

(Provisional Translation)

Guidance on Introduction of
Software Bill of Materials (SBOM)

for Software Management

Ver. 1.0

Ministry of Economy, Trade and Industry
Commerce and Information Policy Bureau

Cybersecurity Division

July 28, 2023

Table of Contents

1. Background and objectives.. 1

1.1. Background .. 1
1.2. Objectives .. 4
1.3. Main target readers ... 5
1.4. Main target software .. 5
1.5. How to use ... 6
1.6. Summary of this Guidance .. 7

2. Overview of SBOM .. 10

2.1. What is SBOM? ... 10
2.2. Benefits of SBOM ... 13
2.3. “Minimum Elements” of SBOM ... 20
2.4. SBOM formats (Examples) .. 22
2.5. Myths and facts ... 32

3. Basic guidance and overall view on SBOM introduction 37

3.1. Basic guidance for SBOM introduction ... 37
3.2. SBOM introduction process ... 37

4. Environment and system development phase 39

4.1. Clarification the scope of the SBOM application 39
4.2. SBOM tools selection .. 44
4.3. SBOM tools installation ... 51
4.4. Learning about SBOM tools ... 53

5. SBOM production and sharing phase .. 54

5.1. Component analysis ... 54
5.2. SBOM production ... 59
5.3. SBOM sharing ... 61

6. SBOM use and management phase .. 63

6.1. Vulnerability management, license management, etc. 63
6.2. SBOM information management .. 66

7. Appendix .. 68

7.1. Checklist of actions for the introduction of SBOM 68

ii

7.2. Glossary ... 71
7.3. Reference information .. 75

1

1. Background and objectives

1.1. Background

As industrial activities become more service-oriented, the importance of software
in industry is increasing. In particular, in recent years, software has been
increasingly implemented to control industrial machinery, automobiles, etc. In IoT
devices and services and 5G technology, a variety of added values are expected to
be created by building hardware systems with general-purpose devices and then
adding various functions through software.

To ensure the safety and security of products and services that utilize software, it
is essential to control software vulnerabilities. Even if the software is configured
not to contain vulnerabilities in the planning and design stages, vulnerabilities may
be discovered after the product is shipped. In such cases, the party utilizing the
software is required to update the software and take other measures. In addition,
when maintenance and support end for software used in the company's products
and services, the company is required to consider the management of
vulnerabilities discovered thereafter, including the possibility of changing to
alternative software. However, as the software supply chain becomes more
complex and the use of open source software (OSS) becomes more common, it is
difficult to know what kind of software is included as a component, even if the
software is used in the company's own products. Many organizations manage the
software used in their IT systems as assets, but only the upper-level components
directly used by developers are subject to asset management, while many of the
lower-level components that are indirectly used within the directly used
components are not subject to asset management. Therefore, when vulnerabilities
are discovered in components such as OSS that are used as lower-level
components, it is not possible to determine the effects of indirect vulnerabilities by
simply comparing vulnerability information with the asset management ledger.

Software Bill of Materials (SBOM) has been attracting attention as a method to
solve the problems of both software developers and users regarding software
vulnerability management. An SBOM is a formal, machine-readable inventory of
software components and dependencies, information about those components,
and their hierarchical relationships. The SBOM may contain the name and version
information of the components included in the software, the developer of the
components, and other information, and also contain information about

2

proprietary software as well as OSS. The mutual sharing of SBOM across
organizations from upstream to downstream in the software supply chain is
expected to increase the transparency of the software supply chain, and in
particular, to be one solution to the issue of component vulnerability management.
SBOMs began attracting attention through Proof-of-Concepts (PoC) launched in
July 2018 by the U.S. Department of Commerce's National Telecommunications
and Information Administration (NTIA) and has been increasingly popular
worldwide, with an executive order signed by U.S. President Biden1 in May 2021.
A survey conducted by the Linux Foundation of 412 global organizations in the
third quarter of 20212 found that 48% of organizations surveyed have deployed
an SBOM. The Linux Foundation estimates that the adoption rate will be 78% in
2022 and 88% in 2023, based on the SBOM readiness and planning status of the
surveyed organizations.

In Japan, the Ministry of Economy, Trade and Industry (METI) established the Task
Force for Evaluating Software Management Methods, etc. toward Ensuring
Cyber/Physical Security (Software Task Force) in September 2019, and has since
made extensive discussions on software management methods including SBOM.
Through the discussions of the Software Task Force, the following issues were
raised as essential considerations for the implementation of SBOMs: cost-
effectiveness of SBOM introduction, issues related to sharing SBOMs in the supply
chain, issues related to contracts when managing SBOMs, and issues related to
the implementation of SBOMs in small and medium-sized enterprises. In light of
these issues, METI conducted PoC from 2021 for SBOM introduction and beyond
and evaluated the costs and benefits of SBOM introduction in several industrial
sectors. The FY2021 PoC targeted software for automated driving system
development, while the FY2022 PoC focused on dental CTs in the medical device
field, heater controllers in the automotive field, and network threat detection
software in the software field. Through these PoCs, the following benefits and
effects of SBOM were confirmed, especially the benefits for software vulnerability
management and license management, which may result in the benefit of

1 Executive Order on Improving the Nationʼs Cybersecurity
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-
on-improving-the-nations-cybersecurity/
2 Linux Foundation, The State of Software Bill of Materials (SBOM) and Cybersecurity Readiness
https://www.linuxfoundation.org/tools/the-state-of-software-bill-of-materials-sbom-and-
cybersecurity-readiness/

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.linuxfoundation.org/tools/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness/
https://www.linuxfoundation.org/tools/the-state-of-software-bill-of-materials-sbom-and-cybersecurity-readiness/

3

increased development productivity.

 Comparing the workloads for manual component management and the
workloads for management using an SBOM, the workloads for the latter are
smaller. When implementing an SBOM, the initial workloads are large, but
the burden can be reduced by using SBOM tools3.

 By creating and managing an SBOM, it is possible to shorten the lead time
needed to identify the impact of vulnerabilities in software components when
they are discovered, eventually leading to a reduction in the risk of residual
vulnerabilities and in workloads required to respond to vulnerabilities. In
particular, by utilizing commercial SBOM tools, dependencies between
different pieces of OSS and recursive use of OSS (reused parts) can also be
efficiently detected and managed.

 By creating and managing an SBOM, license information for components
included in software can be checked to prevent negligence in compliance,
thus reducing the risk of license violations and the workloads required for
license management. In particular, the SBOM tool enables more efficient
license management because it allows users to utilize functions for
compliance, such as displaying the contents of each license and warning of
licenses that require attention.

On the other hand, the following issues were identified regarding SBOM
introduction:

 If the overall configuration of the target software system is not understood,
the scope of application of the SBOM tool cannot be properly set and effective
risk management cannot be implemented.

 Workloads are required to learn and develop the environment to implement
SBOM tools.

 OSS SBOM tools require a large number of workloads to implement due to a
lack of information about environmental maintenance and learning. In
addition, there are many things to be aware of when using such tools, such
as insufficient detection of recursively used parts, limitations on SBOM
formats that can be handled, and license false negatives.

3 In this Guidance, tools that can create, share, utilize, and manage an SBOM are collectively
referred to as “SBOM tools,” which are sometimes called SBOM management tools, OSS
management tools, software configuration analysis (SCA) tools, etc.

4

 Simply applying an SBOM tool may result in undetected components in the
target software.

 The output results of the SBOM tool need to be scrutinized carefully, as there
may be cases of component false positives, false negatives, and erroneous
vulnerability information.

 The workloads required to scrutinize the output of SBOM tools are significant
because the internal configuration and technologies used for third-party
components are not known.

 Currently, there are few SBOM tools that can read SBOMs generated by
different SBOM tools and use them for vulnerability management, making it
difficult to mutually share an SBOM among different SBOM tools.

 It is difficult to determine which vulnerabilities need to be addressed for a
given component and which ones shall be addressed first.

In summary, while it was confirmed that SBOMs can be used for efficient software
management, it was also clear that there are various issues that need to be
addressed when actually implementing an SBOM.

1.2. Objectives

In order to solve various issues related to the creation, sharing, operation, and
management of SBOMs for software management, this Guidance provides basic
information about SBOM, including an overview of SBOM and the benefits of SBOM
introduction, and presents a series of processes for SBOM introduction, including
the establishment of an environment and system for SBOM creation, SBOM
creation and sharing, and SBOM operation and management, at software suppliers.
It also shows the main implementation items in each phase and the key points that
companies shall be aware of when implementing an SBOM in order to support
efficient and effective SBOM introduction. Although this Guidance is intended
primarily for software suppliers, it can also be used and referenced by companies
that procure and use software. It shall be noted that since SBOM is a method of
software management, the objective is not creating SBOM, but rather the
appropriate management of software using SBOM is important. In response to the
recent trend of increased use of OSS in software development, OSS management
is also important in establishing software security measures. The Ministry of
Economy, Trade and Industry (METI) has published “Collection of Use Case

5

Examples Regarding Management Methods for Utilizing Open Source Software and
Ensuring Its Security”4 as part of documentation concerning OSS management. It
is recommended to refer to this document as well as this Guidance.

1.3. Main target readers

This Guidance mainly targets departments involved in software security at
software suppliers, such as development/design departments and departments in
charge of product security (PSIRT, etc.), as well as in management. For
departments involved in software security, this Guidance describes the process of
SBOM introduction, the main items for SBOM introduction, and points to note when
implementing an SBOM for software management. If it is believed that
management is not fully aware of SBOM as a method of software management, it
is expected to use “1.6 Summary of this Guidance“ to communicate appropriately
with management. For management, this Guidance presents the effects and
benefits of SBOM and the misconceptions and facts about SBOM that can be
referred to when making decisions regarding SBOM introduction. When making
decisions regarding the SBOM introduction, it is expected that the contents of “1.6
Summary of this Guidance“ will be well understood.

This Guidance is mainly intended for those who are new to SBOMs, such as
organizations that are not yet aware of the details of their efforts to implement
SBOMs. Related to the above, the content of this Guidance concerning license
management can be used by the legal and intellectual property departments of an
organization. Furthermore, its general content can be used in part by companies
that procure and use software, not just software suppliers.

1.4. Main target software

This Guidance describes the process for implementing an SBOM, mainly for
packaged software and embedded software, as well as the main implementation
items in each process and points to be aware of when introducing an SBOM.

4 Ministry of Economy, Trade and Industry: Collection of Use Case Examples Regarding
Management Methods for Utilizing Open Source Software and Ensuring Its Security
https://www.meti.go.jp/policy/netsecurity/wg1/ossjirei_20220801.pdf

https://www.meti.go.jp/policy/netsecurity/wg1/ossjirei_20220801.pdf

6

1.5. How to use

Organizations implementing an SBOM are expected to recognize the basic
information about SBOM and confirm the process for SBOM introduction based on
this Guidance. It is also expected that organizations will proceed with the
implementation of an SBOM while confirming the main implementation items in
each step and the points that shall be recognized when implementing the SBOM.
Section 7.1 of the Appendix provides a checklist of items to be implemented at
each step of the SBOM introduction, which shall be referred to in conjunction with
efforts to implement an SBOM.

7

1.6. Summary of this Guidance

《Key points of this Guidance》

 Software security threats that can affect business operations have increased
dramatically in recent years.

 The Software Bill of Material (SBOM), a method of software management, is
attracting attention in response to the threats, and the number of companies
adopting it is increasing worldwide.

 SBOMs can reduce the risk and cost of managing software vulnerabilities and
licenses.

 It is expected that this Guidance will be used to accelerate efforts to implement
SBOMs for software management.

《Background and outline of this Guidance》
[Threats to the software supply chain]
 As software supply chains become more complex and the use of open source

software (OSS) becomes more common, security threats to software have
increased dramatically in recent years. Apache Log4j vulnerabilities discovered
in December 2021 have had a worldwide impact. According to data, from 2019
to 2022, the average annual growth rate of software supply chain attacks
reached 742%.

 Software security threats have a significant impact on business operations. For
example, average companies affected by SolarWinds cyberattacks lost
approximately 11% of their annual revenue, and in some cases, remaining
vulnerabilities in products have led to product recalls and sales suspensions.

 In response to increasing threats to software, it is important to implement
software management efficiently and effectively, such as properly managing
vulnerabilities contained in software and promptly responding to vulnerabilities
when they are revealed.

[Benefits of using SBOM in software management]
 The Software Bill of Materials (SBOM) has been attracting attention as a method

for efficiently managing software developed through the supply chain. The
SBOM is a machine-processable list that includes information about software
components and their dependencies. The number of companies implementing
an SBOM is increasing worldwide. Regulations and institutionalization are also

8

beginning to be considered, with SBOMs being recommended in some fields,
such as the medical device sector.

 While software management requires an enormous amount of information, the
implementation of a machine-readable SBOM can reduce the cost and workload
required for software management, which in turn leads to higher development
productivity. In fact, in a Proof-of-Concept (PoC) conducted in the medical
device sector by the Ministry of Economy, Trade and Industry (METI),
vulnerability management using SBOMs reduced management workloads by
about 70% compared to manual management.

 In addition, as a benefit to vulnerability management, the creation and ongoing
management of SBOMs is expected to increase software transparency and
reduce the risk of residual vulnerabilities, as well as increase the efficiency of
vulnerability response through the supply chain.

 Furthermore, as an advantage in license management, SBOMs will help reduce
the risk of license violations by managing OSS license information.

[Points to using this Guidance]
 In order to support efficient and effective SBOM introduction by companies, this

Guidance provides basic information about SBOM and presents the main
implementation items for SBOM introduction and points to be aware of when
implementing an SBOM.

 For efficient and effective software management, it is expected that
management will use this Guidance to make decisions regarding the
implementation of the SBOM and that departments involved in software security
will take concrete steps for SBOM introduction.

9

Column: Key indices for software security threats
Security threats to software have grown in recent years as software supply chains
become more complex and the use of OSS becomes more common. Below are some
key figures that illustrate the current state of software security threats in recent
years.

↑81%: Percentage of code bases containing vulnerabilities
According to a survey of 2,409 codebases published by Synopsys in 2022, the
percentage of codebases containing OSS was 97%. Of those, 81% of the codebases
contained at least one vulnerability5.

↑62％︓Percentage of companies that suffered software supply chain attacks
in 2021
According to a survey published by Anchore in 2022 that covered 428 companies in
North America, the EU, and the UK, 62% of companies were affected by software
supply chain attacks in the past year 6.

↑742%︓Average annual increase in software supply chain attacks from
2019 to 2022
According to a study published by Sonatype in 2023, the average annual increase
in software supply chain attacks over the three-year period from 2019 to 2022 was
742%, exceeding 88,000 attacks in 2022. With 216 attacks from February 2015 to
June 2019, the number of software supply chain attacks has increased exponentially
in recent years7.

↓11％︓Impact of the SolarWinds cyberattack on company revenues
According to IronNet's 2021 survey of 473 companies in the U.S., U.K., and
Singapore, 85% of the companies were affected by SolarWinds cyberattacks, which
cost them on average about 11% of their annual revenue8.

5 Synopsys, 2022 Open Source Security and Risk Analysis Report
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-
risk-analysis.html
6 Anchore, 2022 Security Trends: Software Supply Chain Survey
https://anchore.com/blog/2022-security-trends-software-supply-chain-survey/
7 Sonatype, 8th Annual State of the Software Supply Chain Report
https://www.sonatype.com/state-of-the-software-supply-chain/implementation
8 IronNet, 2021 Cybersecurity Impact Report
https://www.ironnet.com/hubfs/IronNet-2021-Cybersecurity-Impact-Report-June2021.pdf

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://anchore.com/blog/2022-security-trends-software-supply-chain-survey/
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://www.ironnet.com/hubfs/IronNet-2021-Cybersecurity-Impact-Report-June2021.pdf

10

2. Overview of SBOM

2.1. What is SBOM?

The SBOM is a formal, machine-readable inventory of software components and
dependencies, information about those components, and their hierarchical
relationships. The SBOM may contain the name and version information of the
components included in the software, the developer of the components, and other
information, and also contain information about proprietary software as well as
OSS. The mutual sharing of SBOM across organizations from upstream to
downstream in the software supply chain is expected to increase the transparency
of the software supply chain, and in particular, to be one solution to the issue of
component vulnerability management.

To flesh out the SBOM, consider the following simplified scenario:

 Company A developed a software named Application using two components—
Company B's Browser and Community P's Protocol.

 Company B's Browser uses a component of Compression Engine developed by
Mr. C.

 Company B created its own SBOM for the browser and shared it with Company
A. However, because Company A was unable to obtain the SBOM information
about Mr. C's and Community P's components, Company A created an SBOM of
Mr. C's and Community P's components.

The relationships among the players and components in this scenario can be
represented as shown in Figure 2-1. As shown in this figure, many SBOM entities
play the role of software suppliers as well as consumers of the SBOM shared with
others. That is, in addition to utilizing information in an SBOM obtained from
another entity, the first entity may also play a role in creating an SBOM related to
the newly developed components and sharing the SBOM with other entities. Ideally,
the supplier of a software component shall also be the author of the corresponding
SBOM, but this is not always the case in the current situation where SBOMs are
not yet completely widespread. In this scenario, since Company B created the
SBOM in-house, the supplier of a browser component and the SBOM author for the
component are the same. In the case of a protocol, however, since Community P
did not create the SBOM, but Company A did, then the supplier is Community P,

11

while the SBOM author is Company A.

Figure 2-1 Relationship between players in the scenario

In the above scenario, the conceptual image of the SBOM to be created by
Company A is given in Table 2-1. This image lists its supplier, version, component
name, SBOM author, etc. for each component. By creating an SBOM, it is possible
to identify and manage when and by whom each component was developed, what
implementation it has with other components, and who created the SBOM for that
component. When a vulnerability in a particular component is revealed, this allows
the system to immediately recognize which components are affected by the
vulnerability, allowing for a quick response to the vulnerability. The mutual sharing
of an SBOM across organizations will make information about each component
visible and contribute to improving the transparency of the software supply chain.

Community P

SBOM Consumer

Supplier

SBOM Author

Supplier
SBOM Consumer

SBOM

Company A

Mr. C Company B

Included in Included in

Included in

SBOM

・・・

Final SBOM consumer
（End user）

Compression
Engine Browser

Protocol

Application

・・・

12

Table 2-1 Image of an SBOM in the scenario (matrix form)

The SBOM in Table 2-1, which is based on the simplified scenario above is only an
image, and with this level of description, there may be no need to dare to manage
it as an SBOM. However, the actual software is developed under a complex structure
rather than a simple supply chain structure depicted in Figure 2-1. An actual SBOM
will include not only proprietary software but also components developed by others,
each of which will have complex implementation. Therefore, in order to improve
software risk management and transparency in the software supply chain, it is
important to use an SBOM to manage information about components in software,
including their dependencies.

Column: Analogy between SBOM and food labeling
The SBOM is similar to the food label on food packaging. By reading food labels that
visualize ingredients contained in food products, it is possible to prevent health
hazards due to allergic accidents and to respond to food contraindications. Take
macaroni salad as an example. As a result of manufacturing and processing,
through the food supply chain, a food label is created as shown in Figure 2-2, which
indicates ingredients. Like food labeling, an SBOM is a list of information regarding
components contained in software, and the visualization of this information
facilitates vulnerability response and risk management. Just as food labeling
contributes to transparency in the food supply chain, SBOMs contribute to
transparency in the software supply chain. Note that, however, SBOMs are more
complex lists than food labeling as they include not only component names but also
their versions and implementation. It shall also be noted that many SBOMs are
dynamically modified even after they are created, so it is important for SBOM users
to manage them.

TimestampAuthor of
SBOM
data

Depende
ncy
Relations
hip

Other
unique
identifier

Version of
the
component

Component
name

Supplier
name

ID

05-09-2022
13:00:00

Company
A

Primary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company
B

Included
in #1

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company
A

Included
in #2

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company
A

Included
in #1

5342.2ProtocolCommunity
P

4

13

Figure 2-2 Conceptual image of the food supply chain and food labeling

2.2. Benefits of SBOM

As shown in Table 2-2, there are three typical benefits of SBOM introduction:
vulnerability management, license management, and increased development
productivity. In addition to the direct benefits of vulnerability management, license
management, and improved development productivity, each of these benefits has
indirect benefits in product value and corporate value.

Table 2-2 Benefits of SBOM
Benefit Item Description

Vulnerability
management

Direct
benefits

Reduce residual
vulnerability risks

Collecting vulnerability
information and matching it
with SBOM information to
detect vulnerabilities can
reduce the risk of residual
vulnerabilities in software.

Reduce
vulnerability

SBOM tools can be used to
detect new vulnerabilities in

Foods
Company M

Farmer C
Macaroni S.p.A.

（Italy） XX Foods Co.

Farmer T

Farmer K

Food
labelling

・・・

Macaroni saladName

Macaroni (contains wheat, made in Italy),
mayonnaise (contains egg), cucumber, carrot, onion,
ham (contains pork), salt

Raw
material
name

Seasoning (amino acid), phosphate (Na), antioxidant
(V.C), casein sodium (from milk and soybeans),
coloring agent (sodium nitrite)

Additives

200gContent
amount

mm, dd, yyyyConsumpt
ion period

Refrigeration required (Store at 10°C or below)Preservati
on metho

XX Foods Co.
1-1-1, XX-1-1, XX-ku, XX-shi, XX

Manufactu
rer

14

Benefit Item Description
response time real-time and determine their

impact, thereby shortening
the initial response time.

Reduce cost of
vulnerability
management

Automated management
using SBOM tools reduces
management costs compared
to manual management.

Indirect
benefit

Increase
product/corporate
value

Reduced vulnerabilities in
products and faster
vulnerability responses
increase the value of the
product and the company.

Improve cyber
hygiene

More products with fewer
vulnerabilities improve the
overall security of cyberspace.
(Reducing the risk of attacks
through steppingstone
exploits.)

License
management

Direct
benefit

Reduce risks of
license violations

Risks of license violations due
to failure to identify OSS can
be reduced.

Reduce costs of
license
management

Compared to manual
management, automated
management using SBOM
tools reduces administrative
costs.

Indirect
benefit

Increase
product/corporate
values

Reduced risks of product
license violations increases
the value of the product and
the company.

Development
productivity

Direct
benefits

Prevented
development
delays

Early identification of
component problems prevents
development delays.

Reduce
development

Early identification of
component problems reduces
response costs.

15

Benefit Item Description
costs

Cut development
time

When selecting components
to be used, workloads related
to the selection are reduced
by referring to past SBOMs for
similar products.

Of the benefits of SBOM introduction, the most notable are the benefits of
vulnerability management, i.e., the series of vulnerability response processes that
detect, prioritize, fix, and mitigate software vulnerabilities. Most software in recent
years has been developed under a complex supply chain structure that includes
not only proprietary software developed in-house but also many components
developed by other companies and the OSS community. These components often
have complex hierarchical structures and implementation. For example, if a Java
application uses Apache Log4j as a component, Log4j is positioned as a
subordinate component and may be difficult to identify through normal component
management. However, even a subordinate component may have security
implications if the component contains vulnerabilities.

In order to reduce the residual risk of vulnerabilities, it is important to effectively
implement continuous monitoring of vulnerabilities based on information about the
components in use. In this regard, by implementing an SBOM and checking each
component against the vulnerability database, it is possible to efficiently check for
known vulnerabilities and, as a result, reduce the risk of residual vulnerabilities in
the software. Also, when a new vulnerability is revealed for a certain component,
if organizations do not manage their software using an SBOM, organizations may
not know whether their software contains that component or not, and they may
be affected by the vulnerability without knowing it. As shown in Figure 2-3, if an
SBOM is in place when a vulnerability is revealed in a component, the impact of
the vulnerability can be immediately recognized, and the time required to address
the vulnerability can be reduced. In addition, by sharing information about
software with partner companies, organizations affected by vulnerabilities, and
software users, the time required to address vulnerabilities can be shortened. It
will also contribute to the understanding of the actual situation when components
are rewritten or added illegally by third parties in the supply chain. Furthermore,
by utilizing SBOM for inter-organizational sharing, the workloads required for

16

sharing software information can be reduced.

Figure 2-3 Benefits of reducing vulnerability response time by

implementing an SBOM

Introducing an SBOM can reduce the cost of vulnerability management. Figure
2-4 shows the results of the cost evaluation of vulnerability management using
SBOM in a medical device PoC conducted in FY2022. Here, it is assumed that the
target software has about 80 components and the unit cost of workloads is
\10,000 per hour. In the PoC, management by SBOM was performed using an
SBOM tool. Manual component management requires manually identifying a list
of components. It is necessary to manually search the vulnerability information
database (e.g., NIST NVD) to check whether each component contains
vulnerabilities. When a vulnerability is revealed, it is necessary to check whether
each component is affected or not by comparing the component information with
the vulnerability information. On the other hand, SBOM management requires
workloads to maintain the SBOM tool environment and to learn the SBOM tool.
However, since the analysis and identification of components can be done

W
it

ho
ut

 S
BO

M

！

！！
！
！

！

！

！

！

Operator

Parts

Component

Final product

W
it

h
SB

O
M

Relief
measure

Operator

Parts
Component

Final product
Cuts time to completion of

response

Correction
and

response

Vulnerability found
The modification of a part reveals that the
component that used the part also needs to be
modified. Response delayed.

The existence of the
vulnerability is
immediately

recognized by SBOM
and a response is

initiated

Relief
measure

Correction and response

Time lapse

17

automatically, the analysis and identification of components themselves require
almost no workload. When a new vulnerability is revealed, it is automatically
reflected in the SBOM tool, and it is possible to identify in real time whether or
not components are affected. In such a case, although confirmation of the
analysis/identification results is required, the cost of vulnerability management
can be significantly reduced. In the PoC, it was confirmed that the workloads
required for the SBOM were reduced to about 30% of those required for manual
vulnerability management. It shall be noted, however, that the cost of
commercial SBOM tools is incurred, but the more components are targeted, the
more the cost will be divided proportionally.

Figure 2-4 Results of reducing vulnerability management costs through
the SBOM management (From the results of FY2022 PoC in the medical

device sector)9

Indirect benefits of SBOM introduction for vulnerability management include
increased product and corporate values resulting from reduced vulnerability risk,
and in the big picture, there is also the benefit of increased security in cyberspace
as a whole due to more products with fewer vulnerabilities.

9 The cost of SBOM tools is not included. Also, for “vulnerability management,” vulnerability
correction work and reporting work for which workloads do not vary significantly depending on
whether or not SBOM is used, are excluded, taking into account workloads for vulnerability
identification and risk assessment.

¥0 ¥100,000 ¥200,000 ¥300,000 ¥400,000 ¥500,000 ¥600,000 ¥700,000

Management by
SBOM

Manual
component

management

Environment construction and system development
Identifying components
Vulnerability management

18

The second benefit of SBOM introduction relates to license management.
Specifically, benefits are found in the sequence of processes of identifying licenses
for the components included in the software and handling them according to the
requirements of each license. Most software in recent years includes OSS. Violation
of OSS licenses can have major consequences, including suspension or recall of
software sales, payment of fines, and damage to the company's brand image.
Overseas, there have been several cases of lawsuits for violation of OSS licenses,
including a case in which 14 companies, including consumer electronics
manufacturers, were prosecuted for violation of the GNU General Public License
(GPL) in 2010, a case in which a media player manufacturer was prosecuted for
violation of the GPL in 2013, and a case in which a television manufacturer was
prosecuted for violation of the GPL in 2021. When using OSS, it is necessary to
take appropriate measures according to the type of license. For example, in the
case of the GPL, the GPL also applies to derivative works, and if new software is
created by combining the GPL with other software, the GPL also applies to that
software. In the case of the Mozilla Public License (MPL), the MPL is applied to
derivative works as well as the GPL, but the MPL is not applied to new software
created by combining them. Therefore, when using OSS, it is necessary to check
all OSS licenses at one's own risk and comply with each license, but it is not easy
to manage OSS license information without false negatives. By implementing an
SBOM to manage components, including license information, the risk of license
violations can be reduced, as well as the cost of license management as in
vulnerability management. Furthermore, SBOMs can protect the organization from
financial risks arising from license violations, thus contributing to increased product
and corporate values.

The third benefit of SBOM introduction is that it improves the software
development life cycle (SDLC) and increases development productivity. When an
SBOM is created in the early stages of software development, issues related to
components, such as known vulnerabilities in the components or licensing issues,
can be addressed in advance. Early identification of these problems can prevent
development delays and reduce response costs. In addition, by managing
information about components approved for use within the company, as an SBOM,
it is no longer necessary to investigate and approve components each time they
are developed, and as a result, a reduction in development workloads can be
expected. Regarding the benefits of increased development productivity, the Linux
Foundation surveyed 412 global organizations in the third quarter of 202110 and

10 See Footnote 2.

19

found that 51% of the responding organizations cited the benefits of SBOM as
“making it easier for developers to understand the implementing between a wider
range of complex projects. This is a higher percentage than the benefits of
vulnerability management (49%) and license management (44%).

In this section, three typical benefits of SBOM introduction: benefits in vulnerability
management, benefits in license management, and benefits in increased
development productivity are mentioned, but other possible benefits exist. For
example, management through SBOMs can facilitate software EOL management.

Column: Effect of SBOM on Log4j vulnerability (Log4Shell)

In December 2021, an arbitrary code execution vulnerability (commonly known as
Log4Shell) was discovered in Apache Log4j, a log output library. The OSS Log4j is
available free of charge and includes various functions, so it has been used for
various purposes as a standard module for log output in Java systems. However,
exploitation of discovered vulnerabilities and unauthorized access to applications
running Log4j may lead to information leaks, malware infection, and other damage.
In the “2021 Top Routinely Exploited Vulnerabilities” published by CISA and other
organizations in the U.S.11 , Log4Shell ranked first, regardless of vulnerabilities
discovered in December 2021, and the scope of this vulnerability's impact is
immeasurable.

In addition to the fact that Log4Shell vulnerabilities are deployed in a large number
of software and are easy to attack, another reason for the widespread exploitation
of Log4Shell vulnerabilities is that they are built in as components, so suppliers and
software users are unaware of the impact of the vulnerabilities and no
countermeasures are being implemented. Specifically, as shown in Figure 2-5, if
Log4j components exist deeper than the range of components that software users
can see (and are aware of), then Log4j vulnerabilities can be exploited to affect
software users, while software users are not aware of them.

By implementing an SBOM that includes multi-tier components, when a Log4j
vulnerability is discovered, it is possible to immediately check whether the software
in use is affected, thereby accelerating a response to the vulnerability. This reduces
the risk of vulnerabilities being exploited and also contributes to reducing the cost

11 CISA, Alert (AA22-117A) 2021 Top Routinely Exploited Vulnerabilities
https://www.cisa.gov/uscert/ncas/alerts/aa22-117a

https://www.cisa.gov/uscert/ncas/alerts/aa22-117a

20

of responding to vulnerabilities and identifying the impacted area.

Figure 2-5 Image of software component hierarchy

2.3. “Minimum Elements” of SBOM

In response to a May 2021 U.S. Executive Order, NTIA released a document in July
2021 on the definition of “Minimum Elements” of the SBOM12. The NTIA's definition
of “Minimum Elements” not only specifies “Data Fields,” which are categories of
information to be included in the SBOM, but also “Automation Support” and
“Practices and Processes” categories that organizations implementing an SBOM
shall consider. The specific “Minimum Elements” categories and definitions are
shown in Table 2-3.

12 NTIA, The Minimum Elements For a Software Bill of Materials (SBOM)
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

Final product Software userLevel 1Level 2Level 3

・・・

The range of components that
software users can check
(recognize) is narrow.

If Log4j is used in a deep hierarchy,
software users cannot identify it.

When a Log4j vulnerability is discovered, its
impact can be immediately identified and a
response can be initiated, by deploying an SBOM
that includes a deep hierarchy of components.

SBOM

https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

21

Table 2-3 Definition of “Minimum Elements” of SBOM by the U.S. NTIA
Minimum
Elements

Overview Definition

Data Fields

Document
baseline

information
about each
component
that should
be tracked

This baseline component information
includes:
 Supplier name
 Component name
 Version of the component
 Other unique identifier
 Dependency relationship
 Author of SBOM data
 Timestamp

Automation
Support

Support
automation,
including via
automatic

generation and
machine-
readability

SBOM data should be created and shared
using machine-readable and interoperable
formats. Currently, SPDX, CycloneDX, and
SWID tags, which have been developed
through international discussions, should
be used.

Practices and
Processes

Define the
operations of

SBOM
requests,

generation and
use

Organizations utilizing SBOMs shall
establish operational procedures for the
following items:
 Frequency
 Depth13
 Known unknown14
 Distribution and delivery
 Access control
 Accommodation of mistakes15

13As shown in Figure 2-9, software components are often hierarchical, and the SBOM depth
refers to the depth to which components in this hierarchical structure should be included in the
SBOM.
14 If the dependencies of a complete component are unknown in the created SBOM, it means
that the fact that it is unknown is made explicit. For example, clarification that the existence of
the dependency is unknown, and clarification of the extent to which the component has not
been identified.
15 The NTIA states that “while internal management of supply chain data may be a best
practice, it is still evolving.” and also mentions that “In light of the absence of perfection,

22

In utilizing the SBOM, it is essential to collect information about components and
establish a consistent data structure. For this reason, the inclusion of information
for uniquely identifying a component subject to SBOM is positioned as a “minimum
element” in the category of data fields. The definitions of specific data fields are
shown in Table 2-4. In addition to information about the name, version, and other
identifiers of the component subject to the SBOM, the data fields should include
items related to the names of the supplier and the SBOM author of the component
in question, the dependency of the component, and the timestamp.

Table 2-4 Data Fields to Be Included in the SBOM as “Minimum Elements”
Entry Description

Supplier Name
The name of the entity that develops, defines, and
identifies a component.

Component Name
Designation assigned to a unit of software defined by
the original supplier.

Version of the
Component

Identifier used by the supplier to specify a change in
software from a previously identified version.

Other Unique
Identifiers

Other identifiers that are used to identify a
component, or serve as a look-up key for relevant
databases.

Dependency
Relationship

Characterizing the relationship that an upstream
component X is included in software Y

Author of SBOM Data
The name of the entity that creates the SBOM data
for this component.

Timestamp
Record of the date and time of the SBOM data
assembly.

2.4. SBOM formats (Examples)

As specified in the “Minimum Elements” of the SBOM, SBOM data should be created
and shared using a machine-readable and interoperable format. The use of a
common format will not only streamline management within an organization but

consumers of SBOMs should be explicitly tolerant of the occasional incidental error. This will
facilitate constant improvement of tools.”

23

also increase interoperability when sharing SBOMs across organizations, thus
contributing to transparency in the software supply chain. The following three
formats are examples of SBOM format that can be used:

(1) SPDX（Software Package Data Exchange）

(2) CycloneDX

(3) SWID tag（Software Identification tag）

SPDX supports a wide range of software component types, including snippets, files,
packages, containers, and OS distributions. In addition, it provides a list of
identifiers for uniquely identifying a component's license information. SPDX items
also include a Japan-originated format called SPDX-Lite, which contains only the
minimum required items. SPDX-Lite is excellent for simple SBOM creation and
management and is also characterized by its abundance of specifications and other
documents created in Japanese. CycloneDX is a format designed with security
management in mind, which enables a description of not only information about the
software in question but also information about the known vulnerabilities in the
software and the exploitability of those vulnerabilities. Finally, for SWID tags, there
is a feature that allows SBOMs to be managed along the software life cycle.

In this section, reconsidering the simplified scenarios presented in Figure 2-1, an
example is given for SBOMs created by Company A in different SBOM formats.

(1) SPDX（Software Package Data Exchange）
SPDX is an SBOM format developed by a project under the Linux Foundation, which
was standardized as ISO/IEC 5962:2021 in September 2021. SBOMs in the SPDX
format describe information about components created according to the SPDX
Specification, licenses, copyrights, and so on. SPDX supports Tag-Value (txt), RDF,
XLS, JSON, YAML, and XML formats. Refer to 7.3.3(1) of the Appendix for the
structure of the SPDX format, usage examples/purposes, and features.

In the simple scenario described above, when Company A creates an SBOM using
the SPDX format of the Tag-Value format, the SBOM shown in Figure 2-6 is created.
Here, the color relationship indicates the correspondence relationship between the
conceptual image of SBOM shown in Table 2-1 and the items in the SPDX format.
As shown in Table 2-5, the SPDX format items can be supported for each of the
“Minimum Elements” in the SBOM.

24

Figure 2-6 Example of SBOM in SPDX Format (Tag-Value format) in the

scenario

Table 2-5 SPDX Items Corresponding to SBOM “Minimum Elements”
Data Fields of SBOM “Minimum

Element”
Corresponding SPDX item

Supplier Name PackageSupplier
Component Name PackageName

Version of the Component PackageVersion

Other Unique Identifiers
Combination of DocumentNamespace and

SPDXID, ExternalRef

TimestampAuthor of
SBOM
data

Depende
ncy
Relations
hip

Other
unique
identifier

Version of
the
component

Component
name

Supplier
name

ID

05-09-2022
13:00:00

Company
A

Primary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company
B

Included
in #1

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company
A

Included
in #2

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company
A

Included
in #1

5342.2ProtocolCommunity
P

4

SPDXVersion: SPDX-2.2
DataLicense: CC0-1.0
DocumentNamespace: http://www.spdx.org/spdxdocs/8f141b09-1138-4fc5-aefb-fc10d9ac1eed
DocumentName: SBOM Example
SPDXID: SPDXRef-DOCUMENT
Creator: Organization: Company A
Created: 2022-05-09T13:00:00Z
Relationship: SPDXRef-DOCUMENT DESCRIBES SPDXRef-Application-v1.1

PackageName: Application
SPDXID: SPDXRef-Application-v1.1
PackageVersion: 1.1
PackageSupplier: Organization: Company A
PackageDownloadLocation: NOASSERTION
FilesAnalyzed: false
PackageChecksum: SHA1: 75068c26abbed3ad3980685bae21d7202d288317
PackageLicenseConcluded: NOASSERTION
PackageLicenseDeclared: NOASSERTION
PackageCopyrightText: NOASSERTION
ExternalRef: SECURITY cpe23Type cpe:2.3:a:company_a:application:1.1:*:*:*:*:*:*:*
Relationship: SPDXRef-Application-v1.1 CONTAINS SPDXRef-Browser-v2.1
Relationship: SPDXRef-Application-v1.1 CONTAINS SPDXRef-Protocol-v2.2

（Omitted below）

SBOM in SPDX format (Tag-value format)

25

Data Fields of SBOM “Minimum
Element”

Corresponding SPDX item

Dependency Relationship
Relationship

（DESCRIBES; Representation by
CONTAINS）

SBOM author (Author of SBOM
Data）

Author

Timestamp Author

SPDX is a format developed to effectively handle information about OSS license
compliance and is characterized by its ability to express detailed information
structured down to the file level. The target components are not limited to snippets
and files but can be extended to packages, containers, and OS distributions. The
format was developed with the intention of automated processing, and as
mentioned above, it has been internationally standardized as ISO/IEC 5962:2021,
which is also a major feature.

There is also a Japan-originated format called SPDX-Lite that includes the minimum
required SPDX items. SPDX-Lite is designed for organizations that manually create
license information and transfer only necessary information when SPDX-compliant
license information is too large to operate. Developed by the License Information
Subgroup of the OpenChain Japan Work Group, SPDX-Lite is also part of the ISO/IEC
5962:2021 standard as a subset of SPDX. The SBOM in the SPDX-Lite format
describes information such as components, license, and copyright, and supports
Tag-Value (txt), RDF, XLS, JSON, YAML, and XML formats. Refer to 7.3.3(2) of the
Appendix for the structure of the SPDX-Lite format, examples and purpose of use,
and features.

In the simplified scenario described above, if Company A creates an SBOM using
the SPDX-Lite format in XLS format, the SBOM will be created as shown in Figure
2-7. In the case of the SPDX-Lite format in XLS format, SBOM information can be
described by including two sheets, “Creation Information” and “Package
Information,” in a single XLS file. Here, the colors indicate the correspondence
between the conceptual image of the SBOM shown in Table 2-1 and the items in
the SPDX-Lite format. As shown in Table 2-6, SPDX-Lite format items can be
supported for items other than the “Dependency Relationship” of the “Minimum
Elements” of SBOM.

26

Figure 2-7 Example of SBOM in SPDX-Lite Format (XLS Format) in the

scenario

SBOM in SPDX-Lite format (xls format)

TimestampAuthor of
SBOM
data

Dependen
cy
Relations
hip

Other
unique
identifier

Version of
the
component

Component
name

Supplier
name

ID

05-09-2022
13:00:00

Company
A

Primary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company
B

Included
in #1

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company
A

Included
in #2

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company
A

Included
in #1

5342.2ProtocolCommunity
P

4

Creation Information Sheet

SPDX-2.2SPDX Version

CC0-1.0Data License

SPDXRef-DOCUMENTSPDX Identifier

SBOM ExampleDocument Name

http://www.spdx.org/spdxdo
cs/8f141b09-1138-4fc5-
aefb-fc10d9ac1eed

SPDX Document
Namespace

Company ACreator

05-09-2022 13:00:00Created

Package Information Sheet

Extern
al

Refere
nce
field

Packag
e

Commen
t

Copyri
ght
Text

Commen
ts on
Licens

e

Declar
ed

Licens
e

Conclu
ded

Licens
e

Packag
eHomeP
age

Files
Analyz
ed

Packag
eDownl
oadLoc
ation

Packag
e

Suppli
er

Packag
eFileN
ame

Pack
ageV
ersi
on

Pack
age
SPDX
Iden
tifi
er

Pack
ageN
ame

Comp
any
A

1.1234Appl
icat
ion

Comp
any
B

2.1334Brow
ser

Mr.
C

3.1434Comp
ress
ion
Engi
ne

Comm
unit
y P

2.2534Prot
ocol

omitted
Omit
ted

27

Table 2-6 SPDX-Lite Items Corresponding to “Minimum Elements” of
SBOM.

Data Fields of SBOM
“Minimum Element”

Corresponding SPDX-Lite item

Supplier Name PackageSupplier
Component Name PackageName

Version of the Component PackageVersion

Other Unique Identifiers
Combination of SPDX Identifier and SPDX

Document Namespace,
PackageSPDX Identifier

Dependency Relationship ―
Author of SBOM Data Author

Timestamp Created

SPDX-Lite is a format that extracts only the minimum necessary items from SPDX,
enabling SBOM management with an emphasis on operability. SPDX has many
items that need to be described and are intended to be managed through
automatic processing, while SPDX-Lite has a limited number of items, so manual
management is practically possible. However, it should be noted that SPDX-Lite
includes only the minimum necessary items, so for example, items related to
“implementing” specified in the NTIA's “Minimum Elements” cannot be expressed.
Since the number of items is limited, it may not meet the requirements of upstream
organizations when sharing SBOM within the supply chain. Therefore, it is desirable
to confirm with suppliers when deciding whether or not to use SPDX-Lite.
Furthermore, it should be noted that manual management of SPDX-Lite formatted
SBOMs may require more management workloads than automatic management.

(2) CycloneDX
CycloneDX is an SBOM format developed by an OWASP community project with
the goal of developing a security focused SBOM format standard. The CycloneDX
SBOM format includes information about components, licenses, and copyrights.
CycloneDX supports JSON, XML, and Protocol Buffers (protobuf) formats. Refer to
7.3.3(3) of the Appendix for the structure, usage examples, and features of the
CycloneDX format.

In the simplified scenario described above, if Company A creates an SBOM using
the CycloneDX format in XML format, the SBOM will be created as shown in Figure

28

2-8. Here, the color relationships indicate the correspondence between the
conceptual image of SBOM shown in Table 2-1 and the items in the CycloneDX
format. As shown in Table 2-7, the items in the CycloneDX format can be made to
correspond to each of the “Minimum Elements” for SBOM.

29

Figure 2-8 Example of SBOM in CycloneDX Format (xml format) in the

scenario

<?xml version="1.0" encoding="utf-8"?>
<bom xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
serialNumber="urn:uuid:3e671687-395b-41f5-a30f-a58921a69b71" version="1"
xmlns="http://cyclonedx.org/schema/bom/1.3">
<metadata>
<timestamp>2022-05-09T13:00:00Z</timestamp>
<authors>
<author>
<name>Company A</name>

</author>
</authors>
<component type="application">
<name>Application</name>
<version>1.1</version>
<hashes>
<hash alg="SHA-1">75068c26abbed3ad3980685bae21d7202d288317</hash>

</hashes>
<cpe>cpe:2.3:a:company_a:application:1.1:*:*:*:*:*:*:*</cpe>
<externalReferences />
<components />

</component>
<manufacture>
<name>Company A</name>

</manufacture>
<supplier>
<name>Company A</name>

</supplier>
</metadata>

（Omitted）

<dependencies>
<dependency ref=“pkg:maven/org.company_b/browser@2.1">
<dependency ref="pkg:maven/org.c/CompressionEng@3.1" />
</dependency>
<dependency ref="pkg:maven/org.community_p/protocol@2.2" />

</dependencies>

（Omitted below）

SBOM in CycloneDX format (XML format)

TimestampAuthor of
SBOM
data

Depende
ncy
Relations
hip

Other
unique
identifier

Version of
the
component

Component
name

Supplier
name

ID

05-09-2022
13:00:00

Company
A

Primary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company
B

Included
in #1

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company
A

Included
in #2

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company
A

Included
in #1

5342.2ProtocolCommunity
P

4

30

Table 2-7 CycloneDX Items Corresponding to SBOM “Minimum Elements”
Data Fields of SBOM “Minimum

Element”
Corresponding CycloneDX item

Supplier Name component/supplier/name
Component Name component/name

Version of the Component component/version
Other Unique Identifiers serialNumber, component/cpe
Dependency Relationship implementing/dependency ref

Author of SBOM Data metadata/authors/author/name
Timestamp metadata/timestamp

One of the features of CycloneDX is that it is an SBOM format with security
management in mind. CycloneDX Version 1.4, released in January 2022, adds
“Vulnerabilities” to the object model, allowing the description of known
vulnerabilities in third-party software and OSS included in the SBOM and the
potential for exploitation of those vulnerabilities. CycloneDX, like SPDX, is also a
format intended for automatic processing by tools.

(3) SWID tag（Software Identification tag）
SWID tags were developed for the purpose of tracking software installed on devices
managed by an organization. SWID Tags were defined by ISO in 2012 and updated
in 2015 as ISO/IEC 19770-2:2015. With a SWID tag, as part of the software
installation process along the software lifecycle, when software is installed on a
device, information about the installed software, called a tag, is assigned to the
device, and when the software is uninstalled, the tag is removed. An SBOM in the
SWID tag format describes information such as software installed on the device
and patches applied to the software created according to the SWID tag. SWID tag
supports XML format. SWID tag defines tags that indicate information about
software installed in a device in order to understand the life cycle of the target
device. Each tag can present information such as the author of the tag, the
software installed on the device, and the dependencies by linking to other software,
and can be used as an SBOM of the target device. Refer to 7.3.3 (4) of the
Appendix for more information about the structure of the format, examples of use
and purpose of use, and characteristics of the SWID tag.

In the simplified scenario described above, if Company A creates an SBOM using a
SWID tag in XML format, the SBOM will be created as shown in Figure 2-9. In this

31

figure, the color relationship shows the correspondence between the conceptual
image of the SBOM shown in Table 2-1 and the items in the SWID tag format. As
shown in Table 2-8, an item in the SWID tag format can be made to correspond
to each item of the SBOM “Minimum Elements”.

Figure 2-9 Example of SBOM in SWID Tag Format (xml Format) in the

scenario

Table 2-8 SWID Tag Entry Corresponding to SBOM “Minimum Elements”
Data Fields of SBOM “Minimum

Element”
Corresponding SWID tag item

Supplier Name <Entity> @role(tagAuthor) @name
Component Name <SoftwareIdentity> @name

Version of the Component <SoftwareIdentity> @version
Other Unique Identifiers <SoftwareIdentity>@tagId
Dependency Relationship <Link> @rel @href

<SoftwareIdentity
xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
xmlns:sha512="http://www.w3.org/2001/04/xmlenc#sha512"
name="application"
tagId="Company A/application@1.1"
version="1.1">
<Entity name="Company A" role="tagCreatorsoftwareCreator" />
<Meta title="Company A Application v1.1" timestamp="2022-05-09T13:00:00Z" />
<Link href="swid:Company B/browser@2.1" rel="component" />
<Link href="swid:Community P/ptotocol@2.2" rel="component" />
<Payload >
<File name="Company-A-application-1.1.exe"

sha512:hash="BC55DEF84538898754536AE47CC907387B8F61D9ACD7D3FB8B8A624199682C8FBE6D163108
8AE6A322CDDC4252D3564655CB234D3818962B0B75C35504D55689"/>
</Payload>

</SoftwareIdentity>

（Omitted below）

SBOM in SWID Tag format (XML format)

TimestampAuthor of
SBOM
data

Depende
ncy
Relations
hip

Other
unique
identifier

Version of
the
component

Component
name

Supplier
name

ID

05-09-2022
13:00:00

Company
A

Primary2341.1ApplicationCompany A1

04-18-2022
15:00:00

Company
B

Included
in #1

3342.1BrowserCompany B2

05-09-2022
13:00:00

Company
A

Included
in #2

4343.1Compression
Engine

Mr. C3

05-09-2022
13:00:00

Company
A

Included
in #1

5342.2ProtocolCommunity
P

4

32

Data Fields of SBOM “Minimum
Element”

Corresponding SWID tag item

Author of SBOM Data
<Entity> @role(softwareAuthor)

@name
Timestamp <Meta> @timestamp

The SWID tag is a format related to software identification. It is also a format that
can include information related to security, such as information about component
licenses, information about patches and updates, and information about
vulnerabilities and threats.

So far, examples of SBOM in SPDX, SPDX-Lite, CycloneDX, and SWID tags have
been shown. Many formats are intended for automatic processing and
management using SBOM tools. SBOM tools can be used to automatically create
SBOMs by scanning software source codes and binary files and automatically
detecting components contained in the software. In addition, some SBOM tools
can streamline administrative tasks by providing continuous access to vulnerability
and license information. Therefore, it is practical for organizations implementing
an SBOM to create and manage the SBOM using SBOM tools. Typical SBOM tools,
not only commercial SBOM tools but also OSS SBOM tools, are shown in 7.3.2 of
the Appendix.

Organizations that implement SBOMs should evaluate and select multiple SBOM
tools based on their own objectives for implementing an SBOM and the scope of
application of SBOM, after clarifying the viewpoints for selecting SBOM tools. Refer
to the points to be implemented and recognized in the selection of SBOM tools.

When SBOM tools are used to manage SBOMs, SBOM documents in Tag-Value or
XML formats, as shown in Figure 2-6 through Figure 2-9, can be created and
managed without much consideration. In particular, many commercial SBOM tools
have a number of dashboard functions, which enable easily displaying the list of
components included in an SBOM, as well as listing and graphing information about
vulnerabilities and license compliance of each component.

2.5. Myths and facts

Despite the advantages of SBOM introduction, the penetration rate of SBOM in
Japan is not high. There are various possible reasons for this, including the cost of

33

SBOM introduction, technical issues, and human resource issues, but there are also
other issues such as the lack of proper recognition of the effectiveness and
positioning of SBOM. In response to these challenges, the US NTIA released a
document titled “SBOM Myths vs. Facts” in 202116 to clarify misconceptions and
facts about SBOM. Below is a summary of the misconceptions and facts presented
in the NTIA document.

Myth: SBOMs are a roadmap to the attacker
[Fact] Attackers can leverage the information contained in SBOMs. However,
the defensive benefits of transparency far outweigh this common concern as
SBOMs serve as a “roadmap for the defender”. For attackers, SBOM and
software transparency information are of limited effectiveness, and attackers
generally do not need SBOM. For example, the WannaCry ransomware attack
does not require SBOM as a prerequisite for the attack.

Myth: An SBOM alone provides no useful or actionable information
[Fact] The baseline component information supports a number of use cases
for those who produce, choose, and operate software. For example, during an
active attack, an SBOM allows an enterprise to answer, “Am I affected?” and
“Where am I affected?” in minutes or hours, instead of days or weeks.
Additionally, the baseline component information enables vital transparency
and auditability, allowing for further expansion and enrichment in additional
use cases.

Myth: An SBOM needs to be made public
[Fact] An SBOM does not need to be made public. The act of making an SBOM
is separate from sharing it with those who can use this data constructively.
The author may advertise and share the SBOM at their discretion. In other
cases, sector-specific regulations or legal requirements may require more or
less access to the SBOM.

Myth: An SBOM will expose my intellectual property/trade secrets
[Fact] SBOMs are a summary of included software components and do not
expose intellectual property (IP). Patents and algorithms are not included. n
SBOM is just a “list of ingredients”, not a “recipe” like a patent or an algorithm.
The IP of third-party open-source components belongs to their respective
authors or copyright holders. Also, the SBOM does not include any software

16 NTIA, SBOM Myths vs. Facts
https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.pdf

https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.pdf

34

source code itself.

Myth: No processes exist to support scalable production and use of
SBOMs

[Fact] Software composition analysis tools have been used internally in some
sectors for more than a decade. Regarding software transparency, NTIA
activities, executive orders, standardization of the SBOM format, and other
activities are progressing. In some industries, software transparency has
been under discussion, and PoCs for more than 5 years support the adoption
of SBOM formats.

In addition, through PoCs and other activities conducted in Japan in FY2022,
further specific myths and facts have been made clear.

Myth: Only the components directly used by the target software should be
subject to SBOM management
[Fact] Vulnerability management may be insufficient if the components
recursively used by direct components are excluded. Discussions by experts
are ongoing regarding the “depth” of SBOM (i.e., up to what level of
components should be included in SBOM).

Myth: No special consideration is needed to select SBOM tools
[Fact] Regarding tools to support SBOM production, several commercial tools
and OSS tools provided as OSS are already available. By using OSS tools, the
tools themselves can be obtained at no cost, but compared to commercial tools,
the manuals and support for introduction and utilization are often limited,
which may result in significant costs incurred in learning how to use the tools.
In addition, compared to commercial tools, the scope of support and
performance are usually limited, and there is a possibility that the purpose of
SBOM implementation cannot be achieved. It is necessary to select tools based
on the objectives of the company's SBOM implementation.

Myth: SBOM tools can be utilized to fully identify the components
contained in the target software
[Fact] Although SBOM tools can be used to efficiently create SBOMs, there may
be cases where false positives or false negatives in the production of SBOMs,
making it impossible to create accurate SBOMs. Therefore, it is important to
consider other ways to reaffirm the accuracy of the SBOM (for example,
reviewing the SBOM created by the tool). In addition, libraries that are

35

dynamically added at runtime, such as runtime libraries, cannot be identified
because SBOM tools do not analyze the substance of the library. In such cases,
it is necessary to prepare separate configuration information and execution
environment for the library by using other tools such as a package manager,
and having the SBOM tool recognize them so that recursive components can
be identified.

Myth: There is a need to respond to all vulnerabilities output by SBOM
tools
[Fact] It is necessary to prioritize vulnerabilities when responding to risks
based on the output. Prioritization should occur based on the impact of the
vulnerability, the results of the risk assessment, and the cost of responding to
the vulnerability. In doing so, it should be noted that not all vulnerabilities are
available for use, and some vulnerabilities that exist are not affected. In the
case of manual SBOM management, it is necessary to manually identify the
existence of vulnerabilities by using the vulnerability database, evaluate each
vulnerability individually, and consider the response policy for each vulnerability,
which may require significant management costs.

Myth: Granularity of the SBOM components should be standardized
throughout the supply chain and only the necessary component
information should be retained
[Fact] Currently, the granularity of “affected software” in vulnerability
information databases such as Japan JVN and U.S. NVD is not systematized,
and limiting the granularity of components may lead to false negatives in
identifying vulnerabilities. Therefore, it is an effective practice to retain
component information not only for OSS but also for in-house products.

Myth: SBOM only covers packaged and embedded software
[Fact] Not only software but also IT systems can be covered by an SBOM. In
addition, SBOMs for online applications such as SBOMs for container images,
SBOMs for SaaS software, and SBOMs for cloud services are also being
discussed mainly in the U.S.

Myth: Only three formats of SBOM are allowed: SPDX, CycloneDX, and
SWID tags; SBOMs based on proprietary formats are not allowed
[Fact] According to the definition of the U.S. NTIA, an SBOM is “a machine-
readable inventory of software components and dependencies, information
about those components, and their hierarchical relationships.” Even
proprietary formats can be considered SBOMs if they meet this definition.

36

However, as stated in Section 2.2, since the “automation support” is positioned
as the “Minimum Elements” of SBOM, and since automated processing
improves efficiency, it is desirable to consider adopting an automatically
processable format whenever possible.

37

3. Basic guidance and overall view on SBOM introduction

3.1. Basic guidance for SBOM introduction

Prior to introducing SBOMs, it is necessary to determine the scope of software for
which to create SBOMs, as well as to clarify the issues that one's own organization
wishes to solve by implementing SBOMs and the purpose of the introduction. For
example, for a large-scale product with a huge number of components, if the
purpose is to create and share SBOMs that include component dependencies, then
it is expected that SBOMs will be created and managed using commercial SBOM
tools. Also, for small-scale products that do not have a large number of
components, if the purpose is to manually manage the version of the components
only for the minimum items, an SBOM may be created using the SPDX-Lite format.
Depending on the purpose of the SBOM introduction, the scope of application of
the SBOM, such as the items, format, creation range, and sharing range of an
SBOM to be created will vary to a larger extent. An organization considering
implementing an SBOM should first identify its own software management issues
that it intends to solve by implementing SBOMs and clarify the purpose of the
introduction, before creating, operating, and managing the SBOM.

3.2. SBOM introduction process

The process related to SBOM introduction can be divided into three main phases.
Specifically, there are three phases: the environment construction and system
development phase related to SBOM introduction, the SBOM creation and sharing
phase, and the SBOM operation and management phase. Figure 3-1 shows the
main items to be implemented and an overview of the implementation in each
phase.

In the environment construction and system development phase, the scope of
SBOM introduction will be clarified, and an environment and system for SBOM
creation and sharing will be established. In the SBOM creation and sharing phase,
the SBOM is actually created and, if necessary, shared with external parties. SBOM
is a method of software management. How to manage software by using an SBOM
is particularly important. Therefore, as part of the SBOM operation and
management phase, vulnerability management and license management need to

38

be conducted based on SBOM information, and the SBOM itself should be managed
appropriately.

The following chapters show the main implementation items for each phase and
the points to note when introducing an SBOM.

Figure 3-1 SBOM introduction process

Phase Step Outline of introduction

Environment
and system

development
phase

Clarification the scope
of the SBOM
application

SBOM
production and
sharing phase

SBOM use and
management

phase

SBOM tools selection

SBOM tools installation

Learning about SBOM
tools

Component analysis

SBOM production

Vulnerability
management and
license management,
etc.

SBOM information
management

SBOM sharing

Clarify the scope of SBOM by organizing information on
software subject to SBOM (language, contract type,
regulatory requirements, internal constraints, etc.).

Organize the viewpoints for selection of SBOM tools and
evaluate and select SBOM tools based on the viewpoints.

Install and configure the SBOM tool by reviewing the tool's
instruction manual, README file, etc.

Learn how to use the SBOM tool by reviewing the tool's
instruction manual, README file, etc.

Analyze the target software components and check the
analysis results to determine if there are any false-
positives and false-negatives.

Determine the requirements for the SBOM to be produced,
such as SBOM items, format, output file format, etc., and
create an SBOM that satisfies such requirements.

After considering how to share the SBOM to consumers
and suppliers of the subject software, share the SBOM as
necessary.

Based on SBOM information on vulnerabilities and licensing,
take appropriate vulnerability and license management
actions.

Appropriately manage the information contained in the
SBOM and the SBOM information itself.

39

4. Environment and system development phase

To introduce an SBOM, it is first necessary to establish an environment and a
system related to the SBOM. This chapter presents the items that SBOM-
introducing organizations should implement and the points that they should be
aware of in the environment construction and system development phase.

4.1. Clarification the scope of the SBOM application

[Actions for the introduction of SBOM]

□ Clarify information about the target software, such as information about
development language, component type, development tools, etc.

□ Create an accurate configuration diagram of the target software and visualize
the target of the SBOM application.

□ Clarify the contractual form and business practices with users and suppliers of
the subject software.

□ Confirm regulations and requirements for SBOM regarding the target
software.

□ Clarify the constraints within the organization (e.g., system constraints, cost
constraints) regarding the introduction of SBOM.

□ Clarify the scope of the SBOM application 5W1H (Five Ws and How) based on
the organized information.

[Points to be aware of for SBOM introduction]

 By utilizing the knowledge of developers inside and outside the organization,
it is possible to efficiently collect information about the target software.

 The scope of risk management can be clarified by creating an accurate
configuration diagram of the target software and by visualizing the target of
the SBOM application.

An organization introducing an SBOM needs to clarify the scope of application of

40

SBOM based on their own issues to be solved by SBOM introduction and the
purpose of SBOM introduction. The scope of the SBOM application can be classified
into the Five Ws and How (5W1H) perspectives shown in Table 4-1. There are
multiple application items (options) in each perspective.

Table 4-1 Scope of SBOM application (Five Ws and How)
Perspective Main application item (option)

Organization producing an
SBOM（Who）

 Produced internally
 Produced by suppliers with business contract
 Produced by suppliers without business

contract (e.g., OSS community)

Timing of producing an
SBOM (When）

 During product planning or development
planning

 During program development
 During software built
 At software delivery
 At component upgrading

Entity to use the SBOM
(Who)

 Software user
 End-product vendor
 Development vendor
 End-product user

Scope of components
covered by the SBOM

(What, Where)

 Only components directly used by the
development entity

 Components that are recursively used from
components without a development
consignment contract such as off-the-shelf
products

Means of producing the
SBOM (How)

 Producing an SBOM manually based on
configuration management information

 Producing an SBOM automatically using SBOM
tools

 Producing part of an SBOM manually based on
configuration management information and
the other part of the SBOM automatically by
using SBOM tools

41

Perspective Main application item (option)

Scope of utilizing the
SBOM (Why)

 Vulnerability management
 License management
 Improvement in development productivity
 Asset management and traceability
 Sharing information about components to

users and/or suppliers

SBOM formats and items
(What)

 Standard formats（SPDX, SPDX-Lite,
CycloneDX, SWID tag, SPDX-Lite）

 Data Field of the “Minimum Elements”
 Proprietary formats used as

regulations/requirements or industry practice

The extent of the SBOM coverage is determined by the combination of these
applicable items. It should be noted that the cost of implementing an SBOM will
vary depending on which applicable items are selected. In addition, there is a
possibility of selecting multiple applicable items for a single perspective. In order
to determine the applicable items, it is necessary to organize information about
the target software of SBOM and internal restrictions on SBOM introduction.

For the target software, it is desirable to first organize information about the
following17.

 Software language
Example: Python, Java, Go, JavaScript, Rust, Swift, Objective-C, C, C++,
VisualBasic

 Form of component
Example: Libraries, applications, middleware, database services

 Development environment tool
Example: Visual Studio, Eclipse, Android Studio, Xcode

 Build tool
Example: Jenkins, Circle CI, GitHub Actions, Gradle, Maven

 Configuration management tool
Example: GitHub, Gitlab, Team Foundation Server, Ansible

17 Note that the examples for each item are not exhaustive and are not limited to the content of
the examples.

42

 Data formats handled by the organization
Example: Source codes, packages, containers, binary data

 Operating environment
Example: OS, CPU architecture

In organizing such information, it is effective to utilize the knowledge of developers
inside and outside the organization. In particular, when SBOM tools are used to
create SBOMs, it is necessary to understand at least the development language and
the form of components, since each tool supports different languages and different
component forms. In order to clarify the scope of components to be covered by
SBOM, it is desirable to visualize the composition of the target software. Specifically,
it is desirable to create a diagram that visualizes the scope of the target software
developed by the organization, the scope developed by suppliers with business
contracts, and the scope developed by suppliers without business contracts (e.g.,
OSS). As an example, the following configuration diagram was created for the dental
CT targeted in the PoC in FY2022. Based on this diagram, the scope of risk
management has been clarified.

Figure 4-1 Example of the system configuration diagram of dental CT

In addition, in order to clarify the scope of components to be covered by the SBOM,
it is desirable to organize types of contract forms and transaction practices with
users and suppliers of the subject software. Specifically, it is desirable to organize

Image management software

Image
management

software
main unit

DICOM※2tran
smission
software

Web
transmission

software
Image import

software

Dental template
software

Image viewer

CT image
viewer

2D image
viewer

CT imaging console

CT imaging
software

Framework

Computer platform (Hardware）

Device
control F/W

Imaging device

FPD※3

OTS Layer

Computer platform
(Hardware)

Server PCClient PC

Image
management

software

Image
management
software main

unit

Image viewer

CT image
viewer

2D mage
viewer

Framework

OTS※ Layer

OS Layer

Computer platform

In-hospital/departmental
networks

USBLAN1

LAN2

LAN3

Dental CT system

■Developed in-house, ■Developed by Company A ■Developed by Company B, ■Made by third party

※1：Off-the-shelf Software
※2：Digital Imaging and Communications in
Medicine
※3：Flat Panel Detector

OS Layer

OTS Layer

Image management software

Image
management

software

43

information about the following items for each user and supplier of the subject
software.

 Type of contract: Development outsourcing, product sales, etc.

 Provision of component information: Not provided, provided without
charge, available upon request, etc.

 Declaration of third-party components: Declaration for all OSS,
declaration for some OSS based on license, etc.

 Vulnerability notice: Notification only for vulnerabilities that have been
determined to be fixed, etc.

 Vulnerability fix: Only fix for vulnerabilities that have been determined to
be fixed, etc.

 Delivery form: Binary package, embedded in equipment, license
information (e.g., SaaS), executable module, etc.

 Liability for damages

 Attribution of intellectual property rights: Belongs to the company,
belongs to the supplier, belongs to the supplier, etc.

 Modification: Software provided by a third party being used as is, modified
by the company, etc.

Among the SBOM applicable items, it is desirable to confirm and organize the
regulations and requirements for SBOM for the target software, in order to
determine the format and items of SBOM and the scope of SBOM utilization.
Currently, the number of software vendors that are required to provide SBOMs is
limited, but in the U.S., for example, software vendors that are subject to
government procurement are encouraged to provide SBOMs18 . In the EU, the
Cyber Resilience Act, drafted in September 2022, includes SBOM requirements for
digital products to be placed on the EU market19. In the medical device segment,
the Medical Device Cybersecurity Guide, issued by the International Medical Device
Regulators Forum (IMDRF), will be incorporated into the medical device regulations
under the pharmaceutical affairs law and will be fully operational by the end of

18 Office of Management and Budget, Enhancing the Security of the Software Supply Chain
through Secure Software Development Practices https://www.whitehouse.gov/wp-
content/uploads/2022/09/M-22-18.pdf
19 European Commission, Cyber Resilience Act https://digital-
strategy.ec.europa.eu/en/library/cyber-resilience-act

https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act

44

2023. There is a possibility that SBOMs will be required in regulations in the future.
Regulations and requirements may specify formats and items of the SBOM and the
scope of SBOM utilization. In light of these circumstances, it is desirable to collect
information about regulations and requirements related to the target software as
needed and to clarify specific requirements when needed.

In considering items to be applied to SBOM, it is, of course, necessary to take into
account the constraints within the organization for SBOM introduction. The most
likely constraints are those related to the organizational structure and costs. If
these constraints are severe, there is a possibility that only limited SBOM
application items can be selected. It is then desirable to confirm and organize the
constraints within the organization in advance to organize the scope of the SBOM
application.

Based on the organized information, it is desirable to consider and clarify the
applicable items for each of the above-mentioned Five Ws and How (5W1H)
aspects of the scope of the SBOM application. It should be noted that the scope of
the SBOM application varies depending on the scope and level of risk to be
addressed. For example, if an SBOM is to be created for medical devices that will
be required by regulations and requirements in the future, it is assumed that not
only the organization itself but also suppliers with whom it has business contracts
will create an SBOM at the time of software build and that the SBOM will be used
by medical institutions as users. The scope of components to be covered by SBOMs
is not limited to components used directly but also includes components used
recursively, and it is expected that SBOM tools will be used to automatically create
an SBOM for vulnerability management and license management. As for the format
and items of SBOM, it is desirable to create an SBOM based on a format that can
be processed automatically, such as SPDX, and that includes the items required by
the regulations.

4.2. SBOM tools selection

[Actions for the introduction of SBOM]

□ Organize the viewpoints for the selection of SBOM tools considering the
development language of the target software and the constraints within the
organization.
(Examples of selection viewpoints: functions, performance, analyzable

45

information, analyzable data format, cost, supported formats, component
analysis method, support systems, coordination with other tools, form of
provision, user interface, operation method, supported software languages,
Japanese support, etc.)

□ Evaluate and select multiple SBOM tools based on the organized viewpoints.

[Points to be aware of for SBOM introduction]

 Since the use of multiple SBOM tools can be inefficient, it is advisable to
consider whether the minimum number of SBOM tools should be used for a
given purpose.

 Commercial SBOM tools are generally expensive. On the other hand, OSS
SBOM tools may require a large number of workloads for implementation and
operation due to the lack of information about environmental maintenance
and learning.

 Compared to commercial SBOM tools, OSS SBOM tools often have limited
functions and performance: recursive use parts cannot be detected, there are
limitations on readable SBOM formats, license false negatives occur, or the
installation environment is limited.

 For on-premises SBOM tools, the installation environment may be restricted.
In addition, with SaaS-type SBOM tools, it is necessary to confirm that the
tool is not structured to transmit sensitive source code information to external
parties.

 It is necessary to select SBOM tools that can be easily integrated into the
existing development process and to operate them in a way that does not
place a burden on developers so that the implementation of SBOM does not
cause a significant reduction in development efficiency.

 In selecting an SBOM tool, it is effective to experience the actual use of the
tool by using a free trial. If organizations find it difficult to set up and select
a viewpoint, they may consult with a distributor who handles multiple SBOM
tools and compare and evaluate the features, advantages, and disadvantages
of each tool before selecting one.

An organization planning to implement an SBOM should build an environment and
establish a system for creating SBOMs corresponding to the clarified scope of the

46

SBOM application. SBOM tools provide the most important facility for creating and
managing SBOMs. When creating and managing an SBOM, SBOM tools are not
necessarily essential. Formats such as SPDX-Lite that can create and manage
SBOM manually are also available. It is demonstrated, however, that in addition to
reducing the workloads required for component management, the use of SBOM
tools can efficiently enable the detection of dependencies among OSS and reuse of
OSS, thereby reducing a lead time between announcement and identification of
vulnerability. Therefore, it is realistic to use SBOM tools to create and manage
SBOMs, and this Guidance also assumes the use of SBOM tools.

Some SBOM tools are shown in 7.3.2 of the Appendix. SBOM tools are broadly
divided into commercial tools and OSS tools. Commercial SBOM tools are generally
expensive, but they have a rich user interface that enables intuitive SBOM creation
and management. They have the advantage that the user can consult with vendors
and distributors. Furthermore, there are SBOM tools that can be linked with various
development tools and communication tools. Meanwhile, OSS SBOM tools often
lack information for environmental maintenance and learning. Therefore, OSS tools
may require a large number of workloads to implement and operate and to
investigate and respond to the cause when an error occurs. Also, compared to
commercial SBOM tools, the functions and performance of OSS SBOM tools are
often limited. For example, reused parts cannot be detected; there is a limit to
SBOM formats that can be read; sometimes licenses are not detected; and the
environment is limited for SBOM introduction. Nevertheless, it should be noted that
OSS SBOM tools are actively developed mainly by the OSS community, and their
functionality and performance will be improved. In addition, some companies
provide support services for OSS SBOM tools, and users of OSS SBOM tools are
expected to receive support as needed.

While various commercial and OSS SBOM tools are available, it is desirable to
organize the viewpoints of selection considering the development language of the
target software and restrictions within the organization and to evaluate and select
SBOM tools based on this viewpoint. Examples of possible selection viewpoints
include those shown in Table 4-2.

47

Table 4-2 Viewpoints for selecting SBOM tools
Viewpoints Description

Functions

SBOM tools have the following functions: component analysis,
automatic matching of vulnerability and license information, risk
quantification, visualization of dependencies and vulnerability
information, automatic tracking of vulnerability and license
information, alert function when a new vulnerability is detected,
automatic reporting of advisory information, and import function
of SBOM data. Since each SBOM tool supports different functions,
it is advisable to sort out which functions are necessary based on
the purpose of the SBOM introduction and the scope of the SBOM
application.

Performance

In the detection of OSS and the matching of vulnerability and
license information, the degree of false positives and false
negatives is an important indicator. In addition, it is also
important to determine how quickly new vulnerabilities are
reflected in the tool when they are found. It is desirable to clarify
what level of performance20 is required, based on the purpose of
the SBOM introduction and the scope of the SBOM application.

Analyzable
information

Information about components that can be analyzed varies,
depending on the SBOM tool. Many commercial tools can
automatically analyze the vulnerability and license information of
components, and there are also tools specialized in analyzing
vulnerability information and license information. It is desirable
to sort out which information is necessary based on the purpose
of the SBOM introduction and the scope of the SBOM application.

Analyzable
data format

SBOM tools have conditions on the data formats that can be read
during component analysis. It is desirable to determine data
formats to be used for analysis, such as file format (compatibility
by extension), type of supported package manager, and OS/CPU
architectures on which the software can run.

20 Methods for understanding tool performance include the following: using a free trial, loading
the actual software to be analyzed and the SBOM, etc. to be used into the tool, and confirm that
the tool can output accurate information; and checking with the developer or distributor of the
tool vendor's database for specifications such as the number of OSS and vulnerabilities included
in the database, the source of vulnerability information (JVN, NVD, etc.), and the update
frequency of the database.

48

Viewpoints Description

Cost

In the case of commercial SBOM tools, a tool license fee is
required. The fee structure differs depending on the tool, but
many tools are offered on an annual subscription basis. Some
tools offer multiple OSS analysis methods as an option, and
others offer a plan that enables various consultations on OSS
management, not only for responding to inquiries. The license fee
is calculated in various ways depending on the number of
developers, the scale of the organization, and the amount of
analysis code. Depending on the tool, there may be economies of
scale when the entire organization adopts the tool even if it is
expensive. It is desirable to determine how much cost can be
spent on SBOM tools, taking into account the cost constraints
within the company.

Supported
formats

Depending on the SBOM tool, it is possible to import/create
SBOMs only in a specific SBOM format (SPDX, SPDX-Lite,
CycloneDX, SWID tags, etc.). As for SBOM creation, most SBOM
tools support multiple SBOM formats, while as for SBOM import,
there are fewer products that support multiple SBOM formats. It
is desirable to determine which SBOM formats need to be
supported, based on the scope of SBOM application.

Components
analysis
method

Components in software can be analyzed in three major ways:
code matching, dependency detection, and string detection. Code
matching is a method to detect OSS by matching a code with OSS
databases. In addition to exact matching, there is a partial
matching method called snippet matching. There is also a method
of matching by binary patterns. Dependency detection is a
method to detect direct and indirect OSS obtained with a package
manager; the possibility of false detections is low. String
detection is a method to detect applicable licenses by analyzing
software license strings. Some SBOM tools combine multiple
analysis methods for OSS analysis and some tools support only
some analysis methods. Therefore, it is desirable to organize and
clarify which OSS analysis method should be adopted, based on
the code information that can be prepared when creating SBOM.

49

Viewpoints Description

Support
systems

As for commercial tools, there are SBOM tools that allow users to
inquire the vendor about the implementation and operation of the
tool. As an option, some tools offer a plan that allows users to
consult with the vendor on various aspects of OSS management,
not limited to inquiries about the tools. Some companies provide
support services for OSS tools as well, the users can receive
assistance as needed. It is desirable to determine the level of
support needed, taking into consideration the scope of the SBOM
application and the knowledge level of the personnel in charge of
SBOM introduction.

Coordination
with other

tools

There are SBOM tools that can be integrated with the
development environment, build tools, software version control
tools, communication tools, etc. For the purpose of improving the
efficiency of the entire software development life cycle, such as
automation of SBOM creation, it is desirable to be able to
integrate with tools already in use in the organization. It is also
desirable to clarify what kind of tools need to be linked with.

Form of
provision

There are two types of SBOM tools: packaged version and cloud
version. With packaged SBOM tools, there is a possibility of
incurring server maintenance costs in addition to tool fees, and
the environment in which the tool can be deployed may be
limited. With the cloud version, the initial installation cost and
workloads required for SBOM sharing can be reduced compared
to the packaged version. However, it is necessary to confirm in
advance that there is no risk of transmitting externally highly
confidential source code information of the company. It is
desirable to determine which type of provision is more suitable
for the organization, taking into account the system constraints
within it.

User
interface

Some SBOM tools provide only a command line interface (CLI),
while others also provide a graphical user interface (GUI). GUI-
compatible tools enable the intuitive creation of SBOMs and
visualization of the output results. It is desirable to determine
what kind of user interface tools are required, taking into
consideration the knowledge level of the personnel in charge of
SBOM introduction.

50

Viewpoints Description

Operation
method

When developers execute SBOM tools by themselves, they can
reduce their workload by selecting SBOM tools that are linked to
their development environment and automatically perform
analysis in the background. On the other hand, if a specialized
team such as an analysis team executes an SBOM tool, it will be
easier to examine the analysis results by selecting an SBOM tool
that provides sufficient supplementary information such as policy
functions and licenses.

Supported
software
language

SBOM tools support different software development languages;
many tools support representative languages such as C, C++,
Java, Python, Ruby, Swift, Go, etc. For some languages, however,
the number of tools that support them may be limited. Based on
information collected concerning the target software, it is
desirable to determine which SBOM tools should be implemented
for which development languages.

Japanese
support

Currently, most SBOM tools are developed overseas. Therefore,
in some cases, instruction manuals and README files are
provided only in English, and in other cases, the tools themselves
do not support Japanese. If it is difficult to use tools provided only
in English, it may be better to consider prioritizing tools with
Japanese support, after considering the purpose of the
organization's SBOM introduction and other points of view21 .
Some sales agents of commercial tools or companies that provide
support for OSS tools may provide documents related to SBOM
tools translated into Japanese.

Based on the purpose and scope of the SBOM introduction, it is desirable to
evaluate and select SBOM tools after determining in advance what level of content
is required for each point of view. For example, if the budget available for SBOM
introduction is limited, it is expected to select an OSS SBOM tool that is compatible
with the company's development language and capable of outputting an SBOM in
the desired format. If enough budget is allocated to implement commercial tools,

21 For example, if there is a possibility of joint operation of SBOM tools with the company's
overseas offices, overseas business partners, foreign suppliers, etc., it is desirable to select tools
based on their functions, performance, and operation methods rather than prioritizing Japanese
support.

51

it is expected that multiple tools will be evaluated and selected based on
comprehensive consideration of functionality, performance, cost, and other factors.
It should be noted that the use of multiple SBOM tools may be inefficient, except
in cases where each business unit or development project has a different viewpoint
on the optimal tool to be sought.

In the evaluation and selection of tools, it is expected that agents who handle
SBOM tools will be consulted. By experiencing the actual feeling of use and
evaluating the difficulty and required period of operation learning, using a free
trial22 before implementing the SBOM tool, it is possible to perform a trial analysis
of the source code of a project that is assumed to be a typical product or application
in the company and to check whether the expected results are obtained. In addition,
if it is difficult to set or select viewpoints, the organization should consult with
distributors who handle multiple SBOM tools and select one by comparing and
evaluating the features, advantages, and disadvantages of each tool, while
obtaining information about many tools.

4.3. SBOM tools installation

[Actions for the introduction of SBOM]

□ Check the requirements of the environment where the SBOM tool can be
installed and set up the environment.

□ Check the instruction manual and README file of the tool and then implement
and configure an SBOM tool.

[Points to be aware of for SBOM introduction]

 In the case of commercial SBOM tools for which a support system is in place,
the implementation and configuration of a tool can be done efficiently by
contacting the sales agent or tool vendor and receiving their assistance.

 OSS SBOM tools may require the burden of trial-and-error configuration
because information about tool construction and configuration may be
lacking. Effective implementation and configuration of an OSS SBOM tool can

22 It is effective to organize the functions and use cases to be evaluated before conducting a
trial, and to formulate a specific trial plan.

52

be achieved by obtaining assistance from companies that provide support
services related to OSS tools, if necessary.

 When using an SBOM tool for vulnerability management, it is necessary to
monitor the operation of the SBOM tool and to back up the data regularly to
prevent the SBOM tool from stopping due to failures or other reasons and to
prevent vulnerability detection from being delayed.

The environment in which the SBOM tool can be installed differs depending on the
SBOM tool. For example, the PC on which an SBOM tool runs may be required to
have an internet connection, certain machine specifications, a specific OS, a
specific browser installed, or a Java or Python execution environment. Also, some
SBOM tools limit the installable OS solely to Linux, while a separate virtual machine
environment may be required when installing on a Windows terminal. Therefore,
when implementing and configuring an SBOM tool, it is necessary to first confirm
the requirements for the implementation of the tool and build an environment for
the implementation.

After the environment for SBOM tool installation is in place, the organization
actually implements and configures the SBOM tool for SBOM production. Basically,
the implementation and configuration should be done by checking the user's
manual and README file. However, for commercial SBOM tools that have a well-
developed support system, the implementation and configuration can be done
efficiently with the help of a sales agent or tool vendor. Some sales agents offer
services for environment construction and initial settings on behalf of their
customers, so it is a good idea to consider using such services if necessary. Certain
SBOM tools lack information about tool construction and configuration. In addition,
since many OSS SBOM tools are developed overseas, the documents for reference
are often available only in English. For this reason, it is assumed that the SBOM
tool may be configured by trial and error, for example, by inputting sample codes
and checking whether a desired SBOM is outputted or not. If necessary, companies
that provide support services for OSS tools may be used in effectively
implementing and configuring an OSS SBOM tool.

When using an SBOM tool for vulnerability management, it is necessary to monitor
the operation of the SBOM tool and perform regular backups of data to prevent
the SBOM tool from stopping due to failures or other reasons and to prevent a
delay in vulnerability detection.

53

4.4. Learning about SBOM tools

[Actions for the introduction of SBOM]

□ Learn how to use SBOM tools by checking the instruction manual and README
file of the tool.

□ Record know-how on how to use the tool and the outline of each function and
share them within the organization.

[Points to be aware of for SBOM introduction]

 With commercial SBOM tools that have a support system, users can learn
how to use the tools efficiently by making inquiries to their sales agents or
tool vendors.

 By using tools through trial and error by creating sample SBOMs, users can
learn how to use their tools efficiently.

After an SBOM tool has been implemented and configured, it is desirable to learn
how to use the tool. Basically, the user should learn how to use the tool by checking
the instruction manual and the README file. With a commercial SBOM tool for
which a support system is available, the user can efficiently learn how to use the
tool by making inquiries to the sales agents or tool vendors. Compared to OSS
tools, commercial tools are more sophisticated, and it may take time to learn all
the functions. The user may check with the sales agent or tool vendor regarding
the functions necessary for the production of the SBOM that the organization
desires to create and then learn how to use the tool by focusing on those functions.
It is also effective to learn how to use the tool through trial and error by creating
sample SBOMs. This is especially effective in the case of tools for which information
about how to use is lacking. Since the specific usage of the tool differs from
organization to organization, it is desirable to record the know-how on the usage
of the tool and the outline of each function identified through the learning process
and to share them within the organization.

54

5. SBOM production and sharing phase

Based on the established environment and system, organizations are required to
actually create SBOMs and provide them as needed. This chapter discusses what
SBOM-introducing organizations should do during the SBOM creation and sharing
phase, as well as the points that SBOM-introducing organizations should be aware
of.

5.1. Component analysis

[Actions for the introduction of SBOM]

□ Scan the target software and analyze the component information using an
SBOM tool.

□ Examine the analysis log of the SBOM tool and check whether the analysis has
been correctly executed without any false positives or false negatives caused
by errors or lack of information.

□ Check the component analysis results to see if there are any false positives
and false negatives.

[Points to be aware of for SBOM introduction]

 SBOM tools can be used to analyze components and create SBOMs more
efficiently than the manual method. The effect of using an SBOM tool is
greater when the number of components is larger.

 In some cases, it is effective to use the configuration information of a package
manager. In some cases, the package manager may also be used to identify
granular components that cannot be identified by an SBOM tool.

 False positives and false negatives of components may occur. For example,
components such as symbolic links and runtime libraries, deep hierarchical
components, and components used only in specific fields may not be
detected. Even if components are identified, their version information may be
wrong.

 The output results differ, depending on the component analysis method in the
SBOM tool. In the case of analysis based on dependencies, the possibility of

55

false detection is extremely low, but in the case of other analysis methods,
there is a possibility of false positives and false negatives. In the case of
analysis based on binary files, there is an advantage that only binary files can
be used for analysis even when source codes are not available. There is a
possibility, however, that the accuracy of analysis will decrease when only
binary files are used.

 Analysis results may differ, depending on the environment (execution
environment, development environment, etc.) in which components are
analyzed.

 Since OSS that does not exist in the SBOM tool database cannot be detected,
additional measures may be needed, such as manually adding information
about the component from the SBOM tool console.

 Component relationships in an SBOM created with an SBOM tool may differ
from the actual software configuration and need to be analyzed with
appropriate settings.

 It takes a particularly large number of workloads to check for false positives
and false negatives related to sub-tier components and third-party
components. Since it is difficult to guarantee false negatives, the check must
be based on the trade-off between the degree of accuracy and the workloads
required to deal with the problem.

 By considering the analysis method of the SBOM tool, false positives and false
negatives can be efficiently checked.

The PoCs confirmed that the SBOM tool can analyze components and create SBOMs
more efficiently than the manual method. For example, in the PoC for dental CTs
in the medical device industry, it was confirmed that manual SBOM creation
required more than 30 workloads, while SBOM creation using an SBOM tool
required only 0.15 workloads, leading to a reduction of 99% or more. Therefore,
it is realistic to analyze components and create and manage SBOMs using SBOM
tools, and this section is also written assuming that SBOM tools will be used. In
some cases, a package manager may be able to identify fine-grained components
that cannot be identified by SBOM tools, and SBOM may be created effectively by
utilizing the configuration information of the package manager. In addition, SBOMs
can be created efficiently by receiving SBOMs from software suppliers when
possible.

56

To produce an SBOM, the organization first scans the target software with an SBOM
tool and analyzes the component information. The scanning method differs
depending on the SBOM tool. In some cases, analysis is performed by specifying
the target software from the GUI, while in other cases the analysis is performed
via the CLI. For the method of analysis, organizations should check the instruction
manual or README file of the implemented SBOM tool. By analyzing the SBOM
tool, organizations can identify the names of components, supplier names, versions,
and dependencies among components that are included in the target software.
However, it should be noted that there may be cases of false positives and false
negatives of components. In fact, the following points were found in the PoCs:

 Components whose entities, such as symbolic links and runtime libraries,
were not included in the SBOM tool scan, were not detected.

 Compared to the detection results for the top-level components, the false
negative rate was high for the lower-level components. However, in some
cases, only lower-level components were detected without top-level
components being detected, indicating that the detection rate does not
necessarily vary depending on the hierarchy of components.

 Components related to controls used only in specific areas were not detected.

 Several components were detected with incorrect version information.

 The output results differed depending on the component analysis method of
the SBOM tool. The results of the binary scan using only binary files showed
that only about 10% of the components were detected, compared to the
number of components detected in the normal scan.

 The analysis results differed depending on the environment in which the
components were analyzed. When a scan was performed in the development
environment, uninstalled packages that were not actually used in the product
were also detected.

 No OSS that did not exist in the SBOM tool database was detected,
necessitating adjustment of the analysis results, such as manually adding
component information from the SBOM tool console.

 Depending on the repository and settings of the SBOM tool, the configuration
information of the components in the SBOM was different. There were cases
in which the relationship of components in the SBOM created with the SBOM
tool was different from the actual software configuration.

57

 In some cases, the components detected by the SBOM tool did not match
the components extracted by the package manager.

Therefore, it is important to check the output results for false positives and false
negatives, instead of using the SBOM tool output results as they are. The
viewpoints and methods of checking the results for false positives and false
negatives are shown in Figure 5-1. In some cases, it is practically difficult to check
all the components comprehensively, because the confirmation of false positives
and false negatives is basically a manual process. In the PoCs, some components
require 0.50 hours/component to check for false positives and false negatives,
which means that a large number of workloads are required to check for false
positives and false negatives in the case of software with a large number of
components. In particular, checking for false positives and false negatives related
to sub-tier components and third-party components requires a large number of
workloads. Since it is difficult to guarantee the absence of false negatives, checks
should be based on the trade-off between the degree of accuracy and the support
workloads.

58

Figure 5-1 Perspectives and methods of checking component analysis

results

When checking for false negatives, it is important to consider the analysis method
of the SBOM tool. There are three major methods of component analysis in SBOM
tools: code matching, dependency detection, and string detection. Dependency
relationship detection is a method to detect direct and indirect OSS obtained by a

Points to check How to check

Is the tool operating properly? (i) Check the execution log of the tool for errors.

Are the
component
analysis
results
correct?

Are
components
being mis-
detected?

(ii) Check whether the component being output is
included in the target software. If the match type is not
an exact match, check whether the component may
have been modified.
(iii) (If the decision cannot be made in (ii)) Based on
the component name outputted, compare the source
code obtained from external sources such as GitHub
with the source code of the target software.

Are the
components
included (no
omissions
detected)?

(iv) Check whether the components included in the
target software are included in the output results.

Are modified
components
detected?

(v) Based on the results of snippet analysis, compare
the source code of the target software with the original
source code.

Are there any
undetected
components?

(vi) Extract the copyright of the target software are and
check if the detected components are included in the
output results

Copyright
extraction results

Log

SBOM tool

Log
Output
result

Snippet analysis
results

Source code for
external sources

Target
software

(i)

(ii)

(iii)

(iv)

(vi)

(v)

Analysis

Output

Extract
copyrights

Output

59

package manager; the possibility of false detections is low. On the other hand, in
the case of analysis by code matching or string detection, there is a possibility of
false positives and false negatives. In addition, in the case of scans based on binary
files, it was found that many false negatives have occurred. Since the degree of
occurrence of false positives and false negatives varies depending on the
component analysis method, it is desirable to check for false positives and false
negatives based on the analysis method of the SBOM tool in use. For example, in
the case of analysis based on binary files, there is an advantage that only binary
files can be analyzed even when source code is not available. On the other hand,
it is expected that false positives and false negatives are checked for, while taking
into account, among other things, the possibility that a large number of false
positives and false negatives may occur when only binary files are used. There is
also a possibility that the analysis is not being performed properly due to
insufficient parameter settings of the SBOM tool, failure of package manager
execution, or other reasons, resulting in false positives and false negatives. Even
if the tool seems to be terminated normally on the surface, it may be terminated
by skipping a part of the internal analysis process due to an error. Therefore, it is
necessary to check the execution log of the tool to see if such an error has occurred.

If, as a result of the confirmation of false positives and false negatives, it is found
that unknown information is contained, it is desirable to understand such
information as “known unknowns”. Known unknowns are facts that are unknowns
but considered as knowns, which are also referred to in the “Minimum Elements”
of the SBOM, as shown in Table 2-3. When sharing a created SBOM with users and
suppliers of the target software, the transparency of the information can be
enhanced by sharing the “known unknowns” as well.

5.2. SBOM production

[Actions for the introduction of SBOM]

□ Determine the requirements for the SBOM to be produced, such as items,
format, and output file format.

□ Produce an SBOM that satisfies the requirements, by using the SBOM tool.

[Points to be aware of for SBOM introduction]

60

 Considering the purpose of creating and sharing an SBOM, full accurate
information should be included in the SBOM.

 When a component is used that is provided by a third party, such as an OSS
community, it may be able to receive an SBOM of the component. However,
if the component is used after being modified within the organization, it will
not be able to use the provided SBOM as it is.

 By setting the names in the SBOM from the viewpoint of SBOM users, it is
possible to eliminate rework after the SBOM is shared.

Produce an SBOM based on the analyzed component information. When creating
an SBOM, it is necessary to determine in advance the requirements regarding the
SBOM, such as the items to be included in the SBOM, the format, and the output
file format. For these requirements, regulations/requirements may specify the
format and items of the SBOM. In the SBOM format, no information
(NOASSERTION) is allowed, but considering the purpose of creating and sharing
the SBOM, it is desirable that the correct information is fully entered in the SBOM.
If a component provided by a third party such as a third party or OSS community
is used, organizations may be able to receive the SBOM for the component. By
receiving SBOMs from a third party, it is possible to create SBOMs efficiently, and
organizations may also use them to examine the SBOMs created by the company.
It should be noted that there are contractual and licensing issues regarding
whether or not to request communities or individuals to provide SBOMs. In addition,
if organizations are using a component provided by a third party after modifying it
in their own organization, organizations should be careful because the provided
SBOM cannot be used as it is. In addition, users and suppliers of software that may
share an SBOM may specify the SBOM. It is necessary then to determine the
requirements for the SBOM in consideration of their situation. Since the specific
SBOM creation method differs depending on the tool, please refer to the user's
manual or README file of the SBOM tool implemented.

SBOMs should not only be created but also be managed continuously, and the date
and time of creation of an SBOM should be clearly recorded. In order to enhance
the transparency of the software supply chain, it is desirable to share a created
SBOM as necessary with the users and suppliers of the target software. In sharing
the SBOM, it is required to confirm that the necessary information is included.

The created SBOM may include not only component information but also

61

information configured on the SBOM tool, such as project name. It is desirable to
consider whether this information is easy for SBOM users to utilize. When
components are managed with the SBOM tool from the development stage, project
names and version information used there are reflected in SBOM. There is then a
possibility that information that was previously used only within the company will
be shared with SBOM users. By setting names in the SBOM that can be understood
by SBOM users, it is possible to eliminate rework after sharing the SBOM.

5.3. SBOM sharing

[Actions for the introduction of SBOM]

□ Share an SBOM with the users and/or suppliers of the target software as
necessary after determining the method of sharing the SBOM.

□ Consider using electronic signature technology or other technologies to
prevent falsification of the sharing of SBOM data.

[Points to be aware of for SBOM introduction]

 Different SBOM sharing methods may be adopted, depending on the SBOM
tool used by the supplier.

 Various SBOM sharing methods will be available to different users. When
sharing an SBOM with users, it is necessary to examine the advantages and
disadvantages of each SBOM sharing method.

From the viewpoint of increasing the transparency of the software supply chain, it
is desirable as necessary to share a created SBOM with users and suppliers of
software. When sharing an SBOM is required by regulations or requirements, it is
necessary to share the SBOM with appropriate parties in an appropriate manner in
accordance with the contents specified in the regulations or requirements. When
considering an SBOM sharing method, it should be noted that the contents of many
SBOMs change dynamically after their creation due to the version-up of
components. As described in Section 2.5, it is not mandatory to disclose SBOMs.
SBOM creators and suppliers are encouraged to decide how to share SBOMs at
their own discretion.

62

When sharing an SBOM with suppliers, the sharing method varies, depending on
the SBOM tool used by the supplier. In general, if an organization and the recipient
use the same SBOM tool, it is relatively easy to share the SBOM with the recipient.
Especially in the case of commercial SBOM tools, the SBOM can be shared between
the organization and its users or suppliers by using the same SBOM tool in the
cloud. On the other hand, if the organization, users, and suppliers use different
SBOM tools, there may be restrictions on the SBOM formats, depending on the
tools. It is desirable to discuss SBOM sharing methods and contents of a shared
SBOM with suppliers, in advance. Currently, there are only a limited number of
tools that can import SBOMs generated with other tools and use them for
vulnerability management. Therefore, care should be taken when discussing with
users and suppliers.

Various methods may be available for SBOM sharing with users. For example, an
SBOM sharing method may be integrated into the product so that the SBOM can
be checked from within the product; the SBOM sharing method may be published
in a repository accessible to users; or a common SBOM tool may be used for
sharing SBOM data. When sharing SBOM with users, it is desirable to select an
SBPM sharing method, taking into account the characteristics and frequency of
updates of SBOM target software, SBOM usage status among users, and so on. In
addition, in order to ensure the reliability of SBOM data itself when sharing an
SBOM, it is necessary to consider the use of digital signature technology,
distributed ledger technology, or other technologies to prevent tampering.

63

6. SBOM use and management phase

In order to enjoy the benefits of SBOMs, it is required to operate and manage
SBOMs that have created. This chapter shows the items that the SBOM-
implementing organization should implement, as well as the points that SBOM-
implementing organizations should note, in the SBOM operation and management
phase.

6.1. Vulnerability management, license management, etc.

[Actions for the introduction of SBOM]

□ Based on the output of the SBOM tool, assess the severity, evaluate the
impact, fix the vulnerabilities, check the residual risk, and provide information
to the relevant organizations.

□ Based on the output of the SBOM tool, check whether there is any violation of
the OSS license.

[Points to be aware of for SBOM introduction]

 The vulnerability information and license information outputted by the SBOM
tool may be incorrect, so it is necessary to check the output results.

 If the EOL of a component cannot be identified by the SBOM tool, it is
necessary to investigate it separately.

In this phase, vulnerability management, license management, etc. are performed
based on the created SBOM. As mentioned above, since SBOM is a method of
software management, it is important to appropriately manage software using an
SBOM. Therefore, vulnerability management and license management need to be
implemented on SBOM data provided by third parties. In vulnerability management,
it is necessary to check, based on the outputs of the SBOM tool, whether the
components included in the software are vulnerable or not. If a vulnerability is
found, countermeasures must be taken against it. As a specific vulnerability
response, it is desirable to locate the vulnerability, analyze the scope of impact,
estimate and evaluate the risk, confirm the acceptability of the risk, and prioritize

64

the vulnerability response. Then, after identifying the related security issues, it is
desirable to evaluate the severity of the vulnerability and make a decision on
urgency. When a vulnerability is identified in the proprietary software of the
company, the related software users should be notified appropriately. When a
vulnerability is identified in third-party components such as OSS and general-
purpose software, the vulnerability should be notified to the suppliers of those
components. It should be noted that in the analysis of the impacted area of
vulnerability, it is necessary to identify and analyze not only the source code but
also development documents such as requirement definitions, specifications, and
test specifications that need to be updated. As an example of countermeasures for
this point, the PoC conducted in FY2021 confirmed that it was possible to reduce
the workloads required for identifying the affected scope of vulnerabilities, by
linking the SBOM tool with an existing configuration management tool.

When managing an SBOM manually, it is necessary to manually identify each
vulnerability, assess each vulnerability individually, and consider how to respond to
each vulnerability. Since vulnerability information is updated on a daily basis,
manual operation and management of an SBOM is impractical. Therefore, as
shown in Figure 6-1, SBOM tools are expected to be used for vulnerability
management as well. It should be noted that there is a large difference between
commercial and OSS SBOM tools in the range of vulnerability matching. Some OSS
tools do not have a vulnerability matching function, while some commercial tools
have enhanced vulnerability information databases such as NVD and JVN, as well
as their own vulnerability information database, to expand the scope of
vulnerability matching. Some commercial SBOM tools automatically match
analyzed components with vulnerability information and information about the
severity, risk, and remedies of the vulnerabilities, thus making it possible to quickly
find vulnerabilities, assess their severity, and determine remedies. However, even
if vulnerability information is identified, if specific remedies are not provided, it is
necessary to consider remedies separately based on the details of each
vulnerability.

65

Figure 6-1 Comparison of vulnerability management procedures followed

manually or with an SBOM tool

One of the points to note when managing vulnerabilities based on an SBOM tool is
that the vulnerability information outputted by an SBOM tool may contain errors.
In some cases, the OSS SBOM tools used in the PoC outputted incorrect information
about the severity of vulnerabilities, and it was necessary to manually investigate
the vulnerability information. There is a possibility of false positives and false
negatives in the analysis of components; there is also a possibility of errors in the
output results of vulnerability information. It is then necessary to check the output
results. Some SBOM tools perform vulnerability matching based on not only
vulnerability information in public vulnerability information databases such as NVD
but also vulnerability information based on tool vendors' own surveys, which may
enable vulnerability management based on a wide range of vulnerability
information.

Based on the outputs of the SBOM tool, it is necessary to check the license
compliance status of the components included in the software. If it is determined
that it is impossible or difficult to comply with the license conditions regarding the
assumed usage of the component in question, it is necessary to take measures
such as changing the component itself or the usage method. As in the case of
vulnerability management, it is more practical to use SBOM tools instead of manual
management.

SBOM tools can efficiently identify vulnerabilities and license information of
components included in the target software. It is generally difficult to identify the

Legend

Automated

Identify components having
vulnerabilities

Confirm whether the vulnerability
is affected

Actual impact survey

Production and
managing

an SBOM based
on SBOM tool

Manually
vulnerability
management

Manually identify the list of
components used by the

target product and examine
them closely based on

the component name and
version. Then, confirm

that the affected component
is not used.

Verify the conditions under
which vulnerabilities are
established and other

conditions to see if
they have any impact.

Verify the conditions under
which vulnerabilities are
established and other

conditions to see if
they have any impact.

Use NVD or other vulnerability
databases to obtain detailed

information on CVEs and
identify affected components.

Analyze the components included in the target software by using
the SBOM tool. The tool will show matching results with vulnerabilities

related to the analyzed components. Based on the results, confirm
the vulnerability of the component, including its impact.

66

EOL of components using tools, and it is necessary to identify them manually. Since
there are some components that have no information about EOL, it is desirable to
avoid using such components as much as possible.

6.2. SBOM information management

[Actions for the introduction of SBOM]

□ Keep the created SBOM for a certain period of time, including the change
history, so that it can be referred to in case of inquiries from outside the
company.

□ Manage the information contained in the SBOM and the SBOM itself
appropriately.

[Points to be aware of for SBOM introduction]

 Information about new vulnerabilities can be immediately obtained by using
an SBOM tool that automatically updates and notifies vulnerability
information. If automatic management using a tool is not possible, it is
necessary to cover the situation in terms of operation by appointing a
separate person in charge, but this requires more workload.

 SBOMs can be most effectively managed by the department corresponding
to PSIRT in the organization, or by the quality control department if there is
no department corresponding to PSIRT.

The created SBOMs shall be retained for a certain period of time, including a
change history so that they can be referred to in case of inquiries from outside the
company. The SBOMs should be retained for a minimum period of time while the
product is generally distributed in the market. Even after the end of sales, it is
necessary to maintain SBOMs for reference in advance because they may be
referred to as necessary during the warranty period, support provision period,
replacement parts provision period, and so on. In addition, if there is an individual
specification in the license conditions of the component used, such as three years
after the end of product provision, the period should also be taken into
consideration. It is also assumed that the SBOM modification history will be stored
in the asset management system so that the SBOM information can be associated

67

with the shipped products.

Given that the contents of software covered by an SBOM change dynamically and
that vulnerability information is updated on a daily basis, the information contained
in the SBOM needs to be updated and managed periodically. By using an SBOM
tool that automatically updates and notifies vulnerability information, information
about new vulnerabilities can be immediately obtained. If automatic management
using a tool is not possible, operations must be covered, for example, by separately
appointing personnel to be in charge. In such a case, it should be noted that it
requires more workload than management with SBOM tools.

Regarding the SBOM management system, it is desirable from the viewpoint of
vulnerability management that the PSIRT or a similar department in the
organization take the lead in SBOM management. In addition, by utilizing created
SBOMs, PSIRTs can reduce the workloads required for narrowing down the OSS
actually used in users' environments, thus enabling more efficient vulnerability
countermeasures and monitoring. Even if there is no department equivalent to
PSIRT, vulnerability management should be conducted under a certain policy, for
example, SBOMs being managed by the quality control department. If there is a
team in charge of quality control across the company, it would be possible to
operate under a certain policy by defining and managing SBOMs as a deliverable
and addressing vulnerabilities by utilizing SBOMs as part of quality control. If there
is no quality control department, it is expected that a specific product development
team will first implement an SBOM tool and then accumulate know-how concerning
the creation, operation, and management of the SBOM. After that, it is desirable
to improve the level of SBOM introduction in the company by horizontally deploying
the obtained know-how to other development teams to promote SBOM
introduction into each team.

7. Appendix

7.1. Checklist of actions for the introduction of SBOM

The following checklist summarizes the items to be implemented in the three
phases of SBOM introduction: the environmental and system development phase,
the SBOM production and sharing phase, and the SBOM use and management
phase.

Table 7-1 Checklist of actions for the introduction of SBOM
Phase Step Actions for the introduction of SBOM Check

Environment
and system
development
phase

Clarification
the scope of
the SBOM
application

Clarify information about the target
software, such as information about
development language, component type,
development tools, etc.

□

Create an accurate configuration
diagram of the target software and
visualize the target of the SBOM
application.

□

Clarify the contractual form and business
practices with users and suppliers of the
subject software.

□

Confirm regulations and requirements
for SBOM regarding the target software. □

Clarify the constraints within the
organization (e.g., system constraints,
cost constraints) regarding the
introduction of SBOM.

□

Clarify the scope of the SBOM
application 5W1H (Five Ws and How)
based on the organized information.

□

SBOM tools
selection

Organize the viewpoints for the
selection of SBOM tools considering the
development language of the target

□

69

Phase Step Actions for the introduction of SBOM Check
software and the constraints within the
organization.
(Examples of selection perspectives:
functions, performance, analyzable
information, analyzable data format,
cost, supported formats, component
analysis method, support systems,
coordination with other tools, form of
provision, user interface, operation
method, supported software languages,
Japanese support, etc.)
Evaluate and select multiple SBOM tools
based on the organized viewpoints.

□

SBOM tools
installation

Check the requirements of the
environment where the SBOM tool can
be installed and set up the environment.

□

Check the instruction manual and
README file of the tool and then
implement and configure an SBOM tool.

□

Learning
about SBOM
tools

Learn how to use SBOM tools by
checking the instruction manual and
README file of the tool.

□

Record know-how on how to use the
tool and the outline of each function and
share them within the organization.

□

SBOM
production
and sharing
phase

Component
analysis

Scan the target software and analyze
the component information using an
SBOM tool.

□

Examine the analysis log of the SBOM
tool and check whether the analysis has
been correctly executed without any
false positives or false negatives caused
by errors or lack of information.

□

Check the component analysis results to
see if there are any false positives and
false negatives.

□

70

Phase Step Actions for the introduction of SBOM Check
SBOM
production

Determine the requirements for the
SBOM to be produced, such as items,
format, and output file format.

□

Produce an SBOM that satisfies the
requirements, by using the SBOM tool.

□

SBOM
sharing

Share an SBOM with the users and/or
suppliers of the target software as
necessary after determining the method
of sharing the SBOM.

□

Consider using electronic signature
technology or other technologies to
prevent falsification of the sharing of
SBOM data.

□

SBOM use
and
management
phase

Vulnerability
management,
license
management,
etc.

Based on the output of the SBOM tool,
assess the severity, evaluate the impact,
fix the vulnerabilities, check the residual
risk, and provide information to the
relevant organizations.

□

Based on the output of the SBOM tool,
check whether there is any violation of
the OSS license.

□

SBOM
information
management

Keep the created SBOM for a certain
period of time, including the change
history, so that it can be referred to in
case of inquiries from outside the
company, etc.

□

Manage the information contained in the
SBOM and the SBOM itself appropriately.

□

71

7.2. Glossary

 Terms related to SBOMs and software

 Attribute
A characteristic or information about a component. In the case of SBOM in
matrix format, it an attribute corresponds to a column.

 Codebase
The entire source code used to build a particular piece of software, application,
component, etc.

 Component
A unit of software-defined by a supplier. A component is defined when it is built,
packaged, or delivered by a supplier. Software products, equipment, libraries,
and/or single files are also positioned as one component. An aggregation of
components, such as OS, office suites, database systems, automobiles,
automobile engine control units (ECU), medical image processing equipment,
and installation packages, is also a component. Many components contain
subcomponents.

 Dependency Relationship
A characterization of the relationship where software Y contains an upstream
component X.

 Element
A part of the SBOM system.

 Entity
A company, association, organization, or individual associated with software or
components.

 EOL（End of Life）
An expiration date is when a product or service is no longer sold or supported
and should not be used continuously.

 Intermediate Supplier
A supplier that processes an upstream component into a new component for
the downstream process. Many suppliers are treated as intermediate suppliers.

 Minimum Elements
The minimum elements to be included in an SBOM as announced by the NTIA

72

on July 12, 2021, based on Executive Order 14028 of the U.S. Specific
definitions are provided based on three categories: data fields, automation
support, and practices and processes.

 OTS（Off-The-Shelf）
A component of software that is commonly used by a supplier and for which
the supplier cannot claim full software lifecycle management.

 OSS（Open Source Software）
A software whose source code has been made publicly available. Anyone is
permitted to use, modify, and redistribute it.

 Primary Component
A target component described by the SBOM.

 Proprietary Software
A software whose intellectual property is retained by a software distributor and
whose modification or reproduction is restricted.

 Relationship Assertion
An extent of one author's knowledge of another supplier's components. There
are four categories: Unknown, Root/None, Partial, and Known.

 Run-time Library
A library required for program execution.

 SBOM（Software Bill of Materials）

An SBOM is a formal, machine-readable inventory of software components and
dependencies, information about those components, and their hierarchical
relationships. These inventories should be comprehensive – or should explicitly
state where they could not be. SBOMs may include open source or proprietary
software and can be widely available or access restricted.

 SBOM Author
An entity that creates an SBOM. When the author and supplier are different,
this indicates that one entity (the author) is making claims about components
created or included by a different entity (the supplier).

 SBOM Consumer
An entity that obtains SBOMs. An entity can be both a supplier and consumer,
using components with SBOM data in its own software, which is then passed
downstream. An “end-user” consumer (that is not also a supplier) may also be
called an operator or a leaf entity.

73

 SBOM Entry
An attribute related to a component of SBOM. In the case of a matrix SBOM, it
corresponds to a row.

 SBOM System
A set of elements and processes that provide the ability to create, exchange,
use, and manage SBOMs.

 SBOM Tool
A tool to produce, share, utilize, or manage SBOMs. An SBOM tool is also
sometimes called an SBOM management tool, OSS management tool, or
software configuration analysis (SCA) tool. In addition to a tool provided in a
package, there are also tools provided as cloud software.

 SCA (Software Composition Analysis）
In a narrow sense, to identify the components used by the product. Generally,
it is designed to manage vulnerabilities and license risks for each identified
component.

 Snippet
A code fragment within a source code.

 Subcomponent
A component contained in a component.

 Supplier
An entity that develops, defines, and identifies a component, ideally an entity
that creates an SBOM associated with that component. Suppliers are also
called manufacturers, vendors, developers, system integrators, maintenance
operators, and service providers. Most suppliers are also SBOM users. A supplier
having no upstream components is also called a root entity.

 Symbolic Link
One of the functions in the OS file system, or another file indicating a specific
file or directory.

 Transitive Dependency
A characterization of the relationship that if an upstream component X is
included in software Y and component Z is included in component X then
component Z is included in software Y.

 VEX（Vulnerability Exploitability Exchange）
A form of security advisory that indicates whether a particular product is

74

affected by a known vulnerability.

 Other terms

 Authentication
Provision of assurance that a claimed characteristic of an entity is correct.
[ISO/IEC 27000:2018]

 Authorization
To grant privileges, including the provision of access functions based on access
privileges. [ISO 7498-2:1989]

 CVSS（Common Vulnerability Scoring System）
A rating method that allows quantitative comparison of the severity of
vulnerabilities managed by FIRST (Forum of Incident Response and Security
Teams) under the same criteria. The score is determined between 0.0 and 10.0.

 CWE（Common Weakness Enumeration）
A common standard for identifying types of security weaknesses
(vulnerabilities) in software. The specifications were developed mainly by
MITRE, a U.S. non-profit organization.

 Cyberattack
An attempt to destroy, expose, alter, disable, steal or gain unauthorized access
to or make unauthorized use of an asset. [ISO/IEC 27000:2018]

 Cybersecurity
To prevent the leak or falsification of electronic data as well as the malfunction
of IT or control systems against expected behavior.

 ISMS（Information Security Management System）
A framework to operate a system by determining the required security level,
establishing a plan and distributing resources through its own risk assessment
in order to manage an organization. The requirements are defined in the
international standard ISO/IEC 27001.

 Malware
Software or firmware intended to perform an unauthorized process that will
have adverse impact on the confidentiality, integrity, or availability of an
information system. A virus, worm, Trojan horse, or other code-based entity
that infects a host. Spyware and some forms of adware are also examples of

75

malicious code. [NIST SP 800-53 Rev.4]

 OWASP（Open Web Application Security Project）
An open source software community that aims to share information and raise
awareness about software security, including the Web.

 Protocol
Predetermined mass of rules and steps for parties, so that more than one party
can smoothly transmit signals, data, and information to one another.

 PSIRT（Product Security Incident Response Team）
An organization that responsible for improving the security of the company's
products and responding to incidents when they occur.

 Risk
The effect of uncertainty on objectives. [ISO/IEC 27000:2018]

 Supply Chain
A linked set of resources and processes between multiple tiers of developers
that begins with the sourcing of products and services and extends through the
design, development, manufacturing, processing, handling, and delivery of
products and services to the acquirer. [ISO 28001:2007, NIST SP 800-53 Rev.4]

 Threat
A potential cause of an undesirable incident that could damage the system or
the organization.

 Threat Analysis
Identifying threats to devices, software, systems, etc., and evaluating their
impact. Threat analysis is mainly done in the product requirements definition
and design phase.

 Threat Intelligence
Information that may be useful in protecting against threats, detecting attacker
activity, responding to threats, etc. [NIST SP 800-150]

 Vulnerability
A weakness of an asset or control (3.14) that can be exploited by one or more
threats. [ISO/IEC 27000:2018]

7.3. Reference information

76

 Reference documents for SBOM

This section provides a list of reference documents on SBOM published by domestic
and foreign government agencies.

 U.S. NTIA︓Roles and Benefits for SBOM Across the Supply Chain
（November 2019）
A document summarizing the benefits of using SBOM from the perspective of
software developers, purchasers, and users. Benefits are described by cost,
security, licensing, compliance, and software stability in the supply chain.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_ben
efits-nov2019.pdf

 U.S. NTIA︓Software Bill of Materials (SBOM)（August 2020）
A document summarizing the background of the study of SBOM and the role
and effectiveness of SBOM in the software ecosystem and providing an
overview of SBOM.
https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf

 U.S. NTIA︓SBOM FAQ（November 2020）
A collection of FAQs on SBOM overview, utilization effects, SBOM creation and
distribution.
https://www.ntia.gov/files/ntia/publications/sbom_faq_-_20201116.pdf

 U.S. NTIA︓Sharing and Exchanging SBOMs（February 2021）
A document describing options for how SBOM data can be shared along the
supply chain, with the goal of minimizing the burden on the suppliers who
created SBOM data and on the users of the SBOM
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_
sboms-10feb2021.pdf

 U.S. NTIA︓SBOM Tool Classification Taxonomy（March 2021）
A document showing the classification of SBOM tools. It classifies the purpose
of use of tools into three categories: producing, consuming, and transferring
SBOMs, and organizes the types of tools for each purpose.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-
2021mar30.pdf

 U.S. NTIA︓Software Identification Challenges and Guidance（March
2021）
A document describing the challenges of uniquely identifying software

https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_benefits-nov2019.pdf
https://www.ntia.gov/files/ntia/publications/sbom_overview_20200818.pdf
https://www.ntia.gov/files/ntia/publications/sbom_faq_-_20201116.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_tooling_taxonomy-2021mar30.pdf

77

components internationally. The purpose of the document is to provide
strategies and guidance for addressing the challenges.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-
2021mar30.pdf

 U.S. NTIA︓SBOM at a Glance（April 2021）
A document summarizing how to use SBOMs and the role of SBOM in ensuring
transparency of the software supply chain while listing reference documents.
The document also includes information that should be included in SBOMs.
The document is also translated into Japanese by JPCERT/CC.
https://www.ntia.gov/files/ntia/publications/sbom_at_a_glance_apr2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_at_a_glance_ja.pdf

 U.S. NTIA︓SBOM Options and Decision Points（April 2021）
A document intended to help clarify what is feasible with the current method
with respect to SBOMs and the needs of suppliers and users of SBOMs.
https://www.ntia.gov/files/ntia/publications/sbom_options_and_decision_poi
nts_20210427-1.pdf

 U.S. NTIA︓The Minimum Elements For a Software Bill of Materials
(SBOM)（July 2021）
A document that defines the minimum elements of the SBOM. The minimum
elements are divided into three categories, and the outline of each category
and specific items to be included in the SBOM are defined.
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_r
eport.pdf

 U.S. NTIA︓Vulnerability-Exploitability eXchange (VEX) – An Overview
（September 2021）
A document that provides an overview of VEX, which is an indicator to judge
whether a particular software component is affected by a vulnerability or not.
VEX represents the status of vulnerability in a particular product. The
document expresses the status in four levels.
https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

 U.S. NTIA︓How-To Guide for SBOM Generation（October 2021）
A document summarizing two points of view as a guide for SBOM generation:
how to collect information for collection method for SBOM generation and how
to generate a specific SBOM. Although this guide was developed through the
SBOM PoC in the healthcare field by NTIA, it is expected to be used not only in
the healthcare field but also in the generation of SBOM in all industries.

https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_software_identity-2021mar30.pdf
https://www.ntia.gov/files/ntia/publications/sbom_at_a_glance_apr2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_at_a_glance_ja.pdf
https://www.ntia.gov/files/ntia/publications/sbom_options_and_decision_points_20210427-1.pdf
https://www.ntia.gov/files/ntia/publications/sbom_options_and_decision_points_20210427-1.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

78

https://www.ntia.gov/files/ntia/publications/howto_guide_for_sbom_generati
on_v1.pdf

 U.S. NTIA︓Framing Software Component Transparency: Establishing a
Common Software Bill of Materials (SBOM) (Initial version: November
2019, Revised: October 2021)
A document that presents the concept of SBOM, related terminology, and
basic ideas about the representation of software components, as well as the
process of creating SBOM.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition
_20211021.pdf

 U.S. NTIA︓SBOM Myths vs. Facts（November 2021）
A document that organizes typical myths about SBOM and facts to solve them,
with the aim of correctly showing the benefits of SBOM.
https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.
pdf

 U.S. NTIA︓Software Suppliers Playbook: SBOM Production and
Provision（November 2021）
A playbook on SBOM generation for software suppliers. This playbook covers
three topics: “procedures for SBOM production”, “considerations for SBOM
production”, and “supplementary information about SBOM”.
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_produ
ction_and_provision_-_final.pdf

 U.S. NTIA︓Software Consumers Playbook: SBOM Acquisition,
Management, and Use（November 2021）
A playbook for software users on the use of SBOMs. This playbook
summarizes the points to be considered when acquiring SBOMs from
suppliers, the process and platform for utilizing SBOMs, and the intellectual
property and confidentiality of SBOMs.
https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acqu
isition_management_and_use_-_final.pdf

 U.S. NTIA︓Survey of Existing SBOM Formats and Standards - Version
2021（Initial version︓2019, Revised︓2021）
A document that summarizes the results of a survey on existing SBOM
formats and standards, in addition to future issues. As for the existing SBOM
formats, SPDX, CycloneDX, and SWID are outlined, with use cases and
features.

https://www.ntia.gov/files/ntia/publications/howto_guide_for_sbom_generation_v1.pdf
https://www.ntia.gov/files/ntia/publications/howto_guide_for_sbom_generation_v1.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_framing_2nd_edition_20211021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_myths_vs_facts_nov2021.pdf
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
https://www.ntia.gov/files/ntia/publications/software_suppliers_sbom_production_and_provision_-_final.pdf
https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acquisition_management_and_use_-_final.pdf
https://www.ntia.gov/files/ntia/publications/software_consumers_sbom_acquisition_management_and_use_-_final.pdf

79

https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-
2021.pdf

 U.S. NIST︓SP 800-218 Secure Software Development Framework (SSDF)
Version 1.1: Recommendations for Mitigating the Risk of Software
Vulnerabilities（February 2022）
A framework document that summarizes methodologies for software
developers to mitigate software vulnerabilities. The methodologies are classified
into four categories, and tasks for practicing each methodology are
systematically organized.
https://csrc.nist.gov/publications/detail/sp/800-218/final

 U.S. CISA︓Vulnerability Exploitability eXchange (VEX) – Use Cases
（April 2022）
A document showing the minimum elements to be included in a VEX
document. In addition, use cases are presented as concrete examples for
creating VEX documents.
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Docum
ent_508c.pdf

 U.S. CISA︓Vulnerability Exploitability eXchange (VEX) - Status
Justifications（June 2022）
A document that defines five specific arguments to justify the “NOT
AFFECTED” status among the “Vulnerability Status” in the minimum elements
of the VEX document.
https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification
_Jun22.pdf

 U.S. CISA, NSA, ODNI︓Securing Software Supply Chain Series -
Recommended Practices for Developers（September 2022）
A document that provides recommendations for software developers to
ensure a secure software supply chain. This document is the first part of a
three-part guidance series focusing on the roles of software developers,
software suppliers, and software users. The document recommends the
creation of SBOMs for software containing third-party components,
vulnerability assessments.
https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_
THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

 U.S. CISA, NSA, ODNI︓Securing Software Supply Chain Series -
Recommended Practices for Suppliers（October 2022）

https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-2021.pdf
https://www.ntia.gov/files/ntia/publications/sbom_formats_survey-version-2021.pdf
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification_Jun22.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Status_Justification_Jun22.pdf
https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.cisa.gov/uscert/sites/default/files/publications/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

80

A document that provides recommendations for software suppliers to ensure a
secure software supply chain. This document is the second part of a three-
part guidance series focusing on the roles of software developers, software
suppliers, and software users. The document recommends that suppliers act
as an intermediary between developers and users to protect software and to
respond to and notify users of vulnerabilities.
https://media.defense.gov/2022/Oct/31/2003105368/-1/-
1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF

 U.S. CISA, NSA, ODNI︓Securing Software Supply Chain Series -
Recommended Practices for Customers（November 2022）
A document that provides recommendations for software users to ensure a
secure software supply chain. This document is the third part of a three-part
guidance series focusing on each of the three roles of software developers,
software suppliers, and users. The document recommends requesting SBOM
from suppliers and evaluating software vulnerabilities based on SBOM.
https://media.defense.gov/2022/Nov/17/2003116445/-1/-
1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF

 U.S. CISA︓Software Bill of Materials (SBOM) Sharing Lifecycle Report
（April 2023）
A report on the SBOM sharing lifecycle. It identifies three basic phases before
SBOM is shared from the creator to the users, with an overview of each phase
and the degree of sophistication for each phase. The degree of sophistication
represents the relative amount of cost and resources required to implement
each phase, and is defined as low, medium, or high. In addition, in order to
help understand the current status of SBOM sharing, the report presents the
results of interviews with concerned organizations on how their organizations
are sharing SBOM.
https://www.cisa.gov/resources-tools/resources/software-bill-materials-
sbom-sharing-lifecycle-report

 U.S. CISA︓Minimum Requirements for Vulnerability Exploitability
eXchange (VEX)（April 2023）
A document that describes the minimum requirements for a VEX document.
The document presents the items that constitute a VEX document and the
elements included in each item and defines the essential items and essential
requirements for each of them. The document regards the mandatory
requirements as the minimum requirements of VEX documents.

https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Oct/31/2003105368/-1/-1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF
https://media.defense.gov/2022/Nov/17/2003116445/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
https://media.defense.gov/2022/Nov/17/2003116445/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF
https://www.cisa.gov/resources-tools/resources/software-bill-materials-sbom-sharing-lifecycle-report
https://www.cisa.gov/resources-tools/resources/software-bill-materials-sbom-sharing-lifecycle-report

81

https://www.cisa.gov/resources-tools/resources/minimum-requirements-
vulnerability-exploitability-exchange-vex

 U.S. CISA︓Types of Software Bill of Materials (SBOM)（April 2023）
A document defining the types of SBOM. This document categorizes the types
of SBOM that may be generated in each phase of the software lifecycle and
presents general SBOM generation methods, advantages, and limitations of
each type.
https://www.cisa.gov/resources-tools/resources/types-software-bill-
materials-sbom

 SBOM Tools

This section shows some examples of SBOM tools that contribute to the creation,
operation, and management of SBOMs. Not only commercial SBOM tools but also
OSS SBOM tools are available, and each tool has its own characteristics.
Organizations implementing an SBOM should select appropriate SBOM tools based
on the purpose of SBOM introduction and the scope of SBOM application. The tools
listed in this section are only examples available for reference at the time of
preparation of this Guidance. It is to be noted that the use of any particular tool is
not recommended. For appropriate tool selection, it is desirable to evaluate and
select various tools existing in the market, not limited to the tools described in this
section, based on the viewpoints described in Section 4.2.

https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://www.cisa.gov/resources-tools/resources/minimum-requirements-vulnerability-exploitability-exchange-vex
https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom
https://www.cisa.gov/resources-tools/resources/types-software-bill-materials-sbom

82

(1) Commercial tools
*In alphabetical order

No. Name Developer Features

1
Black
Duck

Synopsys,
Inc.

 Multiple scanning approaches, including code
matching, container analysis, and binary
analysis, are available for accurate and efficient
analysis.

 For vulnerability management, it enables rapid
vulnerability detection by leveraging
vulnerability information from NVD and
proprietary sources.

 It quantifies and manages risk in terms of
security, licensing, compliance, operations, etc.

 It provides a Japanese-language GUI.

2
Checkmar

x SCA
Checkmarx

Ltd.

 Hosting many repositories on GitHub allows
automatic tracking of OSS in use.

 For vulnerability management, it detects
vulnerable OSS packages in the source code
and provides remedies.

 It visualizes OSS license risks and enables
effective license management.

3 FOSSA FOSSA, Inc.

 It detects vulnerabilities and continuously
monitors risk while providing necessary
solutions for effective vulnerability
management.

 It facilitates compliance and license
management with high-quality policy features,
powerful scanning, and flexible reporting.

 It automates and streamlines SBOM
management in Agile and DevOps processes
through integration with development
environments.

 It has multiple report formats, including SPDX,
and the ability to import multiple SBOM
formats for vulnerability management.

83

No. Name Developer Features

4 FossID FossID AB

 It detects not only components, packages, and
libraries, but also snippets of OSS.

 It detects vulnerable software by analysis
based on snippet-level information, rather than
by component- and version-based analysis.

 It generates and manages SBOMs in SPDX
format, including license, copyright,
vulnerability, etc. information.

 It visualizes the risk of license violations for a
wide range of OSS, including strong/weak
copyleft and non-commercial licenses with
respect to license management.

5
Insignary

Clarity
Insignary,

Inc.

 It analyzes binary files to identify
encompassing components (no source code or
reverse engineering required).

 It analyzes binary files using patterns, making
it independent of the build environment.

 It is applicable to cloud and on-premises
software.

 It can be easily deployed due to the cloud-type
solution.

6
MEND
SCA

WhiteSource
Software,

Inc.

 It detects OSS libraries and frameworks used in
cloud services, desktop applications, embedded
software, etc. without false negatives.

 In vulnerability management, it issues an alert
immediately when a vulnerability occurs, using
its own vulnerability database, which is always
kept up to date. Also, it provides impact and
severity scores and detailed information about
how to resolve them.

 In license management, it integrates this tool
into the development environment of the
target software, such as IDEs and package
managers, to enable developers to
automatically identify OSS license information
each time they add a new OSS component.

84

No. Name Developer Features

7
Revenera

SCA

Flexera
Software

LLC

 It enables the creation of accurate SBOMs, by
not only analyzing source code, binaries, and
other software analysis, but also by collating
proprietary OSS knowledge databases and
third-party SBOM data.

 It enables effective vulnerability management
by utilizing multiple sources such as NVD and
our own vulnerability database (Secunia
Research).

8 Snyk Snyk, Ltd.

 It can be integrated into existing IDEs,
repositories, and workflows.

 It uses advanced security intelligence to
monitor vulnerabilities during targeted
software development.

 It provides practical remediation advice on
vulnerabilities and other issues related to
vulnerability management.

9
Sonatype
Lifecycle

Sonatype,
Inc.

 Available by integrating the tool into the
development environment of the target
software, such as an IDE or source code
control system.

 In vulnerability management, it issues alerts
quickly by continuously monitoring for
vulnerabilities in software and components and
the risk level of vulnerabilities.

10
Veracode

SCA
Veracode,

Inc.

 It enables the creation of an SBOM in
CycloneDX format as a list of OSS components.

 In vulnerability management, it provides
information about vulnerabilities detected and
how to address them, as well as prioritization
of vulnerabilities to be addressed.

 In license management, it detects OSS license
violation risks and manages license
compliance.

85

No. Name Developer Features

11 yamory
Assured,

Inc.

 It detects and manages software vulnerabilities
used in the target IT systems.

 In vulnerability management, it automatically
determines the priority of vulnerabilities with
the auto-triage function. In addition, updates
the vulnerability database on a daily basis,
enabling early detection of urgent
vulnerabilities.

 In license management, it visualizes the risk of
OSS license violations.

(2) OSS tools

*In alphabetical order

No. Name Developer Features

1 Augur CHAOSS

 It collects data on software repositories and
normalizes them into a data model.

 It collects data on OSS projects from many
sources.

2
BOM

Doctor
Sonatype,

Inc.

 It generates SBOM by specifying a project URL
or package URL on GitHub.

 It visualizes generated SBOMs on a tree
including dependencies of components (it is
also possible to visualize SBOMs by uploading
an existing SBOM in CycloneDX format).

 It performs scoring of target software by
evaluating whether it uses non-fragile
components, violates licenses, etc.

3 Checkov
Bridgecrew,

Inc.

 It is a static code analysis tool for IaC and can
be used also as an SBOM tool for images and
OSS packages.

 The scan results can be displayed in CLI,
CycloneDX, JSON, JUnit XML, CSV, SARIF, and
Markdown formats.

86

No. Name Developer Features

4
Daggerbo

ard

NewYork-
Presbyterian

Hospital

 It provides a dashboard to view and manage
SBOM and related vulnerabilities at a glance
and can import SPDX or CycloneDX files for
vulnerability detection.

5
Depende
ncy-Track

OWASP
Foundation

 It can identify and manage known
vulnerabilities in third-party and open source
components, by leveraging multiple sources
such as NVD, GitHub Advisories, etc.

 It allows the identification of license
information for software components.

 API-first design allows easy integration with
other systems.

6
FOSSolog

y
Linux

Foundation

 It cannot identify the name and version of the
OSS, but it is capable of detecting and
managing the licenses and copyrights of the
components included in the target software.

 It allows import and analysis using a Web UI.

7 in-toto
Linux

Foundation

 It provides a framework for protecting the
integrity of the software supply chain by
ensuring that software has not been tampered
with during distribution within the supply
chain.

8

OSS
Review
Toolkit
(ORT)

Linux
Foundation

 It allows SBOM creation without the need to
modify existing project source code, such as
applying build system plug-ins.

 It allows evaluation of software licenses in use,
based on customizable policy rules and license
classifications.

9
SBOM
Tool

Microsoft
Corporation

 It integrates with various package
management systems such as NPM, NuGet,
PyPI, etc. to automatically detect and create
SBOMs in SPDX format.

 It runs on Windows, Linux, and macOS
platforms.

87

No. Name Developer Features

10
ScanCode

.io
nexB, Inc.

 It scripts and automates the process of
Software Configuration Analysis (SCA).

 It identifies OSS components and their license
information in an application's code base.

11
Scancode

Toolkit
nexB, Inc.

 A standalone command line tool, easy to
install, run, and integrate into the CI/CD
processing pipeline.

 It allows the saving of scan results in JSON,
HTML, CSV, SPDX, and proprietary formats.

 In license management, it allows users to
identify and manage license information for
OSS components by using their own extensible
discovery rules.

12 SW360
Eclipse

Foundation

 It identifies and manages security vulnerability
information for software components.

 It identifies and manages license information
for software components.

13 SwiftBOM

CERT
Coordination

Center
(CERT/CC)

 It allows manual input for SBOM generation.
 It imports previously created SBOMs and

displays SBOMs in a tree-like view.

14
Syft &
Grype

Anchore
Enterprise

 It seamlessly integrates SBOM generation by
Syft and vulnerability detection by Grype.

 It converts SBOM information between SBOM
formats such as CycloneDX, SPDX, and Syft's
own format.

 It detects and manages major vulnerabilities in
OS packages and language packages.

15 Trivy

Aqua
Security

Software,
Ltd.

 It detects and manages various security issues
such as known vulnerabilities, IaC
misconfigurations, etc.

 It scans various targets such as container
images, file systems, etc.

88

 SBOM data formats

The SBOM “Minimum Elements” include a category of “Automation Support”, which
takes into account support for automation in the automatic generation, readability
of SBOMs, etc. As specific data formats, three formats—SPDX (Software Package
Data Exchange), CycloneDX, and Software Identification Tags (SWID tags)—have
been discussed internationally. In addition to these three formats, the following
section outlines SPDX-Lite, a format developed by Japan based on SPDX. The
SBOM data format is a standard for exchanging SBOMs across organizations. The
selection of the data format and the data fields to be included in an SBOM should
be decided upon agreement between the SBOM user and the supplier.

(1) SPDX
SPDX was developed by a project under the Linux Foundation and recognized as
an international standard for the SBOM format in September 2021 as an ISO/IEC
5962:2021 standard. The detailed specification of SPDX is available on the website,
23 and the project continues to study and update it. In the following, as an
overview of the SPDX v2.3.0, the format structure, examples and purposes of use
of the format, and features of the format are described.

1) Format configuration
SBOMs in the SPDX format contain information about components created
according to the SPDX Specification, license, and copyright. Tag:Value(txt), RDF24,
XLS, JSON25 , YAML26 , and XML27 formats are supported. Sections and items
classified into each section are specified as contents to be included in an SBOM
document. A summary of each section is given below. Only the section “Creation
Information” is defined as mandatory. Other sections that are not mandatory are
used when the SBOM document author judges that they should be included in the

23 https://spdx.GitHub.io/spdx-spec/v2.3/
24 As a method of analyzing RDF format files, it is known, for example, to utilize the SPARQL
language to search and manipulate data described in the file.
25 As a method of analyzing a json format file, for example, it is known to utilize the jq
command to obtain necessary information from the file.
26 By using tools that support YAML format files, such as Visual Studio Code and IntelliJ IDEA, it
is easy to view and analyze files.
27 As a method of analyzing xml format files, for example, it is known to utilize the xmllint
command to obtain the necessary information from the file.

https://spdx.github.io/spdx-spec/v2.3/

89

SBOM. In addition, the items defined in each section that must be included if the
relevant section is used are also defined.

 Creation Information [Mandatory section]:
A section where the supplier provides the SBOM document and presents the
information (e.g., SPDX version, SBOM data license, and author) necessary
for the user to use the SBOM document. This section needs to be included
in every SBOM document with SPDX.

 Package Information:
A section in the SBOM that presents information necessary to group products,
containers, components, etc.

 File Information:
A section that presents information (name, checksum, license, copyright,
etc.) about the files of a product, container, components, etc.

 Snippet Information:
A section that is used when a file is generated from another resource. This
section is useful to indicate that part of a file has been copied from another
file.

 Other Licensing Information:
SPDX defines a license list called SPDX License List to show licenses for file
information. In the “Package Information”, “File Information”, and “Snippet
Information” sections, the license information for the package, file, or
snippet to be described is selected from the SPDX license list. However, the
SPDX License List does not cover all licenses for packages, files, and snippets.
Therefore, it is possible to present license information other than the SPDX
License List (such as restrictions by proprietary software) in this section.

 Relationships:
A section that presents the relationships between files and packages such as
products, containers, and components in the SBOM.

 Annotations:
A section that is used to review the SBOM and share the information obtained
from the review with others. In addition, this section can be used by SBOM
document authors who wish to store information in an SBOM that does not
apply to the other sections or items mentioned above.

90

2) Examples and purposes of use
The following examples and purposes of use are expected regarding the SPDX:

 Describing relationships between system components,

 Managing intellectual property (licenses, copyrights) of software
components,

 Performing a risk assessment of the software supply chain and validating
components,

 Creating an inventory of software components, container content, etc.,

 Tracking executables back to individual source files and source snippets,

 Identifying lines of code embedded in files, and

 Associating CPE, SWHID (SoftWare Heritage persistent IDentifiers), and
package URLs, which are formats for uniquely identifying software, with
specific packages to facilitate additional security analysis.

3) Data format features
The SPDX has the following features:

 Ability to extend beyond snippets and files to include packages, containers,
and OS distributions, as software for which SBOMs are created,

 Ability to verify whether SBOM data has been tampered with in deliverables
created as SBOM documents, by using the provided hash value,

 Having an extensive list of intellectual property and license information
(SPDX license),

 Ability to integrate with other package reference systems and security
systems, and

 Ability to logically partition documents related to complex systems and
manage them in sections or items of the SBOM document.

(2) SPDX-Lite
SPDX-Lite is a format developed by the OpenChain Japan Work Group (WG) license
information subgroup, which is mainly active for Japanese companies in the
OpenChain Project, a project under the umbrella of the Linux Foundation. SPDX-
Lite is included in part of the ISO/IEC 5962:2021 standard for SPDX and is defined

91

as being included in SPDX. The detailed specifications of SPDX-Lite are published
on the website28 as part of the SPDX v2.3.0 specifications. The following presents,
as an overview of the SPDX-Lite, the structure of the format and specific items,
usage examples and purposes of the format, and the characteristics of the format.

1) Format configuration and specific items
An SBOM in SPDX-Lite format contains information such as components, licenses,
and copyrights, and supports Tag-Value (txt), RDF, XLS, JSON, YAML, and XML
formats. The content to be included in an SBOM document consists of the
mandatory items and other basic information classified into the “Creation
Information” and “Package Information” sections in SPDX described above. The
items required for SPDX-Lite are as follows:

Table 7-2 Relationship between SPDX-Lite items and SPDX
Section name in SPDX Item name in SPDX-Lit

Creation Information

SPDX Version
Data License

SPDX Identifier
Document Name

SPDX Document Namespace
Author
Created

Package Information

Package Name
Package SPDX Identifier

Package Version
Package File Name
Package Supplier

Package Download Location
Files Analyzed

Package Home Page
Concluded License
Declared License

Comments on License
Copyright Text

28 https://spdx.GitHub.io/spdx-spec/v2.3/SPDX-Lite/

https://spdx.github.io/spdx-spec/v2.3/SPDX-Lite/

92

Section name in SPDX Item name in SPDX-Lit
Package Comment

External Reference field

Other Licensing
Information

License Identifier
Extracted Text
License Name

License Comment

2) Examples and purposes of use
The following examples and purposes of use are expected regarding the SPDX-

Lite:

 Manually managing only, the mandatory fields that are classified in the SPDX
section of the “Creation Information” and “Package Information” and

 Creating SBOMs that are not at the level of SPDX but rather correspond to
the minimum required fields in the automotive industry and consumer
electronics industry with an emphasis on usability.

3) Data format features
SPDX-Lite has the following features:

 Ability to manage SBOMs with a focus on operability, as it contains only the
minimum required items compared to SPDX,

 High SBOM tool compatibility with SPDX, as it contains mandatory fields that
fall under the “Document Information” and “Package Information” sections
of SPDX, and

 Ability to manually create SBOM documents in SPDX-Lite format without the
need for specialized tools.

(3) CycloneDX
CycloneDX was developed by a project of the OWASP community with the goal of
developing a fully automated, security specific SBOM format standard. The detailed
specifications of the CycloneDX are available on the web site29 and are being
maintained and updated by the core working group of the OWASP community. As

29 https://cyclonedx.org/docs/1.4/json/

https://cyclonedx.org/docs/1.4/json/

93

an overview of the CycloneDX v1.4, the following provides the structure of the
format, examples of use and purpose of the format, and features of the format.

1) Format configuration
SBOMs in the CycloneDX format contain information about components, and
licenses, copyrights. The JSON, XML, and Protocol Buffers (protobuf) formats are
supported. An SBOM document must include object models and fields that are
classified into each object model. An overview of each object model is shown below.
In addition, the items specified in each object model that must be included when
the relevant model is used are also defined. Although not classified as an object
model, the SBOM document must be in the CycloneDX format and must include an
item for the CycloneDX version and the SBOM document version.

 SBOM Metadata︓
An object model that presents information about the supplier, the developer,
the scope of the software covered by the SBOM document, the tools used to
create the SBOM document, etc.

 Components︓
An object model that presents an inventory of first and third-party software
components. This object model can include information about software
components, including type, ID, license, copyright, cryptographic hash
function, provenance, history, and changes made. In addition, this object
model can represent a combination of components, and a combined
component can have various information as a single component.
Furthermore, it is possible to apply a digital signature to components and
combined components.

 Services:
An object model that presents information about external APIs that may be
invoked by the software covered by the SBOM document. This object model
can include information such as the endpoint URI of the external API,
authentication requirements, trust boundaries with the external API, and
data flow and classification between services. Furthermore, it is possible to
apply digital signatures to services.

 Dependencies:
An object model that presents dependencies between components and other
components. It can represent not only components among components but

94

also components that depend on services and services that depend on
services. Dependencies can also represent transitive dependencies.

 Compositions:
An object model that presents each component (including components,
services, and dependencies) and the completeness of the component within
the SBOM. The aggregate of each composition can be described as
“complete”, “incomplete”, “incomplete first-party only”, “incomplete third-
party only”, or “unknown”. With this object model, it is possible to understand
how complete the created SBOM is and whether there are components in
the SBOM where completeness is unknown.

 Vulnerabilities:
An object model that presents known vulnerabilities and their exploitability
in third-party software and OSS is included in the SBOM. It can also present
unknown vulnerabilities affecting components and services and can be used
as a security advisory for VEX, etc.

 Extensions︓
An object model that enables experimentation of new functions in CycloneDX
and support for specialized and future use cases. the CycloneDX project
encourages community participation and development targeting extensions
for specialized and industry-specific use cases.

2) Examples and purposes of use
The following examples and purposes of use are expected regarding the

CycloneDX:

 Describing the components of a system and the relationships between
components,

 Managing intellectual property (licenses, copyrights) for software
components,

 Performing a risk assessment of the software supply chain and validating
components,

 Creating an inventory of software components, container content, etc.,

 Tracking executables back to source files and source snippets,

 Identifying the source of code embedded in files,

95

 Associating formats for uniquely identifying software (such as CPE, SWID,
package URL) with specific packages, thus facilitating additional security
analysis,

 Validating the integrity of signed or combined components and the SBOM,
and

 Using as a convenient format for creating and distributing software when
building software and as a binary format for M2M (machine-to-machine).

3) Data format features
The CycloneDX has the following features:

 An SBOM format with security management in mind, allowing the imputing
of information about known vulnerabilities and their exploitability,

 A security related SBOM format for various types of software, including
applications, components, services, firmware, and devices, used in a wide
range of industries and suitable for commercial use,

 A format consisting of a structured object model, which enables one to easily
learn and implement,

 Achieving automation when integrated with many development ecosystems,
and

 Extensible specifications allow a rapid trial of new functions to meet
organizational and industry-specific requirements.

(4) SWID Tag
Software Identification (SWID) Tags were designed to provide a transparent way
for organizations to track the software installed on their managed devices. It was
defined by ISO in 2012 and updated as ISO/IEC 19770-2:201523 in 2015. As part
of the software installation process along the software lifecycle, when software is
installed on a device, information about the installed software called a tag, is
attached to the device, and when the software is uninstalled, the tag is removed.
The following provides an overview of SWID tags, including the format
configuration, examples and purposes of use of the format, and the format features.

1) Format configuration
An SBOM in the SWID tag format describes information such as software installed

96

in the device created according to the SWID tag and patches applied to the
software and supports the XML format. A SWID tag defines a tag that indicates
information about software installed on a device in order to understand the life
cycle of the target device. An overview of each tag is shown below. Each tag can
present information such as the tag creator, the software installed on the device,
and the dependencies by linking to other software, and can be used as an SBOM
of the target device.

 Primary Tag:
A tag that identifies and presents the software installed on the target device.

 Patch Tag:
A tag that identifies and presents patches that have been applied to the
software installed on the target device, e.g., by updating the software.

 Corpus Tag:
A tag that identifies and describes software installed on the target device.
This tag is used to represent software metadata such as software installation
packages, installers, software updates, and patches.

 Supplemental Tag:
A tag that is used to add additional information to the above tags. This tag
is used by device users and software management tools to add optional
information.

2) Examples and purposes of use
The following examples and purposes of use are expected regarding the SWID

tag:

 Creating SBOMs with software installed on devices managed by the
organization as a component,

 Continuously tracking software installed on devices,

 Identifying vulnerable software on endpoints,

 Ensuring whether the software installed on devices is properly patched,

 Preventing the installation of unauthorized or corrupted software,

 Preventing corrupted software from running, and

 Managing user rights and access rights for managed devices.

97

3) Data format features
The SWID tag has the following features:

 Updating information about each tag as it moves through the software
lifecycle, so that information about software IDs created at build time can
be accurately assigned to the tag and provided,

 Standardizing software information that can be exchanged between
suppliers and users during software installation, and

 Enabling association of software-related information, such as relevant
patches and updates, configuration settings, security policies, and
vulnerability and threat advisories.

	1. Background and objectives
	1.1. Background
	1.2. Objectives
	1.3. Main target readers
	1.4. Main target software
	1.5. How to use
	1.6. Summary of this Guidance

	2. Overview of SBOM
	2.1. What is SBOM?
	2.2. Benefits of SBOM
	2.3. “Minimum Elements” of SBOM
	2.4. SBOM formats (Examples)
	(1) SPDX（Software Package Data Exchange）
	(2) CycloneDX
	(3) SWID tag（Software Identification tag）

	2.5. Myths and facts

	3. Basic guidance and overall view on SBOM introduction
	3.1. Basic guidance for SBOM introduction
	3.2. SBOM introduction process

	4. Environment and system development phase
	4.1. Clarification the scope of the SBOM application
	4.2. SBOM tools selection
	4.3. SBOM tools installation
	4.4. Learning about SBOM tools

	5. SBOM production and sharing phase
	5.1. Component analysis
	5.2. SBOM production
	5.3. SBOM sharing

	6. SBOM use and management phase
	6.1. Vulnerability management, license management, etc.
	6.2. SBOM information management

	7. Appendix
	7.1. Checklist of actions for the introduction of SBOM
	7.2. Glossary
	7.2.1. Terms related to SBOMs and software
	7.2.2. Other terms

	7.3. Reference information
	7.3.1. Reference documents for SBOM
	7.3.2. SBOM Tools
	(1) Commercial tools
	(2) OSS tools

	7.3.3. SBOM data formats
	(1) SPDX
	1) Format configuration
	2) Examples and purposes of use
	3) Data format features

	(2) SPDX-Lite
	1) Format configuration and specific items
	2) Examples and purposes of use
	3) Data format features

	(3) CycloneDX
	1) Format configuration
	2) Examples and purposes of use
	3) Data format features

	(4) SWID Tag
	1) Format configuration
	2) Examples and purposes of use
	3) Data format features

