

Guidelines on the Roles Expected of Cyber

Infrastructure Providers

(draft)

— Appropriate division of roles and responsibilities between customers and cyber

infrastructure providers to ensure cybersecurity and improve resilience in software

development, supply, and operation —

Oct . 2025

Industrial Cybersecurity WG1, Ministry of Economy, Trade and

Industry/Joint Working Group,

National Cybersecurity Office

Study Group on the Roles Required of

Cyber Infrastructure Providers

Table of Contents

1. Preamble ... 1

1.1. Background and objective .. 1

1.2. Positioning of the Guidelines (draft) ... 3

1.3. Applicable objects .. 5

1.4. Approach to division of roles .. 9

1.5. Examples of typical use cases ... 15

2. Responsibilities and division of roles of cyber infrastructure providers and

customers ... 19

2.1. Approach to responsibilities and division of roles .. 19

2.2. Responsibilities .. 20

3. Requirements for fulfilling responsibilities .. 23

3.1. Overview of the requirements .. 23

3.2. Requirements ... 26

(1) Secure design, development, supply, and operation ... 27

(2) Life cycle management and assurance of transparency ... 32

(3) Prompt responses to remaining vulnerabilities .. 36

(4) Arrangement of human resources, processes, and technologies 39

(5) Strengthening of relationships between cyber infrastructure provider and

stakeholders .. 45

(6) Risk management by customers, and procurement and operation of secure

software ... 47

4. Utilization of requirements ... 49

4.1. Requirement packaging of requirements ... 49

4.2. Points to note regarding the application of requirements according to the division of

roles .. 52

5. Reference information ... 53

5.1. Requirements checklist .. 53

5.2. Examples of relationships between security incidents and requirements 54

5.3. Correspondence relationships between threats in a system life cycle and requirements

 ... 55

5.4. Examples of measures implemented to meet requirements .. 59

(1) Secure design, development, supply, and operation ... 59

(2) Life cycle management and assurance of transparency ... 66

(3) Prompt responses to remaining vulnerabilities .. 74

(4) Arrangement of human resources, processes, and technologies 80

(5) Strengthening of relationships between cyber infrastructure providers and

stakeholders .. 92

(6) Risk management by customers, and procurement and operation of secure

software ... 96

5.5. Relationship between the Common Standards and Guidelines (draft) 99

5.6. Relationship between the Guidelines for Establishing Safety Principles for Ensuring

Information Security of Critical Infrastructure and Guidelines (draft) 103

5.7. Reference information .. 107

(1) List of reference information .. 107

(2) Relationships with other standards, guidelines, etc. .. 110

(3) Correspondence relationships with NIST SP800-218 ... 113

(4) Correspondence relationship between the three NSA Software Supply Chain

Guidance documents ... 114

(5) Correspondence relationship with CISA Secure-by-Design - Shifting the Balance of

Cybersecurity Risk ... 115

(6) Correspondence relationship with ANNEX I/II, EU CRA ... 116

(7) Correspondence relationship with other documents ... 117

5.8. Terminology .. 118

6. Organizational system for examining the Guidelines (draft) 120

1

1. Preamble

1.1. Background and objective

(1) Need to improve cybersecurity1 resilience

In recent years, cyberattacks have become more intense and diverse, with recent attacks

targeting the core software that digitally supports all social activities and the potential

vulnerabilities in supply chains. Owing to the strong dependence on software for the

management of various information and telecommunications systems and services,

cyberattacks can undermine the reliability of such digital platforms and severely affect

people's lives and economic activities, as well as critical infrastructure. Table 1 lists typical

examples.

Table 1 Typical examples of cyberattacks

Example Summary

Apache Log4J

vulnerability

Apache Log4J is a logging library used worldwide. In 2021, a

serious vulnerability that allowed attackers to execute arbitrary

code remotely was discovered within the library and exploited.

It was incorporated and used in various types of software in

multi-layered software supply chains. This incident highlights

the need to discover, track, and fix vulnerabilities.

Tampering with a

software update from

Software Vendor A

A legitimate software update was tampered with by intruding

into the software vendor system, affecting all organizational

functions using the software.

The incident suggests the importance of ensuring the security

of development and operation environments in the software

supply chain.

Encryption and leakage of

patient information held

by Hospital B

An in-hospital network was infiltrated via a VPN device

unpatched against known vulnerabilities, causing disruptions in

medical treatment.

This case illustrates the importance of proactive management

of software security by the hospital (customer) and the

importance of information provision by the provider.

1 Cybersecurity refers to measures taken to prevent leakage, loss, and damage of information through electromagnetic
means and to ensure the safety and reliability of systems and networks that handle such information, as well as the
maintenance and management of such measures. Refer to Article 2 of the Basic Act on Cybersecurity.

2

These examples show that cyberattacks on software can target various areas: the

development phase, which includes the design of systems and services; the construction,

maintenance, and operation phases; supply chains between users, software developers, and

suppliers; and the contract phase. Thus, it is difficult to develop countermeasures covering

all phases. To appropriately respond to such difficulty, followings are required: public-private

collaboration on cyber infrastructure provider’s role and ideal, risk management on cyber

security risks, and balancing it with costs. In this regard, the United States (US) has recently

created standards and guidelines to strengthen security in software development and supply

chains. In addition, the European Union (EU) is accelerating the development of institutional

systems in connection with the reinforcement of cybersecurity measures for digital products

and services; for instance, the Cyber Resilience Act (CRA) is scheduled to come into force

in 2024 and will be fully implemented by 2027. Furthermore, with the concept of "secure by

design" gaining international support2 , we are entering an era in which companies are

expected to not only protect themselves from cyberattacks but also take cybersecurity

measures for the software products and services that they offer.

Article 7 of Japan's Basic Act on Cybersecurity states the responsibilities of cyber-related

businesses and suppliers of information systems 3 , and in particular, that suppliers of

information systems are obligated to make efforts to provide cybersecurity assurances to

users of information systems; however, there is no document specifying the roles of

businesses (hereinafter referred to as "cyber infrastructure providers4") that provide certain

social infrastructure functions through the development, supply, and operation of software,

including software design, in providing cybersecurity measures for software products and

services at each phase of development, supply, and operation.

The purpose of the Guidelines (draft) is to improve the resilience and fundamental

cybersecurity assurances of cyber infrastructure providers by organizing and explaining the

roles expected of them.

2 In October 2023, government agencies and other entities from 13 countries, including Japan and the US, co-signed
guidance that summarizes recommendations for ensuring the security of IT products (especially software) from the
design stage. The guidance is available on the US CISA website (https://www.cisa.gov/securebydesign).
3 Cyber-related businesses are entities that conduct business related to the development of the Internet and other
advanced information and communication networks, utilization of information and communication technology, or
cybersecurity. Suppliers of information systems are suppliers of information systems, or computers or programs that
constitute part of an information system, information and communication networks, or electromagnetic storage media.
4 Cyber infrastructure providers are businesses that develop and provide information and communication systems,
software products, and ICT services that are widely used in society, including government agencies and critical
infrastructure operators, as well as operators involved in the life cycle and supply chain of the software for such
information and communication systems, among the operators whose responsibilities are stipulated for cyber-related
businesses, etc. in the Basic Act on Cybersecurity (those who conduct development of the Internet and other advanced
information and communication networks, utilization of information and communication technology, or business related
to cybersecurity).

3

1.2. Positioning of the Guidelines (draft)

(1) Development system

The Guidelines (draft) state the responsibilities (items similar to basic principles) of cyber

infrastructure providers and their supply chains that provide IT/OT systems, software

products, or ICT services to customers (including government agencies and critical

infrastructure operators5). So that cyber infrastructure providers may able to provide an

appropriate division of roles between operators and customers to promote effective

cybersecurity measures intended for safeguarding the software in supply chains. In addition,

the guidelines outline systematic measures that are essential for risk management, which

involves identifying and assessing cybersecurity-related risks and implementing appropriate

risk responses to reduce residual risks to within tolerable levels. Based on the responsibilities

expected of the operators and customers and the requirements for fulfilling their

responsibilities, it is expected that operators and customers will recognize their respective

roles, share accurate information, and work together to ensure security, which will lead to

improved capabilities in responding to cyberattacks.

In other countries, security measures for software supply chains are implemented not only

through technical initiatives but also through the direct imposition of discipline on companies.

However, as there are currently no laws in Japan that directly regulate cyber-related

businesses involved in software supply chains, the Guidelines (draft) 6 will provide a

reference for businesses, companies, and related parties to ensure the effectiveness of

cybersecurity measures.

(2) How to use

The Guidelines (draft) are intended for use by cyber infrastructure providers and customers.

At the time of use, the division of roles in the development, provision, and operation of the

software through its life cycle is determined based on the characteristics of the intended

software and contractual form for using the software. Cyber infrastructure providers shall

seek to reach agreements with customers as necessary and understand the scope of the

responsibilities that they are required to fulfill.

⚫ Cyber infrastructure providers

Cyber infrastructure providers can use the Guidelines (draft) as a tool to enhance

the security measures in the software supply chain. The requirements listed in the

Guidelines (draft) can be used to confirm whether the efforts of their own organization

and those in the software supply chain are sufficient.

To advance this initiative, it is necessary that the cyber infrastructure providers

establish secure software development and maintenance processes throughout the

entire supply chain (including software component suppliers, software development

contractors, and development outsourcing partners); in addition, their own

organization and those in the software supply chain will need to make appropriate

5 Critical infrastructure operators refer to the critical social infrastructure operators defined in Article 3, Paragraph 1 of
the Basic Act on Cybersecurity. They form the foundation of people's lives and economic activity, and conduct
businesses related to objects that are likely to have a significant impact on people's lives or economic activity if their
functions are suspended or impaired.
6 These guidelines summarize the ideas related to Article 7, Paragraph 1 and 2 of the Cybersecurity Basic Act,. and are
not intended to impose any new legal responsibility or regulation.

4

investments in process changes, such as changes in software development

regulations. It is necessary to implement these initiatives while considering the

medium- to long-term investment effects.

By reducing software vulnerabilities through these approaches, it is possible to

minimize the costs involved in creating patches to fix software vulnerabilities in the

short term and software maintenance in the long term. Furthermore, when customers

use security-conscious software, which reduces configuration risks and other

operational errors, customer security will improve and thereby increase the trust in

cyber infrastructure providers.

⚫ Customers

Customers are expected to use these guidelines, particularly at the procurement

stage of software products and services. Customers can use the Guidelines to select

appropriate software developers by either following the requirements listed in the

Guidelines (draft) as specifications when developing, supplying, and operating

software within their own organization, or using the requirements specified in the

Guidelines (draft) as a check list to evaluate the efforts of cyber infrastructure

providers from whom software and services are procured. Moreover, customers will

be able to manage cybersecurity risks and reduce the operational burden of

implementing vulnerability fixing patches and other measures by selecting appropriate

operators through these initiatives.

In addition, if the customer is an organization with its own software development,

supply, and operation departments, they can address cybersecurity risks throughout

the entire software life cycle by independently carrying out activities based on the

responsibilities and roles specified in the Guidelines for cyber infrastructure providers

and customers.

It is important to note that the cost of risk management implemented by cyber

infrastructure providers also includes the compensation provided to other related

operators in software supply chains for incorporating security measures. In addition,

customers must make appropriate investments, such as managing their own risks and

developing secure procurement and operational processes and resources. It is

important even for customers to recognize the importance of ensuring software

security in conducting business and to take the stance of strengthening security while

appropriately controlling the expansion of risk response costs by paying particular

attention to efforts related to the requirements of the Guidelines (draft).

5

1.3. Applicable objects

(1) Scope of software

In the Guidelines (draft), targeted software are those developed and maintained over the

software life cycle (Table 2), such as software products, software services, firmware

embedded in IT/OT/IoT devices, and the software that constitutes an IT/OT system or ICT

service. (Hereinafter, the terms "systems," "services," and "system services" are used to refer

to IT/OT systems and ICT systems, respectively, or collectively.)

Table 2 Classification of target software

Name Description

Software product Software provided to customers as a product

Software service IT services used directly by customers, such as a cloud service

Embedded software
Embedded software and firmware provided as part of a

hardware product7 such as an IT/OT/IoT device

Software that constitutes a

system or service

Software that constitutes an IT/OT system or ICT service.

Application software developed specifically for applications

such as web programs8 or software such as an operating

system, software package, software library, and open-source

software that is built by a developer and integrated into a

system and provided as a system component

(2) Target businesses

The Guidelines (draft) assume that "cyber infrastructure providers" involved in the

development, supply, and operation of software, including its design, are intended targets.

To improve the software cybersecurity resilience, cyber infrastructure providers are required

to strengthen relationships in various aspects, not only in terms of involvement aimed at

protection against incidents, but also as collaborators in information collection, analysis, and

response coordination in pre- and post-incident responses. In the Guidelines (draft), cyber

infrastructure providers are classified into three main roles: developer, supplier, and operator.

To promote effective cybersecurity measures in a software supply chain, there must be an

appropriate division of roles between cyber infrastructure providers and customers, as well

as cooperation among other related organizations such as industry partners of cyber

infrastructure providers; therefore, other stakeholders are also considered as targets. Table

3 shows the classification of stakeholders.

7 This includes various types of connected devices (such as network, IoT, control, testing, transport, medical, and other
connected devices). The "Common Standards for Cybersecurity Measures for Government Agencies and Related
Agencies" define the "hardware" to be procured as "server equipment, terminals, communication line equipment,
multifunction printers, equipment for specific purposes, software, etc." and calls for security measures for software that
manages or controls these types of information system infrastructure.
8 In web design work, programming with scripting languages, etc. may be carried out. In such a case, responsibilities
equivalent to those of a developer are required.

6

Table 3 Classification of cyber infrastructure providers and stakeholders

Classification Name Description

Cyber

infrastructure

providers

Developer

A business or personnel engaged in designing,

development, or integration of software products,

software services, embedded software, and/or systems

and services that are composed of such software.

Developers are entities that develop or integrate

software for a software development vendor, software

service provider, device development vendor, software

and system development contractor, software

component developer, infrastructure operator,

development department for in-house developed

software, etc.

Supplier

A business or personnel9 that provides customers with

software products, software services, embedded

software (including hardware products), or systems and

services that are composed of such software.

Suppliers are entities that provide software or

systems/services to a sales company of software

products and devices; they include software/software

service providers, system development and operation

contractors, infrastructure operators, and software

development vendors.

Operator
A business or personnel that performs tasks to support

the operation of systems and services for customers10.

Stakeholders

Customers

Businesses who are the main entities of software

utilization, like government agencies, critical

infrastructure operators.

Other related

organizations

Organizations responsible for supporting the

improvement of cyber resilience.

(3) Typical division of roles in a system

Figure 1 illustrates the relationships between the development, contract form, and usage

form of software systems/assets handled by cyber infrastructure providers for which the

Guidelines (draft) are intended. In this section, two roles described below are assumed for

cyber infrastructure providers from the perspective of system development, contract, and

usage:

9 In some cases, developers and operators are also suppliers. In addition, in cases in which a sales company is also a
cyber infrastructure provider, responsibilities equivalent to those of the supplier are required of them.
10 Although it is usual that customers, who are the main entity of software utilization, operate software, specialized
knowledge and skills are often required to operate systems and services or the software that composes them. In this
context, it is assumed that cyber infrastructure providers support the operation of software (or part thereof) in
accordance with contracts with customers.

7

⚫ Prime provider

A first-tier contractor that contracts directly with customers and develops, supplies,

and operates systems and cloud services.

⚫ Sub-provider

A business that contracts with the prime provider and develops, supplies, and

operates systems and cloud services11.

The relationship between the prime provider and sub-provider is either a group company

or an external contractor with no financial relationship. The supply chain of a subprovider

may have a multi-tiered outsourcing structure, and each tier may form multiple hierarchical

structures. In addition, external resources are public repositories of software, such as OSS,

and these resources are operated by volunteer organizations that publish them, including

information regarding vulnerabilities.

Figure 1 Conceptual diagram of the parties involved in a software system composed of

software

(4) Assumed risks

Software-related cybersecurity risks for which the Guidelines (draft) are intended refer to

degrees of concern regarding security management, such as the leakage, loss, or damage

of electromagnetic information owing to malicious attacks on software and defects in

development or configuration errors, or degrees of concern regarding maintenance and

administration, such as a decrease in safety and reliability or stoppage owing to attacks on

systems or networks that handle electromagnetic information, and defects in development

11 The term "contract" is not generally used between SaaS providers, but for notation purposes, the term "contract" is
used for both software development and services in this section.

8

including design or setting errors. There are various factors that cause cybersecurity risks,

and they can become apparent at different stages of the software life cycle—from the

analysis/planning phase of software products/systems and services to requirements

definition, design, development, testing, release, operation, and disposal. These factors

include insufficient risk analysis in the analysis/planning phase; insufficient agreement on

security requirements in the requirements definition phase; insertion of unauthorized code or

components in the development phase; insufficient reviews; tampering in the software

distribution phase; service outages during operation; insufficient preparation of people, things,

and cost concerns during all phases; and insufficient management of supply chains. The

Guidelines (draft) assume threats related to software spoofing, tampering, repudiation,

information leakage, denial of service, and privilege escalation in all software phases.

9

1.4. Approach to division of roles

During software life cycle management, it is important to determine the responsibilities and

division of roles of the respective parties concerned based on the characteristics of the

software, software development/supply system, and contractual form of software use,

operation, and development, as well as to promote the response to cybersecurity risks

customers (the main entity of software utilization) face.. This section presents an example of

the division of major roles in each intended scope of a software and describes a typical

approach to the division of roles.

The Guidelines (draft) classify "cyber infrastructure provider" and "customer" based on

responsibilities of these entities in the supply and use of software, respectively. Cyber

infrastructure providers are classified into developer, supplier, and operator. If a business

entity deserves to identify classification of respective responsibilities and division of roles, it

is necessary to understand the position and scope of the roles, keeping in mind the

characteristics of the intended software (intended scope of software, policy for the division of

respective roles, etc.), as presented in Figure 2. Further, the classification of responsibilities

and division of roles are identified based on the structural position of the intended software

and the division of roles with other related development/supply systems or the roles

stipulated under the contract.

Figure 2 Factors affecting the classification of responsibilities and division of roles

Table 4 lists examples of assumptions for the respective cyber infrastructure providers and

customer based on intended software characteristics. It also indicates corresponding roles

in respective categories of responsibilities with a check mark. "Entity" and "Support" are

added where it is generally expected that roles will be divided by the position of the main

entity and its supportive position. In addition, "Infrastructure" is added to the role of providing

the foundation on which a system operates. Note that, in the approach for the division of

respective roles below, in cases in which assumed related operators play the role of both

"customer" and "operator", they are mentioned separately by role. Even when a customer is

a related business operator, if it has a department or person in charge whose role is

"operator," it is considered that it shall have the responsibilities equivalent to "operator" as a

cyber infrastructure provider. In addition, if the customer conducts development and supply

in-house, it is considered that the customer itself will take on the responsibilities of

"developer" and "supplier," which are the respective roles it shall take as a "cyber

infrastructure provider" in the category of responsibilities, as the "(Entity)."

10

Table 4 Assumption of related operators and examples of classification of

responsibilities/roles

Assumption of related
operators

Division of roles

Classification of

responsibilities
Developer Supplier Operator Customer

a. Software product

Software development
vendor

Cyber infrastructure
provider

✓

 Sales company
Cyber infrastructure
provider

 ✓

Purchaser (person in
charge of operation)

Cyber infrastructure
provider

 ✓

 Purchaser (user) Customer ✓

b. Software service (where inter-service linkage is included)

 Service provider (prime provider)
Cyber infrastructure
provider ✓ (Entity) ✓ ✓

 Service provider (sub-provider)
Cyber infrastructure
provider ✓ (Support)

Service development support (sub-
provider)

Cyber infrastructure
provider ✓ (Support)

 Infrastructure operator (sub-provider)
Cyber infrastructure
provider

✓

Service user (person in charge of
application operation)

Cyber infrastructure
provider

 ✓

 Service user (application user) Customer ✓

c. Embedded software

 Device development vendor
Cyber infrastructure
provider ✓

Embedded software development
department

Cyber infrastructure
provider ✓

 Sales company
Cyber infrastructure
provider

 ✓

Purchaser (person in
charge of operation)

Cyber infrastructure
provider

 ✓

 Purchaser (user) Customer ✓

d. System (system owner makes plans and procures development/operation/infrastructure services)

Development operation
contractor

Cyber infrastructure
provider

✓ (Entity) ✓ (Entity) ✓ (Support)

 Development support
Cyber infrastructure
provider ✓ (Support) ✓ (Support)

 Software component development
Cyber infrastructure
provider ✓ ✓

 Infrastructure operator (IaaS/PaaS)
Cyber infrastructure
provider ✓

✓

(Infrastructure)

✓

(Infrastructure)

 Procurer (system operator)
Cyber infrastructure
provider

 ✓ (Entity)

 Procurer (system owner) Customer ✓

e. System (in-house development, affiliated operator supports development/supply/operation)

Parent operator
(development department)

Cyber infrastructure
provider ✓ (Entity) ✓ (Entity)

 Affiliated operator
Cyber infrastructure
provider ✓ (Support) ✓ (Support) ✓ (Support)

Parent operator (operation
department)

Cyber infrastructure
provider

 ✓ (Entity)

Parent operator (user
department)

 Customer ✓

f. System (example of a case in which the user departments, operation department, and development department of a business that is
the customer take on respective roles as the (entity) and outsource part of the tasks of the respective roles (support) to another business
as a procurer severally under a quasi-delegation contract)

Procurer (development
department)

Cyber infrastructure
provider

✓ (Entity) ✓ (Entity)

Procurer (operation
department)

Cyber infrastructure
provider

 ✓ (Entity)

 Procurer (user department) Customer ✓ (Entity)

Consultation (systemization
concept)

Case Customer ✓ (Support)

Research company (PMO
support)

Case Customer ✓ (Support)

Development vendor
(development)

Case
Cyber infrastructure
provider ✓ (Support) ✓ (Support)

Operation vendor
(operation/maintenance)

Case
Cyber infrastructure
provider

 ✓ (Support)

11

(1) Approach to division of roles by software characteristics

The approach to the division of roles by the software characteristics is described below.

a. Software product

In case of a software product, the developer and customer are different businesses, and

the supplier acts as the software product sales agent or the software is sold directly by the

developer (the developer also serves as the supplier). The operator of the software product

is typically the customer who uses the software product or the customer's operations

department.

b. Software service

In case of a software service, the developer and customer are different businesses, and

the service provider serves as the developer, supplier, and operator of the service. When a

service user (customer) configures and runs applications on its own terms using the software

service as a platform (for example, when using a cloud service), as an operator, it is common

to determine the scope of responsibilities of the respective stakeholders based on the

concept of shared responsibility. In this case, the responsibility of operation is shared; for

example, the service provider is responsible for operating the system built on the

infrastructure and the service user is responsible for the operation of applications.

c. Embedded software

In case of an embedded software, assuming that it is sold and used with the device in

which the software is embedded, the developer is generally considered to be the device

developer who possesses software development departments. The operator of a device with

the embedded software is typically the customer or the operation department of the customer.

d. Software service that constitutes a system service

In case of a software that constitutes a service system (for example, a business), the main

entity that uses or provides the service (generally known as the system owner) plays the role

of the customer in the Guidelines (draft). For the development, supply, and operation of such

service systems, it is assumed that, depending on the system's scale and the specialized

knowledge and skills required, these responsibilities may be undertaken by a group of

businesses other than the system owner. In addition, it is assumed that a multi-layered

outsourcing structure will be established. This structure may include roles such as a prime

provider, sub-provider, cloud operator (providing the infrastructure environment), and multiple

hierarchical layers within each role (see Figure 1). In such a case, it is necessary to determine

the division of the respective roles based on the components of the system service,

development/supply process, and operation process system. The division must consider the

hierarchical structure involving a developer, a supplier, an operator, and their mutual

cooperation. In terms of the operation of an IT system, it is common for the operation

department of the system owner (customer) to be responsible for the overall role of the

operator or for coordinating operations with external or outsourced businesses to share the

role of the operator across the entire operation system.

12

(2) Approach to division of roles within software development/supply system

Examples of the approach to the division of roles within software development/supply

systems are described below.

a. Division of roles for development/supply when third-party software components are

included

When software components include third-party software components, the third party is

positioned as a business that participates in the roles of both the component developer and

the component supplier to the developer using those components.

b. Division of roles for development/supply when software has a complex mix of

components

Cases in which there is a complex mix of software components with multiple third-party

software components, the component structure of such software may become hierarchically

complex. In systems and services, multiple software components with complex, hierarchical

structures will be further integrated into the overall configuration. Even for a software system

that runs multiple components in combination and there is a specific developer responsible

for each component, there are developers who take combined responsibility for the entire

software system. All businesses involved in the development of such software are expected

to recognize their responsibilities as developers (and suppliers of the components that they

are in charge of) according to the Guidelines (draft) and fulfill their specified roles. The

principle is that at least all software components should be in a state in which the

responsibility of the developer is held by one of the businesses. Under this

development/supply system, one should establish a system for software development, supply,

and defect correction and allocate roles appropriately.

c. Division of roles in development/supply related to response to security defects

At the point of contact for customers who are the primary users of software, the supplier is

responsible for securely releasing the software that has been tested by the developer. The

developer, in turn, is responsible for the processes related to defect correction; this includes

providing contact points for receipt of notifications when a security defect (which may include

vulnerabilities) is discovered during operations, and issuing security advisories.

(3) Approach to division of roles by contract type for software use, operation, and

development

Examples of the approach to the division of roles by contract type for software use,

operation, and development are described below.

a. In the case of a product purchased through a sales contract

In principle, the customer is responsible for the use and operation of a software product

purchased by the customer. License and maintenance agreements for software use are

established between the customer and software supplier. In addition, a sales contract is

concluded between the developer and supplier (mainly a seller), and the division of roles for

the software sales rights and maintenance is stipulated.

13

b. In the case of a service obtained through a usage contract

When a customer uses a software service (such as a cloud service) provided by a service
provider, customer uses the service, and outsources operations of the service to the service
provider. For the operational part, in particular, the extent to which the customer conducts the
operation proactively and responsibly, the extent to which part of the operational
responsibilities of the service is to be entrusted to the service provider, and the demarcation
point between these extents are identified based on the concept of a responsibility-sharing
model. Thereafter, a usage contract is established based on the terms of use and service
level agreement (SLA).

c. In the case of operation outsourcing through an operation contract

When a customer outsources all or part of the operation of a system, including the software,
to a cyber infrastructure provider, they enter into an operation contract (including a
maintenance agreement, if necessary) with the cyber infrastructure provider who will be the
operator and share the roles for system operation, including the software, based on the
contract.

d. In the case of service outsourcing through a quasi-assignment-type contract

When a customer outsources software development, they enter into a work-contract-type
or quasi-assignment-type software development outsourcing contract with a cyber
infrastructure provider (development/supply) who serves as the contact point. In many cases,
a work-contract-type contract is concluded when development specifications, including
security requirements, are created and the completion responsibility for system development,
including software development (design, programming, testing, installation, implementation,
data migration, training, and preparation for release), is imposed on the customer side. In
contrast, a quasi-assignment-type contract may be employed for service provision at the
specification examination stage, such as a systemization concept. In addition, services for
development and operation may be received through quasi-assignment-type contracts. In a
work-contract-type development outsourcing contract, the outsourcing business assumes
the roles of developer and supplier. In the case of a quasi-assignment-type outsourcing
contract, it is advisable to determine the scope of the roles in which service provision is made,
recognize the division of roles and responsibilities corresponding to the roles, and clearly
identify the implementation content corresponding to the responsibilities in the contract.

e. Division of roles in software development/operation through a maintenance contract

Following the completion of system development, including software development, the
customer will accept the developed system, including the software, and conclude a
maintenance contract with the developer, which will include terms such as responding to

software defects when starting to operate the system; it is necessary to determine liability for
non-compliance with the development contract separately.

A maintenance contract generally includes responses to inquiries, investigation of defects,
and responses to defect corrections based on regulations (or provision of updated software).
When selecting a software maintenance contract, the form of contract appropriate for the
actual work and service content related to the maintenance must be selected. In the case of
a contract that primarily involves information and version provision, upgrades are primarily
made from the development/supply side, and the operation department on the customer side
takes charge of the application of the provided information and updates. However, in the case
of maintenance, which includes responding to inquiries regarding the software (such as how
to use it, unclear points, confirmations, and questions about technical issues) and defect
corrections within a specified scope, a quasi-assignment contract is usually established. On
the contrary, when the responsibility for the completion of repair in response to software
defects is to be attached, a work-contract-type contract is preferred.

14

In the Guidelines (draft), it is assumed that a maintenance contract for a software product
includes the developer's responsibility to respond to vulnerabilities, including defect
correction. For software whose development is outsourced, operations such as the
conclusion of a maintenance contract equivalent to a work contract (including the developer's
responsibility to respond to vulnerabilities), the conclusion of a work-contract-type
maintenance contract or quasi-assignment-type maintenance contract, and the conclusion
of memorandums of understanding regarding changes to specifications and costs upon
agreement, are assumed.

15

1.5. Examples of typical use cases

In software life cycle management, the responsibilities and division of roles of the

respective parties concerned are determined based on the characteristics of the software,

software development/supply system, and contractual form of the software use and

operation; in addition, it ensures prompt responses to cybersecurity risks facing the main

entity of software utilization—the customer. In this section, the division of roles among

multiple cyber infrastructure providers are presented and described for the following four use

cases:

⚫ Use case example of roles in a software product and embedded software

⚫ Use case example of roles in a software service

⚫ Use case example of roles in a system developed through outsourcing contract

⚫ Use case examples of roles in a system developed in-house

[1] Use case example of roles in a software product and embedded software

As a use case example of the development and supply of a software product, the case of

a customer (purchaser) who procures a software product is described (see Figure 3). The

customer purchases a software product from a sales company; in response to the order (or

as procurement), the sales company places an order for the software product with a software

development vendor. While the software development vendor (prime provider) takes charge

of the development, commercialization, and shipment of the software product, an external

software development company (sub-provider) is responsible for the development of

software components.

As a use case example of the development and supply of IoT devices (with embedded

software), a case of a customer (purchaser) who is a procures an IoT device with an

embedded software is described. The IoT device is procured from a sales company, which

places an order for the IoT device with a device development vendor in response to the order

(or as procurement). While the device development vendor is responsible for the

development of the IoT devices, implementation of the embedded software,

commercialization, and shipment, the embedded software development department of the

device development vendor develops the embedded software.

For example, if the software development vendor that provides the software product uses

SaaS provided by a cloud operator as the system infrastructure, when providing software

update services via the cloud, the cloud operator assumes the roles of provider and

developer/operator. In addition, if any business uses external resources, the developer,

provider, or operator manages them appropriately, depending on the form of use.

16

Figure 3 Conceptual diagram of use case example of the roles in a software product

with embedded software

[2] Use case example of roles in a software service

Here, an example of a use case in which a cloud service that employs SaaS is described

(see Figure 4). In this use case, a service provider (the prime supplier) supplies a SaaS

service and takes on the developer and operator roles; a service development business or a

sub-provider takes responsibility of developing the software that constitutes the SaaS service,

and the same or a different cloud operator takes responsibility of the supply, development,

and operation of an IaaS service that runs the SaaS service (see Figure 4(a) "Infrastructure

operator (sub-provider: IaaS, PaaS)"). In addition, when the cloud operator or sub-provider

uses external resources, the developer, provider, or operator manages them appropriately,

depending on the form of use.

Figure 4 Conceptual diagram of use case example of roles in a software service

17

[3] Use case example of roles in a system developed through outsourcing contract

An example of a use case is described in which an outsourcing contract is created for the

development of an IT system, which is commonly observed in the procurement of the design,

development, operation, and maintenance of a business system that employs the

government cloud (see Figure 5). This example describes how an IT system is developed

and deployed, and the support and substitution for the operation and maintenance work of

the IT system are procured. The prime provider, which is a SIer, acts as the supplier while

taking on the roles of developer and operator (see in Figure 5(a), development outsourcing

contractor: "prime provider: system and software development and operation") and the sub-

provider undertakes part of the development or develops and manufactures software

products and IoT products that are components of the IT system (such as the "sub-provider:

system and software development", which refers to the contractor and its subcontractor).

If a contract is created for PaaS of the cloud operator via the prime provider—wherein the

cloud operator acts as a sub-provider—and the PaaS is used as the system infrastructure

((b) Infrastructure usage: "Infrastructure provider (sub-provider: IaaS, PaaS)" in the figure),

the infrastructure operator takes on the roles of developer and operator. In addition, when

using external resources, the developer, supplier, or operator must have proper

administration, depending on the form of use.

Figure 5 Conceptual diagram of a use case example of roles in a system developed

through outsourcing contract

[4] Use case example of roles in a system developed in-house

An example of a use case is described wherein a business develops an IT system for its

in-house use (see Figure 6). In some cases, businesses have a development department

and an operation department to support the operation of their IT system to be used in the

user department (corresponding to the customer in the Guidelines (draft)). It is expected that

the responsibilities and division of roles in such cases will be assigned to the user department

(customer), development department (developer), and operation department (operator).

18

Figure 6 Conceptual diagram of a use case example of roles in a system

developed in-house development

19

2. Responsibilities and division of roles of cyber infrastructure providers and

customers

2.1. Approach to responsibilities and division of roles

The extend to which a single cyber infrastructure provider can solely reduce security risks

in a software supply chain is limited. Therefore, it is necessary for cyber infrastructure

providers that make up the supply chain to coordinate with their customers individually or in

cooperation while fulfilling their respective responsibilities. For example, in the requirements

definition phase, along with the cyber infrastructure provider who performs appropriate risk

analysis, the customer also has the obligation for risk management of the entire system

owned by the customer. If risks are not promptly identified, it will be difficult to evaluate

security requirements, causing software vulnerabilities to remain hidden.

That is, the customer, under the leadership of the management, must clarify the division of

roles with the cyber infrastructure provider regarding risk management for its own in-house

systems, present security requirements to the cyber infrastructure provider so that it can

identify items on which it must make decisions and adjustments as the software

product/service user, and purchase appropriate products and maintain a system for

evaluating the quality of the results of work that it commissioned in-house.

In addition, the cyber infrastructure provider has an obligation to take security measures

for its own products and services, and it can be stated that the management is required to

take the lead in promoting measures so as not to place security responsibilities solely on the

customer.

These concepts are summarized as responsibilities in the following sections.

20

2.2. Responsibilities

To improve cybersecurity-related resilience, complementary effects can be obtained when

cyber infrastructure providers and customers fulfill their respective responsibilities.

<Responsibilities of cyber infrastructure providers>

Cyber infrastructure providers must be aware of the following five responsibilities to

improve cybersecurity resilience. All of these responsibilities must be recognized by the

management of each cyber infrastructure provider, and efforts to fulfill these responsibilities

must be implemented under the leadership of the management.

(1) Design, development, supply, and operation of software with security quality

ensured

⚫ Providing secure software and evaluating measures

In accordance with the principles of "secure by design" and "secure by default,"

take measures to reduce threats to software development and operation in

accordance with a risk-based approach, and determine their effectiveness. In

addition, enforce minimum security standards for the software.

⚫ Consideration of cybersecurity throughout the entire software life cycle

Starting with an agreement on security requirements, consider cybersecurity

throughout the entire software life cycle agreed upon with the customer,

including secure build, testing, and operation.

(2) Software supply chain management

⚫ Sharing of implementation status of security control measures

To allow users to make decisions regarding software procurement and

implementation—including the selection of risk-based solutions—suppliers

should disclose the status of their software development efforts.

Ensure transparency with customers regarding all necessary aspects of

cybersecurity.

⚫ Sharing of software configuration information

For measures against vulnerabilities by users, use information from software

configuration management, including the software bill of materials (SBOM), and

configuration information, including OSS.

⚫ Promotion of risk management including supply chains

Include suppliers (such as system integrators, external system service providers,

and partners), developers, and all other businesses related to IT/OT/ICT

systems in the scope of software supply chain risk management activities.

21

(3) Prompt response to remaining vulnerabilities

⚫ Communication and response to vulnerabilities and threat information

Arrange vulnerability disclosure policies appropriately and establish a

vulnerability response system. Vendors are responsible for identifying and

disclosing vulnerabilities in cloud service software, providing the information

necessary for secure service configuration and operation, upgrading services,

developing and distributing patches, and documenting upgrade/patch

application processes so that customers understand how to participate in the

processes. In addition, maintain a mechanism for sending notifications to

customers.

(4) Arrangement of governance for software

⚫ Integration of software supply chain risk management into enterprise risk

management

Software supply chain risk management covers activities throughout the

software life cycle and is as part of the enterprise risk management process.

Arrange the resources necessary to reduce risk to an acceptable level (people,

materials, and money) in your organization. Position cybersecurity as a key

management issue, and the top management must be made responsible for

implementing risk management.

Comply with laws and regulations.

(5) Strengthening of information sharing and cooperation systems between cyber

infrastructure provider and stakeholder

⚫ Sharing of threat and vulnerability information among stakeholders and

response to it

Share threat and vulnerability information with government and industry partners

in a prompt and timely manner. Suppliers must share software vulnerability

information with the relevant agencies that have jurisdiction.

⚫ Collaboration among stakeholders engaged in cybersecurity

All stakeholders, including communities, must work together in a healthy manner

to develop a framework for identifying potential risks and assessing supply chain

risk dependencies related to cybersecurity.

In terms of security measures, take initiative and share responsibilities

throughout the entire supply chains, including platform providers and consumer

tenant organizations.

In cooperation with the government, the private sector must continually adapt to

the necessary requirements and improve the security of the technologies,

products, and services supporting businesses that provide critical infrastructure.

Appropriate and timely participation of stakeholders enables sharing of

knowledge and awareness, which leads to appropriate risk management.

<Responsibilities of customers>

In activities related to software security that constitute a system in which a customer has

ownership, the customer has the following responsibilities:

22

(6) Risk management and software procurement/operation by the leadership of

the customer's management

⚫ Risk management by the leadership of the customer's management

Risk management with independent and proactive initiatives and cooperative

measures by the customer based on a contract with a cyber infrastructure

provider.

Allocation and preparation of resources to respond to known vulnerabilities

proactively and implement measures for mitigation.

Utilization of communities and cooperative systems aimed at security

improvement.

⚫ Software procurement/operation by the leadership of the customer's

management

Presentation of security requirements to incorporate security functions into

software design plans.

Disclosure of requirements for security practices in software

procurement/implementation.

Decision-making based on risk assessment in software

procurement/implementation.

Budgeting for software operation, risk response, and contracts considering the

life cycle

In activities based on the responsibilities of cyber infrastructure providers, specifically the

activities associated with customers, it is important that customers are aware of their

responsibilities and support the activities that fulfill these responsibilities based on

reasonable agreements to contribute toward improving cybersecurity resilience.

23

3. Requirements for fulfilling responsibilities

3.1. Overview of the requirements

To fulfill their responsibilities toward improving cybersecurity resilience, cyber infrastructure

providers and customers are required to implement the cybersecurity measures described

below (six categories and 21 requirements) in a manner that is appropriate to the

characteristics of the intended software and the organization. Therefore, under the leadership

of the management responsible for risk management in the organization, it is necessary to

proceed with the implementation policy of measures appropriate to the risks, allocation of

budgets and human resources, confirmation of the implementation status, identification of

problems, responses to problems, and cooperation with other related organizations.

For initiatives that are difficult to handle in-house or that are deemed appropriate for

implementation by an expert business, it is necessary to consider outsourcing a part of such

initiatives.

The requirements for improving cybersecurity resilience based on these approaches are

described below. Note that the identification of respective requirements is in the form of

“S(n1)-n2” (where n1 is the category number and n2 is the sequential number in the category),

and the identification of respective itemized requirements of respective requirements are in

the form of “S(n1)-n2.n3” (where n3 is the sequential number of the itemized requirement in

the requirement).

<Requirements for cyber infrastructure providers>

(1) Secure design, development, supply, and operation

Develop, supply, and operate software that checks vulnerabilities and has security.

S(1)-1 Risk assessment during design and tracking of countermeasures

S(1)-2 Secure build

S(1)-3 Testing

S(1)-4 Monitoring of services

(2) Life cycle management and assurance of transparency

Provide an assurance of transparency in software management throughout the life

cycle and manage risks including those in the supply chain.

S(2)-1 Arrangement of secure components

S(2)-2 Secure archiving of release files and data

S(2)-3 Establishment of security requirements among stakeholders

S(2)-4 Appropriate information provision to users

(3) Prompt response to remaining vulnerabilities

Identify vulnerabilities remaining in released software and respond to them promptly

S(3)-1 Continuous vulnerability investigation

S(3)-2 Responses to detected vulnerabilities

S(3)-3 Application of results of countermeasures to in-house process

improvement

24

(4) Arrangement of human resources, processes, and technologies

Arrange human resources, processes, and technologies related to software at the

organizational level

S(4)-1 Human resources: Commitment from management and arrangement of

personnel

S(4)-2 Process: Establishment of development policy and compliance with

laws and regulations

S(4)-3 Process: Establishment of operation policy and compliance with laws

and regulations

S(4)-4 Process: Establishment of development and operational standards

S(4)-5 Technology: Arrangement of secure development tools

S(4)-6 Technology: Arrangement of secure development environments

(5) Strengthening of relationships between cyber infrastructure providers and

stakeholders

Reinforce information sharing and cooperation between cyber infrastructure provider

and stakeholders.

S(5)-1 Organizational system for information sharing

S(5)-2 Strengthening of cooperation systems

<Requirements for customers>

(6) Risk management by customers, and procurement and operation of secure

software

Implement risk management, and secure software procurement and operation under

the leadership of the customer's management

S(6)-1 Risk management under the leadership of the customer's management

S(6)-2 Software procurement and operation under the leadership of the

customer's management

Figure 7 shows a conceptual diagram of the relationship between these six categories of

requirements and a general system of security measures.

25

Figure 7 Conceptual diagram of requirements

In the reference information, a checklist of requirements, practice examples, related

reference information, and explanations of terms mentioned in the Guidelines (draft) are

described.

26

3.2. Requirements

The requirements set out in the Guidelines (draft) are described with the following

configuration:

⚫ Identification

To identify requirements, the category number is followed by "S,” followed by the

sequential number within the category, such as "(1)-1.”

⚫ Requirement title, intended role, summary, and point relevant in the life cycle

The title of the requirement, the role for which the requirement is essential, and a

summary of the title are provided.

In the lower section, the stage to which the requirement applies in the software life cycle

in the conceptual diagram of requirements above is indicated with "fill.”

⚫ Itemized requirements

For the respective requirements, the contents of the itemized requirements that

encourage the intended person to take specific measures are shown.

27

(1) Secure design, development, supply, and operation

S (1)-1

Developer

Supplier

Operator

Customer

Risk assessment during design and tracking of countermeasures

Analyze and assess the risks of software to be developed in accordance with the principles

of "secure by design" and "secure by default"; track risk responses, security requirements,

and design decisions; and maintain countermeasures.

Itemized requirements

 S(1)-1.1 Risk-based security requirements definition

Perform risk-based analysis and assessment of the software to be developed

or the system/service using the software, and define security requirements that

serve as mitigation measures.

 S(1)-1.2 Design review

Through a review of the software design, confirm that it meets all security

requirements and adequately addresses identified risk information, and apply

the review results.

 S(1)-1.3 Risk response records

Maintain records of design decisions, responses to risks, and approved

exceptional measures for audit and maintenance purposes throughout the

software life cycle.

 S(1)-1.4 Periodic risk-based review

Review all approved exceptions to security requirements and software design,

as well as the results of the risk-based analysis and assessment created during

the software design, and periodically check whether risks are being addressed

appropriately.

S(1)-1 requires software developers to design software that meets security requirements

and mitigates security risks.

When security requirements have already been identified, reviewing the software design

and verifying its conformance to security requirements and risks help to ensure that the

software satisfies the security requirements and can fully respond to the identified risk

information. Responding to security requirements and risks in the software design stage

(secure by design) and embedding software security by default (secure by default) are key

factors in improving software security and improving development efficiency.

To derive software security requirements, a risk-based analysis is required to identify and

evaluate them. Security risks that may be faced during the operation of the software, and

how these risks should be mitigated with the software design and architecture should be

determined. In addition, determining whether security requirements should be relaxed or

waived through a risk-based analysis helps to prove its validity.

28

S (1)-2

Developer

Supplier

Operator

Customer

Secure build

Define secure coding and system construction processes that are appropriate for

development languages and development environments, and generate and build code

accordingly. Review and analyze the code, including configurations, and feed the results back

to the process.

Itemized requirements

 S(1)-2.1 Definition of secure development process

Define processes related to secure coding, secure build, and secure by default

by considering secure coding perspectives, the build timing and method, the use

of automation tools, and training.

 S(1)-2.2 Secure build

Generate and build code using a compiler, an interpreter, and build tools that

provide functions to improve the security of executable formats.

 S(1)-2.3 Verification and feedback

Identify root causes of problems discovered through verification by review and

analysis, and then feed the results back to the processes.

 S(1)-2.4 Codebases

For objects subject to review and analysis, not only source codes but also codes

in various formats (such as configuration files) that the organization determines

to be readable should be targets.

S(1)-2 requires software developers to generate and build software codebases securely.

Adhering to secure coding practices and generating source codes and codebases with

secure configurations reduce software security vulnerabilities. In addition, for vulnerabilities

included in the codebase generation, applying processes to ensure that they are below the

vulnerability tolerance levels defined by the organization or minimizing those that exceed the

levels leads to a reduction in costs. To improve the security of executable formats,

establishing compile, link, and build processes to eliminate vulnerabilities before testing

reduces security vulnerabilities in software and also leads to a reduction in costs. Reviewing

and analyzing code enables compliance with the security requirements to be verified. In

addition, when vulnerabilities are identified during the process, they can be fixed before

software release to prevent exploitation.

Applying automated measures to these codebase generation and build processes can

reduce the efforts and resources required to detect vulnerabilities.

29

S (1)-3

Developer

Supplier

Operator

Customer

Testing

Design and implement vulnerability testing and penetration testing as well as functional testing

to find vulnerabilities not identified in the review and analysis up to the build phase, and

subsequently take countermeasures against identified vulnerabilities.

Itemized requirements

 S(1)-3.1 Test planning

Based on threat models and risk analysis, determine a test scope and test

method, and develop a test plan.

 S(1)-3.2 Test method

Include functional testing, vulnerability testing, fuzzing, penetration testing, etc.

in the test method.

 S(1)-3.3 Test implementation

Design and implement tests according to the test plan, and document the test

results.

 S(1)-3.4 Responses to problems

Incorporate all problems identified through testing and recommended

countermeasures into the development team's workflows to solve them.

S(1)-3 requires software developers to find and respond to vulnerabilities through testing.

Testing an executable code can verify compliance with security requirements. In addition,

when vulnerabilities are identified during the process, they can be fixed before the software

release to prevent exploitation. By applying automated methods to the testing process and

arranging appropriate evidence and environments according to the form of implementation,

it is possible to reduce the efforts and resources required to identify vulnerabilities and

improve traceability and reproducibility. Note that with respect to the testing method, the

policy varies depending on whether the intended software is a product or service developed

in-house, a system or service developed on a contract basis, or a development method

(waterfall or agile development). Based on security requirements defined on a risk basis and

the defined secure development process, a policy for the testing method should be

determined and a test plan created.

30

S (1)-4

Developer

Supplier

Operator

Customer

Monitoring of services

Arrange a process and system that monitors software protects and maintains information

assets and is consistent with the environment in which it is implemented (network, platform,

service, etc.), and implement these.

Itemized requirements

 S(1)-4.1 Asset management

Operators arrange asset management procedures and asset lists related to

assets handled by systems and services as well as assets that constitute the

systems and services.

 S(1)-4.2 Development of a monitoring environment

Operators separate systems appropriately to minimize the potential impact of a

risk when it occurs, and arrange a monitoring environment to monitor risks that

are important to protect assets by means of software.

 S(1)-4.3 Arrangement of a security mechanism

An appropriate security mechanism is arranged that allows software and

systems and services to which the software is applied to protect and monitor the

confidentiality and integrity of information assets and data in operating

environments or resources such as digital infrastructure.

 S(1)-4.4 Monitoring and evaluation

Operators monitor the operation of mechanisms applied to software that

provides important services, periodically conduct security assessments, and

integrate them into the risk management framework of the organization.

S(1)-4 requires software operators to monitor whether software-based services operate

securely such that information assets and data are protected and maintained through the

services. Operations to meet the requirements of S(1)-4 (such as arrangement, support for

monitoring, and evaluation of a monitoring system for software used) are generally performed

by customers, who are the main entities of software use. However, supposing a case in which

specialized knowledge and skills are required to operate a system or service or software that

constitutes it, it is assumed that operational support is provided by cyber infrastructure

providers based on a contract.

31

List assets handled by software-based systems/services and assets that constitute a

system/service and manage the list to improve the software security at the time of installation

and operation and reduce the possibility that software is introduced and operated with

vulnerable security settings and exposed to danger.

By introducing and maintaining a secure environment for the operation of software, it is

possible to confirm that all components of the software operating environment are

appropriately protected from internal and external threats and to prevent the environment or

the software that is operated and maintained within it from being compromised. In addition,

monitoring the operation status and evaluating the security are expected to be effective for

risk management in the operation of important services. As the operating status is to be

monitored, it is assumed that the protection mechanism of the software is working effectively

to protect information assets and data on resources, and the intended security features of

the software are being circumvented or disabled, regardless of whether it is intentional or

accidental. To design and implement a security mechanism appropriately and make it

possible to monitor its operation, it is desirable to share roles with the developer as necessary.

32

(2) Life cycle management and assurance of transparency

S (2)-1

Developer

Supplier

Operator

Customer

Arrangement of secure software components

Verify that commercial, open-source, and other third-party software components procured

from outside comply with the defined in-house requirements throughout their life cycles.

Itemized requirements

 S(2)-1.1 Arrangement of software components

With respect to commercial, open-source, and other third-party software

components procured from outside, adopt those that are highly secure and meet

the defined in-house requirements.

 S(2)-1.2 Development and maintenance of software components

When the software components are not procured from outside, develop highly

secure software components in-house in accordance with established in-house

security standards and practices, and maintain them.

 S(2)-1.3 Risk assessment of software components

Acquire and analyze information regarding locations from where the respective

software components are obtained and assess the risks resulting from the

components.

 S(2)-1.4 Confirmation of publicly known vulnerabilities of software components

Regularly check for publicly known vulnerabilities and periods during which

respective software components are supported.

 S(2)-1.5 Updating of software components

Implement a process to update the respective software components to the new

version securely.

S(2)-1 requires software developers to handle third-party software components in

compliance with the in-house requirements.

Duplicating functions should be avoided as far as possible and existing secure software

components should be used. By reusing software modules and services for which security

has been confirmed, and in which update processes for coping with vulnerabilities run

appropriately, it is possible to reduce software development costs, accelerate software

development, and reduce the possibility of introducing new security vulnerabilities into the

software. This is particularly important for software that implements security functions such

as cryptographic modules and protocols. Note that when checking for publicly known

vulnerabilities, vulnerability information provided by public organizations should be actively

utilized.

33

S (2)-2

Developer

Supplier

Operator

Customer

Secure archiving of release files and data

Archive the necessary files and data to be retained during software release and restrict access

to only necessary personnel, tools, and services. Collect, protect, maintain, and share

provenance data for all components of the respective releases through the gradual adoption

of the SBOM, etc.

Itemized requirements

 S(2)-2.1 Protection of codebases

To protect codebases in all forms from unauthorized access and tampering,

store the codes and configuration information in a repository and implement

access control based on the principle of least privilege so that only authorized

personnel, tools, and services can access it.

 S(2)-2.2 Archiving of releases

Archive the respective software releases to protect them so that vulnerabilities

identified following release can be analyzed and identified.

 S(2)-2.3 Sharing of release provenance data

Collect, protect, maintain, and share provenance data for all components of the

respective software releases.

S(2)-2 requires software developers and suppliers to archive files and data securely during

a software release to protect them.

Protecting all forms of codebases from unauthorized access and tampering helps to

prevent invalid changes to codebases that circumvent or disable the intended security

properties of software, regardless of whether they are intentional or accidental. Codes that

are not made public help to prevent software theft, making it more difficult for attackers to

identify software vulnerabilities.

Archiving software releases to protect them can assist in identifying, analyzing, and

removing vulnerabilities identified in the software after it is released. Note that to securely

archive necessary files and support data that should be retained during a software release

(e.g., integrity verification information, provenance data) and make them shareable with

stakeholders requires tasks related to the generation, maintenance, and sharing of

component lists using SBOM.

34

S (2)-3

Developer

Supplier

Operator

Customer

Establishment of security requirements among stakeholders

Establish security requirements for the parties involved to agree upon and include them in

contracts or policies to be shared.

Itemized requirements

 S(2)-3.1 Agreement on security requirements

Include explicit security requirements in contracts or policies to be shared with

third parties that provide IT products (including commercial software

components for use in in-house software) or services.

 S(2)-3.2 Responses to supply chain security requirements

Respond to supply chain security requirements equivalent to those adopted by

the organization that receives or acquires IT products or services that it

provides.

 S(2)-3.3 Establishment of a response process for risks that do not meet security

requirements

Arrange a process to respond to risks in the case in which there are security

requirements that IT products or services made by a third party to be received

or acquired do not meet.

S(2)-3 requires software developers, suppliers, and operators to establish security

requirements to be shared among the parties involved.

By explicitly defining software development and operation security requirements (including

those in supply chains) in contracts or policies to be shared with third parties and making

them always known to the parties involved, it is possible to consider security requirements

(including those in supply chains) throughout the SDLC. Furthermore, by sharing

requirements completely and reliably, the duplication of effort can be minimized. Note that

operations to meet the requirement of S(2)-3 (agreement on security requirements for IT

products and services necessary for the operation of software and support for the

arrangement of related risk response processes) are generally carried out by the customer,

who is the main entity of software use. However, supposing a case in which specialized

knowledge and skills that third parties possess are required to operate a system or service

or software that constitutes it, it is assumed that the operational support is provided by cyber

infrastructure providers based on a contract with the third parties or a policy shared with the

third parties.

35

S (2)-4

Developer

Supplier

Operator

Customer

Appropriate information provision to users

Ensure that software users can apply guidance that facilitates secure use throughout the

entire software life cycle—from introduction and installation to operation and termination of

use.

Itemized requirements

 S(2)-4.1 Secure introduction, configuration, operation, modification, disposal, and

termination

Ensure that software users can continuously use information for securely

introducing, configuring, and operating software, as well as information related

to the impact of changes, disposal, termination of provision, and termination of

use.

 S(2)-4.2 Provision of integrity verification information

Ensure that software users can continuously use information that is necessary

for verifying the integrity and completeness of the software.

S(2)-4 requires software developers and suppliers to provide users with information to

ensure secure means of using software.

Providing information for securely introducing, configuring, and operating software

improves the security of the software at the time of installation and reduces the possibility of

exposure to risks—for example, when the software is introduced with weak security settings

and operated in an insecure manner. In addition, making information available on the end of

sale (EOS)/end of life (EOL) (end of maintenance and support) of a product/service12, as well

as on the impact of change, disposal, termination of provision, and termination of use, helps

software users to manage assets and operate the software securely. Even after the software

is supplied, developers must continue to provide such information to users.

In addition, secure default settings for the software (or, if applicable, a default configuration

or a group of interrelated default settings) should be implemented and information regarding

the respective settings should be provided to software administrators. Providing a

mechanism for verifying the integrity of software releases helps software users to ensure that

the software that they acquire is genuine and has not been tampered with.

12 In the guidelines, EOS refers to the end of sale of a product/service, and EOL refers to the end of life of a
product/service. Other terms similar to EOL, such as EOSL (end of service life), EOS (end of support), EOS (end of
service), and EOE (end of engineering), may be used.

36

(3) Prompt responses to remaining vulnerabilities

S (3)-1

Developer

Supplier

Operator

Customer

Continuous vulnerability investigation

Establish a policy for disclosure and remediation of software vulnerabilities; define roles,

responsibilities, and processes required for the policy and implement them.

Itemized requirements

 S(3)-1.1 Establishment of a vulnerability response system

Establish a policy for the disclosure and remediation of vulnerabilities of

software products, establish a system for responses to vulnerabilities (including

responses to incidents) to support the policy, and define necessary roles,

responsibilities, and processes.

 S(3)-1.2 Communication plan

Establish a communication plan for all stakeholders.

 S(3)-1.3 Vulnerability information collection

Collect new information regarding vulnerabilities through searches of public

information, notifications from software users, the acquisition of external threat

information, reviews of system configuration data, and other methods.

 S(3)-1.4 Identification of undetected vulnerabilities

Conduct software code review, analysis, and testing on an ongoing or regular

basis to identify undetected vulnerabilities (including improper settings) to be

solved.

S(3)-1 requires software developers and operators to establish a system related to

vulnerability responses, including software incident responses, and to conduct ongoing

vulnerability investigations based on a policy related to vulnerability disclosure and correction.

In particular, developers must continually address vulnerabilities in the software that they

have designed and developed.

Note that, with regard to operation, efforts to meet the requirement of S(3)-1 (such as

support for responding to incidents and for collecting information on vulnerabilities in the

software used) are generally performed by customers who are the main entities of software

use. However, supposing a case in which specialized knowledge and skills are required to

operate a system or service or software that constitutes it, it is assumed that operational

support is provided by cyber infrastructure providers based on a contract.

Continuously identifying and verifying vulnerabilities makes it possible to identify

vulnerabilities more quickly and take measures, such as promptly correcting them according

to the risk, which ultimately contributes to reducing opportunities for attackers to launch

attacks. Software developers establish policies for disclosing and correcting vulnerabilities

and implement the roles, responsibilities, and processes necessary to promote responses

37

based on these policies. Software operators provide software developers with information

regarding vulnerabilities that may be latent in the software and its third-party components.

S (3)-2

Developer

Supplier

Operator

Customer

Responses to detected vulnerabilities

Regularly create a plan to respond to risks of vulnerabilities remaining in released software

and implement it.

Itemized requirements

 S(3)-2.1 Vulnerability analysis

Developers collect information necessary to understand the risks associated

with the impact of each remaining vulnerability and analyze each vulnerability to

plan repairs or other responses to risks.

 S(3)-2.2 Risk responses to vulnerabilities

Developers create a plan for risk responses for each vulnerability and implement

it.

 S(3)-2.3 Security recommendations

Developers prepare security recommendations, provide the information to the

supplier of the released software, and create a report as specified by the

relevant systems. In addition, operators implement deployment in accordance

with security recommendations.

S(3)-2 requires software developers to evaluate, prioritize, and correct vulnerabilities.

By analyzing each vulnerability, collecting sufficient information regarding the risk, planning

correction thereof or other risk responses, and implementing software corrections,

vulnerabilities can be corrected in response to risk and help to reduce opportunities for

attackers to launch attacks. In particular, when information regarding exploited vulnerabilities

is provided by public institutions, it is required to respond appropriately and proactively,

including patch development. In addition, providing security recommendations and patches

to suppliers and applying them will lead to the maintenance of secure software operations.

38

S (3)-3

Developer

Supplier

Operator

Customer

Application of results of countermeasures to in-house process improvements

Based on vulnerabilities, review development and operation processes so that the root

causes of problems identified in the software do not recur or the possibility of their recurrence

is reduced.

Itemized requirements

 S(3)-3.1 Identification of root causes

Analyze an identified vulnerability to determine its root causes and proactively

take countermeasures.

 S(3)-3.2 Process improvement

Review development and operation processes for the entire software life cycle

and revise them as necessary to prevent root causes from recurring or reduce

the possibility of their recurrence through software updates or new software

creation.

S(3)-3 requires software developers and operators to identify root causes by analyzing

vulnerabilities and implementing countermeasures. Note that operations to meet the

requirement of S(3)-3 (such as improvement of the software use process and support for root

cause analysis) are generally performed by customers, who are the main entities of software

use. However, supposing a case in which specialized knowledge and skills are required to

operate a system or service or software that constitutes it, it is assumed that operational

support is provided by cyber infrastructure providers based on a contract.

By analyzing the identified vulnerabilities, identifying their root causes, and taking

countermeasures, the frequency of vulnerabilities that will occur in the future can be reduced.

In addition, by reviewing SDLC processes and updating them such that root causes do not

recur (or the possibility that root causes are lowered) in software updates and newly created

software, the possibility that root causes will recur can be prevented or reduced, thereby

contributing to a reduction in the frequency of vulnerabilities.

39

(4) Arrangement of human resources, processes, and technologies

S (4)-1

Developer

Supplier

Operator

Customer

Human resources: Commitment from management and arrangement of personnel

Define roles and responsibilities covering the entire software life cycle. Make management's

commitment to secure development known, secure personnel for security measures, provide

training to all personnel related to secure development and operation according to their levels

of proficiency and role, and review it regularly.

Itemized requirements

 S(4)-1.1 Definition of roles and responsibilities

Define roles and responsibilities covering the entire software development life

cycle.

 S(4)-1.2 Management's commitment

Make management's commitment to secure development known to all

personnel, and educate them on the importance of secure development and

operation to the organization.

 S(4)-1.3 Agreement on roles and responsibilities

Confirm that all personnel are aware of and agree to their roles and

responsibilities.

 S(4)-1.4 Training for each role

Create a training plan for each role and implement it so that all personnel can

be trained according to their level of proficiency and role.

 S(4)-1.5 Review of roles and training

Review roles and training regularly.

S(4)-1 requires software developers, suppliers, and operators to clarify the roles and

responsibilities of the personnel involved in the SDLC and provide appropriate training

according to the role. Note that operations to meet the requirement of S(4)-1 (such as training

for operators' roles) are generally performed by customers who are the main entities of

software use. However, supposing a case in which specialized knowledge and skills are

required to operate a system or service or software that constitutes it, it is assumed that cyber

infrastructure providers provide operational support based on a contract.

By clearly determining roles and responsibilities in software development and providing

training according to these roles, everyone engaged with the SDLC, both inside and outside

an organization, will be prepared to fulfill the roles and responsibilities related to the SDLC

throughout the SDLC. In addition, roles and responsibilities should regularly be reviewed and

training reviewed and updated according to the proficiency and role of the personnel to

maintain security response capabilities over the entire SDLC.

40

S (4)-2

Developer

Supplier

Operator

Customer

Process: Establishment of development policy and compliance with laws and

regulations

Comply with laws and regulations, document and maintain a security policy for in-house

development infrastructures and processes, and secure necessary budgets for security

securement.

Itemized requirements

 S(4)-2.1 Definition of a software development policy

Identify all security requirements for software development infrastructures and

processes (including requirements related to EOL), and define a security policy

for maintenance throughout the SDLC in compliance with laws and regulations.

 S(4)-2.2 Definition and maintenance of a software security policy

Define a policy that specifies all security requirements that must be met by the

software developed by an organization, and maintain the requirements

throughout the SDLC.

 S(4)-2.3 Sharing of cost recognition and budgeting

Secure necessary budgets to ensure security based on a policy.

S(4)-2 requires software developers to establish a security policy for in-house development

infrastructures and processes and to maintain it throughout the SDLC in compliance with

laws and regulations (including budget securement).

Security requirements for the software development infrastructure and processes, as well

as security requirements that the software must meet, should be identified. By defining a

policy to maintain the requirements throughout the SDLC and making software development

security requirements (including requirements related to EOL) identifiable at any time, it is

possible to consider them throughout the SDLC. In addition, sharing software development

requirements helps to minimize the duplication of effort. Furthermore, when considering

budgets for ensuring security, a policy provides a basis for stakeholders to share their

understanding.

41

S (4)-3

Developer

Supplier

Operator

Customer

Process: Establishment of an operation policy and compliance with laws and

regulations

Comply with laws and regulations, and document and maintain all security policies for service

operation infrastructures and processes to which the software is applied.

Itemized requirements

 S(4)-3.1 Definition of a software service operation policy

Identify all security requirements for service operation infrastructures and

processes to which the software is applied (including requirements related to

EOS and disposal), and define a security policy for maintenance throughout the

SDLC in compliance with laws and regulations.

 S(4)-3.2 Definition and maintenance of a service security policy

Define a policy that specifies all security requirements that services to which the

software is applied must meet, and maintain the requirements throughout the

SDLC.

 S(4)-3.3 Audit based on an operation policy

Confirm through an audit that the protection of service operation infrastructures

and processes and security requirements for service are maintained throughout

the SDLC in accordance with policy-based governance.

S(4)-3 requires software operators to establish a security policy for software operation

infrastructures and processes and maintain it throughout the SDLC in compliance with laws

and regulations (including budget securement). Note that operations to meet the requirement

of S(4)-3 (such as definition, maintenance, and policy-based audit support) are generally

performed by the customer, who is the main entity of software use. However, supposing a

case in which specialized knowledge and skills are required to operate the system/service or

the software that constitutes it, it is assumed that operational support is provided by cyber

infrastructure providers based on a contract.

Security requirements for the operation of services to which the software is applied and

security requirements that a service to which the software is applied must meet should be

identified. By defining a policy to maintain the requirements throughout the SDLC and making

software operation security requirements (including requirements related to EOL) identifiable

at any time, it is possible to provide consideration throughout the SDLC and make

requirements related to software operation shareable, minimizing the duplication of effort. In

addition, through audits, the governance status based on an operation policy can be

identified and maintenance of security requirements can be implemented over the long term

throughout th

42

S (4)-4

Developer

Supplier

Operator

Customer

Process: Establishment of development and operational standards

Define security verification criteria related to software development, collect information

necessary to support the criteria, and implement processes and mechanisms for

conformance. Track the status of conformance throughout the entire life cycle.

Itemized requirements

 S(4)-4.1 Definition and tracking of security verification criteria

Define software security verification criteria and track the entire SDLC.

 S(4)-4.2 Support for decision-making based on security verification criteria

Implement processes and mechanisms for collecting and protecting information

necessary to support decision-making based on security verification criteria.

 S(4)-4.3 Audit based on security verification criteria

Track the entire SDLC and verify through audits that the intended effects are

achieved with governance to ensure conformance to security verification

criteria.

S(4)-4 requires software developers and operators to collect information based on the

criteria for verifying software security and track conformance to the criteria. Note that

operations to meet the requirement of S(4)-4 (such as decision-making support and audit

support based on security confirmation criteria for operation) are generally performed by the

customer, who is the main entity of software use. However, supposing a case in which

specialized knowledge and skills are required to operate the system/service or the software

that constitutes it, it is assumed that operational support is provided by cyber infrastructure

providers based on a contract.

By defining the criteria for confirming software security and tracking the status of security

implementation throughout the SDLC, it is possible to use them as a standard for checking

the security of the software to be developed and maintained. Meeting the standard

(assurance) helps to ensure that the software continues to meet the organizational

expectations obtained from the SDLC and ensures its security (guarantee). In addition,

through audits, the governance status for conformance and compliance with confirmation

criteria can be assessed and security levels throughout the SDLC can be maintained over

the long term.

43

S (4)-5

Developer

Supplier

Operator

Customer

Technology: Arrangement of secure development tools

Analyze risks throughout the SDLC and implement security measures in development tools.

Itemized requirements

 S(4)-5.1 Designation of tools and toolchains

Identify tools that are effective in mitigating identified risks, designate which

toolchains must be included or need to be included, and determine means of

integrating toolchain components mutually.

 S(4)-5.2 Deployment, operation, and maintenance of tools and toolchains

Deploy, operate, and maintain tools and toolchains in accordance with security

practices.

 S(4)-5.3 Tool configuration and evidence generation

Configure tools to generate evidence regarding support for secure software

development practices defined in-house.

S(4)-5 requires software developers to implement security measures in software

development tools.

The use of toolchains to support software development makes it possible to promote

automation and reduce human effort. In addition, by providing a method to document and

demonstrate the utilization of these measures, it is possible to improve the accuracy,

repeatability, ease of use, and comprehensiveness (overall connectedness of development)

of the security measures throughout the SDLC. In addition, toolchains and tools can be used

at various organizational levels, such as organization-wide or project-specific levels, and

some can be used to generate evidence of the software development implementation status

automatically, contributing to the automation of specific sessions of the SDLC and feedback

effects for process reviews.

44

S (4)-6

Developer

Supplier

Operator

Customer

Technology: Arrangement of secure development environments

Analyze risks throughout the SDLC, and protect and strengthen development-related

environments.

Itemized requirements

 S(4)-6.1 Isolation and protection of environments

Isolate and protect the respective environments related to software

development.

 S(4)-6.2 Protection of development endpoints

Protect and strengthen endpoints designed for respective developers to perform

development-related tasks using a risk-based approach.

S(4)-6 requires software developers to establish secure development environments.

By implementing secure development environments for software development and

maintaining the protected state of endpoints designed for development (software architects,

developers, testers, etc.) to perform development-related tasks using a risk-based approach,

it is possible to ensure that all components of software development environments are

adequately protected from internal and external threats. This helps to prevent development

environments and the software developed and maintained therein from being compromised.

45

(5) Strengthening of relationships between cyber infrastructure provider and

stakeholders

S (5)-1

Developer

Supplier

Operator

Customer

Organizational system for information sharing

Establish an organizational structure for information sharing between private companies,

relevant authorities, and specialized organizations to improve the security of software

products and services.

Itemized requirements

 S(5)-1.1 Establishment of an organizational system for information sharing

Establish an organizational structure for information sharing between private

companies, relevant authorities, and specialized organizations to improve the

security of software products and services.

 S(5)-1.2 Provision of important security-related information

Select and identify essential and important security-related information that is

specific to the industry and provide it to partners in the supply chain.

 S(5)-1.3 Use of vulnerability information notification services

Use vulnerability information notification services to share vulnerability

information efficiently.

S(5)-1 requires software developers, suppliers, and operators to establish an

organizational system for information sharing aimed at improving software security.

Information related to software security includes information regarding vulnerabilities (the

impact of attacks and countermeasures, damage examples, etc.), legal requirements, and

industry best practices. Arranging an organizational system to obtain, provide, and share

such information and strengthen relationships for information sharing with stakeholders will

help to improve software security continuously.

46

S (5)-2

Developer

Supplier

Operator

Customer

Strengthening of cooperation systems

To improve the security of software products and services, make use of systems and

frameworks for cooperation with private companies, relevant authorities, and specialized

organizations.

Itemized requirements

 S(5)-2.1 Utilization of cooperation systems

To improve the security of software products and services, make use of

communities and cooperation systems aimed at improving software security, in

which external businesses, customers, and specialized organizations

participate.

 S(5)-2.2 Contribution to cooperation systems

When participating in a community or cooperation system, actively participate in

activities to contribute to the cooperation system.

S(5)-2 requires software developers, suppliers, and operators to make use of cooperation

systems aimed at improving software security.

Participating in communities and cooperation systems for improving software security and

contributing to their activities deepens the mutual understanding of responsibilities and roles

to ensure, maintain, and improve security and increases the effectiveness and efficiency of

actions to improve security, thereby ensuring software security and improving resilience.

47

(6) Risk management by customers, and procurement and operation of secure

software

S (6)-1 Developer Supplier Operator Customer

Risk management under the leadership of the customer's management

Integrate risk management that is implemented in cooperation with cyber infrastructure

providers based on the leadership of the customer's management.

Itemized requirements

 S(6)-1.1 Risk management

Implement risk management in which the customer's independent and proactive

efforts are integrated with efforts based on a contract with cyber infrastructure

providers.

 S(6)-1.2 Resource arrangement

Allocate and develop resources to respond proactively to known vulnerabilities

and implement mitigation measures (including SBOM utilization).

 S(6)-1.3 Utilization of collaborative systems

Utilize communities and collaborative systems aimed at improving software

security.

S(6)-1 requires customers to implement their own risk management in cooperation with

cyber infrastructure providers based on the leadership of management.

Promoting risk management related to software security through the leadership of the

customer's management encourages customers to ensure software security and improve

resilience. To achieve this, it is necessary to clarify the responsibilities and roles of risk

response with cyber infrastructure providers, who are trading partners, and manage risks in

an integrated manner according to the procedures agreed upon by the contract. In addition,

it is necessary to prepare the resources required to respond to known vulnerabilities and

mitigation measures based on software usage life cycles. Participating in communities and

cooperation systems for improving software security and contributing to their activities

deepens the mutual understanding of responsibilities and roles to ensure, maintain, and

improve security, and increases the effectiveness and efficiency of actions to improve security,

thereby ensuring software security and improving resilience.

48

S (6)-2 Developer Supplier Operator Customer

Software procurement/operation under the leadership of the customer's management

Procure and operate software securely under the leadership of the customer's management.

Itemized requirements

 S(6)-2.1 Definition of security requirements

Define security requirements for incorporating security functions into software

design plans and present them to cyber infrastructure providers before

procuring and deploying software.

 S(6)-2.2 Disclosure of security practice requirements

Disclose security practice requirements for cyber infrastructure providers before

procuring and deploying software.

 S(6)-2.3 Decision-making based on risk assessment

When procuring and introducing software, make decisions based on risk

assessment.

 S(6)-2.4 Budget securement

Continuously secure budgets related to introduction, operation, migration,

disposal, risk response, and related contracts, considering software life cycles.

S(6)-2 requires customers to procure and operate software securely under the leadership

of their management.

When procuring and operating software under the leadership of the customer's

management, these steps must be followed to ensure software security, and improved

software resilience: indicating defined security requirements and security practice

requirements for cyber infrastructure providers to businesses that may be selected as

contractors; making decisions on procuring and introducing software based on proper risk

assessment; and securing the necessary budgets for the respective phases of deployment,

operation, migration, and disposal, considering software life cycles, as well as proper and

continuous risk response. The security practices required of cyber infrastructure providers

(including supply chain security measures) should be specified based on the characteristics

of the software to be procured and deployed and an acceptable judgment of risk measures

should be provided.

49

4. Utilization of requirements

4.1. Requirement packaging of requirements

Requirements that cyber infrastructure providers and customers (users of software products

and services, including government agencies and critical infrastructure operators) must

address to fulfill their responsibilities to improve resilience regarding software cybersecurity

are classified according to the purpose and goal of the requirement into the following two

categories, and can be used as a requirements package (itemized requirements):

⚫ Minimum requirement package

A group of requirements (itemized requirements) that all cyber infrastructure providers

and customers must implement at a minimum. These are limited to secure procurement,

responding to vulnerabilities before and during software supply, and sharing of minimum

necessary information.

⚫ Standard requirement package

A group of requirements (itemized requirements) that must be implemented as a

standard. These include the establishment of a secure development and risk response

systems, and cooperation between stakeholders. From the perspective of information

handled by the software, to ensure prompt maintenance of the mechanism for protecting

it and rapid responsiveness to vulnerabilities and reliability issues, particularly when a

lack of these is considered a risk, the standard requirement package should be applied.

The relationships between the requirements and requirement packages are shown in Table

5 (for cyber infrastructure providers) and Table 6 (for customers).

Table 5 Relationship between the requirements for cyber infrastructure providers and

requirements packages

Requirements for cyber infrastructure providers
(itemized requirements)

Developer Supplier Operator Minimum
requirement
package

Standard
requirement
package

S(1)-1.1 Risk-based security requirements
definition ✓  

S(1)-1.2 Design review ✓  

S(1)-1.3 Risk response records ✓ 

S(1)-1.4 Periodic risk-based review ✓ 

S(1)-2.1 Definition of secure development
process ✓  

S(1)-2.2 Secure build ✓  

S(1)-2.3 Verification and feedback ✓  

S(1)-2.4 Codebases ✓  

S(1)-3.1 Test planning ✓  

S(1)-3.2 Test method ✓  

S(1)-3.3 Test implementation ✓  

S(1)-3.4 Response to problems ✓  

S(1)-4.1 Asset management ✓  

S(1)-4.2 Development of a monitoring
environment

 ✓ 

50

Requirements for cyber infrastructure providers
(itemized requirements)

Developer Supplier Operator Minimum
requirement
package

Standard
requirement
package

S(1)-4.3 Arrangement of a security mechanism ✓ ✓ 

S(1)-4.4 Monitoring and evaluation ✓  

S(2)-1.1 Arrangement of software components ✓  

S(2)-1.2 Development and maintenance of
software components ✓  

S(2)-1.3 Risk assessment of software
components ✓  

S(2)-1.4 Confirmation of publicly known
vulnerabilities of software components ✓  

S(2)-1.5 Updating of software components ✓  

S(2)-2.1 Protection of codebases ✓ ✓  

S(2)-2.2 Archiving of releases ✓ ✓  

S(2)-2.3 Sharing of release provenance data ✓ ✓  

S(2)-3.1 Agreement on security requirements ✓ ✓ ✓  

S(2)-3.2 Response to supply chain security
requirements ✓ ✓ 

S(2)-3.3 Establishment of a response process
for risks that do not meet security
requirements

✓ ✓ ✓ 

S(2)-4.1 Secure introduction, configuration,
operation, modification, disposal, and
termination

✓ ✓  

S(2)-4.2 Provision of integrity verification
information ✓ ✓  

S(3)-1.1 Establishment of a vulnerability
response system ✓ ✓  

S(3)-1.2 Communication plan ✓ ✓  

S(3)-1.3 Vulnerability information collection ✓ ✓  

S(3)-1.4 Identification of undetected
vulnerabilities ✓ ✓  

S(3)-2.1 Vulnerability analysis ✓  

S(3)-2.2 Risk response to vulnerabilities ✓  

S(3)-2.3 Security recommendations ✓ ✓ ✓  

S(3)-3.1 Identification of root causes ✓ ✓ 

S(3)-3.2 Process improvement ✓ ✓ 

S(4)-1.1 Definition of roles and responsibilities ✓ ✓ ✓ 

S(4)-1.2 Management's commitment ✓ ✓ ✓  

S(4)-1.3 Agreement on roles and
responsibilities ✓ ✓ ✓ 

S(4)-1.4 Training for each role ✓ ✓ ✓ 

S(4)-1.5 Review of roles and training ✓ ✓ ✓ 

S(4)-2.1 Definition of a software development
policy ✓  

S(4)-2.2 Definition and maintenance of a
software security policy ✓  

S(4)-2.3 Sharing of cost recognition and
budgeting ✓  

S(4)-3.1 Definition of a software service
operation policy

 ✓ 

S(4)-3.2 Definition and maintenance of a
service security policy

 ✓ 

S(4)-3.3 Audit based on an operation policy ✓ 

51

Requirements for cyber infrastructure providers
(itemized requirements)

Developer Supplier Operator Minimum
requirement
package

Standard
requirement
package

S(4)-4.1 Definition and tracking of security
verification criteria ✓ ✓  

S(4)-4.2 Support for decision-making based on
security verification criteria ✓ ✓  

S(4)-4.3 Audit based on security verification
criteria ✓ ✓ 

S(4)-5.1 Designation of tools and toolchains ✓  

S(4)-5.2 Deployment, operation, and
maintenance of tools and toolchains ✓  

S(4)-5.3 Tool configuration and evidence
generation ✓  

S(4)-6.1 Isolation and protection of
environments ✓  

S(4)-6.2 Protection of development endpoints ✓  

S(5)-1.1 Establishment of an organizational
system for information sharing ✓ ✓ ✓ 

S(5)-1.2 Provision of important security-related
information ✓ ✓ ✓  

S(5)-1.3 Use of vulnerability information
notification services ✓ ✓ ✓  

S(5)-2.1 Utilization of cooperation systems ✓ ✓ ✓ 

S(5)-2.2 Contribution to cooperation systems ✓ ✓ ✓ 

Table 6 Relationship between the requirements for cyber infrastructure providers and

requirements packages

Requirements for customers (itemized
requirement)

Minimum requirement
package

Standard requirement
package

S(6)-1.1 Risk management  

S(6)-1.2 Resource arrangement  

S(6)-1.3 Utilization of collaborative systems


S(6)-2.1 Definition of security requirements  
S(6)-2.2 Disclosure of security practice

requirements
 

S(6)-2.3 Decision-making based on risk
assessment

 

S(6)-2.4 Budget securement  

52

4.2. Points to note regarding the application of requirements according to the division

of roles

The basic procedure to set the requirements to be responded to based on the relationship

between the division of roles and the requirements for cyber infrastructure providers and the

points to note for appropriately applying the requirements to be responded to are described

below.

⚫ Basic procedure to set requirements according to the division of roles for cyber

infrastructure providers

Cyber infrastructure providers are expected to clarify the scopes of their organizational

roles for the intended software (whether or not they have the roles of developer, supplier, and

operator), determine the degrees of achievement of the necessary requirements (standard

or minimum for requirement packages), and consider and implement cybersecurity measures

that meet the itemized requirements according to their roles. In general, it is desirable to set

identical degrees of achievement (standard or minimum requirement packages) for the entire

supply chain—including suppliers of software components and software development

contractors (up to the end of development outsourcing)—thereby setting degrees of

achievement of the demanded requirements such that they are consistent as role scopes of

cyber infrastructure providers to allow customers to meet the degrees of achievement

themselves. When assuming a role of the main entity, it is necessary to meet all requirements

of a set degree of achievement (standard or minimum requirement package). Even if a

supporting role is assumed, it is desirable to meet degrees of achievement and requirements

equivalent to the main entity of the role; however, it is acceptable to provide them as

responses limited to the requirements assigned to the main entity depending on the

responsibility in the scopes to be supported.

⚫ Establishment of a CSIRT by the customer

When the system development is completed and the system enters the operational phase

through customer acceptance, the customer may establish a CSIRT to respond to system

incidents, take the lead in responding to software vulnerabilities, and outsource the actual

work of responding to vulnerabilities in some software to a cyber infrastructure provider. In

such a case, it is assumed that the customer’s operation department carries out requirement

S(3) as the operator, and the outsourced cyber infrastructure provider performs the operation

of requirement S(3), which is intended to respond to vulnerabilities in some software, as the

operator.

⚫ Application of a code generation tool by the customer

In development using a no-code platform, in which a customer generates code using a

development code generation tool provided by a cyber infrastructure provider, there is a risk

that programs that cyber infrastructure providers do not anticipate will be generated. In the

case of software generated with such a procedure, the code generation tool is regarded as

a tool to be used by the developer to perform part of the development activity and by the

customer (a development department of the customer, etc.) for testing to ensure proper

operation of the software based on customer specifications. In this case, it is desirable to

organize the division of roles individually; for example, the cyber infrastructure provider

assumes the roles of the developer and supplier of the code generation tool (or the no-code

platform, which includes it) as a software product, and the customer itself (a development

department of the customer, etc.) assumes the role of the developer of the software

generated by applying the tool.

53

5. Reference information

5.1. Requirements checklist

Refer to the attached "Requirements Checklist" and "Requirements Checklist

(Roles/Phases)", which provide information regarding requirements in the form of a table.

54

5.2. Examples of relationships between security incidents and requirements

For cases of security incidents with a major impact on society, how the requirements

organized in the Guidelines (draft) reduce risks and their correspondence relationships are

described below as reference information.

■ Apache Log4J vulnerability

Apache Log4J is a logging library used worldwide. In 2021, a serious vulnerability that

allowed attackers to execute arbitrary code remotely was discovered in it and exploited.

As it is incorporated into various types of software in multi-layered software supply chains,

it causes vulnerabilities that are not easily found, tracked, and fixed. In some cases, it

allows vulnerabilities to remain for a long time.

In this case, it is possible to reduce risks by collecting vulnerability information and

formulating a response, as specified in requirement S(3), and by understanding

vulnerability information by establishing an information collection system, as specified in

requirement S(5). In addition, even in cases in which software development begins after

the vulnerability information is made public, it is possible to eliminate the use of the

software in which vulnerabilities remain unsolved and adopt an appropriate software, as

specified in requirement S(2).

■ Incident in Software Vendor A

This is a case in which a legitimate software update was tampered with, affecting the

entire organization using the software. A software update was tampered with by intrusion

into the software development company's development and operation environment, and

the security of the development and operation environment from upstream to downstream

of its software supply chain was not sufficiently ensured.

Here, it is possible to reduce risks by making it difficult for attackers to intrude by creating

a secure development and operation environment with prompt maintenance, as per

requirements S(1) and S(4).

■ Encryption and leakage incident of patient information held by Hospital B

This is a case where an attacker exploited a vulnerability in a VPN device to intrude into

the hospital's network, encrypting and leaking patient information maintained by the

hospital, consequently causing problems in medical treatment operations. This occurred

because vulnerability of the VPN device was neglected.

Here, it is possible to reduce risks by collecting vulnerability information and formulating

a response, as specified in requirement S(3), and by understanding vulnerability

information by establishing an information collection system, as specified in requirement

S(5). In addition, the customer side can reduce risks by cooperating with businesses

through the procurement and operation of secure software, as stated in requirement S(6).

55

5.3. Correspondence relationships between threats in a system life cycle and

requirements

The main correspondence relationships between threats and requirements are described

in Table 7 as reference information. These outline the importance of the requirements

organized in the Guidelines (draft) in handling threats in a system life cycle.

Table 7 Correspondence relationships between system life cycle, threats, and

requirements

System life cycle Outline of the threat Reason for requirements against the threat

Analysis/Planning

 Insufficient current situation
analysis

A system/service in which current
vulnerabilities and security are not
considered is built without sufficient
risk analysis of the current
system/service between the customer
and developer/supplier.

Businesses appropriately define security
requirements through risk analysis as per
S(1)-1 and confirm the results of the
analysis.
Customers make decisions based on risk
assessment, as per S(6)-2.
With these measures, an appropriate
analysis of the current situation is
conducted.

Requirement
definition

 Disagreement on
requirements

Without sufficient agreement on
security requirements between the
customer and business, unintended
security requirements are defined. This
leads to misunderstanding or a lack of
security requirements.

Businesses define appropriate security
requirements as per S(1)-1 and agree on
security requirements between businesses
as per S(2)-3, dealing with risks that do not
meet requirements.
Customers proactively engage in the
definition of security requirements as per
S(6)-2.
With these measures, the customer and
business agree on appropriate security
requirements.

Design - testing

 Misunderstanding of
requirements/Improper
implementation

Security requirements are not fully
understood or not properly
implemented from the perspective of
software security quality.

Businesses maintain appropriate risk
response by recording risk responses and
continuously reviewing risk response
measures as per S(1)-1. In addition, as per
S(1)-2, appropriate implementation is
conducted by making use of a secure
development process.
With these measures, requirements are
implemented properly.

 Intentional code manipulation
By exploiting an insecure development
environment, an attacker intentionally
injects malicious code or components
such as a backdoor that enables future
unauthorized access. Alternatively, an
attacker is allowed to steal confidential
information such as source code.

Businesses implement access control for
code in their development environments as
per S(2)-2. As per S(4)-5 and S(4)-6,
security measures are implemented in
development tools to protect development
environments.
With these measures, code is protected
from attackers through the protection of
development environments.

 Unauthorized third-party
software incorporation

Vulnerable third-party source code or
binaries or software or components of
unknown origin are intentionally or
accidentally incorporated.

Businesses procure secure software
components as per S(2)-1. The origins of
components are managed in the respective
software releases as per S(2)-2.
With these measures, the incorporation of
inappropriate third-party software is
prevented.

56

System life cycle Outline of the threat Reason for requirements against the threat

Design - Testing

 Unauthorized incorporation
during build

An attacker exploits a flaw in a build
process, and unauthorized software is
incorporated into a product
component.
(Example: Inappropriate compiler
option)

Businesses use secure build tools to build
products as per S(1)-2. Security measures
are implemented in development tools for
the build environment as per S(4)-5.
With these measures, unauthorized
incorporation during builds is prevented.

 Development process
dependent on individual skills
with low accuracy and
reproducibility

Owing to PDCA procedures not being
followed and the development
(implementation) process being
excessively dependent on individual
work, accuracy and reproducibility are
reduced, resulting in potential security
issues in a build environment.
(Example: Local build dependent on
individual skills)

Businesses use secure build tools to build
products as per S(1)-2. Appropriate
development toolchains are used, as per
S(4)-5.
With these measures, development work
dependent on individual skills is avoided.

 Omission of review/analysis
Vulnerabilities remain unsolved owing
to insufficient review and analysis of
the code to identify vulnerabilities and
conform to standards.
(Example: Lack of vulnerability testing
and scanning)

Businesses conduct reviews at the design
stage as per S(1)-1. Testing is implemented
as per S(1)-3. Various forms of code are
reviewed as per S(1)-2 and feedback
provided to process.
With these measures, review and analysis
are implemented to an appropriate extent.

 Inappropriate development
process

No PDCA procedure is established
and a low-quality development process
is adopted.
In addition, excessive prioritization of
time to market and cost reduction
causes new development processes
and approaches to be forcibly adopted,
resulting in potential security problems.
(Example: Weak development
standards)

Businesses prepare a development policy
as per S(4)-2 and arrange development
standards as per S(4)-4.
With these measures, secure development
processes are maintained.

 Unintentional information
leakage

Information is leaked unintentionally.
(Example: Carelessness of a
developer or an inappropriate
development environment)

Businesses strive for improvement of
personnel skills through training, etc., as per
S(4)-1. A secure software development
infrastructure is arranged as per S(4)-2. A
software service operation policy is
established as per S(4)-3. As per S(4)-5 and
S(4)-6, security measures are implemented
in development tools to protect development
environments.
With these measures, information leakage
from the human and environmental
perspectives is reduced.

 Inappropriate service use
(cloud only)

(Owing to schedule and cost
constraints) SaaS services in which
security is not considered are
introduced or implemented.
(Example: Different modules in a
single SaaS solution have different
security requirements, causing
insufficient verification of all
components)

Businesses introduce services consisting of
appropriate software components as per
S(2)-1. A process is arranged for dealing
with risks that do not meet security
requirements as per S(2)-3.
With these measures, appropriate services
are introduced/used.

57

System life cycle Outline of the threat Reason for requirements against the threat

Distribution

 Unauthorized incorporation
during distribution

Malicious software is injected into an
original software package, update
program, or upgrade product
distributed to customers through a
software distribution route or delivery
mechanism. (Example: Program
tampering, document tampering)

Businesses provide information and
mechanisms that allow users to start using
software securely as per S(2)-4.
With these measures, fraud is prevented
during distribution.

Operation

 Denial of service
An attacker stops an external service
such as SaaS, or stops supply of
security patches, etc.

Businesses arrange a software service
operation policy as per S(4)-3. Businesses
prepare a monitoring environment for
service operation as per S(1)-4. Risk
response to vulnerabilities is implemented
as per S(3)-2.
With these measures, vulnerabilities that are
causes are addressed, and denial of service
is detected and its impact reduced.

 Unauthorized archive
manipulation

Archives are manipulated, overwritten,
or destroyed, either unintentionally by
a developer or intentionally by an
attacker. It becomes difficult to analyze
and respond to vulnerabilities
discovered after a release.

Businesses protect archives as per S(2)-2.
With these measures, unauthorized
manipulations of archives are prevented.

 Vulnerabilities left unsolved
Use of software continues without
information regarding discovered
software vulnerabilities being
communicated to customers.

Businesses establish a vulnerability
disclosure policy as per S(3)-1. Users are
provided with information necessary for
measures against vulnerabilities as per
S(2)-4. Businesses address vulnerabilities,
including their root causes, as per S(3)-2
and S(3)-3. Businesses introduce a software
component update process as per S(2)-1.
Businesses provide customers with
appropriate information and measures to
address vulnerabilities, aiming to eliminate
vulnerabilities.

 Incorrect
configuration/settings

When software is used without
appropriate configuration or settings,
vulnerabilities become apparent.
(Example: Full access permitted by
default, execution of software whose
authenticity cannot be confirmed, etc.)

Businesses promote the development of
software that is secure by default as per
S(1)-2. Businesses provide users with
secure configurations and usage methods
as per S(2)-4.
With these measures, the use of
appropriately configured software is
promoted.

Disposal

 Information leakage and
unauthorized access through
disposal

Confidential information such as
source code is stolen by an attacker
through discarded equipment that
retains confidential information stored
in it, and unauthorized access to it is
gained through equipment that is left
unused and to be discarded.

Businesses arrange a software service
operation policy as per S(4)-2 and S(4)-3.
With these measures, equipment intended
to be discarded is appropriately disposed of.

58

System life cycle Outline of the threat Reason for requirements against the threat

Common to life
cycles

 Processes and resources
unarranged

Secure software cycles and supply
chains are not maintained because
processes and resources (people,
things, and money) are not arranged.
(Example: Insufficient training to
conduct threat or risk assessments,
security is not taken up as a
management issue, excessive
workload, etc.)

Businesses arrange human resources as
per S(4)-1. A development policy is
established as per S(4)-2. A software
service operation policy is established as
per S(4)-3. Processes and resource
systems are audited as per S(4)-4.
Customers appropriately determine systems
of businesses as per S(6)-1. Appropriate
budgets are ensured as per S(6)-2 .
With these measures, people, materials,
and money necessary to ensure security are
arranged, such as development
infrastructures and security requirements
and standards for development processes.

 Inadequate information and
asset management

Security initiatives are not initiated
because the necessary information is
not grasped.

Businesses promote information sharing as
per S(5)-1. Businesses promote proactive
utilization of cooperative structures as per
S(5)-2.
With these measures, the collection and
management of information necessary for
security measures are promoted.

 Incomplete agreement chains
Security requirements are not satisfied
or requests are rejected because
contractual agreements regarding
security between suppliers, third-party
suppliers, and customers do not
properly link up.

Businesses seek agreement on appropriate
security requirements among parties
concerned as per S(2)-3. Risk response is
maintained as per S(1)-1.
Customers proactively manage risks as per
S(6)-1. Customers disclose in advance
security practices required of businesses as
per S(6)-2.
With these measures, the parties concerned
agree on appropriate security requirements.

 Inadequate selection
conditions

Characteristics of suppliers are not
considered when a supplier
(subcontractor) and software are
selected.
(Example: Past performance, etc.)

Businesses agree on security requirements
among parties concerned as per S(2)-3 and
include them in contracts.
With these measures, appropriate suppliers
are selected.

59

5.4. Examples of measures implemented to meet requirements

Examples of measures to be implemented to meet requirements (itemized requirements)

are described below as reference information. For measures to be organizationally

implemented in the target software to meet requirements, organizationally appropriate

methods must be selected and applied. These examples are provided as reference

information so that such measures can be envisioned. Consequently, they do not

comprehensively represent the measures to be implemented for the requirements (itemized

requirements). When considering measures to meet these requirements, it is recommended

to refer to 5.5, as necessary.

(1) Secure design, development, supply, and operation

S (1)-1

Developer

Supplier

Operator

Customer

Risk assessment during design and tracking of countermeasures
Analyze and assess the risks of software to be developed in accordance with the principles
of "secure by design" and "secure by default," track risk responses, security requirements,
and design decisions, and maintain countermeasures.

 S(1)-1.1 Risk-based security requirements definition
Perform risk-based analysis and assessment of the software to be developed
or the system/service composed of the software, and then define security
requirements that serve as mitigation measures.

Examples of

measures
 To improve the effectiveness of the risk-based approach, conduct risk assessments

using risk analysis techniques using risk modeling, like attack and threat modeling.

 To improve the effectiveness of the risk-based approach, train development teams or

consult risk modeling experts.

 Conduct more strict risk assessment for high-risk areas such as protection of

confidential data and personal information, authentication, access control, and

credential management.

(In the case of software for a system/service)

 Establish security requirements to be agreed upon with customers as company-wide

rules in advance. For customers who do not provide requirements, establish appropriate

security requirements through hearings.

 To obtain customers' understanding of the costs associated with security measures,

propose benefits obtained by improving customer's security. Simultaneously, explain

the necessity of increased costs to customers, based on detailed breakdowns.

 Establish cooperative frameworks for entire system life cycles, including the division of

roles between the business operator and customer, commonality and standardization

within industries through the arrangement of development environments and

terminologies, and communication methods.

60

 S(1)-1.2 Design review

Through a review of the software design, confirm that it meets all security

requirements and adequately addresses the identified risk information, and

apply the review results.

Examples of

measures

 Review software from design perspectives (architecture, design, critical code,

vulnerabilities, etc.) using an appropriate method for each perspective (peer review,

lead review, walkthrough, static and dynamic scanning, vulnerability scanning, etc.).

 Review software from various development perspectives—integrated development

environment (IDE), build pipeline, and automated process instantiated in a toolchain,

such as static and dynamic security—using an appropriate method for each perspective

(peer review, lead review, walkthrough, static and dynamic scanning, vulnerability

scanning, etc.).

 S(1)-1.3 Risk response records

Keep records of design decisions, responses to risks, and approved exceptional

measures to maintain them for audit and maintenance purposes throughout the

software life cycle.

Examples of

measures

 Record responses to respective risks, including decisions on design, how risk mitigation

was achieved, and the rationale for approved exceptions to security requirements.

 Maintain records of responses to respective risks.

 S(1)-1.4 Periodic risk-based review

Review all approved exceptions to security requirements and software design,

as well as the results of the risk-based analysis and assessment created during

the software design, and periodically check whether risks are being addressed

appropriately.

Examples of

measures

 Regularly re-evaluate all approved exceptions and implement appropriate changes as

necessary.

 Review risk models to check periodically whether risks are addressed appropriately and

implement changes as necessary (SP800-218 PW.1.2 notional implementation

example).

■ Threat modeling and risk management

Threat modeling is an analytical technique for identifying potential threats and

vulnerabilities in software and studying security measures to be implemented to make

connections to risk management.

Intended software and assets to be protected are clarified, and threats and

vulnerabilities that adversely affect assets are analyzed.

Various frameworks have been published, a typical one is the STRIDE model developed

by Microsoft. This model is used as a methodology for identifying threats and studying

security measures from the perspectives of "spoofing, tampering, repudiation, information

disclosure, denial of service, and elevation of privilege." (Related requirement: S(1)-1.1)

61

Column Guidance on "bad practices"

Various organizations have arranged best practices for software security, but as a

contrary concept, the US Cybersecurity and Infrastructure Security Agency (CISA) and

Federal Bureau of Investigation (FBI) have published "Product Security Bad Practices

Guidance." The guidance describes inappropriate product security practices that are

considered as high risk for software vendors and provides recommendations for software

vendors to mitigate these risks. These are divided into three categories, as described

below. The first and second ones are most relevant to the Guidelines (draft).

[1] Product characteristics:

These relate to the observable security quality of software, such as development in a

language that is not memory safe. In direct relation to the Guidelines (draft), the release of

a software product that contains components with known vulnerabilities and the use of

vulnerable open-source software fall under this category.

[2] Organizational processes and policies:

These relate to transparency assurance for software security, such as failing to publish

vulnerability disclosure policies.

[3] Security functions:

These relate to security functions that software products should have, and a lack of

multi-factor authentication and logging functions, are described.

■ Entities that perform risk assessments of software to be developed

"Software to be developed" includes software that realizes the functionality of a

system/service, software to be embedded in an IoT device, and firmware to be installed

on a chip.

Entities that operate a system/service carry out risk modeling and analysis/assessment

at the system/service level. In addition, entities that design and manufacture IoT devices

and chips carry out risk modeling and analysis/assessment at the IoT device and chip

levels.

In addition, risks to be focused on in S(1)-1 are risks related to software to be developed,

and developers carry out risk modeling and analysis/assessment proactively. For

dedicated software, higher-level risks for which a usage environment is identified must be

considered. With respect to general-purpose software, risks based on the usage of

software in expected usage environments must be considered.

62

■ Approach for costs associated with security measures

To obtain customers' understanding of the costs associated with security measures, it is

necessary to create proposals that are based on not only profit distribution of cyber

infrastructure providers for themselves but also security improvements of customers. In

addition, it is necessary to provide educational activities for customers regarding costs,

details of increased costs (estimation of required costs in the case of system development

or renovation, and the addition of service menus applied in the case of a cloud service),

and the necessity of accountability to customers.

It is important that both customers and cyber infrastructure providers share the same

understanding regarding the necessity and costs of security measures, and it is desirable

to foster understanding through the division of roles between customer and cyber

infrastructure provider, commonality and standardization within the industry through the

establishment of development environments and terminology, and communication

throughout the life cycles of intended systems. (Related requirement: Entire S(1)-1)

S (1)-2

Developer

Supplier

Operator

Customer

Secure build
Define secure coding and system construction processes that are appropriate for
development languages and environments, and generate and build code accordingly. Review
and analyze code, including configurations, and feed back the results to the process.

 S(1)-2.1 Definition of secure development process
Define a process related to secure coding, secure build, and default secure; for
example, secure coding perspectives, build timing and method, use of
automation tools, and training.

Examples of

measures
 Check for vulnerabilities that are common to development languages and environments

and prevent these vulnerabilities from being incorporated into a process.

 Use compilers, interpreters, and build tools that provide features to improve the security

of executable formats. (SP800-218 PW.6.1 task)

 Introduce automation support (quality improvement) into development methods and

environments.

 Apply configuration management tools to manage intermediate deliverables and

configuration baselines in development.

 Provide appropriate training before using secure coding techniques and development

environments equipped with automated features. (SP800-218 PW.5.1 notional

implementation example)

 Implement secure default configurations, store default configurations in a usable format,

and enable changes in accordance with change management practices.

 Document secure settings and guidance on operations for software users (such as

system administrators).

 Introduce automation support with AI support in development techniques and

environments (such as quality improvement through AI application to static analysis).

63

 S(1)-2.2 Secure build

Generate and build code using a compiler, interpreter, and build tools that

provide functions that improve the security of executable formats.

Examples of

measures

 Determine functions and configurations of compilers, interpreters, and build tools and

make approved configurations available in the form of configuration as code (CaC).

 Establish a change management process to deploy/update compilers, interpreters, and

build tools and periodically verify their authenticity and integrity.

 Apply protected configurations to virtualization technologies such as containers used to

deploy software.

 S(1)-2.3 Verification and feedback

Identify root causes of problems discovered through verification by review and

analysis, and feed back results to processes.

Examples of

measures

 Select a method for reviewing and analyzing codes depending on the stage of the

software life cycle. (SP800-218 PW.7.1 notional implementation example)

 Obtain assistance from expert reviewers to check whether backdoors or other malicious

codes are present.

 When a tool such as a static code analysis tool is used, document the results of the

analysis.

 Use static analysis tools to check codes for vulnerabilities and compliance with in-house

secure coding standards automatically, and review any issues reported by a tool and

solve them as necessary. (SP800-218 PW.7.2 notional implementation example)

 Verify compliance with security requirements through review and analysis, identify and

document the root causes of any issues found, and feed back the results of the

response to processes for secure coding, secure build, and secure by default. (Derived

from statement)

 S(1)-2.4 Codebases

For objects subject to a review and analysis, source codes as well as codes in

various formats (such as configuration files) that the organization determines to

be readable are to be targets.

Examples of

measures

 Perform code reviews and analyses based on in-house secure coding standards, and

record and prioritize all discovered problems and recommended solutions in a

development team's workflow or problem tracking system. (SP800-218 PW.7.2 task)

 In intended settings of development environments subject to review, include compiler

configurations, development languages and environments to prevent common

vulnerabilities and weaknesses, and third-party codes and reusable code modules

written in-house, as needed.

64

S (1)-3

Developer

Supplier

Operator

Customer

Testing

Design and implement vulnerability and penetration testing as well as functional testing to

identify vulnerabilities not identified in the review and analysis up to the build phase, and

implement countermeasures against identified vulnerabilities.

 S(1)-3.1 Test planning

Based on threat models and risk analysis, determine a test scope and method,

and develop a test plan.

Examples of

measures

 Determine whether executable code needs to be tested to identify vulnerabilities not

identified in reviews, analysis, or testing. (SP800-218 PW.8.1 task)

 When testing executable code, determine the scopes and methods of the testing and

develop test plans. (SP800-218 PW.8.1 task)

 In those to be tested, include binaries, directly executed bytecodes, source codes, and

other forms of code and software that organizations regard as executable.

 In those to be tested for code, include third-party executable codes and in-house

created reusable executable code modules as necessary.

(In the case of software for a system/service)

 When a client business distributes testing guidelines or templates, develop a test plan

including these.

 S(1)-3.2 Test method

Include functional testing, vulnerability testing, fuzzing, penetration testing, etc.

in the test method.

Examples of

measures

 Include test methods to verify that the respective settings, including default settings,

function as expected and do not inadvertently cause security vulnerabilities or

operational problems.

 Include fuzz testing in the testing methodology to identify problems with input/output

processing within the software.

 Include penetration testing to simulate manners in which an attacker breaches a

software in high-risk scenarios.

 Integrate static and dynamic vulnerability tests, as well as regression tests to remove

negative effects of modifications, into automated test suites of projects.

 S(1)-3.3 Test implementation

Design and implement tests according to the test plan, and document the test

results.

Examples of

measures

 Conduct tests in which a practical production environment is considered according to

manuals to make it possible to confirm that the respective settings, including default

settings, function as expected.

65

 S(1)-3.4 Responses to problems

Incorporate all problems identified through testing and recommended

countermeasures into the development team's workflows to solve them.

Examples of

measures

 Record all problems discovered through testing and recommended countermeasures in

the development team's workflows or problem tracking system, and prioritize and

document them. (SP800-218 PW.8.2 task)

 Identify and record the root causes of discovered problems. (SP800-218 PW.8.2

notional implementation example)

 Organize the results of the vulnerability analysis, vulnerability risk mitigation measures,

and tool analysis so that they can be presented upon request by a reviewer.

S (1)-4

Developer

Supplier

Operator

Customer

Monitoring of services

Arrange a process and system to ensure that software protects and maintains information

assets and is consistent with the environment in which it is implemented (network, platform,

service, etc.) and implement them.

 S(1)-4.1 Asset management

Operators arrange asset management procedures and asset lists related to

assets that are handled by systems and services and assets that constitute the

systems and services.

Examples of

measures

 Integrate change management and configuration management into asset management

for systems and services to maintain secure configurations.

 Establish and perform procedures for maintaining the security of systems and services

based on security policies.

 S(1)-4.2 Development of a monitoring environment

Operators appropriately separate systems to minimize the potential impact of a

risk when it occurs, and establish a monitoring environment to monitor risks that

are important for the protection of assets by means of software.

Examples of

measures

 Use systems for managing services for a dedicated purpose only so that they do not

intermingle with other tasks.

 Apply diagnostic tools to determine important risks.

 S(1)-4.3 Arrangement of a security mechanism

Arrange an appropriate security mechanism for the software and systems and

services to which the software is applied, to protect and monitor the

confidentiality and integrity of information assets and data in operating

environments or resources such as digital infrastructure.

Examples of

measures

 Use firewalls, encryption, signatures, etc. as mechanisms for protecting confidentiality

and integrity.

66

 S(1)-4.4 Monitoring and evaluation

Operators monitor the operation of mechanisms that are applied to systems that

provide important services, periodically conduct security assessments, and

integrate them into the risk management framework of the organization.

Examples of

measures

 Monitor the status of the operation of software mechanisms applied to critical services

and ensure that they are protected and maintained consistently with networks,

platforms, and other interlocking services related to the operation of the software.

(Derived from statement)

 Include the time when a new system is introduced and the time when major changes

are made to an operational system in the timing of security evaluation related to systems

and services.

(2) Life cycle management and assurance of transparency

S (2)-1

Developer

Supplier

Operator

Customer

Arrangement of secure software components

Verify that commercial, open-source, and other third-party software components procured

from outside comply with the defined in-house requirements throughout their life cycles.

 S(2)-1.1 Arrangement of software components

In terms of commercial, open-source, and other third-party software

components procured from outside, adopt those that are highly secure and meet

the defined in-house requirements.

Examples of

measures

 Review and evaluate third-party software components (including software libraries,

modules, middleware, frameworks, etc. that provide standardized security functions and

services such as cryptographic modules and standard protocols), assuming its usage

environment.

 Determine secure configurations of third-party software components and make it easy

for developers to use the configurations with CaC, etc. (SP800-218 PW.4.1 notional

implementation example)

 To verify the security of third-party software components in an assumed usage

environment, create builds from source code (including security scan), static analysis

(binary scan), dynamic analysis, etc. as necessary.

(In the case of software for a system/service)

 Submit a self-conformance certificate indicating compliance with the SSDF upon

customer request, and submit an SBOM as a deliverable indicating the compliance, as

necessary.

67

 S(2)-1.2 Development and maintenance of software components

When software components are not procured from outside, develop highly

secure software components in-house in accordance with established in-house

security standards and practices, and maintain them.

Examples of

measures

 When developing and maintaining components, conduct secure software development

in accordance with security practices established in-house. (SP800-218 PW.4.2

notional implementation example)

 Determine secure configurations for developed software components and make them

easily usable for developers through CaC, etc. (SP800-218 PW.4.2 notional

implementation example)

 S(2)-1.3 Risk assessment of software components

Acquire and analyze information regarding locations from where the respective

software components originate and assess the risks brought by the

components.

Examples of

measures

 Maintain a list of commercial software components and component versions approved

in-house along with their provenance data (e.g., SBOM). (SP800-218 PW.4.1 notional

implementation example)

 Perform a configuration analysis (source code, binary code) of the respective software

components and maintain a repository to make secure configurations easily usable.

 Acquire and analyze the provenance information of the respective software components

(e.g., SBOM, source configuration analysis, binary software configuration analysis), and

evaluate risks that components may pose. (SP800-218 PW.4.1 notional implementation

example)

 Verify and confirm the integrity of the software components by making use of digital

signatures or other mechanisms. In this manner, identify and verify the certificates used,

and verify the cryptographic standards used.

 Share the management of source codes, configuration information, and change

information on supply chains, and share SBOMs as necessary.

 S(2)-1.4 Confirmation of publicly known vulnerabilities of software components

Regularly check for publicly known vulnerabilities and periods during which the

respective software components are supported.

Examples of

measures

 For conducting regular checks for publicly known vulnerabilities and support periods of

the respective software components, consider the utilization of external diagnostic or

audit services.

 Incorporate the automated detection of known vulnerabilities in deployed software

components into toolchains.

 S(2)-1.5 Updating of software components

Implement a process to update the respective software components to the new

version securely.

Examples of

measures

 Implement a process to update the respective deployed software components to the

new version, and retain the older versions of the software components until all

migrations from those versions are successfully completed. (SP800-218 PW.4.1

notional implementation example)

 For any vulnerabilities (including publicly known vulnerabilities) that are found in the

respective introduced software components, share information on the supply chains of

the software components and solve them promptly by applying patches, etc.

 If the integrity or origin of an acquired binary cannot be confirmed, verify the integrity

and origin of the source code and build a binary from the source code. (SP800-218

PW.4.1 notional implementation example)

68

■ Purpose of procuring secure software components and the need for

information sharing

Instead of developing functions individually from scratch, it is possible to reduce risks of

vulnerabilities by reusing existing software that ensures security, such as existing system

components that are sufficiently secured or standardized software components (log

management, access control, etc. that comply with standards).

Countermeasures against software vulnerabilities should be implemented as far as

possible during the development stage, and it is necessary to respond promptly to any

remaining vulnerabilities discovered thereafter by applying patches, etc. during the

subsequent life cycle and in the supply chain. To achieve this, it is necessary to realize

information sharing regarding software through configuration and change management in

a sustainably maintained software development and maintenance environment based on

an SSDF and cybersecurity-supply chain risk management (C-SCRM). (Related

Requirement: S(2)-1.1)

■ Towards building a secure software distribution mechanism by using

and sharing SBOMs

When a vulnerability is identified in a software procured from a developer or supplier, in

order for the procurer (customer) to fix the software, it is recommended to obtain the source

code and SBOM of the software and perform configuration and change management on

them.

In addition, when standard mechanisms for distributing vulnerability-managed software

(such as binaries and IoT devices with embedded software) can be realized—such as by

having suppliers/developers manage source codes and SBOMs and appropriately

manage configurations and change management while retaining rights to source codes,

and by making it possible to trace evidence as necessary—the distribution of source codes

and the SBOM may not be required with delivery. Furthermore, to consider rapid

identification of the impact of vulnerabilities, it may be more effective to establish a

mechanism for tracking the traceability of products developed in-house (into which they

are embedded) or using a framework such as the Binding Operational Directive (BOD) by

CISA or the EU CRA (in which the government requests critical infrastructure operators),

or customers/operation organizations can request cyber infrastructure providers to report

whether there are vulnerabilities.

As described above, the need for utilizing and sharing SBOMs is increasing, and some

industries are considering unified rules. To introduce SBOMs and share them fully between

organizations, it is desirable to consider and build a system with reference to the

"Guidelines on Introduction of Software Bill of Materials (SBOM) for Software Management

ver. 2.0" published by the Ministry of Economy, Trade and Industry on August 29, 2024.

Specifically, it is important to fully understand the feasibility and constraints of a system for

secure software distribution including SBOMs and the priority of efforts, and then

determine a system for secure software distribution and create agreements through

contracts, etc. (Related requirement: S(2)-1.3)

69

■ Requirements for software introduced by government-related agencies

in Europe and the US

Initiatives for SSDFs are progressing mainly in Europe and the US. In the US, the Office

of Management and Budget (OMB) has announced "M-22-18 Enhancing the Security of

the Software Supply Chain through Secure Software Development Practices" (and M-23-

16, the updated version of the same).

This document requires federal agencies to employ software vendors that can certify

that they can implement the SSDF SP800-218. In addition, it requires software vendors to

submit a self-certification of conformance to certify their implementation of the SSDF and

an SBOM as a deliverable to demonstrate compliance, if necessary.

A self-certification of conformance is a document that proves compliance with the SSDF

based on EO14028, and certifies processes and procedures for continuous secure

software development, such as vulnerability disclosure and response. (Related

requirement: S(2)-1.1)

(Reference) On page 31 of the document on the Software Task Force of the Ministry of

Economy, Trade and Industry, in the following URL, there is a description of the SSDF self-

certification and SBOM requirements in the OMB memorandum (M-22-18).

https://www.meti.go.jp/shingikai/mono_info_service/sangyo_cyber/wg_seido/wg_bunya

odan/software/pdf/010_03_00.pdf

S (2)-2

Developer

Supplier

Operator

Customer

Secure archiving of release files and data

Archive necessary files and data to be retained during software release and restrict access to

only necessary personnel, tools, and services. Collect, protect, maintain, and share

provenance data for all components of the respective releases through the gradual adoption

of SBOMs.

 S(2)-2.1 Protection of codebases

To protect codebases in all forms from unauthorized access and tampering,

store codes and configuration information in a repository and implement access

control based on the principle of least privilege so that only authorized

personnel, tools, services, etc. can access it.

Examples of

measures

 Store all forms of code, including source codes, executable codes, settings, resource

files, container images, and CaC, in codebase repositories. This applies to open-source

and language class component groups, integrity verification information, provenance

data, etc.

 Use cryptographic techniques (e.g., code signing, commit signing, hashing) to protect

the authenticity and integrity of source codes and executable code files.

 Have a third party review all changes made to the code and code owners approve them.

70

 S(2)-2.2 Archiving of releases

Archive the respective software releases to protect them so that vulnerabilities

identified after release can be analyzed and identified.

Examples of

measures

 Store release files, associated images, etc. in repositories according to established

organizational policies. Allow read-only access for necessary personnel and prohibit

access by others. (SP800-218 PS.3.1 notional implementation example)

 When enhancing functionality, store associated codes and executable files, and check

and approve all changes.

 S(2)-2.3 Sharing of release provenance data

Collect, protect, maintain, and share provenance data for all components of the

respective software releases.

Examples of

measures

 Make provenance data available to in-house operations and response teams that

receive and acquire software using SBOMs, etc.

 Document all third-party components acquired directly by developers and incorporated

into the software, and employ measures to trace their original sources as far as

possible.

 Scan binaries created by third parties and conduct risk assessments for the security of

components created by third parties.

 Implement a check system for open-source libraries and check them regularly.

 Both suppliers and developers work together to ensure the integrity of signing servers

for integrity verification.

S (2)-3

Developer

Supplier

Operator

Customer

Establishment of security requirements among stakeholders

Establish security requirements to be agreed upon among the parties involved and include

them in contracts or policies to be shared.

71

 S(2)-3.1 Agreement on security requirements

Include explicit security requirements in contracts or policies to be shared with

third parties that provide IT products (including commercial software

components for use in in-house software) or services.

Examples of

measures

 Examples of requirements to be included in contracts or policies with third parties

(suppliers) are as follows:

➢ Monitoring and disclosure of supplier's information security compliance (software

security requirements)

➢ Regulations for sharing information on potential problems with suppliers

➢ Implementation of secure development processes (including process verification,

penetration testing, etc. by third parties)

➢ Vulnerability management (including vulnerability disclosure and patch

management)

➢ Provision of SBOMs

➢ Implementation of processes to ensure the authenticity of components from

suppliers (protection against unauthorized access during transmission of data

related to supply chains)

➢ Response to vulnerabilities related to products and services of suppliers

➢ Assurance of availability of suppliers and measures for recovery

➢ Provision of support, definition of SLA, complaint handling

➢ Others, such as definitions of responsibilities and roles of both parties, and

requirements for contract completion and termination

 S(2)-3.2 Responses to supply chain security requirements

Respond to supply chain security requirements equivalent to those adopted by

the organization that receives or acquires the IT products or services that it

provides.

Examples of

measures

 Maintain a process for selecting suppliers of components made by a third party based

on supply chain security requirements and obtain evidence of selection.

(In the case of software for a system/service)

 To demonstrate that specifications for software quality that customers require are

satisfied, adopt a mechanism to run customer-specified source code diagnostic tools

and submit evidence.

 S(2)-3.3 Establishment of a response process for risks that do not meet security

requirements

Arrange a process to respond to risks in the case where there are security

requirements that IT products or services made by a third-party to be received

or acquired do not meet.

Examples of

measures

 Determine acquisition strategies and procedures to reduce supply chain risks (do not

clarify purchase purposes, select reliable distribution destinations, provide incentives to

suppliers with good contract terms and management, etc.).

 Verify and update SBOMs obtained from third parties.

(In the case of software for a system/service)

 Implement and provide configuration management, change management, hardening of

development and maintenance environments, etc. to manage and supervise supply

chains.

72

■ Support for / cooperation with suppliers and developers who are

contractors

To establish and maintain security through the entire supply chain, customers who are

clients must provide as much support and management as possible to meet the agreed

upon supply chain security requirements as part of support for suppliers and developers

and cooperate with them. For example, the following support and management can be

considered:

 Provide suppliers and developers with a development environment or allow them

to use it. Permit the contractor's personnel to use the development environment

after they take a course and pass a test.

 Make agreements in stages, starting with important security requirements.

 Prime providers support and manage contractors. In cases in which multiple cyber

infrastructure providers are involved, customers or a consulting company that

oversees and handles entire upstream processes participates to ensure that all

vulnerabilities are identified and not included.

 When the sub-contractor is a subsidiary, the parent company may control the

supply chain security, but as it is necessary to be careful about the sharing of

benefits, financial and IT departments participate to achieve an overall balance.

 Set a grace period for contractors who cannot immediately provide a response

when management standards are revised.

Thus, in responses to supply chain security requirements, effort levels vary between

supply chain layers, such as prime contractors, sub-contractors, and distributors.

Therefore, it is necessary to raise the levels of basic efforts of each stakeholder in supply

chain considering the current situation they are in. In this case, it is important to decide on

the division of roles and items to be implemented at the time of contract to deepen the

cooperative relationship between stakeholders. In the future, it is desirable to arrange

guidelines through deeper discussions with industry groups and public institutions, and to

organize how to determine the scopes of responsibilities and perspectives through future

efforts by the involved parties. (Related requirement: Entire S(2)-3)

S (2)-4

Developer

Supplier

Operator

Customer

Appropriate information provision to users

Ensure that software users can use guidance that facilitates secure use throughout the entire

software life cycle—from introduction and installation to operation and termination of use.

73

 S(2)-4.1 Secure introduction, configuration, operation, modification, disposal, and

termination

Ensure that software users can continuously use information for securely

introducing, configuring, and operating software, as well as information related

to the impact of changes, disposal, termination of provision, and termination of

use.

Examples of

measures

 Implement secure default settings (or groups of default settings, if applicable). (SP800-

218 PW.9.2 task)

 Include the following in guidance for software users (system administrators, etc.):

➢ Secure introduction procedures for initial installation, installation of additional

components, updates, and patches, and procedures for secure configurations

➢ Software integrity verification information and configuration guides

➢ Details of secure configuration information (purposes of the respective settings,

default settings, relevance on security, potential operational impact, relationship

with other settings, etc.)

 Clearly communicate the decision to end software support to users (customers) and

specify the scheduled date for the end of support.

 Even after software is supplied, if a vulnerability is identified in a program developed in-

house, provide the necessary information to ensure the safety of software users, for

example, by quickly and widely providing information to relevant parties in supply

chains.

(In the case of software for a system/service)

 Communicate realistic expectations regarding contents and duration of product support

in parallel with initial system provision.

 Cloud service providers offering services provide information in an easy-to-understand

manner to users and provide specific information guides to operators and system

builders/installers.

 S(2)-4.2 Provision of integrity verification information

Ensure that software users can continuously use the information necessary for

verifying the integrity and completeness of software.

Examples of

measures

 Provide the following for software users (system administrators, etc.):

➢ SBOMs or information equivalent to SBOMs for software to be supplied

➢ Information for verifying that measures against tampering are appropriate in

distribution channels from suppliers to customers (cryptographic hash of release

files, code signatures, etc.)

 Provide the following for software users (system administrators, etc.):

➢ Protection measures for distribution systems (use of trusted certificate authorities

for code signing, regular review of code signing processes, other measures to

protect signing environments, etc.)

■ Requirements that specify secure guidance

The Common Criteria (ISO/IEC 15408, ISO/IEC 18045), which are international

standards for security evaluation of IT products, require that appropriate instructions for

users regarding secure installation and use be included in manuals so that customers, who

are users of IT products, can begin secure installation and operation. In addition, in CISA's

"Defense against software supply chain attacks," it is indicated that a mechanism for

verifying the integrity of software releases (such as protection of code signing certificates)

is provided so that customers can confirm that software that they have obtained has not

been tampered with. (Related requirements: S(2)-4.1)

74

(3) Prompt responses to remaining vulnerabilities

S (3)-1

Developer

Supplier

Operator

Customer

Continuous vulnerability investigation

Establish a policy for disclosure and remediation of software vulnerabilities, define roles,

responsibilities, and processes required for the policy, and implement them.

 S(3)-1.1 Establishment of a vulnerability response system

Establish a policy for the disclosure and remediation of vulnerabilities of

software products, establish a system for responses to vulnerabilities (including

response to incidents) to support the policy, and define necessary roles,

responsibilities, and processes.

Examples of

measures

 Establish a product security incident response team (PSIRT) for software and arrange

an incident response process related to product security. (SP800-218 RV.1.3

implementation example)

 Establish clear methods and procedures for common threats that violate software

product security, incident response triggers, steps, recovery time objectives, and

contingency plans related to services.

 Conduct periodic exercises of incident response processes.

 S(3)-1.2 Communication plan

Establish a communication plan for all stakeholders.

Examples of

measures

 Arrange a vulnerability disclosure process, including a communication plan for all

stakeholders.

 Arrange mechanisms (e.g., mailing lists, portals) to support easy access to disclosed

vulnerability information and the import of it.

 S(3)-1.3 Vulnerability information collection

Collect new information regarding vulnerabilities through searches of public

information, notifications from software users, the acquisition of external threat

information, reviewing of system configuration data, and other methods.

75

Examples of

measures

 Arrange a vulnerability information collection process. (Derived from statement)

 Collect information on vulnerabilities in software and third-party components

incorporated into software from public sources (monitor CVEs and third-party support

channels).

 Collect and investigate information regarding suspected software vulnerabilities

identified by vendors of software and third-party components incorporated into software,

acquirers/users of the software (e.g., customers), and third-party researchers.

 Identify third-party components incorporated into software and periodically check for

fixes and end-of-support dates.

 By making use of threat intelligence sources, gain a better understanding of how

common vulnerabilities are exploited.

 Automatically review the origins and software configuration data of all software

components to identify new vulnerabilities contained within them. (SP800-218 RV.1.1

notional implementation example)

(In the case of software for a system/service)

 Consider using tools such as SSVC to manage vulnerabilities based on response

priorities (make effective use as an integrated initiative with in-house asset

management).

 S(3)-1.4 Identification of undetected vulnerabilities
Conduct software code review, analysis, and testing on an ongoing or regular
basis to identify undetected vulnerabilities (including improper settings) to be
solved.

Examples of

measures
 Maintain a system to record and track all reports of potential software vulnerabilities.

 Apply the practice specified in S(1)-2.3 (verification and feedback).

 Configure toolchains to perform automated code analysis and testing periodically or

continuously for all supported releases. (SP800-218 RV.1.2 notional implementation

example)

■ Coordination regarding responses to and reminders for vulnerabilities
In responding to vulnerabilities, reminders for vulnerabilities along with the creation and

application of patches, responses based on the position as a business (SIers, operator,

sales agent, etc.) and mutual collaboration are necessary. Examples are as follows.

(Related requirement: S(3)-1.2)

 Software manufacturers and IoT manufacturers respond to serious product

vulnerabilities (create fixes) and send reminders to customers, SIers, and sales

agents.

 When a software or IoT manufacturer provides information to a customer, SIers

respond to serious product vulnerabilities (provide a patch to the customer and

apply it upon request from the customer).

 When a software/IoT manufacturer or SIer provides information to an operation and

maintenance vendor, the vendor responds to serious product vulnerabilities; they

provide the customer a patch and apply it upon request from the customer.

 When a software or IoT manufacturer provides information for a distributor, the

distributor notifies the customer of serious product vulnerabilities.

76

■ When responses to system/service software vulnerabilities are

inadequate

In some legacy systems that are operated in closed environments, the need to collect

vulnerability information on software that is a system component or to take measures

against vulnerabilities is not recognized. Moreover, in some cases, management of assets,

such as software components, which is necessary as a prerequisite for vulnerability

management of software that constitutes a system, is inadequate.

As described above, in systems and services, when responses to software

vulnerabilities are not adequate, measures to address vulnerabilities in conjunction with

existing incident responses and contingency plans can be considered. (Related

requirements: S(3)-1 in general)

 Arrange a system for coordination with suppliers regarding the provision,

implementation, and testing of incident response plans.

 Arrange contingency plans (including measures to ensure the safety of utilities such

as electricity) and continuity strategies to ensure the continuity of services required

to establish a system.

 Integrate the collection of vulnerability information and responses to vulnerabilities

into these systems.

S (3)-2

Developer

Supplier

Operator

Customer

Responses to detected vulnerabilities

Regularly create a plan to respond to risks of vulnerabilities remaining in released software

and implement it.

 S(3)-2.1 Vulnerability analysis

Collect the necessary information to understand the risks associated with the

impact of each remaining vulnerability and analyze each vulnerability to plan

repairs or other responses to risks.

Examples of

measures

 Quantitatively analyze risks for the respective remaining vulnerabilities based on

estimates of the likelihood of exploitation, the impact if exploited, and other relevant

characteristics.

 Use available issue tracking software to record the respective vulnerabilities. (SP800-

218 RV.2.1 notional implementation example)

(In the case of software for a system/service)

 To ensure the effectiveness of corrections associated with risk responses, store

common specifications, design documents, and intermediate products so that

modifications can be made by personnel other than the code generators; agree on

specific defect warranty periods; and create a contract for modification costs

individually.

77

 S(3)-2.2 Risk responses to vulnerabilities

Create a plan for the risk response to each vulnerability and implement it.

Examples of

measures

 Determine risk responses on a risk-based assessment, such as whether to take

measures to avoid vulnerabilities or to implement measures to repair software (including

methods to temporarily mitigate vulnerabilities until a permanent solution is provided),

prioritize responses to be implemented, and create plans. (SP800-218 RV.2.2 notional

implementation example)

 In the case of responses with implementation, document the tests and verification

results.

 When information regarding vulnerabilities is provided by organizations such as public

institutions, create appropriate and proactive responses, including the development of

required patches.

 S(3)-2.3 Security recommendations

Prepare security recommendations, provide the information to the supplier of

the released software, and make a report to authorities as specified by the

relevant systems.

Examples of

measures

 Identify vulnerabilities and components contained in software, and create documents

with software configuration information. (CRA Annex I 2)

 Create the necessary software correction security updates to address vulnerabilities.

(CRA Annex I 2)

 After a security update becomes available, prepare and disclose a security advisory for

fixed vulnerabilities, including descriptions of vulnerabilities, information that allows

users to identify affected software, impacts of vulnerabilities, severities of vulnerabilities,

and information that helps users to fix vulnerabilities. (CRA Annex I 2)

 Securely distribute security updates, including patches and countermeasure

procedures indicated in the security advisory, to ensure integrity and reliability. (S(3)-

2.3, CRA Annex I 2)

 Inform users of corrective measures that they can take to mitigate the impact of an

incident without undue delay.

 For vulnerabilities reported under a vulnerability reporting system, respond based on

the Information Security Early Warning Partnership Guidelines.

 Enable security analysts to analyze programs and report possible vulnerabilities.

(SP800-218 RV.1.3 notional implementation example)

 Establish a secure distribution mechanism that supports easy access and importing of

disclosed vulnerability information and security updates.

 To correct vulnerabilities quickly, establish an approach for appropriately and efficiently

evaluating the risks of vulnerabilities, prioritizing responses, and providing a

configurable automatic software update mechanism based on update strategies of

customers.

 Prepare a security response playbook to handle reported common vulnerabilities, zero-

day vulnerability reports, vulnerabilities that are actually being exploited, and critical

ongoing incidents involving multiple parties and open-source software components.

(SP800-218 RV.1.3 notional implementation example)

78

■ Issues and responses to vulnerabilities in software for systems and

services

Various issues must be considered regarding responses to vulnerabilities in software

that constitutes a system or service, and thus, it is necessary to take measures according

to the situation.

 For a system that provides services, there are times at which services cannot be

stopped; consequently, it may be difficult to immediately perform fixes such as patch

application. As a countermeasure, it may be possible to perform patch application

(if permitted) with regular version upgrades, and until then, protect against

vulnerabilities by employing peripheral measures for services.

 When maintaining old software packages, patch application is difficult from a

compatibility perspective; therefore, a support period should be set in advance or

other measures taken, and migration to software packages in which

countermeasures can be taken should be encouraged.

 When adopting software with a short EOL, it may be difficult to keep up with

technology and perform upgrades in some cases. In such cases, it may be

beneficial to promote the development of an environment that enables efficient

system upgrades with minimal time and effort, by using technologies such as

containers in the medium to long term.

In modification of software as part of security measures, important issue is ensuring

necessary resources, including requesting contractors to perform modifications. For

example, not being able to manage costs and not being able to prepare a verification

environment before applying a patch to the production environment can even increase

risk. Considering such a risk, preparations should be made for necessary contents and

costs, and an appropriate verification environment should be arranged. When applying for

budgeting for security measures, it is absolutely necessary to explain not only the costs

but also risks and their impacts to management, and it is desirable to show reasons for the

necessity and appropriateness of the costs based on the risks and impacts. In this case, it

is essential to reach an agreement in advance with the relevant parties on the approach

to cost allocation. (Related requirement: Entire S(3)-2)

S (3)-3

Developer

Supplier

Operator

Customer

Utilization of results of countermeasures to in-house process improvement

Based on vulnerabilities, review the development and operation processes so that the root

causes of problems identified in software do not recur or that the possibility of their recurrence

is lowered.

79

 S(3)-3.1 Identification of root causes

Analyze an identified vulnerability to determine its root causes and proactively

take countermeasures.

Examples of

measures

 Analyze discriminated vulnerabilities that have already been identified, and analyze and

record the root causes of identified problems. (SP800-218 RV.3.1 task/notional

implementation example)

 Analyze the root causes over time, for example, by adding mechanisms that

automatically detect occurrences of causal events to toolchains to identify patterns,

such as certain secure coding rules that are not observed consistently.

 By using automated tools, continuously observe insecure software practices verified

when a readable code is checked into a repository.

 To eradicate a particular family of vulnerabilities, review software for similar

vulnerabilities and make corrections in advance without waiting for external reports.

 S(3)-3.2 Process improvement

Review development and operation processes for the entire software life cycle

and revise them as necessary to prevent root causes from recurring or reduce

the possibility of their recurrence through software updates or new software

creation.

Examples of

measures

 Investigate the internal impact and implement mitigation measures for vulnerabilities to

prevent or reduce the recurrence of root causes.

 Review and, as necessary, update development and operation processes throughout

software life cycles based on lessons learned through root cause analysis. (SP800-218

RV.3.4 task/notional implementation example)

 Make use of identified root causes and corrective actions in training that helps to

improve developer capabilities.

■ Development and operation should work together for vulnerability

response
In preparation against the impact on a developed source code in a case where the

source code or middleware is updated, sufficient operation verification of the intended

software is required. In businesses in which different organizations conduct development

and operation, the division of roles in operation verification becomes an issue. In particular,

when transferring to an operation phase, arrangements must be made so that the

operation system is composed of personnel with sufficient skills and know-how. In addition,

it is necessary to arrange standards (templates and frameworks) for the operation

organization to take over and manage the configuration and management information

created by the development organization. (Related requirement: S(3)-3.2)

80

(4) Arrangement of human resources, processes, and technologies

S (4)-1

Developer

Supplier

Operator

Customer

Human resources: Commitment from management and arrangement of personnel

Define roles and responsibilities covering the entire software life cycle. Make management's

commitment to secure development known, secure personnel for security measures, provide

training to all personnel related to secure development and operation according to their levels

of proficiency and role, and review it regularly.

 S(4)-1.1 Definitions of roles and responsibilities

Define roles and responsibilities covering the entire SDLC.

Examples of

measures

 Integrate the role of security into software development teams. (Derived from statement)

 Arrange roles and responsibilities to integrate supply chain management and risk

management into software development processes.

 Define roles and responsibilities for all involved in SDLCs, including cybersecurity staff,

security champions, project managers and leaders, senior management, software

developers, software testers, software assurance leaders and staff, product owners,

operations and platform engineers, and procurement and inventory leaders and staff.

 S(4)-1.2 Management's commitment

Make management's commitment to secure development known to all

personnel, and educate them on the importance of secure development and

operation for the organization.

Examples of

measures

 Conduct trainings to ensure that all people with roles and responsibilities related to

development and operation are aware of and understand the management's (top

management, senior management, approval authorities, etc.) commitment to secure

development and operation. (SP800-218 PO.2.3 task)

 Appoint a leader or leadership team to be responsible for the entire secure software

development process and implement education to raise awareness of risks and risk

mitigation. (SP800-218 PO.2.3 notional implementation example)

 Educate all personnel with roles and responsibilities related to development and

operation about management's efforts to achieve secure development and operation as

well as the importance of secure development and operation as an organization.

(SP800-218 PO.2.3 notional implementation example)

 S(4)-1.3 Agreement on roles and responsibilities

Confirm that all personnel are aware of and agree to their roles and

responsibilities.

Examples of

measures

 Educate individuals who have been assigned roles and those affected by upcoming

changes to roles and responsibilities, and make sure that individuals understand and

agree to follow their roles and responsibilities. (SP800-218 PO.2.1 notional

implementation example)

81

 S(4)-1.4 Training for each role

Create a training plan for each role and implement it so that all personnel can

be trained according to their level of proficiency and role.

Examples of

measures

 Provide role-based training for all personnel responsible for contributing to secure

development. (SP800-218 PO.2.2 task)

 Continuously verify the careers of personnel involved in security measures, including

candidates for the roles.

 Assign code jurisdiction and plan training for software developers to understand and

share secure software development methods (including standardized development

methods, how to use development tools in which automation is proactively used, and

programming methods leveraging AI), secure coding standards, role-specific best

practices, and AI-supported automation (quality improvement) methods.

 In training plans, include goals by proficiency and role and a process for measuring the

results.

 S(4)-1.5 Review of roles and training

Review roles and training regularly.

Examples of

measures

 Review defined roles and responsibilities on a regular basis (annual, etc.) and update

as necessary. (SP800-218 PO.2.1 task)

 Regularly review personnel proficiency and role-based training and the assessment

results, and update training as necessary. (SP800-218 PO.2.2 task/notional

implementation example)

 Before implementing and using new development methods and toolchains such as

CI/CD pipelines based on the DevSecOps development paradigm, review training on

security assurance measures for software supply chains and how to use the tools.

■ Importance of training developers on secure development

By making use of automation, human labor can be reduced and the accuracy and

reproducibility of efforts throughout the entire life cycle can be improved. To obtain the

benefits of automation, it is necessary to assume that actions of personnel are automated

and the training for respective roles is accordingly adjusted so that the effects of

automation are maximized.

As developers are directly involved in software security measures, when training for

respective roles, training developers on secure development is particularly important. In

the case of waterfall development, overlook of security measures in an upstream design

process causes the risk of incurring high costs owing to the rework required in downstream

processes. Meanwhile, in agile development, difficulty to assign dedicated or well-trained

personnel results in difficulty to assign development checks to the required phases.

Compared with waterfall development, there are concerns regarding risks such as the use

of unintended libraries owing to the insufficient abilities or judgment of individual engineers.

(Related requirement: S(4)-1.4)

82

S (4)-2

Developer

Supplier

Operator

Customer

Process: Establishment of development policy and compliance with laws and

regulations

Comply with laws and regulations, document and maintain a security policy for in-house

development infrastructures and processes, and secure necessary budgets for security

establishment.

 S(4)-2.1 Definition of a software development policy

Identify all security requirements for software development infrastructures and

processes (including requirements related to EOL), and define a security policy

for maintenance throughout the SDLC in compliance with laws and regulations.

Examples of

measures

 Define policies to protect and maintain the security of software development

infrastructures and their components (including development endpoints) throughout

SDLCs. (SP800-218 PO.1.1 notional implementation example)

 Define policies to protect and maintain the security of software development processes

and their components (including other third-party software components) throughout the

SDLC. (SP800-218 PO.1.1 notional implementation example)

 Make plans to maintain and recover in-house development infrastructures and

processes (measures for information security control, supporting systems, processes

to maintain existing measures for information security control, and control measures to

compensate measures for information security control that cannot be maintained), and

test, review, and evaluate the implementation.

 Establish policies to verify and enforce the compliance of in-house policies considering

domestic and local legal requirements at business locations, industry best practices,

and standards.

(In the case of software for a system/service)

 Define policies for acquiring systems and services (purposes, scopes, roles,

responsibilities, coordination between organizations, response to compliance, etc.).

83

 S(4)-2.2 Definition and maintenance of a software security policy

Define a policy that specifies all security requirements that software developed

by an organization must meet, and maintain the requirements throughout the

SDLC.

Examples of

measures

 Include architecture and design requirements to mitigate risks, verification flow

requirements at appropriate gates (checkpoints) in the life cycle, and risk response

requirements for technology stacks (including language, environments, deployment

models, etc.) in security requirements that software must satisfy.

 Establish a policy for what should be archived during a software release (code, software

package files, third-party libraries, configurations, documentation, data inventories, and

other related artifacts) and how long they should be stored, based on SDLC models,

software EOL, and other factors.

 Review the policy periodically, when additional requirements are specified, or when

incidents occur (including the discovery of vulnerabilities in-house or in released

software), and communicate it to relevant parties.

 Establish a process for handling exception requests to requirements (including periodic

review of approved exceptions) and a process for identifying and addressing

weaknesses in supply chains.

 In the requirements, include an instruction to create architectures to which patches are

applicable in the future.

(In the case of software for a system/service)

 When considering security requirements, include internal (organizational policies,

business objectives, risk management strategies, etc.) and external (applicable laws

and regulations, etc.) requirements.

 S(4)-2.3 Sharing of cost recognition and budgeting

Secure the necessary budgets to ensure security based on a policy.

Examples of

measures

 Consider measures to reduce remaining cybersecurity risks below an acceptable level,

secure resources (budget, personnel, etc.) required for the implementation, and then

work on specific measures. (Cybersecurity Management Guidelines v3, Direction 3)

(In the case of software for a system/service)

 As a prerequisite for promoting the sharing of cost recognition among stakeholders,

understand that leaving vulnerabilities unsolved will lead to future liabilities (damage

from cyberattacks, etc.), which is a common management risk.

84

■ Important points to be arranged as policies

Important points to be arranged as policies are described as follows:

 Determine a process for handling information provided by external organizations

in-house (e.g., arrange a contact point for receiving information, determine degrees

of connection of received information to in-house assets and urgency, and handle

information such as the formulation of a response policy).

 Manage information assets used in-house (prioritize received information based on

risk management on an in-house situation basis).

 Arrange industry-specific statistical information on security, such as those regarding

investments. (It is expected that management can understand the position of in-

house efforts by comparing them with those of other businesses and further

promote the efforts.)

 Define evaluation indicators on the effectiveness of security investments. (It is

expected that effects can be quantitatively shared between the customer and

business, such as by making use of reporting functions of tools invested in to

visualize investment effects. However, at the moment, an easy-to-understand

"visualization of investments and costs" usually turns into a problem to be studied).

When numerical targets to be achieved are organized, more realistic and precise cost

calculations becomes possible, and thus, it is thought that efforts to improve the validity of

cost estimates based on conformity to public numerical targets for security requirements

and security baselines, such as CISA's BODs and the "minimum viable product," a security

checklist jointly formulated by IT vendors, will become important in the future. (Related

requirement: Entire S(4)-2)

S (4)-3

Developer

Supplier

Operator

Customer

Process: Establishment of an operation policy and compliance with laws and

regulations

Comply with laws and regulations, and document and maintain all security policies on service

operation infrastructures and processes to which the software is applied.

85

 S(4)-3.1 Definition of a software service operation policy

Identify all security requirements for service operation infrastructures and

processes to which the software is applied (including requirements related to

EOS and disposal), and define a security policy for maintenance throughout the

SDLC in compliance with laws and regulations.

Examples of

measures

 Define policies to protect and maintain the security of software-applied service operation

infrastructures, processes, and their components (including other third-party software

components) throughout the SDLC. (Derived from sp800-218 PO.1.1 notional

implementation example)

 Create plans to maintain and recover in-house service operation infrastructures and

processes (measures for information security control, supporting systems, processes

to maintain existing measures for information security control, and control measures to

compensate measures for information security control that cannot be maintained), and

test, review, and evaluate the implementation.

 Establish policies to verify and enforce compliance of in-house policies to domestic and

local legal requirements at business locations, industry best practices, and standards.

 Establish a policy for implementing protection measures based on risk analysis

according to the business size and industry.

 Include a process that allows customers to link with other digital services and, if

necessary, migrate to other providers that offer similar services.

 S(4)-3.2 Definition and maintenance of a service security policy

Define a policy that specifies all security requirements that services to which the

software is applied must meet, and maintain the requirements throughout the

SDLC.

Examples of

measures

 When considering security requirements, include requirements from within

(organizational policies, business objectives, risk management strategies, etc.) and

from outside (applicable laws and regulations, etc.).

 Review the policy periodically or when additional requirements are specified or incidents

occur (including the discovery of vulnerabilities in-house or in released software

services), and communicate it to relevant parties.

 Establish and follow a process for handling exception requests for requirements

(including periodic review of all approved exceptions).

(In the case of software for a system/service)

 As a prerequisite for promoting the sharing of cost recognition among stakeholders, all

stakeholders must understand that leaving vulnerabilities unsolved will lead to future

liabilities (damage from cyberattacks, etc.) as a common management risk.

 S(4)-3.3 Audit based on an operation policy

Confirm through an audit that the protection of service operation infrastructures

and processes and security requirements for service are maintained throughout

the SDLC in accordance with policy-based governance.

Examples of

measures

 Establish a system and secure budgets so that audits do not become a mere formality.

Establish governance by responding to findings received through audits of the most

important and essential audit items.

 Establish a mechanism for verifying the skills and capabilities of auditors from the

perspective of governance.

*See reference information, "Important points to be arranged as policies,” in S(4)-2.

86

S (4)-4

Developer

Supplier

Operator

Customer

Process: Establishment of development and operational standards

Define security verification criteria related to software development, collect the necessary

information to support the criteria, and implement processes and mechanisms for

conformance. Track the status of conformance throughout the entire life cycle.

 S(4)-4.1 Definition and tracking of security verification criteria

Define software security verification criteria and track the entire SDLC.

Examples of

measures

 Define software security evaluation indicators based on security engineering (e.g., key

performance indicators (KPIs), key risk indicators (KRIs), vulnerability severity scores,

etc.) and introduce them into the development processes.

 Incorporate threats, vulnerability information, and lessons learned from past projects

into the security verification criteria.

 Define quality indicators (e.g., no compiler errors) together to keep evidence that quality

standards are met.

 Record security inspection approvals, rejections, and exception requests as part of

workflows and tracking systems. (SP800-218 PO.4.1 notional implementation example)

 Incorporate security verification criteria into completion judgment of development

workflows, check compliance status of deliverables, and use confirmed results to

improve the entire development process.

(In the case of software for a system/service)

 Introduce KPIs that allow for constant evaluation of effectiveness in systems that

support important services.

 S(4)-4.2 Support for decision-making based on security verification criteria

Implement processes and mechanisms for collecting and protecting the

necessary information to support decision-making based on security verification

criteria.

Examples of

measures

 Arrange a process to collect the necessary data to confirm standard clearing by making

use of a toolchain and use it for security decision-making. (S(4)-4.2)

 Deploy additional tools as necessary to support the generation and collection of

information to support the criteria. (SP800-218 PO.4.2 notional implementation

example)

 Allow only authorized personnel to have access to the collected information and prevent

it from being modified or deleted. (SP800-218 PO.4.2 notional implementation example)

 Automate decision-making processes and periodically review these processes.

 S(4)-4.3 Audit based on security verification criteria

Track the entire SDLC and verify through audits that the intended effects are

achieved with governance to ensure conformance to security verification

criteria.

Examples of

measures

 Establish a system and secure budgets so that audits do not become a mere formality.

Establish governance by responding to findings received through audits of the most

important and essential audit items.

 Include an instruction to establish a mechanism for verifying the skills and capabilities

of auditors from the perspective of governance.

87

S (4)-5

Developer

Supplier

Operator

Customer

Technology: Arrangement of secure development tools

Analyze risks throughout the SDLC and implement security measures in development tools.

 S(4)-5.1 Designation of tools and toolchains

Identify tools that are effective in mitigating identified risks, and designate which

toolchains must or need to be included and means of integrating toolchain

components mutually.

Examples of

measures

 Define toolchain categories and specify mandatory tools or types of tools to be used for

the respective categories. (SP800-218 PO.3.1 notional implementation example)

 Integrate security tools into processes and toolchains.

 Define the information passed between tools and data formats used, and integrate them

with toolchains or existing software development processes and workflows.

 Adopt automation techniques for managing and orchestrating tools as needed, such as

to achieve build reproducibility.

 S(4)-5.2 Deployment, operation, and maintenance of tools and toolchains

Deploy, operate, and maintain tools and toolchains in accordance with security

practices.

Examples of

measures

 Regularly review whether tools and toolchains meet the requirements defined in-house.

 Evaluate the effects of tools on achieving security and determine their effectiveness. As

expected effects, according to the purpose of application, determine the feasibility of

toolchains using codebase configurations, build reproducibility, upgrade support such

as vulnerability responses, whether the necessary information for verifying integrity

such as origin information is available, support for toolchain automation, and responses

to threats of past projects, vulnerability information, and responses to lessons learned,

etc.

 Continuously research and verify the origin, integrity, vulnerabilities, and new functions

of tools, and update the tools as necessary.

 When evaluating tools, conduct threat modeling and vulnerability analysis.

 Use compatibility libraries with secure third-party software toolchains as a tool security

measure.

 S(4)-5.3 Tool configuration and evidence generation

Configure tools to generate evidence regarding support for secure software

development practices defined in-house.

Examples of

measures

 Continuously generate and monitor logs when tools are used to discover potential

operational and security issues, including policy violations and abnormal behaviors.

 Use existing tools (e.g., workflow tracking, issue tracking, value stream mapping) to

create an audit trail of secure development-related activities performed for the purpose

of continuous improvement.

 Determine the frequencies of auditing information collected and implement the

necessary processes. (SP800-218 PO.3.3 notional implementation example)

88

■ Supplementation of security practices for development tools

Supplementary points regarding security practices for development tools are as follows.

(Related requirements: S(4)-5.2)

 When using a third-party software component such as OSS as a development

environment (including a development tool), collect vulnerability information and

confirm its origin.

 In the case of contracted development, clarify control issues such as restrictions on

use of development equipment owned by contractors.

 Use tools that centrally manage and utilize configurations and settings, and foster

technical skills to make full use of these tools in development teams.

S (4)-6

Developer

Supplier

Operator

Customer

Technology: Arrangement of secure development environments

Analyze risks throughout the SDLC, and protect and strengthen development-related

environments.

 S(4)-6.1 Isolation and protection of environments

Isolate and protect the respective environments related to software

development.

Examples of

measures

 Isolate the development and production environments.

 Isolate environments and networks for software development (development, build, test,

and distribution environments, etc.).

 Minimize the use of production software and services from non-production

environments in production environments. (SP800-218 PO.5.1 notional implementation

example)

 Regularly log, monitor, and audit trust relationships for authorization and access

between environments and between components in the respective environments.

(SP800-218 PO.5.1 notional implementation example)

 Configure security controls and other tools related to the isolation and protection of

environments to generate artifacts of environment behavior. (SP800-218 PO.5.1

notional implementation example)

 Continuously monitor vulnerabilities of components deployed in the respective

environments and implement risk-based measures by environment.

 Configure and implement measures to protect hosting infrastructures of environments

that comply with the Zero Trust Architecture.

89

 S(4)-6.2 Protection of development endpoints

Protect and strengthen endpoints designed for the respective developers to

perform development-related tasks using a risk-based approach.

Examples of

measures

 Select appropriate system protection methods (e.g., appropriate architecture,

technology) based on risk analysis to isolate environments and networks for the

purpose of software development.

 Make security protection for development environments and endpoints (for software

designers, developers, testers, builders, etc.) robust (using multi-factor authentication,

risk-based authentication, conditional access by environment, encryption of sensitive

data based on standards, etc.), monitor privileged access and access attempts, and

detect, respond to, and restore cyber incidents.

 Development environments should provide the minimum functionality required by users

and services and must be configured following the principle of least privilege.

 Strictly restrict connections to development environments (including limiting access to

the Internet to the minimum necessary).

 Implement hardening such as configuration management, change management,

protection of development, maintenance environments, administrator privileges, etc. to

prevent the creation and introduction of malicious software.

(In the case of software for a system/service)

 To streamline development and administrative work, prepare a common development

platform including configuration management and provide it to the contractor

(considering the burden of costs on business divisions).

Column Benefits of using AI in software development operation

In 2023, a US survey found that 92% of US-based developers have been already using

AI coding tools both at work and outside of work. This fact illustrates that generative AI is

used extensively in software development operation.

In addition, in an analysis of GitHub Copilot users by a US research company, it was

reported that, on average, developers accepted almost 30% of code suggestions from

GitHub Copilot in the first year, and that the acceptance helped to improve productivity.

Furthermore, it was found that the acceptance rate had increased as developers became

more familiar with the tools. This suggests that it is likely to continue to affect the

productivity of developers as they become more accustomed to software development with

GitHub Copilot.

Another survey reported that less experienced developers benefit more from GitHub

Copilot. Thus, it is hoped that generative AI will be used effectively in software

development operation.

Column Negative aspects of AI use in software development operation

A study by Stanford University in the US reported that giving too much authority to an AI

assistant (for example, the automation of parameter selection) may reduce enthusiasm for

addressing security vulnerabilities, and that AI assistants may reduce the proactiveness of

developers in carefully searching library documentation for APIs and details of secure

implementation.

Given that some causes of security vulnerabilities are related to the selection and use

of inappropriate libraries, it is contemplated that developers need to pay attention to how

they handle AI assistants (e.g., interactive methods including prompts), learn how to test

the products they produce, etc.

Column Responses to ethical, legal, and social issues in AI use

90

During the "Human Genome Project" in the 1980s, an initiative named Ethical, Legal

and Social Implications (ELSI) was promoted. This initiative represents a way of thinking

that addresses both technical issues as well as ethical, legal, and social influences, which

is a perspective that should be emphasized in light of the rapidly advancing AI use at

present. One of the ELSI initiatives in AI use that are being discussed is that for

"trustworthy and responsible AI."

For example, the accuracy of a machine-learning model is greatly affected by both the

quantity and quality (variation) of the training data, so it is important to consider

characteristics related to the quality of data that affect performance and security, such as

whether the data are biased, whether they can sufficiently predict events, and whether

they contain noise. Before collecting such training data or utilizing machine-learning

models, it is necessary to consider ethical (human rights violations, etc.), legal (copyright,

unfair competition prevention, trade secrets, personal information and privacy, etc.), and

social (AI fairness, transparency, accountability, etc.) impacts as risks and to establish an

appropriate risk management system for the development and maintenance of

"trustworthy and responsible AI."

In the EU, a provisional agreement was reached on a bill to regulate AI comprehensively

(the Artificial Intelligence Act) as of December 2023. In the future, risk-based responses

will be required for AI systems that are developed and used within the EU, and heavy fines

will be set for violations; thus, each entity will be urged to take measures.

In addition, the US National Institute of Standards and Technology (NIST) has developed

a framework (the NIST AI Risk Management Framework (RMF)) to better manage the risks

associated with AI for individuals, organizations, and society, and the Trustworthy and

Responsible AI Resource Center has started supporting its use.

https://airc.nist.gov/Home

Column
Example of secure software development practice for
generative AI

The US NIST has published SP800-218A (Secure Software Development Practices for

Generative AI and Dual-Use Foundation Models Community Profile) as a derivative of the

SSDF defined in SP800-218. This document supplements the SSDF with tasks, practices,

and recommendations specific to AI model development and provides useful information

for AI model developers, AI system developers, and AI system purchasers to gain a deeper

understanding of secure software development techniques for AI models.

The SSDF has been supplemented with the following items:

 Data protection (added as the PS.1.2 task)

Protect data for all training, testing, fine-tuning, and aligning from unauthorized access

or modification.

 Model protection (added as the PS.1.3 task)

Protect model weights and configuration parameters from unauthorized access or

modification.

 SBOMs through supply chain levels of software artifacts (SLSA) (change in the PS.3.2

task)

Collect, protect, maintain, and share provenance data for all components of the

respective software releases (e.g., SBOMs through SLSA).

 Continuous monitoring of execution performance and behavior (added as the PO.5.3

task)

Continuously monitor the execution performance and behavior of software in software

development environments to identify potential suspicious activities or other issues.

 Analysis of data (added as the PW.3.1 task)

Analyze data for signs of data poisoning, bias, homogeneity, and tampering before

using them for the purposes of training, testing, fine-tuning, and aligning AI models

and mitigate risks as necessary.

91

 Tracking of data provenance (added as the PW.3.2 task)

Track the provenance of all training, testing, fine-tuning, and aligning data used for AI

models.

 Adversarial samples (added as the PW.3.3 task)

Include adversarial samples in training and test data to improve attack detection.

With reference to these tasks and practice examples, it is possible to establish systems,

processes, and procedures for securely developing generative AI models.

https://csrc.nist.gov/pubs/sp/800/218/a/final

92

(5) Strengthening of relationships between cyber infrastructure providers and

stakeholders

S (5)-1

Developer

Supplier

Operator

Customer

Organizational system for information sharing

Establish an organizational structure for information sharing between private companies,

relevant authorities, and specialized organizations to improve the security of software

products and services.

 S(5)-1.1 Establishment of an organizational system for information sharing

Establish an organizational structure for information sharing between private

companies, relevant authorities, and specialized organizations to improve the

security of software products and services.

Examples of

measures

 Establish policies to check for and enforce compliance of in-house policies to legal

requirements and industry best practices, and standards related to software.

 Establish a CSIRT and a point of contact to make use of information linkage between

private companies, relevant authorities, and specialized organizations regarding

software security, and at the same time, advance the skills of those involved and

promote the use of communication tools to improve efficiency.

 S(5)-1.2 Provision of important security-related information

Select and identify essential and important security-related information specific

to the industry and provide it to partners in the supply chain.

Examples of

measures

 Establish a mechanism for information sharing on software security between cyber

infrastructure providers (developers, suppliers, and operators) and customers

(orderers). Suppliers contribute to information linkage as liaisons or intermediaries

between developers and customers.

 Actively share cases of damage (especially information on threats and

countermeasures) to prevent the same damage from being repeated.

(In the case of software for a system/service)

 Establish a mechanism for sharing information between related vendors to improve the

security of customers and provide responses when an incident occurs, based on a

contract.

 S(5)-1.3 Use of vulnerability information notification services

Use vulnerability information notification services to share vulnerability

information efficiently.

Examples of

measures

 For information sharing on the types of attacks and influences of a discovered

vulnerability, make use of mechanisms operated by industry associations, etc.

 For information sharing on vulnerabilities in settings, make use of institutions and

mechanisms operated by specialized organizations, etc.

 Promote the use of recommended information on common configuration management

tools in the industry through an industry association.

93

■ The need for a mechanism for sharing information among stakeholders

There is a growing need to formulate a mechanism for sharing information between

specialized organizations, related vendors, or related parties, such as how contracts

regarding responses when incidents occur, which will contribute toward improving

customer security. Examples are provided as follows:

 At present, information sharing on vulnerabilities caused by software configurations

is often limited to individual sharing between companies and personal connections.

Therefore, sharing mechanisms such as a reporting system of public institutions

(such as IPA) should be used.

 As it is generally difficult for developers to obtain information on the attacks and

influences of a discovered vulnerability, it should be made possible to use the

"Guidance for Sharing and Disclosure of Information on Damage from

Cyberattacks" (established by The Study Group on Guidance for Sharing and

Disclosure of Information on Damage from Cyberattacks on March 8, 2023), etc.

("Information sharing" refers to the exchange of technical information, mainly

related to cyberattack techniques, conducted in private at information sharing

venues or between specialized organizations. In contrast, "disclosure" is intended

for victim organizations to present to the outside the status of the cyberattack

damage that they suffered and details of their responses. Note that the guidance is

expected to be more convenient by attaching importance and deadlines of

measures.)

 As cyberattacks become more sophisticated and difficult for a single organization

to clarify the full extent of an attack, it is important that "information sharing" is

carried out promptly between other specialized organizations, not by a victim

organization itself, but through specialized organizations that support victim

organizations, from the perspective of preventing the spread of damage.

In line with the recommendations made by the "Study Group for Promotion of

Information Sharing on Damage Caused by Cyberattacks," a framework should be

established for smooth information sharing between specialized organizations and

its promotion by making use of the "Guide on How to Handle and Utilize Technical

Information on Cyberattacks" and "Draft Model Contractual Articles on How to

Handle Technical Information on Cyberattacks to be Included in NDA" (established

by the study group on March 11, 2024).

 A public–private information sharing mechanism intended for all cyber infrastructure

providers (developers, suppliers, and operators) and customers (orderers) should

be established.

To establish such a mechanism, several challenges must be addressed, including

assessment of eligibility for information sharing in information-sharing platforms, the

arrangement of formats and manuals for effective use of information, etc. (Related

requirement: S(5)-1.2)

94

S (5)-2

Developer

Supplier

Operator

Customer

Strengthening of cooperation systems

To improve the security of software products and services, make use of systems and

frameworks for cooperation with private companies, relevant authorities, and specialized

organizations.

 S(5)-2.1 Utilization of cooperation systems

To improve the security of software products and services, make use of

communities and cooperation systems aimed at improving software security in

which external businesses, customers, and specialized organizations

participate.

Examples of

measures

 Participate in industry associations such as the Information Sharing and Analysis

Center (ISAC) that share and analyze security information.

 S(5)-2.2 Contribution to cooperation systems

When participating in a community or cooperation system, actively participate in

activities to contribute to the cooperation system.

Examples of

measures

 In addition to sharing damage information, make use of a wide range of cooperation

frameworks, such as the following:

➢ Parent companies participate in a CSIRT council, and dispatch employees of

group companies to the CSIRT s of the parent companies to share information.

➢ Share indicator of compromise (IoC) information within group companies by

making use of the Malware Information Sharing Platform (MISP).

➢ Participate in the ISAC (Software ISAC, etc.) and CSIRT council.

➢ Engage in volunteer groups of the private sector and participate in conferences

established by connecting government agencies and other organizations with a

local security community and share vulnerability information with local

businesses, business organizations, and local governments.

➢ Hold study sessions with contractors who do not have ongoing projects, and share

information with them.

➢ User meetings hosted by prime providers, cross-industry briefings on sample

cases of incidents and their causes.

➢ Utilization of government-established information sharing platform such as the

IPA.

95

■ Expectation for initiatives to strengthen cooperation systems among

stakeholders
The initiatives described below are expected to strengthen cooperation systems formed

to improve the security of products and services among stakeholders. (Related

requirement: S(5)-2.2)

 Cooperation of industry associations is essential, and it is expected to contribute in

various manners by encouraging active participation of the business sector in

addressing challenges.

 It is expected that mechanisms for sharing information to deal with cyber threats

beyond confidentiality obligations, contractual arrangements in response to an

incident, means setting the level of information disclosure and its rules for

information sharing in a supply chain, establishing frameworks to quickly report and

share known vulnerabilities, and planning countermeasures to customers or

establishing maintenance operation teams.

 As a means of supporting business operators to improve their level of security

requirements, it is expected that guidelines and security baseline will be arranged

andformulated by each industrial sector..

96

(6) Risk management by customers, and procurement and operation of secure

software

S (6)-1 Developer Supplier Operator Customer

Risk management under the leadership of the customer's management

Integrate risk management that is implemented in cooperation with cyber infrastructure

providers based on the leadership of the customer's management.

 S(6)-1.1 Risk management

Implement risk management in which the customer's independent and proactive

efforts are integrated with efforts based on a contract with cyber infrastructure

providers.

Examples of

measures

 Customers are responsible for risk management of the entire systems they own.

Appropriate measures should be implemented based on the potential risks of the entire

system (such as the application of multi-factor authentication to users with

administrative privileges and realization of efficiency through proper operation of single

sign-on).

 Regard critical cyber infrastructure providers that support the organizational security

posture as critical business functions, and provide funding for entire life cycles of

operation and risk responses of the intended systems and software according to their

importance to organizational success, considering confirmed results of checks of

proposals from cyber infrastructure providers and cost breakdowns.

 Require cyber infrastructure providers to have transparency in their position on internal

control and roadmap for following secure by design and secure by default practices.

 Assuming a case in which an incident occurs in the operation of a system owned by a

customer, who enters into a maintenance contract with the cyber infrastructure provider

to which the maintenance of the system is entrusted, including incident response and

allocation of roles for it..

 Create a plan to improve the capabilities of cyber infrastructure providers that follow

secure by design and secure by default practices.

 Define all roles and responsibilities involved in the software operation life cycle,

including cybersecurity staff, security champions, security testers, operation and

platform engineers, and procurement staff.

 When using cloud systems, clarify security responsibilities of customers and suppliers

based on a shared responsibility model, and prioritize cloud providers with high

transparency in their security position, internal controls, and ability to fulfill

responsibilities under the shared responsibility model.

97

 S(6)-1.2 Resource arrangement

Allocate and develop resources to respond proactively to known vulnerabilities

and implement mitigation measures (including SBOM utilization).

Examples of

measures

 Check support periods of software products and create an operation plan that does not

use out-of-support software.

 Request and verify evidence information related to security implementation of software

products (such as SBOMs and self-conformance certificates that prove the conformity

of SSDF implementation).

 Perform integrity mechanism checks, security tests, environmental tests, and functional

tests before software acceptance or deployment.

 To ensure the quality of the software to be introduced, establish quality verification

procedures and standards through discussions between the customer and cyber

infrastructure provider and request evidence.

 Continuously conduct security monitoring of the introduced software, and report to the

cyber infrastructure provider when a suspected software vulnerability is identified.

 Determine an update policy based on software update strategies and adopt an

automated update mechanism as necessary.

 S(6)-1.3 Utilization of collaborative systems

Utilize communities and collaborative systems aimed at improving software

security.

Examples of

measures

 When participating in a community or cooperation system, actively participate in

activities to contribute to the cooperation system.

■ Differences in life cycles

Life cycles (usage periods) that customers who use software recognize are different

from life cycles (support periods) that cyber infrastructure providers who provide the

software recognize. When using software, it is essential to regularly check support periods

of versions of software to be used and create an operation plan for using the software for

which the support period has expired.

(Related requirement: S(6)-1.2)

98

S (6)-2 Developer Supplier Operator Customer

Software procurement/operation under the leadership of the customer's management

Procure and operate software securely under the leadership of the customer's management.

 S(6)-2.1 Definition of security requirements

Define security requirements for incorporating security functions into software

design plans and present them to cyber infrastructure providers before

procuring and deploying software.

Examples of

measures

 Work with industry counterparts to request that cyber infrastructure providers prioritize

secure by design and secure by default initiatives in the future.

 S(6)-2.2 Disclosure of security practice requirements

Disclose security practice requirements for cyber infrastructure providers before

procuring and deploying software.

Examples of

measures

 Give permissions to IT departments to specify purchasing criteria that emphasize

secure by design and secure by default practices.

 S(6)-2.3 Decision-making based on risk assessment

When procuring and introducing software, make decisions based on risk

assessment.

Examples of

measures

 Create a policy that requires IT departments to evaluate the security of software before

purchasing it and to ask for necessary information sources, and give permission to IT

departments to reject as needed.

 When making a decision to accept risks related to a specific technology product, create

formal documentation and have senior management give approval and regularly make

a report to the board of directors.

 When introducing a digital service, evaluate a migration possibility to other digital

services from a risk perspective and make appropriate decision on introduction.

 S(6)-2.4 Budget securement

Continuously secure budgets related to introduction, operation, migration,

disposal, risk response, and related contracts, considering software life cycles.

Examples of

measures

 Consider measures to reduce remaining cybersecurity risks below an acceptable level,

secure resources (budget, personnel, etc.) required for the implementation, and then

work on specific measures. (Cybersecurity Management Guidelines v3, Direction 3)

(In the case of software for a system/service)

 As a prerequisite for promoting the sharing of cost recognition among stakeholders,

understand that leaving vulnerabilities unsolved will lead to future liabilities (damage

from cyberattacks, etc.) as a common management risk.

99

5.5. Relationship between the Common Standards and Guidelines (draft)

(1) Framework for the use of the Common Standards and its positioning

National administrative agencies and independent administrative agencies (hereinafter

referred to as "government agencies, etc.") are to ensure information security within their

respective organizations in accordance with the framework for the use of the "Common

Standards for Cybersecurity Measures for Government Agencies and Related Agencies"13

(hereinafter referred to as "Common Standards") published by National center of Incident

readiness and Strategy for Cybersecurity (NISC, current National Cybersecurity Office

(NCO)).

Within this framework, to comply with common norms and standards, which are

requirements for their implementation, government agencies and other institutions are

required to formulate information security policies based on the characteristics of their

organizations and the information that they handle, while referring to the "Guidelines for

Formulating Measures Criteria for Government Agencies and Related Agencies" (hereinafter

referred to as the "Guidelines for Formulating Measures Criteria") to establish operational

regulations and implementation procedures related to the countermeasures set out in the

policies, and to implement countermeasures in a planned manner.

“Common Standards” consist of a common model, common standards, and guidelines for

formulating the measurement criteria. Common Standards classify the measures that

government agencies should implement into three hierarchical levels—division, section, and

subsection—based on their objectives and outline the purpose, intent, and items to observe

at the third level (subsection). The Guidelines for Formulating Measures Criteria provide

examples of basic countermeasures that should be implemented to meet the criteria and

approaches for the formulation and implementation of information security policies.

(2) Relationship with software handled by the Common Standards

"Software" covered by the Guidelines (draft) refers to the following types of software

handled by cyber infrastructure providers, in accordance with the purpose of the Guidelines

(draft) to "promote effective cybersecurity measures intended for software in supply chains."

(For details, see "1.3. Applicable objects: (1) Scope of software" in the Guidelines (draft).)

⚫ Software product

⚫ Software service

⚫ Embedded software

⚫ Software that constitutes a system or service

In addition, the scope of software for which the Common Standards require enhanced

measures in the procurement of external contractors and the outsourcing of development

and operation of information systems is as follows. It is assumed that the scope matches the

software for which the Guidelines (draft) are intended

<Outsourcing (procurement)>

⚫ Cloud service

⚫ Equipment (server equipment, terminal, communication line equipment, multifunction

printer, specific purpose equipment, software, etc.)

*In terms of software that is deemed particularly necessary to address supply chain

risks as <an example of software that manages or controls the foundation of an

information system>, the following are listed as examples:

➢ Software that controls terminals, server equipment, and communication line

equipment.

13 https://www.nisc.go.jp/policy/group/general/kijun.html
The Cybersecurity Strategy Headquarters determines "Common Model" and "Common Standards" of the Common
Standards.

100

➢ Software that manages comprehensive entity authentication

➢ Software that controls and manages networks

➢ Software that manages assets

➢ Software related to monitoring

➢ Software used as a security function of an information system

<Information system (outsourcing of development and operation)>

⚫ Application contents

In addition, reinforcement-related software security and supply chain risk measures have

been actively implemented in the most recent revision of the Common Standards. The

following items are listed as key points in the revision of the Common Standards (2023

edition). Thus, they agree with the purpose of the Guidelines (draft):

⚫ Key points in the revision of the Common Standards (2023 edition)14

➢ Strengthening of supply chain measures related to information security

➢ Strengthening of measures in light of the expanding use of cloud services

➢ Strengthening of measures for software use

➢ Strengthening of measures in light of strengthening of cyber resilience, cyber threat

and technology trends

➢ Strengthening of cross-organizational information security measures and

assurance of measures according to the importance of information systems

(3) Relationship between the Common Standards and Guidelines (draft)

The Guidelines (draft) specify the appropriate division of roles and responsibilities between

cyber infrastructure providers and customers to ensure the cyber security of software and

improve resilience. In terms of the relationship with the Common Standards, government

agencies are the customers and they comply with and reference these standards. Conversely,

cyber infrastructure providers are external contractors and are positioned to accept

outsourced business—such as software development, system operations, or the supply of

equipment and related services. The Common Standards do not directly state the roles and

responsibilities that cyber infrastructure providers should fulfill as contractors to enable

customers to implement items to observe; therefore, it is necessary to read the contents of

the Common Standards from the perspective of a contractor to understand it.

The first level of the Common Standards is divided into seven parts (Parts 2 to 8). Some

parts contain content that is directly related to the responsibilities set forth in the Guidelines

(draft) (items marked with "" in the table below) and some parts contain descriptions related

to the requirements as responsibilities set forth in the Guidelines (draft) (items marked with "

△" in the table below).

Table 8 Correspondence relationship with the first layer (chapter) of the Common

Standards

First layer (chapter) of the Common

Standards

Cyber infrastructure

provider
Customer

Chapter 1: General Provisions

Chapter 2: Basic Framework of Information

Security Measures
 

Chapter 3: Information Handling △

14 https://www.nisc.go.jp/pdf/policy/general/rev_pointr5.pdf

101

First layer (chapter) of the Common

Standards

Cyber infrastructure

provider
Customer

Chapter 4: Outsourcing  

Chapter 5: Life of Information Systems  

Chapter 6: Information Systems Components  

Chapter 7: Security Requirements for

Information Systems
 

Chapter 8: Use of Information Systems △ △

Appendix

In addition, the classification of the chapters in the second layer presents a relationship

between the Common Standards and Guidelines (draft); as the following chapters of the

Common Standards (items in a red frame in the table below) are both marked "" for

customers and cyber infrastructure providers, there is a particularly strong relationship with

the responsibilities and division of roles shown in the Guidelines (draft).

4.1 Subcontracting

4.2 Use of Cloud Services

4.3 Procurement of Equipment, etc.

5.2 Measures at Each Phase of Information System Lifecycle

6.5 Software

6.6 Applications and Content

7.2 Measures against Information Security Threats

Table 9 Correspondence relationship with the second layer (chapter)

of the Common Standards

Second layer (chapter) of the Common Standards
Cyber infrastructure
provider

Customer

Chapter 1: General Provisions

1.1 Purpose and Scope of these Common

Standards for Measures

1.2 Classification of Information and Handling

Restrictions

 1.3 Definition of Terms

 1.4 Terminology

 1.5 Basic Measures and Explanations

Chapter 2: Basic Framework of Information Security Measures 

 2.1 Introduction and Plan 

 2.2 Operation 

 2.3 Assessment △

 2.4 Review △

2.5 Incorporated Administrative Agencies and

Designated Corporations
 △

Chapter 3: Information Handling △

 3.1 Information Handling △

 3.2 Information Handling Areas △

Chapter 4: Outsourcing  

 4.1 Subcontracting  

102

 4.2 Use of Cloud Services  

 4.3 Procurement of Equipment, etc.  

Chapter 5: Life of Information Systems  

 5.1 Classification of Information Systems △

5.2 Measures at Each Phase of Information

System Lifecycle
 

5.3 Operational Continuity Plan of Information

Systems
△ △

 5.4 Shared Government Systems △ △

Chapter 6: Information Systems Components  

 6.1 Terminals △ △

 6.2 Server Equipment △ △

6.3 Multifunction Devices and Equipment for

Specific Purposes
△ △

 6.4 Communication Lines △ △

 6.5 Software  

 6.6 Applications and Content  

Chapter 7: Security Requirements for Information Systems  

 7.1 Security Functions of Information Systems △ △

 7.2 Measures against Information Security Threats  

 7.3 Zero Trust Architecture △ △

Chapter 8 Use of Information Systems △ △

 8.1 Use of Information Systems △ △

Appendix

103

5.6. Relationship between the Guidelines for Establishing Safety Principles for

Ensuring Information Security of Critical Infrastructure and Guidelines (draft)

(1) Framework for the use of the Guidelines for Establishing Safety Principles for Ensuring

Information Security of Critical Infrastructure and its positioning

Critical infrastructure operators conduct their business in accordance with the relevant

standards specified under the legal system related to their business fields. In the "Action Plan

for Cybersecurity of Critical Infrastructure" (hereinafter referred to as the "Action Plan"15), it

is stated that critical infrastructure operators shall endeavor to strengthen their own

organizational failure response systems based on the safety standards (described later), and

through these efforts, information security measures related to critical infrastructures are

being advanced comprehensively. In the "Guidelines for Establishing Safety Principles for

Ensuring Information Security of Critical Infrastructure"16 (hereinafter referred to as the

"Guidelines for Establishing Safety Principles"), with respect to cybersecurity assurance,

these standards or reference documents regarding the judgments and actions of respective

critical infrastructure operators are defined as "safety standards"17 , and efforts to ensure

cybersecurity that are commonly required for each critical infrastructure field are classified

and organized. It is expected that these efforts will be described in the safety standards to

be developed by critical infrastructure industry in principle.

In addition, a manual has been developed as a reference document in the Guidelines for

Establishing Safety Principles, which explains the basic approaches and specific procedures

for promoting security measures, such as risk management.

(2) Relationship with software handled by the Guidelines for Establishing Safety Principles

The "software" covered by the Guidelines (draft) refers to the following types of software

handled by cyber infrastructure providers, in accordance with the purpose of the Guidelines

(draft) to "promote effective cybersecurity measures intended for software in supply chains."

(For details, see "1.3. Applicable objects: (1) Scope of software" in the Guidelines (draft).)

⚫ Software product

⚫ Software service

⚫ Embedded software

⚫ Software that constitutes a system or service

In addition, the intended scope to be stipulated in the safety standards through the

Guidelines for Establishing Safety Principles should be based on the contents of "Examples

of Targeted Critical Systems" described in "Appendix 1: Examples of Intended Critical

Infrastructure Businesses, etc. and Critical Systems" of the Action Plan and "Critical

Infrastructure Services (including Procedures)," "Examples of Critical Infrastructure Service

Disruptions," and "Service Maintenance Levels" described in "Appendix 2: Critical

Infrastructure Services and Service Maintenance Levels." As an example of a supply chain

that should be addressed, a cloud service is shown, whereas information systems, control

systems, and general-purpose equipment are shown as those that are subject to risk

management. Based on the fact that software is an element that constitutes a system, the

following are assumed as target software. Therefore, it is assumed that, of the software that

the Guidelines (draft) target, those other than software products comply.

15 https://www.nisc.go.jp/pdf/policy/infra/cip_policy_2024.pdf
16 https://www.nisc.go.jp/pdf/policy/infra/shishin202307.pdf
17 Classified as "internal regulations" that critical infrastructure operators establish for themselves to meet the
expectations of the public and users, etc. and cross-industry "industry standards" and "guidelines" that industry
associations, etc. establish to satisfy "mandatory standards" established by the government based on relevant laws and
regulations, "recommended standards" and "guidelines" established by the government in accordance with relevant
laws and regulations, and the expectations of relevant laws and regulations and the public.

104

<Outsourcing (procurement)>

⚫ Cloud service

⚫ Control system (including general-purpose equipment)

<Information system (outsourcing of development and operation)>

⚫ Information system

The Guidelines for Establishing Safety Principles state the following, which agrees with the

purpose of the Guidelines (draft):

4.4. Supply-chain Risk Management

Understand dependencies between organizational critical systems and functions and

supply chains, and understand the status of security measures of suppliers.

Conduct risk assessments and risk responses for supply chain risks. (Omitted)

For tier 1 suppliers, clarify roles and scope of responsibilities to be assumed in

response to cybersecurity risks in contracts between businesses. Furthermore, it is

desirable to implement risk management for entire supply chains by ensuring that

respective suppliers are aware of the implementation status of supply chain risk

management within their lower-tier suppliers, while determining degrees of involvement

with Tier 2 suppliers according to the type of risk. In addition, it is desirable to increase

the effectiveness of measures throughout supply chains with support from suppliers for

introduction of security measures, joint implementation, etc.

(3) Relationship between the Guidelines for Establishing Safety Principles and Guidelines

(draft)

The Guidelines (draft) specify the appropriate division of roles and responsibilities between

cyber infrastructure providers and customers to ensure the cyber security of software and

improve resilience. In relation to the Guidelines for Establishing Safety Principles, customers

are considered as critical infrastructure operators—entities that implement measures on the

basis of safety standards—based on the Guidelines for Establishing Safety Principles,

whereas cyber infrastructure providers are external contractors18 from the perspective of

critical infrastructure operators and are usually in a position to accept business outsourcing,

including software, from critical infrastructure operators (customers)—entities for the

development/operation of information systems or businesses from which equipment is

procured. The Guidelines for Establishing Safety Principles do not directly state the roles and

responsibilities that cyber infrastructure providers should fulfill as contractors to enable

customers to realize efforts toward ensuring cybersecurity common to respective critical

infrastructure fields; therefore, it is necessary to read the content of the Guidelines for

Establishing Safety Principles from the perspective of a contractor in order to understand it.

The Guidelines for Establishing Safety Principles are classified based on the efforts

required for ensuring cybersecurity, which are common to respective critical infrastructure

fields. Some chapters contain content that is directly related to the responsibilities set forth

in the Guidelines (draft) (items marked with "" in the table below), whereas some chapters

contain descriptions related to the requirements as responsibilities set forth in the Guidelines

(draft) (items marked with "△" in the table below).

18 However, if critical infrastructure operators conduct development and supply in-house, it is considered that they will
take on the responsibilities of "developer" and "supplier," which are the respective roles they shall take as a "cyber
infrastructure provider" in the category of responsibilities, as the "(Entity)." For specific examples, see Table 4 e in "1.4
Approach to the division of roles."

105

Table 10 Correspondence relationship with the first layer of the Guidelines for

Establishing Safety Principles

First level of the Guidelines for

Establishing Safety Principles

Cyber infrastructure

provider
Customer

1. Purposes and Positioning

2. General Provisions △

3. Cybersecurity in Organizational

Governance
 △

4. Utilization of Risk Management, and Crisis

Management
 

5. Measures  

In the classification of chapters in the second layer, in the relationship between the

Guidelines for Establishing Safety Principles and the Guidelines (draft), because the

following chapters of the Guidelines for Establishing Safety Principles (items in a red frame

in the table below) are marked "" for both customers and cyber infrastructure providers,

there is a particularly strong relationship with the responsibilities and division of roles shown

in the Guidelines (draft).

4.2. Risk Management

4.3. Addressing Cybersecurity Risks

4.4. Supply-chain Risk Management

4.8. Operation During Normal Times

5.1 Organizational Measures

Table 11 Correspondence relationship with the second layer of the Guidelines for

Establishing Safety Principles

Second level of the Guidelines for Establishing

Safety Principles

Cyber

infrastructure

provider

Customer

1. Purposes and Positioning

1.1. The Importance of Ensuring Cybersecurity for

Critical Infrastructure (CI)

 1.2. What are “Safety Principles"?

1.3. Positioning of the Guideline for Establishing

Safety Principles

2. General Provisions △

 2.1. Purpose of Formulating the Safety Principles

 2.2. Applicable Scope

 2.3. Roles of Stakeholders △

3. Cybersecurity in Organizational Governance △

 3.1. Organizational Policy △

3.2. Communication Within and Outside the

Organization
 △

3.3. Managing Cybersecurity Risks as Business

Risks
 

 3.4. Assignment of Responsibilities and Authority △

 3.5. Securing Resources △

 3.6. Auditing and Monitoring △

 3.7. Information Disclosure

106

Second level of the Guidelines for Establishing

Safety Principles

Cyber

infrastructure

provider

Customer

 3.8. Continuous Improvement △

4. Utilization of Risk Management, and Crisis Management  

 4.1. Understanding the Organization’s Situation △ △

 4.2. Risk Management  

 4.3. Addressing Cybersecurity Risks  

 4.4. Supply-chain Risk Management  

 4.5. Business Continuity Plan and Other Plans

4.6. Human Resource Development and

Awareness-Raising
 △

 4.7. Establishment of CSIRT, etc. △ △

 4.8. Operation During Normal Times  

 4.9. Crisis Management △ △

 4.10. Exercises and Training △ △

5. Measures  

 5.1 Organizational Measures  

 5.2 Personnel Measures △ △

 5.3 Physical Measures

 5.4 Technical Measures △ △

 5.5. Measures Based on Trends △ △

107

5.7. Reference information

(1) List of reference information

Abbrev. Document title

NSA

SECURING THE SOFTWARE SUPPLY CHAIN / Recommended Practices Guide

for Developers

https://media.defense.gov/2022/Sep/01/2003068942/-1/-

1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF

NSA-S

SECURING THE SOFTWARE SUPPLY CHAIN / Recommended Practices Guide

for Suppliers

https://media.defense.gov/2022/Oct/31/2003105368/-1/-

1/0/SECURING_THE_SOFTWARE_SUPPLY_CHAIN_SUPPLIERS.PDF

NSA-C

SECURING THE SOFTWARE SUPPLY CHAIN / Recommended Practices Guide

for Customers

https://media.defense.gov/2022/Nov/17/2003116445/-1/-

1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_CUSTOMER.PDF

SP800-218

NIST SP800-218 Secure Software Development Framework (SSDF) Version 1.1:

Recommendations for Mitigating the Risk of Software Vulnerabilities

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

BSA

The BSA Framework for Secure Software: A New Approach to Securing the

Software Lifecycle

https://www.bsa.org/files/reports/bsa_software_security_framework_web_final.pd

f

CISA-D

Defending Against Software Supply Chain Attacks

https://www.cisa.gov/sites/default/files/publications/defending_against_software_

supply_chain_attacks_508_1.pdf

CISA-SBD

Secure-by-Design - Shifting the Balance of Cybersecurity Risk: Principles and

Approaches for Secure by Design Software

https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf

SP800-161

NIST SP800-161 Cybersecurity Supply Chain Risk Management Practices for

Systems and Organizations

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1-

upd1.pdf

ISMS

ISO/IEC 27002:2022 - Information security, cybersecurity and privacy protection

Information security controls

https://www.iso.org/standard/75652.html

108

Abbrev. Document title

ISO 15408

Common Criteria for Information Technology Security Evaluation

ISO/IEC 15408:2022 - Information security, cybersecurity and privacy protection

Evaluation criteria for IT security Part1～3

https://www.iso.org/standard/72891.html

https://www.iso.org/standard/72892.html

https://www.iso.org/standard/72906.html

DSP

ENISA Guidelines on assessing DSP and OES compliance to the NISD security

requirements

https://op.europa.eu/en/publication-detail/-/publication/78f2a620-f909-11e8-

9982-01aa75ed71a1/language-en

Ministry of Internal

Affairs and

Communications

Guidelines for Information Security Measures in Cloud Service Provision

https://www.soumu.go.jp/main_content/000771515.pdf

Guidelines for Information Disclosure regarding the Safety and Reliability of Cloud

Services

https://www.soumu.go.jp/main_content/000477838.pdf

CRA

The European Cyber Resilience Act

https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/739259/EPRS_BRI(

2022)739259_EN.pdf

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on

horizontal cybersecurity requirements for products with digital elements and

amending Regulation (EU) 2019/1020

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202402847

Common Standards

Common Standards for Cybersecurity Measures for Government Agencies and

Related Agencies

https://www.nisc.go.jp/pdf/policy/general/kijyunr5.pdf

Common Model for Cybersecurity Measures for Government Agencies and

Related Agencies

https://www.nisc.go.jp/pdf/policy/general/kihanr5.pdf

Guidelines for Formulating Measures Criteria for Government Agencies and

Related Agencies

https://www.nisc.go.jp/pdf/policy/general/guider6.pdf

Guidelines for

Establishing Safety

Principles

Action Plan for Cybersecurity of Critical Infrastructure

https://www.nisc.go.jp/pdf/policy/infra/cip_policy_abst_2024.pdf

Guidelines for Establishing Safety Principles for Ensuring Information Security of

Critical Infrastructure

https://www.nisc.go.jp/pdf/policy/infra/shishin5.pdf

Japan-US-Australia-

India Cybersecurity

Partnership

Joint Statement of the Japan-US-Australia-India Summit (QUAD Joint Principles)

https://www.mofa.go.jp/mofaj/fp/nsp/page1_001188.html

UN-R155
UN Regulation No. 155 - Cyber security and cyber security management system

https://unece.org/sites/default/files/2023-02/R155e%20%282%29.pdf

ISO 21434
ISO/SAE 21434:2021 - Road vehicles Cybersecurity engineering

https://www.iso.org/standard/70918.html

UN-R156

UN Regulation No. 156 - Software update and software update management

system

https://unece.org/sites/default/files/2024-03/R156e%20%282%29.pdf

109

Abbrev. Document title

ISO 24089

ISO 24089:2023 - Road vehicles Software update engineering

https://www.iso.org/standard/77796.html

ISO 24089:2023/Amd 1:2024

https://www.iso.org/standard/87522.html

OMB M-23-16

Update to Memorandum M-22-18, Enhancing the Security of the Software Supply

Chain through Secure Software Development Practices

https://bidenwhitehouse.archives.gov/wp-content/uploads/2023/06/M-23-16-

Update-to-M-22-18-Enhancing-Software-Security.pdf

Secure Software Development Attestation Form Instructions

https://www.cisa.gov/sites/default/files/2024-03/Self-Attestation-Common-Form-

03082024-FINAL.pdf

SP800-218A

NIST SP 800-218A Secure Software Development Practices for Generative AI and

Dual-Use Foundation Models An SSDF Community Profile

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218A.pdf

DSIT

DSIT – The Code of Practice for Software Vendors

https://www.gov.uk/government/calls-for-evidence/a-code-of-practice-for-

software-vendors-call-for-views/call-for-views-on-the-code-of-practice-for-

software-vendors

Cybersecurity

Management

Guidelines

Cybersecurity Management Guidelines

https://www.meti.go.jp/policy/netsecurity/downloadfiles/guide_v3.0.pdf

110

(2) Relationships with other standards, guidelines, etc.

The Guidelines (draft) have a relationship as described below with various other guidelines

and frameworks intended for software security and software development assurance. It is

possible to use these guidelines in specific initiatives, when further policy considerations and

means of implementation are required. The scope on which the Guidelines (draft) are based

and their relationships with other major standards and guidelines are shown in Figure 8. The

relationships with major standards, guidelines, etc. are described below.

Figure 8 Relationship between the Guidelines (draft) and other standards, guidelines, etc.

[1] NIST SP800-218

SP800-218 issued by NIST provides guidance for strengthening the security of software

supply chains. It advocates a framework known as the SSDF, which adds secure software

practices to SDLC models to ensure security of the software under development. The

Guidelines (draft) comprehensively treat the tasks required to execute each practice shown

in SP800-218 as "requirements," and use implementation examples for the respective tasks

as reference for some "Examples of measures."

[2] NSA Software Supply Chain Guidance (for Developers, Suppliers, Customers)

The three editions of the software supply chain guidance issued by the NSA (for developers,

suppliers, and customers) provide industry best practices and principles to which software

developers, suppliers, and customers should refer. The principles outlined in the Developer

Edition include planning security requirements, designing the software architecture from a

security perspective, implementing security functions, and maintaining the security of the

software development infrastructure (development environment, source code review, testing,

etc.). The Guidelines (draft) mainly reference some "Examples of measures" based on the

essence of the principles and best practices described in the three documents.

111

[3] CISA Secure-by-Design - Shifting the Balance of Cybersecurity Risk: Principles and

Approaches for Secure by Design Software

The guidance published by the CISA on the principles and approaches of secure by design

is intended to ask software developers to prioritize security when designing, developing, and

offering products. It advocates three principles, namely "Having ownership of customer

security outcomes," "Accepting fundamental transparency and accountability," and "Leading

from the top," and explains the respective principles, key practices, and tactics (techniques)

from the perspectives of secure by design and secure by default. The Guidelines (draft)

constitute requirements for responsibilities in accordance with the principles of secure by

design and secure by default, and presents the essence of the security principles of software

products and the tactics (techniques) as a reference in the "Examples of measures."

[4] EU CRA

The CRA is a legal framework that provides cybersecurity requirements for hardware and

software products with digital elements within the EU. It is expected to be fully enforced in

2027. This legal framework covers a wide range of products with digital elements, with some

exceptions, and manufacturers who deploy products to the European market will be obligated

to ensure that they meet security requirements throughout their product life cycles (such as

creating SBOMs, providing security updates, and reporting to authorities when vulnerabilities

are discovered or in the event of an incident). In the Guidelines (draft), cybersecurity

requirements (requirements relating to product characteristics and vulnerability handling

requirements) and some information and instructions to users are used as a reference for

"Itemized requirements" or "Examples of measures."

[5] Other standards and guidelines

In addition to those mentioned above, the Guidelines (draft) also refer to the following

standards and guidelines:

 The BSA Framework for Secure Software: A New Approach to Securing the Software

Lifecycle

 CISA Defending Against Software Supply Chain Attacks

 NIST SP800-161 Cybersecurity Supply Chain Risk Management Practices for Systems

and Organizations

 ENISA Guidelines on assessing DSP and OES compliance to the NISD security

requirements

 Common Criteria for Information Technology Security Evaluation (ISO/IEC 15408)

 ISO/IEC 27002:2022

 Ministry of Internal Affairs and Communications Guidelines for Information Security

Measures in Cloud Service Provision

 Ministry of Internal Affairs and Communications Guidelines for Information Disclosure

regarding the Safety and Reliability of Cloud Services

 National Cybersecurity Office Common Standards for Cybersecurity Measures for

Government Agencies and Related Agencies

 National Cybersecurity Office Guidelines for Formulating Measures Criteria for

Government Agencies and Related Agencies

 National Cybersecurity Office Action Plan for Cybersecurity of Critical Infrastructure

112

 National Cybersecurity Office Guidelines for Establishing Safety Principles for Ensuring

Information Security of Critical Infrastructure

 Japan-US-Australia-India Cybersecurity Partnership Joint Statement of the Japan-US-

Australia-India Summit (QUAD Joint Principles)

 UN-R155

 UN-R156

 ISO/SAE 21434:2021

 ISO 24089:2023

 OMB M-23-16

 NIST SP800-218A

 DSIT The Code of Practice for Software Vendors

Together with them, the software-related C-SCRM framework and recommendations for

identifying, evaluating, and mitigating risk based on SSDFs published by the CISA are used

as references.

113

(3) Correspondence relationships with NIST SP800-218

Requirements Corresponding items in NIST SP800-218

S(1)-1 PW.1.1, PW.1.2, PW.2.1

S(1)-2 PW.5.1, PW.6.1, PW.6.2, PW.7.1, PW.7.2, PW.9.2

S(1)-3 PW.8.1, PW.8.2, PW.9.1

S(1)-4 PW.9.1, (PS.1.1, PO.5.1, PO.5.2)

S(2)-1 PW.1.3, PW.4.1, PW.4.2, PW.4.4, (RV.2.1)

S(2)-2 PS.1.1, PS.3.1, PS.3.2

S(2)-3 PO.1.3, (PW.4.4)

S(2)-4 PS.2.1, PW.9.2

S(3)-1 RV.1.1, RV.1.2, RV.1.3

S(3)-2 RV.2.1, RV.2.2

S(3)-3 RV.3.1, RV.3.2, RV.3.3, RV.3.4, PW.7.2

S(4)-1 PO.2.1, PO.2.2, PO.2.3, (PO.3.1, PO.3.2, PO.3.3)

S(4)-2 PO.1.1, PO.1.2, (PO.2.3)

S(4)-3 (PO.1.1, PO.1.2, PO.2.3)

S(4)-4 PO.4.1, PO.4.2

S(4)-5 PO.3.1, PO.3.2, PO.3.3

S(4)-6 PO.5.1, PO.5.2

S(5)-1 ─

S(5)-2 ─

S(6)-1 ─

S(6)-2 ─

114

(4) Correspondence relationship between the three NSA Software Supply Chain
Guidance documents

Requirements
NSA

(for Developers)

NSA-S

(for Suppliers)

NSA-C

(for Customers)

S(1)-1 2.3.2 2.3.1 ─

S(1)-2
2.2.1.4, 2.2.2, 2.2.6, 2.2.3.2,

2.3.2, 2.3.3, 2.4.1

2.2.2, 2.3.3, 2.3.4,

2.3.6

─

S(1)-3 2.2.1.3, 2.2.3.2, 2.3.2, 2.4.1 2.2.2, 2.3.5, 2.3.6 ─

S(1)-4 ─ ─ ─

S(2)-1
2.2.3, 2.3.2, 2.3.3, .2.3.4,

2.3.5

2.3.1, 2.3.2 2.1, 2.2

S(2)-2

2.2.1.1, 2.2.1.2, 2.2.1.4,

2.2.6, 2.3.2, 2.3.3, 2.4.1,

2.5.3

2.2.1, 2.2.2, 2.2.3 ─

S(2)-3 2.2.3 2.1.1 ─

S(2)-4 ─ ─ ─

S(3)-1 2.3.4, 2.4.1 2.4.1 ─

S(3)-2 ─ ─ ─

S(3)-3 ─ ─ ─

S(4)-1 ─ ─ ─

S(4)-2 2.2.3 2.1.1 ─

S(4)-3 2.2.3 2.1.1 ─

S(4)-4 ─ ─ ─

S(4)-5 ─ ─ ─

S(4)-6 ─ ─ ─

S(5)-1 ─ ─ ─

S(5)-2 ─ ─ ─

S(6)-1 ─ ─ 2.1, 2.2, 2.3

S(6)-2 ─ ─ 2.1

115

(5) Correspondence relationship with CISA Secure-by-Design - Shifting the
Balance of Cybersecurity Risk

Requirements Principle 1 Principle 2 Principle 3
Secure by

design tactics
Secure by

default tactics

S(1)-1
[SBD]-1

[SPD]-5

─ ─ 11, 12 ─

S(1)-2 [SBD]-5 ─ ─ 1, 4, 5, 6, 7 1

S(1)-3 [SBD]-2 ─ ─ 6 ─

S(1)-4 ─ ─ ─ ─ 4

S(2)-1
[PSB]-3,4

[SPD]-4

─ ─ 3 ─

S(2)-2 ─ [SPD]-5 ─ 8 ─

S(2)-3 ─ ─ ─ ─ ─

S(2)-4 [SBD]-1,4 ─ ─ ─ 1, 5, 8

S(3)-1 ─ [SPD]-6 ─ 9 ─

S(3)-2 [PSB]-4 ─ ─ 10 6

S(3)-3 [SPD]-3 ─ ─ 10 ─

S(4)-1 [SPD]-6 [PSB]-1 3,5 ─ ─

S(4)-2 [SPD]-1 ─ ─ ─ ─

S(4)-3 [SPD]-1 ─ ─ 2 ─

S(4)-4 [SPD]-5,6 ─ ─ 12 ─

S(4)-5 ─ ─ ─ 1, 6 ─

S(4)-6 ─ ─ ─ ─ ─

S(5)-1 ─ ─ ─ ─ ─

S(5)-2 ─ ─ 6 ─ ─

S(6)-1 ─ ─ [RFC] ─ 2, 3

S(6)-2 ─ ─ [RFC] ─ ─

* [SBD]: SECURE BY DEFAULT PRACTICES

[SPD]: SECURE PRODUCT DEVELOPMENT PRACTICES

[PSB]: PRO-SECURITY BUSINESS PRACTICES

[RFC]: RECOMMENDATIONS FOR CUSTOMERS

116

(6) Correspondence relationship with ANNEX I/II, EU CRA

Requirements ANNEX I Part I ANNEX I Part II ANNEX II

S(1)-1 (1), (2)-a/g/h/i/j/k (3) ─

S(1)-2 (1) ─ ─

S(1)-3 (1) ─ ─

S(1)-4 (1), (2)-d/e/f ─ ─

S(2)-1 ─ (6) ─

S(2)-2 (2)-l (1) ─

S(2)-3 ─ ─ ─

S(2)-4 (2)-b/f/m (7) 4, 5, 7, 8-a/b/d

S(3)-1 (2)-a/j (1), (2), (3), (6) 2

S(3)-2 (2)-a/c/j/l (2), (4), (5), (7), (8) 8-c

S(3)-3 (2)-a/j/k (2) ─

S(4)-1 ─ ─ ─

S(4)-2 (2)-a/d/e/f/g/h/i ─ ─

S(4)-3 (2)-a/g/h/i ─ ─

S(4)-4 ─ ─ ─

S(4)-5 ─ ─ ─

S(4)-6 ─ ─ ─

S(5)-1 ─ ─ ─

S(5)-2 ─ ─ ─

S(6)-1 ─ ─ ─

S(6)-2 ─ ─ ─

117

(7) Correspondence relationship with other documents

In the examples of additional measures described for the respective requirements, the

following documents were referenced:

Requirements Other related documents

S(1)-1 BSA

S(1)-2 BSA, CISA-D

S(1)-3 SP800-161, CISA-D, ISO15408

S(1)-4 ISMS, DSP

S(2)-1 SP800-161, CISA-D, BSA

S(2)-2 BSA, CISA-D, NSA

S(2)-3
BSA, SP800-161, Ministry of Internal Affairs and Communications, CISA-

D, ISO15408, DSP, ISMS

S(2)-4 BSA, ISO15408, CISA-D

S(3)-1 SP800-161, BSA, ISMS, DSP, CISA-D

S(3)-2 CISA-D, BSA

S(3)-3 SP800-161, ISMS

S(4)-1 SP800-161, ISMS, CISA-D, BSA

S(4)-2
SP800-161, CISA-D, DSP, Japan-US-Australia-India Cybersecurity

Partnership

S(4)-3 DSP, Japan-US-Australia-India Cybersecurity Partnership

S(4)-4 SP800-161, CISA-D, Japan-US-Australia-India Cybersecurity Partnership

S(4)-5 SP800-161, CISA-D, Japan-US-Australia-India Cybersecurity Partnership

S(4)-6 SP800-161, Japan-US-Australia-India Cybersecurity Partnership

S(5)-1 NSA, DSP, ISMS

S(5)-2 DSP, Japan-US-Australia-India Cybersecurity Partnership

S(6)-1 CISA-D

S(6)-2 BSA, CISA-D

118

5.8. Terminology

Agile development Development process for updating software in stages by

allocating SDLC phases into multiple development cycles

and rapidly repeating the respective phases.

Build pipeline Means of dividing the build process into multiple testing

processes, and running phased execution. CI: One of

practices of continuous integration (see DevSecOps).

Computer security incident

response team (CSIRT)

Organization that responds to incidents.

Common Vulnerability Scoring

System (CVSS)

Open and general-purpose evaluation technique for

vulnerabilities in an information system. CVSS allows for

quantitative comparison of the severity of vulnerabilities

under specific conditions.

Hardening Means of strengthening security by reducing system

vulnerabilities and unnecessary functions.

Infrastructure as a service

(IaaS)

Means of providing infrastructures such as networks and

storage systems required to run information systems as

services via the Internet.

Information and

communication technology

(ICT)

Generic term for information and communication

technologies.

Integrated development

environment (IDE)

Software into which functions required to develop

software codes efficiently are integrated.

Indicator of compromise (IoC) Traces and indicators of infringement such as a

cyberattack.

Internet of Things (IoT) Framework for connecting "things" such as sensor

devices to the Internet.

Information Sharing and

Analysis Center (ISAC)

This organization, started when respective private sector

industries that make up critical infrastructures were

encouraged to establish it to protect national critical

information networks in the US, strives to promote

information sharing on security, etc. by industry. In

Japan, the Software ISAC, Finance ISAC, Transportation

ISAC, etc. have been established.

Key performance indicator

(KPI)

Quantitative indicator used to observe degrees of

achievement of organizational goals.

Key risk indicator (KRI) Indicator used to observe risk levels in an organization.

Malware Information Sharing

Platform (MISP)

Open-source threat sharing platform aimed at

accumulating and sharing IoCs, which are traces of

cyberattacks such as IP addresses of destinations with

which malware communicates.

https://www.misp-project.org/

Open-source software (OSS) Software whose source code is disclosed and allowed to

be modified and changed.

Operational technology (OT) Generic term for technologies that control and operate

physical systems and facilities such as factories, plants,

and buildings.

119

Platform as a service (PaaS) Provision of platform functions designed for applications

necessary to operate information systems as a service

via the Internet.

Peer review

Lead review

Activity in which developers and leaders of the same level

diagnose and evaluate deliverables, making full use of

their experience and know-how.

Product security incident

response team (PSIRT)

Organization that strives to improve the security of

products and services developed in-house and respond

to incidents.

Regression testing Test performed to check, after a program is changed,

whether the program has problems in lines not changed.

Resilience Term that can be translated as "elasticity," "resilience,"

"restorability," or "durability." The ability to limit damage

and recover from an attack by taking appropriate

countermeasures in the world of cybersecurity.

Risk modeling Analytical technique for understanding the likelihood of

possible threats, dangers, events, etc. that may occur,

and identifying undesirable outcomes or problems.

Software risk modeling employs threat modeling (a

technique to study security measures from the

perspective of protecting information assets through

analysis in which characteristics of software, potential

attackers, and attack methods are assumed), and in its

process, uses an attack model (a model of possible

attacker actions based on the types of attackers, attack

surfaces, and attack methods).

Software as a service (SaaS) Provision of information systems as services via the

Internet.

Software Bill Of Materials

(SBOM)

Technique for listing series of related elements such as

components that make up software, their dependencies,

and license data and managing them.

Software development life

cycle (SDLC)

Development process that enables production of high-

quality, low-cost software in a short period. Types

available include waterfall development and agile

development.

Secure by default Philosophy or policy that makes software security

functions and settings built in by default.

For example, at the first stage where a product is

purchased and used, creating a function to make access

to other functions unavailable unless a sufficiently strong

password is set that general users do not usually need

unavailable by default is a concrete example that follows

the philosophy of secure by default.

Secure by design Philosophy or policy to assure information security from

the software design stage. It may be referred to as

security by design, but the terms are synonymous. The

term "secure by design" encompasses "secure by

default." In the "Secure by Design Software Principles

and Approaches" published by the CISA in collaboration

120

with international partners including National center of

Incident readiness and Strategy for Cybersecurity (NISC,

current National Cybersecurity Office (NCO)) to strive

proactively for customer security assurance through the

principle of secure by design, the following three software

product security principles are advocated:

Principle 1: Take Ownership of Customer Security

Outcomes

Principle 2: Embrace Radical Transparency and

Accountability

Principle 3: Lead From the Top

Note that a similar term, "shift left," refers to incorporating

security measures upstream in software development.

Security requirement Specific requirement for security goals to be met at the

time of development and implementation of a product or

system.

Service level agreement (SLA) Content agreed between service provider and service

user regarding the scope, content, and goals to be

attained of the service.

Security operation center

(SOC)

Specialized organization that monitors network devices,

server logs, etc. to detect and analyze cyberattacks and

their precursors.

Software supply chain Interdependency between software life cycle related to all

of software design, development, supply and operation,

related organizations, and software.

Toolchain Set of software tools that have functions required for

software development. Aimed at improving the efficiency

of development work by linking respective tools.

Value stream mapping (VSM) Lean manufacturing method to analyze, design, and

manage sequences of materials, information, etc.

required in development and operation processes for

delivering products such as software.

Walk-through Desk review conducted by bringing those who are

concerned with development together as well as creators

of deliverables to improve the quality of deliverables such

as specifications. Method to find problems in

specifications of a system and programs in a system.

DevSecOps Coined word combining the initials of Development,

Security, and Operations, or the practice of integrating

security tests in all phases of software development

processes.

The "CI/CD pipeline" implements part of this concept, and

is a mechanism that continuously updates software in

phases. The mechanism is automatically deployed

through verification with automatic building and testing.

Note that CI/CD stands for Continuous Integration /

Continuous Delivery or Deployment.
6. Organizational system for examining the Guidelines (draft)

121

Study Group on the Roles Required of Cyber Infrastructure

Providers

The "Study Group on the Roles Required of Cyber Infrastructure Providers" was formed in

September 2024 as a joint working group of the Cross-Sectoral Sub-working Group and

Critical Infrastructure Expert Examination Committee, Cybersecurity Strategy Headquarters,

Study Group on Industrial Cybersecurity WG1, Ministry of Economy, Trade and Industry. The

group has held discussions on the wide range of roles expected of cyber infrastructure

providers to improve the resilience of software supply chains. (Following the abolition of the

Critical Infrastructure Expert Examination Committee in July 2025, it was repositioned as a

joint working group of the Cross-Sectoral Sub-working Group and Critical Infrastructure

Expert Examination Committee, Cybersecurity Strategy Headquarters, Study Group on

Industrial Cybersecurity WG1, Ministry of Economy, Trade, and Industry, and National

Cybersecurity Office.)

We have formulated the Guidelines (draft) through discussions in the study group; these

guidelines outline the responsibilities of cyber infrastructure providers and customers

regarding the software design, development, supply, and operation, along with the

requirements for fulfilling their responsibilities (specific measures by role) and methods to

disseminate the Guidelines (such as a structural implementation for self-declaration of

conformity).

<List of members>

*Titles omitted, as of February 18, 2025

ABE Kyoichi Executive Manager, Security Management Department, ANA

Systems Co., Ltd.; Senior Advisor, LEON TECHNOLOGY, INC.

INAGAKI Ryuichi Bengoshi (Attorney at law), Inagaki Ryuichi Law Firm

KAMODA Hiroaki Head of Security and Network Division, Solution Sector, NTT DATA

Japan

KITANI Hiroshi Chairman of Cyber Security Subcommittee, Japan Information

Technology Services Industry Association (JISA);

Advanced Technology Group, Cybersecurity Technology System

Development Group IT Infrastructure Technology Headquarters,

Canon IT Solutions Inc.

TATEISHI Toshiaki Board member, Information Technology Federation of Japan;

Vice Chairman and Executive Director, Japan Internet Providers

Association

TSUDA Hiroshi Fellow SVP, Fujitsu Research, Fujitsu Limited

DOI Norihisa Professor Emeritus, Keio University

BANDO Naoki Fellow, Software Association of Japan (SAJ); Co-Representative,

Software ISAC

HIDAKA Shoji Executive Officer, Japan Cloud Industry Association (ASPIC)

FUCHIGAMI

Shinichi

Corporate Executive CISO and General Manager, Cybersecurity

Strategy Department, NEC Corporation

FURUTA Tomoji General Manager, Information Security and Trust Management

Division, TOYOTA MOTOR CORPORATION

Chair

122

YAMAGUCHI

Masafumi

Division Manager, Consulting Services, NRI Secure Technologies

Ltd.

(Secretariat)

Ministry of Economy, Trade and Industry, National center of Incident readiness and Strategy

for Cybersecurity

(Observers)

National Police Agency, Ministry of Internal Affairs and Communications, Ministry of Health,

Labour and Welfare, Defense Equipment Agency, Digital Agency, Japan Federation of

Medical Devices Associations

<Summary>

Date Agenda/Summary

First meeting

(September 24, 2024)

[Agenda]

Discussion on responsibilities and requirements, and how to

proceed with examination

[Summary of the meeting]

Discussion on the "responsibilities" and "requirements"

expected of cyber infrastructure providers, as well as how to

proceed with the examination of Guidelines (draft)

Second meeting

(December 17, 2024)

[Agenda]

Deliberation of the Guidelines (draft) based on the results of

literature surveys and hearings, and discussions regarding

the Guidelines Annex policies

[Summary of the meeting]

Discussion on the Guidelines (draft) and dissemination

measures for the Guidelines

Third meeting

(February 18, 2025)

[Agenda]

Discussion on approval of the Guidelines (draft) and

examination of dissemination policies in the future

[Summary of the meeting]

Deliberation on updating of the Guidelines (draft) and

discussion on efforts and dissemination measures to

promote implementation of the Guidelines (draft).

Requirements checklist

Check! Minimum Standard
Requirement

ID
Itemized requirements Individual requirements Developer Supplier Operator Customer

□   S(1)-1.1 Risk-based security requirements definition

Perform risk-based analysis and assessment of the software to be developed or the

system/service using the software, and define security requirements that serve as

mitigation measures.
✓

□   S(1)-1.2 Design review
Through a review of the software design, confirm that it meets all security requirements

and adequately addresses identified risk information, and apply the review results.
✓

□  S(1)-1.3 Risk response records
Maintain records of design decisions, responses to risks, and approved exceptional

measures for audit and maintenance purposes throughout the software life cycle.
✓

□  S(1)-1.4 Periodic risk-based review

Review all approved exceptions to security requirements and software design, as well

as the results of the risk-based analysis and assessment created during the software

design, and periodically check whether risks are being addressed appropriately.
✓

□   S(1)-2.1 Definition of secure development process

Define processes related to secure coding, secure build, and secure by default by

considering secure coding perspectives, the build timing and method, the use of

automation tools, and training.
✓

□   S(1)-2.2 Secure build
Generate and build code using a compiler, an interpreter, and build tools that provide

functions to improve the security of executable formats.
✓

□   S(1)-2.3 Verification and feedback
Identify root causes of problems discovered through verification by review and analysis,

and then feed the results back to the processes.
✓

□   S(1)-2.4 Codebases

For objects subject to review and analysis, not only source codes but also codes in

various formats (such as configuration files) that the organization determines to be

readable should be targets.
✓

□   S(1)-3.1 Test planning
Based on threat models and risk analysis, determine a test scope and test method, and

develop a test plan.
✓

□   S(1)-3.2 Test method
Include functional testing, vulnerability testing, fuzzing, penetration testing, etc. in the

test method.
✓

□   S(1)-3.3 Test implementation Design and implement tests according to the test plan, and document the test results. ✓

□   S(1)-3.4 Response to problems
Incorporate all problems identified through testing and recommended countermeasures

into the development team's workflows to solve them.
✓

□   S(1)-4.1 Asset management

Operators arrange asset management procedures and asset lists related to assets

handled by systems and services as well as assets that constitute the systems and

services.
✓

□  S(1)-4.2 Development of a monitoring environment

Operators separate systems appropriately to minimize the potential impact of a risk

when it occurs, and arrange a monitoring environment to monitor risks that are

important to protect assets by means of software.
✓

□  S(1)-4.3 Arrangement of a security mechanism

An appropriate security mechanism is arranged that allows software and systems and

services to which the software is applied to protect and monitor the confidentiality and

integrity of information assets and data in operating environments or resources such as

digital infrastructure.

✓ ✓

□   S(1)-4.4 Monitoring and evaluation

Operators monitor the operation of mechanisms applied to software that provides

important services, periodically conduct security assessments, and integrate them into

the risk management framework of the organization.
✓

□   S(2)-1.1 Arrangement of software components

With respect to commercial, open-source, and other third-party software components

procured from outside, adopt those that are highly secure and meet the defined in-

house requirements.
✓

□   S(2)-1.2
Development and maintenance of software

components

When the software components are not procured from outside, develop highly secure

software components in-house in accordance with established in-house security

standards and practices, and maintain them.
✓

□   S(2)-1.3 Risk assessment of software components
Acquire and analyze information regarding locations from where the respective software

components are obtained and assess the risks resulting from the components.
✓

□   S(2)-1.4
Confirmation of publicly known vulnerabilities of

software components

Regularly check for publicly known vulnerabilities and periods during which respective

software components are supported.
✓

□   S(2)-1.5 Update of software components
Implement a process to update the respective software components to the new version

securely.
✓

□   S(2)-2.1 Protection of codebases

To protect codebases in all forms from unauthorized access and tampering, store the

codes and configuration information in a repository and implement access control

based on the principle of least privilege so that only authorized personnel, tools, and

services can access it.

✓ ✓

□   S(2)-2.2 Archiving of releases
Archive the respective software releases to protect them so that vulnerabilities identified

following release can be analyzed and identified.
✓ ✓

□   S(2)-2.3 Sharing of release provenance data
Collect, protect, maintain, and share provenance data for all components of the

respective software releases.
✓ ✓

□   S(2)-3.1 Agreement on security requirements

Include explicit security requirements in contracts or policies to be shared with third

parties that provide IT products (including commercial software components for use in

in-house software) or services.
✓ ✓ ✓

□  S(2)-3.2 Response to supply chain security requirements
Respond to supply chain security requirements equivalent to those adopted by the

organization that receives or acquires IT products or services that it provides.
✓ ✓

□  S(2)-3.3
Establishment of a response process to risks that do

not meet security requirements

Arrange a process to respond to risks in the case in which there are security

requirements that IT products or services made by a third party to be received or

acquired do not meet.
✓ ✓ ✓

□   S(2)-4.1
Secure introduction, configuration, operation,

modification, disposal, and termination

Ensure that software users can continuously use information for securely introducing,

configuring, and operating software, as well as information related to the impact of

changes, disposal, termination of provision, and termination of use.
✓ ✓

□   S(2)-4.2 Provision of integrity verification information
Ensure that software users can continuously use information that is necessary for

verifying the integrity and completeness of the software.
✓ ✓

□   S(3)-1.1 Establishment of a vulnerability response system

Establish a policy for the disclosure and remediation of vulnerabilities of software

products, establish a system for responses to vulnerabilities (including responses to

incidents) to support the policy, and define necessary roles, responsibilities, and

processes.

✓ ✓

□   S(3)-1.2 Communication plan Establish a communication plan for all stakeholders. ✓ ✓

□   S(3)-1.3 Vulnerability information collection

Collect new information regarding vulnerabilities through searches of public information,

notifications from software users, the acquisition of external threat information, reviews

of system configuration data, and other methods.
✓ ✓

□   S(3)-1.4 Identification of undetected vulnerabilities
Conduct software code review, analysis, and testing on an ongoing or regular basis to

identify undetected vulnerabilities (including improper settings) to be solved.
✓ ✓

□   S(3)-2.1 Vulnerability analysis

Developers collect information necessary to understand the risks associated with the

impact of each remaining vulnerability and analyze each vulnerability to plan repairs or

other responses to risks.
✓

□   S(3)-2.2 Risk response to vulnerabilities Developers create a plan for risk responses for each vulnerability and implement it. ✓

□   S(3)-2.3 Security recommendations

Developers prepare security recommendations, provide the information to the supplier

of the released software, and create a report as specified by the relevant systems. In

addition, operators implement deployment in accordance with security

recommendations.

✓ ✓ ✓

□  S(3)-3.1 Identification of root causes
Analyze an identified vulnerability to determine its root causes and proactively take

countermeasures.
✓ ✓

□  S(3)-3.2 Process improvement

Review development and operation processes for the entire software life cycle and revise

them as necessary to prevent root causes from recurring or reduce the possibility of their

recurrence through software updates or new software creation.
✓ ✓

□  S(4)-1.1 Definition of roles and responsibilities Define roles and responsibilities covering the entire software development life cycle. ✓ ✓ ✓

Requirements for fulfilling responsibilitiesRequirement

Requirements checklist

Check! Minimum Standard
Requirement

ID
Itemized requirements Individual requirements Developer Supplier Operator Customer

Requirements for fulfilling responsibilitiesRequirement

□   S(4)-1.2 Management's commitment

Make management's commitment to secure development known to all personnel, and

educate them on the importance of secure development and operation to the

organization.
✓ ✓ ✓

□  S(4)-1.3 Agreement on roles and responsibilities Confirm that all personnel are aware of and agree to their roles and responsibilities. ✓ ✓ ✓

□  S(4)-1.4 Training for each role
Create a training plan for each role and implement it so that all personnel can be trained

according to their level of proficiency and role.
✓ ✓ ✓

□  S(4)-1.5 Review of roles and training Review roles and training regularly. ✓ ✓ ✓

□   S(4)-2.1 Definition of a software development policy

Identify all security requirements for software development infrastructures and

processes (including requirements related to EOL), and define a security policy for

maintenance throughout the SDLC in compliance with laws and regulations.
✓

□   S(4)-2.2
Definition and maintenance of a software security

policy

Define a policy that specifies all security requirements that must be met by the software

developed by an organization, and maintain the requirements throughout the SDLC.
✓

□   S(4)-2.3 Sharing of cost recognition and budgeting Secure necessary budgets to ensure security based on a policy. ✓

□  S(4)-3.1 Definition of a software service operation policy

Identify all security requirements for service operation infrastructures and processes to

which the software is applied (including requirements related to EOS and disposal), and

define a security policy for maintenance throughout the SDLC in compliance with laws

and regulations.

✓

□  S(4)-3.2 Definition and maintenance of a service security policy
Define a policy that specifies all security requirements that services to which the

software is applied must meet, and maintain the requirements throughout the SDLC.
✓

□  S(4)-3.3 Audit based on an operational policy

Confirm through an audit that the protection of service operation infrastructures and

processes and security requirements for service are maintained throughout the SDLC

in accordance with policy-based governance.
✓

□   S(4)-4.1 Definition and tracking of security verification criteria Define software security verification criteria and track the entire SDLC. ✓ ✓

□   S(4)-4.2
Support for decision-making based on security

verification criteria

Implement processes and mechanisms for collecting and protecting information

necessary to support decision-making based on security verification criteria.
✓ ✓

□  S(4)-4.3 Audit based on security verification criteria
Track the entire SDLC and verify through audits that the intended effects are achieved

with governance to ensure conformance to security verification criteria.
✓ ✓

□   S(4)-5.1 Designation of tools and toolchains

Identify tools that are effective in mitigating identified risks, designate which toolchains

must be included or need to be included, and determine means of integrating toolchain

components mutually.
✓

□   S(4)-5.2
Deployment, operation, and maintenance of tools and

toolchains

Deploy, operate, and maintain tools and toolchains in accordance with security

practices.
✓

□   S(4)-5.3 Tool configuration and evidence generation
Configure tools to generate evidence regarding support for secure software

development practices defined in-house.
✓

□   S(4)-6.1 Isolation and protection of environments Isolate and protect the respective environments related to software development. ✓

□   S(4)-6.2 Protection of development endpoints
Protect and strengthen endpoints designed for respective developers to perform

development-related tasks using a risk-based approach.
✓

□  S(5)-1.1
Establishment of an organizational system for

information sharing

Establish an organizational structure for information sharing between private

companies, relevant authorities, and specialized organizations to improve the security of

software products and services.
✓ ✓ ✓

□   S(5)-1.2 Provision of important security-related information
Select and identify essential and important security-related information that is specific to

the industry and provide it to partners in the supply chain.
✓ ✓ ✓

□   S(5)-1.3 Use of vulnerability information notification services
Use vulnerability information notification services to share vulnerability information

efficiently.
✓ ✓ ✓

□  S(5)-2.1 Utilization of cooperation systems

To improve the security of software products and services, make use of communities

and cooperation systems aimed at improving software security, in which external

businesses, customers, and specialized organizations participate.
✓ ✓ ✓

□  S(5)-2.2 Contribution to cooperation systems
When participating in a community or cooperation system, actively participate in

activities to contribute to the cooperation system.
✓ ✓ ✓

□   S(6)-1.1 Risk management
Implement risk management in which the customer's independent and proactive efforts

are integrated with efforts based on a contract with cyber infrastructure providers.
✓

□   S(6)-1.2 Resource arrangement
Allocate and develop resources to respond proactively to known vulnerabilities and

implement mitigation measures (including SBOM utilization).
✓

□  S(6)-1.3 Utilization of cooperation systems Utilize communities and collaborative systems aimed at improving software security. ✓

□   S(6)-2.1 Definition of security requirements

Define security requirements for incorporating security functions into software design

plans and present them to cyber infrastructure providers before procuring and

deploying software.
✓

□   S(6)-2.2 Disclosure of security practice requirements
Disclose security practice requirements for cyber infrastructure providers before

procuring and deploying software.
✓

□   S(6)-2.3 Decision-making based on risk assessment When procuring and introducing software, make decisions based on risk assessment. ✓

□   S(6)-2.4 Budget securement
Continuously secure budgets related to introduction, operation, migration, disposal, risk

response, and related contracts, considering software life cycles.
✓

Requirements checklist (role/phase)

Check! Minimum Standard Requirement ID Itemized requirements Developer Supplier Operator Customer

□   S(1)-1.1 Risk-based security requirements definition ✓ ✓ ✓

□   S(1)-1.2 Design review ✓ ✓

□  S(1)-1.3 Risk response records ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

□  S(1)-1.4 Periodic risk-based review ✓ ✓ ✓

□   S(1)-2.1 Definition of secure development process ✓ ✓ ✓

□   S(1)-2.2 Secure build ✓ ✓

□   S(1)-2.3 Verification and feedback ✓ ✓ ✓

□   S(1)-2.4 Codebases ✓ ✓ ✓

□   S(1)-3.1 Test planning ✓ ✓ ✓

□   S(1)-3.2 Test method ✓ ✓

□   S(1)-3.3 Test implementation ✓ ✓

□   S(1)-3.4 Responses to problems ✓ ✓

□   S(1)-4.1 Asset management ✓ ✓

□  S(1)-4.2 Development of a monitoring environment ✓ ✓ ✓

□  S(1)-4.3 Arrangement of a security mechanism ✓ ✓ ✓ ✓

□   S(1)-4.4 Monitoring and evaluation ✓ ✓ ✓ ✓

□   S(2)-1.1 Arrangement of software components ✓ ✓ ✓ ✓

□   S(2)-1.2
Development and maintenance of software

components ✓ ✓

□   S(2)-1.3 Risk assessment of software components ✓ ✓ ✓

□   S(2)-1.4
Confirmation of publicly known vulnerabilities of

software components ✓ ✓ ✓

□   S(2)-1.5 Updating of software components ✓ ✓

□   S(2)-2.1 Protection of codebases ✓ ✓ ✓

□   S(2)-2.2 Archiving of releases ✓ ✓ ✓ ✓ ✓

□   S(2)-2.3 Sharing of release provenance data ✓ ✓ ✓ ✓

□   S(2)-3.1 Agreement on security requirements ✓ ✓ ✓ ✓

□  S(2)-3.2 Responses to supply chain security requirements ✓ ✓ ✓ ✓

□  S(2)-3.3
Establishment of a response process for risks that do

not meet security requirements ✓ ✓ ✓ ✓ ✓

□   S(2)-4.1
Secure introduction, configuration, operation,

modification, disposal, and termination ✓ ✓ ✓ ✓ ✓

□   S(2)-4.2 Provision of integrity verification information ✓ ✓ ✓ ✓ ✓

□   S(3)-1.1 Establishment of a vulnerability response system ✓ ✓ ✓

□   S(3)-1.2 Communication plan ✓ ✓ ✓

□   S(3)-1.3 Vulnerability information collection ✓ ✓ ✓ ✓

□   S(3)-1.4 Identification of undetected vulnerabilities ✓ ✓ ✓ ✓ ✓

□   S(3)-2.1 Vulnerability analysis ✓ ✓ ✓

□   S(3)-2.2 Risk responses to vulnerabilities ✓ ✓ ✓ ✓ ✓ ✓ ✓

□   S(3)-2.3 Security recommendations ✓ ✓ ✓ ✓ ✓ ✓

□  S(3)-3.1 Identification of root causes ✓ ✓ ✓ ✓ ✓

□  S(3)-3.2 Process improvement ✓ ✓ ✓ ✓

□  S(4)-1.1 Definition of roles and responsibilities ✓ ✓ ✓ ✓

□   S(4)-1.2 Management's commitment ✓ ✓ ✓ ✓

□  S(4)-1.3 Agreement on roles and responsibilities ✓ ✓ ✓ ✓

□  S(4)-1.4 Training for each role ✓ ✓ ✓ ✓

□  S(4)-1.5 Review of roles and training ✓ ✓ ✓ ✓

□   S(4)-2.1 Definition of a software development policy ✓ ✓

□   S(4)-2.2
Definition and maintenance of a software security

policy ✓ ✓

□   S(4)-2.3 Sharing of cost recognition and budgeting ✓ ✓

□  S(4)-3.1 Definition of a software service operation policy ✓ ✓

Requirements Requirements for fulfilling responsibilities

R
e
q
u
ire

m
e
n
t d

e
fin

itio
n

D
e
s
ig

n

D
e
v
e
lo

p
m

e
n
t

Life cycle phase

T
e
s
tin

g

R
e
le

a
s
e

D
is

trib
u
tio

n

D
e
p
lo

y
m

e
n
t

O
p
e
ra

tio
n

M
o
n
ito

rin
g

B
u
ild

F
e
e
d
b
a
c
k

A
n
a
ly

s
is

P
la

n
n
in

g

A
rra

n
g
e
m

e
n
t o

f h
u
m

a
n
 re

s
o
u
rc

e
s
, p

ro
c
e
s
s
e
s
, a

n
d

te
c
h
n
o
lo

g
ie

s

S
tre

n
g
th

e
n
in

g
 o

f re
la

tio
n
s
h
ip

s
 b

e
tw

e
e
n
 c

y
b
e
r in

fra
s
tru

c
tu

re
p
ro

v
id

e
rs

 a
n
d
 s

ta
k
e
h
o
ld

e
rs

□  S(4)-3.2 Definition and maintenance of a service security policy ✓ ✓

□  S(4)-3.3 Audit based on an operational policy ✓ ✓ ✓

□   S(4)-4.1 Definition and tracking of security verification criteria ✓ ✓ ✓

□   S(4)-4.2
Support for decision-making based on security

verification criteria ✓ ✓ ✓

□  S(4)-4.3 Audit based on security verification criteria ✓ ✓ ✓ ✓

□   S(4)-5.1 Designation of tools and toolchains ✓ ✓

□   S(4)-5.2
Deployment, operation, and maintenance of tools and

toolchains ✓ ✓

□   S(4)-5.3 Tool configuration and evidence generation ✓ ✓

□   S(4)-6.1 Isolation and protection of environments ✓ ✓

□   S(4)-6.2 Protection of development endpoints ✓ ✓

□  S(5)-1.1
Establishment of an organizational system for

information sharing ✓ ✓ ✓ ✓

□   S(5)-1.2 Provision of important security-related information ✓ ✓ ✓ ✓

□   S(5)-1.3 Use of vulnerability information notification services ✓ ✓ ✓ ✓

□  S(5)-2.1 Utilization of cooperation systems ✓ ✓ ✓ ✓

□  S(5)-2.2 Contribution to cooperation systems ✓ ✓ ✓ ✓

□   S(6)-1.1 Risk management ✓

□   S(6)-1.2 Resource arrangement ✓

□  S(6)-1.3 Utilization of cooperation systems ✓

□   S(6)-2.1 Definition of security requirements ✓

□   S(6)-2.2 Disclosure of security practice requirements ✓

□   S(6)-2.3 Decision-making based on risk assessment ✓

□   S(6)-2.4 Budget securement ✓

	サイバーインフラ事業者に求められる役割等に関するガイドライン（案）【英語版】.pdf
	チェックリスト（案）【英語版】.pdf

