第2回石油精製物質等の新たな化学物質規制に 必要な国際先導的有害性試験法の開(反復投与毒性試験と遺伝子発現変動による発がん性等発現 可能性情報の取得手法の開発)中間評価検討会

資料2

石油精製物質等の新たな化学物質規制に必要な 国際先導的有害性試験法の開発

中間評価報告書(案)

平成〇〇年〇月 産業構造審議会産業技術環境分科会 研究開発・評価小委員会評価ワーキンググループ

はじめに

研究開発の評価は、研究開発活動の効率化・活性化、優れた成果の獲得や社会・経済への還元等を図るとともに、国民に対して説明責任を果たすために、極めて重要な活動であり、このため、経済産業省では、「国の研究開発評価に関する大綱的指針」(平成24年12月6日、内閣総理大臣決定)等に沿った適切な評価を実施すべく「経済産業省技術評価指針」(平成21年3月31日改正)を定め、これに基づいて研究開発の評価を実施している。

経済産業省において実施している石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発は、石油精製物質等の化学物質において、国際的なニーズがあり十分整備されていない多様なエンドポイントの有害性評価手法について、遺伝子発現変動解析手法、培養細胞手法等による評価技術の確立を目的とし、化学物質の迅速かつ効率的な有害性評価手法を開発するため、平成23年度より実施しているものである。

今回の評価は、石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発の中間評価であり、実際の評価に際しては、省外の有識者からなる石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発(反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発)中間評価検討会(座長:今井田 克己 国立大学法人香川大学医学研究院病理病態・生体防御医学講座腫瘍病理学教授)及び、石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発(肝臓毒性、腎臓毒性及び神経毒性invitro試験法の開発)中間評価検討会(座長:堀井 郁夫 堀井サイエンスアソーシエイト株式会社代表取締役社長)を開催した。

今般、当該検討会における検討結果が評価報告書の原案として産業構造審議会産業技術環境分科会研究開発・評価小委員会評価ワーキンググループ(座長:渡部 俊也 東京大学政策ビジョン研究センター教授)に付議され、内容を審議し、了承された。

本書は、これらの評価結果を取りまとめたものである。

平成26年〇月

産業構造審議会産業技術環境分科会

研究開発・評価小委員会評価ワーキンググループ

産業構造審議会産業技術環境分科会研究開発・評価小委員会評価ワーキンググループ 委員名 簿

座長 渡部 俊也 東京大学政策ビジョン研究センター教授

大島 まり 東京大学大学院情報学環教授 東京大学生産技術研究所教授

太田 健一郎 横浜国立大学工学研究院グリーン水素研究センター長

• 特任教授

菊池 純一 青山学院大学法学部長・大学院法学研究科長

小林 直人 早稲田大学研究戦略センター教授

鈴木 潤 政策研究大学院大学教授

森 俊介 東京理科大学理工学研究科長

東京理科大学理工学部経営工学科教授

吉本 陽子 三菱UFJリサーチ&コンサルティング株式会社

経済・社会政策部主席研究員

(委員長除き、五十音順)

事務局:経済産業省産業技術環境局技術評価室

石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発 中間評価検討会 委員名簿

A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発

座 長 今井田 克己 国立大学法人香川大学医学研究院 病理病態・生体防御医学

講座 腫瘍病理学 教授

堀之内 彰 武田薬品工業株式会社 CMC研究センター 主席研究員

宮城島 利一 特定非営利活動法人システム薬学研究機構 理事

山田 弘 独立行政法人医薬基盤研究所 創薬基盤研究部

トキシコゲノミクス・インフォマティクスプロジェクト

プロジェクトリーダー

吉村 功 学校法人東京理科大学 名誉教授

B. 肝臓毒性、腎臓毒性及び神経毒性in vitro試験法の開発

座 長 堀井 郁夫 堀井サイエンスアソーシエイト株式会社 代表取締役社長

上原 健城 塩野義製薬株式会社 医薬開発部 医薬開発III 主任

絵野沢 伸 独立行政法人国立成育医療研究センター

臨床研究センター 先端医療開発室 室長

金村 米博 独立行政法人国立病院機構大阪医療センター

臨床研究センター 再生医療研究室 室長

畑尾 正人 株式会社資生堂 品質評価センター 安全性研究開発室

室長

(敬称略、五十音順)

事務局:経済産業省製造産業局化学物質管理課

石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発の 評価に係る省内関係者

【中間評価時】

(平成25年度)

製造産業局 化学物質管理課課長 三木 健(事業担当課長)

産業技術環境局 産業技術政策課 技術評価室長 飯村 亜紀子

【事前評価時】 (事業初年度予算要求時)

製造産業局 化学物質管理課課長 河本 光明(事業担当課長)

石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発 中間評価

審議経過

- A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発
- ○第1回中間評価検討会(平成25年10月7日)
 - ・評価の方法等について
 - プロジェクトの概要について
 - ・評価の進め方について
- ○第2回中間評価検討会(平成25年○月○日)
 - ・評価報告書(案)について
- ○産業構造審議会産業技術環境分科会研究開発・評価小委員会評価ワーキンググループ (平成26年○月○日)
 - ・評価報告書(案)について
- B. 肝臓毒性、腎臓毒性及び神経毒性in vitro試験法の開発
- ○第1回中間評価検討会(平成25年9月26日)
 - ・評価の方法等について
 - プロジェクトの概要について
 - ・評価の進め方について
- ○第2回中間評価検討会(平成25年○月○日)
 - ・評価報告書(案)について
- ○産業構造審議会産業技術環境分科会研究開発・評価小委員会評価ワーキンググループ(平成2 6年○月○日)
 - ・評価報告書(案)について

はじめに

産業構造審議会産業技術環境分科会研究開発・評価小委員会評価ワーキンググループ 委員名簿

石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発中間評価検討会 委員名簿

石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発の評価に係る省内関係者

石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発中間評価 審議 経過

	ページ
中間評価報告書概要	i
なるき 部体の中性大は	
第1章 評価の実施方法	0
1. 評価目的	2
2. 評価者	3
3 評価対象	3
4. 評価方法	4
5. 評価項目	4
第2章 プロジェクトの概要	
1. 事業の目的・政策的位置付け	9
A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得	
2. 研究開発等の目標	16
3. 成果、目標の達成度	2 0
4. 標準化等のシナリオ、波及効果について ····································	96
5. 研究開発マネジメント・体制・資金・費用対効果等	0 0
B. 肝臓毒性、腎臓毒性及び神経毒性in vitro試験法の開発	98
	1 1 0
2. 研究開発等の目標 ····································	110
	117
4. 標準化等のシナリオ、波及効果について	275
5.研究開発マネジメント・体制・資金・費用対効果等	278
第3章 評価	
A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得	导手法の開発
1. 事業の目的・政策的位置付けの妥当性	288
2 研究開発等の目標の妥当性	291
3. 成果、目標の達成度の妥当性	293
4. 標準化等のシナリオ、波及効果についての妥当性	296
5. 研究開発マネジメント・体制・資金・費用対効果等の妥当性	298
6. 総合評価	300
7. 今後の研究開発の方向等に関する提言	303
B. 肝臓毒性、腎臓毒性及び神経毒性in vitro試験法の開発	
1. 事業の目的・政策的位置付けの妥当性	308

3. 成果、目標の達成度の妥当性	3 1 4	
第4章 評点法による評点結果	3 2 5	
参考資料1 経済産業省技術評価指針		
参考資料 2 経済産業省技術評価指針に基づく標準的評価項	頁目・評価基準	
参考資料3 平成22年度事前評価報告書(概要版)		
参考資料4 石油精製物質等の新たな化学物質規制に必要	な国際先導的有害性試験法の開発	٤

基本計画

2. 研究開発等の目標の妥当性 ……………………… 3 1 0

中間評価報告書概要

中間評価報告書概要

プロジェクト名	石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開 発
上位施策名	化学物質総合評価管理
事業担当課	製造産業局化学物質管理課

プロジェクトの目的・概要

石油精製物質等の化学物質において、多様なエンドポイントに対応した有害性評価を実施する ニーズが高まっている一方で、信頼性が高く、かつ、効率的な評価技術は十分に確立されていな い。このため、本研究開発では、石油精製物質等の化学物質において、国際的なニーズがあり十 分整備されていない多様なエンドポイントの有害性評価手法について、遺伝子発現変動解析手 法、培養細胞手法等による評価技術の確立を目的とし、迅速かつ効率的な有害性評価手法の開発 を行う。

具体的には、28日間反復投与試験の動物サンプルから取得した遺伝子発現変動データを活用して有害性を予測する手法の開発や、複数の in vitro 試験法の開発及び迅速かつ効率的に実施できる有害性評価システム等を構築することを目標とし、以下の研究開発項目について実施する。

A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発

B. 肝臓毒性、腎臓毒性及び神経毒性 in vitro 試験法の開発

予算額等(委託) (単位:千円)

A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発

開始年度	終了年度	中間評価時期	事後評価時期	事業実施主体
平成23年度	平成23年度 平成27年度 平成25年度	(平成28年度	化学物質評価研
一 一	十成乙,千皮	平成27年度 平成25年度 平成28年度		究機構
H23FY 予算額	H24FY 予算額	H25FY 予算額	総予算額	総執行額
180, 075	165, 376	152, 786	498, 238	345, 452

目標・指標及び成果・達成度

(1) 全体目標に対する成果・達成度

A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発

- ・肝臓・腎臓における一般毒性について、特徴的に発現するマーカー候補遺伝子を選定し、発現可能性を予測する解析手法のプロトタイプの開発を行った。
- ・肝発がんについて、これまでに構築した短期肝発がん予測手法に新たに取得した遺伝子発現データ 及び外部データを適用し、陰性物質を中心とした予測精度の確認を行った。腎発がんについて、マーカ 一候補遺伝子を選定し、短期腎発がん予測手法のプロトタイプを作成した。
- ・神経毒性について、脳の採材方法について標準プロトコールを確立し、採材した脳サンプルの遺伝 子発現解析を行い、マーカー候補遺伝子を選定した。また、遺伝子発現変動に着目した神経毒性検出は 可能であると判断した。

個別要素技術	個別要素技術 目標・指標 は思			達成度
	最終時点	中間時点	成果	達
A. 反復投与毒性試験と	遺伝子発現変動による	発がん性等発現可能性	情報の取得手法の開	
発				
(a)各毒性関連遺	・主要臓器(肝臓・	各毒性に関する実験	【一般毒性(肝毒	
伝子の絞り込み	腎臓)の毒性、発	動物の遺伝子発現変	性・腎毒性)】	
	がん性(肝発がん、	動データの取得、及	毒性機序の異なる 14	達成
	腎発がん)及び神	びそれぞれの毒性に	物質(16 試験)につい	
	経毒性を有する毒	特徴的な関連遺伝子	て28日間反復経口投	
	性既知物質を効率	の絞り込み	与実験を実施し、遺	
	的に選定して実験	・適切な被験物質選	伝子発現量データを	
	動物に投与し、遺	定を実施し、各毒性	取得した。	
	伝子の発現変動に	既知物質の投与によ	【発がん性】	
	関する包括的なデ	る動物実験を行い、	毒性機序の異なる 14	達成
	ータを取得する。	投与動物の臓器及び	物質(16 試験)につい	
	・毒性の発現に特	組織等から遺伝子の	て28日間反復経口投	
	異的と考えられる	包括的な発現変動デ	与実験を実施し、遺	
	遺伝子を絞り込	ータを取得する。	伝子発現量データを	
	み、各毒性既知物		取得した。	
	質の投与による毒		【神経毒性】	
	性発現のマーカー		毒性機序の異なる2	達成
	として利用しうる		つの既知の神経毒性	
	遺伝子を選定す		物質について発達期	
	る。		暴露実験及び28日間	
			│ │	

			実施し、遺伝子発現	
			量データを取得し .	
			た。	
		・各毒性の発現との	【一般毒性(肝毒	
		関係で特徴的な発現	性・腎毒性)】	
		変動を示していると	肝毒性では4種の毒	達成
		考えられる遺伝子の	性症状、腎毒性でも4	
		絞り込みを行う。	種の毒性症状につい	
			て、10~2,019 プロー	
			ブのバイオマーカー	
			候補遺伝子を選定し	
			た。	
			【発がん性】	
			早期の尿細管がんに	達成
			 関連したバイオマー	
			 カー候補として、25	
			プローブを選定し	
			た。	
			脳の各部位で発達神	達成
			経毒性を反映する候	~_/~
			補遺伝子を見出し	
			た。	
 (b)各毒性の発現	 各毒性既知物質の	 【全てのエンドポイ	【一般毒性(肝毒	
可能性を検出し得	日毎に成品物質の 投与による毒性発	ントに共通】	性・腎毒性)】	
お記せを検出し特	現に伴う遺伝子発		ヒ・貝毎ビ/』 判定システムのプロ	前倒し
る万法の権立		・遺伝子発現変動デ		
	現変動の特徴分析	│一タの取得法の確立 │	トタイプ(レーダー	で実施
	の結論を得る。		チャート式に判定結	
	【主要臓器(肝		果を可視化できるも	
	臓・腎臓)の一般		の)を考案した。	
	毒性】		【発がん性】	
	・主要臓器(肝臓・		・腎発がん性予測の	前倒し
	腎臓)の一般毒性		初期的パイロットモ	で実施
	の発現可能性を予		デル(暫定版)を構	
	測する解析手法を		築した。	
	確立し、文書化す		・肝発がん予測シス	達成
	る。		テムの陰性物質を中	

【発がん性(肝発		心とした検証を実施	
がん・腎発がん)】		した。	
・発がん性(肝発	【神経毒性】	【神経毒性】	
がん・腎発がん)	遺伝子発現変動デー	脳の各部位で発達神	達成
の発現可能性を予	タを用いることで当	経毒性を反映する遺	
測する解析手法を	該毒性の評価が可能	伝子発現変動に着目	
確立し、文書化す	であるかについて結	した神経毒性検出は	
る。	論する。	可能であると判断し	
【神経毒性】		た。	
・本事業で取得し			
た新たな科学的知			
見にもとづき、可			
能な範囲でその毒			
性発現可能性を予			
測する解析手法を			
確立する。			

(2) 目標及び計画の変更の有無

A. **反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発** 平成 25 年度からは、フィージビリティスタディとして開始していた免疫毒性を中止した。

<共通指標>

研究開発項目	論文・投稿	学会発表・講演等
A. 反復投与毒性試験と遺伝子発現変動による発が	10	22
ん性等発現可能性情報の取得手法の開発	(内3件は投稿中)	23

評価概要

A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発

1. 事業の目的・政策的位置付けの妥当性

人の健康、環境にもたらすリスクをできるだけ少なくした化学物質の生産・使用は重要である。2020年に向けた取り組みとしての政策的意義は明確であり、先導性を意識して実行されている。国の事業として重要なテーマであると思われる。

個々の企業や研究機関において、有害性評価用データベースを構築し予測手法を開発するのは人材・ 費用・期間の面で困難であり、また中立性・信頼性の観点からも国が主導して事業を進めていくことは 意義がある。

代替法の 3R 原則の実現に資する事業であると同時に、資源・労力・時間・費用の節約という面で、 時代の要求に応じた適切な事業である。

また、網羅的遺伝子発現変動データを活用して化学物質の有害性予測手法を開発することは、より科

学的で精度の高いアプローチとして意義がある。特に発がん性に関する新たな試験法の開発は、ハードルは高いが重要な意味を持っており、是非ともガイドライン化につながる研究成果を達成して頂きたい。

この研究成果が OECD ガイドラインに取り入れられれば、国際貢献できる上、化学物質の評価のコスト削減が図られる。その結果、科学的に評価された安全な化学物質が流通することになり、国民の安全性を担保できると考えられる。

一方、遺伝子発現解析結果から新たな評価基準を生み出す研究は非常に高度であるにもかかわらず、 その研究を全面的に CERI に依存している印象であるが、CERI 以外の専門家を入れて、OECD ガイドライン化を目指して内容を精査した方がいいと思われる。

また、事業内容は、石油精製物質に関連するものではあるが、「石油精製物質」という束縛は緩やかにしておく方がよい。

2. 研究開発等の目標の妥当性

遺伝子発現データの取得と関連遺伝子の絞り込みを行うという目標は適切かつ妥当であり、遺伝子発現データに影響を与える要素を明らかにするための基礎データの取得も配慮されている。

評価未着手の大量の化学物質の効率的な評価方法の確立は、民間企業が主導して実施するには公平性の点も含めて困難であると考えられることから国が主導して、その手法を確立し OECD ガイドライン化を目指すことは価値が高い。特に、28 日間試験で、発がん性予測する評価系の確立は価値の高い研究であるため、成功が期待される。そのためには、論文化を通して解析手法の情報公開することにより、国内外の専門家による方法論の追加検証が必要である。

一方、中間目標に対する具体的な目標及び達成すべき基準値(数値目標など)が設定されていないので達成度を正確に判断することが難しく、5ヵ年事業計画において評価する化合物数、開発する一般毒性用エンドポイント(バイオマーカー)数等の具体的な数値目標を明確にする必要がある。

また、疾患関連遺伝子の同定を、この程度の規模の実験データで確定的に行うのはデータ解析上無理であるため、どの程度の精度で絞り込みが行えるのか、限界を明確にすべきである。

同じような遺伝子発現解析を用いた肝毒性評価や腎毒性評価は、すでに終了した厚労省プロジェクトであるトキシコゲノミクスプロジェクトのデータの有効活用が可能であるが、両者の連携が取れていなかったのが残念である。

3. 成果、目標の達成度の妥当性

バイオマーカー候補遺伝子の選定や、肝毒性及び腎毒性判定システムとして、レーダーチャート方式を考案し、毒性プロファイルを可視化したこと、腎発がん予測システムのプロトタイプを構築したことなど、事業計画で示された中間評価時の目標は、ほぼ達成されていると考えられる。

また、学会発表や論文発表も、適切に行われており、データの取得法と結果の提示については、かなり の進展が認められる。

一方、中間評価の時点では、予測システムの構築に焦点が当てられているが、最終的には、システムの性能の評価が新しいデータ(テストセット)で確認できなければならない。システムが OECD 等で公に認められるために、どのようなエビデンスが必要か、予め検討しておくことが必要である。ガイドライン化に向けて、解析手法の情報開示と第3者による再評価が必要である。また、今後の標準化を目指

すためにも、プロジェクト全体として統一した麻酔法の確定が望まれる。

残り事業期間を考えた場合、より一層の研究活動のスピード化が必要と考えられる。

28 日間反復投与終了時の肝毒性と腎毒性については、従来の生化学検査や病理検査で検出可能であり、費用が高く検査成績までの時間がかかる遺伝子発現解析を実施する意味が明確でないように感じられる。

4. 標準化等のシナリオ、波及効果についての妥当性

論文投稿、学会発表などの情報発信・普及活動は評価できる。

本プロジェクトで開発する有害性予測システムは、化学物質以外の医薬品や化粧品など広範囲での活用が期待できる。また、肝臓、腎臓、神経毒性のみならず、種々な毒性に応用可能であると考えられることから、本プロジェクトを通じて確立した技術の波及効果が期待できる。

また、中間評価時点で判断を下すのは困難であるが、国際規格化に向けた今後の取り組みに期待する。 一方、標準化に向けてのシナリオとして、現時点ではこれに関連する具体的な方法、特に国際化に向 けての事項がはっきりしない。ガイドライン化を目指すのであれば、先行する事業の関連研究成果(肝 発がん予測システムに関わる情報等)も速やかに公表すべきである。

また、データの再現性や施設間差などを検証して国際規格(標準)化に向け指標や基準を策定することが望まれる。

5. 研究開発マネジメント・体制・資金・費用対効果等の妥当性

先行する事業の成果やノウハウの応用も考慮した研究活動が行われており、研究施設の選定、事業実施スケジュール、実施体制は妥当と感じられる。

各種学会発表や論文発表などで公表されていることから費用対効果は認められたと考えられる。

一方で、最終目標が、我が国主導の国際規格化であるならば、研究開発計画が若干遅れていると感じられる。特に、期待の大きい発がん予測系については、前のプロジェクトの延長であるため、次のステップへの速やかな展開を期待する。

個々の実施者での研究成果は得られていると考えられるが、実施者間の連携によるシナジー効果は 十分に見られていないように感じる。

毒性関連遺伝子の絞り込み及び特定遺伝子の選定、発がん性予測などにおいて、バイオインフォマティシャンの知識・能力が重要であり、また毒性研究者との協力・連携体制が必須である。

中間時点での研究内容や進捗を再評価し、免疫毒性試験系の評価を中止し、資源の再配分を図った点は、柔軟な対応ができており、リソースの有効活用の観点からも適切な判断であるが、免疫毒性を中止したのは、周囲の状況変化への対応というより、当初計画の不備によるものと感じられる。

6. 総合評価

本プロジェクトの有害性評価手法の開発は、従来の毒性学者の経験的な評価から、網羅的遺伝子発現変動データを活用した、より客観的に評価するアプローチである。個々の企業や研究機関において研究開発するのではなく、国が主導して事業を進めていくことは評価できる。

また、ガイドライン化を想定した長期のビジョンの下で事業計画が立案されていおり、実験の進め方は適切で、実験結果の妥当性も認められる。

現行の毒性評価方法に遺伝子発現量解析を追加することにより、新たな毒性発現メカニズムが発見で

きる可能があるため、研究を継続することには価値があり、化学物質以外の医薬品や化粧品などの毒性 評価での活用も期待できる。

一方、ガイドライン化を目標とする場合は、情報の共有化が重要となってくるが、その取組みが十分とはいえない。必要条件だけで、発がん性予測モデルを形成しているが、十分条件を満たしていないと感じられ、評価方法のアルゴリズム開示と第3者による評価が必要である。

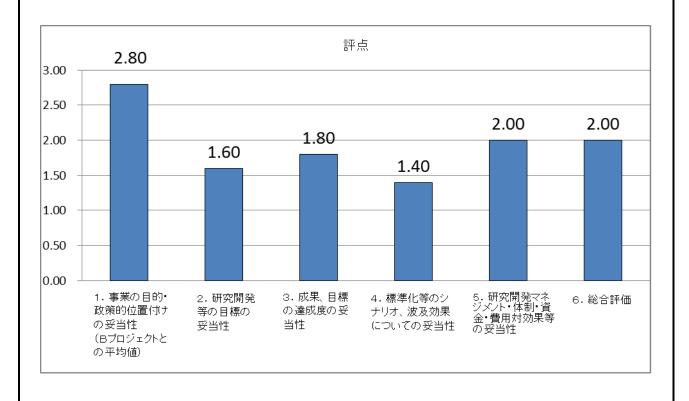
国際規格化に向けて指標や基準を策定するには、組織採取法や遺伝子発現データ取得などにおいてデータの再現性や施設間差などを考慮することが必要である。

また、これまでに多くの研究者が提案しているいろいろな手法を適切に取り入れるとともに、併せて、限られた資金の中では、公表されている厚生労働省及び NEDO プロジェクトのノウハウやデータを積極的活用すべきである。

7. 今後の研究開発の方向等に関する提言

要である。

- 〇被検物質の中にタイトルにある「石油精製物質等」に含まれる物質を入れておいた方がよい。
- 〇発がん予測系アルゴリズムを速やかに公開して、国内外の第3者が肯定的な評価を引き出すことにより、国際規格化への弾みがつくと考えられる。
- 〇メカニズムベースで毒性評価可能なバイオマーカー遺伝子の選択に対し積極的に挑戦すること。
- 〇本プロジェクトはラットの動物試験データに基づいて有害性予測手法の研究開発であるが、課題はヒ トへのリスク評価であるのでヒトを視野に入れた取り組みが重要である。
- ○優秀なバイオインフォマティシャンと毒性研究者との協力・連携体制で推進すること。
- 〇日本での Toxicogenomics Project (TGP) や欧米での Toxicogenomics 研究において、多くの化合物 の遺伝子発現変動データが取得されている。これらの情報を単に検証などに用いるだけでなく計画立案 時から戦略的に活用することを期待する。
- 〇残されたプロジェクト期間で、戦略的かつ効率的に有害性評価手法の精度をより一層向上するため及び更なる波及効果を高めるために、外部からの専門家(TGPの元メンバー、化学系企業の毒性専門家など)を交えて、バイオマーカー遺伝子の選定や発がん予測システムの充実化を図ることを提案したい。 〇今後国際規格(標準)化に向け、技術の確立と実用化には化学系企業の毒性専門家の意見・協力も必
- 〇麻酔の遺伝子発現データへの影響等に関する基礎データは、ガイドライン化を考えた場合に非常に重要な情報となる。必要に応じて、追加の基礎データの取得を行い、これらの情報を整理し、速やかに論文等により公表して情報共有を進めて頂きたい。


<u>評点結果</u>

評点法による評点結果

A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の 取得手法の開発

	壶上	Α	В	С	D	Е
	評点	委員	委員	委員	委員	委員
1. 事業の目的・政策的位置付けの妥当性	2. 80	3	3	3	3	2
2. 研究開発等の目標の妥当性	1. 60	2	2	1	1	2
3. 成果、目標の達成度の妥当性	1. 80	2	1	2	2	2
4. 標準化等のシナリオ、波及効果についての妥当性	1. 40	1	1	2	1	2
5. 研究開発マネシ・メント・体制・資金・費用対効果等の妥当性	2. 00	1	2	2	2	3
6. 総合評価	2. 00	2	2	2	2	2

第1章 評価の実施方法

第1章 評価の実施方法

本プロジェクト評価は、「経済産業省技術評価指針」(平成21年3月31日改定、以下「評価指針」という。)及び第25回産業構造審議会産業技術部会評価小委員会(平成21年1月28日)において審議・了承された「技術に関する施策の評価」に基づき、実施した。

1. 評価の目的

以下の(1)~(4)を目的として評価を実施した。

(1) より良い政策・施策への反映

評価を適切かつ公正に行うことにより、研究者の創造性が十分に発揮されるような、柔軟かつ競争的で開かれた研究開発環境の創出など、より良い政策・施策の形成等につなげること。

(2) より効率的・効果的な研究開発の実施

評価を支援的に行うことにより、研究開発の前進や質の向上、独創的で有望な優れた研究開発や研究者の発掘、研究者の意欲の向上など、研究開発を効果的・効率的に推進すること。

- (3) 国民への技術に関する施策・事業の開示 高度かつ専門的な内容を含む技術に関する施策・事業の意義や内容について、 一般国民にわかりやすく開示すること。
- (4) 資源の重点的・効率的配分への反映

評価の結果を技術に関する施策・事業の継続、拡大・縮小・中止など資源の配分へ反映させることにより資源の重点化及び効率化を促進すること。また、研究開発をその評価の結果に基づく適切な資源配分等通じて次の段階に連続してつなげることなどにより、研究開発成果の国民・社会への還元の効率化・迅速化に資すること。

また、評価の実施に当たっては、以下の①~④を基本理念として実施した。

① 透明性の確保

推進課、主管課及び研究開発機関においては、積極的に成果を公開し、その 内容について広く有識者等の意見を聴くこと。評価事務局においては、透明 で公正な評価システムの形成、定着を図るため、評価手続、評価項目・評価 基準を含めた評価システム全般についてあらかじめ明確に定め、これを公開 することにより、評価システム自体を誰にも分かるものとするとともに、評 価結果のみならず評価の過程についても可能な限り公開すること。

② 中立性の確保

評価を行う場合には、被評価者に直接利害を有しない中立的な者である外部 評価の導入等により、中立性の確保に努めること。

③ 継続性の確保

技術に関する施策・事業においては、個々の評価がそれ自体意義を持つだけではなく、評価とそれを反映した技術に関する施策・事業の推進というプロセスを繰り返していく時系列のつながりにも意義がある。したがって、推進課及び主管課にとって評価結果を後の技術に関する施策・事業の企画立案等に反映させる際に有用な知見を抽出し、継続性のある評価方法で評価を行うこと。

④ 実効性の確保

政策目的に照らし、効果的な技術に関する施策・事業が行われているか判断するための効率的評価が行われるよう、明確で実効性のある評価システムを確立・維持するとともに、技術に関する施策・事業の運営に支障が生じたり、評価者及び被評価者双方に過重な負担をかけることのない費用対効果の高い評価を行うこと。

2. 評価者

評価を実施するにあたり、評価指針に定められた「評価を行う場合には、被評価者に直接利害を有しない中立的な者である外部評価者の導入等により、中立性の確保に努めること」との規定に基づき、外部の有識者・専門家で構成する検討会を設置し、評価を行うこととした。

これに基づき、評価検討会を設置し、技術に関する施策、技術に関する事業(プロジェクト等)の目的や研究内容に即した専門家や経済・社会ニーズについて指摘できる有識者等から評価検討会委員名簿にある5名が選任された。

なお、本評価検討会の事務局については、指針に基づき経済産業省製造産業局化 学物質管理課が担当した。

3. 評価対象

技術に関する事業

石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発 (実施期間:平成23年度から平成25年度)

を評価対象として、研究開発実施者(A. 反復投与毒性試験と遺伝子発現変動による発が ん性等発現可能性情報の取得手法の開発:一般財団法人化学物質評価研究機構、国立大 学法人東京農工大学、学校法人京都産業大学)(B. 肝臓毒性、腎臓毒性及び神経毒性 in vitro 試験法の開発:公益財団法人鳥取県産業振興機構、国立大学法人鳥取大学、国立 大学法人岡山大学、住友化学株式会社、独立行政法人産業技術総合研究所、一般財団法 人食品薬品安全センター)から提出された資料をもとに、技術に関する事業(プロジェ クト)の評価を行うとともに、それらの事業評価の結果を踏まえて、各事業を俯瞰する 形で各事業の相互関係等に着目し、技術に関する施策の評価を実施した。

4. 評価方法

第1回評価検討会においては、研究開発実施者からの資料提供、説明及び質疑応答、 並びに委員による意見交換が行われた。

第2回評価検討会においては、それらを踏まえて「プロジェクト評価における標準的評価項目・評価基準」、今後の研究開発の方向等に関する提言等及び要素技術について評価を実施し、併せて4段階評点法による評価を行い、評価報告書(案)を審議、確定した。

また、本評価検討会は、知的財産権保護等の観点から、一部非公開として実施した。

5. 評価項目

【技術に関する事業】

- ○事業の目的・政策的位置付けの妥当性
 - ・事業の目的は妥当で、政策的位置付けは明確か。
 - ・国の事業として妥当であるか、国の関与が必要とされる事業か。
- ○研究開発等の目標の妥当性
 - ・研究開発等の目標は適切かつ妥当か。
- ○成果、目標の達成度の妥当性
 - ・成果は妥当か。
 - ・目標の達成度は妥当か。
- ○標準化等のシナリオ、波及効果についての妥当性
 - 標準化等のシナリオは妥当か。
 - ・波及効果は妥当か。
- ○研究開発マネジメント・体制・資金・費用対効果等の妥当性
 - ・研究開発計画は適切かつ妥当か。
 - ・研究開発実施者の実施体制・運営は適切かつ妥当か。
 - ・ 資金配分は妥当か。
 - 費用対効果は妥当か。
 - ・変化への対応は妥当か。
- ○総合評価

第2章 プロジェクトの概要

目 次

1		事業	の目的・	政策的位置付け	· • • • • • • • • • • • • • • • • • • •	• • •	9
	1	- 1	事業の	目的			9
	1	-2	政策的	位置付け		1	1
	1	– 3	国の関	与の必要性		1	4
(Α	反	復投与毒	性試験と遺伝子発現変動による発がん性等発現	見可能性	情報	艮の
取	得	手法	の開発)				
2		研究	開発目標			1	6
	2	- 1	研究開	発目標		1	6
		2 —	1 – 1	全体の目標設定	, 	1	6
		2 —	1 – 2	個別要素技術の目標設定		1	7
3		成果	、目標の	達成度		2	2 0
	3	- 1	成果…			2	2 0
				全体成果			2 0
				個別要素技術成果			2 2
				要臓器(肝臓・腎臓)に対する一般毒性			2
				がん性			5 3
				· 圣毒性 (非公開)			8
							3
				論文、外部発表等			8 6
	3			達成度			3
	Ŭ	_		Z/WZ		Ū	
4		標準	化等のシ	ナリオ、波及効果		9	6 (
			=	等のシナリオ			
				果			6
	Ċ	_	<i>"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>			Ū	
5		研究	開発マネ	ジメント・体制・資金・費用対効果等		9	8 (
_				発計画			8 (
				発実施者の実施体制・運営			
				分			
				効果			
				の対応			
	J	J	ᇫᇈ	′ マノ グコ ルい・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			, 0

(B.肝臓毒性、腎臓毒性及び神経毒性 in vitro 試験法の閉	開発)
用語集	1 0 8
2. 研究開発目標	1 1 0
2 一 1 研究開発目標	1 1 0
2-1-1 全体の目標設定	1 1 4
2-1-2 個別要素技術の目標設定	1 1 5
3. 成果、目標の達成度	117
3 1 成果	117
3 一 1 一 1 全体成果	1 1 7
3 一 1 一 2 個別要素技術成果(<mark>非公開</mark>)	1 2 9
3 - 1 - 3 特許出願状況等	2 6 8
3 2 目標の達成度	2 7 3
4. 標準化等のシナリオ、波及効果	2 7 5
4 一 1 標準化等のシナリオ	2 7 5
4 一 2 波及効果	277
5. 研究開発マネジメント・体制・資金・費用対効果等	2 7 8
5 一 1 研究開発計画	2 7 8
5 - 2 研究開発実施者の実施体制・運営	280
5 - 3 資金配分	282
5 - 4 費用対効果	283
5-5 変化への対応	284

1. 事業の目的・政策的位置付け

1-1 事業目的

石油の精製工程を経て得られる石油製品や精製の過程で生成される物質(以下「石油精製物質」という。)には、消費者の身近で使用される製品も多いが、 有害性情報が明らかになっていない物質が数多く存在している。

2020 年までに化学物質の影響を最小化するという国際目標(持続可能な開発に関する世界首脳会議(World Summit on Sustainable Development、WSSD)目標)達成のため、近年、欧州(Registration, Evaluation, Authorization and Restriction of Chemicals、REACH)や日本(化学物質の審査及び製造等の規制に関する法律、化審法)が新規化学物質、既存化学物質に関わらず化学物質をリスク評価の対象とする新たな化学物質規制手法を導入したところである。

また、ヒト健康影響に関する有害性を含む評価項目(エンドポイント:発がん性、一般毒性等)や評価基準の統一化に向けた国連勧告(Globally Harmonized System of Classification and Labeling of Chemicals 、GHS) に関し各国における規制への導入が近年急速に進みつつある。このように、多様なエンドポイントに対応した有害性評価を実施するニーズが高まっている。

しかし、これらの有害性評価項目に関して信頼性が高く、かつ、効率的な評価技術は十分に確立されていない部分が多く、また一般的にヒト健康影響に関する有害性評価項目の多くは動物への反復投与試験等で数ヶ月から数年の期間を要するため、新たな規制導入による評価実施ニーズに答えられていない状況である。

このため、これまでの研究開発において特定のエンドポイントについて遺伝子発現変動解析や培養細胞を活用した迅速で効率的な評価技術の開発を進めてきた我が国の先導的な取り組みや成果を活用し、多様なエンドポイントに対応する迅速で効率的な有害性評価技術の開発を進めることは、国内の化学物質管理の円滑な実施に資するとともに、国際的なニーズにも対応するものである。

本研究開発により、効率的な有害性評価手法を我が国主導で開発して、更に 国際標準へと発展させ、我が国の石油精製物質の安定供給に資することが可能 となる。

本研究開発では、石油精製物質等の化学物質において、国際的なニーズがあり十分整備されていない多様なエンドポイントの有害性評価手法について、遺伝子発現変動解析手法、培養細胞手法等による評価技術の確立を目的とする。

具体的には、28 日間反復投与試験の動物サンプルから取得した遺伝子発現変動データを活用して有害性を予測する手法の開発や、複数の in vitro 試験法の開発及び迅速かつ効率的に実施できる有害性評価システム等を構築することを目標とし、以下の研究開発項目について実施する。

- A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発
 - B. 肝臓毒性、腎臓毒性及び神経毒性 in vitro 試験法の開発

1-2 政策的位置付け

(1) 第4期科学技術基本計画(平成23年8月19日閣議決定)

平成23年度から5ヵ年を計画期間とする第4期科学技術基本計画が平成23年8月19日に閣議決定された。第4期科学技術基本計画は、国として取り組むべき重要課題を設定し、その達成に向けて重点的に推進すべき研究開発をはじめとする関連施策の基本的方向性を提示している。重要課題の1つとして、産業競争力の強化に向けた共通基盤の強化を設定しており、課題を達成するために、新たなものづくり技術の共通基盤として、安全性に関する評価手法等を構築するとしている。本プロジェクトはこれに対応する研究開発である。

(2)技術戦略マップ(2010年6月経済産業省編)

経済産業省では、産業技術政策の研究開発マネジメント・ツール整備、産学官における知の共有と総合力の結集、国民理解の増進を実現することを目標に、技術戦略マップを策定している。技術戦略マップ 2010 の化学物質総合評価管理分野では、WSSD 目標達成のため、リスク評価・管理及びリスク削減に用いられる技術の研究開発に取り組んでいくとしており、そのための技術体系を構築し、技術課題を整理している。

リスク評価管理技術の有害性評価の技術課題として、本研究が関与している 技術課題は以下の通りである。

- A. 反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発
- ・(75) 発がん性、生殖毒性、神経毒性の長期毒性についての高速の in vivo 試験法
 - ・(76) マルチエンドポイントの in vivo 試験法
 - ・(83) 網羅的解析技術を用いた有害性バイオマーカーの探索手法
 - B. 肝臓毒性、腎臓毒性及び神経毒性 in vitro 試験法の開発
 - ・(72) ES 細胞を用いた in vitro 試験法
 - ・(74) 長期毒性についての簡易でハイスループット可能な in vitro 試験法
 - ・(78) マルチエンドポイントの有害性評価手法

(3) 先行する NEDO 事業の成果の活用

経済産業省は、化学物質のリスクの総合的な評価を行い、リスクを適切に管理する社会システムを構築するため、化学物質総合評価管理プログラムを平成12年に制定した。また、政策目標を達成するために必要な研究開発と、成果の市場化に必要な関連施策(規制改革、標準化等)を一体化した施策パッケージである7つのイノベーションプログラムを平成20年度に制定した。このうちの1つである環境安心イノベーションプログラム基本計画は、従前の化学物質総合

評価管理プログラムを取り込んで、資源制約を克服し、環境と調和した持続的な経済・社会と、安全・安心な国民生活の実現を図ることを目標に制定された。

NEDO (独立行政法人新エネルギー・産業技術総合開発機構)では、経済産業省の化学物質総合評価管理プログラム/環境安心イノベーションプログラム基本計画に基づき、化学物質のリスク評価・管理のための研究開発を体系的に推進し、平成 13 年度から平成 17 年度まで「遺伝子発現解析技術を用いた長期毒性(肝発がん性)予測手法の開発」、平成 18 年度から平成 22 年度まで「28 日間反復投与試験結果と相関する遺伝子発現データセットの開発」、「培養細胞を用いた発がん性・催奇形性・免疫毒性の評価手法の開発」を実施した。本プロジェクトでは、NEDO で実施された研究開発の成果や培われた基盤技術を活用しながら、有害性評価手法の開発を実施する。

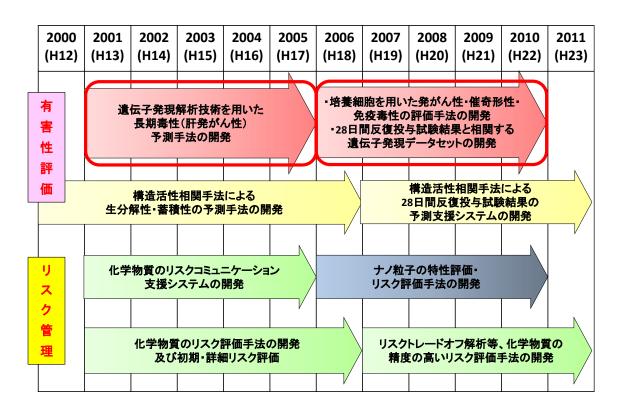


図 1-1. NEDO による化学物質のリスク評価・管理のための体系的な研究開発

(4) 化学物質管理の世界的な動向における本プロジェクトの位置づけ

2002 年に開催された「持続可能な開発に関する世界首脳会議 (WSSD)」において、「ライフサイクルを考慮に入れた化学物質と有害廃棄物の健全な管理のためのアジェンダ 21 の約束を新たにするとともに、予防的取組方法に留意しつつ透明性のある科学的根拠に基づくリスク評価手順とリスク管理手順を用いて、化学物質が、人の健康と環境にもたらす著しい悪影響を最小化する方法で使用、生産されることを 2020 年までに達成する」との、首脳レベルでの長期的な化学

物質管理に関する国際合意(WSSD目標)がなされている。また、2006年2月には、これを具体化するための行動指針として、「国際的な化学物質管理のための戦略的アプローチ(SAICM)」が取りまとめられている。

こうした国際目標の実現に向け、化学物質管理に関する国際標準化・国際協調の活動等、国際的に調和した取組が進められている。例えば、化学品の分類及び表示に関する世界調和システム(GHS)は、化学品のハザード(有害性)情報の分類及び表示方法について国際的に調和されたシステムを作ることを目的としており、さらには、化学物質等安全データシート(SDS)の提供等によりこれらのハザード情報を伝達することが期待されている。

技術戦略マップの化学物質総合評価管理分野では、我が国としても、まずは WSSD 目標の達成のため、リスク評価・管理に用いられる技術の研究開発に取り 組んでいく必要があるとしている。

また、日本国内においては、平成 21 年に化審法が改正され(平成 21 年 5 月 20 日公布)、一定数量を超えて市場に出されるすべての化学物質について、リスクが十分に低いとは判断できないものを「優先評価化学物質」に指定・公表し、国が 1 次リスク評価を実施し、更なる詳細な 2 次リスク評価が必要となる化学物質については、その製造・輸入事業者に対して長期毒性試験結果の収集・提出を求めている。また、新規化学物質についても、リスクが十分に低いと判断できないものについては優先評価化学物質として分類することによって、上市後の化学物質と同様にリスクに着目した評価を実施しているところである。WSSD 目標達成に向けて、化学物質のリスク評価・管理を適切に実施するためには、こうした法規制の的確な制度設計が重要であり、本プロジェクトで開発する有害性評価手法はこうした制度の裏付けとなる技術である。

1-3 国の関与の必要性

本研究で開発された手法は、多様なエンドポイントに関する迅速で効率的な有害性評価技術の開発を目標としており、国内の化学物質管理の円滑な実施に資するとともに、化学物質管理規制等の行政の裏付けとなる技術であり、国が主導して判断基準やルールを構築することにより、公平、中立な手法として信頼性が確保される。

さらに、開発した有害性評価手法について、将来的には、国際標準化にむけた取り組みを行い、実用化、普及を目指している。このため、国が施策の中心となって事業を進めることは妥当である。

また、平成 22 年度まで NEDO において実施した「28 日間反復投与試験結果と相関する遺伝子発現データセットの開発」、「培養細胞を用いた発がん性・催奇形性・免疫毒性の評価手法の開発」等、化学物質のリスクに対応する技術開発については、一定の評価方法や判断基準が構築されてきており、これまでに得られた知見等を活かして、引き続き国が主導して研究開発を進めいていくことは妥当である。

A. 反復投与毒性試験と遺伝子発現変動による 発がん性等発現可能性情報の取得手法の開発

2. 研究開発目標

2-1 研究開発目標

2-1-1 全体の目標設定

本研究では、効果的且つ効率的な有害性評価手法が十分整備されていない毒性エンドポイントとして、特に重要と考えられる「(1) 発がん性」、「(2) 主要臓器における一般毒性」及び「(3) 神経毒性」について、遺伝子発現変動解析手法等の最新技術を活用し、化学物質の効果的且つ効率的な有害性評価手法を開発すると共に、開発した手法の国際標準化をも図ることで、世界規模で化学物質の有害性評価を高度化し、効果的且つ効率的な試験・評価の実施に貢献することを目的とした。具体的には、化学物質審査規制法において公定法とされている等、化学物質の毒性スクリーニング試験として汎用されている 28 日間反復投与毒性試験(単一の動物試験)の実施を前提として、当該試験に供された実験動物の臓器等を生体サンプルとして遺伝子発現変動データを取得し、そのデータを解析して、投与された化学物質の前述の(1)~(3) の有害性に関する予兆的情報を得る手法の開発を目指している。

プロジェクト実施期間中に得られた研究成果については、学会や論文での発表に加えて、適宜、OECD等の国際機関での国際標準作りに向けて活用している。 なお、本プロジェクト開始当初には毒性エンドポイントとして免疫毒性も対象としていたが、予算の有効活用を考慮して2年目で終了時に対象から除外した。

全体目標	中間目標	設定理由
28 日間反復投与試験の動	個別指標で対応	効果的且つ効率的な有害
物サンプルから取得した		性評価手法が十分整備さ
遺伝子発現変動データを		れていない毒性エンドポ
活用して有害性を予測す		イントとして、特に重要
る手法の開発		と考えられる「(1) 発が
		ん性」、「(2) 主要臓器に
		おける一般毒性」及び
		「(3) 神経毒性」につい
		て、遺伝子発現変動解析
		手法等の最新技術を活用
		し、化学物質の効果的且
		つ効率的な有害性評価手
		法を開発すると共に、開

発した手法の国際標準化 をも図ることで、世界規 模で化学物質の有害性評 価を高度化し、効果的且 つ効率的な試験・評価の 実施に貢献することを目 的として設定した。

2-1-2 個別要素技術の目標設定

要素技術	目標・指標	目標・指標	設定理由・根拠等
	(事後評価時点)	(中間評価時点)	
28 日間反復投	(a) 各毒性に関す	(a) 各毒性に関す	・以下に記載。
与試験の動物	る関連遺伝子の絞	る実験動物の遺伝	
サンプルから	り込み。	子発現変動データ	
取得した遺伝		の取得、及びそれ	
子発現変動デ		ぞれの毒性に特徴	
ータを活用し		的な関連遺伝子の	
て有害性を予		絞り込み。	
測する手法の			
開発	・主要臓器(肝臓・	・適切な被験物質	・毒性既知の被験
	腎臓)の毒性、発	選定を実施し、各	物質を選択しデー
	がん性(肝発がん、	毒性既知物質の投	タを取得すること
	腎発がん)及び神	与による動物実験	で有害性を予測に
	経毒性を有する毒	を行い、投与動物	有用な遺伝子発現
	性既知物質を効率	の臓器及び組織等	データが取得可能
	的に選定して実験	から遺伝子の包括	であるため。
	動物に投与し、遺	的な発現変動デー	
	伝子の発現変動に	タを取得する。	
	関する包括的なデ		
	一タを取得する。		
	・毒性の発現に特	・各毒性の発現と	・各毒性の発現と
	異的と考えられる	の関係で特徴的な	の関係で特徴的な
	遺伝子を絞り込	発現変動を示して	発現変動する遺伝
	み、各毒性既知物	いると考えられる	子は各毒性のマー
	質の投与による毒	遺伝子の絞り込み	カー遺伝子となる
	性発現のマーカー	を行う。	可能性が高いた

として利用しうる 遺伝子を選える。 (b) 各毒性の発現 可お法を確立 各毒性の破既知る 各時による遺伝の 発現で動の 発現で動の 発現で動の 発現で動の がある がある がある がある がある がある がある がある がある がある		・以下に記載。
【全ての工共通】 では共通】 で実施研の開発でで、「所はないで、「所はないでででででででででででででででででででででででででででででででででででで	・設定なし。	・in vitro itro itro itro itro itro itro itro
【主要臓器(肝臓・腎臓)の一般毒性】・主要臓器(肝臓・腎臓)の一般毒性の発現可能性を予測する解析手法を確立し、文書化す	・遺伝子発現変動データの取得法の確立	・遺伝子による毒性評価の基本技術であるため。また、多様に対応なエンドる対容的な対応を対応を対応を対応を対応を対応を対応を対応を対応を対応を対応を対応を対応が対応が対応が対応がある。

- I			
	る。		国内の化学物質管
			理の円滑な実施に
	【発がん性(肝発	• 遺伝子発現変動	資するとともに、
	がん・腎発がん)】	データの取得法の	国際的なニーズに
	・発がん性(肝発	確立	も対応する。
	がん・腎発がん)		
	の発現可能性を予		
	測する解析手法を		
	確立し、文書化す		
	る。		
	【神経毒性】	• 遺伝子発現変動	
	・本事業で取得し	データの取得法の	
	た新たな科学的知	確立	
	見にもとづき、可	・遺伝子発現変動	
	能な範囲でその毒	データを用いるこ	
	性発現可能性を予	とで当該毒性の評	
	測する解析手法を	価が可能であるか	
	確立する。	について結論す	
		る。	

3. 成果、目標の達成度

3-1 成果

3-1-1 全体成果

ヒト健康影響に対する有害性情報が明らかになっていない物質は多数存在しており、特に重要度の高い(1)主要臓器(肝臓・腎臓)における一般毒性、(2)発がん性、(3)神経毒性、(4)免疫毒性について、それらの有害性情報を効率的かつ高精度に取得するための試験法として、遺伝子発現量解析を取り入れた新たな検出方法の開発を行った。

これまでに(1)主要臓器(肝臓・腎臓)における一般毒性については、目的臓器である肝臓及び腎臓における遺伝子発現量データの取得法について標準プロトコールを確立し、16 試験(14 物質)の 28 日間反復投与試験を行い、数万種類の遺伝子について包括的な発現量データを取得した。その後、動物実験で得られた毒性所見と遺伝子発現量データとの関係性についてバイオインフォマテイクス技術を駆使して解析し、これまでに肝臓では単細胞壊死、肝細胞肥大、肝細胞脂肪変性を、腎臓では近位尿細管空砲変性、近位尿細管核濃縮、近位尿細管核大小不同、乳頭壊死について、特徴的に発現変動するマーカー候補遺伝子を選定することができた。さらに、これらのマーカー候補遺伝子群を用いて「主要臓器(肝臓・腎臓)の一般毒性の発現可能性を予測する解析手法」のプロトタイプの開発を行った。

- (2) 発がん性については、化学発がんにおいて標的性の高い肝臓及び腎臓に着目し、化審法で行われる 28 日間反復投与試験で取得した遺伝子発現量データを活用し、長期間投与が必要な発がん性を予測できる "短期発がん性予測手法"の開発を行った。これまでに、16 試験(14 物質)について 28 日間反復投与試験を実施し、肝臓及び腎臓の遺伝子発現量データを取得した。肝臓については前身のプロジェクトで新規の短期発がん性予測手法を開発することができたために、本プロジェクトで取得した 16 試験(14 物質)を外部データとして活用し、短期発がん性予測手法の予測精度の確認を行った。さらに厚生労働省トキシコゲノミクスプロジェクト(2002-2012 年度)で取得され、既に一般公開されている遺伝子発現量データを活用し、本システムに適用し、どの程度の予測結果が得られるかを検証した。腎臓については、16 試験(14 物質)の遺伝子発現量データと腎発がん性との関連性をバイオインフォマテイクス技術により解析し、これまでに腎発がんに関連したマーカー候補遺伝子を選定することができた。さらに、これらのマーカー候補遺伝子群を用いて腎臓における短期発がん性予測手法のプロトタイプを作成した。
- (3)神経毒性については、遺伝子発現量解析のための脳の採材方法について標準プロトコールを確立し、2物質について妊娠期・授乳期暴露及び28日間反

復投与試験を行った。その後、妊娠期・授乳期暴露と 28 日間反復投与試験で発現変動した遺伝子群を比較して、暴露時期や採材時期がことなる脳サンプルにおいて共通に変動する遺伝子群を選定し、神経毒性のマーカー候補遺伝子とした。

なお、(4) 免疫毒性に関しては脾臓を除く免疫関連組織からの RNA 調製法や主要な免疫機能検出方法の開発は終了したものの、本事業の全体予算縮小を考慮し、リソースの有効利用のため基本計画から削除することとした。

将来的には、本プロジェクトで同定された遺伝子バイオマーカー及び毒性判定もしくは予測手法を化審法で実施される 28 日間反復投与試験に組み込みこむことで、これまで毒性エンドポイントごとに個別の異なる動物試験が必要だった有害性評価手法を、1 本の毒性試験でマルチに検出できるような試験系に発展させることを目指す(図 1)。これにより大幅なコスト削減と時間短縮、動物数削減が見込まれ、さらに遺伝子発現量をベースにした測定法により定量性の高い、かつメカニズムベースの毒性評価ができることが期待される。

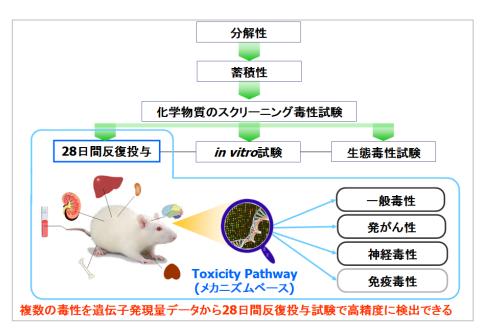
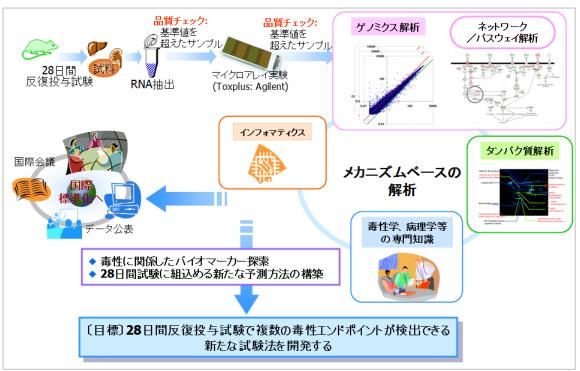


図1 開発した新規評価方法の化審法への適用(構想図).

3-1-2 個別要素技術成果


(1) 主要臓器(肝臓・腎臓)に対する一般毒性

1. 研究開発の概要

化学物質の一般毒性に関しては、代謝を担う肝臓と排泄を担う腎臓が主要な標的臓器である。加えて、肝毒性及び腎毒性はヒトにおいても重篤な疾患に繋がるため、創薬段階において開発中止となる主要な要因となっており、化学物質のげっ歯類を用いた有害性評価においても特に重要視すべき毒性エンドポイントである。そこで本研究では、化学物質の標的性が高く、毒性発現が起こりやすい肝臓と腎臓を開発対象のエンドポイントとする。これまでに肝臓についてはグルタチオン枯渇や PPAR による肝毒性、腎臓については尿細管壊死などいくつかのエンドポイントについて個別のバイオマーカー遺伝子が見出されているものの、それらを一つの試験系でマルチに検出できる評価系は確立されていないのが現状である。また、血液生化学的検査から肝臓もしくは腎臓の個々の毒性症状を判定しようという試みもなされているが、十分な相関性が得られていない。

そこで、本研究では、一般毒性の中でも特に重要性が高いエンドポイントである肝毒性及び腎毒性に着目し、28日間反復投与試験から得られる肝臓及び腎臓サンプルの遺伝子発現変動データを用いて、既存の測定方法(臓器重量、血液生化学的検査、病理組織学的検査など)では判定が困難な毒性メカニズムをより詳細に同定し、毒性情報を精緻化する手法の開発を目的とする(図(1)-1)。

これまでの 2 年間で、16 試験(14 物質)について、28 日間の反復投与毒性試験を行い、経時的(1、7、14、28 日間)に肝臓及び腎臓をサンプリングし、それぞれの臓器で遺伝子発現量データの取得を行い、バイオマーカー遺伝子の探索を試みた(表(1)-1)。加えて、厚生労働省が実施した TGP (トキシコゲノミクスプロジェクト)で主に医薬品から得られた動物実験データや遺伝子発現量データについても本P J で取得した遺伝子発現データと合わせて石油精製物質等の幅広い工業化学物質における肝毒性・腎毒性のメカニズムに基づくマーカー遺伝子の同定を目指すこととした。

図(1)-1 研究計画の概要.

表(1)-1 実施した試験一覧(16試験).

	物質名	略称	実施年度
1	Bromodichloromethane	BDCM	
2	Phenolphthalein	PP	
3	o-Nitroanisole	o-NA	⊔02 左帝
4	2-Amino-4-nitrophenol	2A4Np	H23 年度
5	tert-Butyl alcohol	TBA	
6	tert-Butyl alcohol /イソフルラン麻酔	TBA_I	
7	o-Anthranilic acid	2-AA	
8	o-Anisidine hydrochloride	o-AH	
9	Tris(2-Chloroethyl) Phosphate	TCEP	
10	2, 2-Bis(Bromomethyl)-1, 3-Propanediol	DBNPG	
11	Nitrilotriacetic acid trisodium monohydrate	Na3-NTA-H20	U01 左帝
12	1-Amino-2, 4-Dibromoanthraquinone	ADBAQ	H24 年度
13	Bromodichloromethane/イソフルラン麻酔	BDCM_I	
14	Anthraquinone	AQ	
15	1, 2, 3-Trichloropropane	TCP	
16	N-Nitrosodimethylamine	DMN	

2. 条件検討

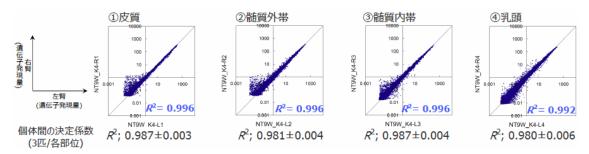
2.1 各臓器の採材方法の検討

2.1.1 背景及び実施内容

研究を進めるにあたり、対象臓器である肝臓及び腎臓からの遺伝子発現量解析 用のサンプル採取方法について、条件の最適化を行った。

肝臓からの採取及び保存方法、RNA 抽出方法については、前身のプロジェクトで検討しており、プロトコールとしては確立しているため、本プロジェクトにおいても同様の手法で実施した。

腎臓については、組織学的に血管系、腎乳頭、尿細管系、糸球体に大きく分けることができ、それらが存在する部位の違いによって解剖学的にも皮質、髄質、乳頭の大きく3部位に分かれている。また化学物質によって引き起こされる腎毒性についても、尿細管壊死のように組織特異的に起こるものが多いために、各組織もしくは部位ごとに通常発現している遺伝子の種類や発現量が大きく異なり、さらには化学物質投与後に影響を受ける遺伝子群も異なることが予想された。そこで事前検討として腎臓の部位別で発現している遺伝子の種類や量に違いがあるのかを調べるために、媒体(コーン油)を3日間投与したSDラットから解剖学的に分離可能と判断された皮質、髄質(外帯)、髄質(内帯)、乳頭の4種を個別に採取し、それぞれからtotal RNAを抽出したのち、個別にマイクロアレイ実験を行い、部位別の遺伝子プロファイルを比較した。また、同時に部位別採取の手技的な再現性と個体間差についても検討した。なお、マイクロアレイ実験の方法については、「3.2.2 遺伝子発現量解析」(後述)に記載の通りである。

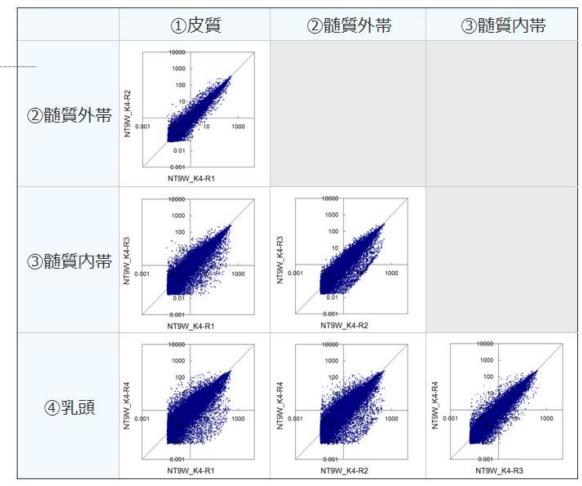

図(1)-2 腎臓における各部位の採取方法及び実験の概要.

2.1.2 結果

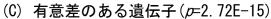
媒体を3日間投与したSDラットの腎臓を皮質、髄質(外帯)、髄質(内帯)、乳頭の4部位に分けて採取し、同一個体の左腎及び右腎の遺伝子発現プロファイルの比較を行った。その結果、4部位とも決定係数(パ)が0.992~0.996と非常に高い相関性を示したことから、同一個体内の左右の腎臓間では類似した遺伝子発現

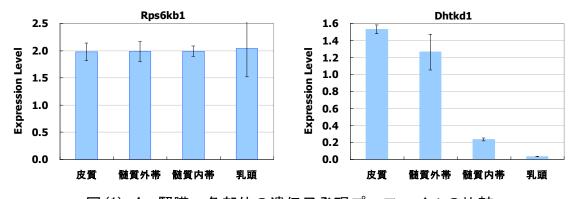
プロファイルを示していることが分かった(図(1)-3)。

次に個体間のばらつきを調べるために、右腎の各部位について 3 個体総当たりで相関性解析を行ったところ、何れの部位も決定係数 (R^2) が 0.980 以上を示した (図(1)-3)。このことから、腎臓の各部位における個体間のばらつきは非常に小さいことが分かり、また、動物実験後の部位別採取の手技についても大きなばらつきがないことが確認できた。



図(1)-3 腎臓各部位の左右及び個体間の遺伝子発現量データのばらつき.


次に、各部位について 3 個体の遺伝子発現量の平均値を算出した後、発現レベルを腎臓部位間で比較したところ、部位間で大きく遺伝子発現プロファイルが異なることが分かった (図 (1) -4A)。隣接する部位間では比較的大きな差異を示す遺伝子数はそれほど多くないものの、離れた部位、特に皮質と乳頭では大きく発現レベルが異なる遺伝子が数多く存在することが分かった。4 部位の何れかで発現していることが確認できたものは 42, 255 プローブで、それらを用いて部位間の分散分析 (ANOVA) を行ったところ、有意差のないもの (p>0.05) は 6, 882 プローブと全体の 16. 3%にしか過ぎなかった。また、これらの遺伝子機能を調べたところ、Gene Expression、RNA Post-Transcriptional Modification、Protein Synthesis、Cell-To-Cell Signaling and Interaction と細胞の恒常性維持に関連したものが多く、最も p値が大きかったものは Rps6kb1 遺伝子 (ribosomal protein S6 kinase, 70kDa, polypeptide 1) でタンパク質合成に関与したものであった <math>(図(1) -4B)。


部位間で発現レベルに有意差があったものは腎臓で発現している遺伝子の 8 割以上を占め、その中でも最も p 値が小さかったものに Dhtkd1 遺伝子 (dehydrogenase E1 and transketolase domain containing 1)があり、皮質と乳頭では 45 倍の発現レベルの差がみられた(図(1)-4C)。また、各部位で特異的な発現レベルを示す遺伝子群の機能を調べたところ、乳頭で発現している遺伝子群の機能は他の 3 部位と全く逆の傾向(皮質・髄質外帯では分子輸送や脂質代謝、薬物代謝が盛ん)を示すことが分かった(表(1)-2)。

(A) 部位間の遺伝子発現プロファイルの比較

(B) 有意差のない遺伝子(p=0.999)

図(1)-4 腎臓・各部位の遺伝子発現プロファイルの比較.

表(1)-2 部位特異的に発現している遺伝子群の機能分類.

部位	Functional	Analysis
미기자	High expressed	Low expressed
中	· Molecular Transport	- Cellular Movement
皮質	·Lipid Metabolism	• Organismal Development

髄質(外帯)	Molecular TransportLipid MetabolismDrug Metabolism	Cellular MovementImmune Cell Trafficking
髄質(内帯)	Molecular TransportSkeletal and Muscular SystemDevelopment and Function	- Cellular Movement - Drug Metabolism
乳頭	Cellular MovementImmune Cell Trafficking	Molecular TransportLipid Metabolism

以上の結果から、定常状態の腎臓では部位間で発現している遺伝子の種類も発現量も大きく異なり、それぞれ異なる遺伝子機能に関与していることが分かったため、化学物質投与による影響は部位別で大きく異なる可能性が考えられた。そこで、本プロジェクトでは、化学物質投与後の腎臓における遺伝子発現量解析について、皮質・髄質(外帯)・髄質(内帯)・乳頭の4部位に分けて取得することとした。また、同時に腎臓(全体)の遺伝子発現量データも取得し、各部位で得られたデータと比較することとした。

2.2 麻酔法の検討

2.2.1 背景及び実施内容

前身のプロジェクトにおいて、エーテル麻酔と CO_2/O_2 混合麻酔 (4:1) を比較したところ、 CO_2/O_2 混合麻酔の方が肝臓の遺伝子発現プロファイルの個体間のばらつきが小さかったため、これまでのデータについては CO_2/O_2 混合麻酔で取得してきた。他方、麻酔の導入及び覚醒が速いために麻酔深度を容易に迅速に変えることができるという理由から、イソフルラン麻酔が動物実験で多用されるようになった。しかし、イソフルラン麻酔はマウス海馬の遺伝子発現プロファイルに影響するとの報告があるため、麻酔法の違いによって遺伝子発現プロファイルに影響を与える可能性が考えられた。

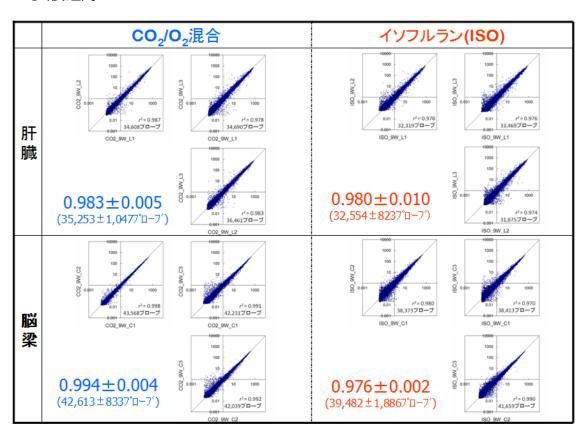
そこで、麻酔法の違いが遺伝子発現プロファイルにどの程度影響するかを調べるために、媒体(コーン油) を 3 日間投与した SD ラットを CO_2/O_2 混合麻酔もしくはイソフルラン麻酔後にと殺し、肝臓、腎臓(皮質、髄質(外帯)、髄質(内帯)、乳頭)、脳(海馬歯状回、帯状回、脳梁、小脳)を採取してマイクロアレイによる遺伝子発現量解析を行った(図(1)-5)。なお、マイクロアレイ実験の方法については、[3,2,2] 遺伝子発現量解析」(後述)に記載の通りである。

図(1)-5 麻酔法検討実験の概要.

2.2.2 結果

媒体を 3 日間投与した SD ラット CO_2/O_2 混合麻酔もしくはイソフルラン麻酔後にと殺し、目的臓器を採取した後、個体間の同一個体の左腎及び右腎の遺伝子発現プロファイルの比較を行った。一例として肝臓及び脳梁で個体間のばらつきをスキャッタープロットで示したところ、 CO_2/O_2 混合麻酔及びイソフルラン麻酔ともに各プロットの広がりは小さく、決定係数 (P) も 0.976 以上と高い相関性を示した(図 (1) -6)。その他の部位についても個体間のばらつきを相関性解析により調べたところ、何れの決定係数 (P) も 0.976 以上を示した (表(1) -3) 。

このことから、何れの麻酔法においても、個体間の遺伝子発現プロファイルのばらつきは小さく、麻酔法としては遺伝子発現解析に用いても問題ないことが確認できた。


次に、各臓器もしくは部位について、 CO_2/O_2 混合麻酔とイソフルラン麻酔との間で発現レベルに有意差のあるものを調べたところ、 $108\sim278$ プローブが選定された。一例として海馬歯状回において麻酔法の違いによって発現レベルに有意差があった遺伝子を調べたところ、イソフルラン麻酔で発現レベルが高かったものに *NAMPT* 遺伝子(nicotinamide phosphoribosyltransferase)、*NPAS2* 遺伝子(neuronal PAS domain protein 2) があり、 CO_2/O_2 混合麻酔で発現レベルが高かったものに、*GCNT1* 遺伝子(glucosaminyl(N-acetyl) transferase 1, core 2) があった。

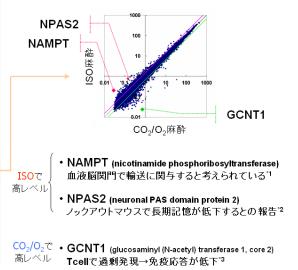
以上の結果から、各組織もしくは部位について麻酔法に違いによって影響を受ける遺伝子が数百プローブ(検出プローブの約0.6%)あることが分かったため、化学物質投与後のバイオマーカー探索の際にはこれらの遺伝子の変動に注意し、場合によっては除外対象とすることとした。また、遺伝子発現レベルでは麻酔法の違いによって受ける影響が1%以下と小さいことが分かったため、何れの麻酔法も本手法に適用できる可能性が示唆された。そこで、本プロジェクトではこれまで取得してきた遺伝子発現量データとの整合性を図るため、 $00_2/0_2$ 混合麻酔を採用することとした。

しかしながら、イソフルラン麻酔が化学物質投与後の対象サンプルにどのような影響を与えるかについては、現時点でははっきりとしていないため、2 物質について同じ条件で動物実験を行った後、 CO_2/O_2 混合麻酔もしくはイソフルラン麻酔後にと殺し、遺伝子発現プロファイルを比較してバイオマーカー探索に適用可

能かについて検討した。この結果については「3. 主要臓器に対する一般毒性のバイオマーカー候補遺伝子の探索」に記載した。

なお、本プロジェクトでは化学物質投与後のデータを取得していないエーテル麻酔については、TGP(トキシコゲノミクスプロジェクト)においてエーテル麻酔後にと殺を行っており、それらのデータが本手法に適用可能なことを確認している(後述)。

図(1)-6 肝臓と脳梁における個体間の遺伝子発現レベルのばらつき(R).


表 (1) -3	冬職哭におけ	る個体間遺伝子発現し	、ベルのばらつき(<i>P</i>)
4V \ I / \ U		(A)	ハ・フレリハあり コーバル

	臓器	CO_2/O_2 混合麻酔	イソフルラン麻酔	
	肝臓	0.983 ± 0.005	0.980 ± 0.010	
	皮質	0. 983±0. 005	0. 976±0. 002	
腎臓	髄質外帯	0.979±0.010	0. 981±0. 002	
月 ル戦	髄質内帯	0. 987±0. 006	0.988±0.002	
	乳頭	0. 984±0. 007	0.986±0.004	
	海馬歯状回	0. 987±0. 004	0. 981±0. 007	
脳	脳梁	0. 994±0. 004	0. 976±0. 002	
ᄱ	帯状回	0.992±0.005	0.995±0.000	
	小脳	0.987±0.008	0.995±0.002	

■発現レベルが高かった遺伝子(プローブ数)*

	臓器	CO ₂ /O ₂	ISO
	肝臓	141	68
	皮質	93	68
腎	髄質外帯	89	32
臓	髄質内帯	87	85
	乳頭	81	47
	海馬歯状回	75	178
H2M	脳梁	166	112
脳	帯状回	43	65
	小脳	66	87

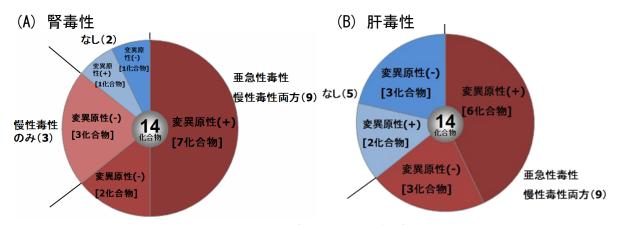
■海馬歯状回(CO₂/O₂混合vs ISO)

図(1)-7 麻酔間の遺伝子発現プロファイルの差異.

3. 主要臓器に対する一般毒性のバイオマーカー候補遺伝子の探索

3.1 被験物質

本プロジェクトの目標として一つの動物実験で様々な毒性エンドポイントをメカニズムベースに検出することがあり、効率的に研究成果を得るためには、1物質で複数の毒性を示す物質が望ましい。しかしながら、この条件に合致する化合部は非常に少ないために、各毒性エンドポイント(一般毒性/肝毒性、一般毒性/腎毒性、肝発がん性、腎発がん性)で優先順位をつけて化合物を選定することとした。また、先述の条件検討で腎臓の部位別採取が有効であることが分かったため、腎毒性に関する種々の MoA (Mode of Action)をカバーできるように幅広く陽性物質を選定した方が良いと考え、腎毒性を示す物質を優先的に選定することとし、これまでに 14 物質を選定した (表 (1) –4 及び図 (1) –8)。


なお、BDCM 及び TBA の 2 物質については、投与後 28 日目のみ、 CO_2/O_2 混合麻酔に加えて、化学物質投与後の生体において麻酔法の違いがどの程度影響するのかを調べるためにイソフルラン麻酔後の遺伝子発現プロファイルを取得した。そのため、データ数としては合計で 16 試験となった。

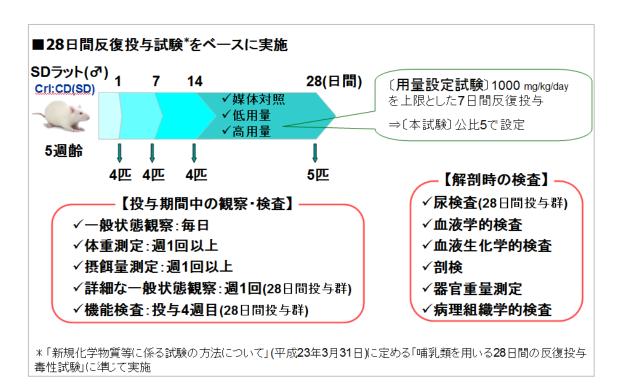
^{*} P <0.05 かつ1.5倍以上 or 1/1.5倍以下

1	(I) 4	/貝(14 /// // // // // // // // // // // // /		双毋注 用制	(及い半試)	火での投予里.
物質	 略称	試験番号	一般	毒性*	変異原性	投与量
#	₩ロ 1/0・	1八河大田 つ	肝臓	腎臓	Ames 試験	(mg/kg/day)
1	BDCM	B10-0092 (C)	有	有	N	40, 200
'	DDON	B10-0103(I)	79	79	IN	40, 200
2	PP	B10-0093	有	有(慢毒)	N	200, 1000
3	o-NA	B10-0094	有	有	Р	80, 400
4	2A4Np	B10-0095	有	有	Р	150, 750
	TDA	B10-0096-C	-	_	N	200 1000
5	TBA	B10-0096-I	有	有	N	200, 1000
6	2-AA	B10-0097	影響なし	影響なし	N	200, 1000
7	o-AH	B10-0098	影響なし	影響なし	Р	140, 700
8	TCEP	B10-0099	影響なし	有(慢毒)	N	80, 400
9	DBNPG	B10-0100	影響なし	有	Р	200, 1000
10	Na3-NTA-H20	B10-0101	影響なし	有(慢毒)	N	200, 1000
11	ADBAQ	B10-0102	有	有	Р	200, 1000
12	AQ	B10-0104	有	有	Р	200, 1000
13	TCP	B10-0105	有	有	Р	15, 75
14	DMN	B10-0106	有	有	Р	0.8,4

表(1)-4 被験物質(14物質)の既知の一般毒性情報及び本試験での投与量.

^{*} 既報の亜急性もしくは慢性毒性試験で毒性が観察された場合は「有」、何も観察されていない場合は「影響なし」、その中で慢性毒性のみを示す物質には「有(慢毒)」と記載.

図(1)-8 14 物質の毒性分類(一般毒性).


3.2 実験方法

3.2.1 動物実験

選定した 14 物質について、「新規化学物質等に係る試験の方法について」(平成 23 年 3 月 31 日)に定める「哺乳類を用いる 28 日間の反復投与毒性試験」に準じて、1、7、14、もしくは 28 日間の反復投与毒性試験を行った。なお、BDCM 及び TBA の 2 物質については 28 日間の反復投与後にイソフルラン麻酔を行い、目

P; 陽性、N; 陰性、(P); 雌ラット肝臓で陽性

的臓器を採取した(図(1)-9及び表(1)-5)。

図(1)-9 動物実験の概要.

表(1)-5 動物実験条件.

	動物種	ラット
	系統	Crl:CD (SD)
	性	雄
動物試験	週齢	投与開始時:5 週齡
三月 17月 百八河大	体重範囲	投与開始時:平均体重±20%
	動物数	5 匹/群(サテライト群;4 匹/群)
		*ただし、遺伝子発現量解析には3匹/群を用いる
	麻酔法	$\mathrm{CO}_2/\mathrm{O}_2$ 混合麻酔 $(-$ 部、イソフルラン麻酔 $)$
	投与方法	強制経口投与
	用量	媒体対照+2 用量
試験物質	投与期間	28 日間(サテライト群として、1 日、7 日、14 日間投与群を
		設定する)
	回復試験	なし
	観察(一般划	(態、詳細観察、機能観察、体重、摂餌量)、血液学的検査、
検査項目	血液生化学的]検査、尿検査、病理学的検査(剖検、器官重量、病理組織学
	的検査)	
		肝臓、腎臓、脾臓、胸腺、骨髄、脳
	遺伝子用	*所定の核酸安定化剤へ浸漬(4℃、24 時間)し、-80℃保存。
採材		脳は所定の方法で固定化
	タンパク用	脳
	, , , , , , , , , , ,	*氷冷後、速やかに-80℃保存

3.2.2 遺伝子発現量解析

RNA 抽出用に保存された各種臓器から total RNA を抽出した後、ND-1000 (NanoDrop) によって RNA 濃度を、バイオアナライザ (Agilent) によって RNA 品質を測定し、RNA 濃度としては $50 \text{ ng}/\mu$ l、純度としては A260/280>1.8、A260/230>1.5、RIN 値 (RNA Integrity Number) >7.0 を合格とした。また、マイクロアレイ実験は Agilent 社フォーマットを用いたカスタムアレイを使用し、その後のデータ解析には GeneSpring GX (Agilent) や Ingenuity Pathways Analysis 等を用いた (表 (1)-6)。

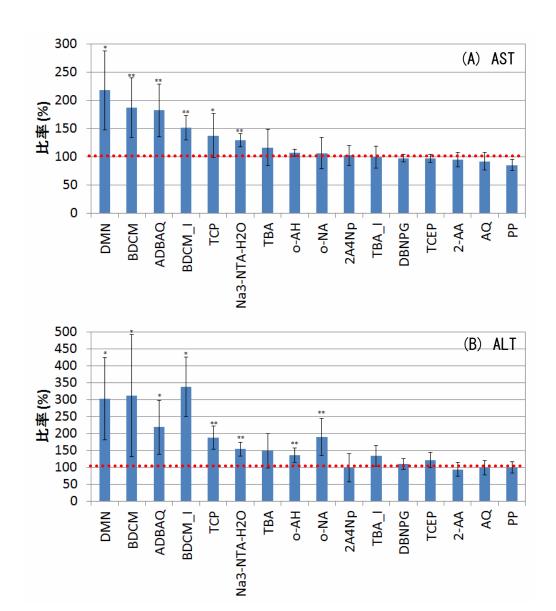
美	E施項目	キットもしくは機器			
DNA ++ > =	RNA 抽出	miRNeasy Mini Kit (QIAGEN)			
RNA サンプルの調製	濃度測定	ND-1000 (NanoDrop)			
ルの訓表	RNA 品質検査	RNA6000 Nano キット、RNA6000 Pico キット			
		Whole Rat Genome Toxplus Array ver. 1 (60K×8)			
	マイクロアレイ	Whole Rat Genome Toxplus Array ver. 2 (60K×8)			
遺伝子発		* 61,537 プローブが搭載			
現量解析		GeneSpring GX ver 12.0			
	データ解析	Ingenuity Pathways Analysis (Ingenuity)			
		GeneMaths Ver.2.01 (Applied Maths)			

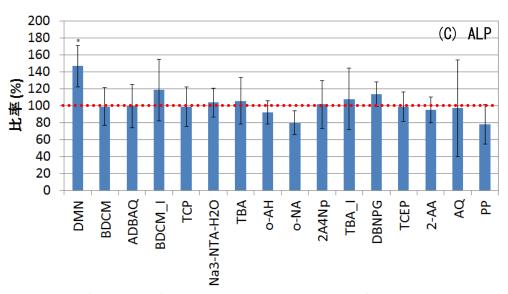
表(1)-6 遺伝子発現量解析の実験条件.

さらに、中間目標には含まれていなかったものの、最終目標として掲げている 肝毒性及び腎毒性の判定システムの構築について、これまでに実施した 16 試験 (14 物質)の遺伝子発現量データを用いて、プロトタイプを作成した。その解析条件については表(1)-7 に示す。

	1370-411384-6411-1
実施項目	実施内容
対象データ	16 試験(14 物質)
化合物のグループ化	階層的クラスタリング
バイオマーカー候補の選定	Welch's t-test
判別式の構築	SVM (Support Vector Machine)
予測式の最適化	Random calculation

表(1)-7 判定式構築の条件.


3.3 結果


3.3.1 肝毒性バイオマーカー候補の探索

3.3.1.1 動物試験結果

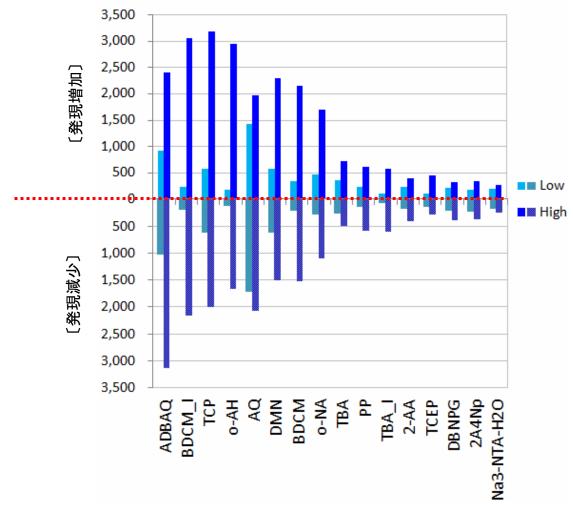
動物試験結果については、投与 28 日目の高用量群に注目してデータ解析を行った。肝毒性に関連した毒性パラメーターとして血液生化学的検査では AST、ALT、ALP を 16 試験 (14 物質) について、媒体対照群に対する変化率をパーセンテージで表示した後、物質間の比較を行った。この際、AST レベルの高いものから化合物を並び替え、ALT 及び ALP についてもその順番に沿って表した。その結果、ASTと ALP については、有意な増加を示す物質の重なりが多く、変化の程度も類似していたものの、ALP については、全体的に有意な増加もしくは減少を示した物質が少なかった (図 (1) -10)。

次に病理組織学的検査で肝臓に何らかの所見がみられた物質を調べたところ、16 試験 (14 物質) 中、9 試験 (8 物質) が該当した (表 (1)-8)。血液生化学的検査と病理組織学的検査の結果を比較したところ、DMN、BDCM、ADBAQ、BDCM_I、TCP の5 試験 (4 物質) については何らかの病理所見が観察されており、かつ AST レベルが有意に増加していた上位 5 物質に全て含まれていた。特に DMN、BDCM、ADBAQ、BDCM_I の 4 試験 (3 物質) については、共通して肝細胞単細胞壊死が観察されていた(図 (1)-10 及び表 (1)-8)。一方で、2A4NP 及び AQ については、AST、ALT、ALPの何れのパラメーターも有意な変化はみられなかったものの、病理所見では肝細胞肥大が共通して観察された(図 (1)-10 及び表 (1)-8)。これらの物質で観察された肝細胞肥大は化学物質投与による適用性応答である可能性が考えられた。

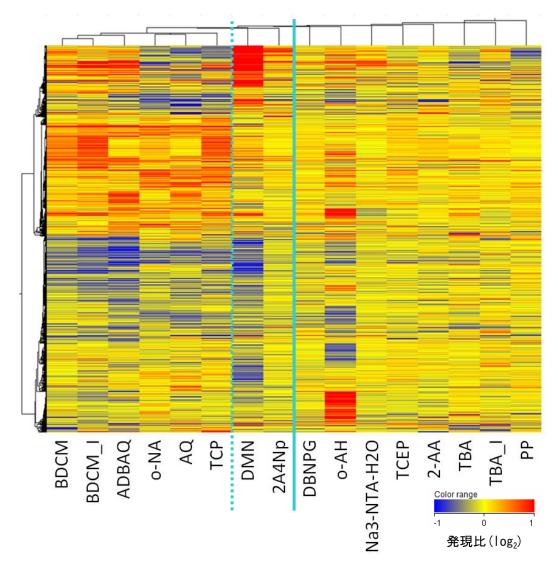
図(1)-10(続き) 血液生化学的検査(投与 28 日、高用量). *: p <0.05

表(1)-8 肝重量、剖検及び病理組織学的検査(投与28日、高用量).

物質名	重量 (相対)	剖検	病理組織学的検査
DMN		・肝腫大(5/5) ・葉の小型化(3/5) ・変色部及び葉間癒着 (1/5)	 ・小葉中心性肝細胞変性(5/5) ・肝細胞単細胞壊死(5/5) ・線維芽細胞増生(5/5) ・リンパ球浸潤(5/5) ・類洞内へモジデリン沈着(5/5) ・アポトーシス(4/5) ・有糸分裂像増加(3/5)
BDCM_I	1	・肝腫大(5/5)	小葉中心性肝細胞脂肪変性(5/5)肝細胞単細胞壊死(3/5)小肉芽腫(5/5)
BDCM	↑	・肝腫大(5/5)	小葉中心性肝細胞脂肪変性(5/5)肝細胞単細胞壊死(5/5)小肉芽腫(5/5)
2A4NP	↑		・小葉周辺性肝細胞肥大(5/5) ・くもり硝子変性(4/5) ・類洞内色素沈着(1/5)
ADBAQ	1	· 肝腫大(5/5) · 暗褐色化(1/5)	 びまん性肝細胞肥大(5/5) くもり硝子変性(5/5) 肝細胞単細胞壊死(4/5) 小肉芽腫(4/5)
TCP	1	・肝腫大(4/5)	・びまん性肝細胞肥大(5/5) ・小葉中心性くもり硝子変性(5/5)
AQ	1	・肝腫大(5/5)	・小葉中心性肝細胞肥大(5/5)・くもり硝子変性(5/5)
o-AH	1		・小葉中心性肝細胞肥大(4/5)・くもり硝子変性(4/5)
o-NA	1	・肝腫大(5/5)	・小葉中心性肝細胞肥大(4/5)・くもり硝子変性(4/5)

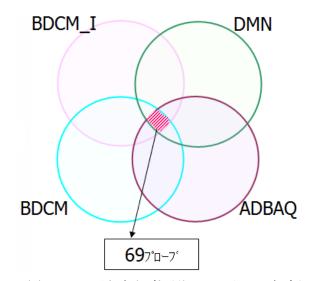

† ; 媒体対照群に対して有意な増加を示した(p < 0.05). — ; 所見がみられなかった. カッコ内の数値は所見がみられた動物の例数

3.3.1.2 遺伝子発現量解析及びバイオマーカー候補の探索

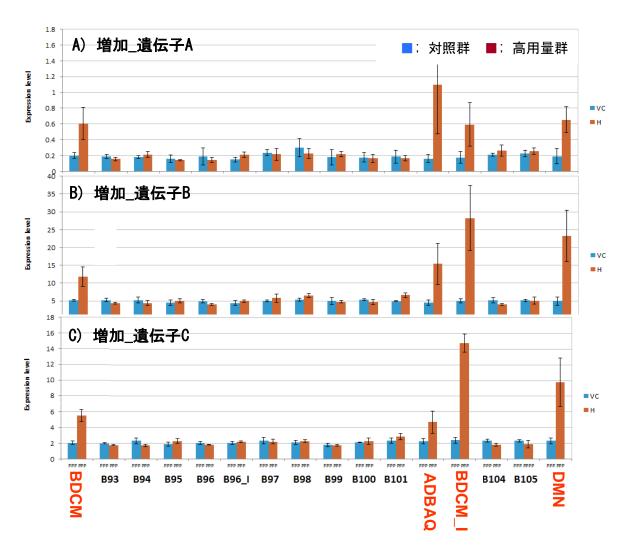

1、7、14、及び28日間反復投与後の肝臓からtotal RNAを抽出し、RNA濃度、純度、及び品質が基準を満たしていることを確認した。その後、投与後28日目の検体について、媒体対照群、低用量群、高用量群の各3匹を用い、マイクロア

レイ実験(Agilent Whole Rat Genome Toxplus, $60K \times 8$)を行った。媒体対照群と投与群との間で有意差検定を行い、有意な発現変動を示す遺伝子を抽出し、そのプローブ数をカウントした。その結果、ADBAQ、BDCM_I、TCP、o-AH、AQの順に高用量群の変動遺伝子数が多く最大で約5,000プローブの有意な変動がみられ、また、何れの物質も用量相関的に変動遺伝子数が増加していることが分かった(図(1)-11)。また、動物実験において何らかの病理所見を示す物質で変動遺伝子数が多い傾向にあった。

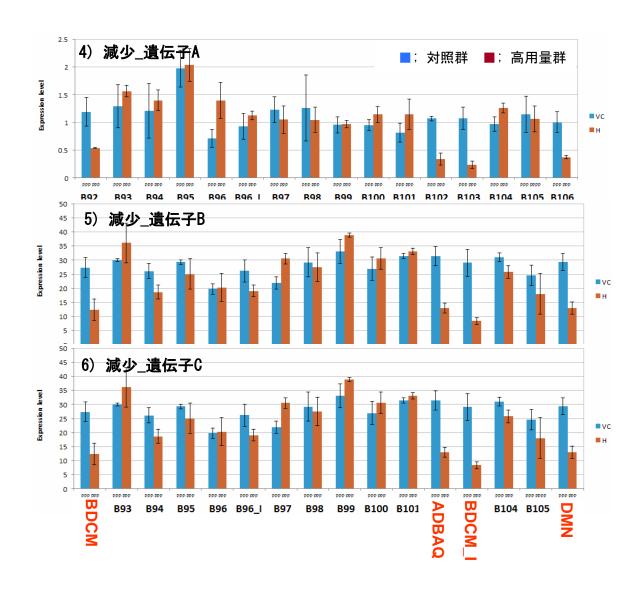
次に階層的クラスタリングによって化合物間の遺伝子発現プロファイルを比較したところ、BDCM_I, BDCM, ADBAQ, TCP, AQ, o-NAが比較的近いプロファイルを示すことが分かった(図(1)-12)。これらの物質群で共通した毒性所見を調べたところ、部分的に重なりのあるものはあったものの、6 試験(5 物質)全てに共通した所見は全くなかった。このことから、遺伝子発現プロファイルが全体的に類似していても、それらは様々な毒性症状の複合的な作用の結果である可能性が考えられた。そこで、動物試験結果と照合し、物質間で共通性の高い毒性症状に絞ってマーカー遺伝子を探索することとした。



図(1)-11 有意な変動を示したプローブ数(肝臓、投与28日目).



図(1)-12 遺伝子発現量データの階層的クラスタリング(肝臓、投与 28 日目). 何れか 1 物質でも有意な変動を示した 23, 237 プローブを用いた (distance metric; Peason Uncentered、linkage rule; Ward's).


まず、共通性の高い毒性症状として、肝細胞単細胞壊死があり、DMN, BDCM, ADBAQ, BDCM_I の 4 試験 (3 物質) で観察された (表 (1) -8)。そこで、これら 4 試験 (3 物質) で有意に発現変動した遺伝子群のベン図解析を行い、物質間の共通性について調べた。その結果、4 試験 (3 物質) で共通して発現変動したものが 69 プローブ選定された (図 (1) -13)。これらの遺伝子群について、発現変動幅の大きいものを調べたところ、発現増加及び減少ともに 4 試験 (3 物質) 特異的に生じていることが分かった (図 (1) -14)。そこで、これらの遺伝子群を肝細胞単細胞壊死のバイオマーカー候補とすることとした。

図(1)-13 4試験(3物質)間のベン図解析.

図(1)-14 肝細胞単細胞壊死のバイオマーカー候補遺伝子.

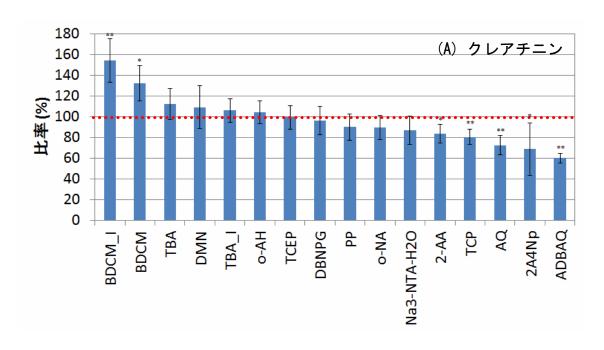
図(1)-14(続き) 肝細胞単細胞壊死のバイオマーカー候補遺伝子.

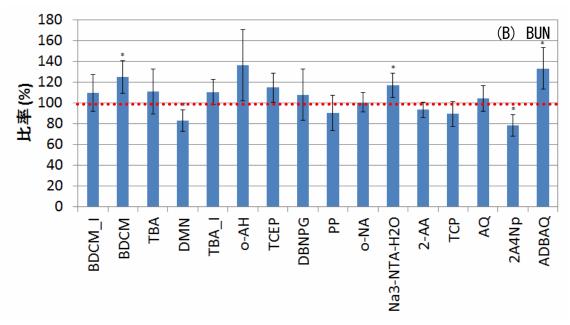
上記の検討から、肝細胞単細胞壊死が観察された化合物グループに共通して、かつ特異的に変動する遺伝子群を抽出することができたため、その他の毒性症状についても動物試験結果と遺伝子発現量データの照合を行い、ある毒性を示した化合物グループ特異的に変動する遺伝子群を同様の方法を用いて抽出した。その結果、肝細胞単細胞壊死以外に、肝細胞脂肪変性、肝細胞肥大(小葉中心性及びびまん性)、肝細胞肥大(小葉周辺性)について、それぞれ、45 プローブ、87 プローブ、165 プローブがバイオマーカー候補遺伝子として選定された(表(1)-9)。

なお、肝細胞肥大については観察された部位の違い、すなわち「小葉中心性及びびまん性」と「小葉周辺性」では遺伝子発現プロファイルが大きく異なり、ベン図解析の結果では両者のバイオマーカー候補遺伝子の共通性は非常に乏しかった(データ示さず)。このことから、同じ肝細胞肥大が生じている場合でも、その部位の違いによって毒性メカニズムが異なる可能性が示唆された。

表(1)-9	バイオマ	ーカー候補遺伝子(肝毒性	ŧ)
1X (1) 0		7 以他多句】(小母)	ᆫᄼᆞ

	毒性症状	毒性分類		バイオマーカ	
#		陽性	陰性	一候補遺伝子 (プローブ数)	陽性物質名
1	肝細胞単細胞壊死	4	12	69	BDCM, BDCM_I, ADBAQ, DMN
2	肝細胞脂肪変性	3*	13	45	BDCM BDCM_I, ADBAQ
3	肝細胞肥大	5	11	87	o-NA、o-AH、ADBAQ、AQ、TCP
4	肝細胞肥大 (小葉周辺性)	1*	15	165	2A4Np


^{*} 化合物数が少ないため、個体別データ(n=3)を用いた.


3.3.2 腎毒性バイオマーカー候補の探索

3.3.2.1 動物試験結果

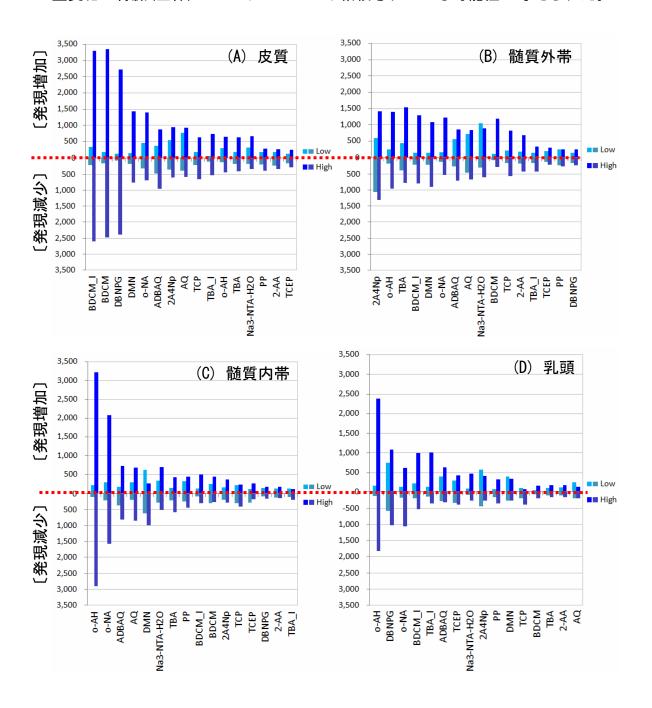
動物試験結果については、投与 28 日目の高用量群に注目してデータ解析を行った。肝毒性に関連した毒性パラメーターとして血液生化学的検査ではクレアチニン、BUN を 16 試験 (14 物質) について、媒体対照群に対する変化率をパーセンテージで表示した後、物質間の比較を行った。この際、クレアチニンレベルの高いものから化合物を並び替え、BUN についてもその順番に沿って表した。その結果、クレアチニンと BUN の値はあまり相関しておらず、両方で同じような変化をしめした物質は BDCM (有意な増加) 及び 2A4Np (有意な減少) のみであった(図 (1)-15)。

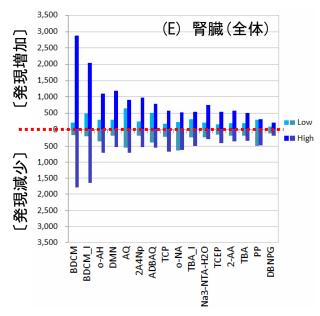
次に病理組織学的検査で腎臓に何らかの所見がみられた物質を調べたところ、16 試験(14 物質)中、10 試験(8 物質)が該当した(表(1)-10)。血液生化学的検査と病理組織学的検査の結果を比較したところ、クレアチニンレベルが有意に高かった BDCM, BDCM_I では、剖検及び病理組織学的検査で共通した所見が観察されたものの、例数については一致しないものがあった(図(1)-15 及び表(1)-10)。また、BUN レベルは BDCM のみで有意な増加を示し、腎臓の相対重量は BDCM_I のみで有意な増加を示したことからも腎毒性の程度としては必ずしも同じではなかった。その他の物質については、血液生化学的検査の結果と病理組織学的検査の間で関連性のあるものは見出せかかった。これは腎臓の組織構造が複雑であるために、化学物質による毒性メカニズムも複雑であることが関係しているものと考えられた。

図(1)-15 血液生化学的検査(投与28日、高用量). *: 🕫 0.05

表(1)-10 腎重量、剖検及び病理組織学的検査(投与28日、高用量).

物質名	重量 (相対)	剖検	病理組織学的検査
		•	・皮質/近位尿細管の空胞変性(4/5)
BDCM_I	1	腎臓腫大(3/5)	・皮質/近位尿細管の核濃縮(4/5)
			・皮質/近位尿細管の再生(5/5)
			・皮質/近位尿細管の空胞変性(5/5)
BDCM		腎臓腫大(1/5)	・皮質/近位尿細管の核濃縮(2/5)
			・皮質/近位尿細管の再生(5/5)
TBA	<u>^</u>	腎臓の表面点状模	・皮質/近位尿細管の硝子滴(5/5)
IDA	T	様明瞭(4/5)	・皮質/近位尿細管の核濃縮(1/5)
TDA I	^	腎臓の表面点状模	
TBA_I	Î	様明瞭(2/5)	
DWN			・皮質/近位尿細管の核大小不同(2/5)
DMN			・腎盂拡張 (1/5)
		· 暗褐色化(5/5) · 腫大(1/5)	· 乳頭管好塩基性化(4/5)
			- 乳頭壊死(2/5)
			皮質/近位尿細管ヘモジデリン沈着(5/5)
o-AH			• 皮質/遠位尿細管拡張(2/5)
			・皮質及び髄質/遠位尿細管拡張(2/5)
			· 皮質/近位尿細管硝子滴(2/5)
			· 皮質/近位尿細管再生(2/5)
			·尿路上皮(移行上皮)過形成(1/5)
Na3-NTA-H20	1	・腫大(1/5)	·尿路上皮空胞化(4/5)
			・腎盂炎(1/5)
AQ	1	・腫大(1/5)	· 髓質外帯/近位尿細管空胞変性(2/5)
O A AND		• 暗褐色化(4/5)	・髄質外帯/近位尿細管の再生(1/5)
2A4NP		・腫大(4/5)	· 髓質外帯/色素沈着(3/5)
ADBAQ		• 暗褐色化(5/5)	皮質/近位尿細管色素沈着(5/5)

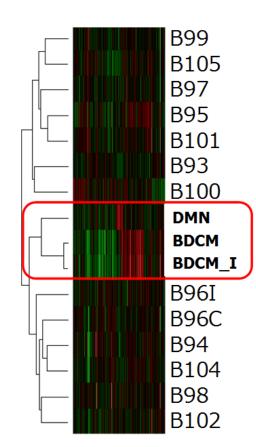

^{↑;}媒体対照群に対して有意な増加を示した(p <0.05). —; 所見がみられなかった.


カッコ内の数値は所見がみられた動物の例数

3.3.2.2 遺伝子発現量解析及びバイオマーカー候補の探索

1、7、14、及び28日間反復投与後の腎臓を腎臓(全体)に加えて皮質、髄質(外帯)、髄質(内帯)、乳頭の4部位に分けて、それぞれからtotal RNAを抽出し、RNA濃度、純度、及び品質が基準を満たしていることを確認した。その後、投与後28日目の検体について、媒体対照群、低用量群、高用量群の各3匹を用い、マイクロアレイ実験(Agilent Whole Rat Genome Toxplus, 60K×8)を行った。

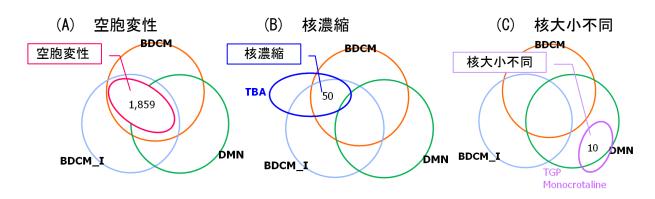
媒体対照群と投与群との間で有意差検定を行い、有意な発現変動を示す遺伝子を抽出し、そのプローブ数をカウントし、その数の多い物質から順に表示した。その結果、腎臓の各部位で変動遺伝子数の多い物質は異なっており、皮質ではBDCM_I, BDCM, DBNPG が、髄質外帯では2A4Np, o-AH, TBAが、髄質内帯ではo-AH, o-NA, ADBAQが、乳頭ではo-AH, DBNPG, o-NAがそれぞれ上位3種に含まれていた(図(1)-16)。また、腎臓(全体)で変動遺伝子数の多かったものはBDCM_I及びBDCMとなり、皮質での遺伝子変動を反映する傾向を示した(図(1)-16)。また、腎臓(全体)での変動遺伝子数は最大で4,500プローブと、各部位での変動遺伝子数の総和より大幅に少ないことから、化学物質投与後に各部位で生じた遺伝子発現量変化が腎臓(全体)のRNAサンプルでは相殺されている可能性が考えられた。



図(1)-16 有意な変動を示したプローブ数(肝臓、投与28日目).

次に、動物試験結果と照合し、物質間で共通性の高い毒性症状に絞ってマーカー遺伝子を探索することとした。この際、病理組織学的検査で多数の所見が観察された皮質と壊死が観察された乳頭に注目してデータ解析を進めた。まず、皮質の遺伝子発現量データを階層的クラスタリングによって化合物の分類を行ったところ、DMN、BDCM、BDCM、Iの3物質が16試験(14物質)の中で最も近いクラスターを形成した(図(1)-17)。そこでこれら3試験(2物質)に共通した毒性症状を調べたところ、これら全てに共通したものはなかったものの、比較的共通性の高かった病理所見はいくつか見出され、それらは皮質・近位尿細管の空胞変性、核濃縮、核大小不同があることが分かった。そこでこれら3種の病理所見について詳細に調べたところ、空胞変性については、BDCM、BDCM、Iの2試験(1物質)のみで、核濃縮については、BDCM、BDCM、Iの2試験(1物質)に加えてTBAの3試験(2物質)で、核大小不同については、DMNとTGPデータに含まれるMonocrotalineの2物質で観察されていることが分かった(表(1)-11)。

上記3種の病理所見に特異的な遺伝子群を抽出するために、ベン図解析を行った。その結果、皮質・近位尿細管の空胞変性、核濃縮、核大小不同のそれぞれで1,817 プローブ、50 プローブ、10 プローブが選定された(表(1)-12)。また、乳頭壊死については2,019 プローブが選定された(表(1)-12)。これらの遺伝子群については、腎毒性の各症状のバイオマーカー候補遺伝子とすることにした。

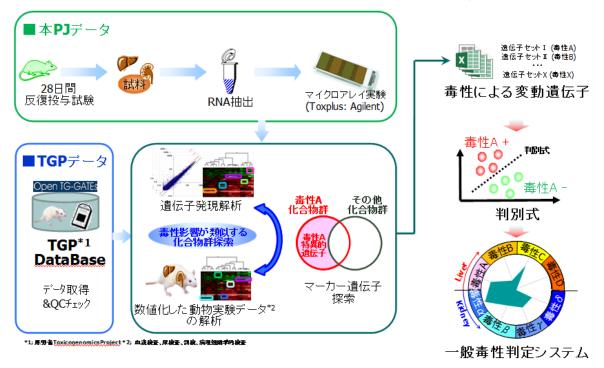

図(1)-17 遺伝子発現量データの階層的クラスタリング(皮質、投与28日目、高用量)

遺伝子数:20,709, log2ratio, 物質数: 16, 処理群: 高用量群, 解析条件; Pearson & Ward's

表(1)-11 物質間での病理所見の共通性.

所見		皮質/近位尿細管				
物質	空胞変性	核濃縮	核大小不同			
BDCM	0	0				
BDCM_I	0	0				
DMN			0			
その他		TBA	Monocrotaline			

〇;所見がみられた. 一;所見がみられなかった.


図(1)-18 物質間のベン図解析(皮質、投与28日目、高用量).

		表(1)-12	ハイオ	マーカ-	一阪補夏伝子	·(肾毒性).
		所見	毒性分類		バイオマーカ	
#	部位		陽性	陰性	一候補遺伝子	陽性物質名
					(プローブ数)	
1	中艇	空胞変性	2*	14	1,859	BDCM, BDCM_I
2	皮質	核濃縮	3*	13	50	BDCM, BDCM_I TBA
3	近位尿細管	核大小不同	(2)*	15	10	DMN、MCT [TGP データ]
4	乳頭	壊死	1*	15	2,019	o-AH

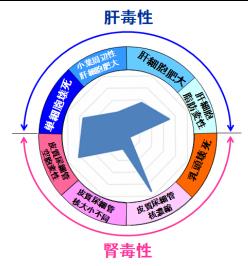
表(1)-12 バイオマーカー候補遺伝子(腎毒性)

4. 毒性判定システムの構築(プロトタイプ)

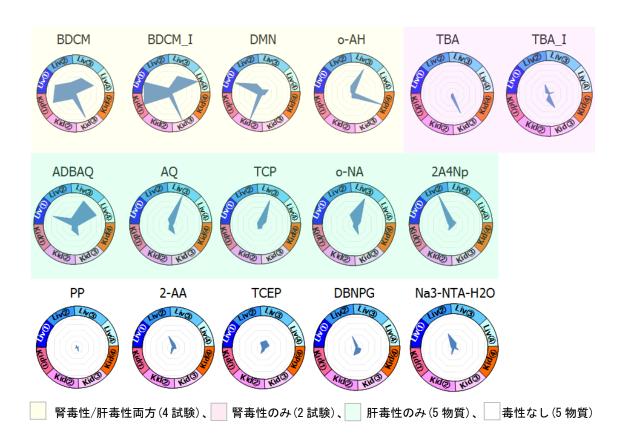
「3.3.1 肝毒性バイオマーカー候補の探索」及び「3.3.2 腎毒性バイオマーカー候補の探索」において、合計 8 種の病理所見について中間目標に掲げていたバイオマーカー候補遺伝子の選定を達成することができた。今後は最終評価に向けて、遺伝子発現量データから肝毒性もしくは腎毒性に関連した各種症状を判定できる高精度かつ簡易なシステムを構築しなければならないが、どのような形のものを開発するかは、本プロジェクトにおいて重要なポイントとなる。その際、一つの毒性し症状に複数のマーカー遺伝子が含まれている上、数多くの毒性症状を広く検出できるようにするには、マーカー遺伝子はさらに増加し、各毒性症状の判定も複雑になる。そこで、これまでに選定されたバイオマーカー候補遺伝子を利用して、毒性判定システムのプロトタイプの構築を試みた。

図(1)-19 毒性判定システム構築のストラテジー.

^{*} 化合物数が少ないため、個体別データ(n=3)を用いた.


毒性判定システムを構築するためのストラテジーを図(1)-19 に示す。これまでの取り組みにより、本プロジェクトで取得した遺伝子発現量データと外部データである TGP データの遺伝子発現量データを活用し、毒性症状に関連したバイオマーカー候補遺伝子を選定してきた。そこで、それらの遺伝子群を用いて個別の毒性症状について判別式を構築した後、複数の毒性症状を一つの結果として表示させるために、レーダーチャート型の結果表示ができるようなシステム案を考えた。

まず、合計 8 種類の病理所見についてこれまでに選定したバイオマーカー候 補遺伝子から、判別式構築のために最適なものに絞り込んだところ、7~75遺伝 子が選定された。次にそれらの遺伝子群について 8 種類の病理所見ごとに SVM (Support Vector Machine) を用いて判別式を構築した。その後、個別の判定結 果をレーダーチャート形式で全てプロットすることで、化合物ごとに一つの結 果として表示した(図(1)-20)。その後、レーダーチャート形式判定結果を 16 試 験(14 物質)間で比較した。その結果、麻酔法が異なる BDCM と BDCM I、TBA と TBA I では非常に類似した予測結果が得られた(図(1)-21)。BDCM と BDCM I と同 様に肝毒性と腎毒性を両方示した DMN と o-AH については、それら 2 試験と判定 結果の形状が異なることから毒性影響が異なることが分かった(図(1)-21)。ま た、肝毒性のみを示す5物質については、AQ. TCP. o-NAの3物質の形状が比較 的類似していた(図(1)-21)。なお、ADBAQ と AQ は基本骨格にアントラキノンを 有する構造類縁体で、両方とも肝毒性を有するものの、発がん性については ADBAQ のみが陽性を示すことが分かっている。本判別式においては、両者のレー ダーチャートの形状は大きく異なることから、28 日間投与の段階で両者の毒性 影響の差が遺伝子レベルで生じていることが分かった。また、肝毒性も腎毒性 も示さなかった 6 物質については、全体的にレーダーチャートの形状が小さか ったことから、実際の毒性影響を反映しているものと思われる。


今回検討した毒性判定システムのプロトタイプについては、視覚的に毒性影響を俯瞰して捉えることができるため、非常に有用な方法であると考える。また、今後さらに毒性エンドポイントが増加していく場合でもシステムとして対応できるため、拡充性も兼ね備えたシステムを考案することができた。

表(1)-13 判別式構築に用いた遺伝子数.

		部位		毒性	分類	判別式に用
#	臓器		所見	陽性	陰性	いた 遺伝子数
1			単細胞壊死	4	12	13
2		-	 _ 肝細胞脂肪変性		13	13
3	··· • • • • • • • • • • • • • • • • • •		肝細胞肥大		11	75
4			小葉周辺性肝細胞肥大	1*	15	7
5		皮質	空胞変性	2*	14	15
6	腎臓	近位尿細管	核濃縮	3*	13	14
7	育順		核大小不同	(2)*	15	9
8	乳頭		壊死	1*	15	17

図(1)-20 レーダーチャート形式での判別結果の表示(例; BDCM).

図(1)-21 肝毒性及び腎毒性の判定結果.

Liv①: 肝細胞単細胞壊死 Liv②: 小葉周辺性肝細胞肥大 Liv③: 肝細胞肥大、Liv④: 肝細胞脂肪変性、Kid①: 皮質尿細管空砲変性 Kid②: 皮質尿細管核大小不同、Kid③: 皮質尿細管核濃縮 Kid④: 乳頭壊死

5. 最終評価に向けての今後の取り組み

今後は、試験物質数を増やして今回選定された遺伝子群の再現性を確認することで、今回選定されたバイオマーカー候補遺伝子の精度を高め、さらなる絞込みを行い、最終選定を進めていく必要がある。具体的には、本年度は 10 試験(9 物質)のデータが取得できるため、本年度末までに累計データ数が 26 試験(23 物質)となり、最終評価までに 30-40 試験分のデータを取得する予定である。また、それらの遺伝子群を使って、遺伝子発現量データから肝毒性及び腎毒性に関連した各種症状を判定できる高精度かつ簡易なシステムを構築する。その際、腎臓については、試験ごとに部位別採取及び遺伝子発現量データを取得することは、コスト面でも作業面でも負担が大きいため、今後はバイオマーカー遺伝子について、各部位で得られた遺伝子発現レベルと腎臓(全体)で得られた遺伝子発現レベルを比較して関係性を見出すことで、新たな補正式を構築し、将来的には腎臓(全体)の遺伝子発現量データのみで部位別に生じた毒性を高精度に検出できるシステムにする予定である。

また、これまでの成果として合計 8 種の毒性症状についてバイオマーカー候補 遺伝子を選定でき、さらに「4. 毒性判定システムの構築(プロトタイプ)」により、 最終的なアウトプットについて具体化することができたため、今後さらに毒性症状の種類を増やし、広く肝毒性及び腎毒性を検出できるようなシステムに高めていく予定である。

6. 評価項目に対する自己評価

得られた成果は何か。

腎臓の部位別採取方法(皮質、髄質外帯、髄質内帯、乳頭)及び部位別の遺伝子発現量データを取得することができ、腎臓からの採取方法についてプロトコールを確立できた。

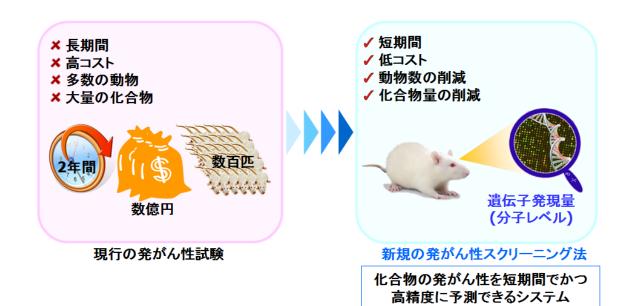
主要臓器(肝臓・腎臓)に対する一般毒性の高精度化及び精緻化に向けて、 肝毒性に関しては肝細胞単細胞壊死、肝細胞脂肪変性、肝細胞肥大、肝細胞 肥大(小葉周辺性)の4種の毒性症状について、45~165プローブのバイオマー カー候補を選定することができた。腎毒性に関しては、皮質近位尿細管の空 胞変性、核濃縮、核大小不同、乳頭壊死の4種の毒性症状について、10~2,0 19プローブのバイオマーカー候補を選定することができた。

設定された目標以外に得られた成果はあるか。

麻酔法の検討によりこれまで採用してきたCO₂/O₂混合麻酔に加え、イソフルラン麻酔法も適用できることを示した。また、TGPデータの本法への適用を検討し、適用可能であることが分かったため、TGPで実施していたエーテル麻酔も適用できることが確認でき、実験条件の拡充を図ることができた。

また、試験条件の検討によって、腎臓を部位別に採取して個別に遺伝子発現量解析を行うことが有効と判断されたため、化学物質投与後の腎臓についても全て部位別採取を行うことに決定して研究を進めた。これにより、腎臓の組織特異的な毒性についてより詳細な遺伝子発現量データを取得できるようになり、動物実験で得られた表現型に近い結果を得ることができるようになった。一例として、2-Amino-4-nitrophenolの腎臓・髄質外帯特異的に生じた毒性について、動物試験結果と遺伝子発現量データを部位別に照合して考察し、毒性メカニズムの推定を行うことができ、外部発表を行った。

最終評価に掲げている「各毒性の発現可能性を検出し得る方法の確立」について、どのような形のものを開発するかは、本プロジェクトにおいて重要なポイントとなるが、この点について、これまでに得られた16試験(14物質)のバイオマーカー候補遺伝子を利用して、毒性判定システムのプロトタイプの構築を試みた。その結果、複数の毒性症状を一つの結果としてみることができるレーダーチャート式に判定結果を表示し、視覚的に毒性影響を俯瞰して捉えることができるシステムを考案した。

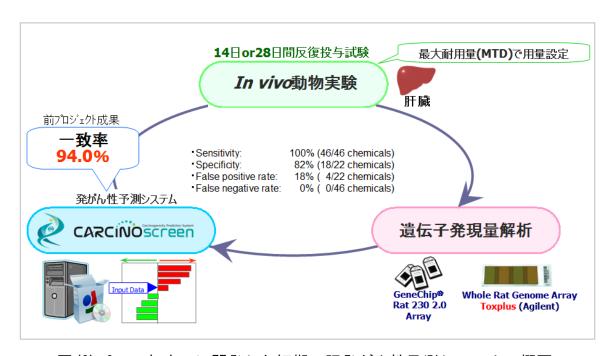

・共通指標である、論文の発表、特許の出願、国際標準の形成 (OECD での活動)、 プロトタイプの作製等があったか。 (3-1-3参照)

本プロジェクトの概要及び成果については、2012年に OECD 会議での発表を行った。また、腎臓の部位別採取方法や腎臓の組織特異的に生じる毒性と遺伝子発現量変化との関係性については、論文作成中である。

(2) 発がん性

1. 研究開発の概要

化学物質による発がん性は非常に重要な毒性エンドポイントであるにも関わらず、現行の発がん性試験では長期間の投与実験(2 年間)を行うため、多数の実験動物及び大量の化合物が必要となり、非常に高コストで負担の大きいものになっている(図(2)-1)。そのため、ガイドラインに沿った方法で実施された発がん性試験は 1,000 物質にも満たないのが現状である(NTP: National Toxicology Program)。そこで本研究では、化学物質による発がん性で標的性の高い肝臓及び腎臓に着目し、短期間かつ低コストの新規発がん性スクリーニング手法の開発を試みた。具体的には肝臓及び腎臓の遺伝子発現量をマイクロアレイで網羅的に調べることで、早期の発がんマーカー遺伝子を探索し、その変動から長期間投与によって将来的に起こる発がん性を予測することを目標にした。


化学物質の発がん性試験(げっ歯類)では45%が肝臓、次いで腎臓(13%)を標的 ⇒肝臓及び腎臓に着目

図(2)-1 研究開発のストラテジー(発がん性).

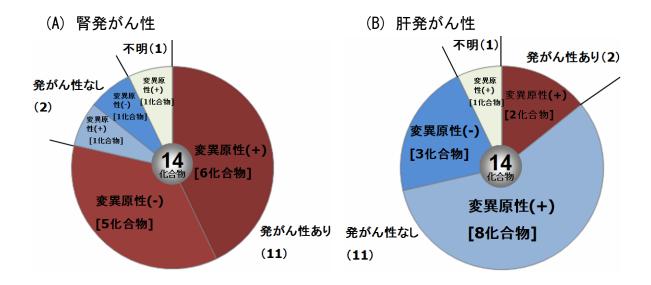
これまでに前身のプロジェクトを通じて肝臓を標的とした発がん性については、14日間もしくは 28日間の反復投与試験後の肝臓サンプルの遺伝子発現量データから、94%の一致率で発がん性を予測できるシステムを既に構築し、CARCINOscreen®と名付けた(図(2)-2)。そこで、肝臓については、このCARCINOscreen®の精度を確認するため、外部データの取得を行い、発がん性の予測を行うこととした。具体的には、本プロジェクトで得られた 16 試験(14物質)の肝臓に遺伝子発現量データの CARCINOscreen®への適用を行った。次に

外部機関で動物実験及びマイクロアレイ実験を実施して取得された遺伝子発現量データ; TGP データを本システムに供して、どの程度の一致率を示すかを調べた。さらに、本システムの適用範囲を明確化するため、既存の発がん性スクリーニング手法である中期発がん性試験及び Bhas-42 試験 (*in vitro* 系) との比較を行った。

腎臓については、本プロジェクトで短期発がん性予測手法の開発を開始するため、化学物質投与後の遺伝子発現量データの取得から始めることとした。この際、「(1)主要臓器(肝臓・腎臓)に対する一般毒性」での検討で、腎臓組織の部位別採取が有効であることが示されたため、腎発がん性予測のためのマーカー遺伝子探索についても部位別に取得された遺伝子発現量データを活用することにした。

図(2)-2 これまでに開発した短期の肝発がん性予測システムの概要.

2. 短期発がん性予測手法の開発


2.1 被験物質

肝臓及び腎臓の遺伝子発現量データについては、「(1)主要臓器(肝臓・腎臓)に対する一般毒性」で取得した 16 試験(14 物質)のデータを活用した。それらの化学物質の既知の発がん性情報については、表(2)-1 及び図(2)-3 に示す。なお、腎臓については早期の発がん性バイオマーカー探索から始めるため、腎発がん性を示す物質を優先的に選択した。

表(2)-1 被験物質(14物質)の発がん情報.

物質	略称	CAS	試験番号	発がん性		変異原性
#	世古 77 7	UAS	1八歲大田 与	肝臓	腎臓	Ames 試験
1	BDCM	75–27–4	B10-0092	(P)	Р	N
1			B10-0103	(1)		
2	PP	77-09-8	B10-0093	N	Р	N
3	o-NA	91-23-6	B10-0094	N	Р	Р
4	2A4Np	99-57-0	B10-0095	N	Р	Р
5	TBA	75-65-0	B10-0096 (C)	N	Р	N
5			B10-0096(I)			
6	2-AA	118-92-3	B10-0097	N	N	N
7	o-AH	134-29-2	B10-0098	N	Р	Р
8	TCEP	115-96-8	B10-0099	Е	Р	N
9	DBNPG	3296-90-0	B10-0100	N	P(膀胱)	Р
10	Na3-NTA-H20	18662-53-8	B10-0101	N	P(膀胱)	N
11	ADBAQ	81-49-2	B10-0102	Р	Р	Р
12	AQ	84-65-1	B10-0104	N	Р	Р
13	TCP	96-18-4	B10-0105	N	Р	Р
14	DMN	62-75-9	B10-0106	Р	Р	Р

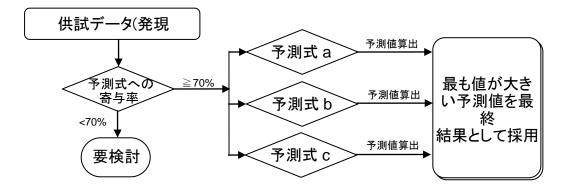
P;陽性、N;陰性、(P);雌ラット肝臓で陽性

図(2)-3 14 物質の毒性分類(発がん性).

2.2 実験方法

2.2.1 動物実験

「(1)3.2.1動物実験」に記載した内容と同じ方法で実施した。


2.2.2 遺伝子発現量解析

「(1)3.2.2遺伝子発現量解析」に記載した内容と同じ方法で実施した。

2.2.3 発がん性予測システムの構築

2.2.3.1 肝発がん(予測システムの検証)

取得した肝臓の遺伝子発現量データが CARCINOscreen[®]に供することができるかを確認するために、解析可能と判断された予測遺伝子の寄与率を集計した。 CARCINOscreen[®]予測システムは、発がん性のメカニズム別に構築した3種類の異なる発がん性予測式から成り立っているため (Matsumoto et al., 2009; Matsumoto et al., 2011)、各発がん性予測式について寄与率が70%以上を示した場合を合格とした(図(2)-4)。次に、CARCINOscreen[®]予測システムに含まれる全ての発がん性予測式にアレイデータを供し、最も値が大きな予測値(PVC値; the Prediction Value of CARCINOscreen[®])を最終結果として採用した。

図(2)-4 CARCINOscreen®予測システムの概要.

また、TGP データについては、発がん性の有無が明確になっている 40 物質について 14 日間反復投与試験を行ったものを用いて(表(2)-2 及び表(2)-3)、本システムによって予測を行った。

表(2)-2 実験条件(TGP データ).

	項目	内容				
	生物種/系統/性別	Crj:CD(SD)IGS ラット、雄				
	投与開始時の週齢	6 週齡				
動物	用量設定	公比√10				
実験	群構成	媒体対照、低用量、中用量、高用量(3 匹/群)				
	投与期間	14 日間反復投与				
	麻酔方法	エーテル麻酔				
GE	マイクロアレイ	GeneChip® Rat Genome 230 2.0 Array				

表(2)-3 TGP データの化合物一覧.

#	# 化合物		投与:	量(mg/kg	/day)*1	TD *2	C*3	M*4
#	化百物	略称	L	M	Н	TD ₅₀ *2	U -	IVI
1	2-Acetamidofluorene	2AAF	30	100	300	1. 22	+	+
2	Carbon tetrachloride	CCL4	30	100	300	529	+	_
3	Clofibrate	CFB	30	100	300	169	+	
4	Ethanol	ETN	400	1, 200	4, 000	9, 110	+	_
5	Ethionine	ET	25	80	250	5. 24	+	_
6	Fenofibrate	FFB	10	100	1000		+	?
7	Gemfibrozil	GFZ	30	100	300	247	+	?
8	Hexachlorobenzene	HCB	30	100	300	3. 86	+	
9	Methapyrilene	MP	10	30	100	9. 13	+	_
10	Monocrotaline	MCT	3	10	30	0. 94	+	
11	N-Nitrosodiethylamine	DEN	3	10	30	0. 052	+	+
12	Phenobarbital	РВ	10	30	100		+	+
13	Tamoxifen	TMX	6	20	60		+	?
14	Thioacetamide	TAA	4. 5	15	45	11. 5	+	
15	WY-14643	WY	10	30	100		+	?
16	Allopurinol	APL	15	50	150		_	?
17	Allyl alcohol	AA	3	10	30		_	_
18	Aspirin	ASA	45	150	450		_	_
19	Chlorpheniramine	CHL	3	10	30		_	?
20	Cimetidine	CIM	100	300	1, 000		_	?
21	Coumarin	CMA	15	50	150		_	+
22	Cyclosporine A	CSA	10	30	100			
23	Disulfiram	DSF	60	200	600		_	_

24	Etoposide	ETP	3	10	30	 _	?
25	Furosemide	FUR	30	100	300	 	
26	Glibenclamide	GBC	100	300	1, 000	 	?
27	Ibuprofen	IBU	20	60	200	 	?
28	Isoniazid	INAH	50	100	200	 	+
29	Labetalol	LBT	45	150	450	 	?
30	Metformin	MFM	100	300	1, 000	 	?
31	Methyldopa	MDP	60	200	600	 	?
32	Pemoline	PML	7. 5	25	75	 	?
33	Penicillamine	PEN	100	300	1, 000	 _	?
34	Perhexiline	PH	15	50	150	 	?
35	Promethazine	PMZ	20	60	200	 	?
36	Ranitidine	RAN	100	300	1, 000	 	?
37	Tannic acid	TAN	100	300	1, 000	 	+
38	Tetracycline	TC	100	300	1, 000	 _	?
39	Theophylline	TE0	20	60	200	 	
40	Tolbutamide	TLB	100	300	1, 000	 	_

^{*1} L; 低用量, M; 中用量, H; 高用量.

2.2.3.2 腎発がん

早期の腎発がん性に関連する遺伝子の探索は表(2)-4 に記載の方法で実施した。

さらに、中間目標には含まれていなかったものの、最終目標として掲げている腎発がん性の予測システムの構築について、これまでに実施した 16 試験(14物質)の遺伝子発現量データを用いて、プロトタイプを作成した。その解析条件については表(2)-5 に示す。

^{*2} TD_{50} ; ラット肝臓における TD_{50} 値(mg/kg/day; carcinogenic potency database)で, --はラット肝臓の TD_{50} 値が得られなかったものを示す.

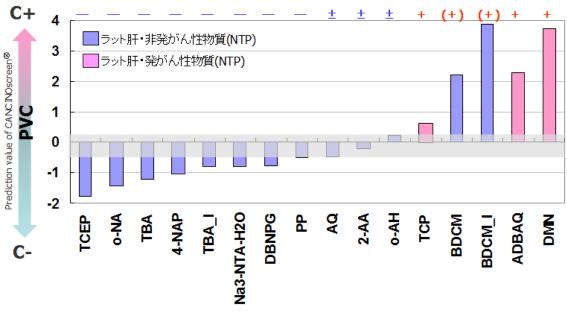
^{*3 0;} ラット肝発がん性(2年間の投与試験)の結果で+が陽性、一が陰性を示す.

^{*4} M; 変異原性(Ames) の結果で+が陽性、一が陰性、?が情報がなかったものを示す.

表(2)-4 判定式構築の条件.

実施項目	方法	補足情報
対象データ	16 試験(14 物質)	_
化合物のグループ化	階層的クラスタリング	_
		・全ての物質で A フラグを示す遺伝子を除外
		・発がん性物質と非発がん性物質群との間で有
		意差検定を実施して遺伝子候補(1次)を選定
 バイオマーカー候補の選定	Welch's t-test	・1 次選定リストで発がん性物質グループの70%
ハイオマーガー疾怖の選定	Meton S L-Lest	以上の物質で変動*し、かつ非発がん性物質群
		の40%以下の物質でのみ変動する遺伝子(1.5倍
		以上もしくは 1/1.5 倍以下)を候補遺伝子とし
		て選定

表(2)-5 腎発がん性予測式構築の条件.


実施項目	実施内容				
対象データ	16 試験(14 物質)				
判別式の構築	SVM (Support Vector Machine)				
予測式の最適化	Random calculation				

2.3 結果

- 2.3.1 肝発がん性の短期予測手法の開発
- 2.3.1.1 本プロジェクトで取得した遺伝子発現量データ

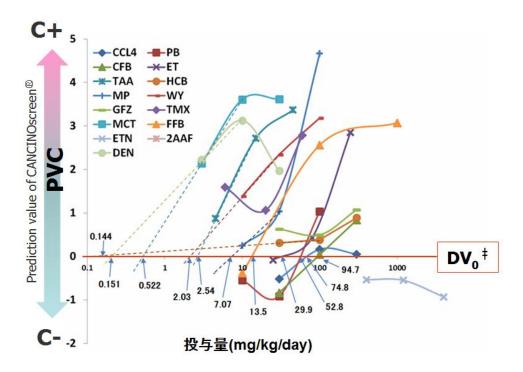
本プロジェクトで取得した 16 試験 (14 物質) の 28 日間反復投与後の肝臓における遺伝子発現量データを CARCINOscreen®へ供して PVC 値を算出した。その結果、既知の肝発がん性物質である ADBAQ 及び DMN については正しく発がん性ありと予測された (図(2)-5)。雌ラットの肝臓で発がん性を示す BDCM は CO_2/O_2 混合麻酔の場合でもイソフルラン麻酔の場合でも発がん性ありと判定された (Z(2)-5)。非発がん性物質については、全ての物質において陰性 (-) もしくは Marginal (+) と判定され、発がんの可能性は低いことが遺伝子発現量データによる予測でも確認できた (Z(2)-5)。なお、既知の発がん性情報では Equivocal とされていた TCP について、本システムでの予測結果は PVC 値としては既知の発がん性物質に比べると低かったものの、発がん性あり (+) となった。

これらの結果より CARCINOscreen[®]は陰性物質を含めて高い予測精度を示すことが確認できた。

図(2)-5 CARCINOscreen®による予測結果(肝臓、28 日目、高用量).

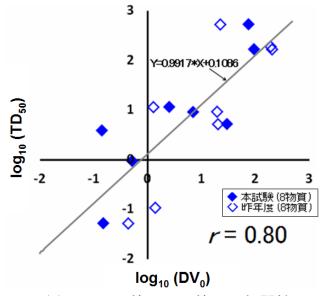
CARCINOscreen®の判定結果で+が陽性(カッコ付きは雌ラット肝臓で陽性)、±が Marginal、-が陰性を示す.

2.3.1.2 TGP で取得された遺伝子発現量データ


外部機関で取得された遺伝子発現量データに対する CARCINOscreen®の適用 性を調べるために、TGP データベースである TG-GATE から、40 物質の 14 日間 反復投与試験後の肝臓の遺伝子発現量データ(GeneChip®を使用)をダウンロー ドし、データチェックを行った後、媒体対照群に対する投与群(低用量、中用 量、高用量)の発現比を算出した。それらのデータを CARCINOscreen®に供して 一致率を調べたところ、低用量群で85%、中用量群で95%、高用量群で92.5% と高い予測結果を得ることができた(表(2)-6)。次に、発がん性を示す 15 物質 について、CARCINOscreen®で得られた PVC 値と用量との関係性を調べた。その 結果、低用量群では発がん性なし(陰性)と判定される物質がいくつかみられ、 全体的に用量相関的に PVC 値が増加する傾向を示すことが分かった(図(2)-6)。 このことが、表(2)-6で得られた予測結果において、低用量群では陽性一致率が 60%と低かった原因となり、全体の一致率が 3 用量群の中で最も低いことに繋 がっていた。一方で、高用量群では陽性一致率が 93.3%と 3 用量群の中で最も 高かったものの、陰性一致率は中用量では100%だったのに対し、高用量群では 92.0%と低下した(表(2)-6)。このことから、全体の一致率では中用量群で95% だったのに対して高用量群では 92.5%と若干値が下がったことが分かった。こ れらの検討より、投与量と CARCINOscreen®による予測結果(PVC 値)にはある一 定の関係性があることが示唆された。

そこで、3 用量の用量反応曲線から PVC 値が 0(ゼロ)になる投与量、すなわち DV_0 値を算出し、既存の発がん性試験で得られている TD_{50} 値との相関性を調べた。その結果、両者の相関係数は 0.8 を示し、比較的高い値を示すことが分

かった (図(2) -7)。以上の結果より、CARCINOscreen (と による予測結果 (PVC 値) で 定量的評価ができる可能性が示唆された。


表(2)-6 TGP データの予測結果.

	CARCINOscreen®による予測結果					
	低用量	中用量	高用量			
Concordance	85.0%	95.0%	92.5%			
	(34/40)	(38/40)	(37/40)			
Sensitivity	60.0%	86.7%	93.3%			
	(9/15)	(13/15)	(14/15)			
Specificity	100%	100%	92.0%			
	(25/25)	(25/25)	(23/25)			
False Positive	0%	0%	8.0%			
	(0/25)	(0/25)	(2/25)			
False Negative	40.0%	13.3%	6.7%			
	(6/15)	(2/15)	(1/15)			

図(2)-6 PVC値と用量との関係性(15物質、肝臓、14日目).

 \ddagger DV $_{0}$; Doses at which the predictive Value curves crossed zero.

図(2)-7 DV₀値と TD₅₀値との相関性.

2.3.1.3 他の発がん性スクリーニング手法との比較

次に、新たに開発した CARCINOscreen®の適用範囲を確認するため、既存の発がん性のスクリーニング手法として用いられている中期発がん性試験及びBhas42 試験 ($in\ vitro$) との結果の比較を行った。なお、予測結果の比較については、両試験で予測結果が得られているものに限定し、中期発がん性試験では11 物質 (参考データとしてさらに 9 物質)、Bhas42 試験では 22 物質について比較を行った。その結果、中期発がん性試験との比較では、両試験ともラット肝臓を標的とした発がん性物質で、変異発がん性物質 (3 物質) 及び非変異発がん性物質 (7 物質) を全て正しく予測することができた。また、非発がん性物質 (1 物質) についても両試験で陰性と正しく判定できた (表 (2) -(2

次に *in vitro* 系の発がん性スクリーニング手法である Bhas42 試験との比較を行った。その結果、Bhas42 試験では非変異発がん性物質の 3 物質、ラット肝臓以外の発がん性物質の 1 物質、陰性物質の 3 物質の合計 7 物質が正答しなかった(表(2)-8)。CARCINOscreen®ではラット肝臓以外の発がん性物質の 2 物質、陰性物質の 1 物質の合計 3 物質が正答しなかった(表(2)-8)。ここでもCARCINOscreen®では、非変異発がん性を含むラット肝発がん性物質及び非発がん性物質の検出力が高いことが確認できたものの、ラット肝臓以外を標的とした発がん性物質に対する検出力が低い結果が得られた。

このことから、CARCINOscreen®ではラット肝臓で発がん性を示す物質、特に非変異発がん性物質の検出力は高く、非発がん性物質の検出力も高い一方で、他生物種や他臓器で発がん性を示す物質の検出力が低いことが分かった。

表(2)-7 中期発がん性試験との予測結果の比較.

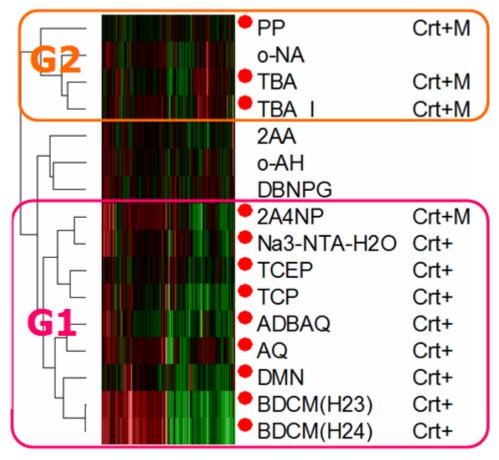
#	Chamicals	Chemicals C*1 Cr*2		Muta*3	発がん性予測結果		
#	Chemicals	C .	Cl	Willia	中期発がん*	CARCINO*4	
1	Quinoline	C+	Cr+	M÷	+	+	
2	Safrole	C+	Cr+	M÷	+	+	
3	MelQx	C+	Cr+	M÷	+	+	
4	Phenobarbital	C+	Cr+	M-	+	+	
5	Hexachlorobenzene	C+	Cr+	M-	+	+	
6	α-Hexachlorocyclohexane	C+	Cr+	M-	+	+	
7	Thioacetamide	C+	Cr+	M-	+	+	
8	Urethane	C+	Cr+	M-	+	+	
9	Chlorendic acid	C+	Cr+	M-	+	+	
10	DDT	C+	Cr+	M-	+	+	
11	Caprolactam	C-	Cr-	M-			
<u>(1</u>	PhIP	C+	Cr-	M+	_	+	
2	7,12-Dimethylbenz [a]anthracene	C+	Cr-	M÷	_	+	
3	Benzo[a]pyrene	C+	Cr-	M÷	+	+	
4	Aldrin	C+	Cr-	M-	+	+	
⟨ 5	Di(2-ethylhexyl)adipate	C+	Cr-	M-	_	+	
6	d-Limonene	C+	Cr-	M-	+	+	
7	Trichloroacetic acid	C+	Cr-	M-	_	+	
8	Diethylstilbestrol	C+	Cr-	M-	+	+	
(g	Dieldrin	C+	Cr-	M-	+	+	

*1 C: げっ歯類における発がん性で C+が陽性、C-が陰性. *2 Cr:ラット肝臓における発がん性で Cr+が陽性、Cr-が陰性. *3 Muta: 変異原性(Ames test)で M+が陽性、M-が陰性. *4: 予測結果を示しており、発がん性ありと判定されたものは「+」、発がん性なしと判定されたものは「-」. 中期発がん性試験は Hasegawa R. et al.,1992より引用. CARCINOscreen®は ToxIII, 投与 28 日目の結果を示す.

表(2)-8 Bhas 42 試験(in vitro)との予測結果の比較.

ш	Chaminala	C*1	C *2	NA4-*3	発がんと	生予測結果
#	Chemicals	C ·	Cr*2	Muta*3	Bhas42*4	CARCINO *4
1	2,4-Diaminotoluene	C+	Cr+	M+	+	+
2	2-Acetylaminofluorene	C+	Cr+	M+	+	+
3	1,4-Dioxane	C+	Cr+	M-	_	+
4	Methyl carbamate	C+	Cr+	M-	_	+
5	Urethane	C+	Cr+	M-	_	+
6	Benz[a]anthracene	C+	Cr-	M+	+	+
7	3-Methylcholanthrene	C+	Cr-	M+	+	+
8	Benzo[a]pyrene	C+	Cr-	M+	+	+
9	Quercetin	C+	Cr-	M+	+	_
10	MNNG	C+	Cr-	M+	+	_
11	d-Limonene	C+	Cr-	M-	+	+
12	Diethylstilbestrol	C+	Cr-	M-	_	+
13	2,6-Diaminotoluene	C-	Cr-	M+	_	_
14	8-Hydroxyquinoline	C-	Cr-	M+	+	_
15	2-Chloroetahnol	C-	Cr-	M+	_	_
16	p-Phenylenediamine 2HCI	C-	Cr-	M+	_	_
17	4-Acetylaminofluorene	C-	Cr-	M+	_	+
18	D-Mannitol	C-	Cr-	M-	_	_
19	Caprolactam	C-	Cr-	M-	_	_
20	Tetracycline hydrochloride	C-	Cr-	M-	+	_
21	Benzoin	C-	Cr-	M-	+	_
22	Tetracycline hydrochloride	C-	Cr-	M-	+	_

*1 C: げっ歯類での発がん性で C+が陽性、C-が陰性、 *2 Cr:ラット肝臓における発がん性で Cr+が陽性、Cr-が陰性、 *3 Muta: 変異原性(Ames test)で M+が陽性、M-が陰性, *4: 予測結果を示しており、発がん性ありと判定されたものは「-」、発がん性なしと判定されたものは「-」。Bhas42 assay(Sakai A. et al., 2010)の Initiation assay 若しくは Promotion assay の何れかで Positive であれば発がん性あり、両 assayで Negative であれば発がん性なし. CARCINOscreen®は ToxIII, 投与 28 日目の結果を示す.

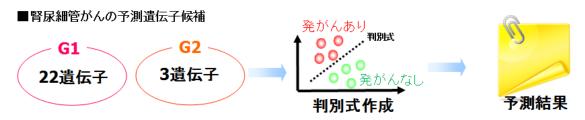

2.3.2 腎発がん性の短期予測手法の開発(候補遺伝子の探索)

腎臓の発がん性については、その所見を調べたところ、尿細管がんを示す物質が腎発がん性物質(11 物質)中 10 物質と多数を占めることが分かった(表(2)-9)。そこで、皮質の遺伝子発現量データを中心に解析し、早期の尿細管がんに関連したバイオマーカー候補遺伝子の探索を行うこととした。まず、尿細管がんを示す 10 物質を陽性データセットとし、この中の 4 物質以上で有意な発現変動を示す遺伝子を調べたところ、390 プローブが選定された。そこで、これらの遺伝子発現量データを用いて階層的クラスタリングを行ったところ、尿細管がん・グループ 1 (7 物質) とグループ 2 (3 物質) に大きく分かれた。次にそれぞれのグループについて、発がん性物質グループの 70%以上の物質で変動し、かつ非発がん性物質群の 40%以下の物質でのみ変動する遺伝子(1.5 倍以上もしくは 1/1.5 倍以下)を選定したところ、グループ 1 (7 物質) では 22 遺伝子、グループ 2 (3 物質) では 3 遺伝子が早期の尿細管がんに関連したバイオマーカー候補遺伝子として選定された。

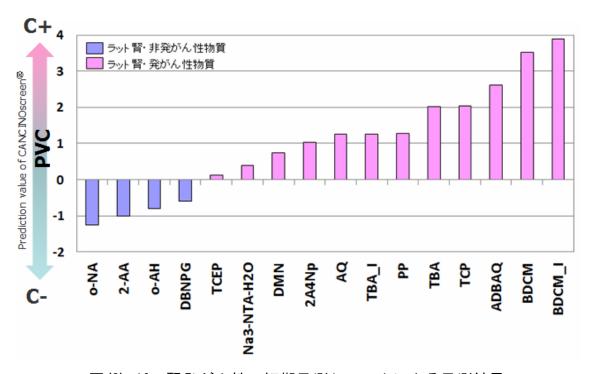
表(2)-9 腎発がん性物質の内訳(14 物質). (合物名(略称) 腎発がん性 尿細管

#	化合物名(略称)	腎発がん性	尿細管	腎盂
1	BDCM	Р	0	
2	PP	Р	0	
3	2A4Np	Р	0	
4	TBA	Р	0	
5	TCEP	Р	0	
6	Na3-NTA-H20	Р	0	
7	ADBAQ	Р	0	
8	AQ	Р	0	
9	TCP	Р	0	
10	DMN	Р	0	
11	o- A H	Р		0
12	o-NA	N		
13	2-AA	N		
14	DBNPG	E		

P; 陽性、N; 陰性、E; Equivocal. Oは毒性症状がみられたもので、—は毒性症状がみられなかったもの.



図(2)-8 遺伝子発現量データの階層的クラスタリング(腎臓・皮質、投与 28 日目). 4物質以上で有意な変動を示した 390 プローブを用いた (distance metric; Peason、linkage rule; Ward's). Crt+: 尿細管がんが認められている物質. M: 雄のみで発がんするもの.


3. 腎発がん性の短期予測手法(プロトタイプ)の開発

「2.3.2 腎発がん性の短期予測手法の開発(候補遺伝子の探索)」において、中間目標に掲げていたバイオマーカー候補遺伝子の選定を達成することができた。今後は最終評価に向けて、遺伝子発現量データから腎発がん性を予測できるシステムを構築しなければならないが、現在までに選定した早期の尿細管がんに関連したバイオマーカー候補遺伝子がどの程度の有用性を示すかは重要なポイントである。そこで、これまでに選定したバイオマーカー候補遺伝子を用いて腎発がん性の短期予測手法(プロトタイプ)の開発を行った。具体的には選定された候補遺伝子を用いてグループごとに判別式を構築し、予測結果を得た(図(2)-9)。

その結果、16 試験(14 物質)全てを予測できた(図(2)-10)。しかしながら、予測式を構築したトレーニングデータでそれ自身を予測した結果であるため、予測結果が良好であることは当然の結果といえる。

図(2)-9 腎発がん性の短期予測システムのストラテジー.

図(2)-10 腎発がん性の短期予測システムによる予測結果.

4. 最終評価に向けての今後の取り組み

肝臓に対する発がん性については、今後も陰性物質を中心に遺伝子発現量データを蓄積し、外部データに対する予測精度の確認を継続して行う予定である。

腎臓については、試験物質数を増やして今回選定された遺伝子群の再現性を確認することで、今回選定されたバイオマーカー候補遺伝子の精度を高め、さらなる絞込みを行い、最終選定を進めていく必要がある。

また、物質選定の段階で腎尿細管がん以外の腎発がん性物質についても選定し、 それらの遺伝子発現量データを蓄積し、幅広い腎発がん性物質を検出できるシス テムにする。この際、腎臓の部位別の遺伝子発現量データを活用し、毒性メカニ ズムに基づいた予測遺伝子を抽出する予定である。

5. 評価項目に対する自己評価

得られた成果は何か。

肝発がん性に関しては、外部データに対する予測精度の確認及び適用範囲の明確化を達成できた。

具体的には、これまで確立してきた短期発がん性予測システム (CARCINOsc reen®)に、本プロジェクトで得られた16試験 (14試験)の肝臓の遺伝子発現量データを適用したところ、陰性物質を中心に高い正答率を示すことが分かった。また、外部施設で動物実験からマイクロアレイ実験まで行われたTGPデータを活用し、発がん性情報が明らかな40物質のデータをCARCINOscreen®に供したところ、中用量以上で90%以上の一致率を示し、外部データに対して高い予測精度を示すことが分かった。別の発がん性スクリーニング手法として既に使用されている中期発がん性試験とBhas42試験 ($in\ vitro$) との比較を行い、CARCINOscreen®の適用範囲について検討したところ、本法では、ラット肝臓で発がん性を示す物質、特に非変異発がん性物質の検出力は高いものの、他生物種 (例;マウス) や他臓器 (腎臓等) で発がん性を示す物質の検出力が低いことを確認できた。

腎発がん性に関しては、早期の尿細管がんに関連したバイオマーカー候補 遺伝子(25種類)の選定を行うことができた。

設定された目標以外に得られた成果はあるか。

また、最終評価に掲げている「各毒性の発現可能性を検出し得る方法の確立」について、腎発がん性に関しては、選定されたバイオマーカー候補遺伝子を活用して、判別式を作成し、腎発がん性予測システムのプロトタイプを構築した。

・共通指標である、論文の発表、特許の出願、国際標準の形成(OECD での活動)、 プロトタイプの作製等があったか。(3-1-3参照)

本プロジェクトの概要及び成果については、2012年に OECD 会議での発表を行った。また、肝発がん性に関連して、ラット系統間 (SD, F344, Wistar-Han ラット)の化学物質投与後の遺伝子発現量プロファイルの差異については、論文作成中である。

* (3) 神経毒性 (p.68~p.82) は非公開

(4)免疫毒性

1. 目的

化審法における化学物質の毒性スクリーニング試験としては 28 日間反復投与試験が実施されているが、これまでの 28D-RDT の試験設計では免疫毒性、すなわち動物の免疫機能への影響を評価することは困難である。免疫毒性には「a. 免疫抑制」、「b. 免疫亢進(過敏症)」、「c. 自己免疫」等がある。「b. 免疫亢進(過敏症)」で懸念される皮膚感作性は、Local lymph node assay (LLNA)等いくつかの試験法が既に OECD テストガイドライン化されており、更に in vitro 法も開発され、検証が進められている。また、「c. 自己免疫」については、実験動物で発症させるためには特殊なモデル動物に負荷を加えることが必要となることなどから、本研究で想定している汎用ラットを用いる 28D-RDT での検出は困難である。

そこで、本研究では、化学物質による障害を受けることによって、医薬品等の免疫毒性評価において最も重要な項目であり、初期スクリーニングとして実施される、1)生体の液性免疫である抗体産生能、2)特に細菌感染に最も重要である好中球と肺胞マクロファージ及びウイルス感染や発がんの監視に重要であるナチュラルキラー細胞等の免疫細胞への影響、3)免疫細胞の産生・補給に重要な骨髄機能を対象として、免疫毒性の影響を検討し、化学物質を投与した実験動物の免疫毒性に関連する臓器(骨髄、脾臓、リンパ球、全血)の遺伝子発現データ取得法を構築するとともに取得した遺伝子発現変動データ等を用いることで、28 日間反復投与試験の通常プロトコールで免疫抑制作用が評価可能な手法の開発を目的として実施した。

2. 組織採取法の確立

対象臓器である脾臓、骨髄等の採材法及び遺伝子発現データ取得法を構築するため、脾臓、骨髄、リンパ球及び全血の RNA 調製法に関し、①採材方法、② RNA 保存液、③経時劣化、④保存条件、⑤輸送条件等について検討を実施した。

その結果、骨髄、リンパ球、全血からの RNA 調製法は確立し、動物実験実施場所である化学物質評価研究機構日田事業所(大分県日田市)及び京都産業大学(京都市)から遺伝子解析実施場所である化学物質評価研究機構安全性評価技術研究所(埼玉県杉戸町)への輸送による RNA 品質の劣化は観察されなかった。しかしながら、免疫毒性の主要ターゲット臓器となる脾臓は経時的及び輸送ストレスにより RNA 分解が起こりやすく、各種 RNA 保存液を用いた冷凍条件下での輸送やドライシッパー(液体窒素容器)を用いた輸送を試みたが RNA の分解による品質劣化が生じ、現時点では確実な脾臓サンプルの輸送手法を確立するには至らなかった。また、フィージビリティースタディの結果、免疫抑制作用の表現型は免疫系細胞(リンパ球や好中球等)の細胞数減少として現れることから、遺伝子解析に要する total RNA 調製量の確実な確保が困難となる事

例も多くみられた。

3. 免疫毒性関連パラメーターの測定法の確立

免疫毒性関連パラメーターとして、「液性免疫応答」及び「細胞性免疫応答」の2点を最も重要な項目として設定した。「液性免疫応答」の検出系としては、T細胞依存性抗原に対する抗体産生能(外来異物に対する防御に関与する)、「細胞性免疫応答」の検出系として、NK(ナチュラルキラー)活性(生体内で発生する腫瘍細胞やウイルス感染細胞などの除去に関わる)を検討した。

フィージビリティースタディとして検討した"免疫毒性作用既知物質(シクロフォスファミド: CYP、シクロスポリン A:CSA)"の影響として、T 細胞依存性抗原に対する抗体産生能に対する影響は観察されるものの、NK 活性に関する明らかな影響は観察されなかった。

_ , ,												
投与	投与		Мφ		リンパ球	١	1K	好中:	球	1	骨髄	抗体産生
日数	物質	数	貪食能	数	マイトゲン応答	比率	活性	数		数	CSF応答	
1 D	CYP	1		1	(1)					+	\downarrow	*********
ЗD	CYP			↓	↓	1		↓		1	↓ ↓	
7D	CYP	, and a second	******	, es es es es es es es es es					. 4 6 4 7 4 4 4 4 4 4 4 4		*******	
14D	CYP	and the second	*******	, and the second		a para para para para para para para pa		. 9 * * * * * * * * * * * * * * * * * *	, e e e e e e e e e e e e e e e e e e e			***************************************
28D	CYP		↓	↓	↓	↓				1		\leftarrow
1 D	CSA											
3D	CSA	↓			(1)			→			(1)	
7D	CSA				(1)	1					↓ ↓	
14D	CSA				↓	1					1	***************
28D	CSA				(↓)	1					1	1

表(4)-1 免疫機能検査結果のまとめ

CYP: シクロフォスファミド、CSA: シクロスポリン A ↓:機能もしくは数の減少、↑:機能もしくは数の増加

4. 免疫毒性開発中止理由

当初、基本計画に、免疫毒性の検出方法の開発を含んでいたが、フィージビリティスタディとして、免疫関連組織を対象とした遺伝子発現量解析と表現型の変化から免疫毒性影響評価手法の開発を検討したが、免疫抑制作用の表現型の多くが免疫系細胞(リンパ球や好中球等)の細胞数減少として現れ、結果として遺伝子解析に十分な total RNA 調製量の確保が困難と考えられたことから免疫機能影響の遺伝子レベルでの評価手法確立はフィージビリティスタディとして設定していた当初の 2 年以内の確立が難しいという結果となった。また、本事業の全体予算の縮小も検討されており、リソースの有効活用のため、外部有識者による研究開発推進委員会(平成 2 5 年 2 月開催)での議論を経て、プ

ロジェクトリーダー及び経済産業省は当該毒性の検出方法の開発に関し、現時 点において技術的に困難であると判断し、基本計画から削除することとした。

3-1-3 論文、外部発表等

本事業成果の論文、外部発表等の実績は以下のとおりである。

論文投稿(件数、H25年8月末現在)

掲載あるいは受理	投稿中	準備中		
7	3	3		

学会発表(件数、H25年8月末現在)

国際学会	国内学会	講演等		
3	1 3	7		

特許出願

- ・特許出願実績なし。(H25年8月末現在)
- *本事業により開発した試験手法はOECDガイドライン化等による国際標準化により幅広く普及させることを前提としているため、積極的な特許出願は 考慮していない。

(1) 論文投稿詳細

著者	表題雑誌等	
Akane, H.,	Methacarn as a whole brain fixative	J. Toxicol. Sci.
Saito, F., Yamanaka,	for gene and protein expression	38 (3): 431-443,
H., Shiraki, A.,	analyses of specific brain regions in	2013
Imatanaka, N.,	rats.	
Akahori, Y.,		
Morita, R.,		
Mitsumori, K.,		
Shibutani, M.		
Akane, H., Shiraki,	Glycidol induces axonopathy by adult	Toxicol. Sci.
A., Imatanaka, N.,	stage-exposure and aberration of	134(1):140-154,
Akahori, Y.,	hippocampal neurogenesis affecting	2013
Itahashi, M., Ohishi,	late-stage differentiation by	
T., Mitsumori, K.,	developmental exposure in rats	
Shibutani, M.		
松本博士	学会報告「遺伝子発現変動を用いた短期	安研協 会報、第

	発がん性システム;CARCINOscreen®」	24 号: pp. 84-85, 2012	
赤堀有美、今田中伸哉	新規試験法開発を目指す Tox-Omics について	JSAAE News Letter(日本動物 実験代替法学会), 2012	
赤堀有美	オミクス技術を用いた新規試験法開発 プロジェクト Tox-Omics について	安研協会報, 第24 号:pp79-81, 2012	
Shiraki, A., Akane, H., Ohishi, T., Wang, L., Morita, R., Suzuki, K., Mitsumori, K., Shibutani, M.	Similar distribution changes of GABAergic interneuron subpopulations in contrast to the different impact on neurogenesis between developmental and adult-stage hypothyroidism in the hippocampal dentate gyrus in rats	Arch. Toxicol. 86(10): 1559-1569, 2012	
Matsumoto, H., Yakabe, Y., Saito, F., Miyaura, H., Otsuka, M., Saito, K., Sumida, K., Sekijima, M., Nakayama, K. and Shirai, T.	New short term prediction method for chemical carcinogenicity by hepatic transcript profiling following 28-day toxicity tests in rats	Cancer Informatics, 10: 259-271, 2011	
Yamanaka, H., Takeyoshi, M.	Identification of sheep red blood cell (SRBC) surface immune-responsive peptides detected by antisera from SRBC immunized rat	投稿中	
Akane, H., Shiraki, A., Imatanaka, N., Akahori, Y., Itahashi, M., Abe, H., Shibutani, M.	Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by adult-stage exposure in rats	投稿中	
Akane, H., Saito, F., Shiraki, A., Imatanaka, N., Akahori, Y., Itahashi, M., Wang,	Gene expression profile of the brain regions reflecting aberrations in nervous system development targeting the process of neurite extension of rat offspring exposed developmentally	投稿中	

L., Shibutani, M.	to glycidol	
Saito F., Hoshuyama	Inter-strain difference between SD	投稿準備中
S., Matsumoto H.,	and F344 and Wistar-Han rats in	
Takeyoshi M.,	hepatotoxicity administrated by TAA	
Imatanaka N.		
Saito F., Hoshuyama	Time course analysis of zone specific	投稿準備中
S., Matsumoto H.,	gene expression profiles of kidney in	
Takeyoshi M.,	28-day repeated dose study in SD rats	
Imatanaka N.	of 2-Amino-4-nitrophenol.	
Hiroshi Matsumoto,	CARCINOscreen; New Short term	投稿準備中
Fumiyo Saito,	prediction method for carcinogenicity	
Masahiro Takeyoshi	of chemicals by hepatic transcript	
	profiling in rats.	

(2) 口頭発表・講演等詳細 (〇:発表者)

発表者	演題	発表学会等			
〇齋藤文代	遺伝子の発現量測定による発がん性ス	化学物質のリスク			
	クリーニング手法について	評価検討会 第4			
		回有害性評価小委			
		員会(厚生労働			
		省),東京, 2013			
〇齋藤文代	2-Amino-4-nitrophenolのSDラットを用	第 40 回日本毒性			
	いた 28 日間反復投与試験における腎臓	学会学術集会,千			
	部位別の経時的な遺伝子発現プロファ	葉,2013			
	イル解析				
	Time course analysis of zone specific				
	gene expression profiles of kidney in				
	28-day repeated dose study in SD rats				
	of 2-Amino-4-nitrophenol.				
〇松本博士	TGP データを用いた化学物質の短期発が	第 40 回日本毒性			
	ん性スクリーニング法: CARCINOscreen®	学会学術集会,千			
	の検証	葉, 2013			
	Validation of a short-term				
	prediction system for carcinogenicity				
	(CARCINOscreen®) using dataset of				
	Toxicogenomics Project.				

OSaito, F.	CARCINOscreen®: Novel short-term prediction system for carcinogenicity of chemicals by hepatic transcriptome analysis in a 28-day repeated dose toxicity study	Genetic Engineering-2013 the International Conference on Genetic Engineering & Genetically Modified Organisms, NC, 2013
〇赤根弘敏、齋藤文代、 山中秀徳、白木彩子、 大石 巧、Wang Liyun、 林 仁美、鈴木和彦、 三森国敏、渋谷 淳	ラットの脳部位特異的な網羅的解析を 可能とするメタカーン全脳固定法の検 討	第 28 回日本毒性 病理学会学術集 会,東京, 2013
〇渋谷 淳	化学物質と神経発達	第5回応用トキシ コロジー リカレ ント講座,東京, 2013
〇赤根弘敏、齋藤文代、 白木彩子、板橋 恵、 Wang Liyun、鈴木和彦、 三森国敏、渋谷 淳	グリシドールのラットへの 28 日間反復 投与による海馬歯状回におけるニュー ロン新生に対する影響	第29回日本毒性 病理学会学術集 会,つくば,2013
〇白木彩子、赤根弘敏、 斎藤文代、赤堀有美、 今田中伸哉、板橋 恵、 Wang Liyun、大石 巧、 鈴木和彦、三森国敏、 渋谷 淳	6-propyl-2-thiouracil (PTU)のラット 発達期暴露による甲状腺機能低下を介 したニューロン・グリア発達障害に関連 する遺伝子発現プロファイルの異なる 脳部位での同定	第29回日本毒性 病理学会学術集 会,つくば,2013
〇渋谷 淳	ニューロン新生:発達神経毒性の新たな標的性	公益社団法人日本 獣医学会、日本小 動物獣医学会ーシ ンポジウム「毒性 病理学とヒトの健 康」ーモデル動物 を通じたメカニズ

		ム解明一平成 24
		年度日本獣医師会
		獣医学術学会年次
		大会、大阪市, 2013
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		第 40 回日本毒性
白木彩子、板橋 恵、	ファファールのファー 20 ロ間及侵役サードによる海馬ニューロン新生への影響	学会学術集会,千
Wang Liyun、赤堀有美、		葉, 2013
今田中伸哉、鈴木和彦、		** , 2010
三森国敏、渋谷 淳		
〇松本博士、矢可部芳	CARCINOscreen: a new short term	 日本環境変異原学
州、齋藤文代、武吉正	screening method for chemical	古本環境发異原子 会 第 40 回大会,
博、白井智之	carcinogenicity	東京. 2012
诗、口开百之 	ちょう	米 京,2012
	短期発がん性予測法 CARCINOscreen	
		笠 24 同口大動物
〇武吉正博 	新規経済産業省プロジェクト「遺伝子プ ロジュター・	第 24 回日本動物
	ロジェクト」 	実験代替法学会学
		術大会
		市民公開講座「日
		本における代替法
		研究の新しい胎
		動」,仙台,2012
〇齋藤文代、松本博士、	短期発がん性システムの Wister	第 39 回日本毒性
武吉正博、矢可部芳州	Hannover ラットへの適用性及び系統間	学会学術集会,仙
	差の検討	台, 2012
	Applicability evaluation of the	
	short-term prediction system for	
	carcinogenicity of Wister Hannover	
	rats and interstrain difference.	
〇松本博士、齋藤文代、	Improvement of a dose setting method	第 39 回日本毒性
武吉正博	for the short-term chemical	学会学術集会,仙
	carcinogenicity screening method	台, 2012
	化学物質の短期発がん性スクリーニン	
	グの用量設定方法の検討	
OSaito, F.	Japanese New Project : Assay	5th Meeting of
	Developments by Omics Technologies	The Extended
	(日本の新プロジェクトについて;オミ	Advisory Group on
	クス技術によるアッセイ系の開発)	Molecular

OKojima, H., Tanaka,	New Projects in Japan to Alternative	
N., Oshimura, M., Saito, K., Saito, F. and Imatanaka, N.	Methods for Repeated Dose Oral Toxicity Studies.	Stockholm, 2012
OSaito, F.,	CARCINOscreen®:Novel short term	生命医薬情報学連
Matsumoto, H. and	prediction system for carcinogenicity	合大会(日本バイ
Takeyoshi, M.	of chemicals by hepatic transcript	オインフォマティ
	profiling in a repeated dose 28-day	ックス学会年会),
	toxicity study	東京, 2012
〇松本博士	遺伝子発現変動を用いた化学物質の毒	CERI 寄附講座(九
	性予測	州大学)
		先端材料化学 ~
		設計,構造・物性
		から機能化まで
	0 10 11 1 1 (DTII) 6 3% ± #0	~, 福岡, 2012
〇白木彩子、赤根弘敏、	6-propy -2-thiouraci (PTU)の発達期	第 39 回日本毒性
齋藤文代、山中秀徳、	暴露によるラット海馬歯状回における	学会学術集会,仙
Liyun Wang、大石 巧、	甲状腺機能低下を介したニューロン新	台, 2012
鈴木和彦、三森国敏、	生の永続的な影響検出とその遺伝子発	
渋谷 淳	現プロファイルの同定	₩ 00 □ □ ± ± ₩
〇赤根弘敏、齋藤文代、	グリシドールのラット母動物暴露による思想を	第39回日本毒性
山中秀徳、白木彩子、	る母動物と児動物の神経系に対する影	学会学術集会,仙
盛田怜子、八舟宏典、	響	台, 2012
谷合枝里子、鈴木和彦、		
三森国敏、渋谷 淳 OHirotoshi Akane,	Effect of maternal exposure to	30th Meeting of
Fumiyo Saito, Ayako	glycidol on nervous system of dams and	the European
Shiraki, Kunitoshi	offspring in rats.	Society of
Mitsumori, Makoto	orropring in raco.	Veterinary
Shibutani		Pathology,
J. I. Du Culli		Annual Meeting of
		the European
		College of
		COTTEGE OT

		Veterinary Pathologist 24th Annual Meeting of
		the Spanish
		Society of
		Veterinary
		Pathology. León,
		Spain, 2012
OHIRONO Yuriko, NOSE	Immunotoxic effects by oral gavage of	第 41 回日本免疫
Masahito, KAWAZOE	cyclophosphamide or cyclosporine A as	学会学術集会,千
Ayaka, SHIGEYOSHI	immunosuppressive drug in Rats	葉, 2012
Eri, SASAKI Kazuma,		
TANAHASHI Yasuyuki,		
SAKURA Masaaki,		
TAKEYOSHI Masahiro,		
SAITO Fumiyo, AKAHORI		
Yumi, IMATANAKA		
Nobuya, TAKEUCHI		
Minoru		
OY Hirono, M Nose, A	Effects of cyclophosphamide as	The 17th Congress
Kawazoe, E	immunosuppressive drug on Alveolar	of the APSR (第
Shigeyoshi, K Sasaki,	Macrophages by oral administration in	17回アジア太平洋
Y Tanahashi, M	rats	呼吸器学会議, 香
Sakura, M Takeyoshi,		港, 2012
F Saito, Y Akahori, N		
Imatanaka, M Takeuchi		

3-2 目標の達成度

表3-2-1 中間目標に対する成果・達成度の一覧表

中間目標(平成25年度末)	成果	達成度
(a) 各毒性に関する実験動物の遺		
伝子発現変動データの取得、及		
びそれぞれの毒性に特徴的な		
関連遺伝子の絞り込み		
・ 適切な被験物質選定を実	(1)一般毒性(肝毒性・腎毒性)	
施し、各毒性既知物質の	・動物試験の実施	
投与による動物実験を行	⇒毒性機序の異なる 14 物質(16 試	達成
い、投与動物の臓器及び	験)について 28 日間反復経口投与	
組織等から遺伝子の包括	実験を実施した	
的な発現変動データを取	・採材法(腎臓)の開発	
得する。	⇒腎臓を皮質、髄質(外帯)、髄質	達成
	(内帯)、乳頭の 4 部位に分けて採	
	取し、手技や個体間差の小さな遺	
	伝子発現量データを取得すること	
	ができた。	
	(2)発がん性	
	・動物試験の実施	\ P
	⇒毒性機序の異なる 14 物質(16 試	達成
	験)について 28 日間反復経口投与	
	実験を実施した	
	・採材法(腎臓)の開発	` *
	│⇒一般毒性で得られた結果を適用 │ _↓	達成
	した。	
	 (4) 神経毒性	
	・動物試験の実施	
	⇒毒性機序の異なる2つの既知の	達成
	神経毒性物質について発達期暴露	
	実験及び 28 日間反復経口投与実験	
	を実施した	
	・脳からの特定部位の採材法の開	

⇒メタカーン全脳固定法を用い、遺伝子発現量解析のための RNA 品質を保持した採材法を開発した。 (1) 一般毒性(肝毒性・腎毒性)・特徴的な発現変動を示していると考えられる遺伝子解候補の探索 →肝毒性では 4 種の毒性症状、腎毒性でも4種の毒性症状について、10~2,019 ブローブのバイオマーカー候補遺伝子を選定することができた。 (2) 発がん性・腎発がん性に関する特徴的遺伝子群候補の探索⇒早期の尿細管がんに関連したバイオマーカー候補として、25 ブローブを選定した。 (3) 神経毒性・特徴的遺伝子の候補探索→脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。 (3) 神経毒性・特徴的遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分と、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開→H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
・ 各毒性の発現との関係で 特徴的な発現変動を示していると考えられる遺伝子の絞り込みを行う。 ・ 特定の機序に基づく特徴的遺伝子群候補の探索 → 肝毒性では 4 種の毒性症状、腎毒性でも 4種の毒性症状について、10~2、019 プローブのバイオマーカー候補遺伝子を選定することができた。 (2)発がん性・腎発がん性に関する特徴的遺伝子群候補の探索 → 早期の尿細管がんに関連したバイオマーカー候補として、25 プローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索→ 脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・ 遺伝子発現変動データの公開→ 出25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
・ 各毒性の発現との関係で特徴的な発現変動を示していると考えられる遺伝子部候補の探索 → 所毒性では 4 種の毒性症状、腎毒性でも 4 種の毒性症状について、10~2、019 プローブのバイオマーカー候補遺伝子を選定することができた。 (2)発がん性に関する特徴的遺伝子群候補の探索 → 早期の尿細管がんに関連したバイオマーカー候補として、25 プローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索→ 脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開→出25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
・特徴的な発現変動を示していると考えられる遺伝子解候補の探索 テの絞り込みを行う。 ・特定の機序に基づく特徴的遺伝子解候補の探索 ⇒肝毒性では4種の毒性症状について、10~2,019 プローブのバイオマーカー候補遺伝子を選定することができた。 (2)発がん性・腎発がん性に関する特徴的遺伝子群候補の探索 ⇒早期の尿細管がんに関連したバイオマーカー候補として、25 プローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。
・特徴的な発現変動を示していると考えられる遺伝子解候補の探索 ・肝毒性では 4 種の毒性症状について、10~2,019 プローブのバイオマーカー候補遺伝子を選定することができた。 (2)発がん性・腎発がん性に関する特徴的遺伝子群候補の探索 ⇒早期の尿細管がんに関連したバイオマーカー候補として、25 プローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。 ・遺伝子発現変動データの公開・日は伝子を見出した。
ていると考えられる遺伝子解候補の探索 →肝毒性では4種の毒性症状、腎毒性でも4種の毒性症状について、10~2,019 プローブのバイオマーカー候補遺伝子を選定することができた。 (2)発がん性・腎発がん性に関する特徴的遺伝子群候補の探索→早期の尿細管がんに関連したバイオマーカー候補として、25 ブローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索→脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開→H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
子の絞り込みを行う。 ⇒肝毒性では 4 種の毒性症状、腎毒性でも4種の毒性症状について、10~2,019 プローブのバイオマーカー候補遺伝子を選定することができた。 (2)発がん性・腎発がん性に関する特徴的遺伝子群候補の探索⇒早期の尿細管がんに関連したバイオマーカー候補として、25 プローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開⇒日との・・遺伝子発現変動データの公開→日とのいて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
毒性でも4種の毒性症状について、10~2,019 プローブのパイオマーカー候補遺伝子を選定することができた。 (2)発がん性 ・腎発がん性に関する特徴的遺伝 子群候補の探索 ⇒早期の尿細管がんに関連したパイオマーカー候補として、25 プローブを選定した。 (3)神経毒性 ・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。 特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
10~2,019 プローブのバイオマーカー候補遺伝子を選定することができた。 (2)発がん性・腎発がん性に関する特徴的遺伝子群候補の探索⇒早期の尿細管がんに関連したバイオマーカー候補として、25 プローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
カー候補遺伝子を選定することができた。 (2)発がん性 ・腎発がん性に関する特徴的遺伝 子群候補の探索 ⇒早期の尿細管がんに関連したバイオマーカー候補として、25プローブを選定した。 (3)神経毒性 ・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
できた。 (2)発がん性 ・腎発がん性に関する特徴的遺伝 子群候補の探索 ⇒早期の尿細管がんに関連したバ イオマーカー候補として、25プロ ーブを選定した。 (3)神経毒性 ・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反 映する候補遺伝子を見出した。 特に、海馬歯状回でニューロン分 化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータ について公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
(2)発がん性に関する特徴的遺伝子群候補の探索 ⇒早期の尿細管がんに関連したパイオマーカー候補として、25 プローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
・腎発がん性に関する特徴的遺伝 子群候補の探索 ⇒早期の尿細管がんに関連したパ イオマーカー候補として、25 プロ 一ブを選定した。 (3)神経毒性 ・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反 映する候補遺伝子を見出した。 特に、海馬歯状回でニューロン分 化、軸索形成に関わる候補遺伝子を見出した。 特に、華素形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒出した。 ・遺伝子発現変動データの公開 ⇒出と5 年度末までに一部のデータ について公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
・腎発がん性に関する特徴的遺伝 子群候補の探索 ⇒早期の尿細管がんに関連したパ イオマーカー候補として、25 プロ 一ブを選定した。 (3)神経毒性 ・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反 映する候補遺伝子を見出した。 特に、海馬歯状回でニューロン分 化、軸索形成に関わる候補遺伝子を見出した。 特に、華素形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒出した。 ・遺伝子発現変動データの公開 ⇒出と5 年度末までに一部のデータ について公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
子群候補の探索 ⇒早期の尿細管がんに関連したバイオマーカー候補として、25 プローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。・遺伝子発現変動データの公開⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
⇒早期の尿細管がんに関連したバイオマーカー候補として、25 プローブを選定した。 (3)神経毒性・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
イオマーカー候補として、25 プローブを選定した。 (3)神経毒性 ・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。 特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
- ブを選定した。 (3)神経毒性 ・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反 映する候補遺伝子を見出した。 特に、海馬歯状回でニューロン分 化、軸索形成に関わる候補遺伝子 を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータ について公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
(3)神経毒性 ・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。 特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
・特徴的遺伝子の候補探索 ⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
⇒脳の各部位で発達神経毒性を反映する候補遺伝子を見出した。特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立 違成 見込み。
映する候補遺伝子を見出した。 特に、海馬歯状回でニューロン分化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
特に、海馬歯状回でニューロン分 化、軸索形成に関わる候補遺伝子 を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータ について公開予定。 (b) 各毒性の発現可能性を検出し 得る方法の確立
 化、軸索形成に関わる候補遺伝子を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータについて公開予定。 (b) 各毒性の発現可能性を検出し得る方法の確立
を見出した。 ・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータ 達成見込 について公開予定。
・遺伝子発現変動データの公開 ⇒H25 年度末までに一部のデータ 達成見込 について公開予定。 み。 (b) 各毒性の発現可能性を検出し 得る方法の確立
⇒H25 年度末までに一部のデータ 達成見込 について公開予定。 み。 (b) 各毒性の発現可能性を検出し 得る方法の確立
⇒H25 年度末までに一部のデータ 達成見込 について公開予定。 み。 (b) 各毒性の発現可能性を検出し 得る方法の確立
⇒H25 年度末までに一部のデータ 達成見込 について公開予定。 み。 (b) 各毒性の発現可能性を検出し 得る方法の確立
について公開予定。 み。 (b) 各毒性の発現可能性を検出し 得る方法の確立
(b) 各毒性の発現可能性を検出し 得る方法の確立
得る方法の確立
【全てのエンドポイントに共通】 (1)一般毒性(肝毒性・腎毒性)
・ 遺伝子発現変動データの ⇒肝毒性及び腎毒性の判定システ 前 倒 し で
取得法の確立 ムのプロトタイプ(レーダーチャ 実施

一ト式に判定結果を可視化できる もの)を考案した。

(2)発がん性

・腎発がん性予測の初期的パイロ ットモデル(暫定版)の開発 ⇒早期の尿細管がんに関連したバ | 前 倒 し で イオマーカー候補遺伝子を用いて 判別式を作成し、予測システムの プロトタイプを構築した。

実施

・肝発がん予測システムの陰性物 質を中心とした検証 ⇒本プロジェクトで 11 物質、外部 実施データである TGP データで 25 (今後も継 物質の陰性物質について予測を行 | 続してデ い、高い確率で一致することを確し 認した。

達成 一タを増 やす)

【神経毒性】

遺伝子発現変動データを 用いることで当該毒性の 評価が可能であるかにつ いて結論する。

(3)神経毒性

|⇒脳部位特異的に発達神経毒性を 反映する発現変動検出系を確立し た。

達成

- 神経毒性検出可能性に関する結 論
- ⇒脳の各部位で発達神経毒性を反│ 映する遺伝子発現変動に着目した 神経毒性検出は可能であると判断 した。特に、海馬歯状回でニュー ロン新生障害を反映する遺伝子発 現変動に着目した神経毒性検出は 可能であると判断した。

達成

4. 標準化等のシナリオ、波及効果について

4-1 標準化等のシナリオ

本事業の成果は国際規格化を目指し、OECD ガイドラインなど公的試験法として、広く普及させることを想定しており、それを実現するためには、得られる成果を可能な限り速やかに取りまとめ、外部専門家によるレビューによる評価を受けた後、経済産業省及び関係省庁、関係機関と協議した上で、関連国際会議、学会、論文等でその成果を公表し、国内外における本事業の認知度を上げるための活動を行っており、これまでに論文投稿11件(内1件は投稿中、内3件準備中)、学会発表・講演等23件を実施している。

また、得られた成果の国内における発信・普及のために、CERIで毎年実施している化学物質評価研究機構研究発表会(公開)での成果の発表を通じて事業者とのコミュニケーションを図るとともに、CERIが実施している学生や一般の方々も受講できる寄附講座や関連学会の市民公開講座での情報発信を通して、本研究で用いられる技術や成果について分かり易く解説し、広く国民の理解向上に努めている。また、必要に応じ中間報告及び最終報告時点付近における成果報告会等の開催も検討する予定である。(3-1-3参照)

なお、発がん性予測法に関しては先行 NEDO プロジェクト「遺伝子発現解析技術を用いた長期毒性(肝発がん性)予測手法の開発」の成果の発展型としての開発を目指しており、さらに厚生労働省の先行プロジェクト(Toxico Genomics Project)の成果の有効利用も実施しており、OECD ガイドライン化を目指すことにより、化学物質の発がん性リスク評価に要するコスト、時間の大幅な短縮に貢献することが想定される。

さらに、取得データ (動物実験データ及び遺伝子発現データ) は、広く一般 に利用できるよう国際動向を踏まえ公開ための取組を進める予定である。

4-2 波及効果

本研究の成果は、化審法等で実施されるげっ歯類を用いた 28 日間反復投与試験という単一の動物試験では従来は取得できなかった情報を、遺伝子発現変動解析等の解析技術を駆使することで多様なエンドポイントにおいて毒性発現に関わる情報を取得する手法を提供するもので、行政及び産業界にとって毒性試験の数を削減、すなわち、試験費用、試験期間等の削減に寄与する。このことは化学産業界等にとっての新規化学物質開発の促進に繋がると期待できる。さらに、これにより、石油精製物質等の化学物質のリスクを迅速・効率的に評価・

管理される環境が整備され、石油精製物質等の化学物質の実用化・産業化を有効に進める事が可能となる。さらに遺伝子発現データ等を用いたメカニズム解析も実施することから、化学物質による毒性発現に関する理解を深めることができ、将来的に動物試験から *in vitro* あるいはコンピューターシミュレーションによる毒性評価を目指す欧米を中心とした世界的取組みにも大きく寄与することとなる。このことは、動物福祉の原点である3R、すなわち、Replacement(置換)、Reduction(削減)、Refinement(苦痛軽減)の精神に合致したものとなる。

また、世界的にも困難さが指摘されている信頼できる遺伝子発現データの取得法について、標準的な手法を OECD 等の関連会議において発信し、普及に努めることで、遺伝子発現変動解析における組織採取法、正確な遺伝子発現情報の取得法の標準化などの課題を解決する方向に導くことができる。

これまで知りえなかった毒性に関する情報の取得が可能になることで、国民生活がより安心・安全になることが期待でき、新規化学物質の上市のため情報取得の短期化・低コスト化・高精度化が図れることにより、産業活性化ひいては日本の国際的経済及び技術地位の維持向上が実現できる。

なお、本研究と並行して進めている「石油精製物質等の新たな化学物質規制に 必要な国際先導的有害性試験法の開発」(肝臓毒性、腎臓毒性及び神経毒性in vitro試験法の開発)では毒性マーカー遺伝子を導入した細胞による肝臓毒性及 び腎臓毒性を評価可能なin vitro試験法、並びに神経毒性を評価可能なin vitro 試験法の開発(細胞プロジェクト)を進めており、本事業成果による毒性マー カー遺伝子の信頼性の確認や本事業によって新たに同定された毒性マーカー遺 伝子のin vitro試験法への応用も計画している。細胞プロジェクトでは本プロ ジェクトで同定された毒性関連遺伝子(マーカー遺伝子)をin vitro-HTS試験系 に組み込むことを計画しており、両プロジェクトで共通の物質を用いて実験を 実施することにより、in vivo(生体)とin vitro(試験管内)で共通の毒性メカニ ズムに基づいた試験法開発を行うことができる。さらに細胞プロジェクトでの 対象遺伝子の生体内での変動と毒性影響の関係を明らかにすることで、対象遺 伝子の信頼性の証明を行うことができ、さらにはin vivo(生体)とin vitro(試 験管内)のブリッジングも期待できると考えられる。さらに、本事業でのデータ の蓄積により先行NEDOプロジェクト「遺伝子発現解析技術を用いた長期毒性(肝 発がん性) 予測手法の開発」の発展型である発がん性予測法 (CARCINOScreen) の精度向上並びに適用範囲の拡大が波及効果として期待される。

5. 研究開発マネジメント・体制・資金・費用対効果等

5-1 研究開発計画

本研究開発は、各研究開発項目に対して計画された平成23年度~27年度の実施スケジュール(図5-1-1)に沿って実施されている。現時点において、各研究開発項目の中間目標は計画どおりに達成される見通しであり、研究開発計画は妥当であると考えられる。

図5-1-1 事業全体の実施スケジュール

研究開発項目と実施機関の連携関係を、表 5 - 1 - 1にまとめた。研究開発項目は、「反復投与毒性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発」であり、遺伝子発現量データの取得方法確立、被験物質選定、動物試験、遺伝子発現量解析、成果発信という研究の流れに沿って整理した。フィージビリティースタディについては、遺伝子発現変動による毒性発現可能性が取得可能と判断された場合に手法開発のための基礎データを整備することとした。

表5-1-1 研究開発項目と参加機関の連携関係

X S S S S S S S S S S S S S S S S S S S					
	反復投与毒性試験と遺伝子発現変動による毒性発現可能性情報の取得方法の開発				
	取得方法	よの開発	フィージビリラ	ティースタディ	
	一般毒性	発がん性	神経毒性	免疫毒性	
遺伝子発現	部位別採取		遺伝子発現解析	遺伝子発現解析	
データの	肝臓・腎臓・脾臓	等(CERI)	(CERI)		
取得方法確立	脳(東京農工大)				
被験物質選定	複数エンドポイン	小対応のための	陽性対照物質	陽性対照物質	
	物質選定(CERI)		(東京農工大)	(京都産業大)	
動物試験	28日間反復投与毒性試験		妊娠期・授乳期暴露試験	28日間反復投与毒性試験	
	(CERI) 30~	40物質/5年間	28日間反復投与毒性試験 (東京農工大)	(京都産業大)	
遺伝子の	毒性関連遺伝子の絞り込み → 特定遺伝子の選定				
, 発現変動解析					
(CERI)	各毒性発現可能性を予測するための遺伝子発現変動データの解析手法確立				
成果発信	国際会議及び学会への情報発信(CERI・東京農工大・京都産業大)				
	NITE HESSでの毒性データ情報の公開(CERI)				
	公的データベース(GEO)での遺伝子発現量データの公開(CERI)				

5-2 研究開発実施者の実施体制・運営

本研究開発は、平成23年3月1日から3月31日に経済産業省が公募を行い、 採択審査委員会での厳正な審査を経て、研究開発実施者として研究開発項目① (遺伝子発現解析手法)として一般財団法人化学物質評価研究機構、研究開発項目②(培養細胞試験法)として財団法人鳥取県産業振興機構、鳥取大学を選定後、 経済産業省との委託契約に基づく研究実施体制を構築した。また、研究開発項 目①の共同研究先として東京農工大学、京都産業大学、研究開発項目②の再委 託先として財団法人食品薬品安全センター、独立行政法人産業技術総合研究所、 住友化学株式会社、鳥取大学医学部生理学研究室が参加した。

研究開発の実施にあたっては、委託先決定後に経済産業省により、研究開発を統括するためのプロジェクトリーダーとして国立医薬品食品衛生研究所小島肇氏が、研究開発項目①のテーマリーダーとして化学物質評価研究機構の今田中伸哉氏、研究開発項目②のテーマリーダーとして食品薬品安全センターの田中憲穂氏(現在 鳥取大学の押村光雄氏)が指名され、各研究機関の研究開発ポテンシャルを最大限に活用することによって効率的な研究開発を実施した(図5-2-1)。

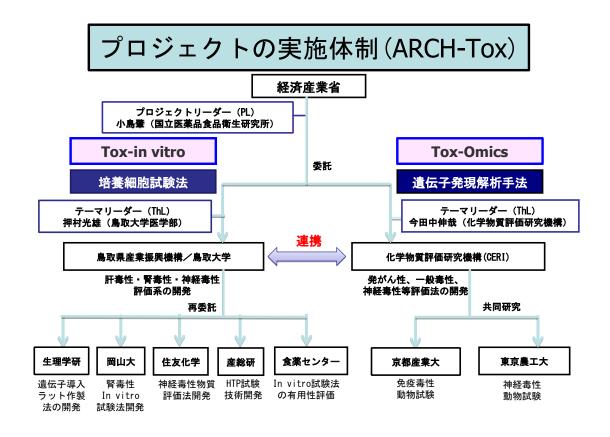


図 5-2-1 事業実施体制の全体図

小島プロジェクトリーダーは、長年毒性試験の開発に携わり、国立医薬品食品衛生研究所新規試験法評価室(JaCVAM)の室長として、欧州(ECVAM)、米国(ICCVAM)を初めとする海外の新試験法評価機関と太いパイプを持つと共に、現在は OECD WNT 会合の副議長を務めており、新試験法の開発に当たり OECD 等の国際機関及び行政との連携を図ることが可能である。

テーマリーダーは、研究開発全体の管理・執行に責任を有する経済産業省との密接な関係を維持しつつ、本事業の目的及び目標に照らして適切な運営管理を実施している。具体的には、研究推進委員会を開催して、外部有識者の意見を運営管理に反映させるとともに、推進調整会議等を通じてプロジェクトの推進管理を行っている。

5-2-1 研究推進委員会

外部有識者の参加を得た研究推進委員会を以下のとおり年間2回開催した。

委員リスト(平成25年度、五十音順)

岡崎 康司 埼玉医科大学

澤田 純一 独立行政法人医薬品医療機器総合機構

高橋 宏明 日本たばこ産業株式会社 西川 秋佳(委員長) 国立医薬品食品衛生研究所

福島 昭治 日本バイオアッセー研究センター

平成 23 年 9 月 15 日 化学物質評価研究機構後楽本部、出席者 20 名平成 24 年 2 月 9 日 化学物質評価研究機構後楽本部、出席者 21 名平成 24 年 7 月 12 日 化学物質評価研究機構後楽本部、出席者 23 名平成 25 年 2 月 4 日 化学物質評価研究機構後楽本部、出席者 23 名平成 25 年 7 月 29 日 化学物質評価研究機構後楽本部、出席者 25 名

5-2-2 推進調整会議

研究開発を推進するために、推進調整会議を以下のとおり開催した。

平成 23 年度: (15 回) 8/31、9/12、13、14、10/12、13、25、12/6、15、

1/26, 31, 2/1, 6, 15, 28

平成 24 年度: (20 回) 4/11、17、24、5/10、15、22、7/2、6、8/7、9/27、

10/18, 19, 11/14, 27, 1/18, 25, 28, 31, 2/15, 26

5-2-3 研究開発項目②(培養細胞試験法)との連携会議/委員会

研究開発にあたっては、研究開発項目①(遺伝子発現解析法)と研究開発項目②(培養細胞試験法)間で連携するため、合同の推進調整会議を開催したほか、テーマリーダーは相互の研究推進委員会に出席し、連携、情報の共有化を図った。

平成 23 年度: (5回)10/14、11/17、12/27、1/13、2/10

平成 24 年度: (8回) 5/28、29、7/10、8/2、9/28、11/16、1/11、2/8

5-2-4 電子メール・テレビ会議等の有効利用

遠隔地にある実施担当者間のコミュニケーションを図り、能動的な報告/

連絡/相談等を機動的に実施するため、電子メール・テレビ会議等を積極的に活用し、問題点の共有化、決定事項の共有化を図っている。

5-2-5 国民との科学・技術対話の実施

本事業の意義等について市民公開講座「日本における代替法研究の新しい胎動」:第24回日本動物実験代替法学会学術大会、2012(仙台)において新規経済産業省プロジェクト「遺伝子プロジェクト」として紹介するとともに、本技術の有用性についてCERI寄附講座(九州大学)において「遺伝子発現変動を用いた化学物質の毒性予測」と題して講義を実施し、本事業内容の普及に努めた。さらに本年度内に細胞プロジェクトと共同で一般対象のセミナーを開催予定である。

5-3 資金配分

本事業の平成23年度~25年度の予算(実績額)の推移を表5-3に示す。資金配分は、共同研究先への配分と、化学物質評価研究機構の研究課題で整理した。年度ごとの各研究課題の進捗が順調であることから、資金配分は妥当であったと考えられる。

なお、事業の予算額が毎年対前年比で一割弱減額となってきたため、研究経費の節約に努めた。また、平成25年度からは、フィージビリティスタディとして開始していた免疫毒性を中止し、研究資金の有効活用を図った。

表5-3 資金年度配分

(単位:百万円)

	4	年度(平成)			
	2 3	2 4	2 5		
化学物質評価研究機構	8 6	7 7	7 1	2 3 4	
遺伝子発現解析等					
化学物質評価研究機構	5 0	4 6	4 6	1 4 2	
動物試験					
化学物質評価研究機構	8	1 1	1 0	2 9	
物質選定、情報公開準備等					
共同研究先 : 東京農工大学	2 0	1 6	1 8	5 4	
神経毒性					
共同研究先 : 京都産業大学	7	7	_	1 4	
免疫毒性					
合計	171	157	1 4 5	473	

5-4 費用対効果

2020年までに化学物質の影響を最小化するという国際目標(WSSD)達成のため、欧州(REACH)や日本(化審法)が新規化学物質、既存化学物質に関わらず化学物質をリスク評価の対象とする新たな化学物質規制手法を導入したところである。

また、化学物質の有害性を含む評価項目(エンドポイント:一般毒性、発がん性、神経毒性等)や評価基準の統一化に向けた国連勧告(GHS)に関し各国における規制への導入が急速に進みつつある。このように、多様なエンドポイントに対応した有害性評価を実施するニーズが高まっている。

しかし、これらの有害性評価項目に関して信頼性が高く、かつ、効率的な評価技術は十分に確立されていない部分が多く、また一般的にヒト健康影響に関する有害性評価項目の多くは動物への反復投与試験等で数ヶ月から数年の期間と多額の費用を要するため、新たな規制導入による評価実施ニーズに応えられていない状況である。具体例としては化学物質の発がん性評価に関しては従来の発がん性試験の費用は約2億円/物質の経費が必要と言われている。本事業成果が実用化された場合、1/40程度(500万円/物質)の経費で発がん性評価が可能となるため、国内で5物質/年の発がん性試験が実施されると仮定すると9億円/年以上の経費が圧縮されると考えられ、本事業の年間投資額を充分に回収できる成果となると期待される。

このため、これまでの研究開発において特定のエンドポイントについて遺伝子 発現変動解析を活用した迅速で効率的な評価技術の開発を進めてきた我が国の 先導的な取り組み成果を活用し、多様なエンドポイントに対応する迅速で効率 的な有害性評価技術の開発を進めることは、国内の化学物質管理の円滑な実施 に資するとともに、国際的ニーズにも対応するものであり、緊急性かつ必要性 の高いものである。

したがって、本事業への予算投入は、効率的な有害性評価手法を開発することで、我が国の石油精製物質の安定供給に資するとともに、化学物質の適切な管理・規制により安全・安心な国民生活の実現にも寄与することとなり、十分な効果が得られると考えられる。

5-5 変化への対応

平成 25 年度までの事業期間中に大きな計画の変更を要する社会経済情勢等の変化は生じなかった。なお、事業の予算額が毎年対前年比で一割弱減額となってきたため、各年ともに研究経費の節約に努めた。また、平成 25 年度からは、フィージビリティスタディとして開始していた免疫毒性を中止し、研究資金の有効活用を図った。

第3章 評価

A. 反復投与毒性試験と遺伝子発現変動による 発がん性等発現可能性情報の取得手法の開発

第3章 評価

1. 事業の目的・政策的位置付けの妥当性

人の健康、環境にもたらすリスクをできるだけ少なくした化学物質の生産・使用は重要である。2020年に向けた取り組みとしての政策的意義は明確であり、先導性を意識して実行されている。国の事業として重要なテーマであると思われる。

個々の企業や研究機関において、有害性評価用データベースを構築し予測手法を開発するのは人材・費用・期間の面で困難であり、また中立性・信頼性の観点からも国が主導して事業を進めていくことは意義がある。

代替法の 3R 原則の実現に資する事業であると同時に、資源・労力・時間・費用の節約という面で、時代の要求に応じた適切な事業である。

また、網羅的遺伝子発現変動データを活用して化学物質の有害性予測手法を開発することは、より科学的で精度の高いアプローチとして意義がある。特に発がん性に関する新たな試験法の開発は、ハードルは高いが重要な意味を持っており、是非ともガイドライン化につながる研究成果を達成して頂きたい。

この研究成果が OECD ガイドラインに取り入れられれば、国際貢献できる上、化学物質の評価のコスト削減が図られる。その結果、科学的に評価された安全な化学物質が流通することになり、国民の安全性を担保できると考えられる。

一方、遺伝子発現解析結果から新たな評価基準を生み出す研究は非常に高度であるにもかかわらず、その研究を全面的に CERI に依存している印象であるが、CERI 以外の専門家を入れて、OECD ガイドライン化を目指して内容を精査した方がいいと思われる。

また、事業内容は、石油精製物質に関連するものではあるが、「石油精製物質」という束縛は緩やかにしておく方がよい。

【肯定的意見】

(A委員) 国の事業として重要なテーマであると思われる。

(B委員) 2020年に向けた取り組みとしての政策的意義は明確であり、民間企業で 実施するには難しい課題であることを考慮すると国の事業としては妥当で、 事業は、先導性を意識して実行されています。

この研究成果が OECD ガイドラインに取り入れられれば、国際貢献できた上、化学物質の評価のコスト削減が図られます。その結果、科学的に評価された安全な化学物質が流通することになり、国民の安全性を担保できると考えられます。

(C委員) 人の健康、環境にもたらすリスクをできるだけ少なくした化学物質の生産・使用は重要である。

化学物質の有害性評価において、従来の動物実験に基づく毒性評価は長年の毒性学的知見の蓄積により洗練化されているものの、多くの労力・期間・費用を必要とし、データの評価や解釈は毒性学者の経験に拠る面も大きく、不確実を伴う。

網羅的遺伝子発現変動データを活用して化学物質の有害性予測手法を開発することは、より科学的で精度の高いアプローチとして意義がある。

個々の企業や研究機関において、有害性評価用データベースを構築し予測 手法を開発するのは人材・費用・期間の面で困難であり、また中立性・信頼 性の観点からも国が主導して事業を進めていくことは意義がある。

- (D委員) 特に発がん性に関する新たな試験法の開発は、ハードルは高いのですが重要な意味を持っており、是非ともガイドライン化につながる研究成果を達成して頂きたい。
- (E委員) 代替法の 3R 原則の実現に資する事業であると同時に、資源・労力・時間・ 費用の節約という面で、時代の要求に応じた適切な事業である。国が関与し ないと遂行が難しい事業である。

【問題点・改善すべき点】

(B委員) 遺伝子発現解析結果から新たな評価基準を生み出す研究は非常に高度であるにもかかわらず、その研究を全面的に CERI に依存している印象であるが、 CERI 以外の専門家を入れて、OECD ガイドライン化を目指して内容を精査した 方がいいと思われます。

(C委員) ・一般毒性について

肝毒性、腎毒性については、トキシコゲノミクスプロジェクト (TGP) をはじめとして多くの報告があるので、これらのデータを戦略的に活用するとともに、より独創性・信頼性の高い評価法を開発する必要がある。

- ・28 日間反復試験で得られた病理情報に基づいてその毒性エンドポイントの有無を評価するバイオマーカーについては、診断バイオマーカーか予測バイオマーカーかの区別を明確にすべきである。
 - ・ヒトを視野に入れた取り組み

本プロジェクトはラットの動物試験データに基づく有害性予測手法の開

発である。しかし、最終目標は人へのリスクを最小にすることである。参考とする化学物質の人への毒性や発がん性に対する信頼性の高いデータは少ないと思われるが、ヒトを視野に入れた取り組みの必要性がある。

(E委員) 事業内容は、石油精製物質に関連するものではあるが、それに限定すべき ものでないので、厳しく言えば予算の流用である。資金の出所を問題にする ほどではないにしろ、それに制約されて被験物質選択が左右されるのは望ま しくないので、「石油精製物質」という束縛は緩やかにしておく方がよい。

2. 研究開発等の目標の妥当性

遺伝子発現データの取得と関連遺伝子の絞り込みを行うという目標は適切かつ妥当であり、遺伝子発現データに影響を与える要素を明らかにするための基礎データの取得も配慮されている。

評価未着手の大量の化学物質の効率的な評価方法の確立は、民間企業が主導して実施するには公平性の点も含めて困難であると考えられることから国が主導して、その手法を確立し OECD ガイドライン化を目指すことは価値が高い。特に、28 日間反復投与試験で、発がん性を予測する評価系の確立は価値の高い研究であるため、成功が期待される。そのためには、論文化を通して解析手法の情報公開することにより、国内外の専門家による方法論の追加検証が必要である。

一方、中間目標に対する具体的な目標及び達成すべき基準値(数値目標など)が設定されていないので達成度を正確に判断することが難しく、5ヵ年事業計画において評価する化合物数、開発する一般毒性用エンドポイント(バイオマーカー)数等の具体的な数値目標を明確にする必要がある。

また、疾患関連遺伝子の同定を、この程度の規模の実験データで確定的に行うのはデータ解析上無理であるため、どの程度の精度で絞り込みが行えるのか、限界を明確にすべきである。

同じような遺伝子発現解析を用いた肝毒性評価や腎毒性評価は、すでに終了した厚労省プロジェクトであるトキシコゲノミクスプロジェクトのデータの有効活用が可能であるが、両者の連携が取れていなかったのが残念である。

【肯定的意見】

(A委員) 中間評価時点での目標は設定されている。

(B委員) 評価未着手の大量の化学物質の効率的な評価方法の確立は、民間企業が主導して実施するには公平性の点も含めて困難であると考えられることから国が主導して、その手法を確立し OECD ガイドライン化を目指すことは価値が高いと思います。

特に、28 日間試験で、発がん性予測する評価系の確立は価値の高い研究であるため、成功を期待しています。そのためには、論文化を通して解析手法の情報公開することにより、国内外の専門家による方法論の追加検証が必要です。

(D委員) 遺伝子発現データに影響を与える要素を明らかにするための基礎データの 取得も配慮されている。 (E委員) 遺伝子発現データの取得と関連遺伝子の絞り込みを行うという目標は適切 かつ妥当である。

【問題点・改善すべき点】

- (B委員) 同じような遺伝子発現解析を用いた肝毒性評価や腎毒性評価は、すでに終了した厚労省プロジェクトであるトキシコゲノミクスプロジェクトでも平行実施されていたが、両者の連携が取れていなかったのが残念です。しかし、トキシコゲノミクスプロジェクトの遺伝子解析データ、血液学データ、血液性化学データ、病理データ(個々の病理写真を含む)は、すでに公開されています。動物愛護の観点から、近年、安全性評価試験の麻酔方法が変更されていますが、麻酔方法の条件が異なっても取得された上記データの有効活用は可能です。そのため、肝毒性評価のために、動物実験を追加する必要はなく、その原資はプロジェクト内の別の研究に割り振りする方がよいと考えられます。一方、トキシコゲノミクスプロジェクトでは、腎毒性物質評価については、毒性発現部位を分けて遺伝子解析データを取得していないため、本プロジェクトで部位を分けた追加データ取得の価値はあると考えられます。
- (C委員) 目標・指標が大まかである。

中間目標に対する具体的な目標及び達成すべき基準値(数値目標など)が設定されていないので達成度を正確に判断することが難しい。

例えば、動物試験を行う化学物質数、肝臓及び腎臓に対する毒性の種類を 中間目標として設定すべきである。

予算(資金)上、実施できる試験・研究内容は限定されると思う。

肝・腎の毒性の種類などを考慮して、被験物質を選定したと思う。

事後評価時点を考慮した進捗率(達成度)を判断できる指標(数値)が必要と思う。

- (D委員) 5ヵ年事業計画において評価する化合物数、開発する一般毒性用エンドポイント(バイオマーカー)数等の具体的な数値目標を明確にする必要がある。
- (E委員) 疾患関連遺伝子の同定を、この程度の規模の実験データで確定的に行うのは、データ解析上無理である。どの程度の精度で絞り込みが行えるのか、限界を明確にすべきである。

3. 成果、目標の達成度の妥当性

バイオマーカー候補遺伝子の選定や、肝毒性及び腎毒性判定システムとして、レーダーチャート方式を考案し、毒性プロファイルを可視化したこと、腎発がん予測システムのプロトタイプを構築したことなど、事業計画で示された中間評価時の目標は、ほぼ達成されていると考えられる。

また、学会発表や論文発表も、適切に行われており、データの取得法と結果の提示については、かなりの進展が認められる。

一方、中間評価の時点では、予測システムの構築に焦点が当てられているが、最終的には、システムの性能の評価が新しいデータ(テストセット)で確認できなければならない。システムが OECD 等で公に認められるために、どのようなエビデンスが必要か、予め検討しておくことが必要である。ガイドライン化に向けて、解析手法の情報開示と第3者による再評価が必要である。また、今後の標準化を目指すためにも、プロジェクト全体として統一した麻酔法の確定が望まれる。

残り事業期間を考えた場合、より一層の研究活動のスピード化が必要と考えられる。 28 日間反復投与終了時の肝毒性と腎毒性については、従来の生化学検査や病理検査 で検出可能であり、費用が高く検査成績までの時間がかかる遺伝子発現解析を実施する 意味が明確でないように感じられる。

【肯定的意見】

(B委員) データ取得などの手法確立などについては、問題なく進行し、学会発表や 論文発表により情報公開が進んでいます。

免疫毒性については、免疫抑制のため標的器官で遺伝子発現データ収集ができないため、研究を中止し、費用等を再配分する点は良い判断と思われます。

(C委員) 一般毒性として、4種類の肝毒性及び4種類の腎毒性について、バイオマーカー候補遺伝子を選定したこと。

肝毒性及び腎毒性判定システムとして、レーダーチャート方式を考案し、 毒性プロファイルを可視化したこと。

腎尿細管がんに対するバイオマーカー遺伝子を選定し、腎発がん予測システムのプロトタイプを構築したこと。

- (D委員) 事業計画で示された中間評価時の目標は、ほぼ達成されていると考えられる。
- (E委員) 疾患関連遺伝子をある程度絞り込んだのは一つの成果である。論文発表も、

適切に行われている。データの取得法と結果の提示については、かなりの進展が認められる。

【問題点・改善すべき点】

- (A委員) 腎病変に関しては、麻酔法の違いによる検討はなされているが、今後の標準化を目指すためにも、プロジェクト全体として(神経毒性を含めて)統一した麻酔法の確定が望まれる。
- (B委員) 一番期待している発がん予測系開発については、CERI に依存しすぎの印象で、ガイドライン化に向けた戦略練り直しが必要と考えられます。即ち、情報開示と第3者による発がん予測系の再評価です。情報未開示のため第3者による予測系の有効性が確認できていません。

さらに、肝毒性と腎毒性の戦略も不明確の印象です。発がん予測系では、 肝発がんが認められない投与期間の短い 28 日の肝臓から得られた遺伝子発 現解析結果を用いて、投与期間が 12 倍延長した 2 年後の発がんを予想してい ます。一方、肝毒性と腎毒性は、何らかの表現系(例えば、肝細胞壊死や脂 肪蓄積など)と直接リンクした遺伝子発現データを用いています。しかし、 この場合、従来の生化学検査や病理検査で検出可能であり、費用が高く検査 成績までの時間がかかる遺伝子発現解析を実施する意味が明確でないように 感じられます。

(C委員) 28 日間反復投与試験で得られた病理情報に基づいてその毒性エンドポイントの有無を評価するマーカーの開発をしているが、診断バイオマーカーか、あるいは予測バイオマーカーかを明確にすべき。

バイオマーカー選定の際、毒性病理変化及び遺伝子発現量に対する時間的 経過、用量の差をどのように考慮したかが不明である。

- (D委員) 残り事業期間を考えた場合,より一層の研究活動のスピード化が必要と考えられる。
- (E委員) 既存の他の試験法より優れた予測システムを構築するのが事業目的であるから、既存試験法の結果との比較をより丁寧に行うことが望まれる。サンプルサイズ1での比較は不適切である。

中間評価の時点では、予測システムの構築に焦点が当てられているが、最終的には、システムの性能の評価が新しいデータ(テストセット)で確認できなければならない。システムが OECD 等で公に認められるために、どのよ

うなエビデンスが必要か、予め検討しておくことが必要である。

4. 標準化等のシナリオ、波及効果についての妥当性

論文投稿、学会発表などの情報発信・普及活動は評価できる。

本プロジェクトで開発する有害性予測システムは、化学物質以外の医薬品や化粧品など広範囲での活用が期待できる。また、肝臓、腎臓、神経毒性のみならず、種々な毒性に応用可能であると考えられることから、本プロジェクトを通じて確立した技術の波及効果が期待できる。

また、中間評価時点で判断を下すのは困難であるが、国際規格化に向けた今後の取り組みに期待する。

一方、標準化に向けてのシナリオとして、現時点ではこれに関連する具体的な方法、特に国際化に向けての事項がはっきりしない。ガイドライン化を目指すのであれば、先行する事業の関連研究成果(肝発がん予測システムに関わる情報等)も速やかに公表すべきである。

また、データの再現性や施設間差などを検証して国際規格(標準)化に向け指標や基準を策定することが望まれる。

【肯定的意見】

(B委員) 方向性の意図は感じられ、データが揃ってきている部分については、標準 化に向けた今後の取り組みに期待しています。研究内容は、学会の場などで 公表されているため広報も進展しています。

(C委員) · 広報活動

論文投稿、学会発表などの情報発信・普及活動は評価できる。

• 波及効果

本プロジェクトで開発する有害性予測システムは、化学物質以外の医薬品 や化粧品など広範囲での活用が期待できる。

また、肝臓、腎臓、神経毒性のみならず、種々な毒性に応用可能であると 考えられることから、本プロジェクトを通じて確立した技術の波及効果が期 待できる。

(E委員) 中間評価時点でこれについて判断を下すのは困難であるが、国際規格化を 指向していることは認められる。提出された報告・報告書で見たところでは、 広報活動も適切と感じられる。

【問題点・改善すべき点】

(A委員) 標準化に向けてのシナリオとして、現時点ではこれに関連する具体的な方法、特に国際化に向けての事項がはっきりしない。

- (B委員) 肝毒性、腎毒性や神経毒性は、中間段階でデータ取得が継続されているため、標準化のシナリオまで至っていない感があります。一方、発がん予測系は、前者に比べてデータが整っているにもかかわらず、JIS化や我が国主導の国際規格化等に向けた対策は遅れている印象です。
- (C委員) 「本事業の成果は国際規格化を目指し、OECD ガイドラインなど公的試験 法として、広く普及させることを想定している」と記載されているが、中間 評価時点ではそれらに向けた具体的な対応は図られていない(文書化は実施)。 組織採取法や遺伝子発現データ取得・解析及び選定した毒性バイオマーカーに対し、データの再現性や施設間差などを検証して国際規格(標準)化に 向け指標や基準を策定することが望まれる。
- (D委員) ガイドライン化を目指すのであれば、先行する事業の関連研究成果(肝発がん予測システムに関わる情報等)も速やかに公表すべきである。
- (E委員) この項目は中間評価の時点で評価しにくいものである。最終的に、波及効果をどのように想定するか、事前に方針を明確にしておくことが望まれる。

5. 研究開発マネジメント・体制・資金・費用対効果等の妥当性

先行する事業の成果やノウハウの応用も考慮した研究活動が行われており、研究施設の選定、事業実施スケジュール、実施体制は妥当と感じられる。

各種学会発表や論文発表などで公表されていることから費用対効果は認められたと 考えられる。

一方で、最終目標が、我が国主導の国際規格化であるならば、研究開発計画が若干遅れていると感じられる。特に、期待の大きい発がん予測系については、前のプロジェクトの延長であるため、次のステップへの速やかな展開を期待する。

個々の実施者での研究成果は得られていると考えられるが、実施者間の連携によるシナジー効果は十分に見られていないように感じる。

毒性関連遺伝子の絞り込み及び特定遺伝子の選定、発がん性予測などにおいて、バイオインフォマティシャンの知識・能力が重要であり、また毒性研究者との協力・連携体制が必須である。

中間時点での研究内容や進捗を再評価し、免疫毒性試験系の評価を中止し、資源の再配分を図った点は、柔軟な対応ができており、リソースの有効活用の観点からも適切な判断であるが、免疫毒性を中止したのは、周囲の状況変化への対応というより、当初計画の不備によるものと感じられる。

【肯定的意見】

- (B委員) 10%の資金カットの事実は説明会で紹介されていましたが、費用削減により事業進行に遅延が生じているとの内容の説明がなかったことから、資金配分の過不足は感じられませんでした。研究内容については、各種学会発表や論文発表などで公表されていることから費用対効果は認められたと考えられます。更に、中間時点での研究内容や進捗を再評価し、免疫毒性試験系の評価を中止し、資源の再配分を図った点は、柔軟な対応ができていると考えられます。
- (C委員) 研究開発の資金配分・費用対効果・実施者間の連携等は妥当である。 免疫毒性の開発中止はリソースの有効活用の観点からも適切な判断であ る。
- (D委員) 先行する事業の成果やノウハウの応用も考慮した研究活動が行われている。
- (E委員) 研究施設の選定、事業実施スケジュール、実施体制は妥当と感じられる。

【問題点・改善すべき点】

- (B委員) 最終目標が、我が国主導の国際規格化であるならば、研究開発計画が若干遅れていると感じられます。特に、期待の大きい発がん予測系については、前のプロジェクトの延長であるため、次のステップへの速やかな展開を期待します。発がん予測系の遅れの原因は不明ですが、大規模データを扱っている CERI の一部の担当者への過度な負担などを懸念します。
- (C委員) 研究内容に対する具体的な目標設定を行う研究マネジメント体制が望まれる。

毒性関連遺伝子の絞り込み及び特定遺伝子の選定、発がん性予測などにおいて、バイオインフォマティシャンの知識・能力が重要であり、また毒性研究者との協力・連携体制が必須である。本プロジェクトにおけるこの体制については不明であるが、この連携関係を大事にして研究を進めていただきたい。

- (D委員) 個々の実施者での研究成果は得られていると考えられるが、実施者間の連携によるシナジー効果は十分に見られていないように感じる。
- (E委員) 資金の内部配分の妥当性や、他に費用対効果が優れているものがないかど うかは、報告書で適切に考察されていないので評価が困難である。報告書を 読んだところでは、免疫毒性を中止したのは、周囲の状況変化への対応とい うより、当初計画の不備によるものと感じられる。

6. 総合評価

本プロジェクトの有害性評価手法の開発は、従来の毒性学者の経験的な評価から、網羅的遺伝子発現変動データを活用した、より客観的に評価するアプローチである。個々の企業や研究機関において研究開発するのではなく、国が主導して事業を進めていくことは評価できる。

また、ガイドライン化を想定した長期のビジョンの下で事業計画が立案されており、 実験の進め方は適切で、実験結果の妥当性も認められる。

現行の毒性評価方法に遺伝子発現量解析を追加することにより、新たな毒性発現メカニズムが発見できる可能があるため、研究を継続することには価値があり、化学物質以外の医薬品や化粧品などの毒性評価での活用も期待できる。

一方、ガイドライン化を目標とする場合は、情報の共有化が重要となってくるが、その取組みが十分とはいえない。必要条件だけで、発がん性予測モデルを形成しているが、十分条件を満たしていないと感じられ、評価方法のアルゴリズム開示と第3者による評価が必要である。

国際規格化に向けて指標や基準を策定するには、組織採取法や遺伝子発現データ取得などにおいてデータの再現性や施設間差などを考慮することが必要である。

また、これまでに多くの研究者が提案しているいろいろな手法を適切に取り入れるとともに、併せて、限られた資金の中では、公表されている厚生労働省及びNEDOプロジェクトのノウハウやデータを積極的活用すべきである。

【肯定的意見】

- (B委員) 現行の毒性評価方法に遺伝子発現量解析を追加することにより、新たな毒性発現メカニズムが発見できる可能があるため、研究を継続することには価値があります。しかし、今後、発がんや肝毒性評価に関して既知物質データを追加することは、価値が高くありません。実践では、微妙な結果が出る場合が多く、現行の成績からカットオフ値を決定して、(今回のプロジェクトとして評価した方がいいと考えられる評価未了の)石油系の物質を用いて、invitro評価系と同時に発がん性を評価して、結果を雑誌に投稿して、レフリーやエキスパートと議論した方がいいと思います。
- (C委員) 化学物質の有害性評価手法の開発が、従来の毒性学者の経験的な評価から 網羅的遺伝子発現変動データを活用したより科学的に評価するアプローチで あること。

開発目標の化学物質の有害性評価手法は、化学物質以外の医薬品や化粧品などの毒性評価での活用が期待できること。

個々の企業や研究機関において化学物質の有害性評価手法を研究開発す

るのではなく、国が主導して事業を進めていくこと。 Tox-in vitro 研究と Tox-omics 研究との連携。

- (D委員) ガイドライン化を想定した長期のビジョンの下で事業計画が立案されている。
- (E委員) 研究課題は非常に重要なものである。実験の進め方は適切で、実験結果の 妥当性も認められる。

【問題点・改善すべき点】

- (B委員) 非発がん時点のサンプルから将来の発がんを予測するのは、非常に難しいと思います。今回の発がん予測システムは、いわゆる発がんすると考えられる物質を28日間投与し、摘出した肝臓を遺伝子発現量解析して標的遺伝子の発現解析値の集合を肝臓発がん予測に利用しています。しかし、発がん物質を投与した個体全例が腫瘍を形成するわけではありません。28日間投与では、肝臓に発がんし易い状況を提供しているだけで、発がんしているわけではありません。従って、必要条件だけで、発がん性予測モデルを形成しているが、十分条件を満たしていないと感じています。この点が、遺伝子発現解析データを用いた発がん予測系の落とし穴と考えられるため、評価方法のアルゴリズム開示と第3者による評価が必要です。
- (C委員) 28日間反復投与試験で得られた病理情報に基づいてその毒性エンドポイントの有無を評価するバイオマーカーの開発において、そのマーカーが診断バイオマーカーか、あるいは予測バイオマーカーかを明確にして検討すべきである。

具体的な目標及び達成すべき基準値が設定されていない。より具体的な数値目標などを設定することが望ましい。

国際規格化に向けて指標や基準を策定するには、組織採取法や遺伝子発現 データ取得などにおいてデータの再現性や施設間差などを考慮すること。

今後も、本事業資金は限られると考えられるので、今までに実施された厚生労働省及びNEDOプロジェクトのノウハウやデータを積極的活用すべきである。

(D委員) ガイドライン化を目標とする場合は、情報の共有化が重要となってくるが、 その取組みが十分とはいえない。 (E委員) 得られる情報の量と信頼性は、データの取得量に応じたものにならざるを 得ない。データ取得計画(動物数、群数、被験物質数等)と結果の報告にお いて、これについての適切な考察が必要である。

疾患関連遺伝子を同定する手法については、多くの研究者が様々な提案をしているが、今回の報告にはその提案が適切に取り入れられていないと感じられる。提案されているいろいろな手法の利点・欠点と限界を吟味し、少しでも信頼性の高い結果が得られる手法を用いて、疾患関連遺伝子の同定を行い、その信頼性について的確な判断を下し、情報として提供することを勧めたい。

構築した判別法の性能をリサンプリング等の手法で評価しているが、少量のデータだけで性能の十分な評価は無理である。性能評価のためのテスト用データの取得計画、妥当性評価のための解析計画を事前に準備しておくことが望ましい。

7. 今後の研究開発の方向等に関する提言

- ○被験物質の中にタイトルにある「石油精製物質等」に含まれる物質を入れておいた方がよい。
- ○発がん予測系アルゴリズムを速やかに公開して、国内外の第3者が肯定的な評価を引き出すことにより、国際規格化への弾みがつくと考えられる。
- ○メカニズムベースで毒性評価可能なバイオマーカー遺伝子の選択に対し積極的に挑 戦すること。
- ○本プロジェクトはラットの動物試験データに基づいて有害性予測手法の研究開発であるが、課題はヒトへのリスク評価であるのでヒトを視野に入れた取り組みが重要である。
- ○優秀なバイオインフォマティシャンと毒性研究者との協力・連携体制で推進すること。
- ○日本での Toxicogenomics Project (TGP) や欧米での Toxicogenomics 研究において、 多くの化合物の遺伝子発現変動データが取得されている。これらの情報を単に検証など に用いるだけでなく計画立案時から戦略的に活用することを期待する。
- ○残されたプロジェクト期間で、戦略的かつ効率的に有害性評価手法の精度をより一層 向上するため及び更なる波及効果を高めるために、外部からの専門家(TGP の元メンバ ー、化学系企業の毒性専門家など)を交えて、バイオマーカー遺伝子の選定や発がん予 測システムの充実化を図ることを提案したい。
- ○今後国際規格(標準)化に向け、技術の確立と実用化には化学系企業の毒性専門家の 意見・協力も必要である。
- ○麻酔の遺伝子発現データへの影響等に関する基礎データは、ガイドライン化を考えた場合に非常に重要な情報となる。必要に応じて、追加の基礎データの取得を行い、これらの情報を整理し、速やかに論文等により公表して情報共有を進めて頂きたい。

【各委員の提言】

(A委員) 被験物質の中にタイトルにある「石油精製物質等」に含まれる物質を入れておいた方がよい。

(B委員) 本事業は 2020 年に向けた取り組みとしての政策的意義は明確であり、国の事業としては妥当で、先導性を意識して実行されています。 JIS化や我が国主導の国際規格化等に向けて対応することにより、評価方法が最終的に OECD ガイドラインに取り入れられれば、化学物質のプロファイル評価のコスト削減が図られ、国際貢献につながるため、事業継続を望みます。

一方、発がん予測系は、アルゴリズムが未公表であるため、外部評価が完了していません。そのため、発がん予測系の価値が不明確です。一番の懸念は、評価系を公表して国内外の第3者(遺伝子解析の研究者、学会、雑誌のレフリー、規制当局)が否定的な見解になった場合、結果的に再度データ解析することによる評価系の再構築を迫られることです(振り出しに戻る)。そのため、発がん予測系アルゴリズムを速やかに公開して、国内外の第3者が肯定的な評価を引き出すことにより、国際規格化への弾みがつくと考えられます。

(C委員) メカニズムベースで毒性評価可能なバイオマーカー遺伝子の選択に対し積 極的に挑戦すること。

本プロジェクトはラットの動物試験データに基づいて有害性予測手法の研究開発であるが、課題はヒトへのリスク評価であるのでヒトを視野に入れた取り組みが重要である。

優秀なバイオインフォマティシャンと毒性研究者との協力・連携体制で推 進すること。

日本での Toxicogenomics Project (TGP) や欧米での Toxicogenomics 研究において、多くの化合物の遺伝子発現変動データが取得されている。これらの情報を単に検証などに用いるだけでなく計画立案時から戦略的に活用することを期待する。

残されたプロジェクト期間で、戦略的かつ効率的に有害性評価手法の精度をより一層向上するため及び更なる波及効果を高めるために、外部からの専門家(TGP の元メンバー、化学系企業の毒性専門家など)を交えて、バイオマーカー遺伝子の選定や発がん予測システムの充実化を図ることを提案したい。

特に今後の被験物質の選定やバイオマーカー遺伝子の精度の向上・絞り込みについては、TGP のノウハウを活用することが、本プロジェクトの効率的な推進につながると考える。

さらに、今後国際規格(標準)化に向け、技術の確立と実用化には化学系 企業の毒性専門家の意見・協力も必要である。 (D委員) 麻酔の遺伝子発現データへの影響等に関する基礎データは、ガイドライン 化を考えた場合に非常に重要な情報となる。必要に応じて、追加の基礎デー タの取得を行い、これらの情報を整理し、速やかに論文等により公表して情 報共有を進めて頂きたい。 第4章 評点法による評点結果

第4章 評点法による評点結果

「石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発」に係るプロジェクト評価の実施に併せて、以下に基づき、本評価検討会委員による「評点法による評価」を実施した。その結果は「3. 評点結果」のとおりである。

1. 趣 旨

評点法による評価については、産業技術審議会評価部会の下で平成 11 年度に評価を行った研究開発事業 (39 プロジェクト) について「試行」を行い、本格的導入の是非について評価部会において検討を行ってきたところである。その結果、第 9回評価部会(平成 12 年 5 月 12 日開催) において、評価手法としての評点法について、

- (1)数値での提示は評価結果の全体的傾向の把握に有効である、
- (2)個々のプロジェクト毎に評価者は異なっても相対評価はある程度可能である、 との判断がなされ、これを受けて今後のプロジェクト評価において評点法による評価を行っていくことが確認されている。

また、平成21年3月31日に改定された「経済産業省技術評価指針」においても、 プロジェクト評価の実施に当たって、評点法の活用による評価の定量化を行うこと が規定されている。

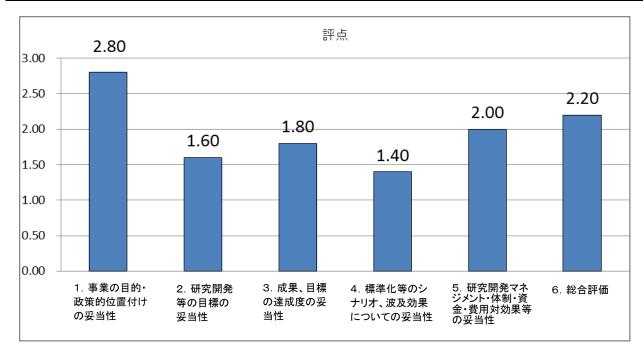
これらを踏まえ、プロジェクトの中間・事後評価においては、

- (1)評価結果をできる限りわかりやすく提示すること、
- (2)プロジェクト間の相対評価がある程度可能となるようにすること、

を目的として、評価委員全員による評点法による評価を実施することとする。

本評点法は、各評価委員の概括的な判断に基づき点数による評価を行うもので、 評価報告書を取りまとめる際の議論の参考に供するとともに、それ自体評価報告書 を補足する資料とする。また、評点法は研究開発制度評価にも活用する。

2. 評価方法


- ・各項目ごとに4段階(A(優)、B(良)、C(可)、D(不可)(a, b, c, dも同様/)で評価する。
- ・4段階はそれぞれ、A(a)=3点、B(b)=2点、C(c)=1点、D(d)=0点に該当する。
- ・評価シートの記入に際しては、評価シートの《判定基準》に示された基準を参照し、該当と思われる段階に○を付ける。
- ・大項目(A, B, C, D)及び小項目(a, b, c, d)は、それぞれ別に評点を付ける。
- ・総合評価は、各項目の評点とは別に、プロジェクト全体に総合点を付ける。

3. 評点結果

評点法による評点結果

A. 石油精製物質等の新たな化学物質規制に必要な国際先導的有害性試験法の開発(反復投与事性試験と遺伝子発現変動による発がん性等発現可能性情報の取得手法の開発)

	評点	A 委員	B 委員	C 委員	D 委員	E 委員
1. 事業の目的・政策的位置付けの妥当性	2. 80	3	3	3	3	2
2. 研究開発等の目標の妥当性	1. 60	2	2	1	1	2
3. 成果、目標の達成度の妥当性	1.80	2	1	2	2	2
4. 標準化等のシナリオ、波及効果についての妥当性	1. 40	1	1	2	1	2
5. 研究開発マネジメント・体制・資金・費用対効果等の妥当性	2. 00	1	2	2	2	3
6. 総合評価	2. 20	2	3	2	2	2

