Guidelines on the Roles Expected of Cyber

Infrastructure Providers

(draft)

— Appropriate division of roles and responsibilities between customers and cyber
infrastructure providers to ensure cybersecurity and improve resilience in software

development, supply, and operation —

Oct . 2025

Industrial Cybersecurity WG1, Ministry of Economy, Trade and
Industry/Joint Working Group,
National Cybersecurity Office
Study Group on the Roles Required of
Cyber Infrastructure Providers

Table of Contents

o Preamble........ e 1
1.1, Background and ODJECHVEeeiiiiiiiii e 1
1.2. Positioning of the Guidelines (draft)..........ccccvveeiiiiiiiiiir e 3
1.3, APPlICADIE ODJECLSeviiiiiiiii e 5
1.4. Approach to diViSiON Of FOIESccciieiiiiiiiieiic e 9
1.5, Examples Of typiCal USE CASEScciviiiiiiiiiiiiiiie e eeciiiee et e e ee e e e et ee e e e e e s e nnnes 15

2. Responsibilities and division of roles of cyber infrastructure providers and

CUSEOMIBES ...ttt e e e et e e e e e e s e bbb e e e e e e e e e s nnbneeeeaeeeas 19
2.1. Approach to responsibilities and division of rolescccccviiiiiniiiiii e, 19
2.2, RESPONSIDINILIES ..eooiiiiiiiiiiiiee e 20
3. Requirements for fulfilling responsibilitiesccccccccciiiiii 23
3.1. Overview of the reqUIremMENtSooiiiiiiiii e 23
B T2 =Y [U1 1=Y .4 1= £ PSPPIt 26
(1) Secure design, development, supply, and operation............cccccccveviiiiieiniiie e, 27
(2) Life cycle management and assurance of transSparencyccccocveveeniieeeeiiiieee e, 32
(3) Prompt responses to remaining vulnerabilities..............ccoiiiiiiiiiiie 36
(4) Arrangement of human resources, processes, and technologiesccccccoviieennn. 39
(5) Strengthening of relationships between cyber infrastructure provider and
SEAKENOIARIS ...t 45
(6) Risk management by customers, and procurement and operation of secure
SOTIWAIE .ot e ettt e e e e et e e e e eaaaaeean 47
4. Utilization of requirements ... 49
4.1. Requirement packaging of requiremMentsccccoiiieiiiiiieiii e 49
4.2. Points to note regarding the application of requirements according to the division of
O S e 52
5. Reference information.................c.oooiiii i 53
5.1. Requirements CheckIistoooi i 53
5.2. Examples of relationships between security incidents and requirements 54
5.3. Correspondence relationships between threats in a system life cycle and requirements
... 55
5.4. Examples of measures implemented to meet requirements............cccccvvvveeeiiicivinnnn. 59
(1) Secure design, development, supply, and operation...........ccccccoeiiiiiiiiiiiniiniiiiieeeeeenn 59
(2) Life cycle management and assurance of transSparencyccccovccveeeeriieeeeeniieee e, 66
(3) Prompt responses to remaining vulnerabilitieS.............cccovvvivee e 74
(4) Arrangement of human resources, processes, and technologiesccocccoviieennen. 80
(5) Strengthening of relationships between cyber infrastructure providers and

SEAKENOIAETS ... a e e e 92
(6) Risk management by customers, and procurement and operation of secure
7o) 10T (= 3 PR PT PP 96

5.5. Relationship between the Common Standards and Guidelines (draft)........................ 99

5.6. Relationship between the Guidelines for Establishing Safety Principles for Ensuring

Information Security of Critical Infrastructure and Guidelines (draft).............c.c.c....... 103
5.7. Reference informationoocuiiiiiiiiiiiie e 107
(1) List of reference informationoveviiiiiiiiiiii e 107
(2) Relationships with other standards, guidelines, etc...........c..cccceiiiiiini, 110
(3) Correspondence relationships with NIST SP800-218ccccoviiiiiiiiiiieee i, 113
(4) Correspondence relationship between the three NSA Software Supply Chain

€101 To L= or= N [o o101 4 1=] o | =S PPRER 114

(5) Correspondence relationship with CISA Secure-by-Design - Shifting the Balance of
CyberseCuUrity RISK.........coiiiiiiiiiiiiie e 115
(6) Correspondence relationship with ANNEX I/Il, EU CRAccooviiiiiiiiiiie e 116
(7) Correspondence relationship with other documentsc.cccceevie i, 117
5.8, TeIMINOIOGYuveeeiiiiiiie ittt e et e e et e e e ane 118

6. Organizational system for examining the Guidelines (draft)ccccccoviinne 120

1. Preamble

1.1. Background and objective

(1) Need to improve cybersecurity® resilience

In recent years, cyberattacks have become more intense and diverse, with recent attacks
targeting the core software that digitally supports all social activities and the potential
vulnerabilities in supply chains. Owing to the strong dependence on software for the
management of various information and telecommunications systems and services,
cyberattacks can undermine the reliability of such digital platforms and severely affect
people's lives and economic activities, as well as critical infrastructure. Table 1 lists typical

examples.

Table 1 Typical examples of cyberattacks

Example

Summary

Apache Log4J
vulnerability

Apache Log4J is a logging library used worldwide. In 2021, a
serious vulnerability that allowed attackers to execute arbitrary
code remotely was discovered within the library and exploited.
It was incorporated and used in various types of software in
multi-layered software supply chains. This incident highlights
the need to discover, track, and fix vulnerabilities.

Tampering with a
software update from
Software Vendor A

A legitimate software update was tampered with by intruding
into the software vendor system, affecting all organizational
functions using the software.

The incident suggests the importance of ensuring the security
of development and operation environments in the software
supply chain.

Encryption and leakage of
patient information held
by Hospital B

An in-hospital network was infiltrated via a VPN device
unpatched against known vulnerabilities, causing disruptions in
medical treatment.

This case illustrates the importance of proactive management
of software security by the hospital (customer) and the
importance of information provision by the provider.

1 Cybersecurity refers to measures taken to prevent leakage, loss, and damage of information through electromagnetic
means and to ensure the safety and reliability of systems and networks that handle such information, as well as the
maintenance and management of such measures. Refer to Article 2 of the Basic Act on Cybersecurity.

1

These examples show that cyberattacks on software can target various areas: the
development phase, which includes the design of systems and services; the construction,
maintenance, and operation phases; supply chains between users, software developers, and
suppliers; and the contract phase. Thus, it is difficult to develop countermeasures covering
all phases. To appropriately respond to such difficulty, followings are required: public-private
collaboration on cyber infrastructure provider’s role and ideal, risk management on cyber
security risks, and balancing it with costs. In this regard, the United States (US) has recently
created standards and guidelines to strengthen security in software development and supply
chains. In addition, the European Union (EU) is accelerating the development of institutional
systems in connection with the reinforcement of cybersecurity measures for digital products
and services; for instance, the Cyber Resilience Act (CRA) is scheduled to come into force
in 2024 and will be fully implemented by 2027. Furthermore, with the concept of "secure by
design" gaining international support?, we are entering an era in which companies are
expected to not only protect themselves from cyberattacks but also take cybersecurity
measures for the software products and services that they offer.

Article 7 of Japan's Basic Act on Cybersecurity states the responsibilities of cyber-related
businesses and suppliers of information systems?, and in particular, that suppliers of
information systems are obligated to make efforts to provide cybersecurity assurances to
users of information systems; however, there is no document specifying the roles of
businesses (hereinafter referred to as "cyber infrastructure providers*') that provide certain
social infrastructure functions through the development, supply, and operation of software,
including software design, in providing cybersecurity measures for software products and
services at each phase of development, supply, and operation.

The purpose of the Guidelines (draft) is to improve the resilience and fundamental
cybersecurity assurances of cyber infrastructure providers by organizing and explaining the
roles expected of them.

2 In October 2023, government agencies and other entities from 13 countries, including Japan and the US, co-signed
guidance that summarizes recommendations for ensuring the security of IT products (especially software) from the
design stage. The guidance is available on the US CISA website (https://www.cisa.gov/securebydesign).

3 Cyber-related businesses are entities that conduct business related to the development of the Internet and other
advanced information and communication networks, utilization of information and communication technology, or
cybersecurity. Suppliers of information systems are suppliers of information systems, or computers or programs that
constitute part of an information system, information and communication networks, or electromagnetic storage media.
4 Cyber infrastructure providers are businesses that develop and provide information and communication systems,
software products, and ICT services that are widely used in society, including government agencies and critical
infrastructure operators, as well as operators involved in the life cycle and supply chain of the software for such
information and communication systems, among the operators whose responsibilities are stipulated for cyber-related
businesses, etc. in the Basic Act on Cybersecurity (those who conduct development of the Internet and other advanced
information and communication networks, utilization of information and communication technology, or business related
to cybersecurity).

1.2. Positioning of the Guidelines (draft)

(1) Development system

The Guidelines (draft) state the responsibilities (items similar to basic principles) of cyber
infrastructure providers and their supply chains that provide IT/OT systems, software
products, or ICT services to customers (including government agencies and critical
infrastructure operators®). So that cyber infrastructure providers may able to provide an
appropriate division of roles between operators and customers to promote effective
cybersecurity measures intended for safeguarding the software in supply chains. In addition,
the guidelines outline systematic measures that are essential for risk management, which
involves identifying and assessing cybersecurity-related risks and implementing appropriate
risk responses to reduce residual risks to within tolerable levels. Based on the responsibilities
expected of the operators and customers and the requirements for fulfilling their
responsibilities, it is expected that operators and customers will recognize their respective
roles, share accurate information, and work together to ensure security, which will lead to
improved capabilities in responding to cyberattacks.

In other countries, security measures for software supply chains are implemented not only
through technical initiatives but also through the direct imposition of discipline on companies.
However, as there are currently no laws in Japan that directly regulate cyber-related
businesses involved in software supply chains, the Guidelines (draft)® will provide a
reference for businesses, companies, and related parties to ensure the effectiveness of
cybersecurity measures.

(2) How to use

The Guidelines (draft) are intended for use by cyber infrastructure providers and customers.
At the time of use, the division of roles in the development, provision, and operation of the
software through its life cycle is determined based on the characteristics of the intended
software and contractual form for using the software. Cyber infrastructure providers shall
seek to reach agreements with customers as necessary and understand the scope of the
responsibilities that they are required to fulfill.

® Cyber infrastructure providers

Cyber infrastructure providers can use the Guidelines (draft) as a tool to enhance
the security measures in the software supply chain. The requirements listed in the
Guidelines (draft) can be used to confirm whether the efforts of their own organization
and those in the software supply chain are sufficient.

To advance this initiative, it is necessary that the cyber infrastructure providers
establish secure software development and maintenance processes throughout the
entire supply chain (including software component suppliers, software development
contractors, and development outsourcing partners); in addition, their own
organization and those in the software supply chain will need to make appropriate

5 Critical infrastructure operators refer to the critical social infrastructure operators defined in Article 3, Paragraph 1 of
the Basic Act on Cybersecurity. They form the foundation of people's lives and economic activity, and conduct
businesses related to objects that are likely to have a significant impact on people's lives or economic activity if their
functions are suspended or impaired.

6 These guidelines summarize the ideas related to Article 7, Paragraph 1 and 2 of the Cybersecurity Basic Act,. and are
not intended to impose any new legal responsibility or regulation.

3

investments in process changes, such as changes in software development
regulations. It is necessary to implement these initiatives while considering the
medium- to long-term investment effects.

By reducing software vulnerabilities through these approaches, it is possible to
minimize the costs involved in creating patches to fix software vulnerabilities in the
short term and software maintenance in the long term. Furthermore, when customers
use security-conscious software, which reduces configuration risks and other
operational errors, customer security will improve and thereby increase the trust in
cyber infrastructure providers.

Customers

Customers are expected to use these guidelines, particularly at the procurement
stage of software products and services. Customers can use the Guidelines to select
appropriate software developers by either following the requirements listed in the
Guidelines (draft) as specifications when developing, supplying, and operating
software within their own organization, or using the requirements specified in the
Guidelines (draft) as a check list to evaluate the efforts of cyber infrastructure
providers from whom software and services are procured. Moreover, customers will
be able to manage cybersecurity risks and reduce the operational burden of
implementing vulnerability fixing patches and other measures by selecting appropriate
operators through these initiatives.

In addition, if the customer is an organization with its own software development,
supply, and operation departments, they can address cybersecurity risks throughout
the entire software life cycle by independently carrying out activities based on the
responsibilities and roles specified in the Guidelines for cyber infrastructure providers
and customers.

It is important to note that the cost of risk management implemented by cyber
infrastructure providers also includes the compensation provided to other related
operators in software supply chains for incorporating security measures. In addition,
customers must make appropriate investments, such as managing their own risks and
developing secure procurement and operational processes and resources. It is
important even for customers to recognize the importance of ensuring software
security in conducting business and to take the stance of strengthening security while
appropriately controlling the expansion of risk response costs by paying particular
attention to efforts related to the requirements of the Guidelines (draft).

1.3. Applicable objects

(1) Scope of software

In the Guidelines (draft), targeted software are those developed and maintained over the
software life cycle (Table 2), such as software products, software services, firmware
embedded in IT/OT/loT devices, and the software that constitutes an IT/OT system or ICT
service. (Hereinafter, the terms "systems," "services," and "system services" are used to refer
to IT/OT systems and ICT systems, respectively, or collectively.)

Table 2 Classification of target software

Name Description
Software product Software provided to customers as a product
Software service IT services used directly by customers, such as a cloud service

Embedded software and firmware provided as part of a

Embedded software hardware product’ such as an IT/OT/IoT device

Software that constitutes an IT/OT system or ICT service.
Application software developed specifically for applications
Software that constitutes a|such as web programs?® or software such as an operating
system or service system, software package, software library, and open-source
software that is built by a developer and integrated into a
system and provided as a system component

(2) Target businesses

The Guidelines (draft) assume that "cyber infrastructure providers" involved in the
development, supply, and operation of software, including its design, are intended targets.
To improve the software cybersecurity resilience, cyber infrastructure providers are required
to strengthen relationships in various aspects, not only in terms of involvement aimed at
protection against incidents, but also as collaborators in information collection, analysis, and
response coordination in pre- and post-incident responses. In the Guidelines (draft), cyber
infrastructure providers are classified into three main roles: developer, supplier, and operator.

To promote effective cybersecurity measures in a software supply chain, there must be an
appropriate division of roles between cyber infrastructure providers and customers, as well
as cooperation among other related organizations such as industry partners of cyber
infrastructure providers; therefore, other stakeholders are also considered as targets. Table
3 shows the classification of stakeholders.

" This includes various types of connected devices (such as network, IoT, control, testing, transport, medical, and other
connected devices). The "Common Standards for Cybersecurity Measures for Government Agencies and Related
Agencies" define the "hardware" to be procured as "server equipment, terminals, communication line equipment,
multifunction printers, equipment for specific purposes, software, etc." and calls for security measures for software that
manages or controls these types of information system infrastructure.

8 In web design work, programming with scripting languages, etc. may be carried out. In such a case, responsibilities
equivalent to those of a developer are required.

Table 3 Classification of cyber infrastructure providers and stakeholders

Classification

Name

Description

Cyber
infrastructure
providers

Developer

A business or personnel engaged in designing,
development, or integration of software products,
software services, embedded software, and/or systems
and services that are composed of such software.
Developers are entities that develop or integrate
software for a software development vendor, software
service provider, device development vendor, software
and system development contractor, software
component developer, infrastructure operator,
development department for in-house developed
software, etc.

Supplier

A business or personnel® that provides customers with
software products, software services, embedded
software (including hardware products), or systems and
services that are composed of such software.

Suppliers are entities that provide software or
systems/services to a sales company of software
products and devices; they include software/software
service providers, system development and operation
contractors, infrastructure operators, and software
development vendors.

Operator

A business or personnel that performs tasks to support
the operation of systems and services for customers?©.

Stakeholders

Customers

Businesses who are the main entities of software
utilization, like government agencies, critical
infrastructure operators.

Other related
organizations

Organizations responsible for supporting the
improvement of cyber resilience.

(3) Typical division of roles in a system

Figure 1 illustrates the relationships between the development, contract form, and usage
form of software systems/assets handled by cyber infrastructure providers for which the
Guidelines (draft) are intended. In this section, two roles described below are assumed for
cyber infrastructure providers from the perspective of system development, contract, and

usage:

® In some cases, developers and operators are also suppliers. In addition, in cases in which a sales company is also a
cyber infrastructure provider, responsibilities equivalent to those of the supplier are required of them.

10 Although it is usual that customers, who are the main entity of software utilization, operate software, specialized
knowledge and skills are often required to operate systems and services or the software that composes them. In this
context, it is assumed that cyber infrastructure providers support the operation of software (or part thereof) in

accordance with contracts with customers.

® Prime provider
A first-tier contractor that contracts directly with customers and develops, supplies,
and operates systems and cloud services.

® Sub-provider
A business that contracts with the prime provider and develops, supplies, and
operates systems and cloud services?®.

The relationship between the prime provider and sub-provider is either a group company
or an external contractor with no financial relationship. The supply chain of a subprovider
may have a multi-tiered outsourcing structure, and each tier may form multiple hierarchical
structures. In addition, external resources are public repositories of software, such as OSS,
and these resources are operated by volunteer organizations that publish them, including
information regarding vulnerabilities.

() Infrastructure use

Prime provider! Sub-provider (cloud operator: l3a5, Paa5)
(bieifia)

tura

Prime provider (cloud operator: 5aa5)

(eXdif)

1 Extdrng
Sendice us

?#fmlnmghhiw I ‘Syslern‘applicaﬁnn . Ep ID?IS
S o, Va3, €. Repositores 2] System Repositories (2 | || | ~inaccnre Reposiries 2 =
Baad) i JEinary sources, seiings Services {binary sources, setiings, | | {laas, Paag) . . Vulnerability
Inziuding sarvioe environment information] q nvironmend infomeatiany | * [binary sources, setfings, information
devalopmant (on-premise) i enwironment information) Manuals, ete.

Subcontractor

(d] Development outsourcing [*1)

.] .
tructurs use f| Use Sub-subcontract

e [a] Pmm
l outsourcing (*1)

Q
-2
o
z
=
)
w
=
c
[}
5
®

3=
g
=
=
o
=

tsystaﬁmﬂw:;hﬁg;:mﬁenﬂowmmm {systerrdsoﬂvz:“gel\’r'e{:vo::d;renﬂopernﬁon} External resources

(a)d) | (@l a)a)

a! tools Develoy tools Wulnerabilil At

ot st o) || TR Repostores 12 ot v ﬁ:ﬁﬂ:tﬁ Repositories (2 | | o iosy hmeraty
Design dos e Bt Design documents I st | guidelines, eto

contractor M
Sub-subcontractor...

lse
....... - - ~ . -
L4 y Information sharing L4 J Support r J Information sharing/support
® ® Industry associations for cyber ® .
Stakeholders & Customer a infrastructure providers a Government agencies/Framaworks
*1 Thare are cases where subcontractors are not used in (a) and [Examples of forms of system development, operation, and uss]
[d). Ther= are also cases where & customer conducts development {8k On-pramise system (development outsourcing fo prime provider) (B): Customer uses [a3S. Paas
far itself 2= & cyber infrastructure provider. {c): Use of system using 5335 {d): Cloud provider (S235) outsowrces development
. . _ . (e} Frime provider (Sler, i) uses laas, Faas {f): Cloud provider (33a5) uses 335, sto.

*2 The ownership of software varies depending on the service and (g} Cloud providers (|aa%, PaaS) have intsroperation
systemn development, form of confract. ete., but there is no mention

sbout the ownership.

Figure 1 Conceptual diagram of the parties involved in a software system composed of

software

(4) Assumed risks

Software-related cybersecurity risks for which the Guidelines (draft) are intended refer to
degrees of concern regarding security management, such as the leakage, loss, or damage
of electromagnetic information owing to malicious attacks on software and defects in
development or configuration errors, or degrees of concern regarding maintenance and
administration, such as a decrease in safety and reliability or stoppage owing to attacks on
systems or networks that handle electromagnetic information, and defects in development

1 The term "contract" is not generally used between SaaS providers, but for notation purposes, the term "contract" is
used for both software development and services in this section.

7

including design or setting errors. There are various factors that cause cybersecurity risks,
and they can become apparent at different stages of the software life cycle—from the
analysis/planning phase of software products/systems and services to requirements
definition, design, development, testing, release, operation, and disposal. These factors
include insufficient risk analysis in the analysis/planning phase; insufficient agreement on
security requirements in the requirements definition phase; insertion of unauthorized code or
components in the development phase; insufficient reviews; tampering in the software
distribution phase; service outages during operation; insufficient preparation of people, things,
and cost concerns during all phases; and insufficient management of supply chains. The
Guidelines (draft) assume threats related to software spoofing, tampering, repudiation,
information leakage, denial of service, and privilege escalation in all software phases.

1.4. Approach to division of roles

During software life cycle management, it is important to determine the responsibilities and
division of roles of the respective parties concerned based on the characteristics of the
software, software development/supply system, and contractual form of software use,
operation, and development, as well as to promote the response to cybersecurity risks
customers (the main entity of software utilization) face.. This section presents an example of
the division of major roles in each intended scope of a software and describes a typical
approach to the division of roles.

The Guidelines (draft) classify "cyber infrastructure provider" and "customer" based on
responsibilities of these entities in the supply and use of software, respectively. Cyber
infrastructure providers are classified into developer, supplier, and operator. If a business
entity deserves to identify classification of respective responsibilities and division of roles, it
is necessary to understand the position and scope of the roles, keeping in mind the
characteristics of the intended software (intended scope of software, policy for the division of
respective roles, etc.), as presented in Figure 2. Further, the classification of responsibilities
and division of roles are identified based on the structural position of the intended software
and the division of roles with other related development/supply systems or the roles
stipulated under the contract.

Characteristics of intended software

Division of respensibilities and division of roles

Other factors that affect the division of roles

Division of roles in which development and
supply systems are considered

® Software to sellluse #® Classification of responsibilities

» Software product (Table 4a.): (1) A
» Software service (Tabled b): (1) B
¥* Embedded software (Table 4 c.): (1) C

» Cyber infrastructure provider
» Customer

® Division of roles

¥ Third-party software components: (2} A
» Complicated components: (2) B
¥ Response to security defects: {2) C

® Software that constitutes a system or service: » Developer (entity, support) # Division of roles based on a contract

Mo * Supplier {(entity, support) » 3ales contract: (3) A
* Development through outscurcing » Operator (entity, support, ¥ Use contract: (3] B
contract (Table 4 d.) infrastructure) > Operation contract: (2) C
* Development in-house (Table 4 2.} » Customer {entity, support) > Quasi-assignment-type contract : (2) D
¥ Outsourcing through a contract with » Maintenance contract : (3) E

respective roles (Table 4 d.)
» Other
*First consider other factors and identify division of
roles

*For "[1) A" etc., see descriptions described later. *For "|2) A" etc., see descriptions described later.

Figure 2 Factors affecting the classification of responsibilities and division of roles

Table 4 lists examples of assumptions for the respective cyber infrastructure providers and
customer based on intended software characteristics. It also indicates corresponding roles
in respective categories of responsibilities with a check mark. "Entity" and "Support" are
added where it is generally expected that roles will be divided by the position of the main
entity and its supportive position. In addition, "Infrastructure" is added to the role of providing
the foundation on which a system operates. Note that, in the approach for the division of
respective roles below, in cases in which assumed related operators play the role of both
"customer" and "operator", they are mentioned separately by role. Even when a customer is
a related business operator, if it has a department or person in charge whose role is
"operator," it is considered that it shall have the responsibilities equivalent to "operator" as a
cyber infrastructure provider. In addition, if the customer conducts development and supply
in-house, it is considered that the customer itself will take on the responsibilities of
"developer" and "supplier," which are the respective roles it shall take as a "cyber
infrastructure provider" in the category of responsibilities, as the "(Entity)."

Table 4 Assumption of related operators and examples of classification of
responsibilities/roles

Assumption of related e ofroles)
P Classification .. Developer [Supplier Operator Customer
Operators resEonsibiIilies
a. Software product
Software development Cyber infrastructure v
vendor provider
Cyber infrastructure
Sales company provider v
Purchaser (person in Cyber infrastructure v
charge of operation) provider
Purchaser (user) Customer v
b. Software service (where inter-service linkage is included)
] ; . . Cyber infrastruct .
Service provider (prime provider) pfo\zae;" rastructure |, (Entity) v v
. . . Cyber infrastructure
Service provider (sub-provider) provider v (Support)
Service development support (sub- | Cyber infrastructure
provider) provider v (Support)
. Cyber infrastructure
Infrastructure operator (sub-provider) provider v
Service user (person in charge of | Cyber infrastructure v
application operation) provider
Service user (application user) Customer v
c. Embedded software
. Cyber infrastructure
Device development vendor provider
Embedded software development | Cyber infrastructure v
department provider
Sales company Cyber infrastructure N
provider
Purchaser (person in Cyber infrastructure v
charge of operation) provider
Purchaser (user) Customer v
d. System (system owner makes plans and procures development/operation/infrastructure services)
Development operation Cyber infrastructure : .
contractor provider v (Entity) v (Entity) v (Support)
Cyber infrastructure
Development support pryovider v (Support) | v (Support)
Cyber infrastructure
Software component development provider v v
Cyber infrastructure v v
Inf | P !
nfrastructure operator (laaS/Paas) provider v (Infrastructure) (Infrastructure)
Cyb infrastruct .
Procurer (system operator) pgo‘f}:j er'" rastructure v (Entity)
Procurer (system owner) Customer v
e. System (in-house development, affiliated operator supports development/supply/operation)
Parent operator Cyber infrastructure . .
(development department) provider v (Entity) v (Entity)
. Cyber infrastructure
Affiliated operator pyovider v (Support) | v (Support) v (Support)
Parent operator (operation Cyber infrastructure .
department) provider v (Entity)
Parent operator (user
department) Customer v
f. System (example of a case in which the user departments, operation department, and development department of a business that is
the customer take on respective roles as the (entity) and outsource part of the tasks of the respective roles (support) to another business
as a procurer severally under a quasi-delegation contract)
Procurer (development Cyber infrastructure . .
department) provider v (Entity) v (Entity)
Procurer (operation Cyber infrastructure .
department) provider v (Entity)
Procurer (user department) Customer v (Entity)
Consultation (systemization
concept) Case | Customer v (Support)
Research company (PMO
support) Case | Customer v (Support)
Development vendor Cyber infrastructure
(development) Case provider v (Support) | v (Support)
Operation vendor Cyber infrastructure
(operation/maintenance) Case | crovider v (Support)

10

(1) Approach to division of roles by software characteristics
The approach to the division of roles by the software characteristics is described below.

a. Software product

In case of a software product, the developer and customer are different businesses, and
the supplier acts as the software product sales agent or the software is sold directly by the
developer (the developer also serves as the supplier). The operator of the software product
is typically the customer who uses the software product or the customer's operations
department.

b. Software service

In case of a software service, the developer and customer are different businesses, and
the service provider serves as the developer, supplier, and operator of the service. When a
service user (customer) configures and runs applications on its own terms using the software
service as a platform (for example, when using a cloud service), as an operator, it is common
to determine the scope of responsibilities of the respective stakeholders based on the
concept of shared responsibility. In this case, the responsibility of operation is shared; for
example, the service provider is responsible for operating the system built on the
infrastructure and the service user is responsible for the operation of applications.

c. Embedded software

In case of an embedded software, assuming that it is sold and used with the device in
which the software is embedded, the developer is generally considered to be the device
developer who possesses software development departments. The operator of a device with
the embedded software is typically the customer or the operation department of the customer.

d. Software service that constitutes a system service

In case of a software that constitutes a service system (for example, a business), the main
entity that uses or provides the service (generally known as the system owner) plays the role
of the customer in the Guidelines (draft). For the development, supply, and operation of such
service systems, it is assumed that, depending on the system's scale and the specialized
knowledge and skills required, these responsibilities may be undertaken by a group of
businesses other than the system owner. In addition, it is assumed that a multi-layered
outsourcing structure will be established. This structure may include roles such as a prime
provider, sub-provider, cloud operator (providing the infrastructure environment), and multiple
hierarchical layers within each role (see Figure 1). In such a case, itis necessary to determine
the division of the respective roles based on the components of the system service,
development/supply process, and operation process system. The division must consider the
hierarchical structure involving a developer, a supplier, an operator, and their mutual
cooperation. In terms of the operation of an IT system, it is common for the operation
department of the system owner (customer) to be responsible for the overall role of the
operator or for coordinating operations with external or outsourced businesses to share the
role of the operator across the entire operation system.

11

(2) Approach to division of roles within software development/supply system

Examples of the approach to the division of roles within software development/supply
systems are described below.

a. Division of roles for development/supply when third-party software components are
included

When software components include third-party software components, the third party is
positioned as a business that participates in the roles of both the component developer and
the component supplier to the developer using those components.

b. Division of roles for development/supply when software has a complex mix of
components

Cases in which there is a complex mix of software components with multiple third-party
software components, the component structure of such software may become hierarchically
complex. In systems and services, multiple software components with complex, hierarchical
structures will be further integrated into the overall configuration. Even for a software system
that runs multiple components in combination and there is a specific developer responsible
for each component, there are developers who take combined responsibility for the entire
software system. All businesses involved in the development of such software are expected
to recognize their responsibilities as developers (and suppliers of the components that they
are in charge of) according to the Guidelines (draft) and fulfill their specified roles. The
principle is that at least all software components should be in a state in which the
responsibility of the developer is held by one of the businesses. Under this
development/supply system, one should establish a system for software development, supply,
and defect correction and allocate roles appropriately.

c. Division of roles in development/supply related to response to security defects

At the point of contact for customers who are the primary users of software, the supplier is
responsible for securely releasing the software that has been tested by the developer. The
developer, in turn, is responsible for the processes related to defect correction; this includes
providing contact points for receipt of notifications when a security defect (which may include
vulnerabilities) is discovered during operations, and issuing security advisories.

(3) Approach to division of roles by contract type for software use, operation, and
development
Examples of the approach to the division of roles by contract type for software use,
operation, and development are described below.

a. Inthe case of a product purchased through a sales contract

In principle, the customer is responsible for the use and operation of a software product
purchased by the customer. License and maintenance agreements for software use are
established between the customer and software supplier. In addition, a sales contract is
concluded between the developer and supplier (mainly a seller), and the division of roles for
the software sales rights and maintenance is stipulated.

12

b. Inthe case of a service obtained through a usage contract

When a customer uses a software service (such as a cloud service) provided by a service
provider, customer uses the service, and outsources operations of the service to the service
provider. For the operational part, in particular, the extent to which the customer conducts the
operation proactively and responsibly, the extent to which part of the operational
responsibilities of the service is to be entrusted to the service provider, and the demarcation
point between these extents are identified based on the concept of a responsibility-sharing
model. Thereafter, a usage contract is established based on the terms of use and service
level agreement (SLA).

c. Inthe case of operation outsourcing through an operation contract

When a customer outsources all or part of the operation of a system, including the software,
to a cyber infrastructure provider, they enter into an operation contract (including a
maintenance agreement, if necessary) with the cyber infrastructure provider who will be the
operator and share the roles for system operation, including the software, based on the
contract.

d. Inthe case of service outsourcing through a quasi-assignment-type contract

When a customer outsources software development, they enter into a work-contract-type
or quasi-assignment-type software development outsourcing contract with a cyber
infrastructure provider (development/supply) who serves as the contact point. In many cases,
a work-contract-type contract is concluded when development specifications, including
security requirements, are created and the completion responsibility for system development,
including software development (design, programming, testing, installation, implementation,
data migration, training, and preparation for release), is imposed on the customer side. In
contrast, a quasi-assignment-type contract may be employed for service provision at the
specification examination stage, such as a systemization concept. In addition, services for
development and operation may be received through quasi-assignment-type contracts. In a
work-contract-type development outsourcing contract, the outsourcing business assumes
the roles of developer and supplier. In the case of a quasi-assignment-type outsourcing
contract, itis advisable to determine the scope of the roles in which service provision is made,
recognize the division of roles and responsibilities corresponding to the roles, and clearly
identify the implementation content corresponding to the responsibilities in the contract.

e. Division of roles in software development/operation through a maintenance contract

Following the completion of system development, including software development, the
customer will accept the developed system, including the software, and conclude a
maintenance contract with the developer, which will include terms such as responding to
software defects when starting to operate the system; it is necessary to determine liability for
non-compliance with the development contract separately.

A maintenance contract generally includes responses to inquiries, investigation of defects,
and responses to defect corrections based on regulations (or provision of updated software).
When selecting a software maintenance contract, the form of contract appropriate for the
actual work and service content related to the maintenance must be selected. In the case of
a contract that primarily involves information and version provision, upgrades are primarily
made from the development/supply side, and the operation department on the customer side
takes charge of the application of the provided information and updates. However, in the case
of maintenance, which includes responding to inquiries regarding the software (such as how
to use it, unclear points, confirmations, and questions about technical issues) and defect
corrections within a specified scope, a quasi-assignment contract is usually established. On
the contrary, when the responsibility for the completion of repair in response to software
defects is to be attached, a work-contract-type contract is preferred.

13

In the Guidelines (draft), it is assumed that a maintenance contract for a software product
includes the developer's responsibility to respond to vulnerabilities, including defect
correction. For software whose development is outsourced, operations such as the
conclusion of a maintenance contract equivalent to a work contract (including the developer's
responsibility to respond to vulnerabilities), the conclusion of a work-contract-type
maintenance contract or quasi-assignment-type maintenance contract, and the conclusion
of memorandums of understanding regarding changes to specifications and costs upon
agreement, are assumed.

14

1.5. Examples of typical use cases

In software life cycle management, the responsibilities and division of roles of the
respective parties concerned are determined based on the characteristics of the software,
software development/supply system, and contractual form of the software use and
operation; in addition, it ensures prompt responses to cybersecurity risks facing the main
entity of software utilization—the customer. In this section, the division of roles among
multiple cyber infrastructure providers are presented and described for the following four use
cases:

Use case example of roles in a software product and embedded software

Use case example of roles in a software service

Use case example of roles in a system developed through outsourcing contract
Use case examples of roles in a system developed in-house

[1] Use case example of roles in a software product and embedded software

As a use case example of the development and supply of a software product, the case of
a customer (purchaser) who procures a software product is described (see Figure 3). The
customer purchases a software product from a sales company; in response to the order (or
as procurement), the sales company places an order for the software product with a software
development vendor. While the software development vendor (prime provider) takes charge
of the development, commercialization, and shipment of the software product, an external
software development company (sub-provider) is responsible for the development of
software components.

As a use case example of the development and supply of lIoT devices (with embedded
software), a case of a customer (purchaser) who is a procures an loT device with an
embedded software is described. The loT device is procured from a sales company, which
places an order for the loT device with a device development vendor in response to the order
(or as procurement). While the device development vendor is responsible for the
development of the IoT devices, implementation of the embedded software,
commercialization, and shipment, the embedded software development department of the
device development vendor develops the embedded software.

For example, if the software development vendor that provides the software product uses
SaaS provided by a cloud operator as the system infrastructure, when providing software
update services via the cloud, the cloud operator assumes the roles of provider and
developer/operator. In addition, if any business uses external resources, the developer,
provider, or operator manages them appropriately, depending on the form of use.

15

Purchaser Infrastructure use
Government agency, Critical

infrastructure operator, etc.

Purchase of loT devices Purchases of software product

Supplier Supplier

Order/Procurement OrderProcurement

Developer Developer
Software development vendor Cloud operator

Device development vendor {prime provider) (sub-provider: Saa%)

Upgraded
version

Software development company Cloud operator
[sub-provider) (sub-provider: (laa5, Paa5)

In-house outsourcing

External outsourcing

Embedded software
development department

Use

External resources

Figure 3 Conceptual diagram of use case example of the roles in a software product
with embedded software

[2] Use case example of roles in a software service

Here, an example of a use case in which a cloud service that employs SaaS is described
(see Figure 4). In this use case, a service provider (the prime supplier) supplies a SaaS
service and takes on the developer and operator roles; a service development business or a
sub-provider takes responsibility of developing the software that constitutes the Saa$S service,
and the same or a different cloud operator takes responsibility of the supply, development,
and operation of an laaS service that runs the SaaS service (see Figure 4(a) "Infrastructure
operator (sub-provider: laaS, PaaS)"). In addition, when the cloud operator or sub-provider
uses external resources, the developer, provider, or operator manages them appropriately,
depending on the form of use.

SEervice user

Government agency, Critical
infrastructure operator, etc.

(b) External service use (a) Infrastructure use

Fupplisr, Davaiopsr, Opsratar (mickdy

Service provider (b) External service use
{prime provider: 5aa5)

© Jopment outsourcing Euppdker, Developor, Oporatar ((aldle)
{there are cases whers subcontractors are not used). Infrastructure operator {sub-provider:
Developer [c) Developer [b) laa5, Paa5)

Service development company Service provider
{sub-provider: software development)

subcontract Use

{sub-provider: Saas)

Service development company Use
[sub-provider: software development)

Use

[Example of a form of soffware service development,
External resources operation, and use]

(@) Customer uses laaS, Paal

(b): Use of system using Saas

(c): Cloud provider (SaaS) outsources development
(d): Cloud provider (SaaS) uses laas, efc.

(e): Cloud providers (laaS, PaaS) have interoperation

Figure 4 Conceptual diagram of use case example of roles in a software service

16

[3] Use case example of roles in a system developed through outsourcing contract

An example of a use case is described in which an outsourcing contract is created for the
development of an IT system, which is commonly observed in the procurement of the design,
development, operation, and maintenance of a business system that employs the
government cloud (see Figure 5). This example describes how an IT system is developed
and deployed, and the support and substitution for the operation and maintenance work of
the IT system are procured. The prime provider, which is a Sler, acts as the supplier while
taking on the roles of developer and operator (see in Figure 5(a), development outsourcing
contractor: "prime provider: system and software development and operation") and the sub-
provider undertakes part of the development or develops and manufactures software
products and IoT products that are components of the IT system (such as the "sub-provider:
system and software development”, which refers to the contractor and its subcontractor).

If a contract is created for PaaS of the cloud operator via the prime provider—wherein the
cloud operator acts as a sub-provider—and the PaaS is used as the system infrastructure
((b) Infrastructure usage: "Infrastructure provider (sub-provider: laaS, PaaS)" in the figure),
the infrastructure operator takes on the roles of developer and operator. In addition, when
using external resources, the developer, supplier, or operator must have proper
administration, depending on the form of use.

Procurer
Government agency, Critical
infrastructure operator, etc.

(@) Development/ operation outsourcing (*1)
Supplier. Developer, Operator{alb)

Outsourcing (b} Infrastructure use

Development operation contractor
{prime provider: systemisofiware developmentfoperation)

Developer/Supplier @)

Development support company
[sub-provider: system/zoftware development)

Subcontract

Supplier, Developer, Operator (b

Infrastructure operator
{sub-provider: laas, Paas)

Software component development company
{goftware development)

External resources

*1 The ownership of software varies depending on the system [Examples of forms of system development. operation, and use]
development, form of contract, etc. [a): On-premize system development-outsourced to prime provider)
. (b): Prime provider (Sler, efc.) uses 1aa5, PassS

Figure 5 Conceptual diagram of a use case example of roles in a system developed
through outsourcing contract

[4] Use case example of roles in a system developed in-house

An example of a use case is described wherein a business develops an IT system for its
in-house use (see Figure 6). In some cases, businesses have a development department
and an operation department to support the operation of their IT system to be used in the
user department (corresponding to the customer in the Guidelines (draft)). It is expected that
the responsibilities and division of roles in such cases will be assigned to the user department
(customer), development department (developer), and operation department (operator).

17

Supplier, Developer, Operator

Parent operator
Critical infragtructure operator,
etc.

Customer Developer/Supplier

Parent operator

Parent operator Parent operator

{user depariment) {development department) (operation department)

Supplier, Developer,

Operator
Affiliated
operator

Figure 6 Conceptual diagram of a use case example of roles in a system
developed in-house development

18

2. Responsibilities and division of roles of cyber infrastructure providers and
customers

2.1. Approach to responsibilities and division of roles

The extend to which a single cyber infrastructure provider can solely reduce security risks
in a software supply chain is limited. Therefore, it is necessary for cyber infrastructure
providers that make up the supply chain to coordinate with their customers individually or in
cooperation while fulfilling their respective responsibilities. For example, in the requirements
definition phase, along with the cyber infrastructure provider who performs appropriate risk
analysis, the customer also has the obligation for risk management of the entire system
owned by the customer. If risks are not promptly identified, it will be difficult to evaluate
security requirements, causing software vulnerabilities to remain hidden.

That is, the customer, under the leadership of the management, must clarify the division of
roles with the cyber infrastructure provider regarding risk management for its own in-house
systems, present security requirements to the cyber infrastructure provider so that it can
identify items on which it must make decisions and adjustments as the software
product/service user, and purchase appropriate products and maintain a system for
evaluating the quality of the results of work that it commissioned in-house.

In addition, the cyber infrastructure provider has an obligation to take security measures
for its own products and services, and it can be stated that the management is required to
take the lead in promoting measures so as not to place security responsibilities solely on the
customer.

These concepts are summarized as responsibilities in the following sections.

19

2.2. Responsibilities

To improve cybersecurity-related resilience, complementary effects can be obtained when
cyber infrastructure providers and customers fulfill their respective responsibilities.

<Responsibilities of cyber infrastructure providers>

Cyber infrastructure providers must be aware of the following five responsibilities to
improve cybersecurity resilience. All of these responsibilities must be recognized by the
management of each cyber infrastructure provider, and efforts to fulfill these responsibilities
must be implemented under the leadership of the management.

(1)

(2)

Design, development, supply, and operation of software with security quality
ensured

Providing secure software and evaluating measures

In accordance with the principles of "secure by design" and "secure by default,"
take measures to reduce threats to software development and operation in
accordance with a risk-based approach, and determine their effectiveness. In
addition, enforce minimum security standards for the software.

Consideration of cybersecurity throughout the entire software life cycle
Starting with an agreement on security requirements, consider cybersecurity
throughout the entire software life cycle agreed upon with the customer,
including secure build, testing, and operation.

Software supply chain management

Sharing of implementation status of security control measures

To allow users to make decisions regarding software procurement and
implementation—including the selection of risk-based solutions—suppliers
should disclose the status of their software development efforts.

Ensure transparency with customers regarding all necessary aspects of
cybersecurity.

Sharing of software configuration information

For measures against vulnerabilities by users, use information from software
configuration management, including the software bill of materials (SBOM), and
configuration information, including OSS.

Promotion of risk management including supply chains

Include suppliers (such as system integrators, external system service providers,
and partners), developers, and all other businesses related to IT/OT/ICT
systems in the scope of software supply chain risk management activities.

20

(3) Prompt response to remaining vulnerabilities

Communication and response to vulnerabilities and threat information
Arrange vulnerability disclosure policies appropriately and establish a
vulnerability response system. Vendors are responsible for identifying and
disclosing vulnerabilities in cloud service software, providing the information
necessary for secure service configuration and operation, upgrading services,
developing and distributing patches, and documenting upgrade/patch
application processes so that customers understand how to participate in the
processes. In addition, maintain a mechanism for sending notifications to
customers.

4) Arrangement of governance for software

Integration of software supply chain risk management into enterprise risk
management

Software supply chain risk management covers activities throughout the
software life cycle and is as part of the enterprise risk management process.
Arrange the resources necessary to reduce risk to an acceptable level (people,
materials, and money) in your organization. Position cybersecurity as a key
management issue, and the top management must be made responsible for
implementing risk management.

Comply with laws and regulations.

(5) Strengthening of information sharing and cooperation systems between cyber
infrastructure provider and stakeholder

Sharing of threat and vulnerability information among stakeholders and
response to it

Share threat and vulnerability information with government and industry partners
in a prompt and timely manner. Suppliers must share software vulnerability
information with the relevant agencies that have jurisdiction.

Collaboration among stakeholders engaged in cybersecurity

All stakeholders, including communities, must work together in a healthy manner
to develop a framework for identifying potential risks and assessing supply chain
risk dependencies related to cybersecurity.

In terms of security measures, take initiative and share responsibilities
throughout the entire supply chains, including platform providers and consumer
tenant organizations.

In cooperation with the government, the private sector must continually adapt to
the necessary requirements and improve the security of the technologies,
products, and services supporting businesses that provide critical infrastructure.
Appropriate and timely participation of stakeholders enables sharing of
knowledge and awareness, which leads to appropriate risk management.

In activities related to software security that constitute a system in which a customer has
ownership, the customer has the following responsibilities:

21

® Risk management by the leadership of the customer's management
Risk management with independent and proactive initiatives and cooperative
measures by the customer based on a contract with a cyber infrastructure
provider.
Allocation and preparation of resources to respond to known vulnerabilities
proactively and implement measures for mitigation.
Utilization of communities and cooperative systems aimed at security
improvement.

® Software procurement/operation by the leadership of the customer's
management
Presentation of security requirements to incorporate security functions into
software design plans.
Disclosure of requirements for security practices in software
procurement/implementation.
Decision-making based on risk assessment in software
procurement/implementation.
Budgeting for software operation, risk response, and contracts considering the
life cycle

In activities based on the responsibilities of cyber infrastructure providers, specifically the
activities associated with customers, it is important that customers are aware of their
responsibilities and support the activities that fulfill these responsibilities based on
reasonable agreements to contribute toward improving cybersecurity resilience.

22

3. Requirements for fulfilling responsibilities

3.1. Overview of the requirements

To fulfill their responsibilities toward improving cybersecurity resilience, cyber infrastructure
providers and customers are required to implement the cybersecurity measures described
below (six categories and 21 requirements) in a manner that is appropriate to the
characteristics of the intended software and the organization. Therefore, under the leadership
of the management responsible for risk management in the organization, it is necessary to
proceed with the implementation policy of measures appropriate to the risks, allocation of
budgets and human resources, confirmation of the implementation status, identification of
problems, responses to problems, and cooperation with other related organizations.

For initiatives that are difficult to handle in-house or that are deemed appropriate for
implementation by an expert business, it is necessary to consider outsourcing a part of such
initiatives.

The requirements for improving cybersecurity resilience based on these approaches are
described below. Note that the identification of respective requirements is in the form of
“S(n1)-n2” (where n1 is the category number and n2 is the sequential number in the category),
and the identification of respective itemized requirements of respective requirements are in
the form of “S(n1)-n2.n3” (where n3 is the sequential number of the itemized requirement in
the requirement).

<Requirements for cyber infrastructure providers>

Q) Secure design, development, supply, and operation
Develop, supply, and operate software that checks vulnerabilities and has security.
S(1)-1 Risk assessment during design and tracking of countermeasures
S$(1)-2 Secure build
S(1)-3 Testing
S(1)-4 Monitoring of services

(2 Life cycle management and assurance of transparency
Provide an assurance of transparency in software management throughout the life
cycle and manage risks including those in the supply chain.
S$(2)-1 Arrangement of secure components
S$(2)-2 Secure archiving of release files and data
S(2)-3 Establishment of security requirements among stakeholders
S(2)-4 Appropriate information provision to users

(3) Prompt response to remaining vulnerabilities
Identify vulnerabilities remaining in released software and respond to them promptly
S(3)-1 Continuous vulnerability investigation
S(3)-2 Responses to detected vulnerabilities
S(3)-3 Application of results of countermeasures to in-house process
improvement

23

4) Arrangement of human resources, processes, and technologies
Arrange human resources, processes, and technologies related to software at the
organizational level
S(4)-1 Human resources: Commitment from management and arrangement of
personnel
S(4)-2 Process: Establishment of development policy and compliance with
laws and regulations
S(4)-3 Process: Establishment of operation policy and compliance with laws
and regulations
S(4)-4 Process: Establishment of development and operational standards
S(4)-5 Technology: Arrangement of secure development tools
S(4)-6 Technology: Arrangement of secure development environments

(5) Strengthening of relationships between cyber infrastructure providers and
stakeholders
Reinforce information sharing and cooperation between cyber infrastructure provider
and stakeholders.
S(5)-1 Organizational system for information sharing
S(5)-2 Strengthening of cooperation systems

Implement risk management, and secure software procurement and operation under
the leadership of the customer's management

S$(6)-1 Risk management under the leadership of the customer's management
S(6)-2 Software procurement and operation under the leadership of the
customer's management

Figure 7 shows a conceptual diagram of the relationship between these six categories of
requirements and a general system of security measures.

24

Six categories of requirements for Requirements for customers
cyber infrastructure providers and security measures and and security measures

siapiaodd ainonnseyul Jaqio

Requirements Security measures

Secure design,
development,

supply, and
operation

Lifecycle
management.
assurance of
transparency

Prompt response to
remaining
vulnerabilities

Faguiremans definhicn, Gusign sy bvplyenieg
Armrangement of

human resources,
processes, and
technologies

Erangthening of
relafionchips. betwoesn
oyber infrastructurs
oy e and
clakshoiderc

IS

Rlzk management Sottware and o

Figure 7 Conceptual diagram of requirements

In the reference information, a checklist of requirements, practice examples, related
reference information, and explanations of terms mentioned in the Guidelines (draft) are
described.

25

3.2. Requirements

The requirements set out in the Guidelines (draft) are described with the following
configuration:

® |dentification
To identify requirements, the category number is followed by "S,” followed by the
sequential number within the category, such as "(1)-1.”

® Requirement title, intended role, summary, and point relevant in the life cycle
The title of the requirement, the role for which the requirement is essential, and a
summary of the title are provided.
In the lower section, the stage to which the requirement applies in the software life cycle
in the conceptual diagram of requirements above is indicated with "fill.”

® Itemized requirements
For the respective requirements, the contents of the itemized requirements that
encourage the intended person to take specific measures are shown.

26

(1) Secure design, development, supply, and operation

Rﬂ]urerrenldeﬁrlhm, Dezign analysis/planning _ - ’ /’

I

Risk assessment during deS|gn and tracking of countermeasures

Analyze and assess the risks of software to be developed in accordance with the principles
of "secure by design" and "secure by default"; track risk responses, security requirements,
and design decisions; and maintain countermeasures.

Itemized requirements

0 $(1)-1.1 Risk-based security requirements definition
Perform risk-based analysis and assessment of the software to be developed
or the system/service using the software, and define security requirements that
serve as mitigation measures.

O $S(1)-1.2 Design review
Through a review of the software design, confirm that it meets all security
requirements and adequately addresses identified risk information, and apply
the review results.

0 $(1)-1.3 Risk response records
Maintain records of design decisions, responses to risks, and approved
exceptional measures for audit and maintenance purposes throughout the
software life cycle.

0 $(1)-1.4 Periodic risk-based review
Review all approved exceptions to security requirements and software design,
as well as the results of the risk-based analysis and assessment created during
the software design, and periodically check whether risks are being addressed
appropriately.

S(1)-1 requires software developers to design software that meets security requirements
and mitigates security risks.

When security requirements have already been identified, reviewing the software design
and verifying its conformance to security requirements and risks help to ensure that the
software satisfies the security requirements and can fully respond to the identified risk
information. Responding to security requirements and risks in the software design stage
(secure by design) and embedding software security by default (secure by default) are key
factors in improving software security and improving development efficiency.

To derive software security requirements, a risk-based analysis is required to identify and
evaluate them. Security risks that may be faced during the operation of the software, and
how these risks should be mitigated with the software design and architecture should be
determined. In addition, determining whether security requirements should be relaxed or
waived through a risk-based analysis helps to prove its validity.

27

Secure build
Define secure coding and system construction processes that are appropriate for
development languages and development environments, and generate and build code
accordingly. Review and analyze the code, including configurations, and feed the results back
to the process.

Itemized requirements ‘

O S(1)-2.1 Definition of secure development process
Define processes related to secure coding, secure build, and secure by default
by considering secure coding perspectives, the build timing and method, the use

of automation tools, and training.
O $S(1)-2.2 Secure build

Generate and build code using a compiler, an interpreter, and build tools that

provide functions to improve the security of executable formats.
0 $(1)-2.3 Verification and feedback

Identify root causes of problems discovered through verification by review and

analysis, and then feed the results back to the processes.
0 $(1)-2.4 Codebases

For objects subject to review and analysis, not only source codes but also codes

in various formats (such as configuration files) that the organization determines

to be readable should be targets.

S(1)-2 requires software developers to generate and build software codebases securely.

Adhering to secure coding practices and generating source codes and codebases with
secure configurations reduce software security vulnerabilities. In addition, for vulnerabilities
included in the codebase generation, applying processes to ensure that they are below the
vulnerability tolerance levels defined by the organization or minimizing those that exceed the
levels leads to a reduction in costs. To improve the security of executable formats,
establishing compile, link, and build processes to eliminate vulnerabilities before testing
reduces security vulnerabilities in software and also leads to a reduction in costs. Reviewing
and analyzing code enables compliance with the security requirements to be verified. In
addition, when vulnerabilities are identified during the process, they can be fixed before
software release to prevent exploitation.

Applying automated measures to these codebase generation and build processes can
reduce the efforts and resources required to detect vulnerabilities.

28

Fnguireman definiion, Design analysispianning . Morifring . s

Testing

Design and implement vulnerability testing and penetration testing as well as functional testing
to find vulnerabilities not identified in the review and analysis up to the build phase, and
subsequently take countermeasures against identified vulnerabilities.

Itemized requirements

i

O $(1)-3.1 Test planning
Based on threat models and risk analysis, determine a test scope and test
method, and develop a test plan.

O $(1)-3.2 Test method
Include functional testing, vulnerability testing, fuzzing, penetration testing, etc.
in the test method.

O $(1)-3.3 Test implementation
Design and implement tests according to the test plan, and document the test
results.

O $S(1)-3.4 Responses to problems
Incorporate all problems identified through testing and recommended
countermeasures into the development team's workflows to solve them.

S(1)-3 requires software developers to find and respond to vulnerabilities through testing.

Testing an executable code can verify compliance with security requirements. In addition,
when vulnerabilities are identified during the process, they can be fixed before the software
release to prevent exploitation. By applying automated methods to the testing process and
arranging appropriate evidence and environments according to the form of implementation,
it is possible to reduce the efforts and resources required to identify vulnerabilities and
improve traceability and reproducibility. Note that with respect to the testing method, the
policy varies depending on whether the intended software is a product or service developed
in-house, a system or service developed on a contract basis, or a development method
(waterfall or agile development). Based on security requirements defined on a risk basis and
the defined secure development process, a policy for the testing method should be
determined and a test plan created.

29

Monitoring of services

Arrange a process and system that monitors software protects and maintains information
assets and is consistent with the environment in which it is implemented (network, platform,
service, etc.), and implement these.

M

Itemized requirements

0 $S(1)-4.1 Asset management
Operators arrange asset management procedures and asset lists related to
assets handled by systems and services as well as assets that constitute the
systems and services.

O $S(1)-4.2 Development of a monitoring environment
Operators separate systems appropriately to minimize the potential impact of a
risk when it occurs, and arrange a monitoring environment to monitor risks that
are important to protect assets by means of software.

O $(1)-4.3 Arrangement of a security mechanism
An appropriate security mechanism is arranged that allows software and
systems and services to which the software is applied to protect and monitor the
confidentiality and integrity of information assets and data in operating
environments or resources such as digital infrastructure.

O $S(1)-4.4 Monitoring and evaluation
Operators monitor the operation of mechanisms applied to software that
provides important services, periodically conduct security assessments, and
integrate them into the risk management framework of the organization.

S(1)-4 requires software operators to monitor whether software-based services operate
securely such that information assets and data are protected and maintained through the
services. Operations to meet the requirements of S(1)-4 (such as arrangement, support for
monitoring, and evaluation of a monitoring system for software used) are generally performed
by customers, who are the main entities of software use. However, supposing a case in which
specialized knowledge and skills are required to operate a system or service or software that
constitutes it, it is assumed that operational support is provided by cyber infrastructure
providers based on a contract.

List assets handled by software-based systems/services and assets that constitute a
system/service and manage the list to improve the software security at the time of installation
and operation and reduce the possibility that software is introduced and operated with
vulnerable security settings and exposed to danger.

By introducing and maintaining a secure environment for the operation of software, it is
possible to confirm that all components of the software operating environment are
appropriately protected from internal and external threats and to prevent the environment or
the software that is operated and maintained within it from being compromised. In addition,
monitoring the operation status and evaluating the security are expected to be effective for
risk management in the operation of important services. As the operating status is to be
monitored, it is assumed that the protection mechanism of the software is working effectively
to protect information assets and data on resources, and the intended security features of
the software are being circumvented or disabled, regardless of whether it is intentional or
accidental. To design and implement a security mechanism appropriately and make it
possible to monitor its operation, it is desirable to share roles with the developer as necessary.

31

(2) Life cycle management and assurance of transparency

4,;4»

e,

Dl

wummmm

Arrangement of secure software components
Verify that commercial, open-source, and other third-party software components procured
from outside comply with the defined in-house requirements throughout their life cycles.

Itemized requirements ‘

O $S(2)-1.1 Arrangement of software components
With respect to commercial, open-source, and other third-party software
components procured from outside, adopt those that are highly secure and meet
the defined in-house requirements.

0 $S(2)-1.2 Development and maintenance of software components
When the software components are not procured from outside, develop highly
secure software components in-house in accordance with established in-house
security standards and practices, and maintain them.

O $(2)-1.3 Risk assessment of software components
Acquire and analyze information regarding locations from where the respective
software components are obtained and assess the risks resulting from the
components.

0 $(2)-1.4 Confirmation of publicly known vulnerabilities of software components
Regularly check for publicly known vulnerabilities and periods during which
respective software components are supported.

0 $(2)-1.5 Updating of software components
Implement a process to update the respective software components to the new
version securely.

S(2)-1 requires software developers to handle third-party software components in
compliance with the in-house requirements.

Duplicating functions should be avoided as far as possible and existing secure software
components should be used. By reusing software modules and services for which security
has been confirmed, and in which update processes for coping with vulnerabilities run
appropriately, it is possible to reduce software development costs, accelerate software
development, and reduce the possibility of introducing new security vulnerabilities into the
software. This is particularly important for software that implements security functions such
as cryptographic modules and protocols. Note that when checking for publicly known
vulnerabilities, vulnerability information provided by public organizations should be actively
utilized.

32

Secure archiving of release files and data

Archive the necessary files and data to be retained during software release and restrict access
to only necessary personnel, tools, and services. Collect, protect, maintain, and share
provenance data for all components of the respective releases through the gradual adoption
of the SBOM, etc.

Itemized requirements ‘

O $S(2)-2.1 Protection of codebases
To protect codebases in all forms from unauthorized access and tampering,
store the codes and configuration information in a repository and implement
access control based on the principle of least privilege so that only authorized
personnel, tools, and services can access it.

O S(2)-2.2 Archiving of releases
Archive the respective software releases to protect them so that vulnerabilities
identified following release can be analyzed and identified.

O $(2)-2.3 Sharing of release provenance data
Collect, protect, maintain, and share provenance data for all components of the
respective software releases.

S(2)-2 requires software developers and suppliers to archive files and data securely during
a software release to protect them.

Protecting all forms of codebases from unauthorized access and tampering helps to
prevent invalid changes to codebases that circumvent or disable the intended security
properties of software, regardless of whether they are intentional or accidental. Codes that
are not made public help to prevent software theft, making it more difficult for attackers to
identify software vulnerabilities.

Archiving software releases to protect them can assist in identifying, analyzing, and
removing vulnerabilities identified in the software after it is released. Note that to securely
archive necessary files and support data that should be retained during a software release
(e.g., integrity verification information, provenance data) and make them shareable with
stakeholders requires tasks related to the generation, maintenance, and sharing of
component lists using SBOM.

33

Establishment of security requirements among stakeholders
Establish security requirements for the parties involved to agree upon and include them in
contracts or policies to be shared.

Itemized requirements

0 $(2)-3.1 Agreement on security requirements
Include explicit security requirements in contracts or policies to be shared with
third parties that provide IT products (including commercial software
components for use in in-house software) or services.

O $S(2)-3.2 Responses to supply chain security requirements
Respond to supply chain security requirements equivalent to those adopted by
the organization that receives or acquires IT products or services that it
provides.

O $§(2)-3.3 Establishment of a response process for risks that do not meet security
requirements
Arrange a process to respond to risks in the case in which there are security
requirements that IT products or services made by a third party to be received
or acquired do not meet.

S(2)-3 requires software developers, suppliers, and operators to establish security
requirements to be shared among the parties involved.

By explicitly defining software development and operation security requirements (including
those in supply chains) in contracts or policies to be shared with third parties and making
them always known to the parties involved, it is possible to consider security requirements
(including those in supply chains) throughout the SDLC. Furthermore, by sharing
requirements completely and reliably, the duplication of effort can be minimized. Note that
operations to meet the requirement of S(2)-3 (agreement on security requirements for IT
products and services necessary for the operation of software and support for the
arrangement of related risk response processes) are generally carried out by the customer,
who is the main entity of software use. However, supposing a case in which specialized
knowledge and skills that third parties possess are required to operate a system or service
or software that constitutes it, it is assumed that the operational support is provided by cyber
infrastructure providers based on a contract with the third parties or a policy shared with the
third parties.

34

Appropriate information provision to users
Ensure that software users can apply guidance that facilitates secure use throughout the
entire software life cycle—from introduction and installation to operation and termination of
use.

Itemized requirements

O $S(2)-4.1 Secure introduction, configuration, operation, modification, disposal, and
termination
Ensure that software users can continuously use information for securely
introducing, configuring, and operating software, as well as information related
to the impact of changes, disposal, termination of provision, and termination of
use.

O S(2)-4.2 Provision of integrity verification information
Ensure that software users can continuously use information that is necessary
for verifying the integrity and completeness of the software.

S(2)-4 requires software developers and suppliers to provide users with information to
ensure secure means of using software.

Providing information for securely introducing, configuring, and operating software
improves the security of the software at the time of installation and reduces the possibility of
exposure to risks—for example, when the software is introduced with weak security settings
and operated in an insecure manner. In addition, making information available on the end of
sale (EOS)/end of life (EOL) (end of maintenance and support) of a product/service!?, as well
as on the impact of change, disposal, termination of provision, and termination of use, helps
software users to manage assets and operate the software securely. Even after the software
is supplied, developers must continue to provide such information to users.

In addition, secure default settings for the software (or, if applicable, a default configuration
or a group of interrelated default settings) should be implemented and information regarding
the respective settings should be provided to software administrators. Providing a
mechanism for verifying the integrity of software releases helps software users to ensure that
the software that they acquire is genuine and has not been tampered with.

12 |n the guidelines, EOS refers to the end of sale of a product/service, and EOL refers to the end of life of a
product/service. Other terms similar to EOL, such as EOSL (end of service life), EOS (end of support), EOS (end of
service), and EOE (end of engineering), may be used.

35

(3) Prompt responses to remaining vulnerabilities

Continuous vulnerability investigation
Establish a policy for disclosure and remediation of software vulnerabilities; define roles,
responsibilities, and processes required for the policy and implement them.

Itemized requirements

0 S(3)-1.1 Establishment of a vulnerability response system
Establish a policy for the disclosure and remediation of vulnerabilities of
software products, establish a system for responses to vulnerabilities (including
responses to incidents) to support the policy, and define necessary roles,
responsibilities, and processes.

O $S(3)-1.2 Communication plan
Establish a communication plan for all stakeholders.

O S(3)-1.3 Vulnerability information collection
Collect new information regarding vulnerabilities through searches of public
information, notifications from software users, the acquisition of external threat
information, reviews of system configuration data, and other methods.

O S(3)-1.4 Identification of undetected vulnerabilities
Conduct software code review, analysis, and testing on an ongoing or regular
basis to identify undetected vulnerabilities (including improper settings) to be
solved.

S(3)-1 requires software developers and operators to establish a system related to
vulnerability responses, including software incident responses, and to conduct ongoing
vulnerability investigations based on a policy related to vulnerability disclosure and correction.
In particular, developers must continually address vulnerabilities in the software that they
have designed and developed.

Note that, with regard to operation, efforts to meet the requirement of S(3)-1 (such as
support for responding to incidents and for collecting information on vulnerabilities in the
software used) are generally performed by customers who are the main entities of software
use. However, supposing a case in which specialized knowledge and skills are required to
operate a system or service or software that constitutes it, it is assumed that operational
support is provided by cyber infrastructure providers based on a contract.

Continuously identifying and verifying vulnerabilities makes it possible to identify
vulnerabilities more quickly and take measures, such as promptly correcting them according
to the risk, which ultimately contributes to reducing opportunities for attackers to launch
attacks. Software developers establish policies for disclosing and correcting vulnerabilities
and implement the roles, responsibilities, and processes necessary to promote responses

36

based on these policies. Software operators provide software developers with information
regarding vulnerabilities that may be latent in the software and its third-party components.

anumrmm:-dguu;ﬁpumg T g ,f.:

Responses to detected vulnerabilities
Regularly create a plan to respond to risks of vulnerabilities remaining in released software
and implement it.

Itemized requirements

O $(3)-2.1 Vulnerability analysis
Developers collect information necessary to understand the risks associated
with the impact of each remaining vulnerability and analyze each vulnerability to
plan repairs or other responses to risks.

0 $S(3)-2.2 Risk responses to vulnerabilities
Developers create a plan for risk responses for each vulnerability and implement
it.

OO $(3)-2.3 Security recommendations
Developers prepare security recommendations, provide the information to the
supplier of the released software, and create a report as specified by the
relevant systems. In addition, operators implement deployment in accordance
with security recommendations.

S(3)-2 requires software developers to evaluate, prioritize, and correct vulnerabilities.

By analyzing each vulnerability, collecting sufficient information regarding the risk, planning
correction thereof or other risk responses, and implementing software corrections,
vulnerabilities can be corrected in response to risk and help to reduce opportunities for
attackers to launch attacks. In particular, when information regarding exploited vulnerabilities
is provided by public institutions, it is required to respond appropriately and proactively,
including patch development. In addition, providing security recommendations and patches
to suppliers and applying them will lead to the maintenance of secure software operations.

37

..'\.
¥ ™ D) y T,
ki / ; \

- ‘} - — Il !

Application of results of countermeasures to in-house process improvements

Based on vulnerabilities, review development and operation processes so that the root
causes of problems identified in the software do not recur or the possibility of their recurrence
is reduced.

Itemized requirements

O S(3)-3.1 Identification of root causes
Analyze an identified vulnerability to determine its root causes and proactively
take countermeasures.

0 $S(3)-3.2 Process improvement
Review development and operation processes for the entire software life cycle
and revise them as necessary to prevent root causes from recurring or reduce
the possibility of their recurrence through software updates or new software

creation.

S(3)-3 requires software developers and operators to identify root causes by analyzing
vulnerabilities and implementing countermeasures. Note that operations to meet the
requirement of S(3)-3 (such as improvement of the software use process and support for root
cause analysis) are generally performed by customers, who are the main entities of software
use. However, supposing a case in which specialized knowledge and skills are required to
operate a system or service or software that constitutes it, it is assumed that operational
support is provided by cyber infrastructure providers based on a contract.

By analyzing the identified vulnerabilities, identifying their root causes, and taking
countermeasures, the frequency of vulnerabilities that will occur in the future can be reduced.
In addition, by reviewing SDLC processes and updating them such that root causes do not
recur (or the possibility that root causes are lowered) in software updates and newly created
software, the possibility that root causes will recur can be prevented or reduced, thereby
contributing to a reduction in the frequency of vulnerabilities.

38

(4) Arrangement of human resources, processes, and technologies

Arrangement of human resources, processes, and technologies

Human resources: Commitment from management and arrangement of personnel
Define roles and responsibilities covering the entire software life cycle. Make management's
commitment to secure development known, secure personnel for security measures, provide
training to all personnel related to secure development and operation according to their levels
of proficiency and role, and review it regularly.

Itemized requirements ‘

O S(4)-1.1 Definition of roles and responsibilities
Define roles and responsibilities covering the entire software development life
cycle.

O S(4)-1.2 Management's commitment
Make management's commitment to secure development known to all
personnel, and educate them on the importance of secure development and
operation to the organization.

0 $S(4)-1.3 Agreement on roles and responsibilities
Confirm that all personnel are aware of and agree to their roles and
responsibilities.

0 $S(4)-1.4 Training for each role
Create a training plan for each role and implement it so that all personnel can
be trained according to their level of proficiency and role.

[0 $S(4)-1.5 Review of roles and training
Review roles and training regularly.

S(4)-1 requires software developers, suppliers, and operators to clarify the roles and
responsibilities of the personnel involved in the SDLC and provide appropriate training
according to the role. Note that operations to meet the requirement of S(4)-1 (such as training
for operators' roles) are generally performed by customers who are the main entities of
software use. However, supposing a case in which specialized knowledge and skills are
required to operate a system or service or software that constitutes it, it is assumed that cyber
infrastructure providers provide operational support based on a contract.

By clearly determining roles and responsibilities in software development and providing
training according to these roles, everyone engaged with the SDLC, both inside and outside
an organization, will be prepared to fulfill the roles and responsibilities related to the SDLC
throughout the SDLC. In addition, roles and responsibilities should regularly be reviewed and
training reviewed and updated according to the proficiency and role of the personnel to
maintain security response capabilities over the entire SDLC.

39

Arrangement of human resources, processes, and technologies

SIS T I NNy

Process: Establishment of development policy and compliance with laws and
regulations
Comply with laws and regulations, document and maintain a security policy for in-house
development infrastructures and processes, and secure necessary budgets for security
securement.

Itemized requirements ‘

O S(4)-2.1 Definition of a software development policy
Identify all security requirements for software development infrastructures and
processes (including requirements related to EOL), and define a security policy
for maintenance throughout the SDLC in compliance with laws and regulations.
0 $S(4)-2.2 Definition and maintenance of a software security policy
Define a policy that specifies all security requirements that must be met by the
software developed by an organization, and maintain the requirements
throughout the SDLC.
[0 $S(4)-2.3 Sharing of cost recognition and budgeting
Secure necessary budgets to ensure security based on a policy.

S(4)-2 requires software developers to establish a security policy for in-house development
infrastructures and processes and to maintain it throughout the SDLC in compliance with
laws and regulations (including budget securement).

Security requirements for the software development infrastructure and processes, as well
as security requirements that the software must meet, should be identified. By defining a
policy to maintain the requirements throughout the SDLC and making software development
security requirements (including requirements related to EOL) identifiable at any time, it is
possible to consider them throughout the SDLC. In addition, sharing software development
requirements helps to minimize the duplication of effort. Furthermore, when considering
budgets for ensuring security, a policy provides a basis for stakeholders to share their
understanding.

40

Arrangement of human resounces, processes, and iechnologies

Process: Establishment of an operation policy and compliance with laws and
regulations

Comply with laws and regulations, and document and maintain all security policies for service
operation infrastructures and processes to which the software is applied.

Itemized requirements ‘

O S(4)-3.1 Definition of a software service operation policy
Identify all security requirements for service operation infrastructures and
processes to which the software is applied (including requirements related to
EOS and disposal), and define a security policy for maintenance throughout the
SDLC in compliance with laws and regulations.

O S(4)-3.2 Definition and maintenance of a service security policy
Define a policy that specifies all security requirements that services to which the
software is applied must meet, and maintain the requirements throughout the
SDLC.

O S(4)-3.3 Audit based on an operation policy
Confirm through an audit that the protection of service operation infrastructures
and processes and security requirements for service are maintained throughout
the SDLC in accordance with policy-based governance.

S(4)-3 requires software operators to establish a security policy for software operation
infrastructures and processes and maintain it throughout the SDLC in compliance with laws
and regulations (including budget securement). Note that operations to meet the requirement
of S(4)-3 (such as definition, maintenance, and policy-based audit support) are generally
performed by the customer, who is the main entity of software use. However, supposing a
case in which specialized knowledge and skills are required to operate the system/service or
the software that constitutes it, it is assumed that operational support is provided by cyber
infrastructure providers based on a contract.

Security requirements for the operation of services to which the software is applied and
security requirements that a service to which the software is applied must meet should be
identified. By defining a policy to maintain the requirements throughout the SDLC and making
software operation security requirements (including requirements related to EOL) identifiable
at any time, it is possible to provide consideration throughout the SDLC and make
requirements related to software operation shareable, minimizing the duplication of effort. In
addition, through audits, the governance status based on an operation policy can be
identified and maintenance of security requirements can be implemented over the long term

throughout th

41

Arranpement of human resources, processes, and technologies

Process: Establishment of development and operational standards

Define security verification criteria related to software development, collect information
necessary to support the criteria, and implement processes and mechanisms for
conformance. Track the status of conformance throughout the entire life cycle.

Itemized requirements ‘

0 $S(4)-4.1 Definition and tracking of security verification criteria
Define software security verification criteria and track the entire SDLC.

0 $S(4)-4.2 Support for decision-making based on security verification criteria
Implement processes and mechanisms for collecting and protecting information
necessary to support decision-making based on security verification criteria.

0 S(4)-4.3 Audit based on security verification criteria
Track the entire SDLC and verify through audits that the intended effects are
achieved with governance to ensure conformance to security verification
criteria.

S(4)-4 requires software developers and operators to collect information based on the
criteria for verifying software security and track conformance to the criteria. Note that
operations to meet the requirement of S(4)-4 (such as decision-making support and audit
support based on security confirmation criteria for operation) are generally performed by the
customer, who is the main entity of software use. However, supposing a case in which
specialized knowledge and skills are required to operate the system/service or the software
that constitutes it, it is assumed that operational support is provided by cyber infrastructure
providers based on a contract.

By defining the criteria for confirming software security and tracking the status of security
implementation throughout the SDLC, it is possible to use them as a standard for checking
the security of the software to be developed and maintained. Meeting the standard
(assurance) helps to ensure that the software continues to meet the organizational
expectations obtained from the SDLC and ensures its security (guarantee). In addition,
through audits, the governance status for conformance and compliance with confirmation
criteria can be assessed and security levels throughout the SDLC can be maintained over
the long term.

42

Arrangement of human resources, processes, and technologies

Technology: Arrangement of secure development tools
Analyze risks throughout the SDLC and implement security measures in development tools.

Itemized requirements ‘

O S(4)-5.1 Designation of tools and toolchains
Identify tools that are effective in mitigating identified risks, designate which
toolchains must be included or need to be included, and determine means of
integrating toolchain components mutually.

[0 $S(4)-5.2 Deployment, operation, and maintenance of tools and toolchains
Deploy, operate, and maintain tools and toolchains in accordance with security
practices.

[0 $S(4)-5.3 Tool configuration and evidence generation
Configure tools to generate evidence regarding support for secure software
development practices defined in-house.

S(4)-5 requires software developers to implement security measures in software
development tools.

The use of toolchains to support software development makes it possible to promote
automation and reduce human effort. In addition, by providing a method to document and
demonstrate the utilization of these measures, it is possible to improve the accuracy,
repeatability, ease of use, and comprehensiveness (overall connectedness of development)
of the security measures throughout the SDLC. In addition, toolchains and tools can be used
at various organizational levels, such as organization-wide or project-specific levels, and
some can be used to generate evidence of the software development implementation status
automatically, contributing to the automation of specific sessions of the SDLC and feedback
effects for process reviews.

43

Arrangement of human resources, processes, and fechnologies

Technology: Arrangement of secure development environments
Analyze risks throughout the SDLC, and protect and strengthen development-related
environments.

Itemized requirements ‘

[0 $S(4)-6.1 Isolation and protection of environments
Isolate and protect the respective environments related to software
development.

[0 $S(4)-6.2 Protection of development endpoints
Protect and strengthen endpoints designed for respective developers to perform
development-related tasks using a risk-based approach.

S(4)-6 requires software developers to establish secure development environments.

By implementing secure development environments for software development and
maintaining the protected state of endpoints designed for development (software architects,
developers, testers, etc.) to perform development-related tasks using a risk-based approach,
it is possible to ensure that all components of software development environments are
adequately protected from internal and external threats. This helps to prevent development
environments and the software developed and maintained therein from being compromised.

44

(5) Strengthening of relationships between cyber infrastructure provider and
stakeholders

Organizational system for information sharing

Establish an organizational structure for information sharing between private companies,
relevant authorities, and specialized organizations to improve the security of software
products and services.

Itemized requirements ‘

0 $(5)-1.1 Establishment of an organizational system for information sharing
Establish an organizational structure for information sharing between private
companies, relevant authorities, and specialized organizations to improve the
security of software products and services.

O $S(5)-1.2 Provision of important security-related information
Select and identify essential and important security-related information that is
specific to the industry and provide it to partners in the supply chain.

O $(5)-1.3 Use of vulnerability information notification services
Use vulnerability information notification services to share vulnerability
information efficiently.

S(5)-1 requires software developers, suppliers, and operators to establish an
organizational system for information sharing aimed at improving software security.

Information related to software security includes information regarding vulnerabilities (the
impact of attacks and countermeasures, damage examples, etc.), legal requirements, and
industry best practices. Arranging an organizational system to obtain, provide, and share
such information and strengthen relationships for information sharing with stakeholders will
help to improve software security continuously.

45

Strengthening of cooperation systems

To improve the security of software products and services, make use of systems and
frameworks for cooperation with private companies, relevant authorities, and specialized
organizations.

Itemized requirements ‘

O $S(5)-2.1 Utilization of cooperation systems
To improve the security of software products and services, make use of
communities and cooperation systems aimed at improving software security, in
which external businesses, customers, and specialized organizations
participate.

[0 $(5)-2.2 Contribution to cooperation systems
When participating in a community or cooperation system, actively participate in
activities to contribute to the cooperation system.

S(5)-2 requires software developers, suppliers, and operators to make use of cooperation
systems aimed at improving software security.

Participating in communities and cooperation systems for improving software security and
contributing to their activities deepens the mutual understanding of responsibilities and roles
to ensure, maintain, and improve security and increases the effectiveness and efficiency of
actions to improve security, thereby ensuring software security and improving resilience.

46

Risk management under the leadership of the customer's management
Integrate risk management that is implemented in cooperation with cyber infrastructure
providers based on the leadership of the customer's management.

Itemized requirements ‘

O $S(6)-1.1 Risk management
Implement risk management in which the customer's independent and proactive
efforts are integrated with efforts based on a contract with cyber infrastructure
providers.

O $(6)-1.2 Resource arrangement
Allocate and develop resources to respond proactively to known vulnerabilities
and implement mitigation measures (including SBOM utilization).

O $(6)-1.3 Utilization of collaborative systems
Utilize communities and collaborative systems aimed at improving software
security.

S(6)-1 requires customers to implement their own risk management in cooperation with
cyber infrastructure providers based on the leadership of management.

Promoting risk management related to software security through the leadership of the
customer's management encourages customers to ensure software security and improve
resilience. To achieve this, it is necessary to clarify the responsibilities and roles of risk
response with cyber infrastructure providers, who are trading partners, and manage risks in
an integrated manner according to the procedures agreed upon by the contract. In addition,
it is necessary to prepare the resources required to respond to known vulnerabilities and
mitigation measures based on software usage life cycles. Participating in communities and
cooperation systems for improving software security and contributing to their activities
deepens the mutual understanding of responsibilities and roles to ensure, maintain, and
improve security, and increases the effectiveness and efficiency of actions to improve security,
thereby ensuring software security and improving resilience.

47

Software procurement/operation under the leadership of the customer's management
Procure and operate software securely under the leadership of the customer's management.

Itemized requirements ‘

O $S(6)-2.1 Definition of security requirements
Define security requirements for incorporating security functions into software
design plans and present them to cyber infrastructure providers before
procuring and deploying software.

[0 $S(6)-2.2 Disclosure of security practice requirements
Disclose security practice requirements for cyber infrastructure providers before
procuring and deploying software.

[0 $(6)-2.3 Decision-making based on risk assessment
When procuring and introducing software, make decisions based on risk
assessment.

[0 $(6)-2.4 Budget securement
Continuously secure budgets related to introduction, operation, migration,
disposal, risk response, and related contracts, considering software life cycles.

S(6)-2 requires customers to procure and operate software securely under the leadership
of their management.

When procuring and operating software under the leadership of the customer's
management, these steps must be followed to ensure software security, and improved
software resilience: indicating defined security requirements and security practice
requirements for cyber infrastructure providers to businesses that may be selected as
contractors; making decisions on procuring and introducing software based on proper risk
assessment; and securing the necessary budgets for the respective phases of deployment,
operation, migration, and disposal, considering software life cycles, as well as proper and
continuous risk response. The security practices required of cyber infrastructure providers
(including supply chain security measures) should be specified based on the characteristics
of the software to be procured and deployed and an acceptable judgment of risk measures
should be provided.

48

4.

4.1.

Utilization of requirements

Requirement packaging of requirements

Requirements that cyber infrastructure providers and customers (users of software products
and services, including government agencies and critical infrastructure operators) must
address to fulfill their responsibilities to improve resilience regarding software cybersecurity
are classified according to the purpose and goal of the requirement into the following two
categories, and can be used as a requirements package (itemized requirements):

Minimum requirement package

A group of requirements (itemized requirements) that all cyber infrastructure providers
and customers must implement at a minimum. These are limited to secure procurement,
responding to vulnerabilities before and during software supply, and sharing of minimum
necessary information.

Standard requirement package

A group of requirements (itemized requirements) that must be implemented as a
standard. These include the establishment of a secure development and risk response
systems, and cooperation between stakeholders. From the perspective of information
handled by the software, to ensure prompt maintenance of the mechanism for protecting
it and rapid responsiveness to vulnerabilities and reliability issues, particularly when a
lack of these is considered a risk, the standard requirement package should be applied.

The relationships between the requirements and requirement packages are shown in Table

5 (for cyber infrastructure providers) and Table 6 (for customers).

Table 5 Relationship between the requirements for cyber infrastructure providers and
requirements packages

Requirements for cyber infrastructure providers
(itemized requirements)

S(1)-1.1 Risk-based security requirements

O

definition

S(1)-1.2 Design review

O

S(1)-1.3 Risk response records

S(1)-1.4 Periodic risk-based review

S(1)-2.1 Definition of secure development

process

S(1)-2.2 Secure build

S(1)-2.3 Verification and feedback

S(1)-2.4 Codebases

S(1)-3.1 Test planning

S(1)-3.2 Test method

S(1)-3.3 Test implementation

S(1)-3.4 Response to problems

NENENENEN NN ENIEN ENEN RS

S(1)-4.1 Asset management v

O|0|0O|0|0|0|0|0| O

S(1)-4.2 Development of a monitoring

O |O0|0|0|0|O|0|0|0| O|0|0|0| O

environment

49

Developer | Supplier | Operator | Minimum Standard
requirement | requirement
package package

Requirements for cyber infrastructure providers
(itemized requirements)

Developer

Supplier

Operator

Minimum
requirement
package

Standard
requirement
package

S(1)-4.3

Arrangement of a security mechanism

<

S(1)-4.4

Monitoring and evaluation

S(2)-1.1

Arrangement of software components

S(2)-1.2

Development and maintenance of
software components

S(2)-1.3

Risk assessment of software
components

S(2)014

Confirmation of publicly known
vulnerabilities of software components

S(2)-1.5

Updating of software components

S(2)-2.1

Protection of codebases

S(2)-2.2

Archiving of releases

S(2)-2.3

Sharing of release provenance data

S(2)-3.1

Agreement on security requirements

O|0|O0|O0|O0 O] O] O|0O|O

S(2)-3.2

Response to supply chain security
requirements

S(2)-33

Establishment of a response process
for risks that do not meet security
requirements

<l lalalalalal e e s s

NN RGNS IS

O | O|0|O|0I0|0| O O] 0O|0|0|0O

S(2)-4.1

Secure introduction, configuration,
operation, modification, disposal, and
termination

«

S(2)-4.2

Provision of integrity verification
information

S(3)-1.1

Establishment of a vulnerability
response system

S(@3)-1.2

Communication plan

S(3)-1.3

Vulnerability information collection

S@)-14

Identification of undetected
vulnerabilities

SISNISN] S

S(3)-2.1

Vulnerability analysis

S(3)-2.2

Risk response to vulnerabilities

S(3)-2.3

Security recommendations

<

O|0|O0| O |00l OO O

S(3)-3.1

Identification of root causes

S(3)-3.2

Process improvement

S(4)-1.1

Definition of roles and responsibilities

S(4)-1.2

Management's commitment

S(4)-1.3

Agreement on roles and
responsibilities

S(4)-1.4

Training for each role

S(4)-1.5

Review of roles and training

SENENESEN

NENENENENENENEN

S(#)-2.1

Definition of a software development
policy

S(4)-2.2

Definition and maintenance of a
software security policy

O

S(4)-2.3

Sharing of cost recognition and
budgeting

IR NN N BN ENENEN ENENEN EN ENI TN EN RS RN RN

S(@#)-3.1

Definition of a software service
operation policy

S(4)-3.2

Definition and maintenance of a
service security policy

<

S(4)-3.3

Audit based on an operation policy

OO OO0 0|00 O|0|0|0|O|0|0|0] O|0|O]O| O] O

50

] : : Developer | Supplier | Operator | Minimum Standard
(F:ti(?;gggn?:tlsj ifr(;rn::grt])gr) infrastructure providers requirement | requirement
q package package

S(4)-4.1 Definition and tracking of security

verification criteria v v O O
S(4)-4.2 Support for decision-making based on

security verification criteria 4 4 O O
S(4)-4.3 Audit based on security verification

criteria v v O
S(4)-5.1 Designation of tools and toolchains v O O
S(4)-5.2 Deployment, operation, and v O O

maintenance of tools and toolchains
S(4)-5.3 Tool configuration and evidence

generation 4 O O
S(4)-6.1 Isolation and protection of

environments v O O
S(4)-6.2 Protection of development endpoints v O O
S(5)-1.1 Establishment of an organizational

system for information sharing 4 4 4 O
S(5)-1.2 Provision of important security-related

information 4 4 4 O O
S(5)-1.3 Use of vulnerability information

notification services v 4 v O O
S(5)-2.1 Utilization of cooperation systems v v v O
S(5)-2.2 Contribution to cooperation systems v v v O
Table 6
Requirements for customers (itemized | Minimum requirement | Standard requirement
requirement) package package
S(6)-1.1 Risk management O @)
S(6)-1.2 Resource arrangement O @)
S(6)-1.3 Utilization of collaborative systems O
S(6)-2.1 Definition of security requirements O O
S(6)-2.2 Disclosure of security practice 0O 0O

requirements
S(6)-2.3 Decision-making based on risk O O

assessment
S(6)-2.4 Budget securement O O

51

4.2. Points to note regarding the application of requirements according to the division
of roles

The basic procedure to set the requirements to be responded to based on the relationship
between the division of roles and the requirements for cyber infrastructure providers and the
points to note for appropriately applying the requirements to be responded to are described
below.

® Basic procedure to set requirements according to the division of roles for cyber
infrastructure providers

Cyber infrastructure providers are expected to clarify the scopes of their organizational
roles for the intended software (whether or not they have the roles of developer, supplier, and
operator), determine the degrees of achievement of the necessary requirements (standard
or minimum for requirement packages), and consider and implement cybersecurity measures
that meet the itemized requirements according to their roles. In general, it is desirable to set
identical degrees of achievement (standard or minimum requirement packages) for the entire
supply chain—including suppliers of software components and software development
contractors (up to the end of development outsourcing)—thereby setting degrees of
achievement of the demanded requirements such that they are consistent as role scopes of
cyber infrastructure providers to allow customers to meet the degrees of achievement
themselves. When assuming a role of the main entity, it is necessary to meet all requirements
of a set degree of achievement (standard or minimum requirement package). Even if a
supporting role is assumed, it is desirable to meet degrees of achievement and requirements
equivalent to the main entity of the role; however, it is acceptable to provide them as
responses limited to the requirements assigned to the main entity depending on the
responsibility in the scopes to be supported.

® Establishment of a CSIRT by the customer

When the system development is completed and the system enters the operational phase
through customer acceptance, the customer may establish a CSIRT to respond to system
incidents, take the lead in responding to software vulnerabilities, and outsource the actual
work of responding to vulnerabilities in some software to a cyber infrastructure provider. In
such a case, it is assumed that the customer’s operation department carries out requirement
S(3) as the operator, and the outsourced cyber infrastructure provider performs the operation
of requirement S(3), which is intended to respond to vulnerabilities in some software, as the
operator.

® Application of a code generation tool by the customer

In development using a no-code platform, in which a customer generates code using a
development code generation tool provided by a cyber infrastructure provider, there is a risk
that programs that cyber infrastructure providers do not anticipate will be generated. In the
case of software generated with such a procedure, the code generation tool is regarded as
a tool to be used by the developer to perform part of the development activity and by the
customer (a development department of the customer, etc.) for testing to ensure proper
operation of the software based on customer specifications. In this case, it is desirable to
organize the division of roles individually; for example, the cyber infrastructure provider
assumes the roles of the developer and supplier of the code generation tool (or the no-code
platform, which includes it) as a software product, and the customer itself (a development
department of the customer, etc.) assumes the role of the developer of the software
generated by applying the tool.

52

5. Reference information

5.1. Requirements checklist

Refer to the attached "Requirements Checklist" and "Requirements Checklist
(Roles/Phases)", which provide information regarding requirements in the form of a table.

53

5.2. Examples of relationships between security incidents and requirements

For cases of security incidents with a major impact on society, how the requirements
organized in the Guidelines (draft) reduce risks and their correspondence relationships are
described below as reference information.

B Apache Log4J vulnerability

Apache Log4J is a logging library used worldwide. In 2021, a serious vulnerability that
allowed attackers to execute arbitrary code remotely was discovered in it and exploited.
As it is incorporated into various types of software in multi-layered software supply chains,
it causes vulnerabilities that are not easily found, tracked, and fixed. In some cases, it
allows vulnerabilities to remain for a long time.

In this case, it is possible to reduce risks by collecting vulnerability information and
formulating a response, as specified in requirement S(3), and by understanding
vulnerability information by establishing an information collection system, as specified in
requirement S(5). In addition, even in cases in which software development begins after
the vulnerability information is made public, it is possible to eliminate the use of the
software in which vulnerabilities remain unsolved and adopt an appropriate software, as
specified in requirement S(2).

m Incident in Software Vendor A

This is a case in which a legitimate software update was tampered with, affecting the
entire organization using the software. A software update was tampered with by intrusion
into the software development company's development and operation environment, and
the security of the development and operation environment from upstream to downstream
of its software supply chain was not sufficiently ensured.

Here, itis possible to reduce risks by making it difficult for attackers to intrude by creating
a secure development and operation environment with prompt maintenance, as per
requirements S(1) and S(4).

m Encryption and leakage incident of patient information held by Hospital B
This is a case where an attacker exploited a vulnerability in a VPN device to intrude into
the hospital's network, encrypting and leaking patient information maintained by the
hospital, consequently causing problems in medical treatment operations. This occurred
because vulnerability of the VPN device was neglected.
Here, it is possible to reduce risks by collecting vulnerability information and formulating
a response, as specified in requirement S(3), and by understanding vulnerability
information by establishing an information collection system, as specified in requirement
S(5). In addition, the customer side can reduce risks by cooperating with businesses
through the procurement and operation of secure software, as stated in requirement S(6).

54

5.3. Correspondence relationships between threats in a system life cycle and

requirements

The main correspondence relationships between threats and requirements are described
in Table 7 as reference information. These outline the importance of the requirements
organized in the Guidelines (draft) in handling threats in a system life cycle.

Table 7 Correspondence relationships between system life cycle, threats, and

requirements

System life cycle

Outline of the threat

Reason for requirements against the threat

Analysis/Planning

. Insufficient current situation
analysis

A system/service in which current
vulnerabilities and security are not
considered is built without sufficient
risk analysis of the current
system/service between the customer
and developer/supplier.

Businesses appropriately define security
requirements through risk analysis as per
S(1)-1 and confirm the results of the
analysis.

Customers make decisions based on risk
assessment, as per S(6)-2.
With these measures,
analysis of the current
conducted.

an appropriate
situation is

Requirement
definition

. Disagreement on
requirements

Without sufficient agreement on
security requirements between the
customer and business, unintended
security requirements are defined. This
leads to misunderstanding or a lack of
security requirements.

Businesses define appropriate security
requirements as per S(1)-1 and agree on
security requirements between businesses
as per S(2)-3, dealing with risks that do not
meet requirements.

Customers proactively engage in the
definition of security requirements as per
S(6)-2.

With these measures, the customer and
business agree on appropriate security
requirements.

Design - testing

. Misunderstanding of
requirements/Improper
implementation

Security requirements are not fully

understood or not properly

implemented from the perspective of
software security quality.

Businesses maintain appropriate risk
response by recording risk responses and
continuously reviewing risk response
measures as per S(1)-1. In addition, as per
S(1)-2, appropriate implementation is
conducted by making use of a secure
development process.

With these measures, requirements are
implemented properly.

. Intentional code manipulation
By exploiting an insecure development
environment, an attacker intentionally
injects malicious code or components
such as a backdoor that enables future
unauthorized access. Alternatively, an
attacker is allowed to steal confidential
information such as source code.

Businesses implement access control for
code in their development environments as
per S(2)-2. As per S(4)-5 and S(4)-6,
security measures are implemented in
development tools to protect development
environments.

With these measures, code is protected
from attackers through the protection of
development environments.

. Unauthorized third-party

software incorporation
Vulnerable third-party source code or
binaries or software or components of
unknown origin are intentionally or
accidentally incorporated.

Businesses procure secure software
components as per S(2)-1. The origins of
components are managed in the respective
software releases as per S(2)-2.

With these measures, the incorporation of
inappropriate third-party software is
prevented.

55

System life cycle

Outline of the threat

Reason for requirements against the threat

Design - Testing

. Unauthorized
during build

An attacker exploits a flaw in a build

process, and unauthorized software is

incorporation

Businesses use secure build tools to build
products as per S(1)-2. Security measures
are implemented in development tools for
the build environment as per S(4)-5.

incorporated into a product | With these measures, unauthorized
component. incorporation during builds is prevented.
(Example: Inappropriate compiler

option)

. Development process | Businesses use secure build tools to build

dependent on individual skills

with low accuracy and

reproducibility
Owing to PDCA procedures not being
followed and the development
(implementation) process being
excessively dependent on individual
work, accuracy and reproducibility are
reduced, resulting in potential security
issues in a build environment.
(Example: Local build dependent on
individual skills)

products as per S(1)-2. Appropriate
development toolchains are used, as per
S(4)-5.

With these measures, development work
dependent on individual skills is avoided.

. Omission of review/analysis
Vulnerabilities remain unsolved owing
to insufficient review and analysis of
the code to identify vulnerabilities and
conform to standards.

(Example: Lack of vulnerability testing
and scanning)

Businesses conduct reviews at the design
stage as per S(1)-1. Testing is implemented
as per S(1)-3. Various forms of code are
reviewed as per S(1)-2 and feedback
provided to process.

With these measures, review and analysis
are implemented to an appropriate extent.

. Inappropriate
process

No PDCA procedure is established
and a low-quality development process
is adopted.

In addition, excessive prioritization of
time to market and cost reduction
causes new development processes
and approaches to be forcibly adopted,
resulting in potential security problems.

development

Businesses prepare a development policy
as per S(4)-2 and arrange development
standards as per S(4)-4.

With these measures, secure development
processes are maintained.

(Example: Weak development

standards)

. Unintentional information | Businesses strive for improvement of
leakage personnel skills through training, etc., as per

Information is leaked unintentionally.
(Example: Carelessness of a
developer or an inappropriate
development environment)

S(4)-1. A secure software development
infrastructure is arranged as per S(4)-2. A
software service operation policy is
established as per S(4)-3. As per S(4)-5 and
S(4)-6, security measures are implemented
in development tools to protect development
environments.

With these measures, information leakage
from the human and environmental
perspectives is reduced.

. Inappropriate service use
(cloud only)
(Owing to schedule and cost

constraints) SaaS services in which
security is not considered are
introduced or implemented.

(Example: Different modules in a
single SaaS solution have different

security requirements, causing
insufficient verification of all
components)

Businesses introduce services consisting of
appropriate software components as per
S(2)-1. A process is arranged for dealing
with risks that do not meet security
requirements as per S(2)-3.

With these measures, appropriate services
are introduced/used.

56

System life cycle

Outline of the threat

Reason for requirements against the threat

. Unauthorized incorporation
during distribution
Malicious software is injected into an

Businesses provide information and
mechanisms that allow users to start using
software securely as per S(2)-4.

original software package, update | With these measures, fraud is prevented
Distribution program, or upgrade product | during distribution.

distributed to customers through a

software distribution route or delivery

mechanism. (Example: Program

tampering, document tampering)

. Denial of service Businesses arrange a software service

An attacker stops an external service | operation policy as per S(4)-3. Businesses

such as SaaS, or stops supply of | prepare a monitoring environment for

security patches, etc. service operation as per S(1)-4. Risk
Operation response to vulnerabilities is implemented
as per S(3)-2.
With these measures, vulnerabilities that are
causes are addressed, and denial of service
is detected and its impact reduced.

. Unauthorized archive | Businesses protect archives as per S(2)-2.
manipulation With these measures, unauthorized

Archives are manipulated, overwritten, | manipulations of archives are prevented.

or destroyed, either unintentionally by

a developer or intentionally by an

attacker. It becomes difficult to analyze

and respond to vulnerabilities

discovered after a release.

. Vulnerabilities left unsolved Businesses establish a vulnerability

Use of software continues without | disclosure policy as per S(3)-1. Users are

information regarding discovered | provided with information necessary for

software vulnerabilities being | measures against vulnerabilities as per

communicated to customers. S(2)-4. Businesses address vulnerabilities,
including their root causes, as per S(3)-2
and S(3)-3. Businesses introduce a software
component update process as per S(2)-1.
Businesses provide customers with
appropriate information and measures to
address vulnerabilities, aiming to eliminate
vulnerabilities.

. Incorrect Businesses promote the development of
configuration/settings software that is secure by default as per

When software is wused without | S(1)-2. Businesses provide users with

appropriate configuration or settings, | secure configurations and usage methods

vulnerabilities become apparent. as per S(2)-4.

(Example: Full access permitted by | With these measures, the use of

default, execution of software whose | appropriately configured software is

authenticity cannot be confirmed, etc.) | promoted.

. Information leakage and | Businesses arrange a software service
unauthorized access through | operation policy as per S(4)-2 and S(4)-3.
disposal With these measures, equipment intended

Confidential information such as | to be discarded is appropriately disposed of.

. source code is stolen by an attacker
Disposal

through discarded equipment that
retains confidential information stored
in it, and unauthorized access to it is
gained through equipment that is left
unused and to be discarded.

57

System life cycle

Outline of the threat

Reason for requirements against the threat

Common to life

cycles

. Processes and
unarranged
Secure software cycles and supply
chains are not maintained because
processes and resources (people,
things, and money) are not arranged.
(Example: Insufficient training to
conduct threat or risk assessments,
security is not taken up as a
management issue, excessive

workload, etc.)

resources

Businesses arrange human resources as
per S(4)-1. A development policy is
established as per S(4)-2. A software
service operation policy is established as
per S(4)-3. Processes and resource
systems are audited as per S(4)-4.
Customers appropriately determine systems
of businesses as per S(6)-1. Appropriate
budgets are ensured as per S(6)-2 .

With these measures, people, materials,
and money necessary to ensure security are
arranged, such as development
infrastructures and security requirements
and standards for development processes.

. Inadequate information and
asset management

Security initiatives are not initiated

because the necessary information is

not grasped.

Businesses promote information sharing as
per S(5)-1. Businesses promote proactive
utilization of cooperative structures as per
S(5)-2.

With these measures, the collection and
management of information necessary for
security measures are promoted.

. Incomplete agreement chains
Security requirements are not satisfied
or requests are rejected because
contractual agreements regarding
security between suppliers, third-party
suppliers, and customers do not
properly link up.

Businesses seek agreement on appropriate
security requirements among parties
concerned as per S(2)-3. Risk response is
maintained as per S(1)-1.

Customers proactively manage risks as per
S(6)-1. Customers disclose in advance
security practices required of businesses as
per S(6)-2.

With these measures, the parties concerned
agree on appropriate security requirements.

. Inadequate selection
conditions

Characteristics of suppliers are not

considered when a supplier

(subcontractor) and software are

selected.

(Example: Past performance, etc.)

Businesses agree on security requirements
among parties concerned as per S(2)-3 and
include them in contracts.

With these measures, appropriate suppliers
are selected.

58

5.4. Examples of measures implemented to meet requirements

Examples of measures to be implemented to meet requirements (itemized requirements)
are described below as reference information. For measures to be organizationally
implemented in the target software to meet requirements, organizationally appropriate
methods must be selected and applied. These examples are provided as reference
information so that such measures can be envisioned. Consequently, they do not
comprehensively represent the measures to be implemented for the requirements (itemized
requirements). When considering measures to meet these requirements, it is recommended
to refer to 5.5, as necessary.

(1) Secure design, development, supply, and operation

Y % T — ",
y L -
fa & I
— = M
!)] y k'
| ! %

T

Risk assessment during design and tracking of countermeasures

Analyze and assess the risks of software to be developed in accordance with the principles
of "secure by design" and "secure by default," track risk responses, security requirements,
and design decisions, and maintain countermeasures.

O S(1)-1.1 Risk-based security requirements definition

Perform risk-based analysis and assessment of the software to be developed
or the system/service composed of the software, and then define security
requirements that serve as mitigation measures.

Examples of
measures

To improve the effectiveness of the risk-based approach, conduct risk assessments
using risk analysis techniques using risk modeling, like attack and threat modeling.

To improve the effectiveness of the risk-based approach, train development teams or
consult risk modeling experts.

Conduct more strict risk assessment for high-risk areas such as protection of
confidential data and personal information, authentication, access control, and
credential management.

(In the case of software for a system/service)

Establish security requirements to be agreed upon with customers as company-wide
rules in advance. For customers who do not provide requirements, establish appropriate
security requirements through hearings.

To obtain customers' understanding of the costs associated with security measures,
propose benefits obtained by improving customer's security. Simultaneously, explain
the necessity of increased costs to customers, based on detailed breakdowns.
Establish cooperative frameworks for entire system life cycles, including the division of
roles between the business operator and customer, commonality and standardization
within industries through the arrangement of development environments and
terminologies, and communication methods.

59

0 $S(1)-1.2 Design review

Through a review of the software design, confirm that it meets all security
requirements and adequately addresses the identified risk information, and
apply the review results.

Examples of
measures

Review software from design perspectives (architecture, design, critical code,
vulnerabilities, etc.) using an appropriate method for each perspective (peer review,
lead review, walkthrough, static and dynamic scanning, vulnerability scanning, etc.).
Review software from various development perspectives—integrated development
environment (IDE), build pipeline, and automated process instantiated in a toolchain,
such as static and dynamic security—using an appropriate method for each perspective
(peer review, lead review, walkthrough, static and dynamic scanning, vulnerability
scanning, etc.).

O $S(1)-1.3 Risk response records

Keep records of design decisions, responses to risks, and approved exceptional
measures to maintain them for audit and maintenance purposes throughout the
software life cycle.

Examples of
measures

Record responses to respective risks, including decisions on design, how risk mitigation
was achieved, and the rationale for approved exceptions to security requirements.
Maintain records of responses to respective risks.

[0 $(1)-1.4 Periodic risk-based review

Review all approved exceptions to security requirements and software design,
as well as the results of the risk-based analysis and assessment created during
the software design, and periodically check whether risks are being addressed
appropriately.

Examples of
measures

Regularly re-evaluate all approved exceptions and implement appropriate changes as
necessary.
Review risk models to check periodically whether risks are addressed appropriately and
implement changes as necessary (SP800-218 PW.1.2 notional implementation
example).

m Threat modeling and risk management

Threat modeling is an analytical technique for identifying potential threats and
vulnerabilities in software and studying security measures to be implemented to make
connections to risk management.

Intended software and assets to be protected are clarified, and threats and
vulnerabilities that adversely affect assets are analyzed.

Various frameworks have been published, a typical one is the STRIDE model developed
by Microsoft. This model is used as a methodology for identifying threats and studying
security measures from the perspectives of "spoofing, tampering, repudiation, information
disclosure, denial of service, and elevation of privilege." (Related requirement: S(1)-1.1)

60

Guidance on "bad practices"

Various organizations have arranged best practices for software security, but as a
contrary concept, the US Cybersecurity and Infrastructure Security Agency (CISA) and
Federal Bureau of Investigation (FBI) have published "Product Security Bad Practices
Guidance." The guidance describes inappropriate product security practices that are
considered as high risk for software vendors and provides recommendations for software
vendors to mitigate these risks. These are divided into three categories, as described
below. The first and second ones are most relevant to the Guidelines (draft).

[1] Product characteristics:

These relate to the observable security quality of software, such as development in a
language that is not memory safe. In direct relation to the Guidelines (draft), the release of
a software product that contains components with known vulnerabilities and the use of
vulnerable open-source software fall under this category.

[2] Organizational processes and policies:

These relate to transparency assurance for software security, such as failing to publish

vulnerability disclosure policies.
[3] Security functions:

These relate to security functions that software products should have, and a lack of

multi-factor authentication and logging functions, are described.

m Entities that perform risk assessments of software to be developed

"Software to be developed" includes software that realizes the functionality of a
system/service, software to be embedded in an loT device, and firmware to be installed
on a chip.

Entities that operate a system/service carry out risk modeling and analysis/assessment
at the system/service level. In addition, entities that design and manufacture loT devices
and chips carry out risk modeling and analysis/assessment at the loT device and chip
levels.

In addition, risks to be focused on in S(1)-1 are risks related to software to be developed,
and developers carry out risk modeling and analysis/assessment proactively. For
dedicated software, higher-level risks for which a usage environment is identified must be
considered. With respect to general-purpose software, risks based on the usage of
software in expected usage environments must be considered.

61

m Approach for costs associated with security measures

To obtain customers' understanding of the costs associated with security measures, it is
necessary to create proposals that are based on not only profit distribution of cyber
infrastructure providers for themselves but also security improvements of customers. In
addition, it is necessary to provide educational activities for customers regarding costs,
details of increased costs (estimation of required costs in the case of system development
or renovation, and the addition of service menus applied in the case of a cloud service),
and the necessity of accountability to customers.

It is important that both customers and cyber infrastructure providers share the same
understanding regarding the necessity and costs of security measures, and it is desirable
to foster understanding through the division of roles between customer and cyber
infrastructure provider, commonality and standardization within the industry through the
establishment of development environments and terminology, and communication
throughout the life cycles of intended systems. (Related requirement: Entire S(1)-1)

o T
— - Y T —e s

e 3 H >3]

L Iy F rd) i1

/ b — NN
I-I I-,. :' |::

Secure build

Define secure coding and system construction processes that are appropriate for
development languages and environments, and generate and build code accordingly. Review
and analyze code, including configurations, and feed back the results to the process.

[0 $(1)-2.1 Definition of secure development process

Define a process related to secure coding, secure build, and default secure; for
example, secure coding perspectives, build timing and method, use of
automation tools, and training.

Examples of
measures

Check for vulnerabilities that are common to development languages and environments
and prevent these vulnerabilities from being incorporated into a process.

Use compilers, interpreters, and build tools that provide features to improve the security
of executable formats. (SP800-218 PW.6.1 task)

Introduce automation support (quality improvement) into development methods and
environments.

Apply configuration management tools to manage intermediate deliverables and
configuration baselines in development.

Provide appropriate training before using secure coding techniques and development
environments equipped with automated features. (SP800-218 PW.5.1 notional
implementation example)

Implement secure default configurations, store default configurations in a usable format,
and enable changes in accordance with change management practices.

Document secure settings and guidance on operations for software users (such as
system administrators).

Introduce automation support with Al support in development techniques and
environments (such as quality improvement through Al application to static analysis).

62

O S(1)-2.2 Secure build
Generate and build code using a compiler, interpreter, and build tools that
provide functions that improve the security of executable formats.

Examples of
measures

Determine functions and configurations of compilers, interpreters, and build tools and
make approved configurations available in the form of configuration as code (CaC).
Establish a change management process to deploy/update compilers, interpreters, and
build tools and periodically verify their authenticity and integrity.

Apply protected configurations to virtualization technologies such as containers used to
deploy software.

0 $S(1)-2.3 Verification and feedback
Identify root causes of problems discovered through verification by review and
analysis, and feed back results to processes.

Examples of
measures

Select a method for reviewing and analyzing codes depending on the stage of the
software life cycle. (SP800-218 PW.7.1 notional implementation example)

Obtain assistance from expert reviewers to check whether backdoors or other malicious
codes are present.

When a tool such as a static code analysis tool is used, document the results of the
analysis.

Use static analysis tools to check codes for vulnerabilities and compliance with in-house
secure coding standards automatically, and review any issues reported by a tool and
solve them as necessary. (SP800-218 PW.7.2 notional implementation example)
Verify compliance with security requirements through review and analysis, identify and
document the root causes of any issues found, and feed back the results of the
response to processes for secure coding, secure build, and secure by default. (Derived
from statement)

[0 $(1)-2.4 Codebases

For objects subject to a review and analysis, source codes as well as codes in
various formats (such as configuration files) that the organization determines to
be readable are to be targets.

Examples of
measures

Perform code reviews and analyses based on in-house secure coding standards, and
record and prioritize all discovered problems and recommended solutions in a
development team's workflow or problem tracking system. (SP800-218 PW.7.2 task)
In intended settings of development environments subject to review, include compiler
configurations, development languages and environments to prevent common
vulnerabilities and weaknesses, and third-party codes and reusable code modules
written in-house, as needed.

63

Testing

Design and implement vulnerability and penetration testing as well as functional testing to
identify vulnerabilities not identified in the review and analysis up to the build phase, and
implement countermeasures against identified vulnerabilities.

O $S(1)-3.1 Test planning
Based on threat models and risk analysis, determine a test scope and method,
and develop a test plan.

Examples of | * Determine whether executable code needs to be tested to identify vulnerabilities not

measures identified in reviews, analysis, or testing. (SP800-218 PW.8.1 task)

. When testing executable code, determine the scopes and methods of the testing and
develop test plans. (SP800-218 PW.8.1 task)

. In those to be tested, include binaries, directly executed bytecodes, source codes, and
other forms of code and software that organizations regard as executable.

. In those to be tested for code, include third-party executable codes and in-house
created reusable executable code modules as necessary.

(In the case of software for a system/service)
. When a client business distributes testing guidelines or templates, develop a test plan
including these.

O $(1)-3.2 Test method
Include functional testing, vulnerability testing, fuzzing, penetration testing, etc.
in the test method.

Examples of | * Include test methods to verify that the respective settings, including default settings,

measures function as expected and do not inadvertently cause security vulnerabilities or
operational problems.

. Include fuzz testing in the testing methodology to identify problems with input/output
processing within the software.

. Include penetration testing to simulate manners in which an attacker breaches a
software in high-risk scenarios.

. Integrate static and dynamic vulnerability tests, as well as regression tests to remove
negative effects of modifications, into automated test suites of projects.

O $(1)-3.3 Test implementation
Design and implement tests according to the test plan, and document the test

results.
Examples of | * Conduct tests in which a practical production environment is considered according to
measures manuals to make it possible to confirm that the respective settings, including default
settings, function as expected.

64

0 $S(1)-3.4 Responses to problems
Incorporate all problems identified through testing and recommended
countermeasures into the development team's workflows to solve them.

Examples of | * Record all problems discovered through testing and recommended countermeasures in

measures the development team's workflows or problem tracking system, and prioritize and
document them. (SP800-218 PW.8.2 task)

. Identify and record the root causes of discovered problems. (SP800-218 PW.8.2
notional implementation example)

. Organize the results of the vulnerability analysis, vulnerability risk mitigation measures,
and tool analysis so that they can be presented upon request by a reviewer.

Monitoring of services

Arrange a process and system to ensure that software protects and maintains information
assets and is consistent with the environment in which it is implemented (network, platform,
service, etc.) and implement them.

O S(1)-4.1 Asset management
Operators arrange asset management procedures and asset lists related to
assets that are handled by systems and services and assets that constitute the
systems and services.

Examples of | ® Integrate change management and configuration management into asset management

measures for systems and services to maintain secure configurations.

. Establish and perform procedures for maintaining the security of systems and services
based on security policies.

O $S(1)-4.2 Development of a monitoring environment
Operators appropriately separate systems to minimize the potential impact of a
risk when it occurs, and establish a monitoring environment to monitor risks that
are important for the protection of assets by means of software.

Examples of | * Use systems for managing services for a dedicated purpose only so that they do not
measures intermingle with other tasks.
. Apply diagnostic tools to determine important risks.

O $S(1)-4.3 Arrangement of a security mechanism
Arrange an appropriate security mechanism for the software and systems and
services to which the software is applied, to protect and monitor the
confidentiality and integrity of information assets and data in operating
environments or resources such as digital infrastructure.

Examples of | * Use firewalls, encryption, signatures, etc. as mechanisms for protecting confidentiality
measures and integrity.

0 $S(1)-4.4 Monitoring and evaluation
Operators monitor the operation of mechanisms that are applied to systems that
provide important services, periodically conduct security assessments, and
integrate them into the risk management framework of the organization.

Examples of | * Monitor the status of the operation of software mechanisms applied to critical services

measures and ensure that they are protected and maintained consistently with networks,
platforms, and other interlocking services related to the operation of the software.
(Derived from statement)

. Include the time when a new system is introduced and the time when major changes
are made to an operational system in the timing of security evaluation related to systems
and services.

(2) Life cycle management and assurance of transparency

Arrangement of secure software components
Verify that commercial, open-source, and other third-party software components procured
from outside comply with the defined in-house requirements throughout their life cycles.

O $(2)-1.1 Arrangement of software components
In terms of commercial, open-source, and other third-party software
components procured from outside, adopt those that are highly secure and meet
the defined in-house requirements.

Examples of | * Review and evaluate third-party software components (including software libraries,

measures modules, middleware, frameworks, etc. that provide standardized security functions and
services such as cryptographic modules and standard protocols), assuming its usage
environment.

. Determine secure configurations of third-party software components and make it easy
for developers to use the configurations with CaC, etc. (SP800-218 PW.4.1 notional
implementation example)

. To verify the security of third-party software components in an assumed usage
environment, create builds from source code (including security scan), static analysis
(binary scan), dynamic analysis, etc. as necessary.

(In the case of software for a system/service)

. Submit a self-conformance certificate indicating compliance with the SSDF upon
customer request, and submit an SBOM as a deliverable indicating the compliance, as
necessary.

66

0 S(2)-1.2 Development and maintenance of software components
When software components are not procured from outside, develop highly
secure software components in-house in accordance with established in-house
security standards and practices, and maintain them.

Examples of | * When developing and maintaining components, conduct secure software development

measures in accordance with security practices established in-house. (SP800-218 PW.4.2
notional implementation example)

. Determine secure configurations for developed software components and make them
easily usable for developers through CaC, etc. (SP800-218 PW.4.2 notional
implementation example)

O $S(2)-1.3 Risk assessment of software components
Acquire and analyze information regarding locations from where the respective
software components originate and assess the risks brought by the

components.
Examples of | * Maintain a list of commercial software components and component versions approved
measures in-house along with their provenance data (e.g., SBOM). (SP800-218 PW.4.1 notional

implementation example)

. Perform a configuration analysis (source code, binary code) of the respective software
components and maintain a repository to make secure configurations easily usable.

. Acquire and analyze the provenance information of the respective software components
(e.g., SBOM, source configuration analysis, binary software configuration analysis), and
evaluate risks that components may pose. (SP800-218 PW.4.1 notional implementation
example)

. Verify and confirm the integrity of the software components by making use of digital
signatures or other mechanisms. In this manner, identify and verify the certificates used,
and verify the cryptographic standards used.

. Share the management of source codes, configuration information, and change
information on supply chains, and share SBOMs as necessary.

[0 $(2)-1.4 Confirmation of publicly known vulnerabilities of software components
Regularly check for publicly known vulnerabilities and periods during which the
respective software components are supported.

Examples of | * For conducting regular checks for publicly known vulnerabilities and support periods of

measures the respective software components, consider the utilization of external diagnostic or
audit services.

. Incorporate the automated detection of known vulnerabilities in deployed software
components into toolchains.

O $(2)-1.5 Updating of software components
Implement a process to update the respective software components to the new
version securely.

Examples of | * Implement a process to update the respective deployed software components to the

measures new version, and retain the older versions of the software components until all
migrations from those versions are successfully completed. (SP800-218 PW.4.1
notional implementation example)

. For any vulnerabilities (including publicly known vulnerabilities) that are found in the
respective introduced software components, share information on the supply chains of
the software components and solve them promptly by applying patches, etc.

. If the integrity or origin of an acquired binary cannot be confirmed, verify the integrity
and origin of the source code and build a binary from the source code. (SP800-218
PW.4.1 notional implementation example)

67

m Purpose of procuring secure software components and the need for
information sharing

Instead of developing functions individually from scratch, it is possible to reduce risks of
vulnerabilities by reusing existing software that ensures security, such as existing system
components that are sufficiently secured or standardized software components (log
management, access control, etc. that comply with standards).

Countermeasures against software vulnerabilities should be implemented as far as
possible during the development stage, and it is necessary to respond promptly to any
remaining vulnerabilities discovered thereafter by applying patches, etc. during the
subsequent life cycle and in the supply chain. To achieve this, it is necessary to realize
information sharing regarding software through configuration and change management in
a sustainably maintained software development and maintenance environment based on
an SSDF and cybersecurity-supply chain risk management (C-SCRM). (Related
Requirement: S(2)-1.1)

m Towards building a secure software distribution mechanism by using

and sharing SBOMs

When a vulnerability is identified in a software procured from a developer or supplier, in
order for the procurer (customer) to fix the software, it is recommended to obtain the source
code and SBOM of the software and perform configuration and change management on
them.

In addition, when standard mechanisms for distributing vulnerability-managed software
(such as binaries and IoT devices with embedded software) can be realized—such as by
having suppliers/developers manage source codes and SBOMs and appropriately
manage configurations and change management while retaining rights to source codes,
and by making it possible to trace evidence as necessary—the distribution of source codes
and the SBOM may not be required with delivery. Furthermore, to consider rapid
identification of the impact of vulnerabilities, it may be more effective to establish a
mechanism for tracking the traceability of products developed in-house (into which they
are embedded) or using a framework such as the Binding Operational Directive (BOD) by
CISA or the EU CRA (in which the government requests critical infrastructure operators),
or customers/operation organizations can request cyber infrastructure providers to report
whether there are vulnerabilities.

As described above, the need for utilizing and sharing SBOMs is increasing, and some
industries are considering unified rules. To introduce SBOMs and share them fully between
organizations, it is desirable to consider and build a system with reference to the
"Guidelines on Introduction of Software Bill of Materials (SBOM) for Software Management
ver. 2.0" published by the Ministry of Economy, Trade and Industry on August 29, 2024.
Specifically, it is important to fully understand the feasibility and constraints of a system for
secure software distribution including SBOMs and the priority of efforts, and then
determine a system for secure software distribution and create agreements through
contracts, etc. (Related requirement: S(2)-1.3)

68

H Requirements for software introduced by government-related agencies

in Europe and the US

Initiatives for SSDFs are progressing mainly in Europe and the US. In the US, the Office
of Management and Budget (OMB) has announced "M-22-18 Enhancing the Security of
the Software Supply Chain through Secure Software Development Practices" (and M-23-
16, the updated version of the same).

This document requires federal agencies to employ software vendors that can certify
that they can implement the SSDF SP800-218. In addition, it requires software vendors to
submit a self-certification of conformance to certify their implementation of the SSDF and
an SBOM as a deliverable to demonstrate compliance, if necessary.

A self-certification of conformance is a document that proves compliance with the SSDF
based on EO14028, and certifies processes and procedures for continuous secure
software development, such as vulnerability disclosure and response. (Related
requirement: S(2)-1.1)

(Reference) On page 31 of the document on the Software Task Force of the Ministry of
Economy, Trade and Industry, in the following URL, there is a description of the SSDF self-
certification and SBOM requirements in the OMB memorandum (M-22-18).

https://www.meti.go.jp/shingikai/mono_info_service/sangyo_cyber/wg_seido/wg_bunya
odan/software/pdf/010_03_00.pdf

Secure archiving of release files and data

Archive necessary files and data to be retained during software release and restrict access to
only necessary personnel, tools, and services. Collect, protect, maintain, and share
provenance data for all components of the respective releases through the gradual adoption
of SBOMs.

O S(2)-2.1 Protection of codebases
To protect codebases in all forms from unauthorized access and tampering,
store codes and configuration information in a repository and implement access
control based on the principle of least privilege so that only authorized
personnel, tools, services, etc. can access it.

Examples of | ® Store all forms of code, including source codes, executable codes, settings, resource

measures files, container images, and CaC, in codebase repositories. This applies to open-source
and language class component groups, integrity verification information, provenance
data, etc.

. Use cryptographic techniques (e.g., code signing, commit signing, hashing) to protect
the authenticity and integrity of source codes and executable code files.

. Have a third party review all changes made to the code and code owners approve them.

69

0 $S(2)-2.2 Archiving of releases
Archive the respective software releases to protect them so that vulnerabilities
identified after release can be analyzed and identified.

Examples of | * Store release files, associated images, etc. in repositories according to established

measures organizational policies. Allow read-only access for necessary personnel and prohibit
access by others. (SP800-218 PS.3.1 notional implementation example)

J When enhancing functionality, store associated codes and executable files, and check
and approve all changes.

O $S(2)-2.3 Sharing of release provenance data
Collect, protect, maintain, and share provenance data for all components of the
respective software releases.

Examples of | ® Make provenance data available to in-house operations and response teams that

measures receive and acquire software using SBOMs, etc.

. Document all third-party components acquired directly by developers and incorporated
into the software, and employ measures to trace their original sources as far as
possible.

. Scan binaries created by third parties and conduct risk assessments for the security of
components created by third parties.

. Implement a check system for open-source libraries and check them regularly.

. Both suppliers and developers work together to ensure the integrity of signing servers
for integrity verification.

Establishment of security requirements among stakeholders
Establish security requirements to be agreed upon among the parties involved and include
them in contracts or policies to be shared.

O S(2)-3.1 Agreement on security requirements

Include explicit security requirements in contracts or policies to be shared with
third parties that provide IT products (including commercial software
components for use in in-house software) or services.

Examples of
measures

. Examples of requirements to be included in contracts or policies with third parties
(suppliers) are as follows:
» Monitoring and disclosure of supplier's information security compliance (software
security requirements)
» Regulations for sharing information on potential problems with suppliers
» Implementation of secure development processes (including process verification,
penetration testing, etc. by third parties)
» Vulnerability management (including vulnerability disclosure and patch
management)
Provision of SBOMs
Implementation of processes to ensure the authenticity of components from
suppliers (protection against unauthorized access during transmission of data
related to supply chains)
Response to vulnerabilities related to products and services of suppliers
Assurance of availability of suppliers and measures for recovery
Provision of support, definition of SLA, complaint handling
Others, such as definitions of responsibilities and roles of both parties, and
requirements for contract completion and termination

\ %

YV VYV

O $S(2)-3.2 Responses to supply chain security requirements

Respond to supply chain security requirements equivalent to those adopted by
the organization that receives or acquires the IT products or services that it
provides.

Examples of
measures

. Maintain a process for selecting suppliers of components made by a third party based
on supply chain security requirements and obtain evidence of selection.

(In the case of software for a system/service)

. To demonstrate that specifications for software quality that customers require are
satisfied, adopt a mechanism to run customer-specified source code diagnostic tools
and submit evidence.

[0 $(2)-3.3 Establishment of a response process for risks that do not meet security

requirements

Arrange a process to respond to risks in the case where there are security
requirements that IT products or services made by a third-party to be received
or acquired do not meet.

Examples of
measures

. Determine acquisition strategies and procedures to reduce supply chain risks (do not
clarify purchase purposes, select reliable distribution destinations, provide incentives to
suppliers with good contract terms and management, etc.).

. Verify and update SBOMs obtained from third parties.

(In the case of software for a system/service)

. Implement and provide configuration management, change management, hardening of
development and maintenance environments, etc. to manage and supervise supply
chains.

71

m Support for / cooperation with suppliers and developers who are

contractors

To establish and maintain security through the entire supply chain, customers who are
clients must provide as much support and management as possible to meet the agreed
upon supply chain security requirements as part of support for suppliers and developers
and cooperate with them. For example, the following support and management can be
considered:

* Provide suppliers and developers with a development environment or allow them
to use it. Permit the contractor's personnel to use the development environment
after they take a course and pass a test.

* Make agreements in stages, starting with important security requirements.

* Prime providers support and manage contractors. In cases in which multiple cyber
infrastructure providers are involved, customers or a consulting company that
oversees and handles entire upstream processes participates to ensure that all
vulnerabilities are identified and not included.

* When the sub-contractor is a subsidiary, the parent company may control the
supply chain security, but as it is necessary to be careful about the sharing of
benefits, financial and IT departments participate to achieve an overall balance.

* Set a grace period for contractors who cannot immediately provide a response
when management standards are revised.

Thus, in responses to supply chain security requirements, effort levels vary between
supply chain layers, such as prime contractors, sub-contractors, and distributors.
Therefore, it is necessary to raise the levels of basic efforts of each stakeholder in supply
chain considering the current situation they are in. In this case, it is important to decide on
the division of roles and items to be implemented at the time of contract to deepen the
cooperative relationship between stakeholders. In the future, it is desirable to arrange
guidelines through deeper discussions with industry groups and public institutions, and to
organize how to determine the scopes of responsibilities and perspectives through future
efforts by the involved parties. (Related requirement: Entire S(2)-3)

/;:m m‘

|r L

L] %
LR Y W / f |
LY ., A J
—\-_._ s \. o S | I
. - /
%, —
-
-

Appropriate information provision to users
Ensure that software users can use guidance that facilitates secure use throughout the entire
software life cycle—from introduction and installation to operation and termination of use.

72

0 S(2)-4.1 Secure introduction, configuration, operation, modification, disposal, and

termination

Ensure that software users can continuously use information for securely
introducing, configuring, and operating software, as well as information related
to the impact of changes, disposal, termination of provision, and termination of

use.

Examples of
measures

Implement secure default settings (or groups of default settings, if applicable). (SP800-

218 PW.9.2 task)

Include the following in guidance for software users (system administrators, etc.):

» Secure introduction procedures for initial installation, installation of additional
components, updates, and patches, and procedures for secure configurations

» Software integrity verification information and configuration guides

» Details of secure configuration information (purposes of the respective settings,
default settings, relevance on security, potential operational impact, relationship
with other settings, etc.)

Clearly communicate the decision to end software support to users (customers) and

specify the scheduled date for the end of support.

Even after software is supplied, if a vulnerability is identified in a program developed in-

house, provide the necessary information to ensure the safety of software users, for

example, by quickly and widely providing information to relevant parties in supply

chains.

(In the case of software for a system/service)

Communicate realistic expectations regarding contents and duration of product support
in parallel with initial system provision.

Cloud service providers offering services provide information in an easy-to-understand
manner to users and provide specific information guides to operators and system
builders/installers.

[0 S(2)-4.2 Provision of integrity verification information

Ensure that software users can continuously use the information necessary for
verifying the integrity and completeness of software.

Examples of
measures

Provide the following for software users (system administrators, etc.):

» SBOMs or information equivalent to SBOMs for software to be supplied

» Information for verifying that measures against tampering are appropriate in
distribution channels from suppliers to customers (cryptographic hash of release
files, code signatures, etc.)

Provide the following for software users (system administrators, etc.):

» Protection measures for distribution systems (use of trusted certificate authorities
for code signing, regular review of code signing processes, other measures to
protect signing environments, etc.)

m Requirements that specify secure guidance

The Common Criteria (ISO/IEC 15408, ISO/IEC 18045), which are international
standards for security evaluation of IT products, require that appropriate instructions for
users regarding secure installation and use be included in manuals so that customers, who
are users of IT products, can begin secure installation and operation. In addition, in CISA's
"Defense against software supply chain attacks," it is indicated that a mechanism for
verifying the integrity of software releases (such as protection of code signing certificates)
is provided so that customers can confirm that software that they have obtained has not
been tampered with. (Related requirements: S(2)-4.1)

73

(3) Prompt responses to remaining vulnerabilities

?
'
[}
o1

S

6/;%

I ———

Requirement definfion, Design analysisplanning

Continuous vulnerability investigation
Establish a policy for disclosure and remediation of software vulnerabilities, define roles,
responsibilities, and processes required for the policy, and implement them.

0 $S(3)-1.1 Establishment of a vulnerability response system
Establish a policy for the disclosure and remediation of vulnerabilities of
software products, establish a system for responses to vulnerabilities (including
response to incidents) to support the policy, and define necessary roles,
responsibilities, and processes.

Examples of | * Establish a product security incident response team (PSIRT) for software and arrange

measures an incident response process related to product security. (SP800-218 RV.1.3
implementation example)

. Establish clear methods and procedures for common threats that violate software
product security, incident response triggers, steps, recovery time objectives, and
contingency plans related to services.

. Conduct periodic exercises of incident response processes.

O S(3)-1.2 Communication plan
Establish a communication plan for all stakeholders.

Examples of | * Arrange a vulnerability disclosure process, including a communication plan for all

measures stakeholders.

. Arrange mechanisms (e.g., mailing lists, portals) to support easy access to disclosed
vulnerability information and the import of it.

O S(3)-1.3 Vulnerability information collection
Collect new information regarding vulnerabilities through searches of public
information, notifications from software users, the acquisition of external threat
information, reviewing of system configuration data, and other methods.

Examples of
measures

Arrange a vulnerability information collection process. (Derived from statement)
Collect information on vulnerabilities in software and third-party components
incorporated into software from public sources (monitor CVEs and third-party support
channels).

Collect and investigate information regarding suspected software vulnerabilities
identified by vendors of software and third-party components incorporated into software,
acquirers/users of the software (e.g., customers), and third-party researchers.

Identify third-party components incorporated into software and periodically check for
fixes and end-of-support dates.

By making use of threat intelligence sources, gain a better understanding of how
common vulnerabilities are exploited.

Automatically review the origins and software configuration data of all software
components to identify new vulnerabilities contained within them. (SP800-218 RV.1.1
notional implementation example)

(In the case of software for a system/service)

Consider using tools such as SSVC to manage vulnerabilities based on response
priorities (make effective use as an integrated initiative with in-house asset
management).

O S(3)-1.4 Identification of undetected vulnerabilities

Conduct software code review, analysis, and testing on an ongoing or regular
basis to identify undetected vulnerabilities (including improper settings) to be
solved.

Examples of
measures

Maintain a system to record and track all reports of potential software vulnerabilities.
Apply the practice specified in S(1)-2.3 (verification and feedback).

Configure toolchains to perform automated code analysis and testing periodically or
continuously for all supported releases. (SP800-218 RV.1.2 notional implementation
example)

m Coordination regarding responses to and reminders for vulnerabilities

In responding to vulnerabilities, reminders for vulnerabilities along with the creation and

application of patches, responses based on the position as a business (Slers, operator,
sales agent, etc.) and mutual collaboration are necessary. Examples are as follows.
(Related requirement: S(3)-1.2)

» Software manufacturers and loT manufacturers respond to serious product
vulnerabilities (create fixes) and send reminders to customers, Slers, and sales
agents.

* When a software or loT manufacturer provides information to a customer, Slers
respond to serious product vulnerabilities (provide a patch to the customer and
apply it upon request from the customer).

* When a software/loT manufacturer or Sler provides information to an operation and
maintenance vendor, the vendor responds to serious product vulnerabilities; they
provide the customer a patch and apply it upon request from the customer.

* When a software or loT manufacturer provides information for a distributor, the
distributor notifies the customer of serious product vulnerabilities.

75

m When responses to system/service software vulnerabilities are

inadequate

In some legacy systems that are operated in closed environments, the need to collect
vulnerability information on software that is a system component or to take measures
against vulnerabilities is not recognized. Moreover, in some cases, management of assets,
such as software components, which is necessary as a prerequisite for vulnerability
management of software that constitutes a system, is inadequate.

As described above, in systems and services, when responses to software
vulnerabilities are not adequate, measures to address vulnerabilities in conjunction with
existing incident responses and contingency plans can be considered. (Related
requirements: S(3)-1 in general)

* Arrange a system for coordination with suppliers regarding the provision,

implementation, and testing of incident response plans.

* Arrange contingency plans (including measures to ensure the safety of utilities such
as electricity) and continuity strategies to ensure the continuity of services required
to establish a system.

* Integrate the collection of vulnerability information and responses to vulnerabilities
into these systems.

LY e W F
Fuequ remen defindfion, Deskgn anafysisipanning S Manflanng f,'

Responses to detected vulnerabilities
Regularly create a plan to respond to risks of vulnerabilities remaining in released software
and implement it.

O S(3)-2.1 Vulnerability analysis
Collect the necessary information to understand the risks associated with the
impact of each remaining vulnerability and analyze each vulnerability to plan
repairs or other responses to risks.

Examples of | ® Quantitatively analyze risks for the respective remaining vulnerabilities based on

measures estimates of the likelihood of exploitation, the impact if exploited, and other relevant
characteristics.

. Use available issue tracking software to record the respective vulnerabilities. (SP800-
218 RV.2.1 notional implementation example)

(In the case of software for a system/service)

. To ensure the effectiveness of corrections associated with risk responses, store
common specifications, design documents, and intermediate products so that
modifications can be made by personnel other than the code generators; agree on
specific defect warranty periods; and create a contract for modification costs
individually.

76

0 $S(3)-2.2 Risk responses to vulnerabilities

Create a plan for the risk response to each vulnerability and implement it.

Examples of
measures

. Determine risk responses on a risk-based assessment, such as whether to take
measures to avoid vulnerabilities or to implement measures to repair software (including
methods to temporarily mitigate vulnerabilities until a permanent solution is provided),
prioritize responses to be implemented, and create plans. (SP800-218 RV.2.2 notional
implementation example)

. In the case of responses with implementation, document the tests and verification
results.

. When information regarding vulnerabilities is provided by organizations such as public
institutions, create appropriate and proactive responses, including the development of
required patches.

O $S(3)-2.3 Security recommendations

Prepare security recommendations, provide the information to the supplier of
the released software, and make a report to authorities as specified by the
relevant systems.

Examples of
measures

J Identify vulnerabilities and components contained in software, and create documents
with software configuration information. (CRA Annex | 2)

. Create the necessary software correction security updates to address vulnerabilities.
(CRA Annex | 2)

. After a security update becomes available, prepare and disclose a security advisory for
fixed vulnerabilities, including descriptions of vulnerabilities, information that allows
users to identify affected software, impacts of vulnerabilities, severities of vulnerabilities,
and information that helps users to fix vulnerabilities. (CRA Annex | 2)

. Securely distribute security updates, including patches and countermeasure
procedures indicated in the security advisory, to ensure integrity and reliability. (S(3)-
2.3, CRAAnnex | 2)

. Inform users of corrective measures that they can take to mitigate the impact of an
incident without undue delay.

. For vulnerabilities reported under a vulnerability reporting system, respond based on
the Information Security Early Warning Partnership Guidelines.

. Enable security analysts to analyze programs and report possible vulnerabilities.
(SP800-218 RV.1.3 notional implementation example)

. Establish a secure distribution mechanism that supports easy access and importing of
disclosed vulnerability information and security updates.

. To correct vulnerabilities quickly, establish an approach for appropriately and efficiently
evaluating the risks of vulnerabilities, prioritizing responses, and providing a
configurable automatic software update mechanism based on update strategies of
customers.

. Prepare a security response playbook to handle reported common vulnerabilities, zero-
day vulnerability reports, vulnerabilities that are actually being exploited, and critical
ongoing incidents involving multiple parties and open-source software components.
(SP800-218 RV.1.3 notional implementation example)

77

m Issues and responses to vulnerabilities in software for systems and
services

Various issues must be considered regarding responses to vulnerabilities in software
that constitutes a system or service, and thus, it is necessary to take measures according
to the situation.

* For a system that provides services, there are times at which services cannot be
stopped; consequently, it may be difficult to immediately perform fixes such as patch
application. As a countermeasure, it may be possible to perform patch application
(if permitted) with regular version upgrades, and until then, protect against
vulnerabilities by employing peripheral measures for services.

* When maintaining old software packages, patch application is difficult from a
compatibility perspective; therefore, a support period should be set in advance or
other measures taken, and migration to software packages in which
countermeasures can be taken should be encouraged.

* When adopting software with a short EOL, it may be difficult to keep up with
technology and perform upgrades in some cases. In such cases, it may be
beneficial to promote the development of an environment that enables efficient
system upgrades with minimal time and effort, by using technologies such as
containers in the medium to long term.

In modification of software as part of security measures, important issue is ensuring
necessary resources, including requesting contractors to perform modifications. For
example, not being able to manage costs and not being able to prepare a verification
environment before applying a patch to the production environment can even increase
risk. Considering such a risk, preparations should be made for necessary contents and
costs, and an appropriate verification environment should be arranged. When applying for
budgeting for security measures, it is absolutely necessary to explain not only the costs
but also risks and their impacts to management, and it is desirable to show reasons for the
necessity and appropriateness of the costs based on the risks and impacts. In this case, it
is essential to reach an agreement in advance with the relevant parties on the approach
to cost allocation. (Related requirement: Entire S(3)-2)

Utilization of results of countermeasures to in-house process improvement

Based on vulnerabilities, review the development and operation processes so that the root
causes of problems identified in software do not recur or that the possibility of their recurrence
is lowered.

78

OO0 S(3)-3.1 Identification of root causes
Analyze an identified vulnerability to determine its root causes and proactively
take countermeasures.

Examples of | * Analyze discriminated vulnerabilities that have already been identified, and analyze and

measures record the root causes of identified problems. (SP800-218 RV.3.1 task/notional
implementation example)

J Analyze the root causes over time, for example, by adding mechanisms that
automatically detect occurrences of causal events to toolchains to identify patterns,
such as certain secure coding rules that are not observed consistently.

. By using automated tools, continuously observe insecure software practices verified
when a readable code is checked into a repository.

. To eradicate a particular family of vulnerabilities, review software for similar
vulnerabilities and make corrections in advance without waiting for external reports.

O $S(3)-3.2 Process improvement
Review development and operation processes for the entire software life cycle
and revise them as necessary to prevent root causes from recurring or reduce
the possibility of their recurrence through software updates or new software

creation.
Examples of | * Investigate the internal impact and implement mitigation measures for vulnerabilities to
measures prevent or reduce the recurrence of root causes.

. Review and, as necessary, update development and operation processes throughout
software life cycles based on lessons learned through root cause analysis. (SP800-218
RV.3.4 task/notional implementation example)

. Make use of identified root causes and corrective actions in training that helps to
improve developer capabilities.

m Development and operation should work together for vulnerability

response

In preparation against the impact on a developed source code in a case where the
source code or middleware is updated, sufficient operation verification of the intended
software is required. In businesses in which different organizations conduct development
and operation, the division of roles in operation verification becomes an issue. In particular,
when transferring to an operation phase, arrangements must be made so that the
operation system is composed of personnel with sufficient skills and know-how. In addition,
it is necessary to arrange standards (templates and frameworks) for the operation
organization to take over and manage the configuration and management information
created by the development organization. (Related requirement: S(3)-3.2)

79

(4) Arrangement of human resources, processes, and technologies

Arrangement of human resources, processes, and technologies

Human resources: Commitment from management and arrangement of personnel
Define roles and responsibilities covering the entire software life cycle. Make management's
commitment to secure development known, secure personnel for security measures, provide
training to all personnel related to secure development and operation according to their levels
of proficiency and role, and review it regularly.

0 S(4)-1.1 Definitions of roles and responsibilities
Define roles and responsibilities covering the entire SDLC.

Examples of | * Integrate the role of security into software development teams. (Derived from statement)

measures . Arrange roles and responsibilities to integrate supply chain management and risk
management into software development processes.

. Define roles and responsibilities for all involved in SDLCs, including cybersecurity staff,
security champions, project managers and leaders, senior management, software
developers, software testers, software assurance leaders and staff, product owners,
operations and platform engineers, and procurement and inventory leaders and staff.

OO0 S(4)-1.2 Management's commitment
Make management's commitment to secure development known to all
personnel, and educate them on the importance of secure development and
operation for the organization.

Examples of | * Conduct trainings to ensure that all people with roles and responsibilities related to

measures development and operation are aware of and understand the management's (top
management, senior management, approval authorities, etc.) commitment to secure
development and operation. (SP800-218 PO.2.3 task)

. Appoint a leader or leadership team to be responsible for the entire secure software
development process and implement education to raise awareness of risks and risk
mitigation. (SP800-218 PO.2.3 notional implementation example)

. Educate all personnel with roles and responsibilities related to development and
operation about management's efforts to achieve secure development and operation as
well as the importance of secure development and operation as an organization.
(SP800-218 PO.2.3 notional implementation example)

O S(4)-1.3 Agreement on roles and responsibilities
Confirm that all personnel are aware of and agree to their roles and
responsibilities.

Examples of | * Educate individuals who have been assigned roles and those affected by upcoming
measures changes to roles and responsibilities, and make sure that individuals understand and
agree to follow their roles and responsibilities. (SP800-218 PO.2.1 notional
implementation example)

80

0 S(4)-1.4 Training for each role
Create a training plan for each role and implement it so that all personnel can
be trained according to their level of proficiency and role.

Examples of | * Provide role-based training for all personnel responsible for contributing to secure

measures development. (SP800-218 PO.2.2 task)

. Continuously verify the careers of personnel involved in security measures, including
candidates for the roles.

. Assign code jurisdiction and plan training for software developers to understand and
share secure software development methods (including standardized development
methods, how to use development tools in which automation is proactively used, and
programming methods leveraging Al), secure coding standards, role-specific best
practices, and Al-supported automation (quality improvement) methods.

. In training plans, include goals by proficiency and role and a process for measuring the
results.

[0 $S(4)-1.5 Review of roles and training
Review roles and training regularly.

Examples of | * Review defined roles and responsibilities on a regular basis (annual, etc.) and update

measures as necessary. (SP800-218 PO.2.1 task)

. Regularly review personnel proficiency and role-based training and the assessment
results, and update training as necessary. (SP800-218 PO.2.2 task/notional
implementation example)

. Before implementing and using new development methods and toolchains such as
CI/CD pipelines based on the DevSecOps development paradigm, review training on

security assurance measures for software supply chains and how to use the tools.

m Importance of training developers on secure development

By making use of automation, human labor can be reduced and the accuracy and
reproducibility of efforts throughout the entire life cycle can be improved. To obtain the
benefits of automation, it is necessary to assume that actions of personnel are automated
and the training for respective roles is accordingly adjusted so that the effects of
automation are maximized.

As developers are directly involved in software security measures, when training for
respective roles, training developers on secure development is particularly important. In
the case of waterfall development, overlook of security measures in an upstream design
process causes the risk of incurring high costs owing to the rework required in downstream
processes. Meanwhile, in agile development, difficulty to assign dedicated or well-trained
personnel results in difficulty to assign development checks to the required phases.
Compared with waterfall development, there are concerns regarding risks such as the use
of unintended libraries owing to the insufficient abilities or judgment of individual engineers.

(Related requirement: S(4)-1.4)

81

Arrangement of human resources, processes, and technologies

SITED W

Process: Establishment of development policy and compliance with laws and
regulations

Comply with laws and regulations, document and maintain a security policy for in-house
development infrastructures and processes, and secure necessary budgets for security
establishment.

O S(4)-2.1 Definition of a software development policy
Identify all security requirements for software development infrastructures and
processes (including requirements related to EOL), and define a security policy
for maintenance throughout the SDLC in compliance with laws and regulations.

Examples of | * Define policies to protect and maintain the security of software development

measures infrastructures and their components (including development endpoints) throughout
SDLCs. (SP800-218 PO.1.1 notional implementation example)

. Define policies to protect and maintain the security of software development processes
and their components (including other third-party software components) throughout the
SDLC. (SP800-218 PO.1.1 notional implementation example)

. Make plans to maintain and recover in-house development infrastructures and
processes (measures for information security control, supporting systems, processes
to maintain existing measures for information security control, and control measures to
compensate measures for information security control that cannot be maintained), and
test, review, and evaluate the implementation.

. Establish policies to verify and enforce the compliance of in-house policies considering
domestic and local legal requirements at business locations, industry best practices,
and standards.

(In the case of software for a system/service)
. Define policies for acquiring systems and services (purposes, scopes, roles,
responsibilities, coordination between organizations, response to compliance, etc.).

82

0 S(4)-2.2 Definition and maintenance of a software security policy
Define a policy that specifies all security requirements that software developed
by an organization must meet, and maintain the requirements throughout the

SDLC.
Examples of | ® Include architecture and design requirements to mitigate risks, verification flow
measures requirements at appropriate gates (checkpoints) in the life cycle, and risk response

requirements for technology stacks (including language, environments, deployment
models, etc.) in security requirements that software must satisfy.

. Establish a policy for what should be archived during a software release (code, software
package files, third-party libraries, configurations, documentation, data inventories, and
other related artifacts) and how long they should be stored, based on SDLC models,
software EOL, and other factors.

. Review the policy periodically, when additional requirements are specified, or when
incidents occur (including the discovery of vulnerabilities in-house or in released
software), and communicate it to relevant parties.

. Establish a process for handling exception requests to requirements (including periodic
review of approved exceptions) and a process for identifying and addressing
weaknesses in supply chains.

. In the requirements, include an instruction to create architectures to which patches are
applicable in the future.

(In the case of software for a system/service)

. When considering security requirements, include internal (organizational policies,
business objectives, risk management strategies, etc.) and external (applicable laws
and regulations, etc.) requirements.

OO0 S(4)-2.3 Sharing of cost recognition and budgeting
Secure the necessary budgets to ensure security based on a policy.

Examples of | * Consider measures to reduce remaining cybersecurity risks below an acceptable level,
measures secure resources (budget, personnel, etc.) required for the implementation, and then
work on specific measures. (Cybersecurity Management Guidelines v3, Direction 3)

(In the case of software for a system/service)

. As a prerequisite for promoting the sharing of cost recognition among stakeholders,
understand that leaving vulnerabilities unsolved will lead to future liabilities (damage
from cyberattacks, etc.), which is a common management risk.

83

H Important points to be arranged as policies

Important points to be arranged as policies are described as follows:

* Determine a process for handling information provided by external organizations
in-house (e.g., arrange a contact point for receiving information, determine degrees
of connection of received information to in-house assets and urgency, and handle
information such as the formulation of a response policy).

* Manage information assets used in-house (prioritize received information based on
risk management on an in-house situation basis).

* Arrange industry-specific statistical information on security, such as those regarding
investments. (It is expected that management can understand the position of in-
house efforts by comparing them with those of other businesses and further
promote the efforts.)

* Define evaluation indicators on the effectiveness of security investments. (It is
expected that effects can be quantitatively shared between the customer and
business, such as by making use of reporting functions of tools invested in to
visualize investment effects. However, at the moment, an easy-to-understand
"visualization of investments and costs" usually turns into a problem to be studied).

When numerical targets to be achieved are organized, more realistic and precise cost
calculations becomes possible, and thus, it is thought that efforts to improve the validity of
cost estimates based on conformity to public numerical targets for security requirements
and security baselines, such as CISA's BODs and the "minimum viable product," a security
checklist jointly formulated by IT vendors, will become important in the future. (Related
requirement: Entire S(4)-2)

Arrangement of human resgurces, processes, and iechnologies

Process: Establishment of an operation policy and compliance with laws and
regulations

Comply with laws and regulations, and document and maintain all security policies on service
operation infrastructures and processes to which the software is applied.

84

0 S(4)-3.1 Definition of a software service operation policy
Identify all security requirements for service operation infrastructures and
processes to which the software is applied (including requirements related to
EOS and disposal), and define a security policy for maintenance throughout the
SDLC in compliance with laws and regulations.

Examples of | * Define policies to protect and maintain the security of software-applied service operation

measures infrastructures, processes, and their components (including other third-party software
components) throughout the SDLC. (Derived from sp800-218 PO.1.1 notional
implementation example)

. Create plans to maintain and recover in-house service operation infrastructures and
processes (measures for information security control, supporting systems, processes
to maintain existing measures for information security control, and control measures to
compensate measures for information security control that cannot be maintained), and
test, review, and evaluate the implementation.

. Establish policies to verify and enforce compliance of in-house policies to domestic and
local legal requirements at business locations, industry best practices, and standards.

. Establish a policy for implementing protection measures based on risk analysis
according to the business size and industry.

J Include a process that allows customers to link with other digital services and, if
necessary, migrate to other providers that offer similar services.

O S(4)-3.2 Definition and maintenance of a service security policy
Define a policy that specifies all security requirements that services to which the
software is applied must meet, and maintain the requirements throughout the

SDLC.
Examples of | * When considering security requirements, include requirements from within
measures (organizational policies, business objectives, risk management strategies, etc.) and

from outside (applicable laws and regulations, etc.).

. Review the policy periodically or when additional requirements are specified or incidents
occur (including the discovery of vulnerabilities in-house or in released software
services), and communicate it to relevant parties.

. Establish and follow a process for handling exception requests for requirements
(including periodic review of all approved exceptions).

(In the case of software for a system/service)

. As a prerequisite for promoting the sharing of cost recognition among stakeholders, all
stakeholders must understand that leaving vulnerabilities unsolved will lead to future
liabilities (damage from cyberattacks, etc.) as a common management risk.

O S(4)-3.3 Audit based on an operation policy
Confirm through an audit that the protection of service operation infrastructures
and processes and security requirements for service are maintained throughout
the SDLC in accordance with policy-based governance.

Examples of | * Establish a system and secure budgets so that audits do not become a mere formality.

measures Establish governance by responding to findings received through audits of the most
important and essential audit items.

. Establish a mechanism for verifying the skills and capabilities of auditors from the
perspective of governance.

*See reference information, "Important points to be arranged as policies,” in S(4)-2.

85

Arrangement of human resources, processes, and technologies

Process: Establishment of development and operational standards

Define security verification criteria related to software development, collect the necessary
information to support the criteria, and implement processes and mechanisms for
conformance. Track the status of conformance throughout the entire life cycle.

0 S(4)-4.1 Definition and tracking of security verification criteria
Define software security verification criteria and track the entire SDLC.

Examples of
measures

Define software security evaluation indicators based on security engineering (e.g., key
performance indicators (KPIs), key risk indicators (KRIs), vulnerability severity scores,
etc.) and introduce them into the development processes.

Incorporate threats, vulnerability information, and lessons learned from past projects
into the security verification criteria.

Define quality indicators (e.g., no compiler errors) together to keep evidence that quality
standards are met.

Record security inspection approvals, rejections, and exception requests as part of
workflows and tracking systems. (SP800-218 PO.4.1 notional implementation example)
Incorporate security verification criteria into completion judgment of development
workflows, check compliance status of deliverables, and use confirmed results to
improve the entire development process.

(In the case of software for a system/service)

Introduce KPIs that allow for constant evaluation of effectiveness in systems that
support important services.

0 S(4)-4.2 Support for decision-making based on security verification criteria
Implement processes and mechanisms for collecting and protecting the
necessary information to support decision-making based on security verification
criteria.

Examples of
measures

Arrange a process to collect the necessary data to confirm standard clearing by making
use of a toolchain and use it for security decision-making. (S(4)-4.2)

Deploy additional tools as necessary to support the generation and collection of
information to support the criteria. (SP800-218 PO.4.2 notional implementation
example)

Allow only authorized personnel to have access to the collected information and prevent
it from being modified or deleted. (SP800-218 PO.4.2 notional implementation example)
Automate decision-making processes and periodically review these processes.

O S(4)-4.3 Audit based on security verification criteria

Track the entire SDLC and verify through audits that the intended effects are
achieved with governance to ensure conformance to security verification
criteria.

Examples of
measures

Establish a system and secure budgets so that audits do not become a mere formality.
Establish governance by responding to findings received through audits of the most
important and essential audit items.

Include an instruction to establish a mechanism for verifying the skills and capabilities
of auditors from the perspective of governance.

86

Arrangement of human resgurces, processes, and technologies

i B
i

<

Technology: Arrangement of secure development tools
Analyze risks throughout the SDLC and implement security measures in development tools.

O S(4)-5.1 Designation of tools and toolchains
Identify tools that are effective in mitigating identified risks, and designate which
toolchains must or need to be included and means of integrating toolchain
components mutually.

Examples of | * Define toolchain categories and specify mandatory tools or types of tools to be used for

measures the respective categories. (SP800-218 PO.3.1 notional implementation example)

. Integrate security tools into processes and toolchains.

. Define the information passed between tools and data formats used, and integrate them
with toolchains or existing software development processes and workflows.

. Adopt automation techniques for managing and orchestrating tools as needed, such as
to achieve build reproducibility.

[0 S(4)-5.2 Deployment, operation, and maintenance of tools and toolchains
Deploy, operate, and maintain tools and toolchains in accordance with security

practices.
Examples of | * Regularly review whether tools and toolchains meet the requirements defined in-house.
measures . Evaluate the effects of tools on achieving security and determine their effectiveness. As

expected effects, according to the purpose of application, determine the feasibility of
toolchains using codebase configurations, build reproducibility, upgrade support such
as vulnerability responses, whether the necessary information for verifying integrity
such as origin information is available, support for toolchain automation, and responses
to threats of past projects, vulnerability information, and responses to lessons learned,
etc.

. Continuously research and verify the origin, integrity, vulnerabilities, and new functions
of tools, and update the tools as necessary.

. When evaluating tools, conduct threat modeling and vulnerability analysis.

. Use compatibility libraries with secure third-party software toolchains as a tool security
measure.

O S(4)-5.3 Tool configuration and evidence generation
Configure tools to generate evidence regarding support for secure software
development practices defined in-house.

Examples of | * Continuously generate and monitor logs when tools are used to discover potential

measures operational and security issues, including policy violations and abnormal behaviors.

. Use existing tools (e.g., workflow tracking, issue tracking, value stream mapping) to
create an audit trail of secure development-related activities performed for the purpose
of continuous improvement.

. Determine the frequencies of auditing information collected and implement the
necessary processes. (SP800-218 PO.3.3 notional implementation example)

87

H Supplementation of security practices for development tools

Supplementary points regarding security practices for development tools are as follows.

(Related requirements: S(4)-5.2)

* When using a third-party software component such as OSS as a development
environment (including a development tool), collect vulnerability information and
confirm its origin.

* Inthe case of contracted development, clarify control issues such as restrictions on
use of development equipment owned by contractors.

* Use tools that centrally manage and utilize configurations and settings, and foster
technical skills to make full use of these tools in development teams.

Arrangement of human resources, processes, and echnologies

Technology: Arrangement of secure development environments
Analyze risks throughout the SDLC, and protect and strengthen development-related

environments.

O S(4)-6.1 Isolation and protection of environments
Isolate and protect the respective environments related to software
development.

Examples of | °
measures *

Isolate the development and production environments.

Isolate environments and networks for software development (development, build, test,
and distribution environments, etc.).

Minimize the use of production software and services from non-production
environments in production environments. (SP800-218 PO.5.1 notional implementation
example)

Regularly log, monitor, and audit trust relationships for authorization and access
between environments and between components in the respective environments.
(SP800-218 PO.5.1 notional implementation example)

Configure security controls and other tools related to the isolation and protection of
environments to generate artifacts of environment behavior. (SP800-218 PO.5.1
notional implementation example)

Continuously monitor vulnerabilities of components deployed in the respective
environments and implement risk-based measures by environment.

Configure and implement measures to protect hosting infrastructures of environments
that comply with the Zero Trust Architecture.

88

[0 S(4)-6.2 Protection of development endpoints

Protect and strengthen endpoints designed for the respective developers to
perform development-related tasks using a risk-based approach.

Examples of
measures

Select appropriate system protection methods (e.g., appropriate architecture,
technology) based on risk analysis to isolate environments and networks for the
purpose of software development.

Make security protection for development environments and endpoints (for software
designers, developers, testers, builders, etc.) robust (using multi-factor authentication,
risk-based authentication, conditional access by environment, encryption of sensitive
data based on standards, etc.), monitor privileged access and access attempts, and
detect, respond to, and restore cyber incidents.

Development environments should provide the minimum functionality required by users
and services and must be configured following the principle of least privilege.

Strictly restrict connections to development environments (including limiting access to
the Internet to the minimum necessary).

Implement hardening such as configuration management, change management,
protection of development, maintenance environments, administrator privileges, etc. to
prevent the creation and introduction of malicious software.

(In the case of software for a system/service)

To streamline development and administrative work, prepare a common development
platform including configuration management and provide it to the contractor

(considering the burden of costs on business divisions).

Benefits of using Al in software development operation

In 2023, a US survey found that 92% of US-based developers have been already using
Al coding tools both at work and outside of work. This fact illustrates that generative Al is
used extensively in software development operation.

In addition, in an analysis of GitHub Copilot users by a US research company, it was
reported that, on average, developers accepted almost 30% of code suggestions from
GitHub Copilot in the first year, and that the acceptance helped to improve productivity.
Furthermore, it was found that the acceptance rate had increased as developers became
more familiar with the tools. This suggests that it is likely to continue to affect the
productivity of developers as they become more accustomed to software development with
GitHub Copilot.

Another survey reported that less experienced developers benefit more from GitHub
Copilot. Thus, it is hoped that generative Al will be used effectively in software
development operation.

Negative aspects of Al use in software development operation

A study by Stanford University in the US reported that giving too much authority to an Al
assistant (for example, the automation of parameter selection) may reduce enthusiasm for
addressing security vulnerabilities, and that Al assistants may reduce the proactiveness of
developers in carefully searching library documentation for APIs and details of secure
implementation.

Given that some causes of security vulnerabilities are related to the selection and use
of inappropriate libraries, it is contemplated that developers need to pay attention to how
they handle Al assistants (e.g., interactive methods including prompts), learn how to test
the products they produce, etc.

Column Responses to ethical, legal, and social issues in Al use

89

During the "Human Genome Project” in the 1980s, an initiative named Ethical, Legal
and Social Implications (ELSI) was promoted. This initiative represents a way of thinking
that addresses both technical issues as well as ethical, legal, and social influences, which
is a perspective that should be emphasized in light of the rapidly advancing Al use at
present. One of the ELSI initiatives in Al use that are being discussed is that for
"trustworthy and responsible Al."

For example, the accuracy of a machine-learning model is greatly affected by both the
quantity and quality (variation) of the training data, so it is important to consider
characteristics related to the quality of data that affect performance and security, such as
whether the data are biased, whether they can sufficiently predict events, and whether
they contain noise. Before collecting such training data or utilizing machine-learning
models, it is necessary to consider ethical (human rights violations, etc.), legal (copyright,
unfair competition prevention, trade secrets, personal information and privacy, etc.), and
social (Al fairness, transparency, accountability, etc.) impacts as risks and to establish an
appropriate risk management system for the development and maintenance of
"trustworthy and responsible Al."

In the EU, a provisional agreement was reached on a bill to regulate Al comprehensively
(the Artificial Intelligence Act) as of December 2023. In the future, risk-based responses
will be required for Al systems that are developed and used within the EU, and heavy fines
will be set for violations; thus, each entity will be urged to take measures.

In addition, the US National Institute of Standards and Technology (NIST) has developed
a framework (the NIST Al Risk Management Framework (RMF)) to better manage the risks
associated with Al for individuals, organizations, and society, and the Trustworthy and
Responsible Al Resource Center has started supporting its use.

https://airc.nist.gov/Home

Example of secure software development practice for

Column generative Al

The US NIST has published SP800-218A (Secure Software Development Practices for
Generative Al and Dual-Use Foundation Models Community Profile) as a derivative of the
SSDF defined in SP800-218. This document supplements the SSDF with tasks, practices,
and recommendations specific to Al model development and provides useful information
for Al model developers, Al system developers, and Al system purchasers to gain a deeper
understanding of secure software development techniques for Al models.

The SSDF has been supplemented with the following items:

* Data protection (added as the PS.1.2 task)
Protect data for all training, testing, fine-tuning, and aligning from unauthorized access
or modification.

* Model protection (added as the PS.1.3 task)
Protect model weights and configuration parameters from unauthorized access or
modification.

* SBOMs through supply chain levels of software artifacts (SLSA) (change in the PS.3.2
task)
Collect, protect, maintain, and share provenance data for all components of the
respective software releases (e.g., SBOMs through SLSA).

* Continuous monitoring of execution performance and behavior (added as the PO.5.3
task)
Continuously monitor the execution performance and behavior of software in software
development environments to identify potential suspicious activities or other issues.

* Analysis of data (added as the PW.3.1 task)
Analyze data for signs of data poisoning, bias, homogeneity, and tampering before
using them for the purposes of training, testing, fine-tuning, and aligning Al models
and mitigate risks as necessary.

90

* Tracking of data provenance (added as the PW.3.2 task)
Track the provenance of all training, testing, fine-tuning, and aligning data used for Al
models.

* Adversarial samples (added as the PW.3.3 task)
Include adversarial samples in training and test data to improve attack detection.

With reference to these tasks and practice examples, it is possible to establish systems,
processes, and procedures for securely developing generative Al models.
https://csrc.nist.gov/pubs/sp/800/218/a/final

91

(5) Strengthening of relationships between cyber infrastructure providers and
stakeholders

Organizational system for information sharing

Establish an organizational structure for information sharing between private companies,
relevant authorities, and specialized organizations to improve the security of software
products and services.

O $S(5)-1.1 Establishment of an organizational system for information sharing
Establish an organizational structure for information sharing between private
companies, relevant authorities, and specialized organizations to improve the
security of software products and services.

Examples of | * Establish policies to check for and enforce compliance of in-house policies to legal

measures requirements and industry best practices, and standards related to software.

. Establish a CSIRT and a point of contact to make use of information linkage between
private companies, relevant authorities, and specialized organizations regarding
software security, and at the same time, advance the skills of those involved and
promote the use of communication tools to improve efficiency.

O $S(5)-1.2 Provision of important security-related information
Select and identify essential and important security-related information specific
to the industry and provide it to partners in the supply chain.

Examples of | * Establish a mechanism for information sharing on software security between cyber

measures infrastructure providers (developers, suppliers, and operators) and customers
(orderers). Suppliers contribute to information linkage as liaisons or intermediaries
between developers and customers.

. Actively share cases of damage (especially information on threats and
countermeasures) to prevent the same damage from being repeated.

(In the case of software for a system/service)

. Establish a mechanism for sharing information between related vendors to improve the
security of customers and provide responses when an incident occurs, based on a
contract.

O $(5)-1.3 Use of vulnerability information notification services
Use vulnerability information notification services to share vulnerability
information efficiently.

Examples of | * For information sharing on the types of attacks and influences of a discovered

measures vulnerability, make use of mechanisms operated by industry associations, etc.

. For information sharing on vulnerabilities in settings, make use of institutions and
mechanisms operated by specialized organizations, etc.

. Promote the use of recommended information on common configuration management
tools in the industry through an industry association.

92

H The need for a mechanism for sharing information among stakeholders

There is a growing need to formulate a mechanism for sharing information between
specialized organizations, related vendors, or related parties, such as how contracts
regarding responses when incidents occur, which will contribute toward improving
customer security. Examples are provided as follows:

At present, information sharing on vulnerabilities caused by software configurations
is often limited to individual sharing between companies and personal connections.
Therefore, sharing mechanisms such as a reporting system of public institutions
(such as IPA) should be used.

As it is generally difficult for developers to obtain information on the attacks and
influences of a discovered vulnerability, it should be made possible to use the
"Guidance for Sharing and Disclosure of Information on Damage from
Cyberattacks" (established by The Study Group on Guidance for Sharing and
Disclosure of Information on Damage from Cyberattacks on March 8, 2023), etc.
("Information sharing" refers to the exchange of technical information, mainly
related to cyberattack techniques, conducted in private at information sharing
venues or between specialized organizations. In contrast, "disclosure" is intended
for victim organizations to present to the outside the status of the cyberattack
damage that they suffered and details of their responses. Note that the guidance is
expected to be more convenient by attaching importance and deadlines of
measures.)

As cyberattacks become more sophisticated and difficult for a single organization
to clarify the full extent of an attack, it is important that "information sharing" is
carried out promptly between other specialized organizations, not by a victim
organization itself, but through specialized organizations that support victim
organizations, from the perspective of preventing the spread of damage.

In line with the recommendations made by the "Study Group for Promotion of
Information Sharing on Damage Caused by Cyberattacks," a framework should be
established for smooth information sharing between specialized organizations and
its promotion by making use of the "Guide on How to Handle and Utilize Technical
Information on Cyberattacks" and "Draft Model Contractual Articles on How to
Handle Technical Information on Cyberattacks to be Included in NDA" (established
by the study group on March 11, 2024).

A public—private information sharing mechanism intended for all cyber infrastructure
providers (developers, suppliers, and operators) and customers (orderers) should
be established.

To establish such a mechanism, several challenges must be addressed, including
assessment of eligibility for information sharing in information-sharing platforms, the
arrangement of formats and manuals for effective use of information, etc. (Related
requirement: S(5)-1.2)

93

Strengthening of cooperation systems

To improve the security of software products and services, make use of systems and
frameworks for cooperation with private companies, relevant authorities, and specialized
organizations.

O S(5)-2.1 Utilization of cooperation systems
To improve the security of software products and services, make use of
communities and cooperation systems aimed at improving software security in
which external businesses, customers, and specialized organizations

participate.
Examples of | * Participate in industry associations such as the Information Sharing and Analysis
measures Center (ISAC) that share and analyze security information.

O $§(5)-2.2 Contribution to cooperation systems
When participating in a community or cooperation system, actively participate in
activities to contribute to the cooperation system.

Examples of | * In addition to sharing damage information, make use of a wide range of cooperation

measures frameworks, such as the following:

> Parent companies participate in a CSIRT council, and dispatch employees of
group companies to the CSIRT s of the parent companies to share information.

» Share indicator of compromise (loC) information within group companies by
making use of the Malware Information Sharing Platform (MISP).

» Participate in the ISAC (Software ISAC, etc.) and CSIRT council.

> Engage in volunteer groups of the private sector and participate in conferences
established by connecting government agencies and other organizations with a
local security community and share vulnerability information with local
businesses, business organizations, and local governments.

» Hold study sessions with contractors who do not have ongoing projects, and share
information with them.

» User meetings hosted by prime providers, cross-industry briefings on sample
cases of incidents and their causes.

» Utilization of government-established information sharing platform such as the
IPA.

94

M Expectation for initiatives to strengthen cooperation systems among

stakeholders

The initiatives described below are expected to strengthen cooperation systems formed
to improve the security of products and services among stakeholders. (Related
requirement: S(5)-2.2)

* Cooperation of industry associations is essential, and it is expected to contribute in
various manners by encouraging active participation of the business sector in
addressing challenges.

* Itis expected that mechanisms for sharing information to deal with cyber threats
beyond confidentiality obligations, contractual arrangements in response to an
incident, means setting the level of information disclosure and its rules for
information sharing in a supply chain, establishing frameworks to quickly report and
share known vulnerabilities, and planning countermeasures to customers or
establishing maintenance operation teams.

* As a means of supporting business operators to improve their level of security
requirements, it is expected that guidelines and security baseline will be arranged
andformulated by each industrial sector..

95

Risk management under the leadership of the customer's management
Integrate risk management that is implemented in cooperation with cyber infrastructure
providers based on the leadership of the customer's management.

0 $S(6)-1.1 Risk management

Implement risk management in which the customer's independent and proactive
efforts are integrated with efforts based on a contract with cyber infrastructure
providers.

Examples of
measures

Customers are responsible for risk management of the entire systems they own.
Appropriate measures should be implemented based on the potential risks of the entire
system (such as the application of multi-factor authentication to users with
administrative privileges and realization of efficiency through proper operation of single
sign-on).

Regard critical cyber infrastructure providers that support the organizational security
posture as critical business functions, and provide funding for entire life cycles of
operation and risk responses of the intended systems and software according to their
importance to organizational success, considering confirmed results of checks of
proposals from cyber infrastructure providers and cost breakdowns.

Require cyber infrastructure providers to have transparency in their position on internal
control and roadmap for following secure by design and secure by default practices.
Assuming a case in which an incident occurs in the operation of a system owned by a
customer, who enters into a maintenance contract with the cyber infrastructure provider
to which the maintenance of the system is entrusted, including incident response and
allocation of roles for it..

Create a plan to improve the capabilities of cyber infrastructure providers that follow
secure by design and secure by default practices.

Define all roles and responsibilities involved in the software operation life cycle,
including cybersecurity staff, security champions, security testers, operation and
platform engineers, and procurement staff.

When using cloud systems, clarify security responsibilities of customers and suppliers
based on a shared responsibility model, and prioritize cloud providers with high
transparency in their security position, internal controls, and ability to fulfill
responsibilities under the shared responsibility model.

96

[0 $S(6)-1.2 Resource arrangement
Allocate and develop resources to respond proactively to known vulnerabilities
and implement mitigation measures (including SBOM utilization).

Examples of
measures

Check support periods of software products and create an operation plan that does not
use out-of-support software.

Request and verify evidence information related to security implementation of software
products (such as SBOMs and self-conformance certificates that prove the conformity
of SSDF implementation).

Perform integrity mechanism checks, security tests, environmental tests, and functional
tests before software acceptance or deployment.

To ensure the quality of the software to be introduced, establish quality verification
procedures and standards through discussions between the customer and cyber
infrastructure provider and request evidence.

Continuously conduct security monitoring of the introduced software, and report to the
cyber infrastructure provider when a suspected software vulnerability is identified.
Determine an update policy based on software update strategies and adopt an
automated update mechanism as necessary.

O S(6)-1.3

Utilization of collaborative systems
Utilize communities and collaborative systems aimed at improving software
security.

Examples of
measures

When participating in a community or cooperation system, actively participate in
activities to contribute to the cooperation system.

m Differences in life cycles

Life cycles (usage periods) that customers who use software recognize are different
from life cycles (support periods) that cyber infrastructure providers who provide the
software recognize. When using software, it is essential to regularly check support periods
of versions of software to be used and create an operation plan for using the software for
which the support period has expired.

(Related requirement: S(6)-1.2)

97

Software procurement/operation under the leadership of the customer's management
Procure and operate software securely under the leadership of the customer's management.

O $S(6)-2.1 Definition of security requirements
Define security requirements for incorporating security functions into software
design plans and present them to cyber infrastructure providers before
procuring and deploying software.

Examples of | * Work with industry counterparts to request that cyber infrastructure providers prioritize
measures secure by design and secure by default initiatives in the future.

[0 $(6)-2.2 Disclosure of security practice requirements
Disclose security practice requirements for cyber infrastructure providers before
procuring and deploying software.

Examples of | * Give permissions to IT departments to specify purchasing criteria that emphasize
measures secure by design and secure by default practices.

[0 $S(6)-2.3 Decision-making based on risk assessment
When procuring and introducing software, make decisions based on risk

assessment.
Examples of | * Create a policy that requires IT departments to evaluate the security of software before
measures purchasing it and to ask for necessary information sources, and give permission to IT

departments to reject as needed.

. When making a decision to accept risks related to a specific technology product, create
formal documentation and have senior management give approval and regularly make
a report to the board of directors.

. When introducing a digital service, evaluate a migration possibility to other digital
services from a risk perspective and make appropriate decision on introduction.

O $(6)-2.4 Budget securement
Continuously secure budgets related to introduction, operation, migration,
disposal, risk response, and related contracts, considering software life cycles.

Examples of | * Consider measures to reduce remaining cybersecurity risks below an acceptable level,
measures secure resources (budget, personnel, etc.) required for the implementation, and then
work on specific measures. (Cybersecurity Management Guidelines v3, Direction 3)

(In the case of software for a system/service)

. As a prerequisite for promoting the sharing of cost recognition among stakeholders,
understand that leaving vulnerabilities unsolved will lead to future liabilities (damage
from cyberattacks, etc.) as a common management risk.

98

5.5. Relationship between the Common Standards and Guidelines (draft)

(1) Framework for the use of the Common Standards and its positioning

National administrative agencies and independent administrative agencies (hereinafter
referred to as "government agencies, etc.") are to ensure information security within their
respective organizations in accordance with the framework for the use of the "Common
Standards for Cybersecurity Measures for Government Agencies and Related Agencies"'3
(hereinafter referred to as "Common Standards") published by National center of Incident
readiness and Strategy for Cybersecurity (NISC, current National Cybersecurity Office
(NCOQ)).

Within this framework, to comply with common norms and standards, which are
requirements for their implementation, government agencies and other institutions are
required to formulate information security policies based on the characteristics of their
organizations and the information that they handle, while referring to the "Guidelines for
Formulating Measures Criteria for Government Agencies and Related Agencies" (hereinafter
referred to as the "Guidelines for Formulating Measures Criteria") to establish operational
regulations and implementation procedures related to the countermeasures set out in the
policies, and to implement countermeasures in a planned manner.

“Common Standards” consist of a common model, common standards, and guidelines for
formulating the measurement criteria. Common Standards classify the measures that
government agencies should implement into three hierarchical levels—division, section, and
subsection—based on their objectives and outline the purpose, intent, and items to observe
at the third level (subsection). The Guidelines for Formulating Measures Criteria provide
examples of basic countermeasures that should be implemented to meet the criteria and
approaches for the formulation and implementation of information security policies.

(2) Relationship with software handled by the Common Standards

"Software" covered by the Guidelines (draft) refers to the following types of software
handled by cyber infrastructure providers, in accordance with the purpose of the Guidelines
(draft) to "promote effective cybersecurity measures intended for software in supply chains."
(For details, see "1.3. Applicable objects: (1) Scope of software" in the Guidelines (draft).)

® Software product

® Software service

® Embedded software

® Software that constitutes a system or service

In addition, the scope of software for which the Common Standards require enhanced
measures in the procurement of external contractors and the outsourcing of development
and operation of information systems is as follows. It is assumed that the scope matches the
software for which the Guidelines (draft) are intended
<Qutsourcing (procurement)>

® Cloud service

® Equipment (server equipment, terminal, communication line equipment, multifunction

printer, specific purpose equipment, software, etc.)
*In terms of software that is deemed particularly necessary to address supply chain
risks as <an example of software that manages or controls the foundation of an
information system>, the following are listed as examples:
» Software that controls terminals, server equipment, and communication line
equipment.

18 https://www.nisc.go.jp/policy/group/general/kijun.html
The Cybersecurity Strategy Headquarters determines "Common Model" and "Common Standards" of the Common
Standards.

99

Software that manages comprehensive entity authentication
Software that controls and manages networks
Software that manages assets
Software related to monitoring
Software used as a security function of an information system
<Information system (outsourcing of development and operation)>

® Application contents

YV VVYY

In addition, reinforcement-related software security and supply chain risk measures have
been actively implemented in the most recent revision of the Common Standards. The
following items are listed as key points in the revision of the Common Standards (2023
edition). Thus, they agree with the purpose of the Guidelines (draft):

® Key points in the revision of the Common Standards (2023 edition)**

Strengthening of supply chain measures related to information security
Strengthening of measures in light of the expanding use of cloud services
Strengthening of measures for software use

Strengthening of measures in light of strengthening of cyber resilience, cyber threat
and technology trends

Strengthening of cross-organizational information security measures and
assurance of measures according to the importance of information systems

YV V VY

v

(3) Relationship between the Common Standards and Guidelines (draft)

The Guidelines (draft) specify the appropriate division of roles and responsibilities between
cyber infrastructure providers and customers to ensure the cyber security of software and
improve resilience. In terms of the relationship with the Common Standards, government
agencies are the customers and they comply with and reference these standards. Conversely,
cyber infrastructure providers are external contractors and are positioned to accept
outsourced business—such as software development, system operations, or the supply of
equipment and related services. The Common Standards do not directly state the roles and
responsibilities that cyber infrastructure providers should fulfill as contractors to enable
customers to implement items to observe; therefore, it is necessary to read the contents of
the Common Standards from the perspective of a contractor to understand it.

The first level of the Common Standards is divided into seven parts (Parts 2 to 8). Some
parts contain content that is directly related to the responsibilities set forth in the Guidelines
(draft) (items marked with "O" in the table below) and some parts contain descriptions related
to the requirements as responsibilities set forth in the Guidelines (draft) (items marked with "
A" in the table below).

Table 8 Correspondence relationship with the first layer (chapter) of the Common
Standards

First layer (chapter) of the Common | Cyber infrastructure
: Customer

Standards provider
Chapter 1: General Provisions
Chapter 2: Basic Framework of Information

. O
Security Measures
Chapter 3: Information Handling AN

14 https://www.nisc.go.jp/pdf/policy/general/rev_pointr5.pdf

100

First layer (chapter) of the Common | Cyber infrastructure
Standards provider
Chapter 4: Outsourcing @)

Customer

Chapter 5: Life of Information Systems

Chapter 6: Information Systems Components

Information Systems

O
O
Chapter 7: Security Requirements for 0
JAN

> O |0 Ol O

Chapter 8: Use of Information Systems

Appendix

In addition, the classification of the chapters in the second layer presents a relationship
between the Common Standards and Guidelines (draft); as the following chapters of the
Common Standards (items in a red frame in the table below) are both marked "O" for
customers and cyber infrastructure providers, there is a particularly strong relationship with
the responsibilities and division of roles shown in the Guidelines (draft).

4.1 Subcontracting

4.2 Use of Cloud Services

4.3 Procurement of Equipment, etc.

5.2 Measures at Each Phase of Information System Lifecycle

6.5 Software

6.6 Applications and Content

7.2 Measures against Information Security Threats

Table 9 Correspondence relationship with the second layer (chapter)
of the Common Standards

Cyber infrastructure

provider Customer

Second layer (chapter) of the Common Standards

Chapter 1: General Provisions

1.1 Purpose and Scope of these Common
Standards for Measures

1.2 Classification of Information and Handling
Restrictions

1.3 Definition of Terms

1.4 Terminology

1.5 Basic Measures and Explanations

Chapter 2: Basic Framework of Information Security Measures

2.1 Introduction and Plan

2.2 Operation

2.3 Assessment

2.4 Review

2.5 Incorporated Administrative Agencies and
Designated Corporations

Chapter 3: Information Handling

3.1 Information Handling

3.2 Information Handling Areas

Chapter 4: Outsourcing O

Olo|I>|>ID>|ID>|DIP|OIO]|O

4.1 Subcontracting O

101

4.2 Use of Cloud Services

p ™ = —

Chapte

4.3 Procurement of Equipment, etc.

r 5: Life of Information Systems

5.1 Classification of Information Systems

o mm

5.2 Measures at Each Phase of Information
System Lifecycle

5.3 Operational Continuity Plan of Information
Systems

5.4 Shared Government Systems

Chapte

r 6: Information Systems Components

6.1 Terminals

6.2 Server Equipment

6.3 Multifunction Devices and Equipment for
Specific Purposes

6.4 Communication Lines

6.5 Software

o = —

6.6 Applications and Content

Chapte

r 7: Security Requirements for Information Systems

7.1 Security Functions of Information Systems

>1Oool> | > |>|D> o> D>

7.2 Measures against Information Security Threats

7.3 Zero Trust Architecture

Chapte

r 8 Use of Information Systems

8.1 Use of Information Systems

>ID>IP>)O

Appendix

102

5.6. Relationship between the Guidelines for Establishing Safety Principles for
Ensuring Information Security of Critical Infrastructure and Guidelines (draft)

(1) Framework for the use of the Guidelines for Establishing Safety Principles for Ensuring
Information Security of Critical Infrastructure and its positioning

Critical infrastructure operators conduct their business in accordance with the relevant
standards specified under the legal system related to their business fields. In the "Action Plan
for Cybersecurity of Critical Infrastructure" (hereinafter referred to as the "Action Plan"), it
is stated that critical infrastructure operators shall endeavor to strengthen their own
organizational failure response systems based on the safety standards (described later), and
through these efforts, information security measures related to critical infrastructures are
being advanced comprehensively. In the "Guidelines for Establishing Safety Principles for
Ensuring Information Security of Critical Infrastructure"!® (hereinafter referred to as the
"Guidelines for Establishing Safety Principles"), with respect to cybersecurity assurance,
these standards or reference documents regarding the judgments and actions of respective
critical infrastructure operators are defined as "safety standards"'’, and efforts to ensure
cybersecurity that are commonly required for each critical infrastructure field are classified
and organized. It is expected that these efforts will be described in the safety standards to
be developed by critical infrastructure industry in principle.

In addition, a manual has been developed as a reference document in the Guidelines for
Establishing Safety Principles, which explains the basic approaches and specific procedures
for promoting security measures, such as risk management.

(2) Relationship with software handled by the Guidelines for Establishing Safety Principles

The "software" covered by the Guidelines (draft) refers to the following types of software
handled by cyber infrastructure providers, in accordance with the purpose of the Guidelines
(draft) to "promote effective cybersecurity measures intended for software in supply chains."
(For details, see "1.3. Applicable objects: (1) Scope of software" in the Guidelines (draft).)

® Software product

® Software service

® Embedded software

® Software that constitutes a system or service

In addition, the intended scope to be stipulated in the safety standards through the
Guidelines for Establishing Safety Principles should be based on the contents of "Examples
of Targeted Critical Systems" described in "Appendix 1: Examples of Intended Ciritical
Infrastructure Businesses, etc. and Critical Systems" of the Action Plan and "Critical
Infrastructure Services (including Procedures)," "Examples of Critical Infrastructure Service
Disruptions," and "Service Maintenance Levels" described in "Appendix 2: Critical
Infrastructure Services and Service Maintenance Levels." As an example of a supply chain
that should be addressed, a cloud service is shown, whereas information systems, control
systems, and general-purpose equipment are shown as those that are subject to risk
management. Based on the fact that software is an element that constitutes a system, the
following are assumed as target software. Therefore, it is assumed that, of the software that
the Guidelines (draft) target, those other than software products comply.

15 https://www.nisc.go.jp/pdf/policy/infra/cip_policy_2024.pdf

16 https://www.nisc.go.jp/pdf/policy/infra/shishin202307.pdf

17 Classified as "internal regulations" that critical infrastructure operators establish for themselves to meet the
expectations of the public and users, etc. and cross-industry "industry standards" and "guidelines" that industry
associations, etc. establish to satisfy "mandatory standards" established by the government based on relevant laws and
regulations, "recommended standards" and "guidelines" established by the government in accordance with relevant
laws and regulations, and the expectations of relevant laws and regulations and the public.

103

<Qutsourcing (procurement)>
® Cloud service
® Control system (including general-purpose equipment)
<Information system (outsourcing of development and operation)>
® [nformation system

The Guidelines for Establishing Safety Principles state the following, which agrees with the
purpose of the Guidelines (draft):

4.4. Supply-chain Risk Management

Understand dependencies between organizational critical systems and functions and
supply chains, and understand the status of security measures of suppliers.

Conduct risk assessments and risk responses for supply chain risks. (Omitted)

For tier 1 suppliers, clarify roles and scope of responsibilities to be assumed in
response to cybersecurity risks in contracts between businesses. Furthermore, it is
desirable to implement risk management for entire supply chains by ensuring that
respective suppliers are aware of the implementation status of supply chain risk
management within their lower-tier suppliers, while determining degrees of involvement
with Tier 2 suppliers according to the type of risk. In addition, it is desirable to increase
the effectiveness of measures throughout supply chains with support from suppliers for
introduction of security measures, joint implementation, etc.

(3) Relationship between the Guidelines for Establishing Safety Principles and Guidelines
(draft)

The Guidelines (draft) specify the appropriate division of roles and responsibilities between
cyber infrastructure providers and customers to ensure the cyber security of software and
improve resilience. In relation to the Guidelines for Establishing Safety Principles, customers
are considered as critical infrastructure operators—entities that implement measures on the
basis of safety standards—based on the Guidelines for Establishing Safety Principles,
whereas cyber infrastructure providers are external contractors® from the perspective of
critical infrastructure operators and are usually in a position to accept business outsourcing,
including software, from critical infrastructure operators (customers)—entities for the
development/operation of information systems or businesses from which equipment is
procured. The Guidelines for Establishing Safety Principles do not directly state the roles and
responsibilities that cyber infrastructure providers should fulfill as contractors to enable
customers to realize efforts toward ensuring cybersecurity common to respective critical
infrastructure fields; therefore, it is necessary to read the content of the Guidelines for
Establishing Safety Principles from the perspective of a contractor in order to understand it.

The Guidelines for Establishing Safety Principles are classified based on the efforts
required for ensuring cybersecurity, which are common to respective critical infrastructure
fields. Some chapters contain content that is directly related to the responsibilities set forth
in the Guidelines (draft) (items marked with "O" in the table below), whereas some chapters
contain descriptions related to the requirements as responsibilities set forth in the Guidelines
(draft) (items marked with "A" in the table below).

18 However, if critical infrastructure operators conduct development and supply in-house, it is considered that they will
take on the responsibilities of "developer" and "supplier," which are the respective roles they shall take as a "cyber
infrastructure provider" in the category of responsibilities, as the "(Entity)." For specific examples, see Table 4 e in "1.4
Approach to the division of roles."

104

Table 10 Correspondence relationship with the first layer of the Guidelines for
Establishing Safety Principles

First level of the Guidelines for | Cyber infrastructure
o e . Customer
Establishing Safety Principles provider
1. Purposes and Positioning
2. General Provisions A
3. Cybersecurity in Organizational A
Governance
4. Utilization of Risk Management, and Crisis
O O
Management
5. Measures O O

In the classification of chapters in the second layer, in the relationship between the
Guidelines for Establishing Safety Principles and the Guidelines (draft), because the
following chapters of the Guidelines for Establishing Safety Principles (items in a red frame
in the table below) are marked "O" for both customers and cyber infrastructure providers,
there is a particularly strong relationship with the responsibilities and division of roles shown
in the Guidelines (draft).

4.2. Risk Management

4.3. Addressing Cybersecurity Risks

4.4. Supply-chain Risk Management

4.8. Operation During Normal Times

5.1 Organizational Measures

Table 11 Correspondence relationship with the second layer of the Guidelines for
Establishing Safety Principles

Second level of the Guidelines for Establishing pyber
o infrastructure Customer
Safety Principles .
provider

1. Purposes and Positioning

1.1. The Importance of Ensuring Cybersecurity for
Critical Infrastructure (Cl)

1.2. What are “Safety Principles"?

1.3. Positioning of the Guideline for Establishing
Safety Principles

>

2. General Provisions

2.1. Purpose of Formulating the Safety Principles

2.2. Applicable Scope
2.3. Roles of Stakeholders

3. Cybersecurity in Organizational Governance

3.1. Organizational Policy

3.2. Communication Within and Outside the
Organization

3.3. Managing Cybersecurity Risks as Business
Risks

3.4. Assignment of Responsibilities and Authority

3.5. Securing Resources

>I>|D>| O D> |D>|I>|D>

3.6. Auditing and Monitoring

3.7. Information Disclosure

105

Second level of the Guidelines for Establishing beer
ety Piislee |nfra§tructure Customer
provider
3.8. Continuous Improvement A
4. Utilization of Risk Management, and Crisis Management | O O
4.1. Understanding the Organization’s Situation A AN
Il 4.2. Risk Management O O I
I 4.3. Addressing Cybersecurity Risks O O 1
\ {44 Supply-chain Rk Management _____ [0~~~ 1o~~~}
4.5. Business Continuity Plan and Other Plans
4.6. Human Resource Development and
Awareness-Raising A
4.7. Establishment of CSIRT, etc. A AN
=" |48 Operation During Normal Times ___ |O_________]O
4.9. Crisis Management A AN
4.10. Exercises and Training AN AN
5. Measures O O
i| |51 Organizatonal Measures o o
~ " |52 Personnel Measures A A
5.3 Physical Measures
5.4 Technical Measures AN AN
5.5. Measures Based on Trends A AN

106

5.7. Reference information

(1) List of reference information

Abbrev.

Document title

NSA

SECURING THE SOFTWARE SUPPLY CHAIN / Recommended Practices Guide
for Developers

https://media.defense.gov/2022/Sep/01/2003068942/-1/-
1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

NSA-S

SECURING THE SOFTWARE SUPPLY CHAIN / Recommended Practices Guide
for Suppliers

https://media.defense.gov/2022/0ct/31/2003105368/-1/-
1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF

NSA-C

SECURING THE SOFTWARE SUPPLY CHAIN / Recommended Practices Guide
for Customers

https://media.defense.gov/2022/Nov/17/2003116445/-1/-
1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF

SP800-218

NIST SP800-218 Secure Software Development Framework (SSDF) Version 1.1:
Recommendations for Mitigating the Risk of Software Vulnerabilities
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

BSA

The BSA Framework for Secure Software: A New Approach to Securing the
Software Lifecycle
https://www.bsa.org/files/reports/bsa_software_security_framework_web_final.pd
f

CISA-D

Defending Against Software Supply Chain Attacks
https://www.cisa.gov/sites/default/files/publications/defending_against_software_
supply_chain_attacks_508_1.pdf

CISA-SBD

Secure-by-Design - Shifting the Balance of Cybersecurity Risk: Principles and
Approaches for Secure by Design Software
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf

SP800-161

NIST SP800-161 Cybersecurity Supply Chain Risk Management Practices for
Systems and Organizations
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1-
updl.pdf

ISMS

ISO/IEC 27002:2022 - Information security, cybersecurity and privacy protection
Information security controls
https://www.iso.org/standard/75652.html

107

Abbrev.

Document title

Common Criteria for Information Technology Security Evaluation
ISO/IEC 15408:2022 - Information security, cybersecurity and privacy protection
Evaluation criteria for IT security Part1~3

IS0 15408 https://www.iso.org/standard/72891.html
https://www.iso.org/standard/72892.html
https://www.iso.org/standard/72906.html
ENISA Guidelines on assessing DSP and OES compliance to the NISD security
DSP requirements

https://op.europa.eu/en/publication-detail/-/publication/78f2a620-f909-11e8-
9982-0laa75ed71al/language-en

Ministry of Internal
Affairs and
Communications

Guidelines for Information Security Measures in Cloud Service Provision
https://www.soumu.go.jp/main_content/000771515.pdf

Guidelines for Information Disclosure regarding the Safety and Reliability of Cloud
Services

https://www.soumu.go.jp/main_content/000477838.pdf

CRA

The European Cyber Resilience Act
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/739259/EPRS_BRI(
2022)739259_EN.pdf

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on
horizontal cybersecurity requirements for products with digital elements and
amending Regulation (EU) 2019/1020
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=0J:L_202402847

Common Standards

Common Standards for Cybersecurity Measures for Government Agencies and
Related Agencies

https://www.nisc.go.jp/pdf/policy/general/kijyunr5.pdf

Common Model for Cybersecurity Measures for Government Agencies and
Related Agencies

https://www.nisc.go.jp/pdf/policy/general/kihanr5.pdf

Guidelines for Formulating Measures Criteria for Government Agencies and
Related Agencies

https://www.nisc.go.jp/pdf/policy/general/guider6.pdf

Guidelines for
Establishing Safety
Principles

Action Plan for Cybersecurity of Critical Infrastructure
https://www.nisc.go.jp/pdf/policy/infra/cip_policy_abst_2024.pdf

Guidelines for Establishing Safety Principles for Ensuring Information Security of
Critical Infrastructure

https://www.nisc.go.jp/pdf/policy/infra/shishin5.pdf

Japan-US-Australia-
India Cybersecurity

Joint Statement of the Japan-US-Australia-India Summit (QUAD Joint Principles)
https://www.mofa.go.jp/mofaj/fp/nsp/pagel_001188.html

Partnership

UN-R155 UN Regulation No._ 155 - Cyber security and cyber security management system
https://unece.org/sites/default/files/2023-02/R155e%20%282%29.pdf

ISO 21434 ISO/SAE 21434:2021 - Road vehicles Cybersecurity engineering
https://www.iso.org/standard/70918.html
UN Regulation No. 156 - Software update and software update management

UN-R156 system

https://unece.org/sites/default/files/2024-03/R156e€%20%282%29.pdf

108

Abbrev.

Document title

ISO 24089

ISO 24089:2023 - Road vehicles Software update engineering
https://www.iso.org/standard/77796.html

ISO 24089:2023/Amd 1:2024
https://www.iso.org/standard/87522.html

OMB M-23-16

Update to Memorandum M-22-18, Enhancing the Security of the Software Supply
Chain through Secure Software Development Practices
https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/06/M-23-16-
Update-to-M-22-18-Enhancing-Software-Security.pdf

Secure Software Development Attestation Form Instructions
https://www.cisa.gov/sites/default/files/2024-03/Self-Attestation-Common-Form-
03082024-FINAL.pdf

SP800-218A

NIST SP 800-218A Secure Software Development Practices for Generative Al and
Dual-Use Foundation Models An SSDF Community Profile
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218A.pdf

DSIT

DSIT — The Code of Practice for Software Vendors
https://www.gov.uk/government/calls-for-evidence/a-code-of-practice-for-
software-vendors-call-for-views/call-for-views-on-the-code-of-practice-for-
software-vendors

Cybersecurity
Management
Guidelines

Cybersecurity Management Guidelines
https://www.meti.go.jp/policy/netsecurity/downloadfiles/guide_v3.0.pdf

109

(2) Relationships with other standards, guidelines, etc.

The Guidelines (draft) have a relationship as described below with various other guidelines
and frameworks intended for software security and software development assurance. It is
possible to use these guidelines in specific initiatives, when further policy considerations and
means of implementation are required. The scope on which the Guidelines (draft) are based
and their relationships with other major standards and guidelines are shown in Figure 8. The
relationships with major standards, guidelines, etc. are described below.

N34 SECURING THE 50F
TWARE SUPPLY CHAIN I
Recommended Practices

Gulda

Inclusion of praciices

Irslusion of customar cancepls

Sacurs-by-Design -
Shifiing the Balanca of

Cybersscurity Risk:

Principles and
Approaches for Secure by
Deeign Software

The Guldelines [draft)

[arrangemeant of responaibilites
v requirements)

EU Cyber Reslllence Act

Inclusion of requiremsents
Sharing af threat and
vulnerability information
among stakehalders and
response ta them, elc

HIZT SPERO0-213
|$5DF: $ecurs Software
Devalopment Framework)

Inclusion of requirements
(adl] ard praclices

QUAD Joint Principles Tor
Securs software

{for procurement by the
governmant only)

Sharing af software
securily concepts with
SPADD-218

HI 3T 3P300-161
{C-SCRM: Supply chain
rizk assasament for all of
tha SLCP)

Referance relaticnship
batween SPA0D-218 and
SYSIEMS Enginsaring

OMB M-23-18
|=ei-conformance

daciaration)

Definition of salf-
canformancs declaration
with & sub=st of SPEN0-218

Figure 8 Relationship between the Guidelines (draft) and other standards, guidelines, etc.

[1] NIST SP800-218

SP800-218 issued by NIST provides guidance for strengthening the security of software
supply chains. It advocates a framework known as the SSDF, which adds secure software
practices to SDLC models to ensure security of the software under development. The
Guidelines (draft) comprehensively treat the tasks required to execute each practice shown
in SP800-218 as "requirements," and use implementation examples for the respective tasks
as reference for some "Examples of measures."

[2] NSA Software Supply Chain Guidance (for Developers, Suppliers, Customers)

The three editions of the software supply chain guidance issued by the NSA (for developers,
suppliers, and customers) provide industry best practices and principles to which software
developers, suppliers, and customers should refer. The principles outlined in the Developer
Edition include planning security requirements, designing the software architecture from a
security perspective, implementing security functions, and maintaining the security of the
software development infrastructure (development environment, source code review, testing,
etc.). The Guidelines (draft) mainly reference some "Examples of measures" based on the
essence of the principles and best practices described in the three documents.

110

[3] CISA Secure-by-Design - Shifting the Balance of Cybersecurity Risk: Principles and
Approaches for Secure by Design Software

The guidance published by the CISA on the principles and approaches of secure by design
is intended to ask software developers to prioritize security when designing, developing, and
offering products. It advocates three principles, namely "Having ownership of customer
security outcomes," "Accepting fundamental transparency and accountability," and "Leading
from the top," and explains the respective principles, key practices, and tactics (techniques)
from the perspectives of secure by design and secure by default. The Guidelines (draft)
constitute requirements for responsibilities in accordance with the principles of secure by
design and secure by default, and presents the essence of the security principles of software
products and the tactics (techniques) as a reference in the "Examples of measures."

[4] EU CRA

The CRA is a legal framework that provides cybersecurity requirements for hardware and
software products with digital elements within the EU. It is expected to be fully enforced in
2027. This legal framework covers a wide range of products with digital elements, with some
exceptions, and manufacturers who deploy products to the European market will be obligated
to ensure that they meet security requirements throughout their product life cycles (such as
creating SBOMs, providing security updates, and reporting to authorities when vulnerabilities
are discovered or in the event of an incident). In the Guidelines (draft), cybersecurity
requirements (requirements relating to product characteristics and vulnerability handling
requirements) and some information and instructions to users are used as a reference for
"ltemized requirements" or "Examples of measures."

[5] Other standards and guidelines
In addition to those mentioned above, the Guidelines (draft) also refer to the following

standards and guidelines:

* The BSA Framework for Secure Software: A New Approach to Securing the Software
Lifecycle

* CISA Defending Against Software Supply Chain Attacks

e NIST SP800-161 Cybersecurity Supply Chain Risk Management Practices for Systems
and Organizations

* ENISA Guidelines on assessing DSP and OES compliance to the NISD security
requirements

e Common Criteria for Information Technology Security Evaluation (ISO/IEC 15408)

* ISOJ/IEC 27002:2022

e Ministry of Internal Affairs and Communications Guidelines for Information Security
Measures in Cloud Service Provision

e Ministry of Internal Affairs and Communications Guidelines for Information Disclosure
regarding the Safety and Reliability of Cloud Services

e National Cybersecurity Office Common Standards for Cybersecurity Measures for
Government Agencies and Related Agencies

* National Cybersecurity Office Guidelines for Formulating Measures Criteria for
Government Agencies and Related Agencies

* National Cybersecurity Office Action Plan for Cybersecurity of Critical Infrastructure

1M1

* National Cybersecurity Office Guidelines for Establishing Safety Principles for Ensuring
Information Security of Critical Infrastructure

e Japan-US-Australia-India Cybersecurity Partnership Joint Statement of the Japan-US-
Australia-India Summit (QUAD Joint Principles)

« UN-R155

* UN-R156

* ISO/SAE 21434:2021

* IS0 24089:2023

e OMB M-23-16

* NIST SP800-218A

* DSIT The Code of Practice for Software Vendors

Together with them, the software-related C-SCRM framework and recommendations for

identifying, evaluating, and mitigating risk based on SSDFs published by the CISA are used
as references.

112

(3) Correspondence relationships with NIST SP800-218

Requirements Corresponding items in NIST SP800-218
S(1)-1 PW.1.1, PW.1.2, PW.2.1

S(1)-2 PW.5.1, PW.6.1, PW.6.2, PW.7.1, PW.7.2, PW.9.2
S(1)-3 PW.8.1, PW.8.2, PW.9.1

S(1)-4 PW.9.1, (PS.1.1, PO.5.1, PO.5.2)

S(2)-1 PW.1.3, PW.4.1, PW.4.2, PW.4 4, (RV.2.1)

S(2)-2 PS.1.1, PS.3.1, PS.3.2

S(2)-3 PO.1.3, (PW.4.4)

S(2)-4 PS.2.1, PW.9.2

S(3)-1 RV.1.1, RV.1.2, RV.1.3

S(3)-2 RV.2.1,RV.2.2

S(3)-3 RV.3.1, RV.3.2, RV.3.3, RV.3.4, PW.7.2

S(4)-1 PO.2.1, PO.2.2, PO.2.3, (PO.3.1, PO.3.2, PO.3.3)
S(4)-2 PO.1.1, PO.1.2, (PO.2.3)

S(4)-3 (PO.1.1, PO.1.2, PO.2.3)

S(4)-4 P0O.4.1,P0.4.2

S(4)-5 P0O.3.1,P0.3.2, PO.3.3

S(4)-6 P0O.5.1,PO.5.2

S(5)-1 —

S(5)-2 —

S(6)-1 —

S(6)-2 —

113

(4) Correspondence relationship between the three NSA Software Supply Chain

Guidance documents

Requirements NSA NSAS NSAC
(for Developers) (for Suppliers) (for Customers)

S(1)-1 232 2.3.1 —

S(1)2 2214,222,226,2232,|222, 233, 234, | —
232,233,241 2.3.6

S(1)-3 221.3,2232,232,24.1 |222,2.35,2.3.6 —

S(1)-4 — — —

S(2)1 223, 232, 233, .234,|23.1,23.2 21,22
235
2211, 2212, 2214,|221,222,223 —

S(2)-2 226, 232, 233, 241,
253

S(2)-3 2.2.3 211 —

S(2)-4 — — _

S(3)-1 234,241 241 —

S(3)-2 — — _

S(3)-3 — — —

S(4)-1 — — —

S(4)-2 223 2.1.1 —

S(4)-3 223 2.1.1 —

S(4)-4 — — —

S(4)-5 — — —

S(4)-6 — — —

S(5)-1 — — —

S(5)-2 — — —

S(6)-1 — — 21,22,23

S(6)-2 — — 2.1

114

(5) Correspondence relationship with

Balance of Cybersecurity Risk

CISA Secure-by-Design - Shifting the

Requirements | Principle 1 | Principle 2 | Principle 3 dess?gczﬁizg?/cs desf:SIl:rtZg)ilcs

[SBD]-1 — - 11, 12 —
S(1)-1

[SPD]-5
S(1)-2 [SBD]-5 — — 1, 4,5,6,7 |1
S(1)-3 [SBD]-2 — — 6 —
S(1)-4 — — — — 4

[PSB]-3,4 — — 3 —
S(2)-1

[SPD]-4
S(2)-2 — [SPD]-5 — 8 —
S(2)-3 — — — — —
S(2)-4 [SBD]-1,4 — — — 1,5, 8
S(3)-1 — [SPD]-6 — 9 —
S(3)-2 [PSB]-4 — — 10 6
S(3)-3 [SPD]-3 — — 10 —
S(4)-1 [SPD]-6 [PSBJ-1 3,5 — —
S(4)-2 [SPD]-1 — — — —
S(4)-3 [SPD]-1 — — 2 —
S(4)-4 [SPD]-5,6 — — 12 —
S(4)-5 — — — 1, 6 —
S(4)-6 — — — — —
S(5)-1 — — — — —
S(5)-2 — — 6 — —
S(6)-1 — — [RFC] — 2,3
S(6)-2 — — [RFC] — —

*[SBD]: SECURE BY DEFAULT PRACTICES
[SPD]: SECURE PRODUCT DEVELOPMENT PRACTICES
[PSB]: PRO-SECURITY BUSINESS PRACTICES
[RFC]: RECOMMENDATIONS FOR CUSTOMERS

115

(6) Correspondence relationship with ANNEX I/ll, EU CRA

Requirements ANNEX | Part | ANNEX | Part II ANNEX I
S(1)-1 (1), (2)-alg/hiilj/k (3) —
S(1)-2 (1) — —
S(1)-3 (1) — —
S(1)-4 (1), (2)-dleff — —
S(2)-1 — (6) —
S(2)-2 (2)- (1) —
S(2)-3 — — —
S(2)-4 (2)-b/f/m (7) 4, 5,7, 8-albld
S(3)-1 (2)-alj (1), (2), (3), (6) 2
S(3)-2 (2)-alcljf! (), @), (5), (7), (8) 8-c
S(3)-3 (2)-aljlk 2) —
S(4)-1 — — —
S(4)-2 (2)-ald/e/fig/hii — —
S(4)-3 (2)-alg/hii — —
S(4)-4 — — —
S(4)-5 — — —
S(4)-6 — — —
S(5)-1 — — —
S(5)-2 — — —
S(6)-1 — — —
S(6)-2 — — —

116

(7) Correspondence relationship with other documents

In the examples of additional measures described for the respective requirements, the
following documents were referenced:

Requirements Other related documents

S(1)-1 BSA

S(1)-2 BSA, CISA-D

S(1)-3 SP800-161, CISA-D, 1ISO15408

S(1)-4 ISMS, DSP

S(2)-1 SP800-161, CISA-D, BSA

S(2)-2 BSA, CISA-D, NSA

S(2)-3 BSA, SP800-161, Ministry of Internal Affairs and Communications, CISA-
D, ISO15408, DSP, ISMS

S(2)-4 BSA, 1SO15408, CISA-D

S(3)-1 SP800-161, BSA, ISMS, DSP, CISA-D

S(3)-2 CISA-D, BSA

S(3)-3 SP800-161, ISMS

S(4)-1 SP800-161, ISMS, CISA-D, BSA

S(4)2 SP800-161, CISA-D, DSP, Japan-US-Australia-India Cybersecurity
Partnership

S(4)-3 DSP, Japan-US-Australia-India Cybersecurity Partnership

S(4)-4 SP800-161, CISA-D, Japan-US-Australia-India Cybersecurity Partnership

S(4)-5 SP800-161, CISA-D, Japan-US-Australia-India Cybersecurity Partnership

S(4)-6 SP800-161, Japan-US-Australia-India Cybersecurity Partnership

S(5)-1 NSA, DSP, ISMS

S(5)-2 DSP, Japan-US-Australia-India Cybersecurity Partnership

S(6)-1 CISA-D

(

S(6)-2 BSA, CISA-D

117

5.8. Terminology

Agile development

Build pipeline

Computer security incident
response team (CSIRT)
Common Vulnerability Scoring
System (CVSS)

Hardening

Infrastructure as a service
(laasS)

Information and
communication technology
(ICT)

Integrated development

environment (IDE)
Indicator of compromise (IoC)

Internet of Things (I0T)

Information Sharing and
Analysis Center (ISAC)

Key performance indicator
(KPI)

Key risk indicator (KRI)
Malware Information Sharing
Platform (MISP)

Open-source software (OSS)

Operational technology (OT)

Development process for updating software in stages by
allocating SDLC phases into multiple development cycles
and rapidly repeating the respective phases.

Means of dividing the build process into multiple testing
processes, and running phased execution. Cl: One of
practices of continuous integration (see DevSecOps).
Organization that responds to incidents.

Open and general-purpose evaluation technique for
vulnerabilities in an information system. CVSS allows for
quantitative comparison of the severity of vulnerabilities
under specific conditions.

Means of strengthening security by reducing system
vulnerabilities and unnecessary functions.

Means of providing infrastructures such as networks and
storage systems required to run information systems as
services via the Internet.

Generic term for information and communication
technologies.

Software into which functions required to develop
software codes efficiently are integrated.

Traces and indicators of infringement such as a
cyberattack.

Framework for connecting "things" such as sensor
devices to the Internet.

This organization, started when respective private sector
industries that make up critical infrastructures were
encouraged to establish it to protect national critical
information networks in the US, strives to promote
information sharing on security, etc. by industry. In
Japan, the Software ISAC, Finance ISAC, Transportation
ISAC, etc. have been established.

Quantitative indicator used to observe degrees of
achievement of organizational goals.

Indicator used to observe risk levels in an organization.
Open-source threat sharing platform aimed at
accumulating and sharing 1oCs, which are traces of
cyberattacks such as IP addresses of destinations with
which malware communicates.
https://www.misp-project.org/

Software whose source code is disclosed and allowed to
be modified and changed.

Generic term for technologies that control and operate
physical systems and facilities such as factories, plants,
and buildings.

118

Platform as a service (PaaS)

Peer review
Lead review

Product security incident

response team (PSIRT)
Regression testing

Resilience

Risk modeling

Software as a service (SaaS)

Software Bill Of Materials

(SBOM)
Software development

cycle (SDLC)

Secure by default

Secure by design

life

Provision of platform functions designed for applications
necessary to operate information systems as a service
via the Internet.

Activity in which developers and leaders of the same level
diagnose and evaluate deliverables, making full use of
their experience and know-how.

Organization that strives to improve the security of
products and services developed in-house and respond
to incidents.

Test performed to check, after a program is changed,
whether the program has problems in lines not changed.
Term that can be translated as "elasticity," "resilience,"
"restorability,” or "durability." The ability to limit damage
and recover from an attack by taking appropriate
countermeasures in the world of cybersecurity.
Analytical technique for understanding the likelihood of
possible threats, dangers, events, etc. that may occur,
and identifying undesirable outcomes or problems.
Software risk modeling employs threat modeling (a
technigue to study security measures from the
perspective of protecting information assets through
analysis in which characteristics of software, potential
attackers, and attack methods are assumed), and in its
process, uses an attack model (a model of possible
attacker actions based on the types of attackers, attack
surfaces, and attack methods).

Provision of information systems as services via the
Internet.

Technique for listing series of related elements such as
components that make up software, their dependencies,
and license data and managing them.

Development process that enables production of high-
quality, low-cost software in a short period. Types
available include waterfall development and agile
development.

Philosophy or policy that makes software security
functions and settings built in by default.

For example, at the first stage where a product is
purchased and used, creating a function to make access
to other functions unavailable unless a sufficiently strong
password is set that general users do not usually need
unavailable by default is a concrete example that follows
the philosophy of secure by default.

Philosophy or policy to assure information security from
the software design stage. It may be referred to as
security by design, but the terms are synonymous. The
term "secure by design" encompasses "secure by
default.” In the "Secure by Design Software Principles
and Approaches” published by the CISA in collaboration

119

with international partners including National center of
Incident readiness and Strategy for Cybersecurity (NISC,
current National Cybersecurity Office (NCO)) to strive
proactively for customer security assurance through the
principle of secure by design, the following three software
product security principles are advocated:
Principle 1: Take Ownership of Customer Security
Outcomes
Principle 2: Embrace Radical Transparency and
Accountability
Principle 3: Lead From the Top
Note that a similar term, "shift left,” refers to incorporating
security measures upstream in software development.

Security requirement Specific requirement for security goals to be met at the
time of development and implementation of a product or
system.

Service level agreement (SLA) Content agreed between service provider and service
user regarding the scope, content, and goals to be
attained of the service.

Security operation center Specialized organization that monitors network devices,

(SOC) server logs, etc. to detect and analyze cyberattacks and
their precursors.
Software supply chain Interdependency between software life cycle related to all

of software design, development, supply and operation,
related organizations, and software.

Toolchain Set of software tools that have functions required for
software development. Aimed at improving the efficiency
of development work by linking respective tools.

Value stream mapping (VSM) Lean manufacturing method to analyze, design, and
manage sequences of materials, information, etc.
required in development and operation processes for
delivering products such as software.

Walk-through Desk review conducted by bringing those who are
concerned with development together as well as creators
of deliverables to improve the quality of deliverables such
as specifications. Method to find problems in
specifications of a system and programs in a system.

DevSecOps Coined word combining the initials of Development,

Security, and Operations, or the practice of integrating
security tests in all phases of software development
processes.
The "CI/CD pipeline" implements part of this concept, and
is a mechanism that continuously updates software in
phases. The mechanism is automatically deployed
through verification with automatic building and testing.
Note that CI/CD stands for Continuous Integration /
Continuous Delivery or Deployment.

6. Organizational system for examining the Guidelines (draft)

120

Chair

Study Group on the Roles Required of Cyber Infrastructure
Providers

The "Study Group on the Roles Required of Cyber Infrastructure Providers" was formed in
September 2024 as a joint working group of the Cross-Sectoral Sub-working Group and
Critical Infrastructure Expert Examination Committee, Cybersecurity Strategy Headquarters,
Study Group on Industrial Cybersecurity WG1, Ministry of Economy, Trade and Industry. The
group has held discussions on the wide range of roles expected of cyber infrastructure
providers to improve the resilience of software supply chains. (Following the abolition of the
Critical Infrastructure Expert Examination Committee in July 2025, it was repositioned as a
joint working group of the Cross-Sectoral Sub-working Group and Critical Infrastructure
Expert Examination Committee, Cybersecurity Strategy Headquarters, Study Group on
Industrial Cybersecurity WG1, Ministry of Economy, Trade, and Industry, and National
Cybersecurity Office.)

We have formulated the Guidelines (draft) through discussions in the study group; these
guidelines outline the responsibilities of cyber infrastructure providers and customers
regarding the software design, development, supply, and operation, along with the
requirements for fulfilling their responsibilities (specific measures by role) and methods to
disseminate the Guidelines (such as a structural implementation for self-declaration of
conformity).

<List of members>
*Titles omitted, as of February 18, 2025

ABE Kyoichi Executive Manager, Security Management Department, ANA
Systems Co., Ltd.; Senior Advisor, LEON TECHNOLOGY, INC.

Bengoshi (Attorney at law), Inagaki Ryuichi Law Firm

Head of Security and Network Division, Solution Sector, NTT DATA
Japan

INAGAKI Ryuichi
KAMODA Hiroaki

KITANI Hiroshi Chairman of Cyber Security Subcommittee, Japan Information
Technology Services Industry Association (JISA);

Advanced Technology Group, Cybersecurity Technology System
Development Group IT Infrastructure Technology Headquarters,

Canon IT Solutions Inc.

TATEISHI Toshiaki Board member, Information Technology Federation of Japan;
Vice Chairman and Executive Director, Japan Internet Providers

Association

TSUDA Hiroshi Fellow SVP, Fujitsu Research, Fujitsu Limited

DOI Norihisa Professor Emeritus, Keio University

BANDO Naoki Fellow, Software Association of Japan (SAJ); Co-Representative,
Software ISAC

HIDAKA Shoji Executive Officer, Japan Cloud Industry Association (ASPIC)

FUCHIGAMI Corporate Executive CISO and General Manager, Cybersecurity

Shinichi Strategy Department, NEC Corporation

FURUTA Tomoji General Manager, Information Security and Trust Management

Division, TOYOTA MOTOR CORPORATION

121

YAMAGUCHI Division Manager, Consulting Services, NRI Secure Technologies
Masafumi Ltd.

(Secretariat)
Ministry of Economy, Trade and Industry, National center of Incident readiness and Strategy
for Cybersecurity

(Observers)

National Police Agency, Ministry of Internal Affairs and Communications, Ministry of Health,
Labour and Welfare, Defense Equipment Agency, Digital Agency, Japan Federation of
Medical Devices Associations

<Summary>

Date Agenda/Summary
First meeting [Agenda]
(September 24, 2024) Discussion on responsibilities and requirements, and how to
proceed with examination

[Summary of the meeting]

Discussion on the "responsibilities" and "requirements"
expected of cyber infrastructure providers, as well as how to
proceed with the examination of Guidelines (draft)

Second meeting [Agenda]

(December 17, 2024) Deliberation of the Guidelines (draft) based on the results of
literature surveys and hearings, and discussions regarding
the Guidelines Annex policies

[Summary of the meeting]

Discussion on the Guidelines (draft) and dissemination
measures for the Guidelines

Third meeting [Agenda]

(February 18, 2025) Discussion on approval of the Guidelines (draft) and
examination of dissemination policies in the future

[Summary of the meeting]

Deliberation on updating of the Guidelines (draft) and
discussion on efforts and dissemination measures to
promote implementation of the Guidelines (draft).

122

Requirements checklist

Requirement

Requirements for fulfilling responsibilities

Check!

Minimum

Standard

Requirement
D

Itemized requirements

Individual requirements

Developer|

Supplier

Operator

Customer

O

(¢]

(@)

S(1)1.1

Risk-based security requirements definition

Perform risk-based analysis and assessment of the software to be developed or the
system/service using the software, and define security requirements that serve as
mitigation measures.

v

S(1)-1.2

Design review

Through a review of the software design, confirm that it meets all security requirements
and identified risk i ion, and apply the review results.

S(1)-1.3

Risk response records

Maintain records of design decisions, responses to risks, and approved exceptional
measures for audit and maintenance purposes throughout the software life cycle.

S(1)-1.4

Periodic risk-based review

Review all approved exceptions to security requirements and software design, as well
as the results of the risk-based analysis and assessment created during the software
design, and periodically check whether risks are being addressed appropriately.

s()-2.1

Definition of secure development process

Define processes related to secure coding, secure build, and secure by default by
considering secure coding perspectives, the build timing and method, the use of
automation tools, and training.

s()-2.2

Secure build

Generate and build code using a compiler, an interpreter, and build tools that provide
functions to improve the security of executable formats.

o

s(1)-2.3

Verification and feedback

Identify root causes of problems discovered through verification by review and analysis,
and then feed the results back to the processes.

O

S(1)-2.4

Codebases

For objects subject to review and analysis, not only source codes but also codes in
various formats (such as configuration files) that the organization determines to be
readable should be targets.

S(1)-3.1

Test planning

Based on threat models and risk analysis, determine a test scope and test method, and
develop a test plan.

S(1)3.2

Test method

Include functional testing, vulnerability testing, fuzzing, penetration testing, etc. in the
test method.

S(1)-3.3

Test implementation

Design and implement tests according to the test plan, and document the test results.

O|O0|O]|O

S(1)-3.4

Response to problems

Incorporate all problems identified through testing and recommended countermeasures
into the development team's workflows to solve them.

o

S(1)-4.1

Asset management

Operators arrange asset management procedures and asset lists related to assets
handled by systems and services as well as assets that constitute the systems and
services.

S(1)-4.2

Development of a monitoring environment

Operators separate systems appropriately to minimize the potential impact of a risk
when it occurs, and arrange a monitoring environment to monitor risks that are
important to protect assets by means of software.

S(1)-4.3

Arrangement of a security mechanism

An appropriate security mechanism is arranged that allows software and systems and
services to which the software is applied to protect and monitor the confidentiality and
integrity of information assets and data in operating environments or resources such as
digital infrastructure.

S(1)-4.4

Monitoring and evaluation

Operators monitor the operation of mechanisms applied to software that provides
important services, conduct security its, and integrate them into
the risk it of the org:]

S@2)41.1

Arrangement of software components

With respect to commercial, open-source, and other third-party software components
procured from outside, adopt those that are highly secure and meet the defined in-
house requirements.

S(2)1.2

Development and maintenance of software
components

When the software components are not procured from outside, develop highly secure
software components in-house in accordance with established in-house security
standards and practices, and maintain them.

S(2)}1.3

Risk assessment of software components

Acquire and analyze information regarding locations from where the respective software
components are obtained and assess the risks resulting from the components.

S(2)1.4

Confirmation of publicly known vulnerabilities of
software components

Regularly check for publicly known vulnerabilities and periods during which respective
software components are supported.

S(2)-15

Update of software components

Implement a process to update the respective software components to the new version
securely.

Protection of codebases

To protect codebases in all forms from unauthorized access and tampering, store the
codes and configuration information in a repository and implement access control
based on the principle of least privilege so that only authorized personnel, tools, and
services can access it.

Archiving of releases

Archive the respective software releases to protect them so that vulnerabilities identified
following release can be analyzed and identified.

Sharing of release provenance data

Collect, protect, maintain, and share provenance data for all components of the
respective software releases.

Agreement on security requirements

Include explicit security requirements in contracts or policies to be shared with third
parties that provide IT products (including commercial software components for use in
in-house software) or services.

Response to supply chain security requirements

Respond to supply chain security requirements equivalent to those adopted by the
organization that receives or acquires IT products or services that it provides.

Establishment of a response process to risks that do
not meet security requirements

Arrange a process to respond to risks in the case in which there are security
requirements that IT products or services made by a third party to be received or
acquired do not meet.

Secure introduction, configuration, operation,
fication, disposal, and]

Ensure that software users can continuously use information for securely introducing,
configuring, and operating software, as well as information related to the impact of
changes, disposal, ination of provision, and 1 of use.

Provision of integrity verification information

Ensure that software users can continuously use information that is necessary for
verifying the integrity and completeness of the software.

Establishment of a vulnerability response system

Establish a policy for the disclosure and remediation of vulnerabilities of software
products, establish a system for responses to vulnerabilities (including responses to
incidents) to support the policy, and define necessary roles, responsibilities, and
processes.

Communication plan

Establish a

plan for all

Vulnerability information collection

Collect new information regarding vulnerabilities through searches of public information,
notifications from software users, the acquisition of external threat information, reviews
of system configuration data, and other methods.

of undetected

Conduct software code review, analysis, and testing on an ongoing or regular basis to
identify undetected vulnerabilities (including improper settings) to be solved.

Vulnerability analysis

Developers collect information necessary to understand the risks associated with the
impact of each remaining vulnerability and analyze each vulnerability to plan repairs or
other responses to risks.

Risk response to vulnerabilities

Developers create a plan for risk responses for each vulnerability and implement it.

Security recommendations

Developers prepare security provide the 1 to the supplier
of the released software, and create a report as specified by the relevant systems. In
addition, operators implement deployment in accordance with security

S@3)3.1

Identification of root causes

Analyze an identified vulnerability to determine its root causes and proactively take
countermeasures.

S(3)3.2

Process improvement

Review development and operation processes for the entire software life cycle and revise
them as necessary to prevent root causes from recurring or reduce the possibilty of their
recurrence through software updates or new software creation.

ojo|o|o|ologyo|jo) o go|o|go|ojgf ogojo|jojoyo| o |ojog|gojojo\ooyoy o oo

S@)y1.1

Definition of roles and responsibilities

Define roles and responsibilities covering the entire software development life cycle.

Requirements checklist

Requirement

Requirements for fulfilling responsibilities

Requirement

Check! | Minimum | Standard D Itemized requirements Individual requirements Developer| Supplier | Operator | Customer|
Make management's commitment to secure development known to all personnel, and
D O (@) S(4)-1.2 Management's commitment educate them on the importance of secure development and operation to the v v v
organization.
I:‘ O S(4)-1.3 on roles and r Confirm that all personnel are aware of and agree to their roles and responsibilities. v v v
D o) S@)1.4 Training for each role Create a training plan for each role and implement it so that all personnel can be trained v v v
according to their level of proficiency and role.
D O S(4)-1.5 Review of roles and training Review roles and training regularly. v v v
Identify all security for software infrastructures and
D O (@] S(4)-2.1 Definition of a software development policy processes (including requirements related to EOL), and define a security policy for v
maintenance throughout the SDLC in compliance with laws and regulations.
D o o S@y-2.2 Definition and maintenance of a software security Define a policy that specifies all security requirements that must be met by the software v
) policy developed by an organization, and maintain the requirements throughout the SDLC.
D (o) (@) S(4)-2.3 Sharing of cost recognition and budgeting Secure necessary budgets to ensure security based on a policy. v
Identify all security requirements for service operation infrastructures and processes to
g y which the software is applied (including requirements related to EOS and disposal), and
D o S@y31 Definfion of a software service operation policy define a security policy for maintenance throughout the SDLC in compliance with laws v
and regulations.
g Define a policy that specifies all security requirements that services to which the
D o S@)y32 Definition and maintenance of a service security policy software is applied must meet, and maintain the requirements throughout the SDLC. v
Confirm through an audit that the protection of service operation infrastructures and
D (@] S(4)-3.3 Audit based on an operational policy processes and security requirements for service are maintained throughout the SDLC v
in accordance with policy-based governance.
I:] O o S(4)-4.1 Definition and tracking of security verification criteria | Define software security verification criteria and track the entire SDLC. v v
Support for decision-making based on security Implement processes and mechanisms for collecting and protecting information
O o O [sw@ya2 port for ¢ " i projecting i v v
verification criteria necessary to support decision-making based on security verification criteria.
I:‘ o) S@4)-4.3 Audit based on security verification criteria Track the entire SDLC and verify through audits that the intended effects are achieved v v
with governance to ensure conformance to security verification criteria.
Identify tools that are effective in mitigating identified risks, designate which toolchains
I:‘ (o) (@) S(4)-5.1 Designation of tools and toolchains must be included or need to be included, and determine means of integrating toolchain v
components mutually.
D o o) S(4)5.2 Deployment, operation, and maintenance of tools and | Deploy, operate, and maintain tools and toolchains in accordance with security v
: toolchains practices.
I:‘ o o) S(4)5.3 Tool configuration and evidence generation Configure tools to generate evidence regarding support for secure software v
development practices defined in-house.
D (o) (@) S(4)-6.1 Isolation and protection of environments Isolate and protect the respective environments related to software development. v
g . Protect and strengthen designed for to perform
I:‘ o o S@)y62 Protection of development endpoints development-related tasks using a risk-based approach. v
Establish an structure for 1 sharing between private
I:‘ o S(5)-1.1 Establishment of an organizational system for ies, relevant ies, and organizations to improve the security of v v v
information sharing
software products and services.
Select and identify essential and important security-related information that is specific to
D (o) (@) S(5)-1.2 Provision of important security-related information the industry and provide it to partners in the supply chain. v v v
I:‘ o o) S()-1.3 Use of vulnerabilty information notification services ;J;;::Il?yerablhty information notification services to share vulnerability information v v v
To improve the security of software products and services, make use of communities
I:‘ (0] S(5)-2.1 Utilization of cooperation systems and cooperation systems aimed at improving software security, in which external v v v
businesses, customers, and specialized organizations participate.
D o S22 | Contribution to cooperation systems When participating in a community or cooperation system, actively participate in v v v
activities to contribute to the cooperation system.
. Implement risk management in which the customer's independent and proactive efforts
-1.1 B . o
I:‘ o o ©) Risk management are integrated with efforts based on a contract with cyber infrastructure providers. v
Allocate and develop to respond p to known vulr and
D o o S@-1.2 Resource arrangement implement mitigation measures (including SBOM utilization). v
I:‘ (@) (6)-1.3 Utilization of cooperation systems Utilize communities and collaborative systems aimed at improving software security. v
Define security requirements for incorporating security functions into software design
Il o O |s(6)-21 |Definition of security requirements plans and present them to cyber infrastructure providers before procuring and v
deploying software.
D o o) S(6)-2.2 Disclosure of security practice requirements Dlsclo§e security prag\lce requirements for cyber infrastructure providers before v
procuring and deploying software.
I:‘ O (@) (6)-2.3 Decision-making based on risk assessment When procuring and introducing software, make decisions based on risk assessment. v
D o o) S(6)-2.4 Budget securement Continuously secure budgets related to introduction, operation, migration, disposal, risk v

response, and related contracts, considering software life cycles.

Requirements checklist (role/phase)

Life cycle phase

z
]
i8¢ <z 88|58 2]|z2]88
218 |g tle || |s|5|8|2|2|588|%
5|53 G| 8|5 |28 |s|2|8|&|a|%;|%:2
z " 1 N
8
Requirements Requirements for fulfilling responsibilities E
Check! | Minimum | Standard | Reauirement 1o Itemized requirements Developer| Supplier | Operator | Customer
O o O |S@)-11 |Risk-based security requirements definition v v v
D O O S(1)-1.2 Design review v v
J O [s(@)13 |Riskresponse records v vi|v V|V v v
O O [S@)14 |Periodic risk-based review v v v
O o O [S@-21 |Definition of secure development process v v
O o O [s@-22 |secure build v
O o O [s@)23 |Verification and feedback v v
O o O [s@)-24 |Codebases v v
D O O S(1)-3.1 Test planning v v v
O o O [s@)32 |Testmethod v v
O o O [S@)-33 |Testimplementation v v
O o O [S@)34 |Responses to problems v v
O o O [s@-41 |Asset management v v
O O [S@)-42 |Development of a monitoring environment v v v
O o S(1)-43 |Amangement of a security mechanism v v v v
O o O |S@-44 |Monitoring and evaluation v vi|vi]v
O f¢) O [S@-11 |Arrangement of software components v vi|v]|v
0 ° o |swaiz Eusr:?s:;nr:;n and maintenance of software v v
O [e) o S(2-1.3 |Risk assessment of software components v v v
D o o S(2)-1.4 :;:\Q:;a:g;s;s::::ly known vulnerabilities of v v v
O o O [S@-15 |updating of software components v v
[:, O O S(2)-2.1 Protection of codebases v v v
O o O |S(22 |Archiving of releases v v V| v v
O o O |S(-23 |sharing of release provenance data v v v v
O [e) e} S(2)-3.1 |Agreement on security requirements v v v v
O o S(2)-3.2 |Responses to supply chain security requirements. v v v v
0 o (233 |Estabishmentof a response process for isks that do v v v v v
not meet security requirements
O | o [o fou [s e B AL
O o O [S@-42 |Provision of integrity verification information v v viiv]v
O) O [S@)r11 |Establishment of a vulnerabilty response system v v v
O o O [s@r-12 |communication plan v v v
O o O [S(3)-13 |Vulnerability information collection v v v v
O o O [S(314 |identification of undetected wulnerabilities v v v v v
O o O [S@)21 |Vulnerabilty analysis v vV
O o O [s@)122 |Risk responses to vulnerabilities v v v v V| v
O [e) o S(3)-2.3 | Security recommendations v v v v v v
O o S(3)-3.1 |Identification of root causes v v v v v
O O [s@-32 |Processimprovement v v V| v
O O [S@)»11 |Definition of roles and responsibilities v v v v
O o O [S@)r-12 |Managements commitment v v v v
O O [S@)y13 |Agreement on roles and responsibilities v v v v
O O |S@)y14 |Training for each role v v v v
O O [S@)15 |Review of roles and training v v v v
O o O [S@)y2.1 |Definition of a software development policy v v
D o o s@y-22 Definition and maintenance of a software security v v
policy
O o O [S@)23 |sharing of cost recognition and budgeting v v
O O [S@)3.1 |Definition of a software service operation policy v v

Definition and maintenance of a service security policy

Audit based on an operational policy

Definition and tracking of security verification criteria

Support for decision-making based on security
verification criteria

Audit based on security verification criteria

Designation of tools and toolchains

Deployment, operation, and maintenance of tools and
toolchains

S(4)-5.3

Tool configuration and evidence generation

S(4)-6.1

Isolation and protection of environments

S(4)-6.2

Protection of development endpoints

S(5)-1.1

Establishment of an organizational system for
information sharing

S(5)-1.2

Provision of important security-related information

S(5)-1.3

Use of vulnerability information notification services

S(5)-2.1

Utilization of cooperation systems

S(5)-2.2

Contribution to cooperation systems

S(6)-1.1

Risk management

S(6)-1.2

Resource arrangement

S(6)-1.3

Utilization of cooperation systems

S(6)-2.1

Definition of security requirements

S(6)-2.2

Disclosure of security practice requirements

S(6)-2.3

Decision-making based on risk assessment

Ooo|ojojo|jo|jooo|ibjojo|jg|jo|oo|ibjojo|o|g|o

oJj]olofjo|jO0|J]O|lO|lO|JO|]O|O|O|jO|J]O|J]O|OflO|O|O|O|O|O

S(6)-2.4

Budget securement

	サイバーインフラ事業者に求められる役割等に関するガイドライン（案）【英語版】.pdf
	チェックリスト（案）【英語版】.pdf

