementation as needed		>
Technology to control N_2O , etc.	R&D	Demonstrat	ion Commercialization	

3. Technology Pathways to Decarbonization |

2-2 Technology Roadmap (Recycling, Inorganic Chemicals, In-House Use)

[Multi-sector technology]

3. Technology Pathways to Decarbonization |

Reference: Flow to Practical Application (Recycling, Inorganic Chemicals, In-house Use)

			Domonstr	R&D
			Deploy	ment
202	20	2030	2040	2050
Recycling (Raw material circulation)	Expanding material recycling and chemical recycling. carbon and decarbonization.	. Also working to make recycling tec	hnology more efficient and to a	achieve low
Material recycling	Expansion of target materials, establishment of advanced sorting technology Large-scale demo	nstration	Commercialization	
Chemical recycling (waste plastic)	R&D (gasification, liquefaction, olefinization)	Large-scale demonstration	Commercialization	
Chemical recycling (waste rubber)	R&D (gasification, liquefaction, olefinization)	Large-scale demonstration	Commercialization	
Inorganic chemicals	Promoting higher efficiency and switching to renewa	ble energy		
Energy saving/high efficiency (soda)	4			
Energy saving/high efficiency (industrial gases)	4			
In-house steam, (fuel electric power, etc. switching)	Promoting low carbon and decarbonization through	fuel switching, CCUS, electrification,	etc.	
Energy saving/increased efficiency	4			
Natural gas	4			
Biomass	•			
Hydrogen, ammonia, etc.	R&D and demonstrations	Start mixed-fuel firing a	nd expand mixed-fuel firing	
Electrification	4			
Others				
Separation and capture of exhaust gas-derived CO2	Cost reduction Larg	e-scale demonstration Increased	introduction through further cost rec	luction

3. Technology Pathways to Decarbonization

3Scientific Basis/Alignment with the Paris Agreement

- The Technology Roadmap, which is based on Japan's various policies and international scenarios aimed at achieving carbon neutrality by 2050, is aligned with the Paris Agreement.
- Carbon neutrality will be achieved by 2050 through the introduction of innovative technologies such as artificial photosynthesis, in addition to the steady achievement of low-carbon through various energy-saving and efficiency improvements, fuel switching, and increased recycling.

Main references/evidence

Government Policies

- Green Growth Strategy Through \checkmark Achieving Carbon Neutrality in 2050 (Carbon recycling, materials industry)
- "Carbon recycling-related" project related R&D and Social **Implementation Plan**
- Environment Innovation Strategy
- Strategic Energy Plan \checkmark
- **Global Warming Prevention Plan** \checkmark
- Roadmap for Carbon Recycling \checkmark **Technologies**

International scenarios, roadmaps, etc. aligned with Paris Agreement

- Clean Energy Technology Guide (IEA) \checkmark
- Energy Technology Perspective 2020 (IEA)
- Industrial Transformation 2050 (Material Economics)
- Science Based Target initiative

Assumed CO2 Reduction Pathway*1, 2

*2: Advances in energy-saving technologies, a stable and inexpensive supply of new fuels such as hydrogen and ammonia, CCUS and related infrastructure including DAC and others in collaboration with other industries, and the establishment of new social systems such as a 35 circular economy are assumed to be in place.

Table of Contents

1. Premise

2. Overview of Chemical Industry

3. Technology Pathways to Decarbonization

4. Toward Decarbonization and Achievement of the Paris Agreement

4. Toward Decarbonization and Achievement of the Paris Agreement

- The Technology Roadmap is intended to exemplify low-carbon and decarbonization technologies envisioned today and indicate an estimation of when these technologies are to be established for commercialization.
- Technology development is assumed to require long-term development, and it is possible that other low-carbon and decarbonization technologies which are not described in the Technology Roadmap will be developed and adopted. In addition, there exists some uncertainties, including as economic feasibilities.
- Commercialization of low-carbon and decarbonization technologies in the chemical industry will also depend on the development of societal systems, such as decarbonized power sources, hydrogen supply, and CCUS. Carbon neutrality in the chemical sector will be achieved in coordination with other sectors.
- Therefore, the Technology Roadmap will be revised and updated regularly and continuously to maintain the credibility and usability of the Technology Roadmap by considering the progress of other technologies, the trends of businesses and policies, and dialogues with the investors.
- Chemical and petrochemical manufacturers will aim to achieve carbon neutrality by making the best combination of technologies listed in the Technology Roadmap according to their business decision based on long-term strategy.
- In addition, efforts for reducing CO2 emissions may include the utilization of carbon credits and the purchase of carbon offset products, not limited to "the technology" of the technology roadmap.

Taskforce Formulating Roadmaps for Climate Transition Finance Chemical Sector: List of Committee Members

[Committee chair]	
Akimoto Keigo:	Research Institute of Innovative Technology for the Earth (RITE) Group Leader of Systems Research Group and Chief Researcher
[Committee member	-]
Oshida Shunsuke:	Managing Director, Head of Credit Research, Japan, Manulife Investment Management (Japan) Limited
Kajiwara Atsuko:	Executive Officer, Head of Sustainable Finance Evaluation Department, Japan Credit Rating Agency, Ltd.
Sekine Yasushi:	Professor, Faculty of Science and Technology, School of Advanced Science and Engineering, Waseda University
Takamura Yukari:	Professor, Institute for Future Initiatives, The University of Tokyo
Takegahara Keisuke:	Executive Fellow/General Manager, Research Institute of Capital Formation and Head of Research Center on Financial Economics, Development Bank of Japan Inc.
Matsuhashi Ryuji:	Professor, Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo
[Expert committee m	nember]
Kikkawa Takeo:	Professor, Graduate School of International Management, International University of Japan
Tsunashima Hiroshi:	Chairman, Techinical Affairs Committee, Japan Chemical Industry Association
Matsukata Masahiko:	Professor, Faculty of Science and Engineering, School of Advanced Science and Engineering, Waseda University

38