令和２年度

ものづくり基盤技術の振興施策

第204回国会(常会)提出
この文書は、ものづくり基盤技術振興基本法（平成11年法律第2号）第8条の規定に基づく令和2年度のものづくり基盤技術の振興に関して講じた施策に関する報告を行うものである。

本報告は、閣議決定を経て国会に提出する年次報告であり、表題は元号表記となっているが、本文に関しては、経済活動において西暦表記が用いられることが多いこと、海外データとの比較となる部分もあること、グラフにおいては西暦表示の方がわかりやすいと考えられることから、原則として、西暦表記を用いている。

（参考：元号表記と西暦表記の対照表）

<table>
<thead>
<tr>
<th>元号</th>
<th>西暦</th>
<th>元号</th>
<th>西暦</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成12年</td>
<td>2000年</td>
<td>平成22年</td>
<td>2010年</td>
</tr>
<tr>
<td>平成20年</td>
<td>2008年</td>
<td>令和2年</td>
<td>2020年</td>
</tr>
</tbody>
</table>

本紙は再生紙を使用しております。
令和2年度

ものづくり基盤技術の振興施策

第204回国会（常会）提出
凡例

1. 「ものづくり基盤技術」とは、工業製品の設計、製造又は修理に係る技術のうち汎用性を有し、製造業の発展を支えるものとしてのものづくり基盤技術振興基本法施行令で定めるものをいう。

本文中「ものづくり基盤産業」とは、ものづくり基盤技術を主として利用して行う事業が属する業種であって、製造業又は機械修理業、ソフトウェア業、デザイン業、機械設計業その他の工業製品の設計、製造もしくは修理と密接に関連する事業を行う業種に属するものとしてものづくり基盤技術振興基本法施行令で定めるものをいう。

2. 「中小企業」とは、おおむね、資本の額又は出資の総額が 3 億円以下の会社並びに常時使用する従業員の数が 300 人以下の会社を指す。

3. この報告では、主として 2021 年 4 月 1 日時点で一般に公開されている政府、日本銀行、外国政府、国際機関の統計資料等を用いたが、さらにこれを加工分析したものや民間諸機関等の調査も利用した。

4. この報告の中で引用されている統計において、「季節調整済指数」又は「季調済指数」とは、鉱工業生産指数、機械受注統計等の月次、四半期データについて、集計された原数値に対して季節の影響を除去する処理が為された後の統計データを指す。

5. この報告の中の統計データには、一部速報値を含んでいる。

6. 「サービス業」については、内閣府「国民経済計算」の経済活動別分類による「サービス」（教育、研究、医療・保健衛生、公共サービス、対事業所サービス、対個人サービスなど）を狭義のサービス業とし、「卸・小売、金融・保険、不動産、運輸・通信」などの各業を併せたものを広義のサービス業とする。

7. この報告書では、ASEAN（東南アジア諸国連合）とは、タイ、フィリピン、インドネシア、マレーシア、シンガポール、ブルネイ、ベトナム、ラオス、ミャンマー、カンボジアの 10 か国を指す。

8. この報告書に掲載した我が国の地図は、必ずしも、我が国の領土を包括的に示すものではない。
第1部 ものづくり基盤技術の現状と課題

総 論 製造業のニューノーマル／レジリエンス・グリーン・デジタル 2

第1章 我が国ものづくり産業が直面する課題と展望 5

第1節 我が国製造業の足下の状況 .. 5
1. 業況と営業利益 ... 7
2. 生産の動向 ... 11
3. 資金調達の動向 ... 12
4. 雇用・所得の動向 .. 15
5. 設備投資動向 ... 18

第2節 ニューノーマルでの生き残りに向けて 21
1. レジリエンス ─サプライチェーンの強靭化── .. 21
（1）サプライチェーン全体を俯瞰した対応 .. 21
（2）「オールハザード型」の対応 ... 41
（3）企業間での連携や官民一体でのサプライチェーン構築・強靭化 44
（4）経済安全保障をめぐる国際環境の変化 ... 51
2. グリーン ─カーボンニュートラルへの対応─ .. 62
（1）各国政府の取組の深化 .. 62
（2）サプライチェーン全体に広がる対応の必要性 64
3. デジタル ─デジタルトランスフォーメーション（DX）の取組深化─ 74
（1）企業変革力（ダイナミック・ケイパビリティ）の強化 74
（2）戦略的なDX投資に向けた対応 .. 85
（3）製造現場での無線通信技術の本格活用に向けた期待 93
（4）サプライチェーン全体でのサイバーセキュリティ対策 106

第2章 ものづくり人材の確保と育成 ... 110

第1節 デジタル化等が進展する中でのものづくり人材の確保・育成について 110
1. ものづくり産業における雇用・労働の現状 110
（1）雇用・失業情勢 ... 110
（2）就業者数の動向及び就業者の構成 ... 116
（3）労働時間・賃金の動向 ... 119
（4）海外進出の動向 .. 120
2. 新型コロナウイルス感染症によるものづくり産業と人材を取り巻く環境変化 122
（1）ものづくり産業における業績と雇用への影響 122
（2）ものづくり産業における就労環境の変化 124
3. ものづくり産業におけるデジタル技術の活用状況と働き方の変化 128
（1）ものづくり現場におけるデジタル技術の活用状況や経営課題 128
（2）ものづくり現場の現状と今後の見通し ... 132
4. デジタル技術の活用がもたらす効果と企業における人材育成等の取組 136
（1）デジタル技術の活用による好循環 .. 136
（2）デジタル技術の活用が進んでいる企業の人材育成・能力開発 138
第 2 節 ものづくり産業における人材育成の取組について

1. より効果的なものづくり訓練に向けて
 (1) 訓練ニーズを踏まえたものづくり訓練の実施
 (2) その訓練の現場に求められる能力を身につけることのできる職業訓練の実施
 (3) 産業界や地域の訓練ニーズを踏まえた訓練基準や分野の見直し

2. 中小企業等の労働生産性の向上
 (1) 生産性向上人材育成支援センターの取組

3. 企業の人材育成などによる職業能力開発の推進
 (1) 企業内の人材育成（民間企業における職業訓練）
 (2) 事業主団体等が実施する認定職業訓練
 (3) 民間教育訓練機関における職業訓練サービスの質の向上に向けた取組
 (4) 中小企業等担い手育成支援事業

4. 若者のものづくり離れへの対応
 (1) ポリテクカレッジを始めとする学卒者訓練
 (2) 若者への技能継承
 (3) thermometer
 (4) 地域若者サポートステーション

5. 社会的に通用する能力評価制度の構築
 (1) 技能検定制度
 (2) 職業能力評価基準
 (3) 社内検定認定制度

6. キャリア形成支援
 (1) キャリアコンサルティング
 (2) ロボ・カード制度の活用

7. 就職氷河期世代の方への支援
 (1) 就職氷河期世代の方向けの「短期資格等習得コース事業」の実施

第 3 章 ものづくりの基盤を支える教育・研究開発

第 1 節 教育・研究等に係るデジタル化のビジョン

1. 教育におけるデジタル化の推進
 (1) GIGA スクール構想による 1 人 1 台端末の活用を始めとした学校教育の充実
 (2) 大学におけるデジタル活用の推進
 (3) 生涯学習・社会教育におけるデジタル化の推進
 (4) 教育データの活用による、個人の学び、教師の指導・支援の充実、EBPM の推進

2. デジタル社会の早期実現に向けた研究開発
 (1) デジタル社会への先端技術・研究基盤の活用
 (2) 将来のデジタル社会に向けた基幹技術の研究開発
 (3) 研究環境のデジタル化推進
3. 「新たな日常」における文化芸術・スポーツ・行政 DX 204
(1) 文化芸術 DX 戦略 ... 204
(2) デジタル社会におけるスポーツの新たな展開 ... 204
(3) 文部科学省内の情報基盤の刷新等 ... 204
(4) DX 人材の育成・確保 ... 204

第 2 節 ものづくり人材を育む教育・文化芸術基盤の充実 ... 206
1. 各学校段階における特色ある取組 ... 206
(1) 小・中・高等学校の各教科における特色ある取組 ... 206
(2) 大学の人材育成の現状及び特色ある取組 ... 208
(3) 高等専門学校の人材育成の現状及び特色ある取組 ... 211
(4) 専門高校の特養生の現状及び特色ある取組 ... 213
(5) 専修学校の人材育成の現状及び特色ある取組 ... 217
(6) キャリア教育 ... 219

2. 人生 100 年時代の到来に向けた社会人の学び直しの推進 ... 221
(1) 社会人の学び直しのための実践的な教育プログラムの充実・学習環境の整備 ... 221
(2) ものづくりの理解を深めるための生涯学習 ... 226

3. ものづくりにおける女性の活躍促進 ... 229
(1) 女性研究者への支援 ... 229
(2) 理系女子支援の取組 ... 230

4. 文化芸術資源から生み出される新たな価値と継承 ... 232
(1) 文化財の保存・活用 ... 232
(2) 重要無形文化財の保護養成 ... 232
(3) 選定保存技術の保護 ... 232
(4) 地域における伝統工芸の体験活動 ... 233
(5) 文化遺産の保護／継承 ... 233
(6) 文化芸術資源を活かした社会的・経済的価値の創出 ... 233

第 3 節 Society 5.0 を実現するための研究開発の推進 ... 234
1. ものづくりに関する基盤技術の研究開発 ... 234
(1) 新たな計測分析技術・機器の研究開発 ... 234
(2) 最先端の大型研究施設の整備・活用の推進 ... 236
(3) 未来社会の実現に向けた先端研究の抜本的強化 ... 236
(4) 科学技術イノベーションを担う人材力の強化 ... 242
(5) 科学技術イノベーションの戦略的国際展開 ... 249
(6) その他のものづくり基盤技術開発 ... 249

2. 产学研連携を活用した研究開発の推進 ... 251
(1) 省庁横断的プロジェクト「戦略的イノベーション創造プログラム (SIP) 」 ... 251
(2) 官民研究開発投資拡大プログラム（PRISM） ... 252
(3) 产学研共同研究等、技術移転のための研究開発、成果の活用促進 ... 253
(4) 大学等における研究成果の戦略的創出・管理・活用のための体制整備 ... 255
(5) 地域科学技術イノベーション創出のための取組 ... 255
第2部 令和2年度においてものづくり基盤技術の振興に関して講じた施策

第1章 ものづくり基盤技術の研究開発に関する事項

第1節 ものづくり基盤技術に関する研究開発の推進等

1. ものづくり基盤技術に関する研究開発の実施及びその普及

(1) 研究開発税制等（中小企業技術基盤強化税制）
(2) ものづくり基盤技術の開発支援
(3) 国家基幹技術の開発・利用によるものづくり基盤の強化
(4) 提案公募型の技術開発支援
(5) オープンイノベーション拠点TIAの取組

2. 技術に関する研修及び相談・助言等

(1) （独）中小企業基盤整備機構における経営相談・専門家派遣事業
(2) 中小企業・小規模事業者ワンストップ総合支援事業

3. 知的財産の取得・活用に関する支援

(1) 模倣品・海賊版対策について
(2) 知的資産経営の推進
(3) 営業秘密及び限定提供データ
(4) 知財権情報の活用に関する支援
(5) 権利化に対する支援
(6) 知的財産の戦略的活用に対する支援
(7) 技術情報の管理に関する取組

4. 戦略的な標準化・認証の推進

(1) 中堅・中小企業等における標準化の戦略的活用の推進
(2) 戦略的な国際標準化の推進
(3) 世界に通用する認証基盤の強化
(4) アジア諸国等との協力関係強化
(5) 標準化人材の育成

5. 科学技術イノベーション人材の育成・確保

(1) 卓越研究員事業
(2) 次世代アントレプレナー育成事業（EDGE-NEXT）
(3) 女性研究者・技術者への支援
(4) リサーチ・アドミニストレーターに係る質保証制度の構築

第2節 ものづくり事業者と大学等の連携

1. 大学等の能力を活用した研究開発の促進

(1) 大学発新産業創出プログラム（START）
(2) 研究成果最適展開支援プログラム（A-STEP）
(3) オープンイノベーション機構の整備事業
(4) 共創の場形成支援プログラム（COI-NEXT）
(5) センター・オブ・イノベーション（COI）プログラム
(6) 産学共創プラットフォーム共同研究推進プログラム（OPERA）
(7) 地域イノベーション・エコシステム形成プログラム

2. 大学等の研究成果の利用の促進

(1) 知財活用支援事業
(2) 産学連携知的財産アドバイザーによる支援
第２章 ものづくり労働者の確保等に関する事項

第１節 人材確保と雇用の安定

1. 人材確保の支援
 (1) ハローワークにおけるきめ細かなマッチング支援
 (2) 人材確保等支援助成金による職場定着の促進等
 (3) 中途採用等支援助成金による転職・再就職者の採用機会の拡大等
 (4) 製造業における外国材受入れ支援事業

2. 景気循環に対応した雇用の維持・安定対策
 (1) 労働移動支援助成金による成長分野等への人材移動の実現
 (2) 雇用調整助成金による雇用の維持・安定
 (3) 在籍型出向の活用による雇用維持への支援

3. 労働力需給調整機能の強化
 (1) 求人関係情報の積極的な提供等
 (2) 製造業の請負事業の適正化及び雇用管理改善の推進

4. 若年者の就業支援の推進及び職業意識の啓発
 (1) 地域若者サポートステーション
 (2) 新卒者等に対する就労支援（新卒応援ハローワーク）
 (3) フリーター等に対する就労支援（わかものハローワーク）

5. 年齢に関わりなく働ける社会の実現
 (1) 高齢者雇用の促進
 (2) 高年齢者等の再就職支援の促進
 (3) 地域における多様な働き手への支援

第２節 職業能力の開発及び向上

1. 産業構造の転換や人生 100 年時代を見据えた人材開発施策の推進

2. ハロートレーニング（公的職業訓練）の推進
 (1) 公共職業訓練の推進
 (2) 求職者支援制度の推進
 (3) 生産性向上人材育成支援センターの取組
 (4) 職業訓練の質の向上
 (5) 地域創生人材育成事業

3. 事業主が行う職業能力開発の推進
 (1) 事業主に対する助成金の支給
 (2) 認定職業訓練に対する支援
 (3) セルフ・キャリアドックの普及促進

4. 労働者の自発的な職業能力開発のための環境整備
 (1) 教育訓練給付制度
 (2) ジョブ・カード制度の推進

第３節 ものづくりに関する能力の適正な評価、労働条件の確保・改善

1. 職業能力評価制度の整備
 (1) 技能検定制度の運用
 (2) 社内検定認定制度の推進

2. 「ものづくり立国」の推進
 (1) 各種技能競技大会等の実施
 (2) 優秀技能者人材育成支援等事業
第3章 ものづくり基盤産業の育成に関する事項

第1節 産業集積の推進等

1. 新たな集積の促進又は既存集積の機能強化及び新規産業等に係る支援機能の充実
 (1) 伝統的工芸品産業の振興対策事業
 (2) 地域企業イノベーション促進事業
 (3) インフラシステム海外展開
 (4) レアアース・レアメタルの安定供給確保
 (5) 地域イノベーション基盤整備事業
 (6) 医療機器産業の振興

2. 環境性能の高い製品の普及促進等
 (1) 次世代自動車普及目標・長期ゴール
 (2) 環境性能に優れた自動車に対する自動車関係諸税
 (3) 次世代自動車普及に向けた取組
 (4) 高性能建材等の実証・普及に向けた支援
 (5) J-クレジット制度

第2節 中小企業の育成

1. 取引条件の改善
 (1) 下請等中小企業の取引条件の改善
 (2) 下請代金支払遅延等防止法（下請法）
 (3) 下請中小企業振興法（下請振興法）
 (4) 下請取引を適正化のための普及・啓発

2. 中小企業の経営の革新及び創業促進
 (1) 経営革新の促進
 (2) 創業・ベンチャーの促進
 (3) 新事業促進支援事業
 (4) 中小企業の海外展開支援

3. 中小企業のものづくり基盤技術強化
 (1) 戦略的基盤技術高度化支援事業（再掲）
 (2) 中小企業・小規模事業者人材対策事業
 (3) 中小企業大学校における人材育成支援
 (4) 中小企業等経営強化法
 (5) 中小企業投資促進税制
 (6) 中小企業経営強化税制
第3節 戦略分野（自動走行、ロボット等）での産業育成

1. 戦略分野における基盤整備
 (1) 次世代人工知能・ロボット中核技術開発
 (2) 高効率・高速処理を可能とするAIチップ・次世代コンピューティングの技術開発事業
 (3) ポスト5G情報通信システム基盤強化研究開発事業
 (4) 健康・医療情報を活用した行動変容促進事業
 (5) 革新的ロボット研究開発等基盤構築事業
 (6) ロボット・ドローンが活躍する省エネルギーセンターセキュリティ推進事業
 (7) 高度な自動走行・MaaS等の社会実装に向けた研究開発・実証事業
 (8) 次世代自動車等の開発加速化に係るシミュレーション基盤構築事業
 (9) 産業系サイバーセキュリティ推進事業
 (10) 研究開発税制等（中小企業技術基盤強化税制）(再掲)

2. サイバーセキュリティの強化
 (1) 産業系サイバーセキュリティ推進事業（再掲）
 (2) サイバーセキュリティ経済基盤構築事業
 (3) IT人材育成の戦略的推進

第4章 ものづくり基盤技術に係る学習の振興に関する事項

第1節 学校教育におけるものづくり教育の充実
 1. 初等中等教育において講じた施策
 (1) スーパー・プロフェッショナル・ハイスクール
 (2) 全国産業教育フェアの開催
 (3) 地域との協働による高等学校教育改革推進事業
 (4) 教員研修の実施
 (5) 産業教育施設・設備の整備
 (6) スーパーサイエンスハイスクール
 (7) 理数教育充実のための総合的な支援
 (8) 知的財産に関する創造力・実践力・活用育成事業

2. 専修学校教育において講じた施策
 (1) 専修学校による地域産業中核的人材育成事業
 (2) 「職業実践教員課程」の認定
 (3) 「キャリア形成促進プログラム」の認定

3. 高等専門学校において講じた施策

4. 大学教育において講じた施策
 (1) Society 5.0に対応した高度技術人材育成事業
 (2) 職業実践力育成プログラム（BP）
 (3) 卓越大学院プログラム

第2節 ものづくりに係る生涯学習の振興

1. 一般市民や若年層に対する普及啓発
 (1) 日本科学未来館での取組
 (2) 「子どもゆめ基金」事業による科学体験活動等への支援
 (3) （独）国立科学博物館での取組
 (4) 文化財の保存技術の保護

2. 技術者に対する生涯学習の支援
 (1) 研究人材キャリア情報活用支援事業
第5章 その他ものづくり基盤技術の振興に関し必要な事項

第1節 国際協力
1. 技能評価システム移転促進事業
2. JICA事業への協力等政府間の技術協力
3. 外国人技能実習制度

第2節 その他
1. 第9回ものづくり日本大賞の実施
2. ものづくり白書の作成

第6章 災害等からの復旧・復興、強靱化

第1節 東日本大震災に係るものづくり基盤技術振興対策
1. 資金繰り対策
 (1) 震災からの再建・再生に向けた資金繰り支援
2. 工場等の復旧への支援
 (1)仮設工場、仮設店舗等整備事業等
 (2) 中小企業組合等共同施設等災害復旧費補助金
 (3) 復旧・復興のための支援専門家派遣
3. 職業能力の開発及び向上
 (1) 人材開発支援助成金の特例措置の実施（一部再掲）
4. 原子力災害からの復興支援
 (1) 福島県における医療関連拠点整備

第2節 熊本地震に係るものづくり基盤技術振興対策
1. 資金繰り対策
 (1) 震災からの再建・再生に向けた資金繰り支援
2. 工場等の復旧への支援
 (1) 中小企業組合等共同施設等災害復旧費補助金

第3節 平成30年7月豪雨に係るものづくり基盤技術振興対策
1. 資金繰り対策
 (1) 災害からの再建・再生に向けた資金繰り支援
 (2) 中小企業組合等共同施設等災害復旧費補助金

第4節 北海道胆振東部地震に係るものづくり基盤技術振興対策
1. 資金繰り対策
 (1) 震災からの再建・再生に向けた資金繰り支援

第5節 令和元年台風第19号に係るものづくり基盤技術振興対策
1. 資金繰り対策
 (1) 震災からの再建・再生に向けた資金繰り支援
 (2) 工場等の復旧への支援
 (1) 中小企業組合等共同施設等災害復旧費補助金
第6節 令和2年7月豪雨に係るものづくり基盤技術振興対策

1. 資金繰り対策
 （1）震災からの再建・再生に向けた資金繰り支援

2. 工場等の復旧への支援
 （1）なりわい再建支援事業

3. 事業再建に向けた支援
 （1）被災小規模事業者再建事業（持続化補助金）による事業再建支援

第7節 新型コロナウイルス感染症に係るものづくり基盤技術振興対策

1. 資金繰り対策
 （1）新型コロナウイルス感染症の感染拡大による業況悪化からの再建・再生に向けた資金繰り支援

2. サプライチェーン改革
 （1）サプライチェーンの強靱化に向けた取組

第7章 ものづくり分野に関係する主な表彰等制度
コラム目次

第1章 我が国ものづくり産業が直面する課題と展望 .. 5

第1節 我が国製造業の足下の状況 ... 5

・ニューノーマルでの金融機関との新しい関係 ... 14

第2節 ニューノーマルでの生き残りに向けて ... 21

・国民生活に必要な医療用物資の安定的な生産・供給に向けた官民一体の取組
 ・・・ 27

・サプライチェーン強靭化に資する技術開発・実証事業 採択企業の取組
 ・・・ 30

・将来的の物流モデルのイメージ：パケット・ルーティング・ロジスティクス
 ・・・ 35

・サプライチェーンの可視化による初動の迅速化
 ・・・ 39

・サプライチェーンを包括したカーボンニュートラル実現への取組
 ・・・ 40

・製造業における主要なシステム
 ・・・ 43

・鉄鋼業の脱炭素化に向けて
 ・・・ 45

・炭素国境調整の検討状況
 ・・・ 49

・企業活動に影響を及ぼすグリーンファイナンスやESG投資の動向
 ・・・ 52

・機械加工・修理・メンテナンスのオンライン相談、オンライン（遠隔サポート）理で新たな顧客を
 ・・・ 57

・AIによる顔認証技術を応用した検温ソリューションの開発
 ・・・ 61

・情報通信社会の未来を切り拓く光・無線技術
 ・・・ 65

・ポスト・コロナの新しい社会実現のカギ「スマートテレオートノミー」
第3章 ものづくりの基盤を支える教育・研究開発

第1節 教育・研究等に係るデジタル化のビジョン

・教育の風を興す熊本県高森町の遠隔教育
・Society 5.0 に向けた人材育成の推進

第2節 ものづくり人材を育む教育・文化芸術基盤の充実

・生活がより豊かになるものづくりにチャレンジ
・ものづくりの大切さを実感できる校内ロボットコンテスト
・伝統技法の継承と地域貢献につながる取組
・大学（工学系）における取組
・高等専門学校における取組
・「スーパー・プロフェッショナル・ハイスクール（SPH）」の取組
・「全国産業教育フェア」における「ロボット競技発表会」での取組

第3節 Society 5.0 を実現するための研究開癈の推進

・「スーパーサイエンスハイスクール（SSH）」の取組
・アントレプレナーシップ産成の取組事例
・「北大モデル」－産学官地域が連携した創造人材育成基盤
・2019年ノーベル化学賞「リチウムイオン電池の開発
・小惑星探査機「はやぶさ2」

※本白書における各企業の取組は2020年度時点のもの
ものづくり基盤技術の現状と課題
総 論

一製造業のニューノーマル／レジリエンス・グリーン・デジタルー

1. はじめに
新型コロナウイルス感染症は瞬く間に世界中で感染拡大し、社会経済の様々な側面に甚大な影響を及ぼした。それは、テレワークに代表される新しい働き方改革の浸透や生活様式の刷新がある一方で、従来は想定し得なかった新たなリスクや対応の必要性を浮き彫りにするものでもあった。

例えば、これまで「サプライチェーンリスク」という言葉から一般的に思い浮かべられるのは、自然災害とそれによる生産拠点や物流機能へのダメージである。迅速な復旧の実現可能性、あるいは被害のない地域での代替生産の必要性など、自社や直接の調達先の被害状況を確認しながらサプライチェーンを再構築する取組は、2011年の東日本大震災以降、我が国製造業において着実に根付いてきた。しかし、新型コロナウイルス感染症の感染拡大を突き付けたのは、自社の製造・調達拠点や、あるいは特定の国や地域に限らず、サプライチェーンのいかなる地点にも同時多発的に被害が発生し得るという現実であった。製造事業者に求められるサプライチェーンリスク管理は今まさに大きく変容しつつあると言っても過言ではないだろう。

加えて、近年の製造業はもはやものづくりそのものだけに注力するのではなく、製品と表裏一体で提供されるサービスや、売り手や消費者の視点に立った「そこ作り」の考え方などについても、着実に経営戦略に取り組まれている。このような状況を踏まえるとき、環境や状況が予測困難なほど激しく変化する中で、企業にとってはその急激な変化に対応するためには自社を変革していく能力、すなわち、「企業変革力（ダイナミック・ケイパビリティ）」の強化が必要になっていると位置付けている。

2. 製造業のニューノーマル
「不確実性の時代における製造業の企業変革力」を主題に掲げた2020年版ものづくり白書では、経済安全保障をめぐる国際的動向、地政学的リスクの高まり、気候変動や自然災害、非連続的な技術革新、そして新型コロナウイルス感染症の感染拡大などの「不確実性」を我が国製造業が直面する大きな課題と位置付け、不確実性の時代において製造事業者が取るべき戦略について、以下のとおり提起した。

①企業変革力（ダイナミック・ケイパビリティ）強化の必要
環境や状況が予測困難なほど激しく変化する中で、企業にとってはその急激な変化に対応するためには自己を変革していく能力（すなわち、「企業変革力（ダイナミック・ケイパビリティ）」）の強化こそが最も重要な課題であると位置付けた。

②企業変革力を強化するDX推進の必要
IoTやAIといったデジタル技術は、従来も生産性の向上や安定稼働、品質の確保など、製造業に様々な恩恵を与えてきたものであるが、このような技術はダイナミック・ケイパビリティを強化する上でも強力なツールである旨を論じた。

③設計力強化の必要
環境や状況の急激な変化に迅速に対応する上では、製品の設計・開発のリードタイムを可能な限り短縮することの必要性や、製品の品質・コストの大半は設計段階で決まり、工程が進むにしたがって仕様変更の柔軟性は低下することから、迅速かつ柔軟な対応を可能にするダイナミック・ケイパビリティの強化のためには、設計力強化こそが重要であることを論じた。

④人材強化の必要
我が国製造業のデジタル化に必要な人材の能力として、システム思考と数理の能力を特定するとともに、製造事業者による人材確保と育成の方策や、こ
のような人材を育むための教育の取組の方向性について論じた。

ダイナミック・ケイパビリティの強化やこれを促進・実現するためのツールとしてのデジタル技術は、ウィズ・コロナ、ポスト・コロナにおいて非常に重要なソールであり、この内容も踏まえながら、本白書の主題は「製造業のニューノーマル／レジリエンス・グリーン・デジタル」と捉えて、以下の方向性で動向分析を行う。

①レジリエンス　－サプライチェーンの強靱化－

我が国製造業は、従来、主に自然災害のような局所的被害をもたらすリスクから、自社や直接の調達先の事業継続や代替策を想定しながら、対応を進めてきた。しかし、新型コロナウイルス感染症の感染拡大は、このような自社の製造・調達拠点や、あるいは特定の国や地域に限らず、サプライチェーンのいかなる地点にも同時多発的に被害や影響が発生し得ることを確立にした。今後も世界的な不確実性の高まりが想定される中、製造業者、局所的な想定のみにとどまらず、自社に関わるグローバル・サプライチェーン全体を俯瞰・可視化し、多面的なリスク対策を講じていくことが求められている。加えて、危機事象の性質の違いに左右されることなく着実に事業を継続していくという本来の目的に鑑み、例えば、対面業務を可能な限りデジタル化して出勤などの必要性を減らす工夫もしながら、危機時のリソースをいかにして確保するのかといった、いわゆる「オールハザード型」の対応も必要である。

さらに、レジリエンス強化のための取組は、個々の企業の危機時における事業継続のみにとどまるものではない。例えば、今後ますますの市場拡大が見込まれるグリーンやデジタルの分野においては、半導体や蓄電池、川上の各種マテリアルなどが製品やサービスの品質向上に向けて重要な役割を果たすこととなる。すなわち、これらの分野における技術開発やサプライチェーンの構築・強化が、国に優れた製品やサービスを生み出す基盤であり、我が国製造業全体の競争力強化に直結することとなる。一方で、近年、国際的に貿易・投資が伸びる中で、経済安全保障をめぐる国際情勢は大きく変化しており、技術の流出を防ぐための輸出管理、人権侵害への対応、投資管理といった各種の措置が強化されていく。製造業者にとっては、各国の輸出管理上求められている内容を超えて、適度な変動する必要はないが、自社のサプライチェーンのリスクについて精緻に把握する等により、海外市場におけるビジネスが阻害されることのないよう万全の備えをしておくことが重要である。

②グリーン　－カーボンニュートラルへの対応－

我が国を含めた各国政府は今後カーボンニュートラルの実現を目指していくことを次々と表明しており、その実現に向けた取組が様々な領域で進みつつある。

例えば、製造業においては、サプライチェーン全体でのカーボンニュートラルを目指して取り組むグローバルの製造業者が多く現れ始め、今後もこのような動きは加速していくことが想定される。また、資金供給の分野においても、国内外の様々な投資家や金融機関が、環境問題への取組に関する積極性を資金供給の判断材料のひとつとするグリーンファイナンスの手法を採用し始めている。このような動向を踏まえ、広くサプライヤーを含めた我が国製造業者においても、将来にわたり着実なビジネスの継続を図るべく、カーボンニュートラル実現に向けた各国政府やグローバルメーカーなどの取組や考え方を適切に理解し対応していく必要がある。

③デジタル　－デジタルトランスフォーメーション（DX）の取組深化－

不確実性の高い世界では、その急激な環境変化に対応するためのダイナミック・ケイパビリティこそが、事業継続と競争力強化の源泉となる。その強化のためにはDXが有効なツールであることは2020年版ものづくり白書で論じたとおりであるが、現状、製造業にお限らず、多くの企業においてDXの取組は道半ばである。多くのデジタルツールが市場に溢れる中で、製造業におけるDX投資に踏み切るためには、自社がバリューチェーン上で担っている役割やそこで管理すべきデータについて的確に把握することが大切である。

一方で、近年、国際的に貿易・投資が伸びる中で、経済安全保障をめぐる国際情勢は大きく変化しており、技術の流出を防ぐための輸出管理、人権侵害への対応、投資管理といった各種の措置が強化されていく。
たすものであることは論を俟たないが、将来、制御機能のクラウド化などを通じ、現在ハードウェアが担っている制御技術と、生産計画を統括する情報技術が融合する局面が訪れれば、それぞれの技術に関する市場の一体化が進み、現在の市場の勢力図も大きく変わる可能性がある。

3. 本白書の流れのまとめ

本白書第1部では、上記の観点から、我が国製造業に必要とされる対応を以下のとおり取り上げる。

第1章では、 「我が国ものづくり産業が直面する課題と展望」として、我が国製造業の足下の状況に触れた上で、「製造業のニューノーマル」において取り組むべき「レジリエンス」、「グリーン」及び「デジタル」の3つの観点から動向分析を行う。

第2章では、「ものづくり人材の確保と育成」として、企業がどのような課題に直面し、どのように人材確保や育成に取り組んでいるのかなどについて分析する。特に、デジタル化などの急速かつ広範な変化に対応するため、労働者の主体的な学びを促しつつ、企業と労働者双方が共同して、全社的な教育訓練に注力していくことの重要性を確認する。

第3章では、「ものづくり基盤を支える教育・研究開発」として、教育、科学技術、文化芸術及びスポーツの各分野におけるデジタル化に関するビジョンの策定と、それに基づく取組を記述するとともに、ものづくりに関する各学校段階における特色ある取組や、ものづくりに関する基盤技術の研究開発などの現状や方向性についてまとめる。

上記の動向分析を踏まえつつ、今後、経済産業省・厚生労働省・文部科学省が関係府省と一体となって、関連する政策を進めていく。
新型コロナウイルス感染症の世界的な感染拡大は、2020年以降の我が国の経済に大きな影響を及ぼした。
日本企業に対する市場の評価を確認すると、2020年3月以降、日経平均株価の下げ幅は追日1,000円近くとなり、3月9日の週は週次ベースで3,318円70銭安を記録、18日の終値は3年4か月ぶりの低水準である16,000円台となった（図110-1）。一方、3月16日に日本銀行が上場投資信託の購入枠倍増を決めたことにより、3月23日の週は週次ベースで2,836円60銭高を記録するなど、市場は記録的な乱高下を繰り返した。なお、その後は回復を遂げ、12月29日の終値で27,568円と30年ぶりの高価を付け、2021年2月には30年6か月ぶりとなる30,000円台を記録した。

実質GDP成長率の推移は、2020年第2四半期においては前期比マイナス8.3%（年率マイナス29.3%）と、比較可能な1995年以降において、リーマンショック後の2009年を超える最大の落ち込みとなった（図110-2）。同年第3四半期には個人消費の持ち直しが寄与し、前期比プラス5.3%（年率プラス22.8%）となったが、新型コロナウイルス感染症の感染拡大による景気失速の懸念が引き続き存在し、内外の環境変化の影響に注視が必要である。
2019年時点では製造業が我が国のGDPの2割以上を占め（図110-3）、依然として我が国経済を支える中心的な業種のひとつとしての役割を果たしており、本節ではこの製造業の足下の状況について動向分析を行う。

図110-3 業種別GDP構成比の変化

備考：ここでいう「サービス業」とは、宿泊・飲食サービス業、専門・科学技術・業務支援サービス業、公共・教育、保健衛生・社会福祉、その他のサービス業」とする。
資料：内閣府「2019年度（令和元年度）国民経済計算年次推計（2015年基準改定値）」（2020年12月）
1 業況と営業利益

企業の全般的な業況を示す日本銀行「全国企業短期経済観測調査」の業況判断 DI は、大企業製造業において、新型コロナウイルス感染症の感染拡大などの影響により、2020 年第 2 四半期は 11 年ぶりの低水準となったほか、中小企業においては、製造業・非製造業ともに大企業以上の悪化幅となった。同年第 3 四半期に入ると、製造業・非製造業ともに改善した一方、新型コロナウイルス感染症の感染再拡大への懸念などにより、企業の景況感の慎重姿勢は今後も続くとみられる（図 111-1）。

図 111-1 日本銀行「全国企業短期経済観測調査」業況判断 DI の推移（企業規模・業種別）

備考：「業況判断 DI」は、企業の収益を中心とした業況についての全般的な判断を示すものであり、良いと判断した企業数から悪いと判断した企業数を引いて算出。
資料：日本銀行「全国企業短期経済観測調査」（2021 年 4 月）

また、製造業の事業に影響する社会情勢の変化に関する調査によれば、「新型コロナウイルス感染症の感染拡大」のほか、「米中貿易摩擦」や「大規模な自然災害」、「脱炭素・脱プラスチック等の環境規制」など、様々な情勢変化が挙げられている（図 111-2）。
営業利益の推移をみると、2020年は、情報通信機械器具製造業を除き、各業種で対前年比減益となり、製造業全体で8.6兆円と2017年の約半分まで減少している（図111-3）。

図111-2 社会情勢の変化のうち、事項に影響があるもの

図111-3 営業利益の推移（製造業業種別）

備考：資本金1億円以上の企業の四半期の営業利益の合計
資料：財務省「法人企業統計」（2021年3月）

企業が感じる景況感としても、売上高、営業利益とも減少傾向がみられる（図111-4・5）。
業種別にみると、化学工業においては売上高と営業利益いずれも「増加」又は「やや増加」したという企業の割合が他業種に比べて多く、鉄鋼業と非鉄金属業は「増加」又は「やや増加」したという企業の割合が他業種に比べて少なかった（図111-6・7）。

出所：三菱UFJリサーチ＆コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）

資料：三菱UFJリサーチ＆コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）
今後3年間の国内外の業績見通しについては、新型コロナウイルス感染症の感染拡大や米中貿易摩擦の動向により、前年の製造業の業績に関する調査時と比べると「やや減少」又は「減少」とする企業の割合が増加傾向にある（図111-8・9・10・11）。

図111-7 業種別の動向（営業利益）

<table>
<thead>
<tr>
<th>業種</th>
<th>合計</th>
<th>増加</th>
<th>やや増加</th>
<th>様々</th>
<th>やや減少</th>
<th>減少</th>
<th>大幅に減少</th>
<th>かなり大幅に減少</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般機械</td>
<td>8.3</td>
<td>8.3</td>
<td>18.1</td>
<td>14.7</td>
<td>27.8</td>
<td>42.2</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>電気機械</td>
<td>8.7</td>
<td>8.7</td>
<td>18.0</td>
<td>14.6</td>
<td>26.8</td>
<td>16.3</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>報告用機械</td>
<td>8.7</td>
<td>8.7</td>
<td>17.3</td>
<td>12.5</td>
<td>22.9</td>
<td>17.6</td>
<td>14.9</td>
<td></td>
</tr>
<tr>
<td>鉄鋼業</td>
<td>8.7</td>
<td>8.7</td>
<td>17.6</td>
<td>10.4</td>
<td>26.4</td>
<td>23.3</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>化学工業</td>
<td>10.2</td>
<td>9.5</td>
<td>18.2</td>
<td>18.2</td>
<td>27.7</td>
<td>38.8</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>非鉄金属</td>
<td>13.3</td>
<td>20.0</td>
<td>13.3</td>
<td>34.6</td>
<td>15.5</td>
<td>13.3</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>金属製品</td>
<td>17.4</td>
<td>17.4</td>
<td>14.6</td>
<td>31.4</td>
<td>13.3</td>
<td>12.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>5.8</td>
<td>11.2</td>
<td>20.0</td>
<td>16.6</td>
<td>26.9</td>
<td>11.0</td>
<td>8.4</td>
<td></td>
</tr>
</tbody>
</table>

資料：三菱UFJリサーチ&コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）

図111-8 今後3年間の見通し（国内売上高）

図111-9 今後3年間の見通し（国内営業利益）

出所：三菱UFJリサーチ&コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）
生産の動向

鉱工業生産活動の全体的な水準を示す鉱工業生産指数をみると、2020年は新型コロナウイルス感染症の感染拡大の影響による需要の低迷や生産調整などで輸送機械工業を始めとして大幅に減少している（図112-1）。

図112-1 鉱工業生産指数の推移

図111-10 今後3年間の見通し（海外売上高）
図111-11 今後3年間の見通し（海外営業利益）
資金調達の動向

日本銀行「全国企業短期経済観測調査」の資金繰り判断DIをみると、2020年第2四半期は新型コロナウイルス感染症の感染拡大の影響などにより資金繰りが「苦しい」と判断した企業が増加したが、同年第3四半期以降は資金繰りの改善がみられる（図113-1）。また、稼働率指数も、2020年4月から5月にかけて大幅に悪化した（図112-2）。

図112-2 稼働率指数の推移

資料：経済産業省「製造工業生産能力指数・稼働率指数（2021年1月）」（2021年3月）

3 資金調達の動向

日本銀行「全国企業短期経済観測調査」の資金繰り判断DIをみると、2020年第2四半期は新型コロナウイルス感染症の感染拡大の影響などにより資金繰りが「苦しい」と判断した企業が増加したが、同年第3四半期以降は資金繰りの改善がみられる（図113-1）。

図113-1 日本銀行「全国企業短期経済観測調査」資金繰り判断DI

資料：日本銀行「全国企業短期経済観測調査」（2021年4月）
日本企業全体の資金調達については、全業種と製造業ともに、新型コロナウイルス感染症が感染拡大する状況下において、借入れによる資金調達額が増加した（図113-2・3）。

図113-2 借入れによる資金調達額の推移（金融保険業除く全業種）

図113-3 借入れによる資金調達額の推移（製造業）

政府においては、「新型コロナウイルス感染症緊急経済対策」として、（株）日本政策金融公庫などによる実質無利子・無担保融資を活用した民間金融機関による実質無利子・無担保融資を実施し、企業の資金繰りを支えた。
新型コロナウイルス感染症の感染拡大によって売上げが急減する中で、多くの企業が資金繰りをつけるために借入れを増やした。政府の「新型コロナウイルス感染症緊急経済対策」における融資・保証による実質無利子・無担保融資により、借入金利が実質的にゼロになるなど、通常の借入れよりも負担は軽いもの、今後、事業収益から借入れを返済していかなければならない。新型コロナウイルス感染症の感染拡大によって従来のビジネスモデルは立ち行かず、事業はニューノーマルに合わせて事業転換を図りつつ、膨らんだ借入れを返済していかなければならないのである。

事業転換には新しい投資資金が必要になるであろうし、事業転換の効果が出てくるまでには追加の運転資金も必要になるであろう。マクロ経済的には、金融緩和により金余りであるとはいえ、個々の中小企業にとってはこれからしばらく資金繰りに頭を悩ませることが増えそうである。それだけに、金融機関との関係性を改めて見直しておくべきである。

2000年初頭の金融システム危機の頃に、多くの金融機関が経営統合をしたが、近年再び経営統合が増えてきている。例えば、銀行の経営統合に限っても、2020年に（株）徳島大正銀行や（株）十八親和銀行が、2021年には（株）第四北越銀行が、銀行合併によって誕生した。

このような金融機関の再編は、次のような政策的な後押しもあって、加速することが予想される。2020年11月に、金融機関の経営統合について、一定の条件の下で「私的独占の禁止及び公正取引の確保に関する法律（昭和22年法律第54号）」の適用を除外することを内容とした「地域における一般乗合旅客自動車運送事業及び銀行業に係る基盤的なサービスの提供の維持を図るための私的独占の禁止及び公正取引の確保に関する法律（令和2年法律第32号）」が施行された。また、同年に日本銀行は「地域金融強化のための特別当座預金制度」という政策を実施している。これにより、金融機関に対して、日本銀行当座預金の金利を優遇するものである。さらに、金融庁の金融審議会銀行制度等ワーキンググループの報告書（2020年12月）は、再編に際して必要となるシステム統合などの費用を金融機関に対して支援する資金交付制度の期間限定での導入を提案している。

金融機関の再編によって、身近な営業店が閉鎖し不便となるだけでなく、金融機関の融資判断基準が変更になったり、過去の取引関係が意味を持たなくなったりすることがある。一方で、経営統合によって業基盤が安定したり、業界限が拡大したりすることで、より高度な金融ソリューションや金融以外の幅広い支援メニューを用意することも可能になる。

最近の地域金融機関は、金融庁が提唱する「共通価値の創造」として、取引先企業の事業性を理解し、真の経営課題を的確に把握し、その解決に向けたアドバイスや資金の提供によって企業の成長に貢献するのを通じて、金融機関自身の経営基盤を強化していくことを目指している。したがって、金融機関の経営統合もそのような共通価値を創造するために実施されるものと期待できる。

筆者が（独）経済産業研究所の研究プロジェクトとして金融機関の支店長に対して実施したアンケート調査によれば、支店長が融資判断において最も重視するのは「経営者の資質・やる気」であり、保証や担保はそれほど重視されていない。また、「嘘をつかない誠実な人物である」や「事業について勉強熱心」といった観点を非常に重視している。つまり、金融機関の支店長は、共通価値を一緒に創造していける経営者であるかをみているのである。

金融機関も変化していることを認識して、企業の方にはぜひ積極的に金融機関に相談していただきたい。現在、新型コロナウイルス感染症の感染拡大の影響により、事業の調子が悪いことをそのまま伝えると「傘を取り上げられる」ことが心配されている。しかし、金融機関は企業の困りごとを一緒に考え解決していくことを自らの生きる道であると考えている。しかも、金融機関は、近年、企業の困りごとに対して幅広い支援策を用意しており、筆者のこれまでの調査では、そのような支援を利用した企業の多くは、その支援が効果的であったと評価している。

ただし、そうでない金融機関も残っているのである。どの金融機関が信頼できるパートナーかを見極めて、その金融機関の力を十分に活用していくことは、ニューノーマルでの金融機関との新しい関係構築に当たって必要となる。

注1 家森信善編「地方創生のための地域金融機関の役割—金融仲介機能の質向上を目指して—」中央経済社（2018年3月）
雇用・所得の動向

2019年の完全失業率は2.4%となり、前年に引き続き3%を下回る低水準が続いていたが、2020年に上昇に転じ、同年10月には3.1%と、2016年8月以来の水準となった。その後、2021年2月には2.9%となっている。有効求人倍率は2018年6月から2019年8月までの間、1.6倍を超える水準が続いてきたが、米中貿易摩擦に伴う中国経済の減速の結果や、製造業の生産活動が弱まったことなどの影響を受け、その後は低下傾向となっている。2020年は新型コロナウイルス感染症の感染拡大の影響もあり有効求人倍率が低下し、同年9月には1.04倍まで低下した後、2021年2月には1.09倍となっている（図114-1）。

職業別に有効求人倍率をみると、生産工程の職業の有効求人倍率は、2020年8月には1.02倍にまで低下したが、9月より持ち直し、2021年2月には1.37倍となっている（図114-2）。
残業時間などを表す所定外労働時間をみると、2016年半ば以降、企業の設備稼働率の増加傾向により2017年には増加したが、2018年後半からは所定外労働時間は減少傾向にある。この傾向は、2019年は一層顕著となり、2020年に入ると新型コロナウイルス感染症の感染拡大とともに大幅に減少した（図114-3）。

図 114-2 生産工程の職業の有効求人倍率

図 114-3 製造業の所定外労働時間の動向
製造業における月々の賃金動向を確認すると、所定内給与は、2017年11月以降30か月連続で前年同月以上となっている一方で、所定外給与をみると、2018年12月以降26か月連続で前年同月以下の水準となった。2020年には新型コロナウイルス感染症の感染拡大などの影響により、所定内給与、所定外給与ともに大幅な減少となった結果、現金給与総額は大きく減少した（図114-4）。

図114-4 製造業の所得環境の動向（現金給与総額）

備考：1.事業所規模5人以上
2.一般労働者（常用労働者のうち、パートタイム労働者でない労働者）
資料：厚生労働省「毎月勤労統計調査」（2021年3月）
5 設備投資動向

我が国全体の設備投資額の推移をみると、2019年後半に引き続き、2020年にも新型コロナウイルス感染症の感染拡大などの影響により減少となった（図115-1）。

製造業においても、設備投資額は2012年以降は向がみられる（図115-2）。

資料:財務省「法人企業統計」（2021年3月）
日本銀行「全国企業短期経済観測調査」の業況判断DI及び生産・営業用設備判断DIをみると、2020年には新型コロナウイルス感染症の感染拡大などの影響により景気判断が急速に悪化し、同年第4四半期にはリーマンショック以来11年ぶりの低水準となり、設備の過剰感が強まった（図115-3）。

今後3年間の設備投資の見通しの調査によれば、直近の海外設備投資の「増加」を除き、「増加」又は「やや増加」の割合が減少し、「減少」又は「やや減少」の割合が増加している（図115-4・5）。

このような足下の見通しを反映して、2020年版ものづくり白書で取り上げたとおり、我が国の製造業者は設備効率を高めてきた一方で、比較的長期間、設備投資を見送る傾向がみられる（図115-6）。

資料：日本銀行「全国企業短期経済観測調査」（2021年4月）
出所：三菱UFJリサーチ＆コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）
以上、第1節においては、我が国製造業の足下の状況などを概観した。
我が国製造業を取り巻く経済の状況は大きく変化し、特に、新型コロナウイルス感染症の感染拡大は我が国製造業の業況に大きな影響をもたらした。このような先行き不透明な情勢下において、経営判断として、設備投資が見送られる傾向もある。
一方で、我が国の製造業がニューノーマルにおいてしっかりと生き残り、着実な競争力強化を遂げていくに当たっては、足下に様々なヒントが存在することも事実であり、続く第2節では、我が国製造業がニューノーマルで生き残るための経営戦略の構築に向けた3つの観点について、考察を深めていく。
第2節 ニューノーマルでの生き残りに向けて

1 レジリエンス -サプライチェーンの強靭化-

(1) サプライチェーン全体を俯瞰した対応

我が国製造業においては、サプライチェーンのグローバル化の進展と並行して、ジャストインタイムに代表されるような在庫を最小化して生産活動を効率化する生産方式が普及してきた。しかし、2011年に発生した東日本大震災により多くの工場が被災し、中でも、主要な半導体製造工場の一部が被災したことが、自動車を始めとした多くの最終品メーカーにおいて自社製品の製造に必要な半導体を入手できず、減産を余儀なくされることとなった。これに伴い、平時の効率性のみを追求するのでなく、有事の際にも生産能力を維持できるよう、安全在庫の確保などによるレジリエンス強化の重要性が認識された。その後も、同年のタイの洪水、2016年の熊本地震、2018年の平成30年7月豪雨など、大規模な自然災害のたびに、部素材の供給途絶による減産や生産停止を経験する中で（図121-1）、事業継続計画（BCP：Business Continuity Plan）を策定する企業が増加している。加えて、経済産業省では、「中小企業等経営強化法（平成11年法律第18号）」に基づき、中小企業が自社の防災・減災対策に係る取組をまとめた「事業継続力強化計画」を経済産業大臣が認定する制度を2019年に開始した。当該計画の認定状況（2021年4月1日時点）（図121-4）を参照しても、約24,000件の認定件数のうち、製造業その他が6割以上を占めるとともに、危機意識の高まりと定着が着実に進んでいることが窺える。

図121-1 我が国製造業が直面してきた自然災害と主な被害

基幹部品	最終製品	主な被害
マイコン | 自動車、携帯電話機等 | 「すり合わせ」が重要自動車向けマイコンにおいて、世界シェア約2割を持ち工場が被災し、操業停止。
液晶パネル製造向けの露光装置 | 携帯電話機、スマートフォン、タブレット型PC | 高度な技術が必要なスマートフォン向け高精密液晶パネル用の露光装置ではほぼ100％のシェアを持つ企業の工場が被災し、操業停止。
シリコンウエハー | 半導体を搭載する電子機器全般 | シリコンウエハで世界トップシェア（約20％）を占める企業の主力工場が被災し、操業停止。
アルミニウム電解コンデンサ | AV機器、パソコン、家電、自動車、産業機器 | アルミニウム電解コンデンサで25％のシェアを持つ企業が被災、震災前から需給が逼迫していた上、幅広い製品に搭載されていたため、影響が広範囲に拡大。
アルミニウム電解コンデンサ電解液 | AV機器、パソコン、家電、自動車、産業機器 | 中・高圧コンデンサの電解液で世界シェア5割を持つ企業が東京電力福島第一原子力発電所の立入禁止区域（当時）に立地しているため操業停止。
リチウムイオン电池接着剤 | 携帯電話機、ノートPC、自動車、デジタルカメラ | リチウムイオン二次電池向け接着剤で世界シェア7割を持つ企業が被災し、操業停止。

注2 「事業継続力強化計画」の詳細については、以下 http://www.chusho.meti.go.jp/keiei/antei/bousai/keizokuryoku.htm
2011年 タイの洪水

<table>
<thead>
<tr>
<th>基幹部品</th>
<th>最終製品</th>
<th>主な被害</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハードディスクドライブ (HDD)</td>
<td>パソコン、録画再生機等</td>
<td>世界首位メーカーの主力工場（世界全体の2割を生産）や日系メーカーの工場が浸水して操業停止。HDD生産は世界5社体制だったことや、タイに集積する部材サプライヤーの多くも同時被災したことから、業界全体に大きな影響。</td>
</tr>
<tr>
<td>スピンドルモーター</td>
<td>HDD</td>
<td>ディスクを回転させるスピンドルモーターの大半を生産する企業の工場が浸水被害で操業停止。フィリピン、中国等で代替生産。</td>
</tr>
<tr>
<td>電源用ICやカーオーディオ、カーナビゲーション向け制御用LSI、トラックジスタ、コンデンサ等</td>
<td>自動車等</td>
<td>特定の電子部品が不足することにより、輸送用機械産業、中でも電装品が不足することにより、自動車等の生産が影響を受ける。</td>
</tr>
</tbody>
</table>

2016年 熊本地震

<table>
<thead>
<tr>
<th>基幹部品</th>
<th>最終製品</th>
<th>主な被害</th>
</tr>
</thead>
<tbody>
<tr>
<td>自動車のドアチェック（ドアの開閉を制御する部品）</td>
<td>自動車</td>
<td>ある自動車メーカー向けのほぼ全量を生産していた工場が甚大な被害を受けたため、国内15の完成車組立工場で生産停止。工場の復旧に数か月を要すると見込まれたことから、各工場での代替生産を実施。代替生産先が14箇所に分散されたため、物流網も複雑となり、九州と愛知県に中継基地を設けて対応。自動車全組立ラインが生産を再開したのは本震から20日後。</td>
</tr>
<tr>
<td>半導体（イメージセンサー）</td>
<td>デジタルカメラ</td>
<td>世界シェア首位を持つ企業の主力工場が被災。復旧に4か月から5か月を要した。</td>
</tr>
<tr>
<td>偏光板保護タックフィルム</td>
<td>液晶パネル</td>
<td>世界の約7割のシェアを持つグループ全体の6割強を生産する工場が被災。</td>
</tr>
<tr>
<td>レジスト塗布現像装置</td>
<td>半導体前工程の製造装置</td>
<td>世界シェア約9割を持つ企業が被災、復旧に4か月から5か月を要した。</td>
</tr>
</tbody>
</table>

2018年 平成30年7月豪雨

<table>
<thead>
<tr>
<th>基幹部品</th>
<th>最終製品</th>
<th>主な被害</th>
</tr>
</thead>
<tbody>
<tr>
<td>自動車部品</td>
<td>自動車（乗用車）</td>
<td>一部の部品サプライヤーが被災したことにより、部品工場から完成車工場への道路網が土砂崩れ等で寸断され、部品の供給が支障を来したことから、周辺の各工場をはじめ、九州、近畿に至る広範囲の完成車工場において、工場自体の設備に被害が出ているものの、生産が停止した。</td>
</tr>
<tr>
<td>自動車部品</td>
<td>自動車（トラック）</td>
<td>自動車部品の供給が滞ったことから、関東地方のトラック工場において、工場自体の設備に被害が出ていないものの、生産が停止した。</td>
</tr>
<tr>
<td>各種部品</td>
<td>各種製品</td>
<td>山陽本線が長期不通となったため、関西・関東方面と九州方面を結ぶ貨物列車が運休となり、部品輸送を含む物流網全体に大きな影響が生じた。船舶やトラックによる代替輸送に加え、約1か月後で迂回ルートによる貨物列車の運転が再開され、約1か月間、迂回ルートで運転された。</td>
</tr>
</tbody>
</table>

資料：三菱UFJリサーチコンサルティング（株）「デジタルトランスフォーメーション等を通じた製造業のサプライチェーンマネジメントの強化に向けた技術動向調査」（2021年2月）
このような中で、今般、新型コロナウイルス感染症は世界的に拡大し、多くの主要国において、人や物の移動制限を伴う感染拡大防止対策が実施された。製造業における、新型コロナウイルス感染症の感染拡大による業務内容への影響に関する調査によれば、「営業・受注」といった需要面の影響が最も大きい一方、生産活動、調達、「物流・配送」などの供給側にも影響し、サプライチェーンの正常な稼働にも支障をきたしたことが分かる（図 121-5）。

このような中で、今般、新型コロナウイルス感染症は世界的に拡大し、多くの主要国において、人や物の移動制限を伴う感染拡大防止対策が実施された。製造業における、新型コロナウイルス感染症の感染拡大による業務内容への影響に関する調査によれば、「営業・受注」といった需要面の影響が最も大きい一方、生産活動、調達、「物流・配送」などの供給側にも影響し、サプライチェーンの正常な稼働にも支障をきたしたことが分かる（図 121-5）。
また、製造業における調達活動が影響を受けた要因として、「代替調達の効かない部材の存在」が最も多くなっている（図 121-6）。調達への影響に対して講じた対策としては「在庫調整」が最も多く、「代替調達先の確保」は約 3 割にとどまる（図 121-7）。さらに、このような調達活動への影響により、生産活動が何らかの影響を受けた企業は約 8 割に達し、「一部の生産ラインが停止した」又は「工場の操業停止に追い込まれた」企業もあった（図 121-8）。また、（株）エヌ・ティ・ティ・データ経営研究所「企業の事業継続に係る意識調査（第 6 回）」によれば、自社の BCP（事業継続計画）に対する課題意識として、多くの企業が自社単独で策定する BCP 自体に限界があると認識している（図 121-9）。

図 121-5 新型コロナウイルス感染症の感染拡大に起因して支障をきたした業務内容

図 121-6 新型コロナウイルス感染症の感染拡大により調達活動に影響が生じた要因
第1節
ニューノーマルでの生き残りに向けて

我が国ものづくり産業が直面する課題と展望

図121-7 新型コロナウイルス感染症の感染拡大による調達活動への影響に対して講じた対策

図121-8 調達活動への影響による生産活動への影響

資料：三菱UFJリサーチ＆コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）
これらの調査結果から、前述のとおり、個々の企業における BCP 策定は進展しているものの、これまでの自然災害のようにサプライチェーンへの直接的な影響が局所的にとどまるリスクだけでなく、今後は、新型コロナウイルス感染症の感染拡大のように、世界で同時多発的に発生するサプライチェーンの寸断リスクへの対応に着実に取り組まなければならない。このようなリスクに対しては、自社での取組に加え、サプライチェーンを見据え、複数事業者間や広域的視点で、実効性の事前対策を検討することが必要であり、一例として、中小企業等経営強化法に基づき、複数の関係事業者間で「連携事業継続力強化計画」を作成し事前に備えておくような取組も、従来以上に推進すべきものである。

ニューノーマルにおけるサプライチェーンの寸断リスクは、自然災害のみならず、感染症や地政学リスクなど非常に多岐にわたるものであり、多面的なリスク対策を通じてサプライチェーンの多元性・強化化を進めていかなければならない。こうしたますます複雑化する課題への対応を推し進めるべく、目下、政府としても様々な政策を講じているところである。

サプライチェーンの多元化・強化化に向けた国内への投資については、2020 年度第 1 次補正予算、予備費及び第 3 次補正予算において「サプライチェーン対策のための国内投資促進事業費補助金」を計上した。本事業は、生産拠点の集中度が高い製品及び部材材又は国民が健康な生活を営む上で重要な製品及び部材材について、国内で生産拠点などを整備しようとすると場合に、その設備導入などを支援する事業である。これにより、国内における生産拠点などの整備を進め、製品などの円滑な確保を図ることでサプライチェーンの寸断リスクを低減し、我が国製造業等の滞りない稼働、強靭な経済構造の構築を目指すものである。先行審査分として 90 件、補助金総額で 996 億円の応募があり、同年 7 月に 57 件、574 億円を採択した。先行審査分を除くと、1,670 件、補助金総額で 1 兆 7,640 億円の応募があり、同年 11 月に 146 件、2,478 億円を採択した。採択案件としては、生産拠点の集中度が高い製品及び部材材として、半導体、航空機、車載用電池、レアメタル、ディスプレイなどを関連する案件が採択され、国民が健康な生活を営む上で重要な製品及び部材材として、消毒用アルコール、サージカルマスク、医療用ガウン、医療従事者用手袋などに関連する案件が採択された。特に、このような国民生活を支える医療用物資については、新型コロナウイルス感染症の感染拡大により需要が高まったことから、同年 1 月以降、厚生労働省及び経済産業省は、これらの物資について企業への増産要請を行うとともに、経済産業省では、2019 年度予備費において「マスク等生産設備導入補助事業」などを、2020 年度第 1 次補正予算において「マスク・アルコール消毒液等生産設備導入補助事業」をそれぞれ実施した。これらの事業では、増産要請に応じた企業によるマスクやアルコール消毒液などの生産設備導入を支援した。これらの事業で、マスクなどは 41 件、アルコール消毒液は 51 件を採択した。
2020年初頭より、新型コロナウイルス感染症の感染拡大により世界的にマスクの需要が急増し、日本国内においてもマスクを含む衛生品が不足し始めた状況に鑑み、経済産業省から各製造事業者へ緊急増産の協力要請が行われた。平時は液晶ディスプレイを始めとする精密機器を製造するシャープ(株)においても、要請を受けてマスクの生産に取り組んだが、安定した生産能力の確保に至るまでは、過去に直面したことのない多くのハードルを乗り越える必要があった。

ひとつは、生産ラインの構築や原材料の調達の問題であった。当初はマスクの製造装置の国内での調達を試みたものの、納期や採算の面で条件が合わなかったため、海外のグループ企業と交渉してベースとなる製造装置を譲り受けることとなった。また、マスクの原材料である不織布の調達についても、調達先の新規開拓により必要量を安定的に調達できるルートを確保した。

もうひとつは、そもそもこれまでに生産したことのないマスクを安定した品質で生産し続けるためのノウハウ確立の問題であった。同社はガラスや鉄板といった固い原材料を精緻に加工する経験は豊富だったが、不織布や耳紐のような柔らかい素材を扱った経験はなかったため、加工時の位置決めや製品のグリップについては手探りでの追求となった。

さらに、生産体制が確立しても、安定的かつ消費者側にとっても利便性の高い販売手法の確立にも工夫が必要であった。一般消費者への販売開始に際しては、自社のECサイトで直販する形を取ることとし、先着順での販売を開始したが、想定を遥かに超えるアクセスがあり、円滑なサイト運用が困難となる事態に直面した。これを受け、先着順での販売から抽選方式での応募受付に仕組みを変更することにより、消費者が一度抽選に申し込めば次回以降は自動的に抽選に参加することを可能とすることによって、自社側の運営の安定性と消費者側の利便性の両方を実現した。

こうして、同社のマスク生産の取組は、新型コロナウイルス感染症の感染拡大により需給が逼迫した物資について、国内で迅速かつ柔軟な生産体制を構築した先例となった。また、2020年12月には、新型コロナウイルス感染症の感染拡大に際して、経済産業省の要請などを受けて医療用物資の緊急増産を行い、需給の改善を通じて国民生活の安定に大きく貢献した299の企業・団体に対して、経済産業大臣から感謝状が授与され、同社もその貢献が認められ感謝状を授与された企業のひとつとなった。今後もマスク不足を懸念する医療現場や消費中の不安解消に資するべく、マスクの安定供給を続ける予定としている。

図1 シャープ(株)製マスク
また、今般、国内における医療用物資の開発・生産体制の確保の必要性が改めて強く認識されたことを踏まえ、塩野義製薬（株）は、（研）日本医療研究開発機構「新型コロナウイルス感染症（COVID-19）に対するワクチン開発事業」における採択を受けて、国立感染症研究所、九州大学及び（株）UMNファーマと連携し、2020年4月より新型コロナワクチンの研究開発を進めてきた。同社は、同ワクチンの供給を早急に実現するため、研究開発と並行して、（株）UNIGEN及びアピ（株）とともに、生産体制の構築にも着手した。同年7月には経済産業省「サプライチェーン対策のための国内投資促進事業費補助金」、同年8月には厚生労働省「ワクチン生産体制等緊急整備事業」における採択を受けて、世界最大規模のワクチン生産を可能とする培養タンクを有する生産ラインを新設した。

なお、我が国発の創薬などの基礎技術の実用化を目指す長期的な取組としては、2015年より、経済産業省において「次世代治療・診断実現のための創薬基盤技術開発事業」を継続して実施しており、これまで、今後市場の拡大が見込まれる抗体医薬品の製造に当たり必要となる優れた抗体生産細胞や、抗体製造に用いる培養装置の開発など、多くの製薬会社・装置メーカーなどの研究開発を支援し、我が国の創薬基盤の構築に貢献してきた。2021年度については、更に機能を高めた次世代抗体医薬品の製造技術の開発や核酸を標的とした創薬技術の開発などを実施する予定である。
同様に、自社ビジネスを取り巻く環境次第では、国内拠点の拡充や維持に限らず、海外拠点の整備も着実に進めていく必要がある。このような取組への支援として、2020年度第1次補正予算において「海外サプライチェーン多元化等支援事業」、同年度第3次補正予算において「海外サプライチェーン多元化支援事業」を計上しており、これにより一国に過度に依存しない我が国産業全体の強靭なサプライチェーンの構築を目指している。第1次公募には124件の応募があり、同年7月に30件を採択し、第2次公募には64件の応募があり、同年11月に21件を採択し、さらに、第3次公募には155件の応募があり、同年12月に30件を採択した。

加えて、特定国への依存度が高く、代替が困難なレアメタルについては、2020年度第1次補正予算において「希少金属備蓄対策事業」を実施した。レアメタルは様々な工業製品の製造に用いられており、輸出国における供給障害の発生により、我が国への供給が途絶え、産業活動に支障をきたすおそれがある。これまででも、レアメタルの安定供給のため、（独）石油天然ガス・金属鉱物資源機構が国家備蓄事業を実施していが、本事業では、新型コロナウイルス感染症の感染拡大により、人・物の移動制限などが長期化した場合に備え、供給途絶リスクの高いレアメタルについて、国家備蓄事業の増強を行っている。

さらに、供給途絶リスクの高いレアアースの使用量の低減や、サプライチェーンの柔軟な組換えに係る技術開発及び実証については、2020年度第1次補正予算において「サプライチェーン強靭化に資する技術開発・実証事業」を実施した。例えば、サプライチェーンの組換えについては、製造業におけるサイバーフィジカルシステムの構築に向けた先行例を創出し、その推進を後押ししていくことを目的として、製造工程間でのシームレスなデータ連携や企業間でのセキュアなデータ共有を可能にするデジタル技術の開発を支援すべく、同年8月に11件を採択した。このような取組により、今般のようなサプライチェーンの寸断リスクに将来的に直面しても、サプライチェーンの迅速かつ柔軟な組換えにより対応が可能な企業変革力（ダイナミック・ケイパビリティ注3）の向上が可能となる。

注3 デイヴィッド・J・ティース UCバークレー校ビジネススクール教授により提唱された、戦略経営論における学術用語。2020年度ものづくり白書では、環境変化に対応すべく組織内外の経営資源を再構成・再結合するための能力として、このダイナミック・ケイパビリティを取り上げた。
同社は、AIを活用しやすいシンプルな業務プロセスへの変革と顧客のDX組織化を支援するため、AI製品を開発、展開している。同社は、設計製造に使用する3D設計支援システム（CAD: Computer Aided Design）、3D製造支援システム（CAM: Computer Aided Manufacturing）及びエンジニアリング支援システム（CAE: Computer Aided Engineering）間で頻繁に起こるデータ変換トラブルに着目している。更なる高精度加工・自動化の推進のために、これまでと異なるエンジニアリングチェーンにおけるデータ連携の効率化が喫緊の課題として認識している。

本事業では、変動要因の多い特注部品製造において、メーカーとサプライヤー間の製造に関わる情報を連携することで、設計データから、加工要件付き図面データを作成、解析して加工費用や製造原価を自動算出するなどの支援システム「多品種少量生産向けオンデマンド・サプライチェーン・プラットフォーム」を開発する。これにより、設計・見積り取得・製造依頼などの業務に要する工数を減らし、経験や技能による差を埋めることで、製造業全体の効率と柔軟性の向上を目指す。

出所：(株)カブク

② コアコンセプト・テクノロジー

同社は、AIを活用しやすいシンプルな業務プロセスへの変革と顧客のDX組織化を支援するため、AI製品を開発、展開している。同社は、設計製造に使用する3D設計支援システム（CAD: Computer Aided Design）、3D製造支援システム（CAM: Computer Aided Manufacturing）及びエンジニアリング支援システム（CAE: Computer Aided Engineering）間で頻繁に起こるデータ変換トラブルに着目している。更なる高精度加工・自動化の推進のために、これまでと異なるエンジニアリングチェーンが必要と感じ、設計現場から製造現場まで高品質な3Dモデルで連携するための新しい「3Dデジタル・エンジニアリングチェーンの確立」を掲げる。本事業では、金型製造における3DCADデータに焦点を当てて、製品設計→金型設計→機械加工用のデータ作成→シミュレーション→機械加工における一連の工程において、3DCAD、3DCAM及びCAE間でのデータ変換の問題を解消するデータ変換形式を考案し、3Dシステム間での連携を円滑にし、シミュレーション技術の活用による生産性の大幅な向上を目指す。
図 2 デジタル空間における高品質なデータ交換環境の構築

出所：(株)コアコンセプト・テクノロジー

(株)レクサー・リサーチ

同社は、ビジネス活動や人間社会のあるべき姿を実現するために、エンジニアの創造活動をアップグレードする創発型技術の社会実装を目的としており、また、我が国唯一の生産シミュレータメーカーでもある。同社では、我が国が得意とするすり合わせやカイゼン活動は、デジタルツールではなく、人手に頼ることで対応してきたために、全体最適ができず、時間要するだけでなく手戻りが生じるなど、事業環境の変化に対する柔軟性や迅速性が乏しいことが我が国製造業の課題と認識している。本事業では、同社の持つ生産シミュレーション技術や最適化技術などの基盤技術を活用し、生産に関わる多様な活動を記述できる独自のデータモデルで各組織活動を同期させるとともに、生産活動をバーチャル化してプラットフォームに展開し、現場力をサイバー上で発揮することにより、我が国が向き合ってきた強みを再構築し、変化に対応したエンジニアリング方式の実現を目指す。これにより、各企業における製造工程間のシームレスなデータ連携・活用を可能にするデジタル技術の開発支援を実施し、製造業におけるサイバーフィジカルシステムの構築に向けた先行事例を創出するとともに、その取組を推進する。

図 3 独自のデータモデルを活用したサプライチェーンの構築

出所：(株)レクサー・リサーチ

(株)ロボコム・アンド・エフエイコム

同社は、多品種少量の部品加工や、低価格で容易に導入できるレディメイド型ロボットパッケージの製造販売を行う会社として設立された。同社の顧客であるメーカーの製品開発者は、変化しやすい消費
者ニーズ、日進月歩の技術革新などを取り込むべく、開発サイクルの短縮化に取り組んでいる。本事業では、製造現場において、部門間、製造工程間で分断されていたデータを一元管理し、生産工程全体のリアルタイムかつシームレスなデータ連携を実現することで、タイムベース（短納期）を最大の提供価値としたシステム「タイムベース戦略型サイバーフィジカルシステム」を構築する。これにより、エンジニアリングチェーンの組織能力の高度化・迅速化を実現させ、受注から納品までのプロセスを高精度で全自動化し、圧倒的な短納期化、低コスト化の実現を目指す。

図4 タイムベース戦略型サイバーフィジカルシステム

出所：ロボコム・アンド・エフエイコム（株）
ウィズ・コロナ、ポスト・コロナにおける新たな調達の在り方を示す受発注プラットフォーム企業・・・キャディ（株）

同社は、「モノづくり産業のポテンシャルを解放する」ことをミッションに掲げ、2017年11月に設立されたスタートアップ企業である。従来、製造業のバリューチェーンにおいて、調達は非効率な旧来型の受発注業務にとどまっていた。この調達の世界にイノベーションを持ち込み、無駄を省いて製造業のサプライチェーンの効率化を図りたい、町工場の技や技術にもっと光を当てたいとの想いをもって起業し、板金加工や切削加工などの部品をオンデマンド発注できる製造業の受発注プラットフォーム「CADDi」を立ち上げた。

顧客が作りたい特注板金加工品の3D設計支援システム（CAD）データを同システムにアップロードすると、瞬時に見積り・納期が表示され、見積りに納得すれば数クリックで発注される。この見積りは同社がパートナー契約をしている日本全国の町工場の製造プロセスや製造原価を自動算出することで瞬時に計算されており、同システムを通じて最適なパートナー企業に確定発注されるため、受注側の町工場は相見積もりをすることなく仕事を受け受注できる。手配された部品は同社が検品・梱包して納品する仕組みとなっている。現在、パートナー契約をしている提携サプライヤーは全国600以上、産業機械メーカーを中心とする発注側の顧客企業は累積6,000社に達している（2021年4月1日時点）。

2020年初頭から新型コロナウイルス感染症が猛威を振るう、人工呼吸器やシールドマスクなどの医療機器・医療用製品が大幅に不足した際には、同社の調達プラットフォームが威力を発揮した。同社はわずか1週間で全国の医療部品製造・機械部品製造に特化した加工会社100社以上と連携し、医療機器などのメーカーから受注を受け、部品供給・加工会社の選定、納品の支援をスタートした。さらに、世界で人工呼吸器の需要が高まる中、国内での調達・生産体制を早急に構築するため、同年4月には自社だけでは解決できない医療機器製造の課題を解決していくために「COVID-19対策医療物資支援室」という特別支援プログラムを立ち上げた。大手メーカー、町工場、部品や組立メーカー、自治体・公的機関、医療機関、そして起業家など多くの関係者に活動支援を呼びかけ、ベトナム向けに人工呼吸器5,000台分の各種部品製造を支援したり、需要が急増した医療機関向けの空気清浄機の増産支援を行ったりするなど、同社の調達システムが国内外の医療に大きく貢献した。

このような、世界的に人工呼吸器や医療機器・医療用製品の製造に必要な部品の供給が逼迫した状況で、必要となる部品の製造キャピティを確保し、高品質な部品を迅速に供給し続けることへの使命を一層強くした同社は、いかなる局面においてもサプライチェーンを寸断させない、ロバスト性の高い製造業のプラットフォームの在り方について更なる検討を進めている。

同社は、製造業のニューノーマルにおいて、製造のオープン化（調達の集散両立化、セミファブレス化、設計のDFM（Design For Manufacturing：製造の容易性を考慮した設計）志向）と製造のリモート化（データ化・アクセスビリティ強化、コミュニケーションのリモート化、実物ハンドリングのリモート化）が必要になると考え、「withコロナ時代の2つの経営戦略」を新たに提案している。
サプライチェーン全体でのレジリエンス強化を進めていく上では、自社の直接の調達先だけでなく、更にその先の調達先も含めて、サプライチェーン構造を把握する必要がある。しかし、製造業における、調達先の把握状況に関する調査によれば、製品や部材を直接購入している調達先のみを把握しているという事業者は半数に上り（図121-10）、調達先の情報の定期更新を実施していない事業者も半数以上（図121-11）。また、調達先の把握状況について、東日本大震災から「あまり変わらない」又は「むしろ後退している」企業は約6割に上り、取組の余地が残っているものと想定される（図121-12）。

図121-10 調達先の把握状況

図121-11 調達先の情報の定期更新の実施状況

図121-12 東日本大震災当時と比較した調達先の把握状況

資料：三菱UFJリサーチ＆コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）
一方、調達先を把握する上での課題としては、「調達先が多すぎる」、「調達構造が複雑」といった理由が挙げられている（図 121-13）。これらの課題に対しては、デジタル技術の活用が解決策のひとつとなり得る。例えば、トヨタ自動車（株）では、東日本大震災時にサプライチェーンの被害状況把握に時間を要したことをきっかけに、自社の調達先やその先の調達先をシステムで管理し、可視化する取組を実施し、災害時の被害状況把握に要する日数を大幅に短縮した。

このように、調達先の把握は、調達先の分散など、平時におけるサプライチェーンの強靭化のみならず、非常時における迅速な対応にも大きく寄与するため、着実に進めることが重要と考えられる。

図 121-13 調達先を把握する上での課題

出所：三菱UFJリサーチ＆コンサルティング（株）『我が国ものづくり産業の課題と対応の方向性に関する調査』（2021年3月）

サプライチェーンの可視化による初動の迅速化・・・トヨタ自動車（株）

2011年の東日本大震災では、東北や北関東に立地する自動車部品メーカーが被災し、部品供給が途絶えたため、トヨタ自動車（株）では愛知県や九州に立地する工場も含め、国内における完成車の生産が停止した。調達先の被災状況の全容を把握するために約3週間を要したため、代替品調達が遅れ、生産の正常化が同年9月となった。

このようなことから、特に東日本大震災以降は、更なる初動迅速化や復旧早期化を目指し、各国・各地域でサプライヤーと一体となった災害に強いサプライチェーンの構築を努め、平時からのサプライチェーン情報の見える化と災害に備えた対策を推進している。

サプライチェーン情報の見える化については、初期情報を迅速かつ的確に把握することが重要との認識に基づき、調達先情報を正確かつ迅速に可視化するためのデータベースである「RESCUE注4システム」を開発した。機密性の高い情報を含め、サプライヤーの協力を得て、1次仕入先が、2次以降の仕入先情報をシステムへ入力することで、サプライチェーン上の深い階層に位置するサプライヤーの情報もシステムで共有し、その後も継続的に情報の更新を行い、データベースの蓄積・拡充を図っている。

また、災害に備えたサプライチェーン対策として、複数発注・複数拠点化できるか、他社で代替できる

注4 Reinforce Supply Chain Under Emergency
か、評価リードタイムが短いか、といった指標により供給リスクレベルを評価し、サプライチェーン上の課題を洗い出している。1拠点しか生産していないなどの課題品目について代替生産の実行力を見込むため、代替生産拠点の調査を実施したり、災害時に有効活用するための定期訓練をサプライヤーと共に実施したりするなど、平時からバックアップ体制の確立・強化を図っている。

このような取組の結果、大規模災害の発生時に調達先の状況把握に要した日数は、2016年の熊本地震では1.5日、2018年の平成30年7月豪雨では0.5日に短縮した。今後の新型コロナウイルス感染症の感染拡大に当たっても、中国における調達先の在庫状況、他国での代替可否、欠品のおそれのある品目といった状況把握が速やかに行われ、稼働再開、代替生産、在庫調整といった迅速な初動対応と生産体制の再構築に寄与した。

日本国内における取組を基に、海外でも各国・各地域で、サプライヤーと一体となった同様の取組が進められている。

なお、同システムは汎用化され、(一社)日本自動車工業会を通じて他社へも展開されており、災害に強いサプライチェーン基盤構築の一助となっている。

製造業のサプライチェーンにおいて最終製品の生産に必要な部品が入手できず、その対策を考える際に、調達先の状況を速やかに把握することが前提となり、そのためには平時から調達先に関する情報を可視化しておくことが重要である。同システムは、初動迅速化の一助となるツールとして参考になる事例といえよう。

出所:
トヨタ自動車 (株) "Sustainability Data Book" (2020年12月)
また、拠点間を結ぶ物流もサプライチェーンを構成する重要な要素である。国内の物流においては、重量ベースでは営業用貨物自動車が最大のシェアを有する輸送手段となっているが、営業用貨物自動車のトラックドライバーについては、（公社）鉄道貨物協会「平成30年度本部委員会報告書」によれば、2025年時点での想定需要に対し、20万人以上の不足が生じると推計されている。加えて、（公社）日本ロジティクスシステム協会「ロジティクスコンセプト2030」によれば、営業用貨物自動車による貨物輸送量の需要が増加する一方、トラックドライバー数が現状のまま減少傾向で推移し、かつ、ドライバー1人当たりの営業用貨物自動車輸送量が変化しないものと仮定した場合、2030年には、同年の想定貨物輸送量の3割以上が営業用貨物自動車で運べなくなると推計されている（図121-14）。このようなことから、製造業における物流のキャパシティ確保のためには、トラックドライバーの確保に加えて、1人当たりの営業用貨物自動車輸送量の増加も重要となっている。

新型コロナウイルス感染症の感染拡大に対応するニューノーマルの生活様式においては、テレワークや巣ごもりが浸透し外出の機会が減少するため、人の動きは相対的に減少していくものと考えられる。一方、物の需要は減少するわけではない、ネットコンテンツやEC（Electronic Commerce：電子商取引）の需要増により、消費者向けの物流の需要はむしろ増加することが推定される。営業用貨物自動車による輸送を行う企業にとっては、消費者向けの輸送と製造業を含めた企業間の輸送の両方を扱う企業が存在することから、物流供給のキャパシティが一定である状況において消費者向けの物流需要が増加することにより、企業間の物流に影響を及ぼす可能性がある。このような事態は、ひいては製造業の生産活動にも多大な影響を及ぼす可能性があり、物流の効率化に着実に取り組むことが、製造業のレジリエンス強化を進める上でも重要であるといえる。

また、（公社）日本ロジティクスシステム協会が、ロジティクスやサプライチェーンマネジメント（SCM：Supply Chain Management）への課題について会員企業に対して行った調査によれば、「物流コスト削減」や「ドライバー不足への対応」などに比べ、「ロジティクスやSCMを経営戦略にすること」と回答する企業の割合は低い。物流の効率化に当たっては、納品する貨物の数や時間などの物流条件を決定する荷主企業の経営層に対する意識醸成も重要となる（図121-15）。
物流課題を解決するための取組については、単独の企業だけで効果を上げることは非常に難しい。例えば、貨物を積載するパレットのサイズが不揃いであることが荷役、輸送及び保管の効率性を阻害しているなど、個別最適を追求するとサプライチェーン全体での効率化を達成できない。このため、複数の企業や業界が連携して以下のような取組を進めている事例も出てきており、その普及や拡大を一層推進するることで、製造業のレジリエンス強化にも着実につながっていくものと考えられる。

①データの共有による効率化
同一のサプライチェーン上に多様な企業が存在する場合、従来は、原材料、部品及び製品の受発注状況、輸送状況及び保管状況に関するデータは、企業及び業界間では共有されていなかった。そのため、各企業及び業界は、それぞれが直接携わる作業範囲のデータしか取得できず、データの活用による物流の効率化の効果は限定的であった。このようなことを受け、同一のサプライチェーン上の各企業及び業界が、それぞれが持つデータを共有することにより、原材料から製品までの受発注状況などのリアルタイムでの把握を可能にし、適正な在庫量に合わせた調達、生産、輸送及び保管が行われるようにする取組が行われている。

②共同での輸送や巡回集荷による効率化
トラックドライバーの不足に備えるとともに、トラックへの貨物の積載率を向上させるため、複数の企業で互いに貨物を持ち寄り、共同で輸送する取組が行われている。メーカー・サプライヤー間では、サプライヤーによるメーカーへの原材料及び部品の納品について、各サプライヤーがそれぞれのトラックでメーカーに持ち込むことに代わり、集荷する原材料及び部品の量や集荷時間を事前に調整の上、メーカーが自ら手配したトラックで各サプライヤーを巡回して集荷する取組が行われている。

③輸送資材のサイズ及び業務プロセスの標準化による効率化
貨物を積載するパレット及び段ボールのサイズの標準化により、トラックへの貨物の積載率を向上させるとともに、荷役及び保管をスムーズにする取組が行われている。一方、標準化の取組は、パレットや段ボールなどの輸送資材のサイズに対してのみではなく、作業の手順や方法などの業務プロセスについても行われている。具体的には、貨物の荷役及び保管に関する作業の手順及び方法が拠点ごとで異なっていることが、拠点での作業の効率性を阻害していることから、この標準化を目指す取組が行われている。
深刻化するトラックドライバー不足などに対応するため、共同での輸送など物流の効率化を目指す様々な取組が進められている。しかし、輸送資材のサイズや業務プロセスなどが企業や業界ごとに異なる状態で定着していることが、企業及び業界間の連携を通じた効率化を阻害する要因となっている。このような各要素の標準化が企業及び業界間の垣根を越えて進めば、全体最適による物流の効率化がこれまで以上に進展する可能性がある。

2030年に向かって目指すべき物流の姿を描いた「ロジスティクスコンセプト2030」では、全体最適を実現する将来の物流モデルとして、「パケット・ルーティング・ロジスティクス」を提唱している。

現在は、輸送資材のサイズや業務プロセスなどの標準化が十分に進んでおらず、貨物の大きさや数量などの情報を基にしたトラックの手配がスムーズに行えない。そのため、物流マッチングモデルにおいては、貨物そのもの及びその需給の情報を一度拠点に集約した上で、単一の貨物の需給をマッチングすることを基本としている。一方、パケット・ルーティング・ロジスティクスでは、標準化した輸送資材を用いるとともに、貨物の需給などの情報をオープンなプラットフォーム上で共有することで、網目状に張り巡らされた任意の経路を経由して貨物を届けることを可能とする。このモデルは、データパケットが数々のルーターとネットワークを経由して目的地まで向かうインターネットの通信方式に物流をなぞらえたものである。

パケット・ルーティング・ロジスティクスでは、貨物の需給などの情報は特定の企業に集約するものではなく、オープンなプラットフォーム上で共有されることが求められる。今後は、このようなプラットフォームの形成が、輸送資材のサイズや業務プロセスなどの標準化と共行して、取り組むべき課題となる。

図1 パケット・ルーティング・ロジスティクスのイメージ

図2 標準化した輸送資材を活用した貨物の積載イメージ

出所：(公社)日本ロジスティクスシステム協会「ロジスティクスコンセプト2030」(2020年1月)
自動車業界における物流を対象とした情報交換や研究を行うことを目的に、自動車メーカー４社の物流部門担当者による同研究会が2016年に立ち上げられ、効率化や人材育成など様々なテーマについて継続的に研究が行われている。

1台の車は約3万点もの部品からできている。これらの部品の多くがサプライヤーで分担して作られ、自動車メーカーに納品されている。同研究会ではまず、同研究会を構成する自動車メーカー間で共通して取引のあるサプライヤーから納品される部品を取り入れる容器の仕様の標準化を、検討テーマとして取り上げた。

現在は、自動車メーカーごとに異なる容器が使われているため、サプライヤーは、同じ部品であっても、各自動車メーカーの要望に合わせた容器を用意したり、詰め替えたりしているケースもあり、サプライチェーン全体の視点からの輸送及び保管の効率性向上が求められている。そこでまず、複数の自動車メーカーに納品している特定部品について、サプライヤーの協力を得て、自動車メーカー各社共通で利用する場合の最適な容器について検討を進めている。

また、物流業界ではトラックドライバーだけでなく、貨物の保管や仕分け作業を行う人材も不足し始めていることから、同研究会は、このような工場内の物流作業の自動化についても検討を始めた。現状、同研究会を構成する自動車メーカー各社は、同作業の自動化については、フォークリフトなどで行っていいた作業を、無人搬送車（AGV: Automatic Guided Vehicle）などを利用して自動化することが主な取組となっているが、昨今の事業環境変化の速さに対応するため、各社において自動化に対して短期間での投資回収が求められており、今後は、費用対効果を高めるための自動化要件について、更なる検討を行う。

中長期的な観点から自動車業界の物流についてみると、自動運転など技術革新への対応も課題となることから、より一層企業の枠を超えた業界全体での取組を進めることが必要となる。同研究会では、このような課題に対応するために自動車メーカーのみならず、サプライヤーなどを巻き込んだ幅広い活動を目指している。

物流の効率化などの課題解決に向けては、近年、AIや量子コンピュータなどの新技術を活用する動きがみられている。従来であれば、車両数や目的地、交通状況といった複数の条件が複雑に絡み膨大な計算時間を要していた配送ルートの最適化などが、このような新技術の活用によりより一層効率的に行われることが期待される。

量子コンピュータの活用による廃棄物収集ルート最適化

（株）グルーヴノーツ

量子コンピュータの活用による廃棄物収集ルート最適化に関する研究では、従来の手法では困難であった問題を解決するために、量子コンピュータの活用が期待されている。特に、複数の条件が絡み合って計算時間を大幅に節約する技術が開発されている。

（株）グルーヴノーツは、量子コンピュータの活用による廃棄物収集ルート最適化の実証実験を行っている。2020年3月には、三菱地所（株）との共同プロジェクトで丸の内のビル26棟を対象に、「MAGELLAN BLOCKS」量子コンピュータソリューションを活用して廃棄物収集ルート最適化のシミュレーションを実施した。この取り組みは、新たな物流システムの構築に向けた重要なステップである。
(2) 「オールハザード型」の対応

サプライチェーン全体を俯瞰することに加えて、危機の内容の違いを考慮しなくとも実用に役立つ事例を継続していくことを念頭に置いた BCP（事業継続計画）の策定についても、ニューノーマルにおいては従来以上にその重要性が増してくるものと考えられる。

みずほリサーチ＆テクノロジーズ（株）「新型コロナウイルス感染症流行を踏まえた BCP に関する調査」によれば、新型コロナウイルス感染症の感染拡大を踏まえて今後想定される取組として、多くの回答者が、「テレワーク」や「オンライン会議システム」を始めとするデジタルツールについて、自己において実施・導入済み、今後実施・導入予定、あるいは実施・導入に向けた意思を示した（図 121-16）。今般の新型コロナウイルス感染症が感染拡大する状況下においては、従前の BCP においても実施する、あるいはできるものとして想定されていた対面業務を実施することがそもそも困難になってしまい、危機時においても稼働可能なリソースとして想定されていた人員や設備のうち、その役割を果たせなくなってしまったものも少なからずあったと想定される。実際に、同調査において、BCP を策定済みとしながらも当該 BCP について「効果的に機能した」と評価した回答者は 16.7%にとどまった（図 121-17）。これらの一連の調査結果に鑑みれば、危機時においても着実に事業を継続するためには、従来の対面業務がリモート環境においても着実に実施されるようになることが不可欠であるといえる。
以上のような状況を受け、ニューノーマルにおける BCP は、「オールハザード型」とも称される内容に変容していくことが重要である。例えば、ニュートン・コンサルティング（株）によれば、このオールハザード型の BCP は以下のような計画及び考え方により構成されるものとされている（図 121-18）。

①緊急時対応計画
危機発生直後に人命を守るための行動計画を指し、避難・負傷者対応や安否確認、情報収集などを始めとする初動対応に関して、想定し得る危機の内容に応じて定めることが必要。

②危機管理計画
危機発生時に必要な情報収集や経営判断を行うための計画を指し、対策本部の体制や役割、対応方針の検討手段やコミュニケーション手段などについて定めることが必要。

③事業継続計画
危機事象の違いにかかわらず、事業継続に必要な人員や施設・設備といったリソースが一部機能不全になったケースを想定し、危機時のリソースベースでの事業継続を実現するための計画。

出所：みずほリサーチ＆テクノロジーズ（株）「新型コロナウイルス感染症流行を踏まえた BCP に関する調査」（2020年9月）
特に、着実な事業継続を図るためのリソースベースの考え方は、今後災害に限らずあらゆる不確実性を想定しなければならないニューノーマルにおいては非	常に重要であり、前述の調査（図 121-16）にもみられるようなデジタル化の取組は、危機時のリソースの確保につながるものとして理解・実施されることが極めて重要である（図 121-19）。

図 121-18 ［オールハザード型］BCP を構成する 3 つの行動計画

出所：ニュートン・コンサルティング（株）

図 121-19 「リソースベース」BCP の考え方

出所：ニュートン・コンサルティング（株）
このような「オールハザード型」BCP の策定の必要性は、2021 年 2 月に（一社）日本経済団体連合会が公表した「非常事態に対してレジリエントな経済社会の構築に向けて ー新型コロナウイルス感染症の経験を踏まえてー」においても言及されており、前述のサプライチェーン全体の俯瞰とも並行して、個々の事業者が着実に取組を進めていくべきものといえる。

（3）企業間での連携や官民一体でのサプライチェーン構築・強靭化

カーボンニュートラルへの取組や DX が急速に進展する中、これらの分野の製品・サービスの品質向上に向けては、半導体や蓄電池、川上のご種マテリアルなどが重要役割を果たすこととなる。すなわち、これらの分野における技術開発やサプライチェーンの構築・強靭化が、国内に優れた製品やサービスを生み出す基盤であり、我が国製造業全体の競争力強化に直結することとなる。

現在、自動車産業は、これまでのビジネスモデルに大きな変化をもたらす CASE（Connected、Autonomous、Shared & Service、Electrified）といった潮流に直面している。具体的には、コネクテッドカーや自動車技術の進化など、自動車のサービス利用のニーズ拡大は、情報通信など、自動車に関する既存のプレーヤーとは異なる業種にとって大きなチャンスとなるとともに、既存の自動車関連産業のプレーヤーにとっては、競争激化のきっかけとなり得る。また、カーボンニュートラルの実現にも資する電動化への対応により、エンジン部品など、自動車向けには不要となる部品や、駆動用モーターや蓄電池などの新たに必要となる部品が生じるとともに、モジュール化が進展することで、我が国の強みであるすり合わせが一部不要になるなど、既存の自動車産業のバリューチェーンに大きな変化がもたらされる。自動車産業は製造業の中でも特に裾野が広いため他産業への波及効果が大きく、特に蓄電池や半導体は、連続走行距離や燃費などの製品性能に直結する。車載用蓄電池の需要については、（株）矢野経済研究所「車載用リチウムイオン電池世界市場に関する調査」によれば、車載用リチウムイオン電池の世界市場規模は、2030年には容量ベースで2019年実績の約4倍に増大すると予測されている（図 121-20）。また、車載用半導体の需要については、（株）矢野経済研究所「車載用半導体の世界市場に関する調査」によれば、車載用半導体の世界市場規模は2030年には2018年実績の約2倍に増大すると予測されている（図121-21）。さらに、我が国は2020年10月、菅内閣総理大臣所信表明演説において、2050年度カーボンニュートラルの実現を目指すことを宣言しており、自動車の電動化の潮流が加速して蓄電池や半導体の重要性が一層増すことも想定される。

図 121-20 車載用リチウムイオン電池の世界市場規模の推移

![車載用リチウムイオン電池の世界市場規模の推移](画像)

資料：（株）矢野経済研究所「車載用リチウムイオン電池世界市場に関する調査」（2020年8月）
また、DXの進展は、同じく幅広い用途における半導体の長期的な需要につながると見込まれる。我が国のインターネットにおける通信量は急速に増大しており（図121-22）、加えて、世界のデータセンター市場規模は増加傾向が続いている（図121-23）。また、モバイル回線における5G回線比率は上昇が見込まれており（図121-24）、これに伴い、5G基地局の増設などによる半導体の需要増が見込まれる。
このように、蓄電池や半導体などについては、これらの分野における技術開発やサプライチェーンの構築・強化をいち早く進めることが各国の産業競争力の強化に直結するものであり、現に国内外において、個々の事業者だけの取組ではなく、異なる業種の企業間での連携や、官民一体となった取組が現れ始めている。蓄電池については、日本国内の電池メーカーを始めとする関係企業が一堂に会する初の業界団体として、2021年4月、（一社）電池サプライチェーン協議会が設立された。同協議会は電池のサプライチェーンに関する業界横断的な活動を通じて、電池産業全体の発展を目指している。
半導体については、米国やEUにおいて、半導体製造に関する設備や研究開発に投資する事業者を政府が支援する動きがみられている。このような企業間での連携や官民一体での取組は、今後一層その重要性を増していくものと想定される。
電池サプライチェーンの国際競争力の強化

電池サプライチェーン協議会

車載用電池は、電気自動車の価格の約3分の1、重量の約4分の1を占めるとされており、車両の性能と構造を左右する重要部材である。カーボンニュートラルの実現に向けた潮流が更に加速する中で、自動車の電動化などの要となる電池のサプライチェーンの安定化や国内関連産業の強化に対する関心は、グローバルに高まっている。例えば、EUでは、投資支援とルール形成を組み合わせ、EU域内でのバッテリーサプライチェーン構築に向けた取組を強化している。2021年1月、ドイツやフランスなど、EU12か国がバッテリー開発プロジェクトに最大29億ユーロの補助金を交付する計画を欧州委員会が承認した。また、2020年12月には、バッテリー指令の改正案を公表し、蓄電池のライフサイクルでのCO2排出量のラベル規制・市場アクセス規制やリユース・リサイクルに関する規律の導入などが示された。また、中国からは、リチウムに関するISO標準策定を狙って専門委員会（TC333）の設置が提案されるなど、各国で部素材まで含めた規格・標準づくりの動きがみられる。2021年2月には、米国のバイデン大統領は、電気自動車を含む大容量蓄電池のサプライチェーンについて100日以内に、脆弱性リスク及びそれに対する政策勧告に関する政府レポートを提出するよう、大統領令を発出した。

我が国の電池産業は従来高い世界シェアを誇ってきたが、現在、中国や韓国、EUを中心に、国を挙げての投資や生産が進んでおり、スケールメリットの観点から、今後の競争力維持に懸念が生じている。また、正極材、負極材、電解液、セパレータを始めとした部素材は、電池性能や安全性に大きな影響を与えるものであり、我が国の部素材メーカーはこれまで高い品質や知財などで優位に立ってきた。現在も、世界シェアランキングで上位に入る国内メーカーも複数存在しており、一方、中国や韓国などにおける電池需要の高まりに牽引される形で、これらの国の部素材メーカーが技術力・シェアを向上させるとともに、電池サプライチェーン全体に対する各国政府の支援もあって、日本企業はグローバル競争の中で苦境に立たれている。このような中、電池メーカーを始めとする関係企業が一堂に会する初の業界団体として、2021年4月、(一社)電池サプライチェーン協議会が設立された（同年4月1日時点で加盟52社）。同協議会は特に電池部素材製造・資源調達・リサイクルをスコープとして、電池のサプライチェーンに関する業界横断的な政策提言や標準化の推進といった活動を通じて、電池産業全体の健全な発展を遂げていくことを目指している。我が国の高い技術力や安全性、環境対応などを生かした競争力強化に向け、ルール形成や標準化などの観点から、オールジャパンでの協調強化が期待される。

図 電池サプライチェーン協議会の参加企業（2021年4月1日時点）

出所：(一社)電池サプライチェーン協議会
自動走行やスマートシティなど高度に発展したデジタル社会において、最新の半導体はなくてはならない存在であり、米国、EU、中国を中心に、その安定供給に向けて政府主導の取組も進んでいる。

＜「米国重要サプライチェーン確保」に関する大統領令（2021年2月）＞
米国は、半導体や大容量蓄電池、レアアースなどの重要部素材について、担当省庁（商務省、エネルギー省及び国防省）がレビューを行い、脆弱性リスク及びそれに対する政策勧告（同盟国との国際連携の可能性を含む）に関するレポートを、国家安全保障担当大統領補佐官などを通じて大統領に提出することとしている。なお、同日のバイデン大統領の記者会見においては、半導体の供給不足の解消に向け、国内での半導体チップ製造支援のために370億ドルを予算要求することが表明された。また、2021年1月に成立・施行された同年度国防授権法第9905条では、セキュアな半導体サプライチェーンを構築するため多国間基金を創設し、関係国間で共同して研究開発などを行うこととしている。

＜「デジタル・コンパス2030」（2021年3月）＞
EUは、2030年までのデジタル化的移行を目指し、具体的な目標やその実現に向けた取組を定めた「デジタル・コンパス2030」を2021年3月に発表した。この中で、コネクテッドカーやエッジコンピュータ、IoT、AIなどにおいて半導体が重要な役割を果たすという認識の下、2030年までに、先端半導体の世界生産のうち金額ベースで少なくとも2割を欧州域内で生産する目標を掲げている。さらに、新型コロナウイルス感染症の感染拡大に起因する経済危機からの復興を目的に2020年12月に欧州理事会で合意された総額7,500億ユーロ規模の復興パッケージの中でも、各加盟国のグリーン移行やデジタル移行、経済の強靱化に向けた投資・改革に関する融資や補助金による支援である6,725億ユーロの「Recovery and Resilience Facility」では、各国の提出する復興計画のうち、少なくとも20％は「デジタル移行」に充てることが求められており、具体的な使途として、5Gの整備などが想定されている。

＜中国全国人民代表大会（2021年3月）＞
中国は、同会議において李克強国務院総理が報告した「政府活動報告」において、「第14次5ヵ年計画」を発表した。本計画では、2021年から2025年における主要な目標などを定めており、この中で「わが国の現代化建設の全局におけるイノベーションの核心的役割を果たす」とし、科学技術の自立自強を国の発展の戦略的支えとする。具体には、「科学技術イノベーションの体制・仕組みを整え、社会全体の研究開発（R&D）費を年平均7％以上増やし、その対GDP比が第13次5ヵ年計画期の実際値を上回るようにすること」を明記している。

また、半導体については、2019年に公表されたロードマップにおいて、集積回路設計の生産高と世界シェアを2020年までにそれぞれ430億ドル、30％、2030年までにそれぞれ1,100億ドル、40％まで高める目標が打ち出されており、2014年に創設した1,387億円の国家集積回路産業投資基金に対し、2019年に更に2,041億円を増額し、半導体メーカーを支援している。

また、政府では、2020年7月に閣議決定した「統合イノベーション戦略2020」において、戦略的に進めていくべき主要分野のひとつとしてマテリアルを挙げ、マテリアル革新力を強化するための政府戦略を産学官関係者の共通ビジョンとして策定することとした。同年10月より、各分野の産業界や学術界の専門家で構成される有識者会議を内閣府に設置し、我が国のマテリアル産業における強みと課題を整理してい る。有識者会議において最大の強みのひとつとして挙げられたのは、半導体用フォトレジスト製造でみられるような、緻密な設計に基づく高精度な製造プロセス技術である。一方、顧客ニーズは更に複雑化を極めており、これに対応していくためには、製造プロセスとデジタルサイエンスを融合させた「プロセス・インフォマティクス」を始めとする革新的なプロセス技術が重要であるとされた。
「統合イノベーション戦略 2020」（2020 年 7 月閣議決定）において、マテリアル分野を「基盤分野としての重要性がますます高まる中、国際競争が熾烈となっていることから、新たに戦略を策定し、国を挙げた取組を推進する必要がある」と位置付けた。同戦略に基づき、Society5.0 の実現、SDGs の達成、資源・環境制約の克服、強靭な社会・産業の構築などに向けた戦略を策定すべく、内閣府において、同年 10 月に官民の専門家による有識者会議を設置し、検討がなされている。

同有識者会議では、産業界、学術界それぞれにおける強みと課題を現状認識として整理する上で、①マテリアル・インフォマティクス、②製造プロセス技術、③サーキュラーエコノミー、④資源（レアメタル）の 4 つの視点に着目しながら議論を進め、基礎（入口）と応用（出口）の双方を意識した異なるアプローチを講じていく必要があるとした。ESG/SDGs の意識の高まりや国際状況の変化などマテリアルを取り巻く環境を踏まえ、2030 年をターゲットとした目指すべき姿として、「マテリアル革新力を高めることにより、経済発展と社会課題解決が両立した持続可能な社会への転換を世界の先頭に立って取り組み、貢献していく国」を掲げている。

2021 年 3 月には戦略の取りまとめに向け、有識者会議決定として、「マテリアル革新力強化戦略（案）」が提出された。同戦略（案）には、マテリアル革新力強化に向けた基本方針として、①迅速な社会実装の実現、②データ駆動型研究開発の推進、③国際競争力の持続的な強化が不可欠であると結論付けられ、それらに紐づいたアクションプランを示した戦略案が提出された。今後、政府としてマテリアル革新力を強化するための戦略を决定するとともに、フォローアップや更なる議論を重ねながら戦略の実効性を高め、アクションプランに掲げられた取組を産学官体となって強力に進めていく。

また、世界的な不確実性の高まりが想定される中、我が国産業に必須な希少資源の確保や循環経済（サーキュラーエコノミー）の重要性が再認識されている。このような状況を鑑み、2020 年 3 月に経済産業省が策定した「新国際資源戦略」も踏まえ、希少金属などの戦略的なサプライチェーン全体の強化化（供給源の多角化・技術開発・設備導入支援など）に向けて取り組むことも提言されている。

2021 年 3 月には、有識者会議において、マテリアル革新力強化には、迅速な社会実装の実現、データ駆動型研究開発の推進、国際競争力の持続的な強化が不可欠であると結論付けられ、それらに紐づいたアクションプランを示した戦略案が提出された。今後、政府としてマテリアル革新力を強化するための戦略を決定するとともに、フォローアップや更なる議論を重ねながら戦略の実効性を高め、アクションプランに掲げられた取組を産学官体となって強力に進めていく。

コラム

マテリアル分野の競争力強化に向けた官民での取組

「統合イノベーション戦略 2020」（2020 年 7 月閣議決定）において、マテリアル分野を「基盤分野としての重要性がますます高まる中、国際競争が熾烈となっていることから、新たに戦略を策定し、国を挙げた取組を推進する必要がある」と位置付けた。同戦略に基づき、Society5.0 の実現、SDGs の達成、資源・環境制約の克服、強靭な社会・産業の構築などに向けた戦略を策定すべく、内閣府において、同年 10 月に官民の専門家による有識者会議を設置し、検討がなされている。

同有識者会議では、産業界、学術界それぞれにおける強みと課題を現状認識として整理する上で、①マテリアル・インフォマティクス、②製造プロセス技術、③サーキュラーエコノミー、④資源（レアメタル）の 4 つの視点に着目しながら議論を進め、基礎（入口）と応用（出口）の双方を意識した異なるアプローチを講じていく必要があるとした。ESG/SDGs の意識の高まりや国際状況の変化などマテリアルを取り巻く環境を踏まえ、2030 年をターゲットとした目指すべき姿として、「マテリアル革新力を高めることにより、経済発展と社会課題解決が両立した持続可能な社会への転換を世界の先頭に立って取り組み、貢献していく国」を掲げている。

2021 年 3 月には戦略の取りまとめに向け、有識者会議決定として、「マテリアル革新力強化戦略（案）」が提出された。同戦略（案）には、マテリアル革新力強化に向けた基本方針として、①迅速な社会実装の実現、②データ駆動型研究開発の推進、③国際競争力の持続的な強化が不可欠であると結論付けられ、それらに紐づいたアクションプランを示した戦略案が提出された。今後、政府としてマテリアル革新力を強化するための戦略を決定するとともに、フォローアップや更なる議論を重ねながら戦略の実効性を高め、アクションプランに掲げられた取組を産学官体となって強力に進めていく。

第 2 節

ニューノーマルでの生き残りに向けて

我が国ものづくり産業が直面する課題と展望

第 1 章
経済安全保障をめぐる国際環境の変化

これまで述べてきた視点に加えて、経済安全保障をめぐる国際状況の変化も、我が国製造業の事業活動やグローバル・サプライチェーンの在り方を考える上で大きく影響を与え得るものである。

主要国においては、技術の流出を防ぐための輸出管理、人権侵害への対応、投資管理といった各種の措置を強化してきている。また、米国を中心に、有志国連携で経済安全保障を確保していく動きもあり、2021年3月に開催された日米豪首脳テレビ会議では、重要・新興技術作業部会を含む3つの作業部会を立ち上げることで一致した。以下では、米国、中国及びEUにおいて近年導入された措置のうち、同年4月1日時点において、製造事業者が特に留意すべき事項について概観する。

①米国
米国の経済安全保障に係る一連の政策展開において、2018年8月のNDAA2019の成立はひとつの転機になった。同法自体は国防省に予算権限を与えるため毎年制定されるものであるが、この中で最先端技術の研究開発の推進を含む総額7,160億ドルの国防予算、輸出管理及び投資管理の強化、特定企業の通信機器などの政府調達などの制限、サイバーセキュリティ強化などが定められた。

（イ）輸出管理改革法（ECRA：Export Control Reform Act）
輸出管理の強化については、NDAA2019に基づき輸出管理改革法が定められ、同法の一部として挿入された。ECRAは、2001年に失効した輸出管理法（EAA：Export Administration Act）に替わる永久的な輸出管理基本法として成立し、開発初期段階であっても将来の軍事技術体系を変更し得る新興技術（エマージング技術）や、それらを支える基盤技術を特定し、輸出管理の対象が定められた。同法には特定された技術を国際輸出管理レジームに提案することも規定されているが、地理空間画像分析ソフトウェアのように、それに先立って米国単独での輸出管理措置がなされた例もある。また、同法の下位規則として輸出管理規則（EAR：Export Administration Regulations）が位置付けられた。

（イ）外国投資リスク審査近代化法（FIRRMA：Foreign Investment Risk Review Modernization Act）
投資審査の強化として、FIRRMAはNDAA2019に挿入される形で成立した。従来は、米国企業に対して支配を及ぼし得る合併や議決権・代理権などの取得、買収行為に係る取引について、事前通報の義務付けをせずに、国家安全保障レビューの対象としていたところ、FIRRMAにより事前確認方式が導入され、外国政府の影響下にある投資家による重要インフラ、重要技術又は米国民の機微個人情報に関する投資で、かつ、企業経営に影響を与え得るものに対し事前申告を義務付けた。また、事後介入の範囲（対外外国投資委員会（CFIUS：Committee on Foreign Investment in the United States）における安全保障レビューの範囲）についても、重要インフラ、重要技術又は米国民の機微個人情報に関する「非支配的であっても受動的でない投資」注6を対象取引に追加した。

注 5 ただし、テロ支援国家向けの場合は10%を超える外国原産品、外国直接製品を対象とする。
注 6 取締役などへの就任・指名権、非公開情報へのアクセス、重要な意思決定への関与などの権利に関する投資などを指す。
NDAA2019の中では、特定5社を含む中国企業の通信・監視機器及びサービスを用いた製品などの米国連邦政府機関による調達禁止 (2019年8月施行)
第2段階の措置として、それらの製品などを使用している企業などからの米国連邦政府機関による調達禁止 (2020年8月施行)
第1段階の措置は、中国の特定5社やその子会社・関連会社と米国連邦政府機関との間の取引禁止であり、日本企業は直接的には関係しないが、第2段階の措置については、日本企業が中国の特定5社やその子会社・関連会社の通信、監視機器及びサービスを使用している場合 (米国政府機関の調達事業以外に限定して使用している場合も含む) 、その日本企業の製品及びサービスも調達禁止となるというものである。

(b) 外国直接製品規則 (FDP: Foreign Direct Product Rule) の強化
2020年、エンティティリストの脚注に記載された外国直接製品規則を改正する形で、ファーウェイ及びエンティティリストに掲載されたファーウェイ関連企業 (以下、「ファーウェイ等」という。) 向けの追加的な再輸出規制が措置された。これは、従来EARによる規制の対象外だった、米国原産技術・ソフトウェアを直接的に用いて製造されているものの、米国原産比率が25%以下であるような半導体チップなどについて、ファーウェイ等向け再輸出を事実上禁止するもので、同年5月には、対象をファーウェイ等向けの専用設計品に限定した上で規制し、同年8月には対象を汎用品まで拡大して規制するという2段階で措置され、ともに即日施行された。
本改正により、米国企業の技術を用いて製造された半導体チップなどを再輸出する場合、米国当局への輸出許可申請が必要となる場合がある。米国は、半導体製造に不可欠な回路自動設計ツールや一部の半導体製造装置において独占的なシェアを有しており、また、本規則は輸出する半導体チップなどの米国原産比率には無関係に適用されるため、サプライチェーン上にファーウェイ等を持つ関連企業への影響も大きい。
碧笛政権は、新型コロナウイルス感染症の感染拡大による経済低迷からの復興を国の最重要課題のひとつに掲げている。碧笛大統領は、選挙中から新型コロナウイルス感染症の感染拡大によって打撃を受けた米国経済の立て直しを公約としており、大規模な経済対策によって感染拡大前にも強力な経済と新たな雇用をもたらす、「BUILD BACK BETTER」をスローガンに掲げてきた。碧笛大統領が選挙中に含めてこれまで明らかにしてきた政策方針や、新政権が発足してから既に実行に移している施策のうち、グローバルに関係する我が国製造業にも影響を与えるものについて紹介する。

碧笛大統領が選挙中に経済復興の柱として発表したのが「BUILD BACK BETTER JOE BIDEN’S JOBS AND ECONOMIC RECOVERY PLAN FOR WORKING FAMILIES」「BUILD BACK BETTER」 - 労働世帯のための雇用・経済復興計画 - (2020年7月)である。その中で、危機を乗り越え、数百万の雇用を創出し、労働者世帯に対し、新型コロナウイルス感染症の感染拡大前よりも強い経済を達成するために必要な手段、選択肢、自由を提供することを宣言した。その後、同年大統領選挙での当選を確実にすると、キャンペーンサイトなどでの発信を通じ、経済復興、気候変動対策、新型コロナウイルス感染症への対応、人種的公平を次期政権の柱にすると発表した。ここでは、我が国製造業にも深く関係する経済復興及び気候変動対策について取り上げたい。

経済復興については、2020年7月、前述の「BUILD BACK BETTER」と併せ、「Made in All of America」と標題を掲げる計画が発表された。同計画は、連邦政府のリソースを整理して米国の製造業と技術革新を再構築し、新型コロナウイルス感染症の感染拡大の影響で失った仕事を復活させることと、少なくとも500万人分の新規雇用の創出を支援するための、以下の6項目から成る包括的な製造業・イノベーション戦略と銘打たれている。

①Buy American：「バイ・アメリカン」を実現し、州政府による米国製品の追加調達に4,000億ドルの投資を行うことで、米国製品・資材・サービスの新しい需要を生み出す。

②Make it in America：特定のインセンティブ、追加のリソース、新しい資金調達ツールを通じて、小規模な製造業者及び女性・マイノリティが所有する製造業者に特に焦点を当てて、米国の製造業を再構築・活性化する。

③Innovate in America：研究開発と先端技術（EV、軽量素材、5G、AIなど）に新たに3,000億ドルを投資し、最も重要かつ競争の激しい産業及び技術における質の高い雇用の創出を実現する。

④Invest in All of America：人種、郵便番号、ジェンダー、性自認・指向、障害、宗教及び出身国によって投資や資本教育の機会が限られないよう、主要な分野の公共投資（政府調達、研究開発、インフラ、職業訓練及び教育）が都市や農村部のコミュニティを含む全ての州と地域の全ての米国民に到達することを約束する。

⑤Stand up for America：米国の労働者に資する税制（国境調整炭素税、多国籍企業の節税対策など）と貿易戦略を追求し、トランプ政権の政策を修正して、米国企業と労働者が雇用と市場シェアを競うための公正な機会を提供する。

⑥Supply America：重要なサプライチェーンを米国に戻し、危機的状況において必要な製品の生産を、中国を始めとする他国に依存しないようにする。

碧笛政権は、政権発足直後から同計画に関連する施策を相次いで発表しており、例えば、2021年1月25日には、連邦政府機関による調達を通じた米国ビジネスの促進、すなわちバイ・アメリカンを強
化するための大統領令が発出された。バイ・アメリカンの適用除外を設定する際の連邦機関の説明責任の強化や透明性の向上、他国のダンピングや有害な補助金付与の結果によるコスト優位の有無の確認などについて規定が設けられている。さらに、同大統領令の発出後 180 日以内に、国内コンテンツの比率などについて現行の連邦調達規則の修正に関するパブリックコメントや提案を行うとともに、国内で十分調達できない物資が何かということについてレビューを行うこととなっている。

また、2021年2月には、バイデン大統領は重要物資のサプライチェーンに係る大統領令に署名した。大統領令署名後100日以内に以下4分野のサプライチェーンについて、脆弱性リスク及びそれに対する政策勧告に関するレポートを国家安全保障担当大統領補佐官及び経済政策担当大統領補佐官を通じて大統領に提出するよう担当省庁に求めている（以下、それぞれ末尾の括弧内は担当省庁を指す。）。

①半導体及びアドバンストパッケージング（商務省）
②電気自動車用を含む大容量電池（エネルギー省）
③レアアースを含む重要鉱物及び戦略物資（国防省）
④医薬品及び医薬品有効成分（保健福祉省）

また、以下の6分野については、1年以内にサプライチェーンに関するレポートを国家安全保障担当大統領補佐官及び経済政策担当大統領安全確保補佐官を通じて大統領に提出するよう担当省庁に求めている（以下、それぞれ末尾の括弧内は担当省庁を指す。）。

①防衛産業基盤（国防省）
②公衆衛生及び生物学上の危機管理産業基盤（保健福祉省）
③情報通信技術産業基盤（商務省及び国土安全保障省）
④エネルギー産業基盤（エネルギー省）
⑤輸送産業基盤（運輸省）
⑥農作物及び食糧（農務省）

このほか、バイデン大統領は2021年3月、「American Jobs Plan」として約2兆ドルの予算規模を伴う大規模なインフラ投資計画を発表した。今後、議会での審議を経る必要があるが、計画には3,000億ドルの製造業・小規模ビジネス支援、500億ドルの半導体製造・研究への投資、国内回復する企業への税控除などが含まれている。同計画の議会での審議状況に注意が必要である。

気候変動対策については、バイデン大統領は選挙中の2020年7月に「THE BIDEN PLAN TO BUILD A MODERN, SUSTAINABLE INFRASTRUCTURE AND AN EQUITABLE CLEAN ENERGY FUTURE」（「近代的で持続可能なインフラと公平なクリーンエネルギーの未来構築に向けた計画」）と題する計画を発表している。同計画の中でバイデン大統領は、より強力で持続可能な経済を築くと同時に、2050年までに社会全体での温室効果ガス排出ネットゼロ達成を目指し、2兆ドルの加速的な投資を実施すると宣言し、これらの投資が中産階級を拡大する質の雇用を生み出すことを確保するとした。

そして就任直後の2021年1月27日、バイデン大統領は「国内外における気候変動の対処に向けた大統領令」に署名し、以下の事項を含む、気候変動対策に向けた複数省庁による全政府的アプローチの開始
を各省庁に指示した。
①ホワイトハウスに「気候変動国内対策室」を設置。また、関係閣僚から成る「国家気候タスクフォース」を設置。ともにトップはマッカーシー調整官。なお、本タスクフォースのミッションは気候変動対策のみならず、良質な雇用と経済成長も含めると規定されている。
②連邦政府機関に対し、化石燃料補助金を廃止するよう指示。
③連邦政府機関に対し、二酸化炭素を排出しない電力とクリーンでゼロエミッションの自動車の調達を指示。
④公有地・海域での石油・天然ガスの新規リース契約の締結を可能限り停止。既存案件の厳格な見直し。
⑤国家気候担当大統領補佐官と国家経済会議委員長が共同議長を務める「石炭・発電所コミュニティと経済活性化に関する省庁間作業部会」を設立。
⑥エネルギー長官に対し、国務長官らと協力して、クリーンエネルギー技術のイノベーション・実装を促進する国際的な協力を強化するよう指示。

同大統領令に基づき設置された「国家気候タスクフォース」は、2021 年 2 月に第 1 回、同年 3 月に第 2 回の会合が開催されている。さらに、同年 2 月には、バイデン政権は同タスクフォースの一部として「気候イノベーション作業部会」を設置することを発表した。同作業部会設置の目的は、2050 年までの温室効果ガス排出ネットゼロ目標達成に貢献し、米国民を自然災害から守るための、安価で革新的な技術の育成に向けた連邦政府横断の取組の調整・強化を支援することとしている。さらに、同作業部会には以下を含むイノベーション・アジェンダが設定され、設置発表と同時に公表された。

①現在の10分の1のコストでのエネルギー貯蔵
②ゼロ・カーボンの発電所からの送電網による送電を計画し運転するための先進エネルギーシステム管理ツール
③超低コストのゼロ・カーボン路上走行車及び交通網
④航空機や船舶向けの持続可能性のある新たな燃料、航空機及び船舶の効率性や輸送管理の改善
⑤温暖化効果のある冷媒を用いない安価な冷蔵、空調及びヒートポンプ
⑥鉄鋼、コンクリート、化学物質及び他の重要産業製品の製造において排出される温室効果ガスの回収
⑦汚染物質を含む代替材より廉価なカーボン・フリー水素
⑧CO2を回収・利用し、代替品へ加工又は地中へ隔離するための、既存工場・発電所の排ガス向けの直接空気回収システム・装置

このように、バイデン政権は気候変動対策の文脈においても経済振興・イノベーション促進を重視しており、我が国製造業にも影響を与えることから、その動向を注視していく必要がある。
②中国
（ア）中国におけるサプライチェーン強化の方針
中国は自国のサプライチェーンの強化を推進しており、2021年3月の中国全国人民代表大会第4回会議で採択された第14次5年計画では、「よりイノベーション力が強く、より付加価値が高く、より安全で信頼ある産業チェーン・サプライチェーンを形成する」とともに、「国内の経済循環体系を拠り所にして、世界の生産要素・資源を引きつける力強かな基地を形成する」と記載された。これについて、2020年10月の中国共産党的理論誌「求是」では、習近平国家主席による講話として、「中国の産業安全と国家安全を保障するため、自主的でコントロール可能、安全で信頼できる産業チェーン、サプライチェーンの構築に力を入れる（中略）一連の「切り札」となる技術を作り上げ（中略）国際産業チェーンの中国への依存関係を密に引き寄せ、外部による人為的な供給切りに対する強力な対抗力と抑止力を形成させるべき」と掲載されている。

（イ）中国輸出管理法
2020年12月、中国輸出管理法が施行、管理対象品目リストの一部が公表された。同法に含まれる主な懸念点は以下のとおり。

(a) 法目的に含まれた「国の安全と利益」（第1条）
貿易自由の原則の下、通常は輸出管理の目的として安全保障・軍縮・不拡散が国際的に受容されているが、同法の目的には「国の安全と利益」が含まれている。中国における「国家安全」は、軍事的意味合いの「安全保障」を超えて政治・経済・文化・生態系などを含む、極めて広範で包括的な概念と解される11から、同法を根拠に産業政策などを目的とする輸出管理が実施される可能性がある。なお、「利益」については2017年の起草以降の各草案には記載されず、成立した最終稿で初めて記載された。

(b) 再輸出規制（第45条）
中国外交からの輸出についても規制の対象となり、中国原産品を我が国で加工・組込みの上、第三国に輸出する場合などが該当する可能性があるが、「再輸出」の定義や基準は示されていない。

(c) みなし輸出規制（第2条）
外国の組織や個人への技術情報の提供（みなし輸出）も規制対象になることが規定されているが、対象となる取引などが明確でなく、具体的な適用が不明確である。中国に所在する日本の企業の事業活動などに影響する可能性もある。

(d) 外国組織・個人に対する法の域外適用（第44条）
中国国外の組織・個人が同法の規定に違反した場合、同法に基づいて処理しその法的責任を追求するとの法の域外適用が規定されており、第三国の管轄権を侵害している可能性がある。

(e) 報復条項（第48条）
輸出管理を濫用し中国の安全保障と利益を阻害した国に対し、報復として同等の措置を講じることができるとして規定したものである。

このような懸念点については、同法施行直前の2020年11月に我が国の主要産業団体10団体が連名で、政府ベースでの対応を求める要請書を経済産業省に提出している。

（ウ）輸出禁止・制限技術リスト
2020年8月、中国商務省・科学技術省は対外貿易法に基づく「中國輸出禁止・輸出制限技術リスト」を改訂した。今般の改訂は、2020年2月の大幅改訂であり、バイオ医薬品、3Dプリンター、無人機、AIなどが追加され、修正されている。対外貿易法は前述の中国輸出管理法の上位法令であることから、同リストと輸出管理法における管理対象品目リストとの連動の可能性を含み、今後運用を注視する必要がある。

（エ）信頼できない主体リスト
2020年9月、中国商務省は「信頼できない主体リスト」を公布・施行したが（リスト本体は未策定）、同リストには、「中国の国家主権、安全、利益の発展に危害を及ぼす」又は「正常な市場取引原則に違反し、中国企業・組織・個人と正常な取引を中断し、又は差別的措置を採り、その合法的な利益に深刻な損害を与える」外国の主体（企業・組織・個人）が掲載されており、掲載された主体は中国における貿易・投資などの活動を禁止又は制限される。

注11 中国の安全保障の概念となる「総体国家安全観」の対象としては、現状、政治・国土・軍事・経済・文化・社会・科学技術・情報・生態系・資源・核の11分野が列挙されている。
（オ）レアアース管理条例案
2021年1月、中国工業情報化部は、従来のレアアースに係る鉱山開発・精製分離から輸出までのサプライチェーン全体への各種措置について、体系的に詳細を規定した上で、リサイクル原料の使用義務化などを追加するレアアース管理条例の草案を発表した。同条例案の目的は「レアアースの生産経営秩序の規範化等」とされており、レアアースの輸出管理を直接定めないが、戦略備蓄やレアアースのトレーサビリティ確保が定められている。

（カ）外国の法律と措置の不当な域外適用を阻止する弁法
2021年1月、中国は国家安全法などに基づき、他国法令の域外適用に対応するための商務部規則を公表、即日施行した。他国の法令や措置について商務部が不当と判断すれば他国法令・措置の遵守を禁止し、対抗措置を講じることができる。これを無視して中国の法人などに損害を与えた場合、当事者には損害賠償を請求でき（当事者の定義は不明）、また、中国法人などが商務部の禁止を遵守したことで損害を被った場合、政府が支援を行う旨を規定している。

（キ）外商投資安全審査弁法
国家発展改革委員会及び商務部は2020年12月、国家安全法などに基づき外商投資安全審査弁法を公表、2021年1月に施行した。同弁法に基づき、国防・軍事工業やその周辺企業、エネルギー、資源、重要インフラ、重要な運輸サービス、基幹産業、重大製品製造など国家安全に係る重要領域に投資し、かつ、投資先企業の実質支配権を取得する場合が国家発展改革委員会に事前申請が必要となる。従来の投資管理制度との相違点としては、グリーンフィールド投資が新たに管理対象となったほか、事前申告が明確に義務化された点が挙げられる。

③EU
（ア）EU輸出規則の改正
2011年のイタリア企業によるシリアのアサド政権への監視システム納入などを契機に、2016年9月、欧州委員会は、人権保護などに関連して輸出管理を強化するとともに、輸出規制運用に係る域内協調を図るため、EU輸出規則改正（2016/0295（COD））を公表した。その後、2018年に欧州議会の修正案を公表し、2019年に欧州理事会の修正案を公表した。人権保護を理由とする輸出管理について、企業負担の増加や、域外企業と比べて相対的に競争環境が悪化する可能性があるとの指摘から、外でまだ立場が分かれていたが、2020年11月、欧州委員会、欧州理事会及び欧州議会の三者協議を経て、サイバー監視システムのエンドユーザ規制の追加を含む暫定合意に達し、2021年5月に公布、約3か月後に施行される見込みである。

（イ）投資管理の強化
2019年3月、欧州議会及び欧州理事会は、欧州投資規則（Regulation（EU）2019/452 of the European Parliament and of the Council of 19 March 2019 establishing a framework for the screening of foreign direct investments into the Union）を採択した。同規則は同年4月に発効し、2020年10月に全加盟国において施行された。同規則では、対内直接投資による国家安全保障又は公共の秩序（Security or Public Order）への影響を判断するに当たって、欧州委員会、加盟国は、特に、エネルギー、医療、データストレージなどの重要インフラの脆弱性、AI、半導体などの重要技術の影響を考慮できるよう明確に義務化される。2021年3月末現在、19の加盟国が投資スクリーニング制度を導入しており、欧州投資規則に沿った改正が進められている。フランスでは、AIやロボティクス、半導体など重要な技術に関連する投資は事前審査の対象として追加された。ドイツでも同様の動きがみられている。

注12 経営意思決定などの50%以上が外国投資家に移る場合を指す。
注13 外国に投資を行う際に、新たに投資先国に法人を設立する形態を指す。
注14 輸出者は、輸出しようとするサイバー監視システムが、国内の抑圧、国際人権及び国際人道法の深刻な違反と関連があるとして、当局からインフォームされた場合に、輸出許可申請が必要になる（インフォーム要件）などの規制が定められている。
2016年6月に行われた英国の国民投票の結果、EU離脱賛成51.9%、EU加盟継続48.1%となり、EU離脱支持が多数を占めた。国民投票の結果を受け、英国は、2017年3月にEU離脱を正式に通告した。英国とEUの間で合意された「EUの離脱協定」（離脱協定）と「EUと英国の将来の関係の枠組みに関する政治宣言」（政治宣言）が2018年11月に欧州理事会で承認され、英国の離脱期限が2019年3月30日午前0時とされた。

しかし、2019年1月から3月にかけて離脱協定案が3度にわたり英国議会下院において否決され、欧州理事会は離脱期限を同年10月末まで延長することを決定した。その後、引責辞任したメイ前首相に代わりジョンソン首相がEU離脱交渉を進めることとなったが、英国議会下院との調整が難航し、同年10月末までの期限を2020年1月末まで再延長することとなった。

このような中、2019年12月に行われた英国議会総選挙で欧州離脱を推進する保守派が勝利を収めたことにより、英国の欧州離脱の動きが本格化し、2020年1月、英国において離脱協定の批准が行われ、英国は同年1月31日にEUを正式に離脱し、2月1日から離脱協定で定められた移行期間（同年12月31日まで）が開始された。なお、離脱協定には、同年6月末までに合意・決定することで、移行期間を1年又は2年延長できる規定が含まれていたが、同年6月15日に、EU側とジョンソン首相の間で開催されたテレビ会談で、英国が離脱協定に基づく移行期間の延長を求めないことと、このため移行期間は同年12月31日をもって終了することが確認された。

英国のEU離脱が2020年1月に行われ、完全離脱に向けた移行期間が確認されたことを受け、同年3月から英国とEUとの包括的な自由貿易協定交渉が開始された。公平な競争条件（環境規制、労働規制、政府補助金など）、漁業権やガバナンス（紛争処理、裁判の管轄権など）といった国家主権の問題は最後まで調整が続けられ、同年12月24日に交渉内容が合意された（同月30日、英国はジョンソン首相、EUはミシェル大統領及びフォン・デア・ライエン委員長が合意文書に署名）。また、我が国においても、EU離脱後の英国との関係で、日EU・EPAに代える新たな貿易・投資の枠組みを作るべく、同年9月から日本EU・EPAの交渉が始まり、同年12月に日英EPA交渉を開始し、同年3月に日英EPAの交渉が終了し、同年6月に日英EPAの合意を締結した。なお、離脱協定には、合意期間を2年もしくは1年までに延長できる規定が含まれているが、同年6月15日にEU側とジョンソン首相の間で開催されたテレビ会談で、英国が離脱協定に基づく移行期間の延長を求めることがないことと、このため移行期間は同年12月31日をもって終了することが確認された。

このような政府の取組もあって、日本企業はこれまで長期間をかけて英国のEU離脱に備えた準備を行ってきたことから、移行期間が終了した2021年1月の時点では、日本企業には特に大きな混乱はみられていない。ただ、英国離脱后的英国との関係で、日EU・EPAに代える新たな貿易・投資の枠組みを作るべく、同年9月から日本EU・EPAの交渉が始まり、同年12月に日英EPA交渉を開始し、同年3月に日英EPAの交渉が終了し、同年6月に日英EPAの合意を締結した。なお、離脱協定には、合意期間を2年もしくは1年までに延長できる規定が含まれているが、同年6月15日にEU側とジョンソン首相の間で開催されたテレビ会談で、英国が離脱協定に基づく移行期間の延長を求めることがないことと、このため移行期間は同年12月31日をもって終了することが確認された。

このような政府の取組もあって、日本企業はこれまで長期間をかけて英国のEU離脱に備えた準備を行ってきたことから、移行期間が終了した2021年1月の時点では、日本企業には特に大きな混乱はみられていない。ただ、これは日本の英国を含めた各社が事前に在庫の積み増しを行ったことや、新たな制度に事前に接してきたことなどの要因が考えられ、今後、物流が本格化した際に、通関手続などが滞りなく行われるか、個人情報の移転手続きや金融業者に対する許認可が円滑に行われるのか、英欧及びEUにおける新たな制度の動向に留意する必要がある。特に、「合意なき離脱」を回避し、英国EU通商協力協定が適用される結果、企業は英EU間の通関手続きや新たな制度への対応など新たな負担を求められることとなるため、このような負担が、企業のサプライチェーンや事業活動に与える影響を注視する必要がある。
④人権侵害への対応
人権侵害への対応の一例としては、2021年3月に、EU、英国、米国及びカナダが揃って、中国が新疆ウイグル自治区で重大な人権侵害を行っているとして中国政府当局者などへの制裁を課すことを発表したことが挙げられる。このような措置を含め、人権侵害にかかわる企業及び個人などへの制裁や取引停止などについて概説する。

(ア)米国
2019年10月、2020年6月及び7月、人権侵害への関与を理由として中国政府機関及び監視関連機器企業をエンティティリストに掲載するとともに、同年3月に米国の「中国問題に関する連邦議会・行政府委員会（CECC：Congressional-Executive Commission on China）」が、企業に対し新疆ウイグル自治区から製品を調達していないことの確認を義務付ける「ウイグル強制労働防止法案」を公表（下院可決）した。また、同年6月、ウイグル族弾圧の責任が認められる中国の当局者に資産凍結などの制裁を科すよう政権に要請する「ウイグル人権法」が成立した。その他、同年9月からは新疆ウイグル自治区からの輸入の一部留保措置、2021年1月からは新疆ウイグル自治区で生産された綿製品とトマト加工品の輸入停止措置を実施した。

(イ)EU
2019年3月、欧州議会は加盟28か国に対して、人権侵害に対する制裁の法定化を促す決議をし、その後、EUは初めて深刻な人権侵害を理由として個人や団体を対象に域内の移動禁止、資産凍結などの措置を講じるEU規則（国際人権制裁レジーム）を2020年12月に採択した。このスキームに基づき、欧州理事会は2021年3月にロシアの野党指導者であるアレクセイ・ナヴァリヌイ氏の逮捕に関連しロシア当局関係者4名を、次いで新疆ウイグル自治区、北朝鮮、リビア、ロシア、南スーダン及びエリトリアにおける人権侵害に関連し11名及び4団体に対する制裁を決定した。

さらに、英国、フランス、オランダ、オーストラリアなどにおいても、自社及び取引先における人権侵害に対する予防措置や確認手続を義務化する法律を既に導入済みである。グローバルな事業活動を行う企業は、このような動向も踏まえ、自社の経営判断の下で、サプライチェーンも含めた人権デュー・ディリジェンスなどに取り組んでいる。
ビジネスと人権については、企業が国際社会において果たすべき役割の重要性に対する認識が高まると、1970年代に経済協力開発機構（OECD: Organisation for Economic Co-operation and Development）が、参加国に立地する海外企業に対して、責任ある行動を自主的に取ることを求めた「OECD 多国籍企業行動指針」などの企業活動に関する文書を策定するなど、環境や労働などに配慮した取組を企業に求める動きが始まった。

このような中、第69回国連人権委員会は2005年に、「人権と多国籍企業」に関する国連事務総長特別代表として、ハーバード大学ケネディ・スクールのジョン・ラギー教授を任命した。同氏は2008年に、企業と人権との関係を、①人権を保護する国家の義務、②人権を尊重する企業の責任、③被害者による救済へのアクセスを3本柱とする「保護、尊重及び救済枠組み」を第8回国連人権理事会に提出した。

2011年には、同枠組みを運用するための「ビジネスと人権に関する指導原則：国連「保護、尊重及び救済」枠組みの実施」（以下、「指導原則」という）を策定し、指導原則は、第17回国連人権理事会の決議において全会一致で支持された。また、前述の「OECD 多国籍企業行動指針」には、人権に関する規定が追加された。

指導原則では、国の人権保護に対する取組だけでなく、企業に対しても人権を尊重する主体として、企業活動を通じて人権に悪影響を引き起こすことを回避し、影響が生じた場合は速やかに対処すること、企業がその影響を助長していない場合であっても、取引関係によって企業の活動、商品やサービスと直接関係する場合は、人権への悪影響を予防又は軽減するように求めている。

また、企業が人権を尊重する責任を果たすため、具体的には、①会社としての人権方針の策定、②人権への影響を予防・確認する人権デュー・ディリジェンスの実施、③人権への悪影響についての救済メカニズムの構築、を求めている。

指導原則は、ビジネスと人権を考える際の基本原則となるものであり、2015年のG7エルマウ・サミットにおける首脳宣言には、「国連ビジネスと人権に関する指導原則を強く支持し、実質的な国別行動計画を策定する努力を歓迎する」と盛り込まれ、2017年のG20ハノーヴァ首脳宣言においても、指導原則を含む「国際的に認識された枠組み」を第一に掲げ、「ビジネスと人権に関する行動計画のような適切な政策的な枠組みを求める」ことを強調している。

このような動きを受け、イギリスでは2015年に「奴隷と人身取引に関する声明」を毎年自社のホームページで公表することを義務付ける「2015年現代奴隷法」が制定され、その後も、2017年にフランスで「企業注意義務法」、2019年にオランダで「児童労働デュー・ディリジェンス法」がそれぞれ制定され、企業に人権デュー・ディリジェンスが義務付けられた。2021年4月1日時点で、ドイツでも人権保護や環境基準遵守に反する取引を禁止する「サプライチェーン法案」が連邦議会に提出済みとなっている。

米国では、ウイグル族弾圧の責任が認められる中国の当局者に資金凍結などの措置を課す「ウイグル人権法」が制定された。我が邦においても2020年の「ビジネスと人権に関する行動計画(2020-2025)」が制定され、政府や企業における取組を進めることとしている。

これまでみきたとおり、国内外でのビジネスと人権に関する意識が高まり、欧米諸国を中心に、企業に対して、サプライチェーンを含めた人権尊重の取組を求める動きが進んでいる。また、市民社会や消費者においても、企業に人権尊重を求める意識が高まっている。

国内外におけるこのような潮流の中で、企業は、事業活動において人権尊重を求める声に対応していく必要がある。特に、海外事業を展開する企業にとっては、事業実施国法令遵守だけでなく、国際基準に照らして企業行動を評価することが国際的な慣習となっている。このため、各企業においては、サプライチェーンを含め、自らの事業における人権リスクに対する規律強化が求められているといえる。
備考: パーム油調達と関係する人権リスクなどに対応するために、マレーシア及びインドネシアのパーム油サプライチェーンの農家や公的機関関係者との意見交換を実施している。
資料: 花王（株）
レジリエンスの観点から我が国製造業のこれまでの取組を俯瞰すると、東日本大震災や熊本地震、全国各地での豪雨や台風といった自然災害を経験し、企業における危機意識は着実に向かし、BCP（事業継続計画）を策定する企業も増加している。政府としても、BCPを策定した中小企業に対する金融支援などを実施し、企業行動の変容を積極的に支援してきている。一定の成果があったものと評価できている一方で、調達先の広い範囲での把握や定期的な更新といった、サプライチェーン全体を見渡した対応については依然として道半ばである。

このような中で、今般の新型コロナウイルス感染症の感染拡大は、自然災害のような局所的被害ではなく、世界全体に予測不可能な形で被害をもたらした。このようなリスクに対応するためには、サプライチェーン全体を可視化した上での対策を講じることが不可欠となる。加えて、「グリーン」や「デジタル」の分野での競争力のカギを握る半導体や蓄電池、川上のマテリアルに関するサプライチェーン構築・強靱化や、経済安全保障をめぐる国際動向をリスクのひとつとして精緻に把握しておくといった対応も進めていく必要がある。

グリーン－カーボンニュートラルへの対応－

2020年以降の気候変動問題に関する国際的な枠組みとして2015年に開催された第21回国連気候変動枠組条約締約国会議（COP21）にて採択されたパリ協定が本格実施の段階に入ると、各国政府は、CO2や温室効果ガスの排出量を実質ゼロにするカーボンニュートラル注15の実現を目指すことを次々と表明している。製造業を含め、グローバルに活動する大企業の中にも、自社のサプライチェーン全体でのカーボンニュートラルの実現に向けた対応や、再生可能エネルギーの調達などの取組を積極的に行う企業が現れ始めている。今後は大企業のみならず中小企業も含めて、サプライチェーン全体でのカーボンニュートラルに寄与する取組を実施することが次第に強く求められるようになるものと想定される。

さらに、国内外の様々な投資家や金融機関において、投資先である企業や事業が気候変動対策にしっかりと寄与するものであるかといった点を、投資家の一関する際の判断材料のひとりとすることがあり、製造事業者においても気候変動問題への取組が資金調達に影響していくことが想定される。本白書では、カーボンニュートラルに向けた各国政府の宣言やそれらに基づく具体的な取組に加えて、サプライチェーン全体に広がるカーボンニュートラルへの対応について論じる。

（1）各国政府の取組の深化

我が国では2020年10月の第203回臨時国会における菅官通総理大臣所信表明演説において、2050年までに温室効果ガス排出量を全体としてゼロとする2050年カーボンニュートラルの実現を目指すと宣言した。気候変動問題への対応は制約やコストではなく、むしろ経済成長の機会と捉え、「経済と環境の好循環」を実現していくことを目指す。

2050年カーボンニュートラルの実現に向けて、「2050年カーボンニュートラルに伴うグリーン成長戦略」（以下、「グリーン成長戦略」という。）が2020年12月に策定された。グリーン成長戦略では、産業政策・エネルギー政策の両面から、成長が期待される14の「重要分野」ごとに、国として高い目標を掲げた上で、現状の課題と今後の取組を整理した「実行計画」を策定するとともに、予算、税、規制改革・標準化、国際連携など様々な政策を盛り込んだ。「実行計画」を策定するとともに、予算、税、規制改革・標準化、国際連携など様々な政策を盛り込んだ。例えば、予算面では、まずは政府が環境投資で一歩大きく踏み込むため、過去に例のない2兆円の基金を創設し、野心的なイノベーションに挑戦する企業を今後10年間支援していくことを目指す。税制面では、カーボンニュートラルに向けた投資促進税制の創設、研究開発税制の拡充、事業再構築・再編などに取り組む企業に対する税制優遇の拡充を計上することを目指している。なお、カーボンニュートラルの取組を推進する際に、我が国社会・経済の前提であるエネルギーの安定供給の確保や、環境保全への配慮に関しても、並行して着実に取り組んでいくことが必要である。

国際的には、2021年4月時点で124か国と1地域が2050年カーボンニュートラルを目指すことを表明している（図122-1）。米国のバイデン大統領は2020年の大統領選挙時に自己の公約の中で宣言しているほか、中国も2060年までのカーボンニュートラル実現を目指すことを2020年9月に表明した。また、その実現に向けた取組も各国政府から打ち出されている。

注15 各国政府によるカーボンニュートラルの宣言の中には、CO2排出量を実質ゼロにする宣言や温室効果ガス排出量を実質ゼロにする宣言が混在しており、本白書では両者を区別せずにカーボンニュートラルという。また、多くの国はカーボンニュートラルの達成年限を2050年と定めているが、異なる年限を設定している国も存在する。
例えばEUでは、再生可能エネルギーを用いて水を電気分解して作るグリーン水素の推進を目的に、2050年までに最大4,700億ユーロを投資するとした「EU水素戦略」を2020年7月に発表した。これは、洋上風力の発電能力を現状の1,200万kWから2050年には25倍の3億kWに拡大するとした「洋上再生可能エネルギー戦略」を2020年11月に発表した。自動車については、2030年に3,000万台のゼロエミッションカーの普及を目指す「サステナブル・スマート・モビリティ戦略」を2020年12月に発表した。

英国では、2050年カーボンニュートラルの実現に向けて、「グリーン産業革命に向けた10ポイント計画」を2020年11月に発表した。この計画の中で、洋上風力の発電容量を4,000万kWに拡大するために200億ポンドの民間投資を呼び込むことや、低炭素水素の生産を2030年までに500万kWに拡大すべく40億ポンドの民間投資を呼び込むことが目標として掲げられている。

ドイツでは、2030年までに電気自動車の登録台数を700万台から1,000万台に拡大する目標を打ち出しているほか、水素の生産から利用までのバリューチェーンの確立と水素技術の輸出産業への育成に90億ユーロ規模の予算で取り組む「国家水素戦略」を2020年6月に発表した。

欧州では、カーボンニュートラルの推進の重要であるEU水素戦略などの個別施策にとどまらず、今般の新型コロナウイルス感染拡大に起因する経済危機からの復興を目的に、EUでは、7,500億ユーロ規模の復興パッケージが2020年12月に欧州理事会で合意され、このうち37%をグリーン関連に充てる計画となっている。各国のグリーン移行やデジタル移行、経済の強靭化に向けた投資・改革に関する融資や補助金による支援である6,725億ユーロの「Recovery and Resilience Facility」では、各国の提出する復興計画のうち、少なくとも37%以上を気候変動関連に充てることが求められている。このうち37%をグリーン関連に充てる計画となっている。各加盟国のグリーン移行やデジタル移行、経済の強靭化に向けた投資・改革に関する融資や補助金による支援である6,725億ユーロの「Recovery and Resilience Facility」では、各国の提出する復興計画のうち、少なくとも37%以上を気候変動関連に充てることが求められている。
サプライチェーン全体に広がる対応の必要性

各国政府のカーボンニュートラルの宣言とその実現に向けた取組が進められ、企業側においても、グローバルに活躍する大企業を中心に、カーボンニュートラルに乗り出す動きがみられ始める。一例として、カーボンニュートラル宣言や、自社製品の製造時に使用する電力を100%再生可能エネルギーから調達するような動きが挙げられる。さらに、一部の企業においては、サプライヤーを含めたサプライチェーン全体でのカーボンニュートラルの実現や、原材料の調達から廃棄・リサイクルに至る製品のライフサイクル全体でのCO₂排出量を算出するようにサプライヤーに対して要請する動きもみられる。このような傾向は今後一層強まる可能性が考えられ、我が国のサプライヤーにおいても、このような動きに留意する必要がある。なお、経済産業省では、製造事業者を始めとした需要家が再生可能エネルギーなどのカーボンフリーエネルギーを容易に調達できるようにすべく、これらの電源が有する「非化石価値」を証書化した上で、その証書の取引を行い非化石価値取引市場の見直しを行っている。具体的には、①非化石価値へのアクセスの向上の実現を目的とした、一定の要件を満たした需要家が参加可能な市場の創設、②需要家も参加可能な市場オークションでの証書の最低価格の引下げ、といった検討を進めている。

注22「The National Hydrogen Strategy」https://www.bmbf.de/files/bmwi_Nationale%20Wasserstofstrategie_Eng_s01.pdf
Apple、Google、Microsoftといった巨大企業を中心に、サプライヤーに対して温室効果ガス排出量に係る情報開示や排出削減に向けた取組を要請する動きが加速している。

例えば、Appleは2020年7月に、同社のサプライチェーン及び製品ライフサイクル全体で、2030年までにカーボンニュートラルの達成を目指すと発表した。地球温暖化に対して科学的な見地から評価を行っている政府間機構である「気候変動に関する政府間パネル（IPCC：Intergovernmental Panel on Climate Change）」は、2018年に公表された「1.5℃特別報告書」において、世界的な平均気温上昇を産業革命以前に比べて1.5℃に抑制するためには2050年前後にCO2排出量を正味ゼロにする必要があるとしているが、同社はIPCCの報告より20年早くカーボンニュートラルの実現を目指すとしている。

同社が自社施設で使用するために調達する再生可能エネルギーのうち、80%以上は自ら手掛けた電力プロジェクトから生み出されている（スコープ1）。また、2014年以来、同社のデータセンターで使用される電力は100%再生可能エネルギーで賄われている（スコープ2）。このような取組によって、同社は既に自社の企業運営においてカーボンニュートラルを達成しているが、ライフサイクル全体のCO2排出量のうち、99%以上の排出は間接的な排出である（スコープ3）。

このような現状を踏まえ、今後は同社の製品に用いられる部品や素材などの製造工程を含めて、2030年までにカーボンニュートラルを達成するとして、その達成に向けた10年間のロードマップを提示した。同社が2030年までにサプライチェーン及び製品ライフサイクル全体でのカーボンニュートラルを達成するには、サプライヤーの協力が必要不可欠である。同社が2020年7月に公表した「環境進捗報告書」には、使用する電力を100%再生可能エネルギーで賄うことを約束したサプライヤー71社が公表されており、日本企業はイビデン（株）、太陽ホールディングス（株）（太陽インキ製造（株））、日本電産（株）、恵和（株）、日東電工（株）、（株）セイコーデバイダンス、ソニーセミコンダクタソリューションズ（株）及びデクセリアルズ（株）の8社が名を連ねている。
世界を代表するドイツの化学メーカーである同社は、2020年7月に全製品のCO2排出量、いわゆる製品カーボンフットプリント（PCF：Product Carbon Footprint）を算出して顧客に提供すると発表した。PCFは、原料の調達から生産、出荷までの各段階で発生する、製品に関連した全ての温室効果ガス排出量をCO2換算して算出される。同社は2007年より、特定の製品についてPCFを算出してきたが、社内で独自に開発したデジタル技術を駆使した手法を用いることで、同社が世界中で製造している全ての製品のPCFを算出することが可能となった。つまり、日本を始め、世界中の顧客に提供している全ての製品について、情報提供が可能ということである。2021年末までには約45,000点に及ぶ全製品について、透明性のあるPCFのデータを提供できるようにすることを予定している。

同社の製品を用いて最終製品を製造するメーカーにとっては、これらのデータを用いることで、自社製品のPCFを算出することが容易となる。さらに、温室効果ガス排出を削減するためのポイントがどこにあるのかを特定できるため、自社で温室効果ガスの削減計画を策定することも容易となる。このように、同社がPCFを積極的に開示・提供することは、同社の顧客企業のPCFの算出とそれに基づいた温室効果ガス排出量の削減を支援することにつながる。

なお、同社は過去25年間にわたり、サステナビリティに関する様々な評価方法を活用してきた経緯がある。今回のPCF算出に当たっても、過去に蓄積してきたサステナビリティへの貢献度合いを測定するための多種多様なデータの収集・分析手法を用いており、これらは国際標準化機構（ISO：International Organization for Standardization）で規格化されたISO14044やISO14067、温室効果ガスプロトコル製品基準といったライフサイクル分析の一般的な基準に沿ったものとなっている。

図 BASFの製品カーボンフットプリントの提供

資料：BASF "Product Carbon Footprint"
RE100 とは、産業で使用する電力を100％再生可能エネルギーで調達することにコミットする国際産業イニシアチブである。CO2の排出量が実質ゼロである持続可能な産業に向けた国際NGOであるThe Climate Groupと、産業の環境データの情報開示プログラムなどを運営する国際NGOであるCDPが連携して運営している。RE100に参加することができるのは、①グローバル又は自国内で認知度・信頼度が高い、②主要な多国籍企業（フォーチュン・グローバル1000企業（フォーチュン誌が毎年公表している世界の売上高ランキング上位1,000社）又はそれに相当する企業）、③消費電力量が100GWh以上（日本企業は50GWh以上に緩和されている）、④RE100の目的に寄与する何らかの特徴と影響力や持つ、といった条件のいずれかに該当する企業である。

現在、RE100はフォーチュン・グローバル500企業（フォーチュン誌が毎年公表している世界の売上高ランキング上位500社）を含む様々な業種・規模の企業が参加しており、参加企業の売上合計は4兆5,000億ドルを超えている。企業による再生可能エネルギー推進の取組を可視化するとともに、世界的に影響力のある大企業が中心となって再生可能エネルギーの普及・促進を図るべく、勉強会やセミナーの開催、政策関与などの活動を展開している。

RE100に参加している企業は2021年4月1日時点で290社以上となっており、そのうち日本企業は52社を占める。これは、国別のRE100参加企業数として米国に次ぐ2番目となっている。なお、我が国では産業で使用する電力を100％再生可能エネルギーで調達することを目指す国内の産業、自治体、教育機関、医療機関といった団体で構成された「再エネ100宣言REAction」という枠組みもあり、同年4月1日時点で参加団体は100を超えている。

RE100に名を連ねる富士フイルムホールディングス（株）は、2006年には国内の生産拠点である富士フイルム九州（株）で太陽光発電を、2011年にはオランダの生産拠点で風力発電による電力を導入した。米国や中国の工場でも太陽光発電設備の導入を進め、2030年度中には購入電力の50％を再生可能エネルギー由来の電力に転換するとの目標を掲げている。また、同社が生産するディスプレイ材料などの各種高機能フィルムは、製膜や乾燥など生産工程の一部で工程内を高温状態に維持するために高温の蒸気を必要とする。そのため、製膜や乾燥工程に必要な高温蒸気とその他の工程で使用する電気を同時に発生させるコジェネレーション自家発電システムの活用により、生産工程内での高いエネルギー効率を維持している。

さらに、将来の生産工程の脱炭素化には、電力のみならず燃料の脱炭素化が必要である。同社は、再生可能エネルギー由来電力の利用推進及びコジェネレーション自家発電システムでの水素燃料などへの転換・導入を組み合わせ、2050年度までに全使用エネルギーや由来のCO2排出量ゼロを表明している。このような電力・燃料の脱炭素化へのアプローチを社会に提示し脱炭素社会の実現をリードすべく、2019年4月にはRE100へ加盟し、取組を進めている。

（株）ニコンも2021年2月にRE100へ加盟し、2050年度中に使用する電力を100％再生可能エネルギーから調達することを目指すと宣言した。同社グループでは自家発電、電力プラン、証書などの手段を利用して再生可能エネルギーの活用を進めており、2020年3月期には新たに6つの事業所で水力発電や風力発電地点を導入した。このように取組の結果、同年3月期の同社グループの総電力使用量における再生可能エネルギー使用率は5.5％となった（一部、J-クレジット制度による購入分を含む）。
図 [RE100] に参加している日本企業（2021年4月1日時点）

<table>
<thead>
<tr>
<th>RE100参加日本企業（参加順）</th>
</tr>
</thead>
<tbody>
<tr>
<td>（株）リコー、積水ハウス（株）、アスクル（株）、大和ハウス工業（株）、ワタミ（株）、イオン（株）、城南信用金庫（株）、丸井グループ、富士通（株）、（株）エンビプロ・ホールディングス、ソニー（株）、芙栄総合リース（株）、（生協）コープさっぽろ、戸田建設（株）、コンカミノルタ（株）、大東建託（株）、（株）野村総合研究所、東急不動産（株）、富士フイルムホールディングス（株）、アセットマネジメントOne（株）、第一生命保険（株）、パナソニック（株）、旭化成ホームズ（株）、（株）高島屋、（株）フジクラ、東急（株）、ヒューリック（株）、（株）LIXILグループ、楽天（株）、（株）安藤・間、三菱地所（株）、三井不動産（株）、住友林業（株）、小野薬品工業（株）、日本ユニシス（株）、（株）アドバンテスト、味の素（株）、積水化学工業（株）、（株）アシックス、J．フロント・リテイリング（株）、アサヒグループホールディングス（株）、キリンホールディングス（株）、ダイヤモンドエレクトリックホールディングス（株）、（株）セブン&アイ・ホールディングス、（株）ノーリツ、（株）村田製作所、いちご（株）、（株）熊谷組、（株）ニコン、日清食品ホールディングス（株）、（株）島津製作所、東急建設（株）（計52社）</td>
</tr>
</tbody>
</table>

資料：日本気候リーダーズ・パートナーシップ
鉄鋼業は、自動車や情報通信機器、産業機械など、他の産業の基盤となる基幹産業であり、製造業の上流工程に当たる重要な産業分野である。CO₂排出量でみても、産業部門における年間のCO₂排出量の40％、国内でのCO₂排出量全体の14％を占めており、我が国において地球温暖化対策を着実に進めていくためには、鉄鋼業における取組が大変重要な役割を担っている。

鉄鋼業におけるCO₂排出削減の一番の課題は、炭素（木炭や石炭）を用いて鉄鉱石から酸素を取り除く還元技術にある。現行の高炉法では、石炭を用いて鉄鉱石を還元する過程で、CO₂の排出が避けられない。そのため、現在、経済産業省では、製鉄所から発生する二酸化炭素の約3割を削減することを目指して、①コークス製造時の副生ガスに含まれる水素を活用して鉄鉱石を還元することで高炉でのCO₂排出量を10％削減するとともに、②製鉄プロセスにおける未利用排熱を活用して高炉から排出されるCO₂を分離・回収することでCO₂排出量を20％削減する、技術を開発するCOURSE50プロジェクトを進めている。2008年から開始した本プロジェクトには、日本製鉄（株）、JFEスチール（株）、（株）神戸製鋼所などが参加し、これまで技術確立に向けた一定の成果が得られており、2030年度までに実機での導入を実現すべく、研究開発を進めている。

しかし、これらの技術のみでは2050年カーボンニュートラルを実現することは困難である。2020年12月に策定されたグリーン成長戦略では、産業部門における製造プロセスの変革が必要であるとして、施策のひとつとして水素還元製鉄技術や二酸化炭素回収・利用・貯留（CCUS：Carbon dioxide Capture, Utilization and Storage）の技術課題を抽出しており、2021年度中にゼロカーボン・スチールの実現を目指すため、水素還元製鉄技術や二酸化炭素回収・利用・貯留（CCUS：Carbon dioxide Capture, Utilization and Storage）の技術課題を抽出しており、2021年度中にゼロカーボン・スチールの実現に向けた道筋を具体化し、研究開発を更に加速させていく予定である。また、（一社）日本鉄鋼連盟は、我が国の2050年カーボンニュートラルという方針に我が国の鉄鋼業界として賛同し、これに貢献することを2021年2月に表明した。

世界的にも、鉄鋼業におけるカーボンニュートラルに向けた取組が加速しており、欧州のアルセロール・ミッタル、ティッセンクルップ、韓国のポスコといった大手鉄鋼メーカーが2050年までの製鉄プロセスの脱炭素化を指標し、水素還元技術の開発を精力的に進めている。ただし、水素還元製鉄は技術開発段階にあり世界にみても実用化の実績はなく、我が国鉄鋼業、さらには製造業全体の将来にわたる競争力強化に向けて、世界に先駆けて技術開発や社会実装を実現すべく、官民が連携して取り組んでいく必要がある。
炭素国境調整とは、厳しい気候変動対策を取りその対策コストを負う国が、十分な気候変動対策を取らない国からの輸入品に対して、水際で税や課徴金、排出権クレジット購入などの義務を課す措置であり、炭素リーケージへの対応が必要と考える国の国のこの措置を実施すると考えられている。炭素リーケージとは、①国内市場が生産物単位あたりの排出量が高いため輸入品に脅かされ、国内生産が減少する状況や、②炭素制約を理由に、産業拠点が制約の緩い海外拠点に移転し、地球全体では排出量が減らない状況、を意味している。近年諸外国での議論は①に着目したものが多く、気候変動対策として厳しい目標を持たない国との競争力を均衡させるための公平な競争条件の確保を図る動きが広がっている。

現在、炭素国境調整はEUを中心に導入に向けた議論が進められている。2019年に就任したフォン・デア・ライエン欧州委員会委員長が導入を提案し、新型コロナウイルス感染症の感染拡大に起因する経済危機の対策を目的とした復興基金の財源としても期待されており、2023年1月からの導入を目指している。EUは、排出量取引制度の拡大や炭素税などの複数の選択肢を示しつつ、2021年6月には具体的な制度設計の公表を行っよう検討を進めている。なお、炭素国境調整の対象としては、製造過程においてCO₂排出量が大きい鉄鋼やセメント、電力などが検討されている模様である。

また、2021年にバイデン大統領が就任し、パリ協定への復帰を果たした米国でも、類似の提案がみられた。選挙期間中である2020年8月に公表された民主党綱領において、パリ協定の目標を遵守できない国の製品に対する炭素国境調整の必要性に言及している。一方、ケリー気候変動担当大統領特使は2021年3月にEUの炭素国境調整に懸念を示しており、引き続き動向を注視する必要がある。

さらに、炭素国境調整はこれまでに導入した先例がなく、世界貿易機関の関与及び貿易に関する一般協定などとの整合性も重要な課題となっている。このような状況を踏まえて、経済産業省では「炭素国境調整措置に関する基本的な考え方（案）」を公表した。

出所：経済産業省「第2回世界全体でのカーボンニュートラル実現のための経済的手法等のあり方に関する研究会」(2021年3月)
カーボンニュートラルに向けた取組を進めるためには、民間資金をいかに動員していくかという観点も重要であり、トランジション・ファイナンスやグリーンファイナンスといった手法が注目されている。トランジション・ファイナンスとは、脱炭素社会への移行段階において、省エネなど、低炭素化を着実に進めるための取組や、それに資する技術に対してファイナンスを行う手法である。グリーンファイナンスとは、気候変動を始めとした環境問題に与える影響や、環境問題への対策としての効果をプロジェクトへの投資資本の融資の際に考慮するファイナンスの手法であり、実際に、投資家や金融機関が、気候変動を始めとする環境問題に悪影響を及ぼす事業からの投資を減らすためにも注目されている。グリーンファイナンスは、気候変動を始めとする環境問題に資する投資による影響を、プロジェクトへの投資資本の際に考慮するファイナンスの手法である。グリーンファイナンスの重要性が言及された。
2020年以降の気候変動問題に関する国際的な枠組みであるパリ協定の着実な実現に向けて、全世界でカーボンニュートラルに向けた莫大な規模の投資が必要と想定されている。このような中、気候変動対策のための着実な移行やCO₂の大幅な排出削減に向けたイノベーションに取り組む企業への投資を促進させるべく、グリーンファイナンスの重要性が高まっている。

我が国では、（一社）グリーンファイナンス推進機構がグリーンファイナンスを推進しているほか、民間企業による取組も着実に進んでおり、例えば（株）みずほフィナンシャルグループは、グリーン/サステナブルファイナンスの規模を2019年度から2030年度の累計で25兆円とする目標（うち、グリーンファイナンスは12兆円）を掲げている。我が国におけるグリーンボンド発行額は、2017年には発行総額が2,223億円、発行件数が11件であったが、2020年には発行総額が1兆円を超え、発行件数も77件にのぼり、発行総額・件数ともに急増している。

気候変動を始めとした環境問題への対応のみならず、社会問題の解決や企業統治の観点にも配慮している企業や事業に対して投資を行うESG投資も年々拡大している。世界のESG投資額の統計を集計している国際団体のGlobal Sustainable Investment Allianceによると、2016年から2018年にかけて世界のESG投資額は34%増加して30.7兆ドルまで拡大しており、投資額全体の約3分の1を占めるに至っている。ESG投資への残高でみても、我が国は欧州、米国に次ぐ世界第3位のESG投資残高国となっている。

一方で、カーボンニュートラルに逆行するような事業には資金供給を控えるような動きも出てきている。例えば、国内外で機関投資家が企業に脱石炭を迫る動きがあり、国内では（株）三菱UFJフィナンシャルグループ、（株）みずほフィナンシャルグループ及び（株）三井住友フィナンシャルグループが、石炭火力発電事業向けの融資残高を2040年までにゼロにする目標をそれぞれ設定した。また、海外でも、大手銀行のBNPパリバ、モルガン・スタンレー及びシティバンクが石炭火力発電事業向けの融資を禁止する方針を掲げたほか、大手保険会社のAXAやAllianzなどが石炭火力発電事業を対象に投融資の禁止や撤退を行うと発表している。
他方で、バイオマス燃料やアンモニア燃料といったカーボンニュートラルの実現に寄与する燃料に関する事業には投資家の資金が集まりやすい状況にあり、企業の資金調達を支援する動きも活発化している。国内では、国産バイオジェット・ディーゼル燃料の実用化を掲げている（株）ユーグレナが、2018年に新株予約権の発行により38億円の資金調達を実施している。東京工業大学発のベンチャーであるつばめBHB（株）は、従来は大規模プラントでの集中生産であったために採算面から輸送できる場所が限定されるという課題を存在したアンモニア合成を、小規模プラントで分散して行うことを可能とするオンサイトアンモニア生産の実用化に取り組んでいる。同社は2020年までに10億円以上の資金調達を実施するなど、比較的資金調達が難しいとされた素材・化学分野に特化したベンチャー企業も、資金調達しやすい環境が整いつつある。また、（株）みずほ銀行は、金利などの借入条件が企業のサステナビリティ目標達成に連動するサステナビリティ・リンク・ローンも実施している。

なお、海外ではESG投資の観点から既に商社が事業再編に着手している例もみられる。例えば、シンガポールの大手農産物総合商社であるオラム・インターナショナルは、2024年までに環境や健康への害が及ぶ懸念されているゴム、木材製品、砂糖及び肥料の4事業からの撤退を表明している。

気候変動を始めとした環境問題に配慮した事業へ資金が集まり、マイナスの影響が懸念される事業からは撤退を要請するグリーンファイナンスやESG投資の動きは、今後も世界的に加速するとみられており、国際的な規制・ルール形成のみならず、ファイナンスがグリーンプロジェクトを推進する大きな原動力となりつつある。

以上、グリーンの観点から我が国製造業のこれまでの取組を俯瞰すると、地球温暖化対策の結果、業部門のエネルギー起源CO₂排出量は2019年度に2013年度比2013年度比で17.0％の削減を実現しており、同年度で6.6％の削減を目指すという2030年度の目標を既に達成している注24。また、例えば、新車販売に占める次世代自動車割合は、2013年度には23.2％であったが2018年度には38.4％まで着実に増加する注25など、産業部門以外の部門においても地球温暖化対策が進んでいる。

このような中で、足下では世界各国がカーボンニュートラルに舵を切り、我が国としても2050年までのカーボンニュートラルを目指すと宣言した。2020年12月にはグリーン成長戦略を策定し、技術革新を通じて今後の成長が期待される14の重要分野ごとに実行計画を策定した。加えて、予算面では2兆円の基金の創設、税制面ではカーボンニュートラルに向けた投資促進税制の創設などによって、企業の挑戦を積極的に後押ししていく。また、サプライチェーン全体でのカーボンニュートラルに取り組む動きや、金融機関が積極的にトランジション・ファイナンスやグリーンファイナンスの手法を導入するといった動きも拡大している。このような動きに鑑みれば、製造事業者は自社の企業行動を積極的に変容し、カーボンニュートラルを成長のカギとして取り込んでいくことが重要と考えられる。

注24 [2019年度（令和元年度）の温室効果ガス排出量（確報値）について]（2021年4月）にて報告された、産業部門におけるエネルギー起源二酸化炭素（2019年度確報値）及び2030年度の目標・目安
注25 [2019年度における地球温暖化対策の進捗状況]（2021年3月）のうち「温室効果ガスの排出削減、吸収等に関する対策・施策の進捗状況」にて報告された、新車販売台数に占める次世代自動車の割合を指す。
（1）企業変革力（ダイナミック・ケイパビリティ）の強化

2020年版ものづくり白書では、製造業を取り巻く環境変化の不確実性と、そのような環境において製造事業者が取るべき戦略について論じた。経済安全保障をめぐる国際的動向、地政学的リスクの高まり、気候変動や自然災害、非連続的な技術革新、そして新型コロナウイルス感染症の拡大など、製造業を取り巻く環境はかつてない規模と速度で変化しつつあり、このような環境変化の不確実性が、我が国製造業にとっての大きな課題となっていることについて触れました。

このような中で我が国製造業が競争力を維持・向上していくためには、企業変革力（ダイナミック・ケイパビリティ）の強化が重要である。ダイナミック・ケイパビリティは、環境や状況が激しく変化する中で、企業がその変化に対応するために自己を変革する能力であり、具体的には次の3つの能力に分類される。

① 感知
脅威や危機を感知する能力。

② 捕捉
機会を捉え、既存の資産・知識・技術を再構成・再結合して競争力を獲得する能力。

③ 変容
競争力を持続的なものにするために、組織全体を刷新し、変容する能力。

これらの3つの能力はいずれも、デジタル技術によって増幅される（図123-1）。

「感知」とは脅威や危機を感知する能力であり、ダイナミック・ケイパビリティの起点となるものである。この「感知」の能力を高める上で、デジタル技術を活用したデータの収集・分析が大きな力を発揮するであろう。また、近年、AIの発達と共に著しいが、AIは、環境や状況の変化を予測し、不確実性を低減するのに効果的であろう。

「捕捉」すなわち機会を捉え、既存の資産・知識・技術を再構成する能力を高める上で、リアルタイム・データの収集・分析が非常に強力な武器となる。特に、製造業の製品を通じた顧客へのサービスの提供（「製造業のサービスタイセイション」）は、数多くのニーズを捉えて、製造業の製品・知識・技術を再構成して顧客体験価値を創造している。製造業のデジタル化により実現する変種変量生産やマスカスタマイゼーションは、顧客の特殊な少量のニーズの機会を逃さず捕捉することを可能にする。

「変容」は、変革を持続的なものにするために、組織全体を刷新し、変容する能力であり、デジタル技術による「変容」こそが、いわゆるDXそのものであるといえる。

このように、デジタル技術は製造業のダイナミック・ケイパビリティを強化する上で非常に重要な要素となる。我が国では、目指すべき社会の姿として「Society 5.0」を掲げ、2017年3月には我が国の産業が目指すべき姿として「Connected Industries（コンネクテッドインダストリーズ）」のコンセプトを提唱し、世界に向けて発信した。この「Connected Industries」は、データを介して、機械・技術・人など様々なものがつながることで、新たな付加価値創出や社会課題の解決を目指す産業の在り方を指すものであり注26、その具体化のカギとなるデジタル技術を徹底的に利活用していくことが、同時にダイナミックな変革力の強化を図る上で必要不可欠である。
ク・ケイパビリティの強化にもつながることとなる。
経済産業省では、老朽化・複雑化・ブラックボックス化した既存システムが DX を本格的に推進する際の障壁となることに対して警鐘を鳴らし、2025 年までにデジタル企業への変革を完了させるべく計画的に DX を進めることを促した「DX レポート～IT システム「2025 年の崖」克服と DX の本格的な展開～」を 2018 年 9 月に公開した。その後、2019 年 7 月に「DX 推進指標」として、DX の取組状況について、企業による簡易な自己診断を可能とする指標を策定するなど、企業が自発的に DX に取り組むためのツールを提供してきた。また、2020 年 5 月に「情報処理の促進に関する法律の一部を改正する法律（令和元年法律第 67 号）」を施行し、国が策定した指針を踏まえ、優良な取組を行う事業者を、申請に基づいて認定する「DX 認定制度」を開始するとともに、同年 8 月には企業価値向上向け実践すべき事柄を「デジタルガバナンス・コード」として取りまとめている企業を、「DX 銘柄」として選定した。さらに、同年 11 月には経済産業省が策定した指針を踏まえ、優良な取組を行う企業を、申請に基づいて認定する「DX 認定制度」を開始するとともに、同年 8 月には企業価値向上向け実践すべき事柄を「デジタルガバナンス・コード」を、「DX 銘柄」として選定している (図 123-2)。特に、「デジタルガバナンス・コード」については、製造業に関して、主に DX を通じたエンジニアリングチェーン強化の観点からのリファレンスケースを、他業種に先駆けて策定・提示した（図 123-3）。

図 123-2 DX の推進に向けて経営者が実践すべき事柄（抜粋）

1. ビジョン・ビジネスモデル
デジタル技術による社会及び市場環境の変化の影響を踏まえた経営ビジョン及びビジネスモデルの方向性を公表していること。

2. 战略
設計したビジョンモデルを実現するための方策として、デジタル技術を活用する戦略を公表していること。

2-1. 組織主・人材・企業文化に関する事項
特に、戦略の推進に必要な体制・組織に関する事項を示していること。

2-2. IT システム・デジタル技術活用環境の整備に関する事項
特に、IT システム・デジタル技術活用環境の整備に向けた方策を示していること。

3. 成果と重要な成果指標
デジタル技術を活用する戦略の達成度を測る指標について公表していること。

4. ガバナンスシステム
経営ビジョンやデジタル技術を活用する戦略について、経営者が自ら対外的にメッセージの発信を行っていること。等

資料：経済産業省「デジタルガバナンス・コード」（2020 年 11 月）

図 123-3 デジタルガバナンス・コード 製造業版リファレンスケースの概要

備考：BOM（Bill Of Materials：部品表）
出所：経済産業省「第 4 回 Society5.0 時代のデジタル・ガバナンス検討会」（2020 年 10 月）
このような流れの中で、経済産業省は、2020年12月に「DXレポート2（中間取りまとめ）」を公開し、製造事業者に限らず多くの企業においてDXの取組が未着手又は一部部門での実施にとどまることを指摘した（図123-4）。そして、テレワークを始めとする新型コロナウイルス感染症の感染拡大によって変化した人々の動きや社会活動がもはや感染拡大以前に戻らないことを前提とすれば、「人々の固定観念が変化した今こそ、企業文化を変革し、DXを進める絶好の機会である」と指摘した。

DXの一翼を担う人材育成を一層推進する観点から、経済産業省では様々な取組を進めている。例えば、社会人を対象としたものとしては、自宅に居ながら新しい知識やスキルを習得しようとする学び直しの意欲の高まりや、IT人材の不足や学習ニーズの高まりを背景として、事業者が無償で提供するオンライン学習コンテンツをホームページにおいて紹介する「巣ごもりDXステップ講座情報ナビ」を実施している。また、学生を対象としたものとしては、EdTech注27を徹底的に活用し、「学びの個別最適化」と「学びのSTEAM注28化」をコンセプトに掲げた「未来の教室」実証事業を2018年度より実施しており、ものづくりを始め様々な分野におけるプロジェクトが進んでいる。

注27 Education（教育）とTechnology（テクノロジー）を掛け合わせた造語。教育現場にデジタルテクノロジーを導入することで、教育領域に变革をもたらすサービス・取組の総称。
注28 Science（科学）、Technology（技術）、Engineering（ものづくり）、Arts（人文社会・芸術）及びMathematics（数学）の5つの領域を含む文理融合の探究学習を目指す教育コンセプトの総称。
近年、DXが加速する中、企業規模や業種を問わず、全ての企業においてデジタル化の推進は喫緊の課題となっている。DX実現に向けては、経営層やDXを推進するチームのメンバーはもとより、組織内のあらゆる構成員の理解や貢献が不可欠であり、デジタルに関する知識やスキルは今や社会人にとって必須のものとなりつつある。

特に足下においては、新型コロナウイルス感染症の感染拡大の影響から、社会人が自宅に居ながら新しい知識やスキルを習得しようとする意欲が高まっている。一方で、IT人才の不足や学習ニーズの高まりを背景として、様々な事業者がデジタルスキルに関する学習について多種多様なサービスを展開しているものの、このようなサービスは個々の事業者のウェブサイトで公開されることが多く、情報の記載方法も各サイトによって異なるため、利用者としては自らにとって必要なサービスを適時に選択することが難しくなっているという現状もある。

このような現状を踏まえ、経済産業省では、これまでデジタルスキルを学ぶ機会のなかった人にも新たに学習を始めるきっかけを提供するため、事業者が無償で提供するオンライン学習コンテンツを経済産業省ホームページにおいて紹介する「巣ごもりDXステップ講座情報ナビ」プロジェクトを実施している。本サイトには2021年3月時点で28事業者86講座が掲載されており、今後も掲載コンテンツを随時拡大していく予定である。

図1 巣ごもりDXステップ講座情報ナビ

出所：経済産業省

また、若年層に対しては、GIGAスクール構想下の「1人1台端末」とEdTechの活用を基礎として、誰一人取り残さず、留め置かずに、一人ひとりのペースに合った学習環境を提供する「学びの個別最適化」と、社会課題などをテーマにして文理融合の探究学習機会を提供する「学びのSTEAM化」をコンセプトに掲げて、「未来の教室」実証事業を2018年度より実施しており、教育産業に携わる企業や学校、研究機関などが連携して、これらのコンセプトを実現するためのモデル事例の創出や実際のカリキュラム作成・実行を進めている。
例えば、ブリタニカ・ジャパン（株）が、国立研究開発法人産業技術総合研究所、国立研究開発法人新エネルギー・産業技術総合開発機構、東京大学生産技術研究所及び筑波大学附属中学校と連携して実施する「最先端研究を通じた STEAM 探求」では、ドローンや自動運転といったものづくり分野を含めた全18のテーマについて、技術そのものや関係法制度などの周辺環境、これらを踏まえた新たなビジネスや社会課題解決の在り方などを探究するプログラムを構築・実施している。

さらに、製造業のリモート化も、単に遠隔での作業や工程管理を可能にするだけではなく、熟練の職人が持つノウハウのデジタル化や、若手職人のトレーニングにも活用することで、我が国製造業を支えてきた現場の技術へと継承し、更に有効活用することができる新たな環境を実現し得ると考える。
Creative Works は、実家である有（宮本）宮本工業所で溶接の修行を積んだ宮本卓氏が、ものづくりを発信する場として 2012 年に立ち上げた。溶接の技能を磨きたい職人から DIY や趣味のものづくりをする溶接初心者まで、溶接に関心のある幅広い対象者向けに「宮本溶接塾」を開催しており、不足している溶接職人を育成し、10 年で 1,000 人卒業生を輩出することを目標としている。実際、ラジオや雑誌で溶接塾の存在を知った企業からの講師依頼は増えているという。これらの依頼の中にはベテランの溶接職人を抱えてる企業も少なくないが、技術を体系立てた上での社内での技術継承に苦労している企業が多いという背景事情もあり、溶接塾を受講することでベテランと若手のコミュニケーションが円滑化するケースが増えているという。

中でも、受講者が場所を問わず技術としての溶接を学べるようにとの思いで開発した「IoT 溶接機セット」は、今般の新型コロナウイルス感染症が感染拡大する状況下における溶接のリモートワークを可能にした。従業員から「通勤電車の中で感染するのが怖い」と相談を受け、ならば在宅で仕事をもらおうと、オフィスのリモートワークと変わらない流れで工場のリモートワークに切り替え、今では従業員の自宅玄関前に「IoT 溶接機セット」を持ち込み、リモートで仕事をこなしとてもっている。従来から出来高払いの成果主義を採用していたこともあり、従業員は感染リスクの少ないスーパーの空いている時間に買い物を済ませることもでき、働き方改革にもつながっているという。

IoT 溶接機セットにみられるような IT 技術の活用に積極的な背景にあるのが、東京都内に金属加工会社 3 社（（株）今野製作所、（株）西川精機製作所及び（株）エー・アイ・エス）と 2013 年に立ち上げた「東京町工場 ものづくりのワ」における企業間連携である。企業間で連携して受発注のみならず生産作業の進捗管理を管理する IT システムを開発・導入し、例えば、連携先に依頼した板金加工の進捗状況を IT システムで共有することを実現している。そのような連携の中で、溶接面カメラを搭載して溶接職人の手元を見やすくし、これを「人材育成に活かせないのではないか」「遠隔から指導できないか」というアイデアから開発されたのが、IoT 溶接機であった。この IoT 溶接機も従来から企業間連携の取組の中で試験的に使用されており、例えば、Creative Works において溶接条件や試作を行った上で、他社の溶接職人が行う本番作業中に IoT 溶接機を通じてリアルタイムに助言するなどである。そして、この IoT 溶接機を使って、溶接塾の受講者が家で練習できるように開発していたのが、持ち運びも容易な「IoT 溶接機セット」である。

新型コロナウイルス感染症の感染拡大を受けて、この「IoT 溶接機セット」を自宅に持ち込み、材料は宅配便で届けることによって、溶接作業のリモートワークを実現することができた。前説述した生産・作業の進捗管理システムを従来から導入していたため、リモートワークによる仕事の進捗管理に困ることもなく、「溶接の指導・助言、仕事の進捗管理、自社の社員とのコミュニケーションなど、従来から IT を当然のように使用してきたことで、不測の事態にも柔軟に対応できた」と宮本氏は語る。

前述の企業間連携においては、溶接のデータ化を中長期的な取組として進めている。熟練職人と若手職人が溶接する手元の映像や、手元や身体の動き、ワークの温度や溶接機の出力を同時測定し、溶接のデータ化を行うことによって、若手職人は具体的に何が不足しているのかを数値化・言語化された情報で理解することができる。宮本氏は、溶接という技能を技術として習得できるようにしていきたいと考えている。

大手製造企業の研究職としても活躍していた宮本氏は、実家に戻った際に「町工場の連携がない」という問題意識や、前述の「東京町工場 ものづくりのワ」へ参画した。最近では、サラリーマンから学生まで誰もが宇宙開発に参加できる（一社）リーマンサットスペーシズの代表理事も務めている。2021 年 3 月には、同社が開発した超小型人工衛星が国際宇宙ステーション内での実験が「きぼう」から放出されて、宇宙での自撮りミッションを遂行中である。不確実性が高まる時代だからこそ、分散している町工場や外部の人材同士がデジタルの力によって連携し、状況に応じて働き方を変えたり新規事業に取り組んだりすることができる体制作りが、企業のポテンシャルを発揮する上でも重要になると考えている。
図 IoT 溶接機を活用した自宅からのリモート溶接の様子

図 スマートグラスを着用した作業風景事業

出所：Creative Works

コラム 機械加工・修理・メンテナンスのオンライン相談、オンライン（遠隔サポート）修理で新たな顧客を開拓する企業・・・(株) 茂呂製作所

同社は、切削加工による部品製作、工場設備の治工具・装置製作、メンテナンスサービスなどを手掛ける製造業の総合サービスメーカーである。特に、短納期の部品製作に加え、メンテナンスサービスを強みとしており、緊急・定期メンテナンスにより、機械の故障率低減や生産効率向上の提案をしている。

新型コロナウイルス感染症の感染拡大の影響を受け、2020年4月からは機械加工・修理、メンテナンスに関するオンライン相談を開始している。オンライン会議ツールで直接の接触を避け、動画などを活用しながら、部品製作から機械修理・メンテナンスまで工場の設備に関することなら何でも相談ができ、機械・電気系の機械修理、旋盤・フライス系の機械加工、その他（安全対策、装置製作、設計、保全、溶接、ロボット、システムなど）の幅広い相談に対応している。また、機械の故障など緊急の相談にも、専用工事を積んだメンテナンスカーで迅速に対応することが可能である。

さらに、同社はメンテナンスサービス事業において、訪問修理の際に現場と本社の間で情報のやり取りが可能な「オンライン修理」を2020年2月に開始した。オンライン修理では、メガネ型のウェアラブルデバイス（体に装着して利用することが想定されたデバイスの総称）でカメラ・マイク機能、透過型の画像表示ができるスマートグラスを導入し、遠隔の現場と本社の間で、音声、動画、写真、資料などのスムーズなやり取りを実現している。

出張修理の担当者が工具とスマートグラスを持参し、修理の際にスマートグラスを着用して作業する。修理現場でもペーパーレスで読める資料の送受信を行うことで、両手での作業が容易となり、担当者の作業の効率化や負荷軽減につながる。また、現場の状況を本社スタッフが遠隔で映像と音声で確認できるため、これまでよりも的確な助言が可能となり、新型コロナウイルス感染症の感染拡大で移動が制限される中でも、最小限の人手で、短時間に修理を完了することでの生産現場の早期復旧に寄与している。

こうして同社は、新型コロナウイルス感染症の感染が拡大する中においても、機械加工やメンテナンスサービス事業のオンライン相談対応の体制を早めに構築したことで、オンライン修理など、ポスト・コロナを見据えたオンライン化によってサービス価値を更に高めることができた。それにより、同社の拠点がある山梨県に限らず、九州地方や中部地方など全国各地で新たな顧客の開拓につなげている。
同社は、サイボーグ技術の実現によって「人の身体的制約の解消により創造性を最大化する」ことをビジョンに掲げる研究開発型ベンチャーであり、経済産業省が推進するスタートアップ企業の育成支援プログラムである「J-Startup」においても、潜在力のあるスタートアップ企業として選定されている。

同社の考えるサイボーグ技術とは、生体信号と人工身体（ロボット技術など）によって、人と機械を融合させるテクノロジーである。このサイボーグ技術の実現に向けて、現在は、医療機器事業とアバターサイボーグ技術を進めている。これらの事業の基盤となっているのは、高速・高精度に生体信号を解析する生体信号処理技術と、従来のアクチュエーション技術では非常に困難であったパワフルさと器用さを両立したハンド技術である。これらの技術を組み合わせることで、例えば、障がいのある方が生体信号に応じて制御された機器による補助を受けて対象物を迅速かつスムーズに掴むことや、遠隔地からアバターロボットを操作して配電盤を閲覧中の中の機材を操作するなど、実作業を含む様々な可能性を示す技術実証に成功している。

さらに、アバター事業では、実証試験機「MELTANT-β」を2020年3月に発表した。「MELTANT」シリーズでは、危険作業、高温・低温環境、化学物質や細菌などによる汚染環境、高放射線量環境、宇宙などで活用を想定している。最近では、製造業が始めとする現場作業の遠隔化向けの実証実験の機会や、新型コロナウイルス感染症の感染拡大もあり、従来から連携していた建設や発電プラント、石油・ガス業界の企業からは「MELTANT」シリーズを活用することで、これまでの技術では不可能だった分野でもリモートワークが進むのではないかという声も増えてきている。例えば、ENEOS（株）の中央技術研究所において、「MELTANT-β」で試験分析作業を遠隔化する実証実験を行っている。同社の研究者が同機を操作し、液体をメスシリンダーに注いで取り分ける、各種実験装置へ検体をセットするなど、様々な作業を実証している。特に研究開発の現場では試行錯誤の中で多種多様な作業内容が発生するため、これらを規格化することは難しい。さらに、劇毒物質を扱う場合も多々あり、研究者の安全・健康確保の観点からも、アバターによる遠隔化への期待が高まっている。実証実験に参加した同社の研究者からは、これまで出社して作業することが当然だった試験分析作業を同機によって遠隔化できる可能性を実感し、これによってリモートワークが進むことに期待する声も聞かれた。

（株）メルティンMMIは、特に人命リスクが高い危険・極限環境市場での使用を優先していく意向であり、アバターも防塵・防滴機能、耐久性など、厳しい稼働環境を想定した仕様で開発を進め、実証実験パートナーを広く募集している。アバターを通じて、製造業の遠隔化を促進することでリモートワークを加速し、人々の安全・健康の向上に貢献していく。
ザインエレクトロニクス（株）は、アナログとデジタルの双方に通じた大規模集積回路（LSI: Large Scale Integration）の企画・設計、販売を行うファブレス半導体メーカーである。同社は市場規模拡大が見込まれるAIやIoT等の分野に注力するために、2018年12月に「AIOTソリューション部」を設立するとともに、かつてのキャセイ・トライテック（株）をグループ企業に加えるなどの取組を進めてきた。

AI技術の最も有力なアプリケーションは顔認証であるとの認識の下で、他企業から顔認証技術を導入した上での製品化から着手した。我が国では、プライバシーの問題などから顔認証ソリューションの普及が遅れているが、セキュリティ意識の高まりから今後は普及していく可能性が高いと考えた。

そのような中で、2020年に入ると新型コロナウイルス感染症が世界的に感染拡大し、我が国での感染拡大を防ぐことが喫緊の課題となった。そこで、発熱者を素早く検知するというニーズが生まれたことに対応して、「AI顔認証検温ソリューション」の開発に取り組んだ。

2020年2月には、大勢の人が集まる場所で体温の高い人を同時多数かつ高速に検知するソリューションを発売した。従来実施されている検温の多くはハンディ型の非接触型体温計での測定だが、多くの人が集まる場所には不向きであり、検温する係員自身のリスクもある。それに対してこのソリューションは、来場者など人の流れに対して10メートル離れたところから最大30人の体温を瞬時に非接触で測定するものであり、複数の人に同時に適用可能なAI顔認証を、黒体（赤外線を活用する温度計の参照物）を併用したサーマルカメラ上で実行することで、素早く精度の高い検温を可能とした（黒体の使用で約3分の1の誤差に抑えられる）。多人数の中から顔を検出し、マスクを着用していても目や耳から顔の位置を判断し、AI学習で体温を精度よく測定することにより瞬時に発熱者を検知する。

同社は、このホール型AI顔認証検温ソリューションのほか、より小規模スペースでの利用を想定したサイネージ型、ビルや工場の入口ゲート、改札口などに設置するゲート型のソリューションを展開している。ゲート型はオプションの顔認証エンジンを利用することで10万人の顔認証にも対応でき、検温や社員の出入り管理、ログを活用した健康管理といった使い方もできる。同社のシステムは既にオフィスビルや病院、学校、野球場などに導入が進められている。

このようなニーズに即した迅速な製品展開は、顔認証技術で実績のあった企業との連携があってこそでできたものであり、同社では新型コロナウイルス感染症の感染拡大が続く厳しい市場環境下にある中でも、今後の成長に向けた大きなチャンスと捉え、リモートや非接触といった、ニューノーマルの下で求められるニーズに対応した事業に注力していくとしている。

図 3つのAI顔認証体表温度スクリーニング・ソリューション

出所：ザインエレクトロニクス（株）

加えて、これらの一連の取組の効果を飛躍的に向上させるものとして、先端技術に関する官民一体での研究開発も着実に推し進められており、早期での社会実装が期待されている。
光と電波は、人の目から見えるものと見えないものの大きな違いはあるが、物理的には波長の範囲が異なるだけで同様の性質を持つものである。光と電波はそれぞれが有する様々な物理的特性を活かして従来から多方面で応用されてきたが、近年、更なる変革を起こす可能性がある技術分野として注目を集めている。

電波が活用される典型的な分野は情報通信分野である。携帯電話などにおいて 5G のサービスが開始され、現在多くの注目を集めている移動体通信では、様々な遮蔽物を迂回して届くという特性から、波長が長い電波が主に使われているが、5G の次世代において更なる大容量化を実現する技術として、軌道角運動量 (OAM: Orbital Angular Momentum) と呼ばれる、電波が持つ位相の違いを活用する多重化技術 (OAM 伝送) の検討が進められている。

軌道角運動量と呼ばれる新たな物理特性の活用が、1 テラビット毎秒の伝送を実現する技術として期待されている。これにより、電波が進む方向に対して垂直な面内での位相の回転数が異なる電波は互いに干渉しないことを利用するので、回転数の異なる電波を複数同時に送ることで多重化することができる。軌道角運動量という新たな物理特性の利用が、1 テラビット毎秒級の伝送を実現する技術として期待されている。

さらに、データセンターの中のコンピュータ間での通信に光を利用するために注目されている技術がシリコンフォトニクスである。シリコンフォトニクスとは、光回路を製造するために、低コストで微細加工が可能な CMOS 半導体技術を使用する技術であり、光通信の主要部品であるトランシーバーと光配線の集積化を可能にすることで、コンピュータ内への導入が可能となった。将来的には、コンピュータのポート上のデータ転送に光が用いられることが期待されている。シリコンフォトニクスはコンピュータに導入されることで、高速処理や省電力を実現できるため、省エネルギーの観点から情報通信社会のカーボンニュートラルに貢献し得る技術としても注目されている。

注 29 位相とは周期的な運動（波動）などの中での状態や位置を表す言葉であり、ここでは、電波が 1 波長分進む間に垂直な面内で何周回転するかを示している。
注 30 1 テラビット毎秒は 1 秒間に 1 兆ビットのデータを通信できる速度である。
注 31 CMOS (Complementary Metal Oxide Semiconductor: 相補型金属酸化膜半導体) は、コンピュータの CPU（Central Processing Unit: 中央処理装置）を構成する基本回路として広く利用されている回路方式のことである。
リモート会議やオンライン授業などに用いられるリモート化技術は、物理的な移動をせずに会議や授業への参加を可能とするため、多様な働き方、多様な形での社会参加などの実現に貢献する。また、自動掃除ロボットなどに代表される機械が自動で作業する自律化技術は、繰り返し作業から人を解放し、生産性の向上などに貢献する。このようなリモート化技術及び自律化技術の更なる活用が期待されるが、両技術には課題もある。

同機構の技術戦略研究センターが新たに提唱したスマートテレオートノミーでは、リモート化技術及び自律化技術を高度に融合することで、両技術が持つ課題を相互補完的に解決することを目指している。完全な自律が難しい作業であっても、できるところから部分的に自律化技術（オートノミー）を適用しつつ、自律化が難しい作業や突発的に障害が発生した際には、テレオペレーション（リモート操作）により操作者が自律動作に介入して、作業を効率よく円滑に遂行すること（スマート化）を提案している。加えて、現場の状況を適切に把握し、遠隔操作を可能とするため、高度な XR や、人の状態や行動を推定する技術の活用を提案している。XR とは、VR（Virtual Reality：仮想現実）や AR（Augmented Reality：拡張現実）、MR（Mixed Reality：複合現実）など、現実世界と仮想世界を融合する様々な技術を総称するものであるが、高度な XR は、単なる視聴覚を超えて、現場の力触覚、味覚、嗅覚などの情報を伝達することにより、遠隔操作中でも現場にいるかのような知覚を可能とする。また、人の状態や行動を推定する技術は、現場にいる人の画像情報などから AI を用いて感情や行動などを推定して遠隔操作が可能なものとする。

スマートテレオートノミーの応用分野の例としては、多種多様な作業を行う製造業や、遠隔リハビリや触診を行う介護・医療、接客と多様な業を行うサービス業などが考えられる。

スマートテレオートノミーが様々な分野に導入されていくことによって、多様な働き方や生産性の向上、感染症の流行や災害の発生などによる移動制限下での社会活動を可能とし、レジリエンツな社会を実現することにつながっていく。本技術は、今後のニューノーマルで定着が想定されるリモート化の変革の実現に向けたカギとなる重要技術であり、その実現に向けては多くのステークホルダーが連携して取り組むことが期待される。

図 1 リモート化技術及び自律化技術の導入が期待される分野の例（製造・生産現場）

図 2 スマートテレオートノミーの概念
以下では、製造事業者における効率的かつ戦略的なDX投資の検討に資することを目的として、営業・マーケティングといった上流工程や、販売・アフターサービスなどの下流工程も含めた、バリューチェーン全体におけるDXの在り方について整理する。

（2）戦略的なDX投資に向けた対応
①各業務領域におけるデータ連携に向けた動向
バリューチェーンにおいて扱われる情報は、顧客、会計データなどの経営に近いものから、設計、生産に関するデータなどの製造現場に近いものまで様々な階層がある。従来、設計開発領域における設計支援システム（CAD）、製造領域における製造支援システム（CAM）及び製造実行システム（MES：Manufacturing Execution System）、営業・マーケティング領域における営業支援システム（SFA：Sales Force Automation）及びマーケティング自働化システム（MA：Marketing Automation）のように、各業務領域においてはITソリューションの活用が進展しつつあるが、各業務領域によって管理されるべき情報が異なるため、領域ごとに様々なITソリューションが個別に発達してきた。一方、DXを効果的に進めるには、それぞれのITソリューションが連携し、業務領域間でスムーズなデータ連携が行われることが重要である（図123-5）。以下では、バリューチェーンの各業務領域におけるデータ連携に向けた動向について概説する。

図123-5 各業務領域におけるITソリューションの俯瞰

営業・マーケティング領域においては、特定の顧客を対象とした商談情報を管理する営業支援システム（SFA）と、市場単位の一般化された顧客層を対象とした顧客育成情報を管理するマーケティング自働化システム（MA）が存在する。これらのシステムが有する情報独立して管理するのではなく、有機的に紐付け相互に補完することが、効率的な営業・マーケティングの実現のためには重要であり、このような観点から、顧客情報を統合管理するための顧客情報管理システム（CRM：Customer Relationship Management）の導入が進められている（図123-6）。さらに、販売・アフターサービス領域で得られた顧客情報をCRMに連携させる企業も現れてきている。
また、設計領域においては、設計支援システム（CAD）で作成した図面情報から、部品を構成する部品表や、原価・質量管理、製品の性能のほか、製造工程や販売後に発生した不具合情報など、多岐にわたる情報を取り扱う。そのため、それぞれの情報を個別に管理するのではなく、企画、設計、製造、販売・アフターサービスといった製品ライフサイクル全体にわたって技術情報を管理する製品ライフサイクル管理システム（PLM: Product Lifecycle Management）の導入が進められている（図123-7）。このシステムを導入し、情報の統合管理を行うことで、製品開発力の強化や設計作業の効率化などが可能となる。

さらに、バリューチェーン全体を俯瞰すると、営業領域における受注、設計領域における設計検討、製造領域における部材調達など、あらゆる業務領域での企業活動が経営に関係する。これら的情報を経営層が経営判断の際の判断材料として活用するため、情報を統合管理する経営資源管理システム（ERP：Enterprise Resources Planning）の導入が進められている。ERPには、会計管理機能のほか、人事・給与、販売、生産、購買などの様々な機能が備えられており、各機能間でスムーズなデータ連携が可能となっている。
製造業における主要なシステム

製造業では、営業・マーケティング・商品企画、研究開発、設計開発、製造、物流、販売・サービスといった各業務領域で様々なシステムが活用されている。以下で主要なシステムの概要を説明する。

<table>
<thead>
<tr>
<th>システム名</th>
<th>概要</th>
</tr>
</thead>
</table>
| CRM | Customer Relationship Management (顧客情報管理システム)
・顧客の属性情報に加え、顧客とのコミュニケーション履歴を時間軸に沿って管理するシステム。
・営業支援システム（SFA）やマーケティング自動化システム（MA）と連携することで、顧客情報の統合管理、マーケティング施策の検討、生産部門に対する需要予測の自動的な提供などが可能となる。 |
| ERP | Enterprise Resources Planning (経営資源管理システム)
・企業経営の基本となる資源要素（ヒト・モノ・カネ・情報）を統合管理して見える化するシステム。企業の主要な業務を対象としており、人事・給与管理、販売管理、生産管理、購入管理などの機能が備えられている。
・統合した情報を基に企業の状況を正確かつタイムリーに把握することが可能とし、経営戦略の決定などに用いられる。 |
| PLM | Product Lifecycle Management (製品ライフサイクル管理システム)
・製品ライフサイクル全体にわたって技術情報を管理するためのシステム。企画、設計開発、生産、調達、物流、販売、サービスなどの各事業領域にわたって発生する様々な技術情報を統合管理する。
・全工程で情報を共有することで、製品開発力の強化、設計作業の効率化、在庫削減などが可能となる。 |
| CAD | Computer-Aided Design (設計支援システム)
・人の手によって行われていた設計作業をコンピュータにより支援するシステム。
・製図作業の効率化だけでなく、3DCADで作成したデータを、エンジニアリング支援システム（CAE）や製造支援システム（CAM）などの他工程のシステムに連携することで、業務効率化を図ることが可能となる。 |
| MES | Manufacturing Execution System (製造実行システム)
・製造工程の管理や、作業者への指示を実行するシステム。機能は定義・リソース管理、スケジューリング、オペレーション、実績管理など機能群に分類され、これらの機能全てを用いるのではなく、必要に応じて利用するのが一般的である。
・機械の稼働状況やヒトの工数などを機械単位、作業単位で管理することで、生産効率向上及び製造コストの削減が可能となる。 |
| PLC | Programmable Logic Controller (プログラマブル・ロジック・コントローラー)
・装置・設備の制御プログラムを管理する装置。製造現場だけでなく、エアコンや洗濯機などの家電製品やエレベーター、自動ドアなどの建物設備、変電所などの大規模施設に利用されている。
・各製造装置が実行する動作を事前に順序付けたプログラムに記憶させることで、効率的に製造設備を動かすことが可能となる。 |
| CNC | Computer Numerical Control (コンピュータ数値制御)
・加工工程で工具の移動量や速度をコンピュータによって数値制御する技術であり、NC（Numerical Control）旋盤、マシニングセンタを始め、多くの工作機械で使われている。
・設計支援システム（CAD）、製造支援システム（CAM）が生成したデータを工作機械の操作に必要なプログラムに変換し、それをCNC工作機械が読み込んで動作することで、設計工程から製造工程までの効率的な連携が可能となる。 |
| IT | Information Technology (情報技術)
・コンピュータやネットワークを利用し、情報の収集・加工・保存・伝送・活用する技術。広義には、コンピュータやネットワークに関連する諸分野における技術・設備・サービスなどの総称。ICT（Information and Communication Technology：情報通信技術）という表現もほぼ同義で用いられている。 |
| OT | Operational Technology (制御技術)
・物理的な装置や工程を監視・制御するためのハードウェアやソフトウェア技術。工場や発電所といった設備や関連する機器の物理的な状態をモニタリングし、最適に制御・運用する技術。 |

出所：アーサー・ディ・リトル・ジャパン（株）「サイバーフィジカルシステムの戦略的導入等に係る調査」（2021年2月）
②各業務領域間のデータ連携における課題
ここまでは各業務領域におけるデータ連携に向けた動向を整理してきたが、このようなデータ連携を進めること上での課題は、生産方式（受注生産又は見込生産）、部品点数（サプライヤー数）、商流（直接販売又は間接販売）、各産業分野の特徴によって細分化される（図123-8）。

出所：アーサー・ディ・リトル・ジャパン（株）「サイバーフィジカルシステムの戦略的導入等に係る調査」（2021年2月）

例えば、従来の自動車産業や航空機産業といった産業分野は、「すり合わせ型である」、「部品点数が多い」、「間接販売」といった特徴を一般的に有している。これらの特徴が、設計、製造、販売・サービスなどの各業務領域間におけるデータ連携が難しくなる要因となっている（図123-9）。

出所：アーサー・ディ・リトル・ジャパン（株）「サイバーフィジカルシステムの戦略的導入等に係る調査」（2021年2月）
具体的には、自動車産業は設計部門やサプライヤーが多岐にわたるため、これまでは、設計・開発を実物で行った上で実機を試作し、これを評価するといった一連のプロセスを通しておりがちであった。しかし、データ連携によりフロントローディングの手法を取り入れれば、試作・評価の負担が大きく、試作・評価の手間を減らすことができ、より効率的なものづくりが可能となる。このような中で、実機ではなくコンピュータ上のモデルを作成して開発を行うMBD（Model Based Development：モデルベース開発）が普及しつつあり、MBDの普及により、試作品の製作費用などのコスト削減及び開発期間の短縮が期待される。特に、サプライヤーからメーカーがモデル及びデータを提供するのみならず、メーカーからサプライヤーへもモデル及びデータを提供することで、サプライヤーが設計の意図をより深く理解し、より効率的な開発が実現できることは事実である。例えば、自動車産業は設計部門やサプライヤーが商品企画までを担当し、様々な業種の情報が一堂に集まるシステム連携の課題が見受けられる（図123-11）。

図123-10 自動車産業におけるシステム連携の課題

図123-11 電気機器産業におけるシステム連携の課題

出所：アーサー・ディ・リトル・ジャパン（株）「サイバーフィジカルシステムの戦略的導入等に係る調査」(2021年2月)

また、電気機器産業においても、見込生産による在庫販売が主流となっており、適正生産および、適正在庫の中長期的な需要予測が重要であるが、メーカーと販売会社が別の企業であることが多く、両者間でのデータ連携に課題がある。このため、顧客の購買動を含む情報の連携が必要となる。データ収集と、当該データをメーカー・販売会社間で連携することが重要である（図123-11）。

出所：アーサー・ディ・リトル・ジャパン（株）「サイバーフィジカルシステムの戦略的導入等に係る調査」(2021年2月)

注32 できるだけ開発の初期段階に資源を集中的に投入すること。これにより、課題点の早期発見、品質向上、後工程での手戻りにより少なくすることができる。
このように、製造事業者における DX を進めるに当たって、注力すべき領域や想定される課題は様々である。そのため企業ごとに経営資源が限られ中で、効率的かつ戦略的な DX 投資を進めには、自社や取引先がバリューチェーン上で担っている役割や、業務領域間で必要となるデータ連携などを的確に把握することが重要である。実際に、これらの点を踏まえつつ、業務領域間や企業間でのデータ連携に取り組み、新たな価値の創出や大幅なコスト削減を実現する企業も現れ始めている。

同社は、船舶海洋カンパニー、車両カンパニー、航空宇宙システムカンパニー、エネルギー・環境プラントカンパニー、モーターサイクル&エンジンカンパニー及び精密機械・ロボットカンパニーの 6 つのカンパニーを持ち、多様な製品を扱っている企業である。このような中、同社は、製品のアフターサービス情報を取り扱う顧客情報管理システム（CRM）の高度化に取り組んでいる。CRM には、AI を活用し、サービス担当者や営業担当者が書き込むテキストデータから関連性を見いだして新しい発見を促す仕組みを取り入れた。AI は、（株）神戸デジタル・ラボが京都大学と産学連携によって共同開発したデータ活用技術を搭載したもので、様々な不具合情報や修理情報などから、人間では関連付けられない関係性を可視化できる。全く種類の異なる不具合情報の関連性を AI によって明らかにすることで、原因の特定が迅速化するケースや、営業担当者のテキストデータを分析することで、ビジネスプロセスの異なる顧客における共通ニーズを読み取ることができたケースが現れ始めているという。加えて、上記の CRM を製品ライフサイクル管理システム（PLM）と連携させ、アフターサービス内容の高度化を図りつつ、顧客へ納入後に稼働中の製品情報を設計にフィードバックすることを目指している。

さらに、納入製品の部品構成や、保守内容、トラブル原因に関する情報を CRM から PLM へ連携し、設計における是正措置や予防措置へのプロセスに組み込むとともに、PLM 側に蓄積された設計部門の設計変更などの対応措置を CRM 側へ連携することで、アフターサービスの高度化を目指している。

図 設計への顧客情報のフィードバック

出所：川崎重工業（株）

コラム 製品設計におけるアフターサービス情報の活用

・・・川崎重工業（株）

出所：川崎重工業（株）
同社は、産業機械、ヘルスケア、社会システム、電子部品といった多岐にわたる事業を展開し、約120の国と地域で商品・サービスを提供している企業である。同社のグローバルでの事業成長に不可欠なテーマであったのが、設計開発や生産の効率の更なる向上である。

同社は、従来からグループ全体で製品ライフサイクル管理システム（PLM）を活用することで品番情報や部品表を統一し、部品表や設計図面を統合管理してきた。しかし、日々進化する事業環境の変化に対応するため、設計・生産のグローバル連携強化による業務効率の向上や、トレーサビリティの強化が次第に強く求められるようになるにつれて、このシステムも刷新が必要となっていった。

次の成長を支えるにふさわしい商品開発プロセス上の設計支援基盤の実現に向けて重視したのは、グローバルに利用できること、より精密なトレーサビリティを実現できること及び部材情報の活用により原価の削減できることの3点である。システム構築時には「CMO（Common：共通化、Module：標準化、Option：選択）」という考え方を基盤にして、パッケージ標準を活用する部分とシステムを独自に作り込む部分を切り分けた。他社との差異化につながらない領域は可能な限り標準機能を利用しつつ、競争力の源泉と考える独自のプロセスについてはこだわり、カスタム開発を行った。

新たなシステムの活用による設計・開発面での効果は、設計情報の共有による開発効率の大幅な向上と、グローバルでの拠点・部門の枠を超えた連携による開発リードタイムの短縮である。設計情報の変更履歴や設計途中的変更結果を管理することで、設計ノウハウの継承や課題の共有が可能となった。

また、各生産拠点で旧製品の在庫がなくなるタイミングに合わせて設計変更の適用日をそれぞれ設定する機能や、厳格なトレーサビリティが求められる製品の設計変更時にきめ細かなリビジョン管理を行う機能などを備えている。セキュリティ面では、設計図面などの機密データについて、メール添付、印刷、画面キャプチャ、外部媒体へのコピーなどの操作を利用者ごとに制御することで、社外への流出を防止する機能も備えている。また、前述した設計情報が統合管理され、生産部門と連携されることは、同一製品のグローバル複数工場での並行生産や複数の納品先を想定した対応が可能となり、市場状況に応じて竜巻変動に生産工場を選択するグローバルな最適生産への対応やBCP対応強化も可能になった。

また、製品の部材として用いる抵抗やコンデンサは、必要となるスペック属性（抵抗値や電圧など）が部材の分類ごとに異なる。各分類に個別の属性を定義し、それら属性による検索を可能とすることで、設計者の部材調査から選定業務までの効率を図った。本社購買部門でQCD（Quality：品質、Cost：コスト、Delivery：納期）を満たす部材を標準品と認定し、標準部材活用の促進を図ることで部材集約による大幅なコスト削減が実現した。

以上のように、設計データの生産部門への受渡し機能を中心としていたPLMを刷新することで、試作から量産までの製品ライフサイクルをわたって一貫したデータ管理を実現することができた。同じ品番の製品でも、客先や完成品の種類などに応じて、構成部材単位で精緻にリビジョン管理を行うことで、過去に製造した製品の客先からの再生産要求への迅速な対応（PLMと設計支援システム（CAD）の連携）や、旧製品の在庫消費タイムラグに合わせた設計変更の検討（PLMと経営資源管理システム（ERP）の連携）など、業務効率化が可能となった。これによって設計変更に伴う工数を大きく削減できた。

実際に、同社の設計・生産約50拠点（国内約30・海外約20）で導入されており、約4,200名の社員が利用している。また、本システムは24時間365日稼働し、ERPなどのシステムとリアルタイムに連携している。
同社は、総合商社としての強みを活かして、サプライチェーンをデータでつなぎ、食品流通分野で DX に取り組んでいる。同社の狙いは、サプライチェーンの上流から下流にわたり、あらゆる商流データを需要予測システムで分析し、過剰在庫や欠品を出さない生産量や仕入れ量を予測することで、大幅なコスト改善を実現することである。将来的には、蓄積した需要予測のノウハウにとどまらず、事業の効率化や生産性向上に資する機能をプラットフォーム化して共有することにより、グループ内外の様々な商材やグループ企業以外にも展開する方針だ。

同社のグループは複数の食品メーカー小売チェーンを抱えているが、取引構造が複雑化しているため情報共有は十分とはいえないと状況であり、欠品や過剰在庫が生じていた。具体的には、販売側の小売業者が特定商品のセールを行うと、卸業者は供給確保のために在庫を積み増すが、店頭での需要予測の精度によっては過剰在庫を抱えてしまう。また、供給側のメーカーが新製品を投入する際にも、小売業者が販売スペースを確保できなければ、在庫は過剰となってしまうことになる。これは、社会課題にもなっている食品ロスが生じるひとつの要因でもある。

そこで、従来の個社ごとの在庫管理システムとは異なる考え方で、企業間のデータ連携を狙った。商流の川上から川下まで同社がデータを集約・分析し、需要予測データを各社と共有することで、サプライチェーン全体で在庫を管理することを目指した。

実現に向けて、業務提携を結んでいる日本電信電話（株）などとともに、企業内や企業間に散在するデータと気象予測情報などの外部データをシームレスかつセキュアに連携する基盤や、食品流通における AI 需要予測システムを開発した。当初は予測精度が上がらなかったものの、グループ企業だけでなく取引先からも幅広くデータを収集するとともに、倉庫からの出荷量や調達に要する時間などの多種多様な情報を収集した上で、これらの情報を AI に学習させることで、予測精度の向上に加え、在庫の削減とトレードオフの関係にある欠品率の低下も実現した。

この AI 需要予測システムについて、今後、更なる検証を進め、実運用に移行し、グループ内外に販売を広げていく予定である。これにより、食品流通バリューチェーン全体の無駄や重複を排除し、効率化かつ最適化された食品流通の実現を目指す考えだ。

同社が川上から川下まで関係する事業は幅広く、食品のみならず、自動車や日用品、建材、化学品など多岐にわたり、前述の AI 需要予測システムの仕組みはこれらの他分野の予測にも横展開できるため、食品流通を起点に他分野にも展開し、多様な産業における知見、ノウハウ、データをデジタル技術と掛け合わせた取組を進め、社会課題の解決を目指している。

図 三菱商事（株）の食品流通 DX プラットフォーム

出所：アーサー・ディ・リトル・ジャパン（株）「サイバーフィジカルシステムの戦略的導入等に関する調査」（2021年2月）
（3）製造現場での無線通信技術の本格活用に向けた期待

2020年版ものづくり白書では、今後、製造現場において5Gなどの無線通信技術の本格活用が進んでいくであろうことを見据え、5Gの国際的な標準仕様の策定動向やローカル5Gに関連した国内の制度整備の検討状況、これらの無線通信技術を製造現場で本格活用する際の期待と課題などについて論じた。2で論じたバリューチェーン全体におけるDXも、無線通信技術の活用が進めば一層進展すると見込まれている。さらに、無線通信技術の活用により製造現場において通信の配線レス化が実現すれば、迅速かつ柔軟に組み換えられる生産ラインを構築することができ、平時のみならず、有事の際に新たな必要となる代替生産や増産に柔軟に対応することが期待できる。以降、無線通信技術の国際標準化や制度整備の動向をアップデートするとともに、製造現場において期待されるユーザケースや無線通信技術の進展がもたらす市場のゲームチェンジ、無線通信技術に対する我が国製造事業者の認識などに言及していく。

まず、無線通信技術の中で、2020年版ものづくり白書策定後の1年間において国際標準化に向けた検討が進められたWi-Fi6と5Gを取り上げる。

Wi-Fi®は、2.4GHz帯や5GHz帯などの免許不要帯域を用いた無線通信技術であり、IEEE（Institute of Electrical and Electronics Engineers：米国電気電子学会）が定める無線通信規格であるIEEE802.11をベースとしており、通信機器メーカーなどで構成される国際的な業界団体であるWi-Fi Allianceでプロモーションを推進している。現在、無線LANルーターなどの機器向けに同団体が認証プログラムを提供している最新の規格は、無線通信規格IEEE802.11axをベースとしたWi-Fi6である。Wi-Fi6は、従来の規格と比較して、①多数同時接続、②IoT機器との容易な接続、③高速通信が可能である、といった優れた特徴を有している。さらに、その後続ける、無線通信規格IEEE802.11beをベースとした次世代規格の策定も進められている。

5Gに関して、我が国においては、スマートフォンなどのユーザー向けに通信事業者が展開するサービスが先行して商用化されており、2020年3月に（株）NTTドコモ、KDDI（株）及びソフトバンク（株）の3社が、同年9月には新規参入した楽天（株）が、それぞれサービスを開始した。5Gが有する高速大容量、超低遅延・多数同時接続を実現する特徴は、製造現場においても本格的な活用が期待されている。5Gの特徴の中、特に超低遅延・多数同時接続の機能が強化されたポスト5Gは、2025年頃に製造現場を含めた多様な産業用途で本格活用されることが見込まれている。その際に必要となる先端半導体の製造を国内で実現すべく、経済産業省では、2019年度補正予算及び2020年度第3次補正予算において、「ポスト5G情報通信システム基盤強化研究開発事業」として合計2,000億円の基金を創設した。この事業では主に、①ポスト5G情報通信システムの開発、②先端半導体製造技術の開発、③先端研究の3つの取組を行っており、同年度においては、58件の応募があり、35件を採択した。

製造現場での本格活用を想定する際には、通信事業者が主体となって全国展開する5G通信サービスだけでなく、ローカル5Gも選択肢となる。ローカル5Gとは、通信事業者以外で実際に5Gを利用する自治体や企業が直接無線通信技術を管理する主体となり、自らの建物内や敷地内といった特定のエリアで構築・運用する自営の5Gネットワークである。現在、ローカル5Gとして利用できる対象周波数帯は4.6～4.9GHzと28.2～29.1GHzの合計1,200MHzであり、これらを活用するには実際にその利用を求める自治体や企業が総務省に免許申請を行い、免許を取得する必要がある。また、対象周波数帯の活用に向けては、まず28.2～28.3GHzの帯域100MHz幅については技術的条件の検討が先行して行われ、2019年12月から免許申請が開始されている。残る4.6～4.9GHzと28.3～29.1GHzの帯域については、2020年12月から免許申請の受付が開始されている。

注 33 2020年版ものづくり白書で言及したとおり5Gとは、ITU（International Telecommunication Union：国際電気通信連合）が国際標準化を、3GPP（3rd Generation Partnership Project）が標準仕様策定をそれぞれ定める「第5世代移動通信システム」であり、「超高速通信」、「超低遅延通信」及び「多数同時接続」を実現するという特徴を有している。
注 34 先端半導体とは、ポスト5Gを含む情報通信システムにおいて必要となる、先端的な機能を有する半導体を意味している。
製造現場ではこれまで有線通信技術が主に利用されてきたが、柔軟性のある製造ライン実現のため、5Gやローカル5Gを含む無線通信技術への期待が高まっている。一方で、製造現場における無線通信技術の本格活用には独特の課題があり、複数の異なる無線通信技術が共存するためには、通信に用いられる電波の性質と課題を正しく理解する必要がある。

電波とは、電場と磁場が変化することによって発生する波であり、波としての特徴を持つ。波の主なものとして、干涉と回折がある。無線通信技術で用いる電波は、ある幅をもって周波数帯を区分し、用途ごとに使い分けて行っている。この特定の幅を周波数帯と呼び、同一周波数帯の無線通信方式はお互いに同じような波の性質を持つ。また、周波数が高いほど直進性が高く（回折が小さい）、単位時間当たりに伝送できる情報量が多い。周波数が低いほど物の陰に回り込むやすくなる（回折が大きい）、単位時間当たりに伝送できる情報量が少ない。また、電波は水に吸収されやすく、金属では反射されやすいという特徴があるため、製造現場のように人（人には水分が多く含まれる。）の行き来があり金属物も多い環境においては、各無線通信技術で用いる周波数帯に応じた特徴を理解し、環境に応じて適材適所で無線通信技術を使うことが重要である。例えば、やり取りするデータ量が小さいが、通信相手が金属の陰に隠れるような場合、回り込みやすいが送信できる情報量が少ない低い周波数帯が向いている。一方で、比較的近い場所で通信するが、画像などを含む場合でも回すことができるような場合は、高い周波数帯を用いることが望ましい。例えばローカル5Gにおいて利用できる対象周波数帯は、4.6 ～4.9GHz及び28.2 ～29.1GHzの合計1,200MHzである（図）。5Gでは、比較的小さなデータに関して、基地局端末間の通信に掛かる遅延時間が1ミリ秒以下で実現できる事例が報告されているが、特に超低遅延と大容量でもあるレベルで両立させなければならないアプリケーションに対しては、高い周波数帯を適切に扱うことが求められている。また、1つの周波数で正常に通信できる無線システムには限りがあり、複数のシステムが同じ周波数帯を用いると干渉する場合がある。このため、できるだけ多くの無線システムで同じ周波数帯を用いるためには何らかの調整機能が必要になる。

国立研究開発法人情報通信研究機構（NICT：National Institute of Information and Communications Technology）では、総務省と連携し、製造現場でのIoTを推進し、無線通信技術を活用したスマート工場を実現すべくフレキシブル・ファクトリー・プロジェクトを立ち上げ、稼働中の工場における多種類の無線通信技術の性能評価実験を通じて、現地で発生する問題やその原因分析を行っている。さらに、活動の中で得られた知見が広く活用されるべく、各種報告書の公開を積極的に行っている。また、製造現場で用いられる様々な機器の中には国内メーカーの製品のみならず海外メーカーの製品も多く用いられているため、それらを協働して動作させるためには協調制御に係る通信規格を国際標準化する必要がある。このため、2017年にフレキシブル・ファクトリー・プロジェクトの有志が集まり、フレキシブルファクトリーパートナーアライアンスという非営利任意団体を設立し、複数の無線システムが
2020年版ものづくり白書では、国際的な枠組みである3GPP（3rd Generation Partnership Project）で検討されてきた5Gの国際的な標準仕様について取り上げた。具体的には、2018年6月に公表された「Release15」にて、5Gの基本機能とされている高速大容量に係る標準仕様が策定されたことや、今後、「Release16」以降で要件定義される機能が拡充される予定であることを取り上げた。

その後の1年間での進展としては、2020年6月に公表された「Release16」が挙げられる。「Release16」では、超低遅延・同時多数接続の要件が定義され、製造現場での5Gの活用を想定して、①生産設備の制御や予知保全、②画像解析を通じた製品の品質管理、③製造現場における高精度な測位、といった産業IoT向けの要件定義が新たに行われた。

加えて、「Release16」の後継規格である「Release17」の検討も進められている。「Release17」では5Gの最終的な標準規格の確立を目的としており、①複数台の監視カメラやウェアラブル端末を一括制御した際の運用の最適化、②エッジコンピューティングの本格活用、③通信端末同士又は車両同士の相互通信、といった一層厳格な要件定義が行われる予定である。「Release17」は当初、2021年末めどで公表される予定であったが、現時点では早くとも2022年半ば以降の公表が予定されている（図123-12）。

図123-12 3GPPによる5Gの標準化スケジュール

2020年版ものづくり白書では、国際的な枠組みである3GPP（3rd Generation Partnership Project）で検討されてきた5Gの国際的な標準仕様について取り上げた。具体的には、2018年6月に公表された「Release15」にて、5Gの基本機能とされている高速大容量に係る標準仕様が策定されたことや、今後、「Release16」以降で要件定義される機能が拡充される予定であることを取り上げた。

その後の1年間での進展としては、2020年6月に公表された「Release16」が挙げられる。「Release16」では、超低遅延・同時多数接続の要件が定義され、製造現場での5Gの活用を想定して、①生産設備の制御や予知保全、②画像解析を通じた製品の品質管理、③製造現場における高精度な測位、といった産業IoT向けの要件定義が新たに行われた。

5Gの商用化に至るまでの過程においては、大きく2つのステップで検討が進められていた。一つ目は5Gの仕様を定めるための標準化活動、二つ目は5Gの活用を進めるための普及推進活動である。このうち、5Gの活用に向けた普及推進活動という点では、ドイツを中心とした5G-ACIA（5G Alliance for Connected Industries and Automation）が中心となって進めてきた。

5G-ACIAとは、製造業の5Gに関するニーズ把握や、標準化や規則の策定に向けた検討といった取組を通じて製造業における5Gの利活用を促進することに目的をもって、ドイツ電気電子工業連盟の後援の下で2018年に設立された国際的なアライアンスであり、各国の通信事業者や製造事業者のほか、研究機関や大学も参加している。本組織は主に、全体戦略を策定する理事会と個別のテーマを議論するワーキング
製造現場で無線通信技術の本格活用が実際に進めば、例えば、工場内の通信の配線レス化によって製造ライン全体や工場全体のレイアウト変更が容易に行えるようになり、その時々の状況に応じた最適な生産ラインの構築が可能となる。また、各生産設備に設置されたセンサーを通じて、従来は取得できなかった稼働状況などの情報を大量かつリアルタイムに取得できため、製造された製品のトレーサビリティの確保や不良品判断、生産設備の予知保全がより正確かつ迅速に行えるようになる。さらに、遠隔監視、工場内での複数の無人搬送車（AGV）の活動、生産設備ごとに設置された制御装置の一括制御、AR（拡張現実）やVR（仮想現実）を用いた作業員への作業指示といった活用が可能になると想定される（図123-13）。

ループによって構成されている。参加事業者は、通信分野を専門とするICT分野と、工場の生産プロセスや実際の製造を専門とするOT（Operational Technology：制御技術）分野に分かれて、製造現場における5Gの活用に向けた検討を進めている。さらに、5Gを活用するに当たっての具体的な課題やローカル5Gの運用状況についての把握も行い、現場からの改善要望や規制の在り方について、必要に応じて政府や標準化団体に対する提言を行っている。

また、同団体は、3GPPなどの他の標準化団体や、業界団体が行っている検討にも参加している。同団体は、3GPPの活動には「市場担当パートナー」として参加しており、5Gの国際標準化に当たって製造現場で5Gを実際に活用することを想定した形での検討が進むべく、必要な働きかけを行っている。

製造現場で無線通信技術の本格活用が実際に進めば、例えば、工場内の通信の配線レス化によって製造ライン全体や工場全体のレイアウト変更が容易に行えるようになり、その時々の状況に応じた最適な生産ラインの構築が可能となる。また、各生産設備に設置されたセンサーを通じて、従来は取得できなかった稼働状況などの情報を大量かつリアルタイムに取得できため、製造された製品のトレーサビリティの確保や不良品判断、生産設備の予知保全がより正確かつ迅速に行えるようになる。さらに、遠隔監視、工場内での複数の無人搬送車（AGV）の活動、生産設備ごとに設置された制御装置の一括制御、AR（拡張現実）やVR（仮想現実）を用いた作業員への作業指示といった活用が可能になると想定される（図123-13）。

図 123-13 無線通信技術を活用したスマート工場のイメージ

![図123-13 無線通信技術を活用したスマート工場のイメージ](image)

資料：ボッシュ “Accelerating Smart Factory using 5G”

ラティス・テクノロジー（株）は、製造や保守作業を行う従業員が装着する眼鏡型XRデバイスやタブレットなどに作業情報をビジュアル表示する3D作業指導書ソリューションを提供している。本ソリューションは軽量3Dフォーマット（XVL®: eXtensible Virtual world description Language）を利用して開発された。現場で製造や保守作業を行う従業員が、眼鏡型XRデバイスやタブレット上に3D作業指示書を表示すれば、作業内容を3Dで正確な把握し、効率的な作業を行うことができる。なお、XVL®は、製造工程における3D作業指示書のみならず、設計や試作評価、販売・サー
ビス、設備開発、工程検討・ライン構築など、ものづくりに関わる全てのプロセスで活用可能で、ものづくりの IT 化による全体最適を実現する。

また、スマートグラスを技能伝承に活用している事例もある。 (株)ひびき精機はアルミやステンレスなどの金属加工技術を活かして半導体製造装置の部品や航空機精密部品の製造を得意とする企業である。同社では、工作機械の状態確認や若手従業員の指導のために、その都度熟練者が現場に向かう必要があり、その手間が作業効率を低下させているという課題があった。これに対して、ローカル 5G 活用のトライアル契約を締結した西日本電信電話（株）と共同で、スマートグラスを指導対象の若手従業員に装着させて、熟練者が遠隔から作業を指示・支援することによって、作業全体の効率化や技能の伝承にもたらす効果について、検証を行っている。

建設機械の設計に XR を活用している例もある。 (株)小松製作所では、2011 年から主力工場へ設計・開発用バーチャルリアリティ装置の導入を進めている。正面、左右、床の 4 面や、天井も加えた 5 面のスクリーンに運転者の視界情報を投影し、運転者の作業や視界を体感することができる。これによって、操作性や視界、安全性を設計段階でシミュレーションすることができ、そこで体験した結果をリアルタイムで設計に反映することができる。さらに、部品の点検・整備や修理のしやすさといったメンテナンス性の観点も早期に盛り込めるため、開発効率が向上し、開発期間を短縮することができる。

このような先進事例が今後も多く創出されることで、XR の活用と DX が相互に進展していくことが一層期待される。

図 2 (株)ひびき精機及び西日本電信電話（株）のローカル 5G を活用したスマートグラスの共同検証

出所：西日本電信電話（株）
将来的には、個々の生産設備から取得した稼働状況などの詳細データを、製造実行システム（MES）やその上位にある経営資源管理システム（ERP）に集約し、最適な稼働・制御条件をリアルタイムに生産設備にフィードバックする動き、すなわち、OT（制御技術）と生産計画全体を統括するIT（情報技術）との融合が一層進み、両方に市場を有する企業が関連市場での比較優位を強めていくような可能性が考えられる。

「令和 2年度産業経済研究委託事業（分野別技術競争力に係る調査）」によれば、OT層のグローバル市場規模は21兆円（2016年実績）であるが、そのうち我が国産業機械メーカーは23％（2018年実績）のシェアを占めており、実際に工作機械の加工条件の制御をコンピュータ数値計算により行うコントローラー（CNC）や製造装置の制御を行うプログラマブル・ロジック・コントローラー（PLC）のグローバルシェアはそれぞれ65.2％（2017年時点）と37.0％であることからも分かるように、従来、我が国の産業機械メーカーはOT層に優位性を有してきただ。一方で、ソフトウェアで構成されるIT層の市場については、グローバル市場規模4.6兆円（2017年実績）のうち日本企業が占めるシェアは4.5％（2017年実績）に過ぎず、実際に製造工程の把握や管理、作業者への指示を行う製造実行システム（MES）のグローバルシェアは17.6％（2017年時点推計）、企業経営資源を可視化し、適切な分配や経営層の意思決定を支援するための経営資源管理システム（ERP）のグローバルシェアはわずか1.9％（2017年時点推計）といったように、OT層とIT層のプレゼンスに顕著な差があるといえる（図123-14・15）。

備考1：数値はソフトウェアとハードウェア全体の市場規模。OT層全体のうち、PLCとCNCのみのグローバル市場規模は1.5兆円。
備考2：数値はソフトウェアとハードウェア全体の市場規模。OT層全体のうち、PLCとCNCのみの日本企業のシェアは41.5％。
出所：ボストン・コンサルティング・グループ「令和 2年度産業経済研究委託事業（分野別技術競争力に係る調査）」（2021年2月）
一方、日本企業にとって競合となり得る海外企業の中には、OT（制御技術）層だけでなく、IT（情報技術）層にも強みを有する企業が存在する。例えばシーメンスは、従来は産業機械などのOTに強みを有していたが、各工程で用いられるデジタルツールを提供するソフトウェア企業の買収・連携を通して、IT市場にもシェアを拡大しつつある。2019年には、それらのデジタルツールを統合した「Xcelerator」というソリューションの販売を開始した。このような企業が、製造現場における無線通信技術の本格活用が進む中でOTとITを相互に融合させた製品やサービスを新たに開発し、それらを実用化して市場に投入していければ、ITとOTの双方の市場を拡大させ、市場のゲームチェンジを招く可能性がある。これはユーザー企業に加え、OT市場に優位性を有する我が国のFAメーカーにとっても重要な分岐点であり、今後、IT市場も視野に入れた事業展開を行うことが競争上重要となる。なお、従来はデバイスから取得されたデータはクラウドに送られ、そこで一括して分析・処理を行うような場合や、無線通信技術の導入によって扱うデータ量が増えすることで、ネットワークに大きな負担が掛かかる可能性がある。そこで、デバイス自体やデバイスとクラウドの間に置かれたエッジサーバでデータを迅速に処理しつつ、必要なデータのみをクラウドに送るといった分散処理を実現するエッジコンピューティング技術も活用が期待されており、無線通信技術を製造現場に実践導入する際には、これらのコンピューティング技術にも留意が必要である。
かねてから「Industry 4.0」を標榜し製造業の生産性向上に取り組んできたドイツにおいては、政府として、製造現場における無線通信技術の活用に向けたローカル 5G 制度の構築や技術開発支援に先行して取り組んでおり、これらの制度や支援策を利用してながら無線通信の活用を進める企業も現れ始めている。特に自動車産業においても、自社工場において無線通信技術を活用する事例や、無線通信技術の活用によって実現するサービスの実用化に向けた実証を行う事例がみられる。これらの事例は世界的にみても先駆的なものと考えられ、今後我が国の製造事業者が無線通信技術を本格活用していくに当たって、しっかりと留意すべきである。

一方で、通信の配線レス化も含めたいわゆるスマートファクトリーの取組について、構成要件として求めるべき技術要素と無線通信技術のスラムを整理すると（図 123-16）、多くのユースケースでは 4G や無線 LAN などの既存の無線通信技術の活用で十分対応ができ、必ずしも 5G の性能を必要としないことが分かる。このように、自社の取組方針に合わせて、ユースケースやコストに応じて最適な無線通信技術を柔軟に選択し、ダイナミック・ケイパビリティ強化の取組をいち早く進めていくことが重要である。

機械メーカーのボッシュは、ドイツのロイトリンゲンにある自社工場でローカル 5G 免許を取得し、工場内でのプライベート 5G ネットワークの導入を通じて、無線通信技術の活用を前提としたサービスの実用化に向けた実証事例を数多く展開している。具体的には、同社のグループ企業が提供する、クラウド化されたワークフロー・ロジック・コントローラー (PLC) などを実装した「CtrlX AUTOMATION」と呼ばれるアプリケーションを、無線通信技術が導入された生産現場で活用することを想定している。さらに、プライベート 5G を介して、無人搬送車（AGV）の一括制御やAI を用いた保守・点検を行うことも検討している。同社は国内外で約 280 ある自社工場を全てデジタル化し、そこから得られたデータ収集やデータの解析といったノウハウを他社に提供することを目指しているほか、将来的には、上記のユースケースを産業向け IoT ソリューションとして他の製造事業者に外販することを目指している。

自動車メーカーのダイムラーは、ドイツのジンデルフィンゲンにある自社工場「Factory 56」でローカル 5G 免許を取得し、プライベート 5G ネットワークを活用した生産を行っている。具体的には、工場内でのデータをエッジコンピューティングにてセキュアに管理し、「MO360」と呼ばれる、製造実行システム (MES) やプログラム・ロジック・コントローラー (PLC) を含む製造現場の総合ソリューションを活用して生産を行っている。製造現場においては 400 台以上の無人搬送車 (AGV) を 5G に接続して制御しているほか、5G を活用した VR（仮想現実）-AR（拡張現実）を導入することで、溶接や細かな部品の取り付けといった自動化が困難な作業について、経験の少ない作業員の作業の支援を行っていく。
無線通信技術に対する我が国製造事業者の認識に関する調査によれば、無線通信技術への関心については過半数が「大いに関心がある」又は「関心がある」としている（図 123-17）。

出所：三菱 UFJ リサーチ＆コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年 3月）
無線通信技術の特性として最も期待されているものは、「超高速大容量通信」であった。それに続く形で、「通信の信頼性の確保」、「セキュリティの強化」、「多数同時接続」、「超低遅延通信」となっている（図123-18）。

実際の導入に向けた検討状況については、「すでに導入済み」又は「導入に向けた準備中」とした企業は、全体の 8.6%、「導入するかどうか検討中」とした企業は 45.3% であった（図123-19）。

出所：三菱 UFJ リサーチ＆コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）
無線通信技術を実際に導入している又は導入を検討している場面としては、8割を超える企業が「生産ライン」としており、「倉庫・物流管理」、「人材育成・技能継承」とした企業も一定程度存在している（図123-20）。

前述のとおり、無線通信技術が特に重要なのは、従来有線で行っていた通信の配線レス化や無人搬送車（AGV）の活用などを通じて、その時々の状況に応じて迅速かつ柔軟に組換え可能な生産ラインで最適な生産を実現できる点、つまりダイナミック・ケイバリティの実現に寄与する点である。

しかし、無線通信技術の具体的な用途としては、現段階では、「機械の段取り時間の短縮」、「保守点検・メンテナンス」、「故障予知への対応」を挙げた企業が多く、「機械の柔軟な配置変更」や「AGV（無人搬送車）の効率的運用」いったダイナミック・ケイバリティの実現に資するユースケースを挙げる企業はそれらよりも少なかった（図123-21）。

![図123-20 無線通信技術を導入している/導入を検討している場面](image)

出所：三菱UFJリサーチ&コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）

![図123-21 無線通信技術の具体的な用途](image)

出所：三菱UFJリサーチ&コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）
無線通信技術の活用に向けた課題や問題としては、「知見・ノウハウ不足」が多く挙げられた。また、「導入コストの割高感」、「コストの不透明感」、「ランニングコストの割高感」など、コストに関するものも多く挙げられた（図123-22）。

図123-22 無線通信技術の活用に伴う課題や問題

出所: 三菱UFJリサーチ＆コンサルティング（株）「我が国ものづくり産業の課題と対応の方向性に関する調査」（2021年3月）

【CEATEC 2020 ONLINE】の概要

CEATEC（Combined Exhibition of Advanced Technologies）は一般社団法人電子情報技術産業協会、一般社団法人情報通信ネットワーク産業協会及び一般社団法人コンピュータソフトウェア協会の3団体で構成されるCEATEC実施協議会の主催で2000年から毎年開催されており、2020年は新型コロナウイルス感染症の感染拡大を受け、「CEATEC 2020 ONLINE」で開催された（開催期間：同年10月20日から23日、オンデマンド配信期間：同年10月28日から12月31日）。

今年の展示やカンファレンスの内容の特徴としては、①我が国でも通信事業者が提供するサービスが開始された5G関連、②新型コロナウイルス感染症の感染拡大によって課題が浮き彫りになったDXに関する各種提言、③社会課題解決に向けたDX、といった内容が掲げられる。ローカル5GとエッジAIを活用した顔認証や予兆検知など、製造業DXへの今後の展開の拡大が期待されるソリューションの展示も多数みられた。

カンファレンスにおいても、アジアの製造現場における5Gの活用状況や、産業分野における5G活用の取組と今後の展望など、産業分野における5G活用に関する内容が多数取り上げられた。これらの講演の中では、今後の課題として、①無線通信技術を通信事業者以外の事業者も広く使えるようにするための裾野作り、②プレーヤー同士の共創の重要性、といった提案がなされた。また、5Gのセキュリティ機能の観点から今後整備すべき要件や不足する機能に関する議論も行われた。

また、「デジタルアーキテクチャ」で作り出す産業構造のDXをテーマに(独)情報処理推進機構（IPA：Information-technology Promotion Agency）において2000年5月に設立されたデジタルアーキテクチャ・デザインセンター（DADC：Digital Architecture Design Center）によるセッションが開催され、同センター長でファナック（株）副社長の齊藤裕氏から、サイバー空間とフィジカル空間が信頼性
を有する形で安全かつ効率的につながる「縦の連携」、各企業が開発した個々のサービスが相互につながる「横の連携」、縦横の連携を適切に社会で適用できるためのルールや制度などの仕掛けや仕組みなどの「ガバナンス」の3つの観点を有するデジタルアーキテクチャの重要性が示された。

图 デジタルアーキテクチャ・デザインセンター

上記に加え、更に長期的な見通しとして、いわゆる6Gに当たるBeyond 5Gの基本的な性能については、3GPPが2021年末以降に策定を開始する予定である「Release18」にて扱われるが、この中では数ミリ秒程度の遅延しか許されない厳格な制御やレスポンスなど、5Gのスペックでは依然として対応できないとされるユースケースも含められると見込まれている。我が国では、総務省がBeyond 5Gを「あらゆる機器が自律的に連携し、最適なネットワークを構築する自立性、地球上のどこでも通信を可能とする拡張性、セキュリティ・プライバシーが常に確保される超安全・信頼性、データ処理量の激増に対応できる超低消費電力といった機能を実装した次世代の移動通信システム」注35と定義し、2030年頃に見込まれる導入・活用に向けた方向性を取りまとめた「Beyond 5G推進戦略—6Gへのロードマップ—」を2020年6月に公表した。さらに、同年11月には、Beyond 5Gに関連した知財の取得や標準化に向けて、産官学が連携して取り組むことを目的とした「Beyond 5G新経営戦略センター」を立ち上げたところである。

注35総務省「令和2年版情報通信白書」
現在、本フレームワークを基本としつつ、産業分野の持つ特徴を踏まえながら、全6つの産業分野において業種別の議論を行っている。そのうち、これまでにビル、自動車産業及びスマートホームの分野におけるガイドラインが策定・公表済みであり（2021年4月1日時点）、今後、更に多くの分野での策定が期待されている。

このような状況下においては、サイバー攻撃の被害を受け得る範囲やサイバー攻撃がフィジカル空間に対して及ぼす影響が一層拡大していくことは自明であり、事業者としても、サイバー攻撃の対象となり得るリスク源を着実に特定・認識し、対策を講じていく必要がある。

このような課題への対応に向け、経済産業省では、2019年4月、「サイバー・フィジカル・セキュリティ対策フレームワーク」（CPSF）を発表した。本フレームワークでは、リスク源を的確に捉え、求められるサイバーセキュリティ対策の全体像を整理すべく、産業社会を三層構造に、サプライチェーンを6つの構成要素に、それぞれ整理した新たなモデル（図123-23）と、本モデルに基づいた着実なサイバーセキュリティ対策の実施に向けた方針を提示している。

図123-23 サイバー・フィジカル・セキュリティ対策フレームワークに掲げるモデル

現在、本フレームワークを基本としつつ、産業分野の持つ特徴を踏まえながら、全6つの産業分野において業種別の議論を行っている。そのうち、これまでにビル、自動車産業及びスマートホームの分野におけるガイドラインが策定・公表済みであり（2021年4月1日時点）、今後、更に多くの分野での策定が期待されている。

本ガイドラインも参照しつつ実効あるサイバーセキュリティ対策を講じるために何よりも重要なのは、人材である。ますます増加するサイバー攻撃リスクに対応する人材・組織・システム・技術を生み出すべく、2017年4月に（独）情報処理推進機構(IPA)において設立した産業サイバーセキュリティセンター（ICSCoE：Industrial Cyber Security Center of Excellence）では、模擬プラントを用いた演習や、攻撃防御の実践経験、最新のサイバー攻撃情報の調査・分析などを実施している。

ICSCoEが目指すべき産業サイバーセキュリティ人材像として掲げるのは、OT（制御技術）とIT（情報技術）双方のスキルを核とした上で、サイバーセキュリティ対策の必要性を把握し、プロジェクトを強力に推進していくことのできる人材である。例えば、自社システムの安全性・信頼性を客観的に評価し自社のサイバーセキュリティ戦略の立案や経営リスク・財務リ

出所：経済産業省「サイバー・フィジカル・セキュリティ対策フレームワーク」（2019年4月）
スクなどを自社内幹部へ説明できる能力、リスク評価の結果に基づき対策の必要性や優先順位を判断できる能力、経営層や現場担当者とコミュニケーションを取りながら必要な対策を実行できる能力などの向上が肝要である。

このような人材を着実に育成していくべく、現在、ICSCoEでは、①中核人材育成プログラム、②責任者向けプログラム、③実務者向けプログラム、④管理監督者向けプログラムなどを提供している。そのうち、①中核人材育成プログラムは、テクノロジー（OT・IT）、マネジメント、ビジネス分野を総合的に学ぶ約1年間のトレーニングであり、各業界のシステムを想定した模擬システムを使用したトレーニングや、トップレベルのサイバーセキュリティ対策のノウハウを有する海外関連機関との連携トレーニングなど、極めてユニークかつ野心的な内容となっている。

2017年の発足以来、中核人材育成プログラムは第1期から第3期で計228人が修了し（2021年4月1日時点）、2020年7月から第4期が開講されている。これまでの実績を踏まえ、ICSCoEは2020年度に向けた5年の目標「ICSCoE2025ビジョン」を掲げ、今後、人材育成の更なる強化を始め、産業社会のサイバーセキュリティ対応能力の開発・普及を行う中核機関を目指すこととしている（図123-24）。

政府によるこのような取組と並行して、産業界においてもサプライチェーン全体として着実なサイバーセキュリティ対策の促進を目指した取組が拡大している。各経済団体や業種別業界団体などの参画により、2020年11月に設立された「サプライチェーン・サイバーセキュリティ対策の促進」（サプライチェーン・サイバーセキュリティ・コンソーシアム）では、

・サプライチェーンのサイバーセキュリティ強化のため企業に求められる基本的な行動（①サプライチェーンを共有する事業者間におけるサイバーセキュリティに関する高密度情報共有の実施、②機密技術情報の流出懸念がある場合の関係者への報告、③情報漏えいなどの被害が取引先など不特定多数の関係者に影響するおそれがある場合における関係者への影響緩和の取組促進のための公表の実施）の促進

・中小企業を含めた我が国の産業サプライチェーン全体でのサイバーセキュリティ対策の促進に必要な取組の検討・推進、情報の収集・発信、普及・啓発

など、サプライチェーン全体のサイバーセキュリティ強化に向けた具体的な取組を推進していくこととしており、現在既に90以上の団体が会員として参加している（2021年4月1日時点）（図123-25）。
このようにサプライチェーン全体でのサイバーセキュリティ対策に取り組んでいく過程において、特に難しい反面、重要なもので、各種リソースの乏しい中小企業における動機付けと着実な対策の実施である。前述の CPSF でも掲げるように、サプライチェーンの広い範囲でサイバー空間とフィジカル空間との融合し、そのリスク源も多様化していく中で、中小企業での対策の遅れは、我が国製造業のサプライチェーン全体としてのダイナミック・ケイパビリティや産業競争力の弱体化、国際的なレピュテーションリスクの拡大につながるものとなる。

(独)情報処理推進機構（IPA）では、中小企業向けのサイバーセキュリティ対策支援の仕組み構築を目的として、2019年度及び2020年度に「サイバーセキュリティお助け隊実証事業」を実施し、サイバー攻撃に遭った際の事後対策の支援などに取り組んだが、2021年2月には、本事業で得られた知見などに基づいて、中小企業向けのセキュリティサービスが満たすべき「サイバーセキュリティお助け隊サービス基準」及びサービス内容の審査・確認を行う「サイバーセキュリティお助け隊サービス登録基準」を制定した。今後は、基準を満たすサービスに「サイバーセキュリティお助け隊マーク」の使用権を付与することで、中小企業が頼りやすい民間サービスの展開を支援するとともに、サービスを利用しサイバーセキュリティ対策を行う中小企業を見える化することにより、より多くの中小企業による着実なサイバーセキュリティ対策の実施が促進されることが期待される。

図 123-25 サプライチェーン・サイバーセキュリティ・コンソーシアムの概要

図 123-26 サイバーセキュリティお助け隊の概要

出所：経済産業省

出所：経済産業省「第7回産業サイバーセキュリティ研究会WG2」（2021年3月）
以上、デジタルの観点から我が国製造業のこれまでの取組を俯瞰すると、目指すべき社会の姿として「Society 5.0」を掲げるとともに、2017年3月には我が国の産業が目指すべき姿として「Connected Industries（コネクテッドインダストリーズ）」のコンセプトを提唱し世界に向けて発信してきた。加えて、製造業をめぐる「不確実性」の高まりに対しては、ダイナミック・ケイパビリティの強化が重要であり、そのためのDXの推進が有効であることを、2020年版ものづくり白書などにおいて論じてきた。しかし、3.（1）において「DXレポート2（中間取りまとめ）」に関連して述べたように、製造事業者に限らず、多くの企業においてDXの取組は未着手又は一部での実施にとどまっている。

このような中で、製造事業者は、自社がバリューチェーン上で担っている役割などをしっかりと把握しつつ、無線通信技術の活用なども含め、効率的かつ戦略的なDX投資を進めていく必要がある。政府においても、人材育成の促進に向けた環境構築、DX推進支援、各種取組の効果を高めるための研究開発支援などにより、企業の挑戦を積極的に後押ししていく。また、DXの取組と表裏一体で必要となるサイバーセキュリティ対策にも、中小企業を含めたサプライチェーン全体をしっかりと巻き込みながら、官民一体で取り組んでいくことが重要である。
ものづくり人材の確保と育成

第1節 デジタル化等が進展する中でのものづくり人材の確保・育成について

1 ものづくり産業における雇用・労働の現状

我が国経済は、2012年後半以降景気拡大局面が続いていたが、2020年から世界的に大流行している新型コロナウイルス感染症の感染拡大の影響により、国内外で社会経済活動の抑制が余儀なくされており、2020年の国内総生産（実質GDP）は、対前年比でマイナス4.8％注1 となった。2021年に入ってからも、新型コロナウイルス感染症の感染拡大により、依然として厳しい状況にある中、持ち直しの動きが続いているものの、一部に弱さがみられる。このような中、新型コロナウイルス感染症の感染拡大が雇用・労働に与える影響については、引き続き注視していく必要がある。

（1）雇用・失業情勢

完全失業者数（季節調整値）は、リーマン・ショック後の2009年7月に過去最高水準の364万人を記録して以降、減少傾向で推移し、2019年12月に155万人となった。2020年1月に増加に転じると、同年8月にはおよそ3年ぶりに200万人を超えて、2021年2月は、前月と同水準の203万人となった。また、完全失業率（季節調整値）についても、2019年12月は2.2％と低水準であったが、2020年に入り上昇に転じ、同年8月には3.0％、同年10月には3.1％をそれぞれ記録し、直近の2021年2月は2.9％となっている。なお、完全失業率の年平均をみると、2020年は2.8％であり、2019年の2.4％を0.4ポイント上回った（図211-1）。

図211-1 完全失業者数（季節調整値）及び完全失業率（季節調整値）の推移

備考：2011年3月から8月までは、東日本大震災の影響により、補完推計値を用いた。\[\text{資料：総務省「労働力調査」(2021年3月)}\]

注1 内閣府「2020年10-12月期四半期別GDP速報（2次速報値）」(2021年3月)
雇用のミスマッチの状況をみるために、完全失業率を、需要不足失業率注2と均衡失業率注3に分けてそれぞれの動向をみると、需要不足失業率は、リーマン・ショック後の2009年第4四半期以降低下し、さらに、2015年第4四半期以降はマイナス圏で推移するなど、低い水準が続いてきた。しかし、2020年第1四半期に上昇に転じると、2020年第3四半期には、0.05％と5年ぶりにプラスとなった。また、均衡失業率については、2012年以降は低下基調で推移していたが、2020年第1四半期から上昇に転じた（図211-2）。

図211-2　均衡失業率（季節調整値）及び需要不足失業率（季節調整値）の推移

新型コロナウイルス感染症の感染拡大に伴い緊急事態宣言が発出された2020年4月の休業者数をみると、全産業における休業者数は597万人であり、対前年同月差では420万人の増加を記録、同月の製造業における休業者数は57万人であり、対前年同月差では33万人の増加となった。続いて、直近の2021年2月の休業者数をみると、全産業における休業者数では、対前年同月差で32万人の増加となる228万人に、製作業における休業者数では、対前年同月差で3万人の増加で20万人となっており、引き続き休業者数については注視が必要であるものの、新型コロナウイルス感染症の感染拡大前に近い状況にまで戻っている（図211-3）。

2020年4月の休業者数の大幅な増加は、新型コロナウイルス感染症の感染拡大の影響で厳しい経営状況下にあっても、人口減少社会において必要な人材確保が難しくなる懸念とともに、将来的に社会経済活動のレベルが引き上がった際、事業活動を円滑に再開させたいニーズ等により、企業が従業員の雇用維持に積極的に取り組んだことが背景にあったと推測される。また、このような企業行動の背景には、雇用調整助成金の特例措置による下支えが存在したものと考えられる。

注2 完全失業率と均衡失業率の差であり、景気後退期に労働需要（雇用の受け皿）が減少することにより生じる失業者の割合と考えられる。
注3 完全失業者のうち、企業が求めの人材と求職者の持っている特性（職業能力や年齢）などが異なることにより生じる構造的失業と、企業と求職者の間の情報が不完全であるため、両者が相手を探すのに時間が掛かることによる摩擦的失業から構成される失業者の割合を指す。
図 211-3 全産業と製造業における休業者数の対前年同月差の推移

備考: 1. 休業者とは、仕事を持ちながら、調査週間中である月末1週間に少しも仕事をしなかった者のうち、以下の者を指す。
 1. 雇用者で、給料・賃金（休業手当を含む）の支払を受けている者、又は受けることになっている者
 2. 自営業主で、自分の経営する事業を持ったままで、その仕事を休み始めから30日にならない者
 なお、家族従業者で、調査週間中である月末1週間に少しも仕事をしなかった者は、休業者とはならず、完全失業者又は非労働力人口のいずれかとなる。

2. 「調査週間中である月末1週間は仕事をしていたものの、それ以外の期間において休業されていた方」や「調査週間中である月末1週間に仕事をしていたものの、一部に休業日があった方」は含まれないことから、解釈には一定の留意が必要。

資料：総務省「労働力調査」 (2021年3月)
有効求人倍率（季節調整値）は、2010年以降上昇し、2018年8月に1.64倍を記録したが、同年後半から激化した米中貿易摩擦により、製造業の業況が悪化したことも影響して、2019年は低下傾向で推移した。さらに、2020年の新型コロナウイルス感染症の感染拡大に伴い、宿泊業・飲食サービス業等の業績が低迷する中で、同年9月には1.04倍にまで低下し、直近の2021年2月は1.09倍となっており、求人が求職を上回って推移する状況が続いている（図211-4）。

主要産業別の新規求人数をみると、2019年は、建設業や宿泊業・飲食サービス業、医療・福祉などにおいては、前年同月とはほぼ同水準で推移していたが、製造業については、同年後半より徐々にマイナスが大きくなっていた。その後、新型コロナウイルス感染症の感染拡大の影響を受けた2020年の上半期には、宿泊業・飲食サービス業を始めとする、幅広い産業で落ち込みが顕著に表れ、同年4月から5月にかけては、産業全体として、対前年同月比でマイナス30%となった。製造業については、対前年同月比がマイナス40%を超える（2020年4月、5月、7月）もあった。2020年下半期からは、製造業の新規求人数の対前年同期比のマイナス幅は徐々に縮小してきているものの、新型コロナウイルス感染症の感染拡大による影響等により、先行きが不透明な中で、引き続き予断を許さない状況である（図211-5）。

次に、中小企業における産業別の従業員数における過不足状況、従業員数過不足DIを通じてみると、全産業は、2019年第4四半期から3期連続でマイナス幅が縮小し、2020年第2四半期にはマイナス1.1と不足感が弱まったが、直近の2021年第1四半期ではマイナス9.8となっている。製造業をみると、2020年第2四半期にプラス10.8と過剰に転じたが、それ以降は低下し、2021年第1四半期はマイナス3.7と再び不足となった（図211-6）。

以上のように、新型コロナウイルス感染症の感染拡大により雇用にも影響がみられ、その影響が長期化する中で、今後の雇用への影響については、引き続き注視していく必要がある。
図 211-5 主要産業別の新規求人数の対前年同月比の推移

備考: パートタイムを含む
資料: 厚生労働省「職業安定業務統計」（2021年3月）より作成
図211-6 中小企業における産業別従業員数過不足 DI（今期の水準）の推移

備考：従業員数過不足 DI は、今期の従業員数が「過剰」と答えた企業の割合（%）から、「不足」と答えた企業の割合（%）を引いたもの。
資料：中小企業庁「中小企業景況調査」（2021年3月）
（2）就業者数の動向及び就業者の構成

我が国の全産業の就業者数は、2002年の6,330万人から2019年の6,724万人へと394万人増加したが、2020年は新型コロナウイルス感染症の感染拡大による影響もあり、2019年から48万人減少の6,676万人となった。また、製造業の就業者数は、2002年には1,202万人いたが、2012年には1,033万人まで減少した。以降は徐々に増加し、2019年には1,063万人と30万人増加したが、2020年は、前年から18万人減少の1,045万人となった。全産業に占める製造業の就業者の割合は、2012年以降の製造業の就業者数が増加傾向で推移する中でも低下し続けている（図211-7）。この背景には、国内製造事業者の海外進出による国内生産の減少があるものと考えられる。

2002年には384万人であった製造業の若年就業者数は、2015年には261万人にまで減少した。その後はほぼ横ばいで推移し、直近の2020年には、2000年以降最も少ない259万人となった。若年就業者の割合でみても、2002年には、製造業・非製造業共に30%を超える水準であったが、2020年には、製造業・非製造業共に25%を切る水準にまで低下した（図211-8）。

一方で、製造業における高齢就業者数は、2002年には58万人であったが、2017年には159万人にまで増加した。その後は横ばいや緩やかな増加傾向を保ち、2020年には174万人と高止まりしている（図211-9）。

備考：2011年は、東日本大震災の影響により、補完推計値を用いた。分類不能の産業は非製造業に含む。
資料：総務省「労働力調査」（2021年3月）
図 211-8 製造業における若年就業者（34 歳以下）の推移

備考：2011年は、東日本大震災の影響により、全国集計結果が存在しない。分類不能の産業は非製造業に含む。資料：総務省「労働力調査」（2021年3月）

図 211-9 製造業における高齢就業者数（65 歳以上）の推移

備考：2011年は、東日本大震災の影響により、全国集計結果が存在しない。分類不能の産業は非製造業に含む。資料：総務省「労働力調査」（2021年3月）
製造業における女性就業者数は、2012年の304万人から2018年には322万人まで増加したが、2019年から減少に転じ、2020年は312万人となった。製造業の女性就業者の割合は、2003年には33.4%であったが、直近の2020年では29.9%となっている。全産業でみた女性就業者の割合が2003年の41.1%から2020年には44.5%へと上昇していることと対照的である（図211-10）。全産業においては、女性の就労拡大は進んでいるものと考えられるが、製造業においては、そのような成果が表れていない懸念があることがデータからは読み取れる。

製造業においては、正規の職員・従業員と非正規の職員・従業員それぞれの割合は、2013年から2020年まで、ほぼ横ばいで推移している。また、2020年の製造業と全産業の正規の職員・従業員の割合は、全産業の正規の職員・従業員の割合に比べて15.1ポイント高く、非正規の職員・従業員の割合は、全産業の方が8.2ポイント高くなっている（図211-11）。直近の2020年の結果をみると、製造業は、全産業に比べて、正規の職員・従業員の割合が高いことが分かる。
労働時間・賃金の動向

国内の製造業の労働時間の推移を確認する。製造業の事業所規模5人以上の事業所における労働者（一般労働者）1人当たりの総実労働時間は、2010年の168.1時間から徐々に増加し、2018年には170.8時間に上った。その後、2019年4月に働き方改革を推進するための関係法律の整備に関する法律（働き方改革関連法）が施行され、全業種での年5日の有給休暇取得の義務化や、大企業における残業時間の上限規制導入により、減少に転じ、2020年の総実労働時間は160.6時間まで減少した（図211-12）。これには、新型コロナウイルス感染症の感染拡大によるシフトの減少や休業を余儀なくされる方の増加などの影響もあったものと考えられる。

(3) 労働時間・賃金の動向

国内の製造業の労働時間の推移を確認する。製造業の事業所規模5人以上の事業所における労働者（一般労働者）1人当たりの総実労働時間は、2010年の168.1時間から徐々に増加し、2018年には170.8時間に上った。その後、2019年4月に働き方改革を推進するための関係法律の整備に関する法律（働き方改革関連法）が施行され、全業種での年5日の有給休暇取得の義務化や、大企業における残業時間の上限規制導入により、減少に転じ、2020年の総実労働時間は160.6時間まで減少した（図211-12）。これには、新型コロナウイルス感染症の感染拡大によるシフトの減少や休業を余儀なくされる方の増加などの影響もあったものと考えられる。

備考：「その他」は、自営業主・家族従業者、役員及び従業上の地位不詳の方。
資料：総務省「労働力調査」（2021年3月）

図211-11 製造業における正規・非正規雇用者の割合の推移

備考：一般労働者の、月間労働時間の年平均を示している。
資料：厚生労働省「毎月勤労統計調査」（2021年3月）

図211-12 労働時間の推移

備考：一般労働者の、月間労働時間の年平均を示している。
資料：厚生労働省「毎月勤労統計調査」（2021年3月）
男女間の賃金格差指数をみると、製造業においては、男性の賃金指数を100とした場合の女性の賃金指数は、2005年から上昇基調にあるものの、2020年は69.2であり、これは全産業と比べ、5.1ポイント下回っている（図211-13）。この男女間の賃金格差指数の結果は、結婚・出産・育児など、ライフステージの変化がある中でも仕事を続ける女性が増加している一方で、女性の勤続年数や管理職数が、男性と比較して未だ少ないことなどが要因として考えられるが、製造業ではそれがより顕著に表れている可能性がある。

（4）海外進出の動向

製造業において、海外に現地法人を有する企業数は、2009年度の8,399社から、2018年度には11,344社へと増加している。また、2018年度における全産業の海外に現地法人を有する企業数は26,233社であり、製造業は全体の43.2%を占めている（図211-14）。進出先の国によっては、日本国内より人件費や原材料費等の生産コスト大幅にカットすることが可能であり、コストパフォーマンスの向上を求めて海外進出する企業も多いと考えられ、海外に目を向けることによって、人材不足の解消につながる場合もあると推測される。これらの要因により、我が国の製造業における現地法人企業数は、増加傾向で推移しているものと考えられる。
海外に現地法人を有する企業数が増えていることに伴い、現地法人における常時従業者も増加基調にある。製造業における現地法人常時従業者数をみると、2009年度の368万人から、2014年度には約457万人となっている。その後は、ほぼ横ばいで推移し、直近の2018年度においても約457万人となっている。また、2018年度の非製造業の現地法人常時従業者数は約600万人であり、そのうち製造業の占める割合は、75.6%となっている（図211-15）。特に、製造業においては、国内のみならず、海外の人材にも依存していることがうかがえる。

図211-14 現地法人常時従業者数の推移

図211-15 現地法人常時従業者数の推移
ものづくり企業が実施した雇用調整施策について
は、大企業・中小企業共に、「一時休業」、「残業の抑
制・停止」、「生産調整（減産・生産停止など）」など
の雇用維持をメインに実施しており、「パートなど非
正社員の雇止め」や「正社員の解雇や希望退職」といっ
た、解雇・雇止めによる雇用調整は、割合としては少
なくなっている（図 212-2）。これは、ものづくり企
業において、雇用調整助成金の特例措置などを活用し
た、雇用維持策が講じられていることを表しているも
のと考えられる。

なお、JILPT 調査においては、従業員数が 300 人
以上の企業を大企業といい、従業員数が 300 人未満
の企業を中小企業とする。

（1）ものづくり産業における業績と雇用への影響
新型コロナウイルス感染症の感染拡大に伴う業績
の変化については、企業規模にかかわらず、「悪化し
た」が 8 割を超えており、ものづくり産業において、
広範囲で業績が悪化していることがうかがえる（図
212-1）。

図 212-1 新型コロナウイルス感染症の感染拡大による業績への影響

資料：JILPT「ものづくり産業における DX（デジタルトランスフォーメーション）に対応した人材の
確保・育成や働き方に関する調査」（2021 年 5 月）

もののづくり企業が実施した雇用調整施策について
は、大企業・中小企業共に、「一時休業」、「残業の抑
制・停止」、「生産調整（減産・生産停止など）」などの
雇用維持をメインに実施しており、「パートなど非
正社員の雇止め」や「正社員の解雇や希望退職」といっ
第1節
デジタル化等が進展する中でのものづくり人材の確保・育成について

図 212-2 新型コロナウイルス感染症の感染拡大を受けて実施した雇用調整施策（複数回答）

<table>
<thead>
<tr>
<th>措置内容</th>
<th>企業規模</th>
<th>大企業 (n=241)</th>
<th>中小企業 (n=3,438)</th>
</tr>
</thead>
<tbody>
<tr>
<td>一時休業</td>
<td></td>
<td>54.4</td>
<td>47.9</td>
</tr>
<tr>
<td>残業の抑制・停止</td>
<td></td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td>生産調整（減産・生産停止など）</td>
<td></td>
<td>47.3</td>
<td>31.2</td>
</tr>
<tr>
<td>勤務体制（シフト）の変更</td>
<td></td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td>派遣、個人請負など外部人材の契約終了</td>
<td></td>
<td>21.2</td>
<td>8.6</td>
</tr>
<tr>
<td>新卒採用の抑制・中止</td>
<td></td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>中途採用の削減・中止</td>
<td></td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>事業所間の配置転換</td>
<td></td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>出向・転籍</td>
<td></td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>所定内労働時間の短縮</td>
<td></td>
<td>7.4</td>
<td>3.3</td>
</tr>
<tr>
<td>パートなど非正社員の雇止め</td>
<td></td>
<td>7.6</td>
<td>3.0</td>
</tr>
<tr>
<td>下請・外注の削減</td>
<td></td>
<td>7.6</td>
<td>3.0</td>
</tr>
<tr>
<td>正社員の解雇や希望退職</td>
<td></td>
<td>4.7</td>
<td>3.0</td>
</tr>
<tr>
<td>定年後再雇用の解除要請</td>
<td></td>
<td>1.4</td>
<td>1.1</td>
</tr>
<tr>
<td>その他</td>
<td></td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>特に実施していない</td>
<td></td>
<td>8.7</td>
<td>23.9</td>
</tr>
<tr>
<td>無回答</td>
<td></td>
<td>0.8</td>
<td>0.6</td>
</tr>
</tbody>
</table>

資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」(2021年5月)
（2）ものづくり産業における就労環境の変化
新型コロナウイルス感染症の感染拡大を受けて、ものづくり企業が実施した人事労務管理の施策を確認すると、「出張の禁止・制限」、「リモートワークの導入・活用」などが導入・活用されている場合が多く、大企業では、「採用活動方法（説明会、面談など）の見直し」も半数以上が実施している。一方で、中小企業の3割近くが、「特に実施していない」とおり、企業規模によって、対応に差が出ていることが分かる。また、「リモートワークの導入・活用」に着目すると、大企業では、64.7%で活用が進んでいるが、中小企業では、28.9%となり、活用が低調であることがうかがえる（図212-3）。

図212-3 新型コロナウイルス感染症の感染拡大を受けて実施した人事労務管理施策（複数回答）

資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
さらに、リモートワークを導入・活用している企業のうち、導入・活用している部門の内訳を確認すると、「営業・販売部門」、「事務部門（総務・経理）」、「設計・開発・研究部門」などで高くなってしまっており、総じて、中小企業に比べて、大企業における導入・活用が進めている。一方で、ものづくり産業の根幹である「製造部門」では、大企業・中小企業共に、1割を切る低水準となっており、生産現場におけるリモートワークの導入・活用の難しさの実態が浮かび上がっている（図212-4）。

図 212-4 リモートワークを導入・活用している部門（複数回答）

備考：新型コロナウイルス感染症の感染拡大を受けて実施した人事労務管理施策として、「リモートワークの導入・活用」を挙げた企業に対する調査。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
リモートワークを導入・活用する場合の課題については、大企業・中小企業共に、「従業員同士のコミュニケーションが希薄になっている」、「従業員の仕事の進捗管理が難しい」、「資料が手元になく仕事がしづらい」の順で多くなっており、今まで対面で行っていたものが非対面となることによって、従業員間での意思疎通に支障が出ている可能性がうかがえる（図212-5）。また、職場において、ペーパーレス化が進んでおらず、紙の資料等で仕事をしていることによる不便さも垣間見える。

図 212-5 リモートワークを活用する上での課題（複数回答）

備考：新型コロナウイルス感染症の感染拡大を受けて実施した人事労務管理施策として、「リモートワークの導入・活用」を挙げた企業に対する調査。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
新型コロナウイルス感染症の感染拡大によるものづくり人材の育成や能力開発への影響として考えられることについては、中小企業では、「人材育成・能力開発への影響は特にない」が最も多くなっている。一方で、大企業においては、「オンラインを活用した研修が増える」、「作業手順書やマニュアルの整備が進む」の順に多く、このうち、「作業手順書やマニュアルの整備が進む」については、「オンラインを活用した研修が増える」に比べ、企業規模間での差が小さく、企業規模を問わず、実現しやすいものであることがうかがえる（図 212-6）。

図 212-6 新型コロナウイルス感染症の感染拡大によるものづくり人材の育成や能力開発への影響として考えられること（複数回答）

資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成・働き方に関する調査」（2021年5月）
ものづくり産業におけるデジタル技術の活用状況と働き方の変化

新型コロナウイルス感染症の感染拡大に伴うデジタル化等の進展や労働市場の不確実性の高まり、人生100年時代の到来による労働者の職業人生の長期化等、労働者を取り巻く環境は変化の時を迎えている。そのような中で、少子高齢化による労働供給の制約という課題を抱えている我が国が持続的な経済成長を実現していくためには、多様な人材が活躍できるような環境を整備し、一人一人の労働生産性を高めていくことが必要不可欠であり、そのために、資本への投資に加えて、デジタル化や職業能力開発への投資を推進していくことが重要である。我が国の人材育成において、引き続き企業の役割が大きい。企業による労働への教育訓練等の実施は重要である。これと同時に、急速かつ広範な変化に際しては、労働者一人一人が、能力開発やキャリア形成に、主体的に取り組んでいくことも重要となると考えられる。本白書においては、このような点について、JILPT調査から可能な限り、明らかにしていきたい。

労働生産性の向上の実現には、昨今注目されているデジタル化の流れに対応していく必要がある。このため、ここではデジタル化が進展する中でのものづくり人材の確保・育成についてみていく。まずは、ものづくり産業におけるデジタル技術の活用状況を確認しつつ、ものづくり現場の働き方がどのように変化していくか等についてみていく。

なお、JILPT調査において、デジタル技術とは、ICT（Information and Communication Technology: 情報通信技術）やIoT（Internet of Things:モノのインターネット）、AI（Artificial Intelligence:人工知能）周辺技術（画像・音声認識など）、RPA（Robotic Process Automation:ロボティック・プロセス・オートメーション）など、製造現場で用いられる新技術を指す。

(1) ものづくり現場におけるデジタル技術の活用状況や経営課題

ものづくりの工程・活動におけるデジタル技術の活用状況については、「活用している」とした企業（以下「デジタル技術活用企業」という。）が54.0%に上り、「活用を検討している」も合わせると、デジタル技術の活用に積極的な企業は、7割を超えている（図213-1）。これにより、「活用していない」企業（以下「デジタル技術未活用企業」という。）の約3倍であり、ものづくり企業におけるデジタル技術の導入・活用への関心の高さがうかがえる。

図213-1 ものづくりの工程・活動におけるデジタル技術の活用状況

<table>
<thead>
<tr>
<th>活用している</th>
<th>活用を検討している</th>
<th>活用していない</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.0%</td>
<td>17.2%</td>
<td>38.8%</td>
</tr>
<tr>
<td>(n=3,679)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）対応した人材の確保・育成や働き方に関する調査」（2021年5月）

注4 これまで人間の柔軟に対応可能と想定されていた作業、もしくはより高度な作業を、人間に代わって実施できるルールエンジンやAI、機械学習等を含む認知技術を活用して代行・代替する取組。
もののづくり企業における経営課題を問うところ、デジタル技術活用企業では、「人材育成・能力開発が進まない」、「価格競争の激化」の順で多くなっている。一方で、デジタル技術未活用企業では、「人材育成・能力開発が進まない」の次に、「人手不足」、「売上不振」の順で多くなっている（図213-2）。ことから、デジタル技術の活用有無にかかわらず、もののづくり人の育成や能力開発が、ものづくり企業において、大きな経営課題となっていることがうかがえる。

図 213-2 ものづくり企業における経営課題（複数回答）

資料：JILPT「ものづくり企業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成に関する調査」（2021年5月）
次に、デジタル技術活用企業に対し、デジタル技術を活用できる人材の配置が求められている工程・活動について問うたところ、「生産管理」、「製造」、「受・発注管理、在庫管理」の順に多かった（図213-3）。

図213-3 デジタル技術活用企業においてデジタル技術を活用できる人材の配置が求められている工程・活動（複数回答）

備考：デジタル技術活用企業に対する調査。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
さらに、デジタル技術活用企業に対して、デジタル技術を活用する理由や狙いについて問うと、「在庫管理の効率化」、「作業負担の軽減や作業効率の改良」、「開発・製造等のリードタイムの削減」が上位となっている（図213-4）。この結果から、デジタル技術活用企業においては、デジタル技術を用いて業務効率化を実現することで、労働者の負担軽減や無駄な作業の縮減等を図ろうとしていることが分かる。

備考：デジタル技術活用企業に対する調査。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成に関する調査」（2021年5月）
（2）ものづくり現場の現状と今後の見通し

主力製品の製造に当たり重要となる作業について、具体的な内容を問うと、「切削」が最も多く、次いで、「機械組立・仕上げ」、「熱処理」の順となった。5年後の見通しについては、「今までより熟練技術が重要」「多くの作業内容において過半を超え、かつ、いずれの作業内容においても最多となっており、依然として、熟練技術が重要視されていることが分かる（図213-5）。

この結果から、我が国のものづくり産業においては、5年後においても熟練技術が重要との認識が強まり、その技能継承については課題もある。2007年から、団塊世代の没後（1947年から1949年生まれの世代）が60歳の定年を迎え、これまで培ってきた技能や技術をどのように継承していくか等の問題はいわゆる「2007年問題」と呼ばれ、ものづくり産業において注目されたが、厚生労働省の2019年実施の能力開発基本調査によれば、製造業において「技術継承に問題がある」と回答した企業は61.9%に上り、2007年当時から10年以上経過した現在でも、大きな課題であるとみてとれる。

次に、JILPT調査では「機械に代替される」が、前年より、ほぼ全ての作業内容において増加し、その割合は10%前後から20%前後と、ともに、「デジタル技術に代替される」についても、多くの作業内容で数％から10%前後となるなど、5年後に作業内容が機械やデジタル技術に代替されるとした企業が一定数存在していることが分かった（図213-5）。

図213-5 主力製品の製造に当たり重要となる作業と5年後の見通し（複数回答）

<table>
<thead>
<tr>
<th>主力製品の製造に当たり重要な作業内容</th>
<th>今後重要になる作業内容の割合</th>
<th>5年後の見通し</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造・溶接・板金 プレス加工</td>
<td>25.4（▲4.4） 19.7（▲1.9）</td>
<td>62.1（▲7.7） 49.9（▲3.2）</td>
</tr>
<tr>
<td>塑造・ダイキャスト 銀造</td>
<td>5.5（▲0.5） 4.5</td>
<td>59.8（▲3.6） 62.2（▲2.4）</td>
</tr>
<tr>
<td>压延・鍛造・引き抜き</td>
<td>2.7</td>
<td>25.1（▲16.8） 22.6（▲2.9）</td>
</tr>
<tr>
<td>切削</td>
<td>31.8（▲3.4）</td>
<td>45.2（▲8.1） 31.4（9.1）</td>
</tr>
<tr>
<td>研磨</td>
<td>18.2（▲3.6）</td>
<td>54.3（▲9.4） 24.5（8.2）</td>
</tr>
<tr>
<td>熱処理</td>
<td>7.6（▲1.0）</td>
<td>49.3（▲10.3） 27.1（10.4）</td>
</tr>
<tr>
<td>メッキ</td>
<td>4.9</td>
<td>50.3（▲0.4） 21.5（3.5）</td>
</tr>
<tr>
<td>表面処理</td>
<td>7.9</td>
<td>50.2（▲4.2） 20.1（1.2）</td>
</tr>
<tr>
<td>塗装</td>
<td>13.9</td>
<td>59.0（▲3.0） 19.5（3.0）</td>
</tr>
<tr>
<td>伸長成形・圧延成形・押出成形</td>
<td>12.0</td>
<td>44.8（▲11.3） 32.8（7.9）</td>
</tr>
<tr>
<td>半田付け</td>
<td>7.0</td>
<td>59.5（▲2.9） 15.8（0.9）</td>
</tr>
<tr>
<td>機械組立・仕上げ</td>
<td>27.1</td>
<td>59.8（▲5.6） 29.1（7.3）</td>
</tr>
<tr>
<td>電機・電子組立</td>
<td>20.3</td>
<td>47.8（▲9.4） 33.6（9.5）</td>
</tr>
<tr>
<td>測定・検査</td>
<td>26.0</td>
<td>40.3（▲11.0） 28.3（4.5）</td>
</tr>
</tbody>
</table>

備考：カッコ内の数字は、前年との差を示す。なお、「デジタル技術に代替される」については、2019年は調査を実施していないため、比較できない。資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
また、将来的に主力製品の製造に当たって重要な作業が、機械やデジタル技術に代替された場合に、その作業を担当している人材に求められる能力を問うところ、「デジタル技術を活かすための能力を身につけられる」が最も多かった（図213-6）。

さらに、主力製品の製造に当たり鍵となっている具体的な技能を問うと、技能系正社員では、「生産工程を改善する知識・技能」、「品質管理や検査・試験の知識・技能」の順で多くなっており、この傾向は5年後の見通しとおおむね一致する（図213-7）。

また、技術系正社員では、現在重視するものとしては、「工程管理に関する知識」が最も多く、次いで「複数の技術に関する幅広い知識」、「生産の最適化のための生産技術」となっている。一方で、5年後の見通しをみてみると、「工程管理に関する知識」の割合が低下する半面、「複数の技術に関する幅広い知識」と「生産の最適化のための生産技術」の割合が上昇している（図213-8）。

このほか、技能系正社員では「デジタル技術を組み込んだ設備・機器等を利用する知識」、技術系正社員では「デジタル技術をものづくり現場等で導入・活用していく能力」といった、デジタル技術関連の技能が必要となるという項目については、5年後の見通しが現在の認識と比較して、それぞれ2倍以上の水準となっている。このことから、ものづくり企業は、今後デジタル技術の利活用が重要となってくるという意識を持っていることがうかがえる。
図213-7 主力製品の製造に当たり鍵となる技能（技能系正社員）（複数回答）

備考：ここでいう「技能系正社員」とは、現場でものの製造（切削、加工、組立、検査など）を直接担当している方。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
図 213-8 主力製品の製造に当たり鍵となる技能（技術系正社員）（複数回答）

<table>
<thead>
<tr>
<th>技能</th>
<th>現在</th>
<th>5年後の見通し</th>
</tr>
</thead>
<tbody>
<tr>
<td>エンジニアリングに関する知識</td>
<td>49.7%</td>
<td>45.0%</td>
</tr>
<tr>
<td>複数の技術に関する幅広い知識</td>
<td>43.8%</td>
<td>49.6%</td>
</tr>
<tr>
<td>生産の最適化のための生産技術</td>
<td>43.7%</td>
<td>47.0%</td>
</tr>
<tr>
<td>特定の技術に関する高度な専門知識</td>
<td>42.0%</td>
<td>40.4%</td>
</tr>
<tr>
<td>設計・開発能力</td>
<td>41.9%</td>
<td>43.1%</td>
</tr>
<tr>
<td>生産設備の保守・管理技術</td>
<td>35.7%</td>
<td>34.9%</td>
</tr>
<tr>
<td>プロジェクト管理能力</td>
<td>32.1%</td>
<td>23.9%</td>
</tr>
<tr>
<td>製品の企画・構想段階から問題点を把握し、改善提案を行うコンサルティング能力</td>
<td>30.4%</td>
<td>20.1%</td>
</tr>
<tr>
<td>デジタル技術をもつ製品等へ導入・活用していく能力</td>
<td>44.0%</td>
<td>15.7%</td>
</tr>
<tr>
<td>革新的技術を創造していく能力</td>
<td>29.8%</td>
<td>14.2%</td>
</tr>
<tr>
<td>その他</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>特にない</td>
<td>5.7%</td>
<td>4.6%</td>
</tr>
<tr>
<td>無回答</td>
<td>3.5%</td>
<td>3.6%</td>
</tr>
</tbody>
</table>

備考：ここでいう「技術系正社員」とは、研究、開発、改良、生産管理などを担当している方。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成等に関する調査」（2021年5月）
これまで、新型コロナウイルス感染症の感染拡大によるものづくり産業への影響と、現在のデジタル技術の活用状況、そして、今後のものづくり産業の見通しについてみてきた。ここでは、デジタル技術活用企業に着目し、そのような企業では、どのような取組をして、どのような効果が表れているのかについて確認していく。

（1）デジタル技術の活用による好循環
3年前と比較した労働生産性の変化について問うところ、労働生産性が「向上した」は、デジタル技術活用企業では46.5%となっているのに対し、デジタル技術未活用企業では35.0%にとどまってしまい、その差は11.5ポイントとなった。また、「変わらない」及び「低下した」については、デジタル技術活用企業の方が低くなった（図214-1）。

次に、デジタル技術活用企業を対象に、デジタル技術を活用した工程や活動における、ものづくり人材の配置や異動の変化について問うところ、デジタル技術の活用により、「そのままの人員配置で、業務効率や成果が上がった」が突出して高く、「全体的な労働時間が減少した」が続いた（図214-2）。

これらの結果から、デジタル技術活用企業は、デジタル技術の活用により、労働生産性の向上や業務効率化、労働時間の削減等を実現している可能性が高いことがうかがえる。

図214-1 3年前と比較した労働生産性の変化

資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
図 214-2 デジタル技術を活用した工程や活動におけるものづくり人材の配置や異動の変化（複数回答）

備考：デジタル技術活用企業に対する調査。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）

3年前と比較した売上高の変化を問うたところ、デジタル技術の活用有無にかかわらず、「増加した」が2割強であるのに対し、「減少した」が4割弱となっており、業績が悪化した企業の方が多いことが分かる。これをデジタル技術の活用有無別でみると、デジタル技術活用企業は、デジタル技術未活用企業よりも、売上高が「増加した」が、若干ではあるが高くなっており、「減少した」は若干低くなっている（図214-3）。
デジタル技術の活用が進んでいる企業の人材・能力開発

デジタル技術の活用有無別に、現在のものづくり人材の育成・能力開発方針について聞いたところ、デジタル技術活用企業においては、「個々の従業員が当面の仕事をこなすために必要な能力を身につけることを目的に能力開発を行っている」と「当面の仕事に必要な能力だけでなく、その能力をもう一段アップできるよう能力開発を行っている」が、いずれも3割強であった。一方で、デジタル技術未活用企業では、「人材育成・能力開発について特に方針を定めていない」が、最も多くなっている（図214-4）。

図214-3 3年前と比較した売上高の変化

備考：ここでいう「増加した」とは、5%以上の増加を指し、「減少した」とは、5%以上の減少を指す。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）

（2）デジタル技術の活用が進んでいる企業の人材育成・能力開癧

デジタル技術の活用有無別に、現在のものづくり人材の育成・能力開発方針について聞いたところ、デジタル技術活用企業においては、「個々の従業員が当面の仕事をこなすために必要な能力を身につけることを目的に能力開発を行っている」と「当面の仕事に必要な能力だけでなく、その能力をもう一段アップできるよう能力開発を行っている」が、いずれも3割強であった。一方で、デジタル技術未活用企業では、「人材育成・能力開発について特に方針を定めていない」が、最も多くなっている（図214-4）。

図214-4 ものづくり人材の育成・能力開発方針

資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
ものづくり人材の育成・能力開発のために実施している取組については、デジタル技術の活用有無にかかわらず、「日常業務の中で上司や先輩が指導する」というOJTの内容が最多となっている。一方で、アンケート調査項目に示したものづくり人材の育成や能力開発の取組の全ての項目で、デジタル技術活用企業が上回っている。このことから、デジタル技術未活用企業に比べ、デジタル技術活用企業は、様々な人材育成に積極的に取り組んでいることがうかがえる。また、デジタル技術活用企業とデジタル技術未活用企業で大きな差がある項目をみると、「OFF-JTを実施している」、「作業標準書や作業手順書の活用」、「自己啓発活動を支援している」の順で差が大きくなっている（図214-5）。これらに共通するのは、いずれも、労働者の主体的な学びを後押しする取組であるという点である。このことから、デジタル技術活用企業では、デジタル技術未活用企業に比べ、「労働者の主体的な学びを後押しする取組」を積極的に実施していることがうかがえる。

図214-5 ものづくり人材の育成・能力開発のために実施している取組（複数回答）

備考：赤枠で囲んでいるのは、デジタル技術活用企業とデジタル技術未活用企業の差が大きい項目（上位5つ）。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
ものづくり人材の育成・能力開発を目的とした OFF-JT を実施している企業に対して、デジタル技術に特化した内容の OFF-JT の実施状況について問うところ、「実施していない」が、デジタル技術未活用企業の 8 割強、デジタル技術活用企業でも 5 割強となっており、デジタル技術に特化した OFF-JT の実施は、低調であることが分かった。一方で、デジタル技術に特化した OFF-JT に取り組んでいる内容をみると、「一般的なデジタル技術に関する知識・技術の習得」、「デジタル技術の自社への導入・活用・応用」の順で多くなっている。特に、デジタル技術活用企業では、両方とも 2 割強が取り組んでおり、デジタル技術未活用企業との差も大きくなっている（図 214-6）。

自己啓発活動の支援を行っている企業に対して、その支援内容を問うたところ、デジタル技術活用企業及びデジタル技術未活用企業共に、「受講料などの金銭的支援」、「資格等を取得した際の手当や一時金の支給」の順で高くなっている。また、全ての支援メニューで、デジタル技術活用企業が高くなっており、デジタル技術活用企業の方が、労働者の自己啓発を積極的に支援している様子がうかがえる（図 214-7）。
ものづくり人材の育成や能力開発に当たり、どのような環境整備を行っているか問うたところ、デジタル技術活用企業は、「改善提案の推奨」、「実力・能力重視の昇進・昇格」、「自社の技能マップの作成」の順で高くなっており、実施している環境整備の取組の全ての項目で、デジタル技術未活用企業を上回っている。一方で、デジタル技術未活用企業も、「改善提案の推奨」、「実力・能力重視の昇進・昇格」、「自社の技能マップの作成」の順で多いが、「特に何も行っていない」も多い。このことから、人材育成や能力開発における環境整備の面でも、デジタル技術活用企業の方が、積極的に取り組んでいる様子がある（図214-8）。

図214-7 ものづくり人材の育成・能力開発を目的とした自己啓発活動の支援を実施している企業の自己啓発活動の支援内容（複数回答）

備考：ものづくり人材の育成・能力開発のために実施している取組として、「自己啓発活動を支援している」を挙げた企業に対する調査。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
図 214-8 ものづくり人材の育成・能力開発に向けて行っている環境整備（複数回答）

改善提案の奨励：51.6％
実力・能力重視の昇進・昇格：36.3％
自社の技能マップの作成：36.1％
小集団活動やQCサークルの奨励：31.0％
技能を向上させた者に対する手当等の支給：25.9％
個人ごとの育成計画の作成：24.1％
技能伝承のための仕組みの整備：22.2％
チーター制度・メンター制度の導入：17.9％
社内検定など能力評価制度の導入：16.2％
優れた技能を持った技能者の顕彰・報奨：15.7％
技能大会の開催等社内の技能尊重風土の醸成：11.3％
社費留学制度の整備：11.2％
特別な何も行っていない：9.1％
無回答：1.7％

デジタル技術活用企業（n=1,988）
デジタル技術未活用企業（n=1,490）

資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
続いて、近年、特に資源を投入している分野はどの分野かについて問うたところ、デジタル技術活用企業及びデジタル技術未活用企業共に、「設備投資の増強」や「作業環境の整備」といった環境面への投資のほか、「採用・人材育成の強化」といったヒトへの投資に積極的に資源投入を行っていることが分かった。そして、「その他」以外の全ての分野において、デジタル技術活用企業の方が積極的に資源投入を行っていることも分かった。デジタル技術活用企業がデジタル技術未活用企業に比べて大きく上回っている項目をみると、「デジタル技術の導入」は当然とし、「設備投資の増強」や「採用・人材育成の強化」、「人事諸制度（処遇制度や労働時間、休暇制度等）の整備」などについても、デジタル技術活用企業の方が積極的であることがうかがえる。なお、「特にない」については、デジタル技術活用企業が5.5%だったのに対し、デジタル技術未活用企業が11.1%となった（図214-9）。

図 214-9 近年、特に資源を投入している分野（複数回答）

備考：赤枠で囲んでいるのは、デジタル技術活用企業とデジタル技術未活用企業の差が大きい項目（上位4つ）。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成に関する調査」（2021年5月）
これらのものづくり人材の育成・能力開発の取組について、企業へ自己評価を問うたところ、「うまくいっている」との回答は、デジタル技術活用企業の51.9％に対し、デジタル技術未活用企業では41.3％となっている。一方で、「うまくっていない」については、デジタル技術活用企業の46.0％に対し、デジタル技術未活用企業では55.8％となっている（図214-10）。このことから、デジタル技術活用企業の方が、ものづくり人材の育成・能力開発に成功している企業の割合が、相対的に高くなっていることが分かる。

図214-10 企業によるものづくり人材の育成・能力開発の取組に対する自己評価

資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）

5 デジタル技術の進展に対応するものづくり企業の取組

ここまで、ものづくり産業における、デジタル技術の活用状況やその効果についてみてきた。我が国経済を支える製造業を引き続き良質な雇用の場とし、我が国の成長に欠かせない重要な産業として成長していくためには、ものづくり人材の育成や能力開発と並行して、デジタル技術の活用を進めていく必要がある。

以下では、実際のものづくり現場で導入・活用されているデジタル技術や人材育成等の取組について紹介する。
（1）デジタル技術の活用により労働生産性の向上や業務効率化を実現した好事例

コラム PoC プロセスと ICT リテラシー研修がもたらすデジタル技術の高精度化

キリンビール（株）（東京都中野区）は、国内の9つの工場においてビール類や RTD（Ready To Drink：缶チューハイや缶カクテル）の製造を行っており、2027年までに原材料の作育管理から消費者の手元に届くまでのあらゆる工程のデジタル化を目指している。

同社は、デジタル技術を導入する上で「PoC（Proof of Concept：概念実証）」のプロセスを取り入れ、実際に稼働するか、狙い通り稼働するかについて、担当者を交えて検証を重ねることで、デジタル技術の精度を高めることに成功している。

PoC とは、新しい概念や理論、原理、アイデアの実証を目的とした実証的な検証を行う過程で用いられている。仕込みからパッケージングを行うまでのビール製造工程において、従来は熟練した担当者の「カン（勘）」に頼り手作業で計画を立てていた。特にろ過工程の製造計画は、毎回異なったコンディションの中で同品質の製品を作るために、使用する設備やろ過過量を適切に決定する必要がある複雑かつ繊細な作業であるため、計画作業に時間が掛かり、またノウハウが属人化してしまうことが課題であった。

PoC のプロセスを取り入れることで、熟練技術者が持つ「カン（勘）」の洗い出しを徹底的に行い、AI のプログラマを繰り返しチューニングすることで、熟練技術者が作る研計算計画の精度の計画を導き出すことが可能となった。AI による製造計画業務の自動化が実現することで、作業の標準化や計画精度の安定化による業務負荷の軽減、計画業務の属人化の防止につながっている。

同社では、PoC のプロセスを取り入れた AI などの先進的な技術を導入すると同時に、デジタル技術の活用を更に進めるため、積極的にデジタルリテラシーに関する人材育成にも取り組む。同社の中期経営計画には常に「人材育成」に関する項目が設けられており、キリンホールディングス（株）（東京都中野区）内に設置されている「ものづくり人材開発センター」を中心に、キリングループ内における技術・製造を中心にした人材育成の支援を行っている。

また、人材育成を行う上で、社員が研修などの OFF-JT で得た知識や経験を OJT でどのように活用したかを可視化できる仕組みを構築し始めている。具体的には、研修の事前課題、習得した研修内容、研修後の OJT による行動と結果、周囲からの働きかけなどがひと目で分かるツールを導入することでフォローする仕組みである。OJT と OFF-JT 双方を連動させることでより高い研修効果が見込まれる。

さらに、2020年11月より、デジタル技術の活用を更に進めるための人材育成として、ICTに関する知識や動向を理解し、自身の職場課題解決に活用できることの到達目標とした「ICT リテラシー研修」をスタートした。参加は手挙げ制であり、積極的に職場の課題を解決したいと考えている若手技術員や現場リーダークラスの社員が多い。受講後、研修受講者が職場課題を解決するために、ICTに関する知識をどのように活用したかを人材育成担当者がフォローすることで、本人へのフィードバックの質向上や職場の改善につなげている。

デジタル技術は単に導入すれば良いということもではない。同社のように PoC のプロセスを取り入れることで、より高精度でデジタル技術を導入することが可能となる。また、デジタルリテラシーを身につけた人材が、デジタル技術を活用することで、更に高度なものづくりへと発展させていくのである。
デジタル技術の活用で人材不足の課題を解消
・・・ワイ・ケー・ピー工業（株）

ワイ・ケー・ピー工業（株）（岐阜県中津川市）の可児力社長は、「中小企業こそデジタル技術の活用が必要だ。」と語る。同社は、自動車内外装品に使用されるプラスチック部品の製造を手がけ、金型の設計・製造からプラスチック射出成形、そして表面処理や組立加工までを自社で完結させる「一貫生産体制」を強みとする企業である。

同社を取り巻く環境は厳しい。長期的にみると少子化や若者の車離れなどの影響による国内の自動車生産数の減少に伴って、市場規模が縮小していく懸念があるからだ。このため、生産性の向上を図り、事業の間口を広げていく必要がある一方で、人材の採用環境が厳しい状況が続いている。限られた経営資源の中で、効果的に事業を拡大していくために、同社では作業工程のデジタル化を進めている。射出成形の工程にIoT技術を導入し、これまで従業員が「成形材料投入記録・乾燥機点検表」や「作業日報」など手書きで記入していた作業を自動化した。このDXの取組を推進したのは、品質・工程改善BR（Business Revolution）室長の伊佐次氏である。前職は、電気機器メーカーの自動制御を扱うエンジニアであったが、そこでの職務経験で培ったPLC（機器を制御するコントローラー、シーケンサー）と電気機器に関する知識・技能が大いに役立った。

取組当初、電気機器メーカーのIoTシステムを購入することを検討したが、大きなコストが掛かるため導入困難と判断し、公的な補助金を活用しながら自社開発に踏み切った。既製品の購入と比較し安価で導入できることや、自社の状況に合わせた改善や改良にも柔軟に対応できるところにメリットがある。

現在は3つの工場内の31台の成形機が社内LANに接続され、運転・停止・異常などの稼働状況や生産数・不良品数・稼働時間などの生産状況を、従前より工程改善で使用している汎用のPLCに接続したセンサーから数値として取得、記録している。さらに、その記録データを表計算ソフト上で可視化し、監視、分析できるシステムに発展させた。IoTの導入後は全ての成形機において、金型ごとに成形数を自動集計し、金型のメンテナンス時期を知らせるアラーム表示を行うことで年間600時間の時間短縮につなげた。また、2017年のIoT導入前と比較して、成形不良を20%低減する成果も出ている。

このように、現場の省力化に成功したことで受注の間口が広がった結果、計測器などの自動車部品以外の新たな分野の製造にも着手した。また、工場内のIoT化が進んだことは、社員同士の情報共有の活性化という効果ももたらした。社員からの積極的な改善案を都度取り入れることで、更に機能的なシステムへと進化し続けている。

「今後は製品の入出庫管理にもバーコードリーダーを活用していくなど、今までは紙で行っていた作業をデジタル技術に置き替えることで、自社内のスパイラチェーン全体の見える化に取り組んでいきたい。」と可児社長は語る。

身の丈にあったデジタル技術の活用が、人材の採用による難しい環境下でも、顧客の要求に応え競争力を高めながら、人材の待遇改善を実現することにつながっている。
コラム

自社製品にIoTを活用し成功、社内業務にも応用し働き方改善

・・・(株)東京電機

非常用電源装置の国内シェア２位を誇る（株）東京電機（本社工場：茨城県つくば市）は、2020年に創業100周年を迎えた。同社は装置の設計から製造、据付、保守点検までを一貫して行い、顧客ニーズに合わせた高付加価値かつ高品質のものづくりを心掛けているという。非常用電源装置は、消防法により大規模な建物に設置義務のあるもので、近年の防災意識の高まりから、その需要は安定しているという。

同社のIoT技術導入のきっかけは、塩谷社長の一声であった。2016年に（独）経済産業研究所の「IoTによる中小企業の競争力強化に関する研究会」に参加した当初は、IoTがどのようなものか、自社のどの部門で活用可能であるか見当がつかなかったといっ。同社のIoT導入はそのような「ゼロ」の状況から始まったが、研究会のアドバイスや関係部署の協力もあり、まずは顧客へのサービスにつながる検査データ入力業務に、IoT技術を導入することを決定した。

製品の出荷前検査時に手書きで記入していた試験成績表について、従来はPCに転記・清書する工程があったが、検査時に直接タブレットに選択式で入力する方法を採用したことで、誤記や清書作業が削減された。あわせて規格の上下限値も設定する方法に切り替え、測定ミスによる再試験の削減もつながったという。また、検査時に不具合箇所を連絡する検査表についても、従来は文書のみで伝わりにくかったものが、タブレット上で写真を添付して連絡できるようになったため、内容が伝わりやすくなった。さらに、この入力システムは、それまで活用していた表計算ソフトのデータをそのまま活用できるため、社員が外部講習会を少し受講しただけで、直感的に操作できるようになったという。

他にも、製品に二次元コードを貼付し、作業方法の動画にアクセスできるようにもした。同社の製品は顧客のニーズに合わせるため、多品種少量生産としており、製品ごとに操作方法の動画を制作するのは一見手間のように思えるが、結果的には問合せへの対応時間の削減につながり、顧客からも「分かりやすくなった」と評判だという。今後は、取扱説明書も二次元コードから読み取れるように、順次対応していく予定である。

さらに、同社は、発電装置に通信端末を備え付け、常時遠隔監視により機器の状態把握を可能にするシステムを開発している。今後は、このメンテナンスサービスについても普及させていく予定である。

IoT技術の導入は、結果的に社員の仕事への満足度の向上にも寄与している。作業負荷の削減により、同じ仕事をする人件費と経費が大幅に削減でき、労働環境の改善につながったという。また、顧客とのコミュニケーションが円滑にできるようになり、社員のサービスに対する意識の向上にもつながったという。

何十年も保有していた紙媒体の設計図面をデジタル化したり、事務作業にRPAを導入することで、部署を越えた社内データの共有を容易にし、業務効率を上げた実績もある。一方で、技能承継をOJTと紙媒体の手順書に頼っているアナログ面もあり、今後は技能系社員がノウハウを電子画面上で検索し、確認できるような仕様に切り替えていくことを検討している。製造工程でのデジタル化を進め、将来的には組立指示の自動化や多能工化にもつなげたいという。

同社のDXはまだ過渡期にある。今後も柔軟にデジタル技術を導入していくことにより、高付加価値かつ高品質な製品とサービスを提供し、社員の働き方改善にもつながるよう努力していくという。

写真：タブレットを操作する社員

写真：非常用電源装置
コラム

茨城県常総市に本社工場を置く（株）ハリガイ工業（従業員140名）は、ゴム成型及び製造受託を主要事業としている。2016年に開発企画室を立ち上げ、ゴム成型に関する長年の技術を活かし、新素材の開発に取り組む新事業をスタートした。

受託事業だけでなく自社で製品開発を行いたいという強い思いが、新素材開発のきっかけになったといわれる。ニーズ（市場の需要）よりも、シーズ（自社独自の技術力）に重点を置き、得意のゴム成型に目をつけたと代表取締役の遊佐氏は語る。

茨城県産業技術イノベーションセンターなどの外部団体にも相談しながら、その1年後に合成ゴムと炭素繊維を組み合わせた新たな複合素材の開発に成功した。同社が開発した新素材は、CFR（Carbon Fiber Rubber）という名称で、耐衝撃吸収性や柔軟性に優れており、あらゆる製品の素材に代替できる可能性があるという。ゴムに強繊維を接合させた素材は他にもあるが、炭素繊維は接合が難しい素材であり、この技術、製品は同社にしかないもので、特許も取得している。

開発の次の段階としてCFRを商品化するに当たり安定した質で量産化できる製造機械が必要となる。外注によるコストや特許技術の漏れ等を勘案して、CFRの製造機械も自社で開発、内製することにしたという。

隔週でCFR定例会を称して、開発企画室のほか製造・営業・品質保証部門からも社員が集まり一丸となってCFRの製造機械の開発、量産化、販売に取り組んだという。製造機械の開発は、設計から部品調達、内製、試運転、プログラミング、稼働まで、約6か月を経て自社内で完結することに成功した。開発の中心となった開発企画室課長の吾妻さんは、茨城県産業技術イノベーションセンターなど外部の協力もあったが、自身のデジタル技術やシステムの知識が役立ったという。

同社は、他の製造工程にもデジタル技術の導入を進めている。例えば、製造工程のデータ記録・転記・集計作業をタブレットPCへ入力できるシステムを自社開発したり、検査と梱包作業の中間作業が省略できるよう装置をプログラムしたりするなどにより、作業工数の削減に取り組んでいる。今後は、数百ほどある受託製品の製造工程の作業標準書や教育リストを紙からデジタルへ移行し、現場ですぐに従業員が確認できるシステムを構築するなど、人材育成や技能継承にもデジタル技術を活用することを検討していくという。

同社の目下の目標は、CFRの生産技術を高めて量産化、品質安定、価格の見直しを進めていき、この新素材の取引先を拡大させていくことだという。自社で素材の開発からその製造機械の開発までを実現できたことは、同社にとって大きな自信となった。今後は、システム開発できる社員を育てるながら、システム管理に移り置きの業務を正確に把握し、フォローできる人材の育成に社内全体で注力していきたいという。
昭和電機（株）（大阪府大東市）は、製造現場で使用される産業用電動送風機や集塵機、工作機械から発生するオイルミストを回収するミストレーサーなどを製造している。単位時間当たりの生産性向上や生産リードタイムの短縮を目標とし、1人でひとつの製品の加工から組立、検査、包装までを担当する「1人1個流し生産（セル生産）」を導入することで、多品種ある製品の受注から発送までの日数短縮につなげる効率的なものづくりを行っている。

同社は、製造現場を支える生産管理や営業、総務などの間接業務における課題であった長時間労働の削減や、定型作業時におけるミス防止のために、RPAを導入した。これには、情報システムの構築や導入を担当するICTグループの職員2名と、社外から招いた1名の計3名が中心となり、導入作業に当たった。

導入に当たっては、効果の最大化を目指し、「現状理解」、「試行」、「業務診断」、「導入準備」及び「導入」の5つのステップで導入を進めアルプローグを採用した。このうち、特に最初のステップである「現状理解」を重視し、ICTグループが各現場を回ってRPAを活用できる業務をヒアリングし、リストアップして回った。しかし、日々ルーティンで行っている業務は、5分から10分程度の操作を数多く行っていることが多く、本人も無意識で行っているため、アイデアとされないケースが多々あった。そこで、同社では実際の操作画面をビデオ録画し、分析することで作業プロセスを正確に把握する工夫を凝らした。数多くのRPAソフトの中で、費用対効果と自社の基幹システムとの互換性をスコア化するなどして、「身の丈に合った」ものを採用した。

RPAを導入したことで、49の業務を自動化し、月間では総計459時間も労働時間を削減することができた。特に改善効果の大きかったのは、納期回答業務であった。従来の顧客への納期回答業務は、納期に関する情報を人の手で注文書に転記し、FAXを使用して回答する非効率な方法で行っていた。この作業にRPAを導入したところ、営業担当者ごとの納期回答書を自動作成し、PDF形式で各拠点にメールを送ることができるようになった。そして、各拠点の担当者はPDFに手を加えることなく顧客にメールで回答が可能となったため、作業手順が簡略化され、月間92時間も労働時間の削減に成功した。

RPA導入のきっかけとなった長時間労働や、定型作業時におけるミスについても大幅に減少し、結果として、間接業務部門の残業がほぼ無くなり、働き方が改善した。RPAにより省力化された作業に従事していた人材は、本人が以前より希望していた営業企画部に配属され、得意先への自社製品を用いた課題解決の提案など、RPAに置き換えることのできない付加価値の高い業務に従事し、会社の生産性の向上につながった例もある。

同社では、「大企業のように設備投資し続けることが難しい分、人材への投資は惜しまない」という考え方の下、デジタル人材の育成にも力を入れる。外部講習への参加や、ICTグループ内のデジタル技術に精通した人材によるOJTを行うほか、操作マニュアルを作成・配布するなどして作業の標準化に取り組んだ結果、ロボットの開発経験が無かった人材でも、シナリオを自ら考え構築することができるようになった。このようなデジタル人材の育成を土台として、今後も同社のDXは進んでいくだろう。
西島（株）（愛知県豊橋市）は、発動機メーカーとして創業し、その後、工具製造を経て、現在は自動車関連工作機械を主力とする専用工作機を製造する企業である。ものづくりを行うに当たり、材料やノウハウを全て自社で揃えることにより、時代や社会が変わっても、外部要因に左右されず、自社努力によって事業継続ができることが強みである。

同社を語る上でのキーワードは、「高齢者雇用」と「女性活躍」である。「一生元気、一生現役」を掲げる同社には定年制度がない。現在、約130人の従業員全員が正社員であり、そのうち60歳以上が24人を占める。嘱託や固定といった雇用形態ではなく、何歳になっても全員が正社員として働き続け、若手と共に現場で活躍している。「人材は決して労働力でなく、技術力だと考えている。」と西島社長は語る。オーダーメイド製品は、材料調達から設計、加工、組立てまでを自社で一貫して対応する必要があり、それを支えるノウハウは、過去の経験からの蓄積であるため、熟練技能者の技術こそが重要な経営資源となっているのである。また、ものづくり現場の生産性向上を図るために地元大学と協同開発した、独自のCAMシステムを導入しており、これを作り出す従業員のほとんどは女性である。CAMは作りだすことができるため、子育てなどで日によって働き方が異なる従業員であっても、自身の都合の良い時間に働くことが可能になり、ものづくり現場の生産性向上に大きく貢献している。

同社は、多品種少量製品を効率よく生産するためにIoT技術を導入し、「工作機械の稼働状況の見える化」に取り組んでいる。ネットワークに接続された工作機械の稼働状況は色別で表示され、過去の稼働時間もサーバに蓄積されたデータから確認することができる。システム部門の若手管理職が先導するチームが製造現場との横渡し役となり、導入前の段階から製造現場に活用しやすい仕様となるよう作り上げた。システムを内製化するに当たりコストと時間を要したが、自社の状況に応じてカスタマイズできるという大きな利益を得ることができた。また、自社の生産管理で運用しているシステムとしても動かせ、状況に応じて機械の作業工程の組替えを行うことで、より効率的な生産や受注予測が立てられるようになった。今後は、自社が納品した工作機械についてもIoT技術を活用することで、消耗品の交換を知らせる予測アラームや、原価予測から生産管理までの全ての工程を一元管理できるシステムの構築を目指している。

また、同社では、新型コロナウイルス感染症の感染拡大防止対策の一環として、1日7時間勤務の2交代制導入し、早出の社員が全員敷地外に出るまで遅出の社員を会社に入れないよう徹底することとした。これには、従来1日8時間と所定外労働時間で対応していた仕事を7時間で行う必要があったが、工作機械の稼働状況を見える化システムによる業務効率化が役立った。

同社はものづくり人材の「役割」を大切にしている。熟練技能者は、今まで培った技能や経験を活かした技能伝承や、高度な技能を要する専用機の開発を担い、若手は熟練技能者の技能を学び、現場の生産性向上を図っていく。会社は、年齢や性別に関係なくそれぞれの社員の長持ち見極めながら「役割」を与えることで、従業員のモチベーション向上を図り、結果として会社の利益の最大化を目指す。

西島社長は、「デジタル技術を活用していく上で、ものづくり現場の横断的な取組においては、システム部門のデジタル人材がその役割を担うため、必ずしも従業員全員がデジタル技術に精通する必要は無い。」という。むしろ、整備されたデジタル技術について、従業員がそれぞれの役割や立場においてどのように活用・発展させていくかが、今後重要になっていくと考えている。

注5 デジタル技術の活用による、多様なものづくり人材の活躍

コラム
デジタル化等が進展する中でのものづくり人材の確保・育成について

第1章 ものづくり人材の確保と育成

デジタル技術の活用による熟練技能者に頼らない高品質なものづくり

コラム

株式会社三ツ知（愛知県春日井市）は、金属加工の高い技術力を有し、自動車部品などの製造を行う会社である。常温（室温）下で金型工具を用い、金属材料に弾性限界を超える外的な圧力を与え、永久ひずみを起こすことで、望んだ形状や寸法に加工する「冷間鍛造」をベースとした難易度の高い工法を得意とする。常温で成形するため、成形精度が高く、後工程での加工も少なくすることができ、切削加工品と比較して強度が高くなる特徴を持つ。使用する高品質な金型を自社で生産し、製造した金属加工製品を、主に自動車メーカーに納品している。

同社は、今後AIやIoTを活用して、 「熟練技能者に頼らずに一定の高品質を実現する生産体制づくり」を目指し、社内の構造改革に着手している。この背景には2つの課題があった。

一つ目の課題は、自動車を取り巻く産業構造の変化である。同社の主力製品の金属加工部品は、エンジンを搭載する自動車に使用されている。しかし近年、特にエネルギー・環境制約の高まりを受けて、環境性能に優れた電気自動車などの次世代自動車が普及拡大する見通しがあり、ガソリン車の需要減少が見込まれる。このような産業構造の変化に対応できるよう、生産性を最大化させ新たな事業拡大に取り組んでいく必要があった。

二つ目の課題は、熟練技能者の高齢化である。主力製品の高度な製造技術は、熟練技能者によって支えられているが、今後も持続的に一定の品質を保つためには、熟練技能者が持つ「カン（勘）」や「コツ」を「見える化」する必要があった。

デジタル化を進めるに当たって、まずは中村和志社長の強いリーダーシップの下で、社内で「AI・IoTプロジェクト」を立ち上げることを始めた。これまで紙に記録していた温度管理などの製造に係る指標を、製造機械に取り付けたセンサーから直接取得し、そのデータから傾向を分析することから始め、寸法調整作業や、金型交換作業、チョコ停（突発的な製造機械の停止）対応の予知などに活用することで、「止めないものづくり」を目指している。

中村社長は、「生産性の向上に伴って、新製品の設計などのクリエイティブな思考が求められる仕事、つまり、人間にしかできない新たな価値創出につながる仕事に、ものづくり人材をシフトさせていく予定だ。」と話す。今後の取組としては、業務で使用する紙のデジタル化を進め、更なる業務効率化を進めていくことである。

このような取組から、熟練技能者の高齢化により技能継承が途絶えないよう備えるとともに、意欲のある若手が更なるデジタル化にチャレンジすることを通して、これまで培ってきた巧（たくみ）の技と新たなデジタル技術の融合が生じ、高度な技術力の醸成につながることを目指す。

会社のトップが、デジタル技術の導入を、会社が抱える課題を解決するための「手段」と捉え、その活用方針を社内に浸透させるところにより、幅広い年代の従業員がデジタル技術の活用に関心を持つきっかけを作り、それが改善活動の促進にもつながっていき、結果として、ものづくり現場の強さの源泉となっているのである。

写真：冷間鍛造で製造された製品は高い耐摩耗性と耐久性を実現する

写真：デジタル技術を活用する従業員

図：センサーから取得・分析しているデータ
コラム
小さなDXの積み重ねによる「小ロット製造代行サービス」というビジネスモデルを確立

（株）三松（福岡県筑紫野市）は、板金加工をベースに各種機械装置を製造している（従業員154名）。代表取締役社長の田名部氏は、同社を「小ロット製造代行サービス会社」と紹介する。「小ロット」とは、ほとんどの製品や試作品から数千個単位の量産品まで、注文の個数は問わず製造することであり、「製造代行」は、様々な業種の大型機械からミリ単位の精密品等を、設計開発から部品製作・組立てまで行う製造システムを指すとのことである。実際に、同社は月間製造10万点の製品のうち、7割の7万点が「1点もの」のオーダーであるという。つまり、顧客からオーダーされれば量産品でもひとつの試作品でも、アイデアを図面にすることから納品まで、ものづくりのゼロから完成までを一貫して生産できる体制を同社は備えているという。

田名部社長は、「何か機械装置や機器を作りたいというときや、遠方の生産拠点が必要だというとき、企業が工場や人をわざわざゼロから用意するのは難しい。そのような場合に我が社をお客様の開発部門、工場代わりに使っていただければと思います。」これは企業だけでなく、産学連携、スタートアップとの連携等のオープンイノベーションでも有効に活かせます。」と話す。

同社の「小ロット製造代行サービス」を可能にしたシステムは、SINS（Sanmatsu Integrated Network System：三松統合生産管理システム）と命名されている。設計図面から納品日まで生産工程ごとに日程、製作仕様や必要時間等が設定され、リアルタイムで進捗状況の「見える化」もなされている。例えば、製品ごとに採算の取れる作業時間を計画することにより、作業員の目標の達成が可能となり、作業品質の安定化と時間コスト削減となる。また、設計データと調達データから算出した材料費と作業時間から単位当たりのコストを管理できるという。顧客の製造代行、設計開発部門である以上、製品を完成させるだけでなく、その工程やコスト管理を厳密に行っていることも顧客の安心・信頼にもつながるという。

同社では、1997年頃から生産管理を紙文書からSINSに本格移行した。そして、それから20年後には受注オーダーは30倍になり、1日当たりの受注ロット数は6分の1になった。ロット数を小さくしても生産が伸びたことは、SINSの導入により多品種のオーダーに効率よく対応可能になったことを意味する。

同社のように多品種を一貫して効率よく生産するためには、各工程のタイムロスをなくし、次工程に回すことも重要である。同社は工程の進捗状況のほか、製品の工場内での位置情報も把握したいと考えた。そこで、製品を載せる台車にビーコン（無線標識）を取り付け、端末上のマップで台車位置を確認できると、SINSと連携させた。製品の移動時間や探索時間の削減は、生産効率を上げ、納期厳守が容易になり、工程の「見える化」がより一層リアルタイムになった。製品の搬送には、一部ロボットを導入しているが、将来的には、AGV（Automatic Guided Vehicle：無人搬送車）により、工程間のつなぎを自動化して、このシステムを確立し、販売することも構想している。

同社は、搬送の他にも、切削加工等の作業に社内でシステム化した産業用ロボットを導入している。実はこの産業用ロボットこそ、今後、同社が強みにしたい分野であり、ロボット産業におけるユーザー視点を持つSler（システムインテグレーション注6の雄）を目指したいという。同社は、労働安全衛生法で定められた産業用ロボット特別教育を購入事業者や学生に実施する等、元々ロボットシステムを得意分野としている。各種ロボットを社内工場の作業に適応するよう、独自にシステム開発しているほか、自動車や食品製造業において、省人化や検査測定用として活用できるロボットを製造、販売している。現在、力を入れているのが、ロボットと画像処理を連携させた「撮像ロボット」である。画像データをAIに読み込み、検査対象物の不良箇所を発見できるようシステム化するのだという。検査測定に限らず、ロボットによる省人化、自動化はますます進んでいるが、一方でロボットのSler技術者が少ないため、今後も差別化により競争力をつけていきたい。

注 6 システムインテグレーション（SI：System Integration）を行う業者のことを指す造語。システムインテグレーションとは、システムを構築する際に、ユーザーの業務を把握・分析し、ユーザーの課題を解決するようなシステムの企画、構築、運用サポートなどの業務を全て請け負うこと。
三松の「小ロット製造代行サービス」とは、ソリューションにつながる製品機器のアイデアを具現化するサービスである。特に、ロボットシステムの開発は、夢やアイデアを形にする「小ロット製造代行サービス」のビジネスモデルに合致するのではないだろうか。
（2）デジタル技術の導入・活用に向けた人材育成を実施している好例

コラム “ブリッジエンジニア”の活躍による品質と生産性の向上

（株）樋口製作所（岐阜県各務原市）は、板金プレスによる自動車部品及びそれに使用する金型と専用設備（省力化設備）の製造を行う会社である。設計から製造まで社内完結していることによって、短時間で多様な形状の加工を可能とし、難しい形状や成型素材の加工にもグローバルに対応できることが同社の強みである。

同社は、IoT技術を活用し、社内のあらゆるデータを取得、分析することで、改善活動を加速させている。デジタル技術の導入歴史は浅く、3年前に電子工作レベルから出発したが、取組を進める中で、製造工程の「見える化」をするだけではなく、「品質と生産性の向上」を最大のテーマに、全社で取組を進めた。その結果、受注から製品出荷までの情報を全社で共有できる社内プラットフォーム“Higuchi Data Integration Platform”を開発し、活用している。

この社内プラットフォームの開発に当たっては、“ブリッジエンジニア”と呼ばれる生産現場とシステム開発を横断的につなぐ人材が大きな役割を果たした。樋口社長は、デジタル化を進める上での障壁として、「製造現場の管理者は、デジタル技術の活用方法が分からない、システム開発の担当者は、現場の困り事が分からない。つまり、問題を抱えているところと問題を解決するところが全くつながっていない」と考えた。このため、“ブリッジエンジニア”と呼ばれる製造工程に精通する人やITエンジニアを集めた4名のプロジェクトチームを発足し、取組を始めた。

製造現場へのデジタル技術の導入は「改善活動」の一部であり、ものづくり現場の課題を正確に把握していることが重要である。同社がものづくりの上流から下流まで包括的にデジタル技術を導入しつつあるのは、このような横断的なプロジェクトチームを組織したことが大きく貢献しているという。

これまでは部署ごとにデータを取り扱い、分析していたが、社内プラットフォームを構築することで、部門間でのデータの共有や活用ができるようになっている。

例えば、製造工程で得られた生産時のデータを金型保全部が使用することで、金型段取り後の量産開始時に不良品の発生を事前に抑えるなど品質維持を実現している。また、プレス機で製造された部品には、二次元コードやシリアルナンバーをレーザープリントし、使用された材料ロットや材料特性値、プレス生産履歴などを、出荷後であっても把握できるようになった。これにより、ものづくりに関するあらゆるデータが集積できたことで、製造工程の生産性が向上しただけでなく、不良品が発生した場合でも課題を分析することが可能となり、更なる改善活動に活用できるようになった。

同社は、製造工程のほかにも人材育成にもデジタル技術を活用する。製造機械や金型の潜在的な故障原因の分析や、その不具合対策の立案には、高度な熟練技術や豊富な知識が必要となるため、そのレベルに達するまでには相当な時間を要する。同社が開発を進める「AI技術伝承システム」は、熟練エンジニアが
持つそのようなノウハウを、若手エンジニアがOJT以外でも学ぶことができ、経験の浅いエンジニアであっても、故障原因の分析や不具合対策立案が可能となる。結果、技術習得や業務の時間短縮にもつながると期待している。さらに、このシステムでは、過去10年以上の品質情報、工程改善書、技術情報などから、各種トラブルの事象に対する原因と対策、及びその評価に関するデータをAIに学習させている。

同社としては、生産工程にデジタル技術を導入することは、製造現場の改善をより強力に進めるための手段であると捉えている。デジタル化を進めていく上で大切なことは、データを抽出して見せるだけではなく、見える化にとどまる発想だけでなく、見える化による製造現場の改善に繋がるものである。同社では、技術習得や業務の時間短縮を期待している。さらに、このシステムでは、過去10年以上の品質情報、工程改善書、技術情報などから、各種トラブルの事象に対する原因と対策、及びその評価に関するデータをAIに学習させている。

金型メーカー（株）IBUKIは、山形県西村山郡河北町に本社工場を置き、プラスチック射出成形用金型を主力製品とする金型メーカーである。主に車両や家電製品の金型を製造し、加飾加工技術を強みとしている。加飾とは、金型へ模様加工を施すことにより成形品に高級感や独自の質感を出すことができる技術である。また、二次加工が必要なため、コスト削減や環境への配慮になるものでもある。

金型メーカーというと、一般的には下請け、アナログというイメージを持たれるが、同社は独自の取組により、金型メーカーの枠にとらわれない事業や活動に挑戦しており、そこにはデジタル技術の導入が大きく関与している。例えば、同社は、金型製造機械をIoT化することにより、成形中の金型の樹脂の流れや動きを「見える化」した。その仕組みは、複数のセンサーを金型に埋め込むことで、成形中の金型内部の現象を数値化し、製造過程で生じる不具合を職人の勘ではなく、客観的データにより把握するというものである。また、金型製造機械のチューニングや見解り作成時のパテラン職人側の思考をAI化することで、彼らの知見や技術を活用した機械の微調整や見解り作成を可能にした。思考のAI化とは、彼らの言葉や筆記をそのまま「ブレインモデル」と呼ばれるAIに蓄積することで、言語のネットワークという形でデータベース化し、検索したい情報を入力すると、最適な数値や言語が出力される仕組みである。いずれは、金型を製作する工程全てにおいてデジタル化を進めていきたいという。これらの技術は単に工数削減や製品の品質を高めるためだけではなく、技能伝承や人材育成にも役立っているそうだ。
同社のデジタル技術の活用は、製造工程にとどまらない。自社開発の勤怠管理システム（Dendenmushi（でんでんむし））や新人教育システム（Polaris（ぱらりす））などを開発し、社内業務のデジタル化を推進している。勤怠管理をホワイトボードからタッチパネルに変えたように、当たり前にアナログで行ってきたことをデジタル化し、その利便性を共有しながら、社員全員がデジタル技術に慣れてもらいたい。と営業グループの渡辺さんは語る。社員の業務をデジタル化することで、土台となるデジタル力と身につけさせ、金型製造のデジタル技術にもついていくことができるようさせるのが狙いだ。そのような一歩ずつの変化から、社員は会社を変えていくという意識も芽生え、アイデアや自主性も生まれてくるのだ。社内業務のデジタル化は、グループ会社の専門家の協力を仰いだり、社員自ら外部講座を受講したりするなど能動的に知識を吸収し、工場内に展開するというサイクルを回しながら開発を進めたという。その1人でもある несколькихチームの横山さんは、「チャレンジしたことで自分たちの仕事に新たな価値観を見いだすことができた。」という。

同社の DX は、非常にバランスよく推進されている。主要事業の金型製造にIoTシステムやAIを導入しつつ、社内独自のアイデアや技術で身近な日常業務からデジタル化を導入し、社員全員がデジタル技術に強くなるよう、研修や人材育成を幅広く行っている。DXと聞くと、生産効率向上の即効性を期待してしまうが、その前段階として、同社のように社内業務へのデジタル技術の導入に着実に取り組み、全社員がデジタル技術に触れる機会を必然的に増やすというアプローチは、他社にも参考になるのではなかろうか。

同社は、将来的には、ものづくり企業からソリューション企業へと発展するべく、今後は社内からデジタル化を推進できる社員の養成を目指し、人材育成に力を入れていく。山形の産業活性にも貢献するべく、県内の企業と協力し設立した「やまがたAI部」の活動を普及させ、山形の若者や女性のデジタル力の向上に一役買いたいという志を持っている。
を備えた人材」に分類し、スペシャリストの育成とベーシックな教育拡充の両輪で人材の育成・強化を進めている。これまでは、データサイエンティストなどの DX 人材を始めとするプロフェッショナル人材の育成を中心に取り組んできたが、2020年4月からは、グループ全体の DX リテラシーレベルを向上させるべく、「デジタルリテラシーとエクササイズ」と題したeラーニングの提供を開始した。DX や AI というワードを「難しそう」、「面倒そう」、「関係ない」などと感じている社員に向けて、4段階のステップに分けた研修を展開し、全社員のデジタルリテラシーの底上げを目指している。

また、同グループでは、デジタル技術の進展等に伴う産業構造の変化や、少子高齢化を始めとする我が国の社会構造の変化、異なる属性・経験値・価値観を持った多様な人材の増加など、急激かつ多面的で非連続的な環境変化に対応し、グローバルで社会イノベーション事業を推進していくために、いわゆる「ジョブ型」の人材マネジメントへ転換する取組を進めている。2011年度のグローバル共有の人材マネジメント基盤の整備から開始し、現在も推進中である。会社は、必要な仕事やその仕事に求められるスキルなどを、ジョブディスクリプションと呼ばれる職務記述書にまとめることで「職務の見える化」を行い、社員個人は、やりたい仕事や保有スキル、キャリアプランを「人財マネジメント統合プラットフォーム」に登録する。これにより、会社と社員両方の意志を明確にした上で、キャリアパスと能力開発に関するコミュニケーションを明示的に行う。このような取組を通じて、会社と社員が「仕事」をキーとした対等なパートナーとなり、年齢や性別等の属性によらない適所適材の人材配置を実現することによって、社員のエンゲージメントと生産性の向上を期待できる。

同グループで多様な人材の活躍を支援する取組のひとつに、テレワーク制度がある。1999年に導入したテレワーク制度は、会社が認めたほぼ全ての社員が利用できる。リモートで仕事を行う場合、対面で仕事を行うときより以上に、役割、仕事に明確化することが重要となるが、これは同グループが取組を進めている「ジョブ型」にも通じるものである。

同グループの取組は、産業構造の急速な変化に対応していくために、個々人のデジタルリテラシーに応じた段階的な育成や、“Hitachi University”による能力開発支援でスキルの底上げを行いつつ、「ジョブ型」の人材マネジメントの仕掛けにより、社員がキャリア形成、その実現のための能力開発の自発的に行っていることにつながるものである。人事制度と、社員の自律的な学びや意識向上の両面にアプローチする仕掛けによって、グローバルで活躍できる人材の育成を推進している。
横河電機（株）は、石油や化学プラント、水道、ガスなどの社会インフラ向けの計測、制御、情報の技術を軸とした、多品種少量生産の製品やサービスを取り扱う企業である。

同社は中期経営計画の中核施策のひとつにDXを掲げる。工場内の多様な機器をネットワーク化してデータを取り込み、取得されたデータを分析して業務効率向上に活用している。このデータは、特定の従業員に業務が集中しないような仕組み作りなど、生産効率の最大化の実現に活用される一方で、ものづくりにかかわるオペレーション技術の継承といった人材育成にも活用されている。

同社は、DXの取組によって蓄積されたノウハウを、自社のものづくり現場で展開するだけではなく、顧客に提供する製品・サービスに応用していくことで、課題解決のサポートも行っている。自社のDXの取組をソリューションとして提供する一例としては、自社工場で自社製品を実際に活用している状況を顧客に見せるという取組が特徴的である。山梨県甲府市にある工場には、企業の経営層を中心に2019年までに国内外から2,500人もの見学者が訪れた。同工場を見学することで、一連のDXの取組内容を俯瞰的かつ細部まで把握でき、顧客が抱える課題の解決策をイメージするきっかけになると同社は考える。

このような自社工場のDXの取組からソリューションビジネスに拡大するためには、ものづくり人材の役割が重要となる。同社は、これまで製造ラインにおいてものづくりに従事していた人財を、高付加価値の業務を担う分野にシフトしていく必要があると想定する。DXが進むと、工場では、従来ものづくりの一部が省人化される。DXの取組による高効率な生産を支えるためには、生産工程やものづくり技術を熟知していることと、新たな付加価値の高い業務を担う人財が必要となる。

例えば、先述のDX化された「自社工場の案内」を担う人財が挙げられる。DX化された「自社工場の案内」は単なる案内業務でないと同社は語る。工場を見学する顧客との会話の中から、顧客の抱えるものづくりにかかわる課題や、潜在的なニーズを把握し、最適なソリューションの提案につなげる。そのため、この業務は、自社の製造工程や自社製品・サービスを熟知していることに加え、顧客とのコミュニケーションの中から課題を発掘し、解決策を提案できることが求められる。

同社では、このような高付加価値の業務を担う人財の育成を行うため、OJTとOFF-JTの両輪で従業員のスキル向上を図っている。従業員が自発的に学ぶ機会として、レーニングを主体とした事業内大学「YOKOGAWA University」を2018年に開校し、OJTの教科書を学ぶだけでなく、新しい知識やスキルを学べる環境を整えている。開校から約2年間で、YOKOGAWAグループの世界62か国にある拠点に在籍する従業員の半数以上が自発的に利用しており、コースの種類も拡充し続けている。

注7 同社では、「人こそ財産」という考えに基づき、「人材」を「人財」と表記している。
同社が行う、システムを出荷する前の工場受入試験（以下「FAT」という。）は、設計通りに動作するかを検査するもので、顧客立会いの下で同社にて実施している。もともと同社には、FATの工程のうち一部をリモートで行う体制が整っていたため、新型コロナウイルス感染症の感染拡大防止対策で外出を控えたい顧客を中心に、リモートFATの有効性に注目が集まっている。

工場のDXが進むことで、ものづくりの基盤が強化され、生産効率が向上する。この結果、人材は、より付加価値の高い業務にシフトしていくことが可能となる。付加価値の高い仕事を担う人材へと育成していくためには、「学び」を通じて新たなスキルを身に付ける必要がある。一方で、自社のものづくりに精通し、現場を熟知しているといった、これまで、ものづくり人材に求められてきた能力は変わらない。

コラム
（株）コスモ技研（愛知県小牧市）は、ロボットを中心とした周辺設備一帯を「ロボットシステム」として提案し、また、そのロボットシステムとAI、IoT、ビッグデータ技術を活用して、工場全体の無人化システムを提案できるロボットシステムインテグレータの会社である。同社は、既製品がない設備であっても一品料理の一品設備の製造、納入、メンテナンスまでを一貫した製造体制である。

ロボットを活用することで、人間が立ち入ることができない過酷な環境や、減菌の工場、人間の力では運搬できない重量ワークなどにおいて、工場の生産効率を向上させることができる。

同社が強みとするのは、工場内のロボットや各種センサー、カメラを有する設備全体の機器を専用のネットワーク（以下「VPN」という。）で接続することで、「工場全般にAI、IoT、ビッグデータを活用し、工場全体のシステムを提案できるロボットシステムインテグレータの会社である。同社は、既製品がない設備であっても一品料理の一品製作の製造、納入、メンテナンスまでを一貫した製造体制である。

ロボットを活用することで、人間が立ち入ることができない過酷な環境や、減菌の工場、人間の力では運搬できない重量ワークなどにおいて、工場の生産効率を向上させることができる。

同社が強みとするのは、工場内のロボットや各種センサー、カメラを有する設備全体の機器を専用のネットワーク（以下「VPN」という。）で接続することで、「工場全体にAI、IoT、ビッグデータを活用し、工場全体のシステムを提案できるロボットシステムインテグレータの会社である。同社は、既製品がない設備であっても一品料理の一品製作の製造、納入、メンテナンスまでを一貫した製造体制である。

ロボットを活用することで、人間が立ち入ることができない過酷な環境や、減菌の工場、人間の力では運搬できない重量ワークなどにおいて、工場の生産効率を向上させることができる。

同社が強みとするのは、工場内のロボットや各種センサー、カメラを有する設備全体の機器を専用のネットワーク（以下「VPN」という。）で接続することで、「工場全体にAI、IoT、ビッグデータを活用し、工場全体のシステムを提案できるロボットシステムインテグレータの会社である。同社は、既製品がない設備であっても一品料理の一品製作の製造、納入、メンテナンスまでを一貫した製造体制である。

ロボットを活用することで、人間が立ち入ることができない過酷な環境や、減菌の工場、人間の力では運搬できない重量ワークなどにおいて、工場の生産効率を向上させることができる。

同社が強みとするのは、工場内のロボットや各種センサー、カメラを有する設備全体の機器を専用のネットワーク（以下「VPN」という。）で接続することで、「工場全体にAI、IoT、ビッグデータを活用し、工場全体のシステムを提案できるロボットシステムインテグレータの会社である。同社は、既製品がない設備であっても一品料理の一品製作の製造、納入、メンテナンスまでを一貫した製造体制である。

ロボットを活用することで、人間が立ち入ることができない過酷な環境や、減菌の工場、人間の力では運搬できない重量ワークなどにおいて、工場の生産効率を向上させることができる。

同社が強みとするのは、工場内のロボットや各種センサー、カメラを有する設備全体の機器を専用のネットワーク（以下「VPN」という。）で接続することで、「工場全体にAI、IoT、ビッグデータを活用し、工場全体のシステムを提案できるロボットシステムインテグレータの会社である。同社は、既製品がない設備であっても一品料理の一品製作の製造、納入、メンテナンスまでを一貫した製造体制である。

ロボットを活用することで、人間が立ち入ることができない過酷な環境や、減菌の工場、人間の力では運搬できない重量ワークなどにおいて、工場の生産効率を向上させることができる。

同社が強みとするのは、工場内のロボットや各種センサー、カメラを有する設備全体の機器を専用のネットワーク（以下「VPN」という。）で接続することで、「工場全体にAI、IoT、ビッグデータを活用し、工場全体のシステムを提案できるロボットシステムインテグレータの会社である。同社は、既製品がない設備があ
ロボットシステムの設計から製作、納入、メンテナンスまでを一気通貫で行うために、デジタルとものづくりの双方に高度な知識が求められることから、同社は、機械全体の動きや電気制御、プログラム言語などのITシステムについてのスキルを持った人材を中心に採用し、「社員全員が技術者」の考えの下で、個々の能力に応じて社員を一人前の“企画者”となるよう育成している。同社では、OJTや社外講習を通じた設計、電気制御、ITシステムなど各々の所属部門に応じた能力開発を基本としながら、所属部門以外の分野についての知見を身につける環境を整えている。例えば、設計部門の社員が自身の主業務ではない電気制御に関する社外講習の受講を希望した場合に、知見を増やす観点から会社として奨励し、積極的に参加できるようにする取組を行っている。その結果、社員は専門分野以外の知識や技術も習得し、自らの業務に活用していくことや、モチベーションを高く保ちながら仕事に取り組むことが可能となる。これは、社員自身の役割にとらわれない能力開発を行うことで、多能工の育成に成功している好事例である。

ものづくり企業において、FA設備とITシステムを組み合わせたスマートファクトリーを構築することは、生産性や労働安全衛生の向上につながる。また、スマートファクトリーを構築する上で必要不可欠なFA設備とITシステムの双方に精通した人材が増えることは、ものづくりの現場においてDXを進展させていくカギとなるだろう。
これからのものづくり産業におけるデジタル人材の確保と育成

近年、Society5.0の実現に向けた経済・社会の構造改革が進展する中で、我が国のものづくり産業においても、IT等のデジタル技術を活用した課題解決や業務効率化等を進めるための人材を確保・育成することが、重要となっている。ここでは、今後のものづくり産業における、デジタル人材の確保と育成の課題や取組についてみていく。

図216-1 デジタル技術を活用する上での課題（複数回答）

デジタル技術活用企業 (n=1,988)
デジタル技術未活用企業 (n=1,490)

1. デジタル技術導入にかかるノウハウの不足(50.1%)
2. デジタル技術の活用にあたって先導的役割を果たすことのできる人材の不足(47.9%)
3. デジタル技術導入にかかる予算の不足(42.6%)
4. デジタル技術の活用にあたって先導的役割を果たすことのできる人材の育成のためのノウハウの不足(28.2%)
5. デジタル技術の活用にあたって先導的役割を果たすことのできる人材の確保・育成のための予算の不足(23.9%)
6. 他に優先する課題がある(15.8%)
7. デジタル技術導入の効果がわからない(15.6%)
8. 経営ビジョンや戦略がない(12.3%)
9. デジタル技術を活用する際の政策・制度面での支援が不足している(11.1%)
10. デジタル技術を導入することで現在のものづくり人材の仕事がなくなる（縮小する）おそれがある(6.9%)
11. その他(5.5%)
12. 特に課題はない(3.4%)
13. 無回答(1.9%)

資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成に関する調査」(2021年5月)
さらに、デジタル技術活用企業に対して、デジタル技術の活用を進めるに当たって先導的な役割を果たした社員について問うたところ、「経営トップ」が最多となった。また、「社内で特にデジタル技術に精通した社員」や「デジタル技術を利用・活用した部門のリーダー社員」も、これに次いで多くなった。このことから、ものづくり企業がデジタル化に着手するに当たっては、経営トップがデジタル技術の活用の必要性を認識し、トップダウンの形で、デジタル化を進めていくことが重要であり、加えて、デジタル技術を熟知した社員や業務に精通したリーダー層が中心となり、デジタル技術の活用や導入を進めていくことが大切であることがうかがえる（図 216-2）。

図 216-2 デジタル技術の活用を進めるに当たって先導的な役割を果たした社員（複数回答）

備考：デジタル技術活用企業に対する調査。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
続いて、デジタル技術活用企業であって、「デジタル技術導入にかかるノウハウの不足」を課題として挙げた企業に対し、デジタル技術の導入のノウハウに精通すべき社員層について問うたところ、「デジタル技術を利用・活用した部門のリーダー社員」、「工場長やデジタル技術を利用・活用した部門のトップ」の順で多くとなっており、「経営トップ」を大きく上回っている(図216-3)。このことから、デジタル技術の導入を具体的に進める段階においては、経営トップよりも、現場の業務内容を熟知したリーダー社員等が細かなノウハウに精通し、中心となって進めていくことが重要となることがうかがえる。
さらに、デジタル技術活用企業に対して、デジタル技術を導入・活用する上で先導的な役割を果たすことができる人材に必要なことについて問うたところ、「自社が保有する設備・装置や、担当する工程（開発・設計、製造、品質管理等）での仕事を熟知している」や「自社が保有する技術や製品について熟知している」といった、本業に対する深い理解が重要であることが示唆された。一方で、「デジタル技術を自社の事業で活用・応用できる能力（生産性向上、技術革新など）」、「デジタル技術で収集したデータを分析できる」、「デジタル技術を応用了した、他社で開発された製品・サービスを高度に使いこなせる」、「自身でプログラミング、システム開発ができる」という、「デジタル技術そのものを使うことができる能力」に関する項目も、ある程度あるものの、その割合は、前述の本業に対する理解に関係する項目よりも、相対的に低いことが分かる（図216-4）。これらの結果から、デジタル技術を導入・活用する上で、先導的な役割を果たす人材にとっては、まず、自社の業務内容や状況を熟知し、その上で、デジタル技術の知識やスキルを学んでいくことが重要であることが示唆される。

図216-4 デジタル技術を導入・活用する上で先導的な役割を果たすことができる人材に必要なこと（複数回答）

備考：デジタル技術活用企業に対する調査。
資料：JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
次に、デジタル技術の活用を進めていくに当たり重要となる社内での取組について問うたところ、デジタル技術活用企業では、「社員のデジタル技術活用促進に向けた意識改革」が約半数を占めており、デジタル技術を導入した後に活用していく段階においては、幅広い社員の意識改革が重要であることがうかがえる。一方で、デジタル技術未活用企業では、「会社が必要とするデジタル技術活用の要件の明確化」、「経営層のデジタル技術活用に向けた理解の促進」が多く、デジタル技術活用企業と比較して、導入以前の入場段階での取組が重要視されていることが分かる（図216-5）。

図 216-5 デジタル技術の活用を進めるに当たり重要な取組（複数回答）

【資料】JILPT「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成に関する調査」（2021年5月）
（2）ものづくり産業における人材確保に向けた取組

人材確保の基本である採用方針については、ものづくり産業全体でみると、「新卒採用が中心」よりも、「中途採用が中心」が多くなっている。これをデジタル技術の活用有無別にみると、デジタル技術活用企業は、「新卒採用が中心」が 25.3%、「中途採用が中心」が 47.3% となっているのに対し、デジタル技術未活用企業は、それぞれ 16.5% と 59.3% となっている。ものづくり産業全体において、即戦力人材の確保が期待できる中途採用が主流であると考えられる中で、デジタル技術活用企業は、新卒採用に力を入れているのがうかがえる（図 216-6）。

図 216-6 現在のものづくり人材の採用方針

あわせて、過去 3 年間（2017 年度から 2019 年度）のものづくり人材の新卒採用状況についてみてみると、デジタル技術活用企業は、「ほぼ計画どおり採用できた」、「採用できたものの、不十分」の順で多く、デジタル技術未活用企業は、「募集しなかった」が最多となった（図 216-7）。このことから、デジタル技術活用企業の方が、相対的に新卒採用が進んでいることがうかがえる。

また、過去 3 年間（2017 年度から 2019 年度）のものづくり人材の中途採用状況については、デジタル技術の活用有無にかかわらず、「ほぼ計画どおり採用できた」と「採用できたものの、不十分」の合計が、いずれも 8 割前後となり、中途採用が進んでいることもうかがえる（図 216-8）。

図 216-7 過去 3 年間（2017 年度から 2019 年度）のものづくり人材の新卒採用状況

資料：JILPT「ものづくり産業における DX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」（2021年5月）
次に、デジタル技術の活用に向けたものづくり人材の確保に向けて実施している取組について問うたところ、デジタル技術活用企業では、「自社の既存の人材に対してデジタル技術に関連した研修・教育訓練を行う」が最も多く、次いで、「デジタル技術に精通した人材を中途採用する」となった。一方で、デジタル技術未活用企業では、「デジタル技術を活用しないので確保する必要はない」が半数近くを占め、「自社の既存の人材に対してデジタル技術に関連した研修・教育訓練を行う」や「デジタル技術に精通した人材を中途採用する」の割合は、デジタル技術活用企業に比べ、大幅に低くなっている（図216-9）。このことから、デジタル技術活用企業では、中途採用によるデジタル技術に精通した人材の確保も行いつつ、主に、自社の社員へのデジタル技術に関する研修・教育訓練に注力して、人材の確保・育成を図っている姿が浮かび上がってきた。

図216-9 デジタル技術の活用に関するものづくり人材の確保に向けた取組（複数回答）
続いて、デジタル技術活用企業のうち、「自社の既存の人材に対してデジタル技術に関連した研修・教育訓練を行う」と答えた企業に対し、どのような内容の研修や教育訓練を行っているか問うたところ、「会社の指示による社外機関での研修・講習会への参加」が最多となった（図216-10）。これは、多くのデジタル技術活用企業が、会社の指示で、外部の力を借りて、デジタル技術を活用できる人材を育成しようとしていることを示唆している。

さらに、自社のものづくり人材に受講させたいデジタル技術に関連する研修について問うたところ、デジタル技術活用企業では、「自社の目的・狙いに応じたデジタル技術が選択できるようになる研修（デジタル技術を使った経営戦略等）」や「デジタル技術を使いこなすための研修（製品の操作等）」など、実際にデジタル技術を活用していくための研修を求めていることが分かる。一方で、デジタル技術未活用企業では、「デジタル技術そのものへの理解が深まる研修」が最も高く、デジタル技術の導入や活用の入門段階の研修へのニーズが高いことがうかがえる（図216-11）。

図 216-10 自社の既存の人材に対して実施しているデジタル技術に関連した研修・教育訓練の内容（複数回答）

備考：デジタル技術の活用に関するものづくり人材の確保に向けた取組として、「自社の既存の人材に対してデジタル技術に関連した研修・教育訓練を行う」を挙げた企業に対する調査。
資料：JILPT 「ものづくり産業におけるDX（デジタルトランスフォーメーション）に対応した人材の確保・育成や働き方に関する調査」 （2021年5月）
本節では、デジタル技術の活用が進んでいるものづくり企業に着目して、デジタル技術の導入や活用に当たっての課題とその解決ポイント等についてみてきた。デジタル技術活用企業は、結果として、労働生産性が向上しており、ものづくり人材の育成や能力開発に向けた取組についても、幅広く実施できており、なおかつ、そのような取組がうまくいくていると感じている企業が多いことが分かった。また、図表214-5の赤枠で囲われたOFF-JTの実施や作業標準書等の活用等の労働者による主体的な学びを後押しする取組についても、積極的に実施してきたことが確認できている。さらに、デジタル技術を導入するためには、経営トップが先導的役割を果たし、導入の段階では、業務に精通している部門のリーダーがキーパーソンとなることが重要である。そのような取組がうまくいくていると感じている企業が多いことが分かった。一方で、ものづくり産業においては、依然として、熟練技能が重要と考えられており、それぞれのものづくりの作業工程や現場に合った形で、熟練技能を大切にしつつ、デジタル技術の導入も両立していくことが重要であり、そのために必要な人材を確保・育成していくことも、我が国の基幹産業であるものづくり企業が持続的に成長していくためには、必要であると考えられる結果となった。

新型コロナウイルス感染症の感染拡大により、社会や経済の不確実性が高まる中で、デジタル化等の急速かつ広範な変化に対応していくためには、ものづくり産業において、企業と労働者の双方が共通し、労働者の主体的な学びを後押ししつつ、社内全体での教育訓練を推進していくという人材育成・能力開発の取組を拡大・深化させていくことが重要である。
より効果的なものづくり訓練に向けて

国、都道府県等は、職業能力開発促進法に基づき、労働者が段階的かつ体系的に職業に必要な技能及びこれに関する知識を習得するため、公共職業能力開発施設を設置し、①離職者訓練、②在職者訓練、③学卒者訓練を実施している注8。

①離職者訓練（施設内訓練・委託訓練）
離職者を対象に、職業に必要な技能及び知識を習得させることによって再就職を容易にするための職業訓練

②在職者訓練
在職中の労働者を対象に、技術革新や産業構造の変化等に対応する高度な技能及び知識を習得させるための職業訓練

③学卒者訓練
高等学校卒業者等を対象に、職業に必要な技能及び知識を比較的長期間かけて習得させるための職業訓練

国による職業訓練は、（独）高齢・障害・求職者雇用支援機構（以下「JEED」という。）の職業能力開発促進センター（以下「ポリテクセンター」という。）及び職業能力開発大学校・短期大学校（以下「ポリテクカレッジ」という。）が、都道府県による職業訓練は、各都道府県の職業能力開発校・短期大学校がそれぞれ主となって、産業界や地域のニーズを踏まえて実施している注9注10。

特に JEED においては、訓練ニーズが高い一方、訓練を実施している民間教育訓練機関がほとんど存在しないものづくり分野を中心に、ものづくりの現場における製品の品質や機器の高度化、新技術、納期の短縮等に加え、設備や品質の不具合、トラブルの発生、効率的な生産ラインの構築等に対応できる能力を身に付けることができる訓練を実施している。加えて、デジタル化等の急速かつ広範な変化に対応するために、第 4 次産業革命に対応する訓練カリキュラムの開発を進めるなど、訓練分野の不断の見直しを行っている。また、JED では、ものづくりの現場で産業用ロボットの利活用を推進する人材を産学連携により育成できる体制を構築するべく、2020年6月に、ロボット革命・産業 IoT イニシアティブ協議会（RRI）の下に設立された未来ロボティクスエジンニア育成協議会（ロボットメーカー7社、FA・ロボットシステムインテグレータ協会、（独）国立高等専門学校機構、（公社）全国工業高等学校協会及び JEED）（以下「CHERSI」という。）に参画するとともに、CHERSI もと連携しながらより産業界のニーズにマッチした職業訓練の提供について検討している。

なお、新型コロナウイルス感染症の感染拡大下での「新たな日常」への対応の一環として、2020年5月より、公共職業訓練の全ての課程において、2021年2月より、求職者支援訓練において、同時双方向型によるオンライン訓練の実施を可能としたところであり、オンライン訓練の実施状況や訓練効果等を把握・分析した上で、更なる活用に向けて検討することとしている。

公的職業訓練（公共職業訓練と求職者支援訓練の総称）の周知・利用促進にあたっては、2016年11月に策定した「ハロートレーニング～急がば学べ～」というキャッチフレーズや、2017年10月に策定したロゴマークのキャラクター（愛称「ハロトレくん」）による広報を行ってきた。

そして、2020年10月からは、このような取組を強化し、特にこれまで広報が届きにくかった「ハロートレーニング」をキャッチフレーズとして、オンライン訓練の実施状況や訓練効果等を把握・分析した上で、更なる活用に向けて検討することとしている。

注8 このほか、離職者向けの訓練として、主に雇用保険を受給できない方を対象とした求職者支援制度を実施している。訓練科目はサービス分野が中心となっている。

注9 2019年度においては、離職者訓練は、約10.4万人（国：約2.6万人、都道府県：約7.8万人）（うち施設内訓練は、約3.3万人（国：約2.6万人、都道府県：約0.7万人））、在職者訓練は、約12万人（国：約7万人、都道府県：約5万人）、学卒者訓練は、約1.6万人（国：約0.6万人、都道府県：約1.1万人）が講じられた。

注10 国においては、高度で専門的かつ応用的な訓練、都道府県においては、基礎的な訓練や地域産業の人材ニーズに対応した訓練を実施することで、適切に役割分担を図っている。
公共職業訓練の概要

国及び都道府県は、離職者、在職者、及び学卒者に対する公共職業訓練を実施しています。

（1）訓練ニーズを踏まえたものづくり訓練の実施
ポリテクセンター及びポリテクカレッジにおける職業訓練は、全国レベルで訓練水準の維持・向上を図るとともに、各地域の訓練ニーズに応じた訓練を実施するよう、地域ごとに訓練内容をアレンジして実施している。また、在職者訓練については、あらかじめ設定された訓練コースに加え、各企業の人材育成ニーズに即して設定するオーダーメイド型の訓練も実施している。

（2）ものづくりの現場に求められる能力を身につけることのできる職業訓練の実施
国は、全国ネットワークによるスケールメリットを活かしたカリキュラムの作成、生産現場のリーダーを育成する「事業主推薦制度」の実施、全国の公共職業能力開発施設等において職業訓練の指導を担う職業訓練指導員（「テクノインストラクター」）の養成により、全国規模でのものづくり現場の動きを踏まえた訓練水準の維持・向上を図り、企業において真に必要とされる人材を育成するための取組を実施している。

カリキュラムの作成については、成長が見込まれる分野における訓練カリキュラム開発も行っており、例えば、生産現場においてロボット技術を活用した生産システムの構築・運用管理等ができる人材を育成する「生産ロボットシステムコース」のカリキュラムを開発し、それに基づいた職業訓練をポリテクカレッジで実施している。

注11 企業から「自社の課題や目的にあった研修を実施したい」、公開されている訓練コースでは日程の都合が合わないといった要望がある場合に、各都道府県の実施例

注12 ポリテクカレッジの専門課程・応用課程（各2年間）で企業推薦の受け入れを行うもの。

注13 指導員の認知度向上を図るとともに、指導員を地域の産業界に導入し、当地域の産業界を活性化するための取組を実施する目的に、2014年7月に決定した指導員の愛称である。
また、地域のものづくり企業における生産現場のリーダーを育成するため、ポリテクカレッジにおいて、事業主が雇用する従業員を推薦する入校試験制度を設け、ポリテクカレッジの高度なものづくり人材を育成する教育訓練により、中小企業等の人材育成の支援を行う「事業主推薦制度」を実施している。

テクノインストラクターの養成については、JEEDの職業能力開発総合大学校において、テクノインストラクターとしての就業を希望する者に対する指導員養成訓練、及び在職のテクノインストラクターに対する指導員技能向上訓練（スキルアップ訓練）を実施している。

指導員技能向上訓練では、技術革新等に対応するための先端技術・専門性拡大の研修や、指導力向上のための指導技法・教材開発等の研修を実施している。

また、職業能力開発総合大学校の講師が各地域に出向いて訓練を実施するなど、全国のテクノインストラクターが受講しやすい環境整備を図っている。

コラム ポリテクカレッジ修了生の活躍事例･･･(株)エヌビーシー

(株)エヌビーシー（岐阜県大垣市）は、自動車用プリント基板、ワイヤーハーネス、部品実装等の各種電装品を高水準の技術力で設計・製造しているカーエレクトロニクスの専門メーカーであり、取引先である自動車メーカーからの品質への評価も高い企業である。

同社の品質管理部品班で働く中井さんは、東海ポリテクカレッジの専門課程、応用課程で電子情報学を学んだ修了生であり、在学中に学んだ知識や技能を活かし、同社の将来を担うリーダーとして重要な業務に携わっている。

学生時代を過ごした東海ポリテクカレッジについて、中井さんは、「ポリテクカレッジは少人数制で訓練を行っているため、普通科高校や商業高校を卒業した私のように専門知識が無い学生でも安心して学ぶことができた。また、自分で設計・製作した電子回路基板とプログラムにより動作させる実習によって、電子回路製作の一連の流れを理解することができた。訓練の多くが実験・実習であるため、実習等を通して自分の得意分野を見つけることができた。」と話す。

他の学科と共同で製品開発を行う、応用課程での開発課題実習について、中井さんは当時を振り返り、「各学科の学生と連携してひとつの課題を製作するため、自分の専門外である他の学科の実習内容についても理解することができた。この経験は、現在の仕事において、会社の事業や自分自身の仕事、他部署の業務内容の理解や把握に役立っている。また、開発課題実習でのグループワークを通して、仕事におけるチームワークの重要性を認識できただけでなく、ものづくりを行う上での計画性や準備等も含めたプロセスを大切にするようになった。」と、東海ポリテクカレッジでの経験が、現在の仕事に活かされていると話す。将来についても、「東海ポリテクカレッジで習得した幅広い知識・技能に加え、自分の携わる仕事で経験を重ねることで、更に専門性を磨き、頼りがいのある人材になりたい。」と抱負を語っていた。

中井さんの上司である、同社のアッシー事業部品質課水谷課長は、中井さんについて、「主に新製品を中心に製品保証に携わる重要な業務を担っているが、東海ポリテクカレッジでの基礎訓練が身に付いており、業務の理解や習得も早く、的確に業務を遂行できるため、当社に欠かせない優秀な存在である。今後も更なる向上を目指し、他の課員への指導ができるような存在になってくれることを期待する。」と話している。
（3）産業界や地域の訓練ニーズを踏まえた訓練基準や分野の不断の見直し

JEEDの職業能力開発総合大学校においては、最新の技術革新などの動向を踏まえた職業訓練内容への見直しや企業の人材ニーズを把握するための調査を実施しており、それを踏まえ、ポリテクセンター及びポリテクカリッジの訓練カリキュラムの見直しを行っている。また、PDCA（計画・実行・評価・改善）サイクルにより、訓練コースの見直しを実施している。例えば、2020年度の離職者訓練コースの設定に当たり、JEEDの2019年度の訓練コースのうち、3割程度の訓練カリキュラムの見直しを実施した。具体的には、木造住宅の構造、法規、各種申請やリフォームを含む木造住宅の施工に関する技能・技術を習得する内容により実施している「住宅リフォーム技術科」について、介護保険制度にかかわる住宅改修工事を行う企業から、高齢者の疾病を理解し住環境整備術の技能及び知識を習得した人材が求められていることや、バリアフリー等に力を入れているリフォーム関係の企業への再就職を希望する応募者が増加傾向にあることなどから、高齢者に合わせた住環境整備に関するカリキュラムを追加し、人材ニーズへの対応を図った。また、これまでも第4次産業革命に対応する訓練カリキュラムの開発を進めてきたが、デジタル化等の急速かつ広範な変化に対応するために、さらなるカリキュラムの開発・強化を促進するとともに、デジタル化に対応した訓練の実施・拡大を推進していく。

企業等のニーズに応じたPDCAサイクルによる訓練コースの見直し

技術革新等に対応した職業訓練を実施するため、PDCAサイクルにより、訓練コースの見直しを実施

<table>
<thead>
<tr>
<th>Plan</th>
<th>Do</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>訓練ニーズの把握 カリキュラムコース設定</td>
<td>効果的な訓練の実施</td>
<td>効果の評価と問題点の把握</td>
</tr>
<tr>
<td>• 訓練コースの見直し等</td>
<td>• 効果的な訓練の実施</td>
<td>• 評価・分析を踏まえた訓練コースの見直し等</td>
</tr>
</tbody>
</table>

Checkの主な取組

- 離職者訓練受講者の調査及び調査行動
- 離職者訓練の改善・見直しのためのフィードバック調査 (受講者及び離職者へのヒアリング調査)
- 在職者訓練の品質保証に向けた取組 (訓練カリキュラムの活用)

Actの主な取組

- 受講者の訓練習得度の把握
- 訓練内容の改善 (あるいは、受講者を活用した訓練コースの改善)
- 受講者の習得状況に応じた訓練を実施

受講者の訓練習得度の把握

<table>
<thead>
<tr>
<th>受講者の訓練習得度の把握</th>
<th>教師の評価</th>
<th>問題点の把握</th>
</tr>
</thead>
<tbody>
<tr>
<td>受講者の訓練習得度の把握</td>
<td>uy</td>
<td>uy</td>
</tr>
</tbody>
</table>

PDCAサイクル

- 訓練ニーズの把握 カリキュラムコース設定
- 効果的な訓練の実施
- 効果の評価と問題点の把握
- 訓練ニーズの把握 カリキュラムコース設定

<table>
<thead>
<tr>
<th>Plan</th>
<th>Do</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>訓练ニーズの把握 カリキュラムコース設定</td>
<td>効果的な訓練の実施</td>
<td>効果の評価と問題点の把握</td>
</tr>
<tr>
<td>• 訓練コースの見直し等</td>
<td>• 効果的な訓練の実施</td>
<td>• 評価・分析を踏まえた訓練コースの見直し等</td>
</tr>
</tbody>
</table>

新しい訓練ニーズの把握の主な取組

- 全国の職業能力開発施設の指導員等が事実関係を訪問し、企業の要望・ニーズや職業能力に関するヒアリング調査
- 職業能力開発体系 (職業能力の体系と職業訓練の体系)を用いたニーズの分析
- カリキュラムモデルをベースとしてニーズに応じたコース設定
- 評価・分析を踏まえた訓練ニーズの見直し等

就業環境整備ニーズの分析

- カリキュラムのポイントを押さえた指導
- 受講者の習得状況に応じた訓練を実施
- キャリアコンサルティングの実施

第2章 産業における人材育成の取組について
コラム

第4次産業革命に対応した離職者訓練

第4次産業革命の進展による技術革新に合わせてビジネスモデルが変化していることから、生産現場においても、生産性を向上させるため、生産工程の合理化、低コスト化及び高品質化を目的とした生産技術の強化が求められており、ICTを活用した生産設備の開発、運用及び保守管理ができる人材が求められている。

このような背景を受け、JEEDの離職者訓練においても、第4次産業革命の進展に対応した人材育成のための訓練科として、スマート生産サポート科を設置している。

スマート生産サポート科の訓練内容は、大きく分けて2つある。ひとつは、工場内の自動化技術や保全・保守・管理のベースとなる技能・技術の習得のためのカリキュラムであり、もうひとつは、製造現場で必要とされるICTを活用したアプリケーションの開発や、ネットワーク化した生産設備機器から得られる情報に応じた制御ができる技能・技術を習得するためのカリキュラムである。ハードウェアとソフトウェアの両方を実学一体で学ぶことで、幅広いニーズに対応した訓練内容となっている。

就職できる職種としては、工場内における生産支援システムの開発及び保守技術者、生産設備のネットワークの保守・管理技術者、プログラマー、システムエンジニアなどを想定しており、全国の21の施設で実施している。
第2章
ものづくり人材の確保と育成

2 中小企業等の労働生産性の向上

（1）生産性向上支援センターの取組

生産性向上支援センター（以下「生産性センター」という）は、中小企業等の労働生産性向上に向けた人材育成を支援することを目的として、2017年度から、JEEDが運営する全国のポリテクセンター・ポリテクカレッジ等（以下「JEED各施設」という）に設置された。

生産性センターでは、これまでJEED各施設が行ってきた在職者訓練を始めとする事業主支援業務の拡充・強化を図るとともに、中小企業等の労働者一人一人の生産性向上を支援するため、民間機関等を活用し、様々な分野の、幅広い職務階層の在職者を対象に、「生産管理」、「組織マネジメント」、「マーケティング」、「ITを活用した業務改善」など、企業の生産性向上に必要な知識やスキル等の習得を図る生産性向上支援訓練を実施している。生産性センターが実施する在職者訓練及び生産性向上支援訓練については、条件を満たせば、人材開発支援助成金（3（1）に後述）を受けることができる、同助成金の利用に必要な訓練実施計画の作成支援なども生産性センターが実施している。

生産性向上支援訓練利用者の声

新卒社員や中途採用社員など、様々な職務経歴の社員が混在しているが、社内で必要な知識を体系的に学べる支援センターを利用している。
教育する育成制度が整備されていなかったため、各部門・各人任せのOJTや自己啓発などが中心となっていた。

今回、ポリテクセンター京都から、講師が会社に来て効率的に研修が受けられる、生産性向上支援訓練の紹介があり、喫緊の課題である原価管理の徹底と新規販売先の開拓に関する訓練である、「原価管理とコストダウン」と「提案型営業実践」を利用した。

「原価管理とコストダウン」については、各部門の担当者の意識や認識が統一でき、同じベクトルの中で、業務が円滑に進むようになった。また、受講者の原価管理への意識が高まり、粗利益率のアップにつながることができたため、社内での案件検討会議や案件ごとの収益管理面で、大いに活用されている。

「提案型営業実践」については、具体的な提案書を作成し、実践に活かせた。また、意識が高まることで、取引先へのプレゼン频度も高まった。

今後は、商品開発を始め、生産管理や品質管理等各分野での研修を進めていきたいと考えている。

【訓練受講者の声】
「原価管理とコストダウン」については、受講前は原価管理を強化していく上での考え方のベースとなるものが人によってばらつきがあり、うまく機能していないかかった面があったが、訓練でポイントを分かりやすく解説していただいたことで、会議や検討会を効率的かつ効果的に進めることができるようになった。

「提案営業実践」については、訓練受講前は提案書を提出してもうまくいかないことが多々あったが、訓練でポイントを分かりやすく解説していただいたので、今後は、ポイントを踏まえた提案書をより多く作成して、案件獲得につなげていきたいと考えている。また、自分自身のスキルアップにつながるだけでなく、会社にいながら受講できる仕組みは効率的であるため、今後も同様の機会があれば積極的に受講したい。

企業の人材育成などによる職業能力開発の推進

(1) 企業内の職員育成 (民間企業における職業訓練)
「令和元年度能力開発基本調査」（厚生労働省）によると、人材育成に関して問題点があると回答した事業所は、76.5%となっており、製造業では、全体よりも高い80.3%となっている。人材育成に関する問題点としては、「指導する人材が不足している」、「人材育成を行う時間がない」などのほか、「人材を育成しても辞めてしまう」が挙げられている。

厚生労働省では、雇用する労働者に対して職業訓練を計画に沿って実施する事業主に対して助成する「人材育成支援助成金」により、企業内における労働者の人材育成の効果的な促進を図っている。

特に、同助成金によるものづくり人材の育成については、製造業、建設業などの事業所が、厚生労働大臣の認定を受けたOFF-JTとOJTを組み合わせた訓練を実施する場合には、同助成金の中で最も高い助成率により助成することで支援している。また、熟練技術を承継するための職業訓練や若年労働者を育成するための職業訓練、労働生産性の向上に直結する職業訓練を実施した場合にも、高い助成率により助成することで支援している。さらに、労働生産性が向上している企業に対しては、助成率の引き上げを行っている。

なお、2021年4月からは、企業内における人材育成を引き続き効果的に推進するとともに、雇用する労働者の職業能力の向上や企業の労働生産性の向上に資するよう、以下の見直しを行う。

具体的には、
① 現在就いている職務に限らず、企業の業種等転換後の見据えた職務に係る前後の訓練を助成の対象とすること（令和2年度第3次補正予算により先行実施）
② 高度なITスキルを持つ人材育成の支援として、ITSS（IT Skill Standard: ITスキル標準）レベル4及び3相当の教育訓練を高率助成の対象とすること
③ 長期教育訓練休暇の要件としている休暇取得日数を緩和すること
人材開発支援助成金

○職業訓練を実施する事業主等に対して訓練経費や訓練期間中の賃金の一部を助成する等により、企業内の人材育成を支援

<table>
<thead>
<tr>
<th>支給対象となる訓練</th>
<th>対象</th>
<th>助成内容</th>
<th>助成率=助成額注)</th>
</tr>
</thead>
<tbody>
<tr>
<td>特定訓練コース</td>
<td>事業主</td>
<td>OFF-JT 経費助成:45(40)％ 賃金助成:760(380)円/時・人</td>
<td>OFF-JT 経費助成:60(45)％ 賃金助成:960(480)円/時・人</td>
</tr>
<tr>
<td>一般訓練コース</td>
<td>事業主</td>
<td>OFF-JT 経費助成:30(20)％ 賃金助成:380(190)円/時・人</td>
<td>OFF-JT 経費助成:45(30)％ 賃金助成:480(300)円/時・人</td>
</tr>
<tr>
<td>特別育成訓練コース（※3）</td>
<td>事業主</td>
<td>OFF-JT 経費助成:30(20)％ 賃金助成:380(190)円/時・人</td>
<td>OFF-JT 経費助成:45(30)％ 賃金助成:480(300)円/時・人</td>
</tr>
<tr>
<td>教育訓練休暇付与コース</td>
<td>事業主</td>
<td>OFF-JT 経費助成:20(13)％ 賃金助成:600(390)円/時・人</td>
<td>OFF-JT 経費助成:25(16)％ 賃金助成:840(550)円/時・人</td>
</tr>
</tbody>
</table>

注)定額助成:30万円 経費助成(定額):20万円 賃金助成<有給の場合に限る>:6,000円/日・人

※1・特定分野認定実習併用職業訓練(建設業、製造業、情報通信業の分野)、認定実習併用職業訓練
※2・雇用型訓練のうち特定分野認定実習併用職業訓練の場合
※3・非正規労働者対象
※4・一般職業訓練を除く
※5・通信制(eラーニングを含む)の場合は、経費助成のみ対象とする

コラム 計画的な人材育成により事業発展を目指す・・・内田鍛工（株）

三重県四日市市の内田鍛工（株）は、明治時代に鉄の錬造から始まった企業である。現在も、その鉄の加工技術を活かし、電力会社向けの架線金物を中心に、情報通信、建築、交通など幅広くインフラ分野の金属製品を製造している。

同社は、人材開発支援助成金を活用して、社員が業務上のスキルを高めるよう様々なOFF-JTを計画的に実施している。例えば、インフラ向けの製品については、現地調査や測量が必要になるため、営業担当の社員にも「2級土木施工管理技士研修会」を受講させることで、顧客のニーズを正確に把握させるように役立てているという。他にも、毎年2名の社員に「製造管理者育成基礎講座」を受講させ、製造現場のリーダーとしてもらうような育成を心掛けている。また、同社は今後の新規事業の開拓のために、2020年度には設計・開発業務の技術系社員の採用人数を増やした。採用したのは同業務の未経験者であるが、OJTとOFF-JTにて計画的に自社で育成し、業務上必須な資格や技能検定は計画的に受講・取得させながら、社員には更にスキルを身につけてもらうため、興味のある研修や講座は自発的に受講してほしいという話。助成金制度を活用していることを社内に周知することで、社員から「手を挙げやすい」という声もあり、助成金制度の活用を担当する総務課長の服部さんは、「社員には、ものづくり企業として、製品の品質を大切にしながら、自分で考えるとチャレンジ精神を持って欲しい。」と語る。

同社は、近年は鉄加工にとらわれない新規事業開拓を試みており、若手には時代の変化に合わせた新しい技術、技術を担う人材に成長してもらうため、業務に直結しない内容の研修についても計画的に実施し
ている。研修の一例として、「自己チャレンジ目標」を設定させ、業務から離れた丸1日の研修を実施する。この研修を通して仕事への意識向上・改善のきっかけにしてもらいたいという。特に入社1年目から3年目の新卒社員に対しては、各個人にきめ細かくフォローを実施することで、会社に定着してもらいたいという目的がある。同社は、このような計画的な人材育成を通じて、「技を生み、鍛えて向上し、次へと継いでいく」という、同社が掲げる「技・鍛・継（わざ・きたえる・つなぐ）」の精神を全社員に持ってほしいと期待する。今後も若手から管理職まで、人材育成の方法に工夫をこらしていきたいという。常務取締役の内田氏は、「これまでの事業にとらわれない新規開拓をするときに、何よりも人材が重要となる。元から能力や技術が十分な人もいるが、社員の長所を伸ばし、不足を補うに会社が育てることが必要という意識で、社員一人一人に目を配り、人材育成に取り組みたい。」と話す。

（2）事業主団体等が実施する認定職業訓練
事業主や事業主団体などの行う職業訓練のうち、教科、訓練期間、設備などについて厚生労働省令で定める基準に適合して行われているものは、申請により訓練基準に適合している旨の都道府県知事の認定を受けることができる。この認定を受けた職業訓練を認定職業訓練という。
認定を受けることの主なメリットとして、中小企業事業主などが認定職業訓練を行う場合、国や都道府県が定める補助要件を満たせば、国及び都道府県からその訓練経費などの一部について補助金を受けることができる。また、認定職業訓練の修了者は、技能検定を受検する場合又は職業訓練指導員の免許を取得する場合に有利に取り扱われる。
認定職業訓練の2019年度の訓練生数は約20.5万人となっており、金属・機械加工関係などのものづくり分野でも認定職業訓練は多く実施されている。
認定職業訓練における大工の育成

大宮建設高等職業訓練校（埼玉県さいたま市）は、大工養成を目的として1965年に設立された認定職業訓練校であり、訓練科は木造建築科である。

訓練校では、専門知識に長く卓越した技術を持った講師が、建築概論・建築製図・実技実習等のカリキュラムの訓練を実施している。併せて「砥ぎ」、「塗付け」、「縫ぎ手」、「差し金使い」などの伝統工法を基本から教えることにより、建築大工に必要な知識や技術の習得を図り、訓練生のレベルに合わせた技能検定の合格も目指している。

また、伝統工法の習得を深めるため、寺社建築などの伝統工法の実習も行っている。

それぞれの専門職種に対応した3年間の訓練課程を修了した訓練生は、プロの建築大工として多くの建築現場で活躍し、我が国の建築文化を担っている。

写真：実習風景（伝統工法）

（3）民間教育訓練機関における職業訓練サービスの質の向上に向けた取組

公共職業訓練と求職者支援訓練の約8割が民間教育訓練機関によって実施されており、民間教育訓練機関の職業訓練サービスの質の向上は重要である。厚生労働省では、2011年12月に「民間教育訓練機関における職業訓練サービスガイドライン」を策定し、同ガイドラインの普及・定着により職業訓練サービスの質の向上を推進するため、民間教育訓練機関における職業訓練サービスガイドライン研修等の支援事業を実施している。職業訓練サービスガイドラインには、いわゆるPDCAサイクルを活用して、職業訓練サービスの運営・改善を図っていくための体制や方法が示されているが、これに加えて、具体的な例示や取組事例が豊富に取り込まれ、民間事業者が主体的に取り組みやすい内容としている。
中小企業等担い手育成支援事業

今後の人口減少を考慮すると、建設業や製造業を始めとする多くの業界で人材の確保・定着が一層困難となるおそれがあり、その対応が喫緊の課題となっている。また、これらの業界の多くは一定のスキルを身につけなければ、人材の長期定着が難しい業界でもある。

そこで、業界団体などが主体となって、中小企業などにおいて、正社員経験が少ない労働者に対し、訓練の計画策定や進捗管理、確実な技能修得のための訓練（3年以内の雇用型訓練）を実施することを支援する「中小企業等担い手育成支援事業」を2018年度に創設し、業界での実務経験や公的資格を身につけた人材の育成及び事業所の生産性向上を図りつつ、明確な目標を持って働きながら訓練を受けることができる環境の整備を行っている。

PDCAサイクルを活用した職業訓練の運営

訓練の質の向上のために

① 委託訓練や求職者支援訓練の担い手として民間教育訓練機関が果たす役割が増大しており、訓練の質の向上が課題。

➡平成23年に「民間教育訓練機関における職業訓練サービスガイドライン」を策定。

② 平成26年度よりガイドライン研修を実施し、平成28年度及び29年度の試行実施を経て、平成30年度より公的職業訓練に関する職業訓練サービスガイドライン適合事業所認定の事業を開始。

③ 第11次職業能力開発基本計画において、「略」国においても職業訓練サービスガイドラインの認知度の向上を図るとともに、職業訓練サービスガイドラインに関し、民間教育訓練機関が職業訓練サービスの質の確保・向上に取り組みやすくなるよう、公的職業訓練を受託する際の研修受講の要件や研修内容の見直しによる研修効果の向上等の方策を検討する。とされており、令和3年度より公的職業訓練のうち委託訓練の契約及び求職者支援訓練の認定においては、ガイドライン研修の受講を要件化するとともに、研修内容の充実、体系化を図り、完全オンライン受講による研修を実施する。

民間教育訓練機関における職業訓練サービスガイドライン -訓練の質の向上のために-

1. 職業訓練ニーズの明確化
 - 事業所や受講者のニーズ
 - 経済・雇用失業状況、産業構造等の社会動向

2. 職業訓練サービスの設計
 - ニーズの踏まえ、職業訓練サービスの対象者、目的、訓練目標、訓練内容、成果等設定
 - カリキュラムの作成、見直し

3. 職業訓練サービスの実施
 - 訓練開始前に訓練内容、受講者が活用できる施設、就職支援等について情報提供
 - 講師、スタッフの運営体制の整備、受講者数に見合った施設、設備等の確保、安全衛生管理

4. 職業訓練サービスの評価
 - 受講者の訓練実習目標や職業訓練の効果、成果等について評価実施

PDCAサイクルを活用した職業訓練の運営 -訓練成果だけでなく、サービス全体の質を向上-
中小企業等担い手育成支援事業

中小企業においては、一定のスキルを有する技能人材の獲得が困難な上、人材の育成に取り組むだけの余裕やノウハウがないため、人材の確保・育成に課題を抱えている。今後の人口減少を考慮すると、こうした状況が進行する恐れがあるため、その対応が喫緊の課題となっている。

このため、業界団体が主体となって、中小企業等において、正社員経験が少ない労働者に対し、技能修得のための訓練（3年以内の雇用型訓練）の実施を支援することにより、実務経験や公的資格を身につけた人材の育成・確保を促進する。

さらに、この雇用型訓練を受けた者が、訓練を修了するなど一定の要件に該当する場合には、訓練時間に応じて、Off-JTの賃金助成を行う。

事業スキーム

対象職種事業主

事業主団体（受託者）

人材確保・定着

訓練計画策定

OJT訓練実施（最大3年間）

Off-JT訓練実施、訓練の進捗管理

訓練生の習熟度に応じた補講実施

相談支援等（最大3年間）

事業周知

申請

紹介

採択

提出

支給

【事業概要】

若者のものづくり離れへの対応

（1）ポリテクカレッジを始めとする学卒者訓練

全国のポリテクカレッジや都道府県の職業能力開発校・短期大学校では、高等学校卒業者・高等専門学校卒業者等に対し、ものづくり分野を中心とした学卒者訓練を実施している。例えば、ポリテクカレッジでは、高等学校卒業者等を対象に、機械加工や機械制御の専門的技能・技術を習得する「生産技術科」等において、高度な知識と技能・技術を兼ね備えた実践技術者を育成し、さらに、その修了生等を対象とした「生産機械システム技術科」等において、製品の企画・開発や生産工程の構築・改善・運用・管理等に対応できる生産現場のリーダーを育成し、ものづくり産業を担う企業へ送り出している。

また、ポリテクカレッジでは、学生のものづくり技能の習得に対する意識を高め、訓練で身につけた技能・技術の成果を発揮するために、ものづくり分野に関連する各種競技大会及び技術交流展示会等への参加も行っている。

2020年度のポリテクカレッジ等の訓練生は約6千人、都道府県の職業能力開発校・短期大学校の訓練生（学卒者訓練）は約1万2千人である。
種子島ロケットコンテスト　Cansat部門で準優勝、日本航空宇宙学会賞を受賞！ポリテクカレッジ川内の学生の活躍

「種子島ロケットコンテスト」は、国立研究開発法人宇宙航空研究開発機構（JAXA）等が主催し、種子島宇宙センター内の竹崎芝生広場で開催され、毎年全国から多くの団体が参加するロボット競技会である。実施される競技は、ロケット部門とCansat部門の2種類に分けられ、ポリテクカレッジ川内（鹿児島県薩摩川内市）はこれまでにCansat部門へ3回出場している。

「Cansat（カンサット）」は、宇宙開発技術者の教育を目的として約20年前に誕生した各種センサーを搭載した小型模擬衛星である。

競技は、機体にパラシュートを着装した状態で地上50mから落下させた後、着地点から目的地までを自律制御によって移動し、到達距離と時間を競うというものである。競技の採点項目は主に2点あり、制限時間30分以内でどれだけ目的地に近付くことができたかと、その到達が偶然によるものではないことを証明として競技後に提出する、高度の推移、地上移動中の緯度・経度の変化や目的地までの距離等の制御記録が採点対象となる。

機体の構造は各チーム様々であるが、重要な役割を担っているのがGPSであり、各チームがGPSを用いて把握した目的地・現在地の緯度・経度から、距離と方位を算出しながら目的地を目指す。しかし、GPSは測位精度の理由から必ず2m程度の誤差が発生するため、ポリテクカレッジ川内では、カメラモジュールによる画像認識で目標を検出を行う機能を追加することで、確実な0m到達を目指すこととした。

大会に向けては万全の準備で臨んでいるが、競技当日は予期せぬトラブルに見舞われ、毎年、その対応に翻弄されてしまう。2016年度に初参加した際には、学生が過度の緊張から動作開始ボタンを押し忘れたまま機体をセットするというヒューマンエラーを発生させてしまい、リタイヤとなった。常に平静さと確実性が問われる宇宙産業においては、失敗は許されないという厳しさを痛感させられた結果となった。この悔しさをバネに臨んだ2回目の大会では、当日の心境や天候、状況に影響されることなく常に冷静な行動がとれるようにと、作業手順書とチェックリストを作成し、確実な準備が行えるよう入念なリハーサルを通して本番を迎えた。その甲斐もあり、目的地までの到達距離0mを観察に成し、準優勝を勝ち取ることができた。そして、3回目の大会では惜しくも入賞は逃したが、更に磨きをかけた目標を検出精度の高さが評価され、日本航空宇宙学会賞を受賞することができた。

この大会を通じて、何度となく試行錯誤を繰り返したことは、仲間と共にものづくりに挑む難しさと達成感を得られる非常に良い機会であった。大会参加にかかわった学生には、培った知識や経験が、今後の社会生活において発揮されることを期待している。
（2）若年者への技能継承
若者のものづくり離れがみられる中、長年培われた技能の継承が重要である。このため、2013年度から、ものづくり分野で優れた技能、豊富な経験等を有する熟練技能者を「ものづくりマイスター」として認定し、若年技能者等に対する実技指導を行っている（「ものづくりマイスター」制度）。この実技指導は、若年技能者等の人材育成を行う企業、業界団体、教育訓練機関にものづくりマイスターを派遣し、職種に必要な様々な技能の要素が盛り込まれた課題（技能競技大会の競技課題、技能検定の実技課題等）を用いて実施している。
また、2016年度から、ITリテラシーの強化や、将来のIT人材育成に向けて、小学生から高校生にかけて情報技術に関する興味を喚起するとともに、情報技術を使いこなす職業能力を付与するため情報技術関連の優れた技能をもつ技能者を「ITマスター」として派遣している。

<table>
<thead>
<tr>
<th>若年技能者等人材育成支援事業</th>
<th>令和2年度予算額 3,554,643（3,479,482）千円</th>
</tr>
</thead>
<tbody>
<tr>
<td>◦ 若者のものづくり、技能離れ等の実態を踏まえ、技能尊重気運の醸成、産業活動の基礎となる技能者の育成を図るため、「ものづくりマイスター」の開拓・認定・活用（技能検定・競技大会の課題を用いた実技指導等）による技能継承、その他に地域関係者の創意工夫による技能振興の取組を推進するため、「若年技能者等人材育成支援事業」を実施。</td>
<td></td>
</tr>
<tr>
<td>◦ 若者のものづくり業界への誘導・若年技能者の人材育成、技能尊重気運の醸成等</td>
<td></td>
</tr>
</tbody>
</table>

【中央】
| 「ものづくりマイスター」等の認定 |
| ◦ マイスター認定数（累計）11,515名（令和元年度末時点） |
 what is the total number of認定者? 11,515
| 「ものづくりマイスター」等の活動 |
| ◦ マイスターの効果的な活用支援 |
| ◦ マイスターの指導技法の向上に資する支援 |
| ◦ 地域の取組に対する支援の実施 |
| ◦ 技能五輪国際大会金メダリストの派遣 |
| ◦ 技能士等に優れた技能者が作成した商品等に示すロゴマーク（グッドスキルマーク）の認定、普及 |
| ◦ 「地域発！いいもの」応援事業の実施 |
| ◦ 企業・業界団体、教育訓練機関における若年技能者の人材育成、技能尊重気運の醸成等 |

【都道府県】
| 「ものづくりマイスター」等の派遣 |
| ◦ 履正府県を越えマッチング |
| ◦ 事業スキーム |
| ◦ 「ものづくりマイスター」の認定条件：製造、建設技能111職種（機械加工（旋盤等）、機械組立、建築大工、造園等）を対象とし、①技能士（1級以上）、技能五輪全国大会発表選手等、②実務経験15年以上、③技術の継承等の活動の意思・能力を有する者 |

注14 2020年度末現在：認定者数（累計値）12,190人
【指導の概要】
実施回数：10回 受講者数：8名（家政科3年生）
前後の身頃作り、ポケットのフラップ作りから、ポケット付け、裏布の身頃作り、袖作り、襟作り、袖付け、襟付け、ボタン付け、アイロンを使った仕上げまで行い、裏付きジャケットの製作を行った。本来なら学校では使わないようなプロが使う材料を使用し、より実践的な指導を行った。

【学校の担当教諭の声】
「プロ・現場の仕事を生徒に見せてあげたい。」と考え、ものづくりマイスター派遣で実技指導をお願いした。当校では、全国高等学校家庭科技術検定被服製作（洋服）1級取得のため、裏付きジャケット製作が授業に組み込まれており、これまで教員が指導をしていたが、このジャケット製作は非常に難易度が高く、思い通りの作品を仕上げることができなかった。しかし、マイスターの指導を受けてからの作品完成度は高く、満足できる作品になった。マイスターに実技指導を依頼してから3年目で2019年度に作品発表の場を設けたいと考え、ファッションショーを計画した。2019年度の文化祭で開催したファッションショーのオープニングで、生徒たちがマイスターの指導で製作した服を着用しランウェイをすることができ、とても高い評価をいただいた。

【受講生徒の声】
■マイスターのユニークな人柄もあって、より洋服作りを楽しんでいる。
○技能はどれもすごいが、特に、アイロンひとつで洋服の形を作ってしまったことには驚いた。アイロンの概念が変わったように感じている。他にも初めて学ぶことが多くあるため、それらを身に付けながら全国高等学校家庭科技術検定1級の合格を目指していきたい。
【ものづくりマイスターからの感想】
難しいことや大変なことも楽しく教え、出来上がった時の感動を味わってもらえるように意識している。あえて未熟でまっさらな状態の生徒たちを育て、服飾業界に引き込みたいと考えている。指導した生徒たちの中から、世界に通用するメイドインジャパンを作る方が出てきたら嬉しい。

コラム
【ものづくりマイスター制度の実例②】

指導の概要
実施回数：8回 受講者数：4名
電気の基礎知識、配電盤・制御盤製作の基礎知識や接続法、配線方法等の知識面から、実際の配電盤・制御盤の配線、回路チェック、動作確認等にいたるまで、それぞれの作業手順や作業内容について、座学と実技指導を行った。
【企業担当者の声】
マイスターの講義を経て、新人社員の技能や知識が向上しただけではなく、仕事に向き合う表情も変わったように感じている。今回、電気機器組立ての実技指導を担当していただいたマイスターには、配線などの業務にかかわるプログラムを中心に指導をお願いした。さらに、受講者のほとんどが電気機器組立てについて全くの新人ということもあり、安全を重視する感覚を身に付けられる指導もお願いした。丁寧かつ親身にご指導いただくことで、受講者が電気や配線の奥深さに興味を持ち、自らの技能向上に積極的に取り組むようになったため、その姿に頼もしさを感じている。また、全てのプログラムを終えた受講者が現場に配属されると、他の社員も刺激を受けることが多くあり、組織全体の成長にもつながっている。

【受講者からの声】
○工業系の知識はゼロからのスタートだったため、とても不安だったが、質問をしても丁寧に教えてくださり、質問しにくいということも無かった。また、技能や知識だけではなく、配線の奥深さや面白さについても教えていただいたため、いつの間にか電気機器組立てへの興味と関心が高まり、受講を終えては配線を組むことも楽しめるようになっている。現在の配属先の試作開発部では、学んだことを活かして、装置の配線作業を行っている。これまでは読むことができなかった図面も読めるようになり、今では、配電盤の中の何かどのような役割を持っているのかを説明することもできる。
【ものづくりマイスターからの感想】
工具に触れること自体が初めてという方も少なくなかったため、基礎的なことを理解できるまで丁寧に教えてくれた。質問には即座に答える、私からも声を掛けるなど、気軽にコミュニケーションを取れるような関係作りを大切にしていた。受講された方々が、自分で切り立った装置を最後まで完成できるような技能者になって欲しいと思っている。
産業活動等の基礎となる技能者の育成等を図るため、「ものづくりマイスター」（その分野で1級技能士相当以上の指導経験豊富な熟練技能者）派遣による中小企業の若年技能者等に対する実技指導を実施。

また、学生生徒を含む若者にものづくり技能の魅力を発信し、ものづくり分野への入職・企業の人材確保・育成を促す観点から、マイスターによる技能検定受検を目指す若者への実技指導等の総合的な取組を推進。

都道府県レベル

○ マイスター認定数
累計：12,190名（令和3年3月末時点）

（3）ものづくりの魅力発信
若年者が進んでものづくり技能者を目指すような環境を整備するために、ものづくり技能者の社会的評価の向上に繋がることや、子供から大人までの国民各層において、社会経済においてものづくり技能の重要性について広く認識する社会を形成することが重要である。

また、ものづくりは、日本ならではの伝統や文化と密接に結びついている面も大きい。ものづくりのブランド性を高め、技能の継承に社会的な光を当てていく観点からも、様々なものづくりの魅力発信の取組が求められている。

このような観点から、以下の取組を進めているところである。

① 卓越した技能者（現代の名工）
広く社会一般に技能尊重の気風を浸透させ、もって技能者の地位及び技能水準の向上を図るとともに、青少年がその適性に応じて誘いと希望を持って技能労働者となってその職業に精進する気運を高めることを目的として、卓越した技能者（現代の名工）を表彰している。被表彰者は、次の全ての要件を満たす者のうちから厚生労働大臣が技能者表彰審査委員の意見を聴いて決定している。

＜要件＞
① 極めて優れた技能を有する者
② 現に表彰に係る技能を有する職業に従事している者
③ 就業を通じて後進技能者の育成に寄与するとともに、技能を通じて労働者の福祉の増進及び産業の発展に寄与した者
④ 他の技能者の模範と認められる者
卓越した技能者（現代の名工）の表彰制度

趣旨
卓越した技能者を表彰することにより、広く社会一般に技能尊重の気風を浸透させ、もって技能者の中核化を図るとともに、青少年がその適性に応じ、誇りと希望を持って技能労働者となり、その職業に精進する気運を高めることを目的としている。

表彰の決定
被表彰者は、次の各号の全ての要件を充たす者であって、都道府県知事、全国的な団体、個人（就業して満20歳以上の者に限る）のいずれかの推薦を受けた者のうちから、厚生労働大臣が技能者表彰審査委員の意見を聴いて決定する。
①きわめてすぐれた技能を有する者
②現に表彰に係る技能を要する職業に従事している者
③技能を通じて労働者の福祉の増進及び産業の発展に寄与した者
④他の技能者の模範と認められる者

表彰
表彰は、厚生労働大臣が毎年1回、概ね150名の被表彰者に表彰状、卓越技能章（盾及び徽章）及び褒賞金（10万円）を授与している。

令和2年度の代表的な被表彰者

金武 節子氏
（76歳）
（婦人・子供服注文仕立職 アトリエ節）
注文婦人服の制作において、顧客の個性や着用目的、季節等に合わせて、布地を身体に当てて裁断する立体裁断の手法を用い、顧客の体型とデザインの面、線を見極めながら、デザインから裁断、縫製まで一貫して制作する技能に卓越している。

増子 衛氏
（56歳）
（フライス盤工 （株）日立ハイテク）
分析装置・医用機器・電子顕微鏡等、多様な製品の機械加工に長年従事し、加工法の立案と切削工具や治工具を考案・製作する技能を有している。

髙橋 千鶴子氏
（96歳）
（染織職 自宅兼工房）
染料となる草木採取から意匠、染色、織り上げまで全工程を一人で作業する卓越した技能を有する。数百種類の植物による豊富な草木染経験・技能に加え、高度な技能を要する「くし織」「抜き糸」等、多様な織りの技能に精通している。

植木鋏・生花鋏等の打刃物の鋏の製作にあたって、極軟鋼と鋼の手槌での鍛接を鋼の強度を高めるため全方向から手槌で鍛造を行う。刃先から足まで一本の鉄を鍛造し、100以上の工程を一人で行えるのは全国でもほぼ皆無である。

平川 康弘氏
（69歳）
（打刃物鍛造仕上工 佐助）
コラム
（株）日立ハイテク那珂地区（茨城県ひたちなか市） フライス盤工 増子 衛 さん（57歳）

◆技能の概要
分析装置・医用機器・電子顕微鏡・半導体検査装置等、多様な製品の機械加工に長年従事し、加工法の立案と切削工具や治工具を考案・製作する技能を有している。
その技能を活かして、高精度部品や難切削材部品の最適加工法の考案に取り組み、NC加工実現や精度の安定化、加工時間短縮に大きく貢献した。
また、社内の後進育成のほか、技能検定委員及びものづくりマイスターとして地域の技能教育にも携わり、社内外を問わず地域の技能振興に尽力している。

◆多種にわたる機械加工の技を磨き、後進の育成に情熱を注ぐ
入社後に参加した社内技能競技大会での優勝をきっかけに、ものづくりに対するこだわりとプライドが生まれた。
製造現場において、品質と加工コストの両立に悩むこともあったが、旋盤・フライス盤などの手動装置から、NC 旋盤・マシニングセンタなどの数値制御装置まで、多種にわたる工作機械作業を経験する中で、「どの世界でも“こだわり”を持たなければ至高の技や生産はできない」ことを実感した。

新加工法の立案や新治工具の考案・製作などの改善においても「こだわりとプライド」を持って探究し、「想像から創造へ」と、ものづくりを展開してきた。また、「価値創造する人づくり」という信念を持ち、技能五輪や技能検定などを通じた後進の育成にも心血を注いでいる。
コラム

2020年度の現代の名工の紹介② ～注文婦人服製造における第一人者／デザイン、裁断、縫製の技能に卓越～

アトリエ節（佐賀県西松浦郡） 婦人・子供服注文仕立職 金武 節子 さん（77歳）

◆技能の概要
注文婦人服の制作において、顧客の個性や着用目的、季節等に合わせて、布地を体に当てて裁断する立体裁断の手法を用い、顧客の体型とデザインの面、線を見極めながら、デザインから裁断、縫製まで一貫して制作する技能に卓越している。
また、日本の風土で培われてきた伝統の織を大切にし、九州の博多織や久留米絣（かすり）、佐賀錦の素材を使った作品を海外で発表するなど服飾文化の向上に多大な貢献をし続けている。

◆布に教えられ、糸に導かれて
父の勧めで、熊本市内の職業訓練所で洋裁の技術を取得。23歳からの6年間、洋裁店のパートナー及びデザイナーを経て、35歳の時独立し、オートクチュール「アトリエ節」を開業。アパレル業界の大量生産の中においても、注文服にこだわり、着る人の体に合った、その人にとって快適に思える洋服をデザイン・制作してきた。
変えていものと変えてはならないものを選別しながら、立体裁断による縫製を行っている。また、日本伝統の織物を大切に、着物・帯・絣等を素材として、和の素晴らしさを発信し続けた。終わりのない技術の世界において、高等学校の講師として、若い人にものづくりの楽しさや大切さを伝え、技術を継承し続けている。
各種技能競技大会
子供から大人まで国民各層で技能尊重の気運を醸成し、ものづくり人材の育成の重要性が再認識されるよう、以下の大会等の実施及び参加を行っている。

（ア）技能五輪国際大会
青年技能者（原則 22 歳以下）を対象に、技能競技を通じ、参加国・地域の職業訓練の振興及び技能水準の向上を図るとともに、国際交流と親善を目的として開催される大会である。1950 年に第 1 回大会が開催され、1973 年から原則 2 年に 1 回開催されており、我が国は 1962 年の第 11 回大会から参加している。

直近では、2019 年 8 月にロシア連邦・カザンで第 45 回技能五輪国際大会が開催された。日本選手は、42 職種の競技に参加した結果、「情報ネットワーク施工」と「産業機械組立て」の 2 職種で金メダルを獲得したほか、銀メダル 3 個、銅メダル 6 個、敢闘賞 17 個の成績を収めた。金メダル獲得数の国・地域別順位は、第 7 位であった(第 1 位中国(16 個)、第 2 位ロシア(14 個)、第 3 位韓国(7 個))。

次回大会は、新型コロナウイルス感染症の感染拡大により 1 年延期され、2022 年秋に中国・上海での開催を予定している。

（イ）技能五輪全国大会
国内の青年技能者（原則 23 歳以下）を対象に技能競技を通じ、青年技能者に努力目標を与えるとともに、技能に身近に触れる機会を提供するなど、広く国民一般に対して技能の重要性、必要性をアピールすることにより、技能尊重気運の醸成を図ることを目的として実施する大会である。1963 年から毎年実施している。

直近では、2020 年 11 月に愛知県の愛知県国際展示場を主会場として第 58 回技能五輪全国大会を新型コロナウイルス感染症の感染拡大防止の観点から無観客で開催し、全 40 職種の競技に全国から 944 人の選手が参加した。

ウェブデザイン職種 金賞
山田 春香 選手（愛知淑徳大学）
ウェブデザイン職種では、文字や画像など様々なコンテンツを使ってウェブサイト（ホームページ）を制作し、設計・構築の美しさや、その表現力を競う。第 58 回技能五輪全国大会で金賞を受賞した、山田選手にお話をうかがった。

【技能競技大会に出場したきっかけ】
高校時代に参加していたサークル活動の一環として出場した。サークルでは、大会への出場以外にも、外部から依頼を受けてウェブサイトを制作したり、各人が制作したウェブサイトについて、サークル内で意見交換をするなどして、ウェブサイト制作の知識だけでなく様々な社会経験を培うことができた。

【練習の内容・期間、練習過程で嬉しかったことや苦労したこと】
練習内容：バックエンド（システム部分のプログラム）、フロントエンド（デザインなど）、制作した作品のプレゼンの練習
練習期間：本番 2、3 か月前から大会当日にかけて
練習過程で嬉しかったこと：練習を通じて仲間と交流を深めることができたこと。新たなツールの操作方法やプログラムの知識を身につけることができたこと。
苦労したこと：これまでを利用してしたことのないツールの使用方法や新たなプログラム知識（VueCLI）の習得、例年とは異なる競技仕様への対応（課題の数が例年の 3 課題から 4 課題となり、ウェブアプリを開発する課題が増えたことや、制作した課題を競技用サーバへアップロードする方法が大きく変更になったことなど）。

【技能五輪全国大会に出場した感想】
ウェブデザインは、ウェブサイトを製作する種目だが、サイト上に必要な情報を入れ込みつつ、自由にデザインができる。ページのプログラム分野には自信があったが、大会ではプレゼンテーションもしなければならないこともあり、3 回目の出場となった今大会では、会場の雰囲気や本番の緊張感にはいまだに慣れず、緊張した。しかし、当日は落ち着いて課題に取り組めたため、自分の力を出し切ることができた。
と感じている。また、自分がここまで成長できたのは、たくさんの方のご指導・ご支援によるものであるため、自己一人の成果ではないことを忘れず、今後は国際大会に向けて励んでいきたい。

【大会で得た経験をどのように活かしていきたいか】
大会の出場経験を伝えることで、今後出場する後輩たちの励みになればと思う。
また、ウェブ制作には本やポスターとは異なる魅力があり、こちらの方が個性を出せるのではないかと考えている。大会を通じて培った知識や技術を活かしつつ、今後もウェブ開発における様々な知識を身につけるとともに、更にデザインの勉強をし、学んだ知識をウェブデザインに活かして技術向上を図っていきたい。

【これから技能五輪全国大会を目指す方々へのメッセージ】
技能五輪全国大会は自分が頑張ってきたことを全力で発揮する場所でもあり、それを楽しむ場所でもあると思う。

写真：ウェブデザイン職種の課題に取り組む山田選手

（ウ）全国障害者技能競技大会（アビリンピック）注15
障害のある方々が日頃職場などで培った技能を競う大会であり、障害者の職業能力の向上を図るとともに、企業や社会一般の理解と認識を深めたい、その雇用の促進を図ることを目的として開催している。

全国アビリンピックは、1972年からおおむね4年に1度開催される国際アビリンピックの開催年を除き毎年開催されている。

直近では、2020年11月にJEEDの主催により第40回大会が愛知県で開催された。330名の選手が参加して、「家具」、「義肢」、「歯科技工」などのものづくり技能を含む25の種目について競技が行われた。

国際アビリンピック
障害のある人々が職業技能を競い合うことにより、障害者の職業的自立の意識を喚起するとともに、事業主や社会一般の理解と認識を深め、更に国際親善を図ることを目的として開催されている。

第1回国際アビリンピックが国連で定めた「国際障害年」である1981年に日本・東京で開催されて以来、おおむね4年に1度開催されており、直近では第9回大会が2016年3月にフランス・ボルドーで開催された。

次回はロシア連邦モスクワ市での開催を予定している。

注15 アビリンピック（ABILYMPICS）は、アビリティ（ABILITY・能力）とオリンピック（OLYMPICS）を合わせた造語。
（エ）若年者ものづくり競技大会
職業能力開発施設、工業高等学校などにおいて技能を習得中の若年者（原則 20 歳以下）で、企業などに就職していない者を対象に、技能競技を通じ、このような若年者に目標を与え、技能向上及び就業促進を図り、併せて若年技能者の裾野の拡大を図ることを目的として実施する大会である。2005 年からほぼ毎年実施しているが、2020 年度は新型コロナウイルス感染症の感染拡大防止策を講じた上で、無観客での開催となり、例年実施している技能デモンストレーションや障害者ワークフェアは実施されなかったが、大会の様子を専用 Web サイト上で動画配信するなど、これまでにない取組も行われた大会となった。

（オ）技能グランプリ
特に優れた技能を有する 1 級技能士などを対象に、技能競技を通じ、技能の一層の向上を図るとともに、その熟練した技能を広く国民に披露することにより、その地位の向上と技能尊重気運の醸成を図ることを目的として実施する大会である。1981 年度から実施しており、2002 年度からは 2 年に 1 度開催している。直近では、2021 年 2 月に、愛知県の愛知国際展示場を主会場として第 31 回技能グランプリを開催し、全 28 職種の競技に全国から 344 人の選手が参加した。

コラム 全国障害者技能競技大会（アビリンピック）の開催
2020 年度は、11 月 13 日から 15 日までの 3 日間に行われ、愛知県常滑市において、第 40 回全国障害者技能競技大会が開催された。
今大会は、第 10 回国際アビリンピックへの派遣選手選考も兼ねた大会として実施され、国際大会の競技種目でもある「写真撮影」及び「パソコン組立」が新たに競技種目に加えられた。
また、新型コロナウイルス感染症の感染拡大防止策を講じた上で、無観客での開催となり、例年実施している技能デモンストレーションや障害者ワークフェアは実施されなかったが、大会の様子を専用 Web サイト上で動画配信するなど、これまでにない取組も行われた大会となった。
かわらぶき職種 金賞
磯貝 明徳 選手（（株）磯貝屋根工事（愛知県碧南市））

かわらぶき職種では、全国から選ばれたかわらぶき師たちが、同じ課題に対して、屋根瓦をいかに正確に美しく葺けるかを競う。第31回技能グランプリで金賞を受賞した、磯貝選手にお話をうかがった。

【かわらぶきの道を選んだきっかけとこれまでの経歴】
かわらぶきをしていた祖父、父、叔父に憧れ、この道に進もうと思いました。

【経歴】
平成16年 愛知県瓦職業訓練校 入学
平成23年 一級かわらぶき技能士

【これまでの職業人生で嬉しかったことや苦労したこと】
嬉しかったことは、棟を1人で施工したときです。
苦労していることは、瓦は焼き物なので1枚1枚形状が異なり、その時の瓦のクセを見極め施工することです。

【技能グランプリに出場したきっかけ】
父、叔父、親方も出場しており、出場することに憧れていました。

【練習の内容・期間、練習過程において苦労したこと】
課題が発表されてから年中は、週末に一通りの練習を行い、平日は仕事後、部分練習を行い、週末にはグランプリ経験者のコーチに来ていただき、時間、工程、施工の指導をしていただきました。年明け後、本格的に練習を始め、寸法を合わせることが一番苦労しました。作業ばかりではなく、課題、施工方法について考えることにたくさんの時間を費やしました。美観について、違和感のない自然な屋根に仕上げるために、2寸垂一文字の1枚目の雀口の厚みを、他の2寸垂一文字と同じ厚みにすること、大きめに作られた右角瓦を瓦のねじれを活かして削り取り、隣の一文字の大きさに似せました。必要以上に瓦を削らないようにするために瓦の行儀を使い分けることを心掛けました。全ての瓦の納まりは現場を想定したものとなるよう心掛け、美観より雨漏りしない施工方法を優先しました。今回の課題の見せ場である、四ツ又に時間をかけられるように、全体の作業工程・時間考えて作業しました。

【技能グランプリ出場を通じて得たこと】
なかなか味わうことができない達成感、感動、感謝、の気持ちを経験でき、自分の大きな財産となりました。

【これから技能の道を目指す方々へのメッセージ】
好きな職種につけたら、苦労や大変なことも楽しみながら乗り越えられると思います。周りの方に教わることは、とても貴重なことなので、素直に受け止め、少しでも自分に吸収することが大切だと思います。
地域若者サポートステーション

地域若者サポートステーション（愛称「サポステ」）は、働くことに悩みを抱えている15歳から49歳までの若年無業者などに対し、就労実現に向けた支援を地方公共団体と協働で行う施設である。サポステは、厚生労働省が委託した若者支援の実績やノウハウのあるNPO法人などが実施しており、全国に設置されている。

サポステでは、①キャリアコンサルタントなどによる一人一人の課題に応じた専門的な相談や各種プログラム、②個々のニーズに応じたOJTとOFF-JTを組み合わせた職場体験プログラム、③個々のニーズに応じたOJTとOFF-JTを組み合わせた職場体験プログラム、④就労後の職場定着のためのフォローやより安定した就労形態へのステップアップのための支援、⑤高校などとの連携強化による高校進学者や進路未決定卒業者などに対するアウトリーチ（訪問）型などの就労支援を実施している。

【サポステの実績】

～若者の就職の自立支援～

地域若者サポートステーション事業

サポステの支援がないと求職活動を行うのは困難なケース

～若者の職業的自立支援～

地方自治体

地　方　自　治　体　

保健・福祉機関

企業

商工会・商店街

NPO等

公　民　館

地　方　自　治　体

地方若者サポートステーション177箇所

15歳から49歳までの若年無業者に対し、就労実現に向けた支援を地方公共団体と協働で行う施設である。

若者自立支援中央センター（全国1か所）

サポステの実績

【サポステの実績】

就職者（職業訓練等の進路決定）

11,110 10,603 15,815 67.0% 457,293 287,413 169,880

令和元年度地域若者サポートステーション事業の実績

進路決定者数

登録者数

就職等率

総利用件数

相談件数

セミナー等参加者数

41.9% 42.2% 38.0% 52.3% 57.2% 61.9% 55.4% 62.1% 67.0%

第2章

ものづくり産業における人材育成の取組について

ものづくり人に資するための支援

ものづくり人材の確保と育成

第2章

ものづくり産業における人材育成の取組について

ものづくり人材の確保と育成

第2章

ものづくり産業における人材育成の取組について

ものづくり人材の確保と育成
支援事例の紹介

「企業お見合い会や職場体験を通じて、約束を必ず守る誠実さを評価され採用が決まったAさん」

Aさんは工業系の大学に進学するも留年を経験、なんとか卒業までこぎつけるものの進路の絞り込みと自己PRの難しさに悩み、未就職のまま卒業する。大学の近くの寮に引き続き一人暮らしをしながら、このままではいけないと家電量販店のアルバイトを始めたが、職場は常に多忙で不明な点を聞くに聞けないという環境であった。結局、これといった自信もつかないままAさんは退職を決めた。退職後しばらく無職の状況が続いていたが、職を探すにも何を決め手に探していいのか1人で煮詰まってしまったこと、ここに退寮の促しも加わったことで危機感を覚え、自ら助けを求めたのがサポステであった。

サポステで、Aさんは、コミュニケーションセミナーなどのプログラムに積極的に参加する。その中で、シャイな性格ながら話しづらいメンバーに助け舟を出すなど、Aさんの新たな一面を垣間見ることができた。また、サポステスタッフは、予約した面談に遅刻・欠席を一切することなく来所する真面目さに好感を持った。その良さをアピールし、新たな職場につながれないかと考え、企業とのお見合い会の参加を促した。

その結果、Aさんは複数の企業から高い評価をもらう。自ら職場体験場所に選んだ企業は、日本全国の街を灯していると言っても過言ではない「日本街路灯製造（株）豊明工場」であった。早速、体験に赴きいくつかの部署を経験する。難しい作業があった一方で、スムーズに対応できる作業もあり、「これはもしかしたら化けるかもしれない。」(同・工場長)との評価をもらい採用が決まる。また、高校・大学で機械工学を学び、工程作業に覚えがあった点も採用の大きな決め手になったようだ。

それから1か月間のアルバイトを経て、現在は職場の近くに引っ越し、正社員として働いている。日々感じていることをAさんに尋ねると、「まだまだ目の前の作業に一生懸命になりすぎて、クレーンが動いている等、周りの状況に目配りする余裕が持てていないことが課題。」と冷静に自身を振り返っていた。工場長からは「Aさんは本当に休みなく皆勤賞で、これほど有難く arbeにできることはありません」と非常に喜びの言葉をいただいた。また、現場で指揮を執る作業リーダーのも「当初は周りの職員に自ら話し掛けるといったことは難しかったと思うが、今はそれができるようになり、周りのスタッフを見て、手を差し伸べたほうがいいと判断した場合は、自らサポートに動くなどの変化がみられる。」と温かく見守っている。

注16 ものづくり王国と言われる愛知県では、県内製造業の実力を広く国内外にアピールし、愛知のものづくりを世界的ブランドへと展開するため、県内の優れたものづくり企業を「愛知ブランド企業」として認定している。
社会的に通用する能力評価制度の構築

働く者の能力開発や評価をより的確に行っていくためには、企業が求める職務や人材像を能力要件として具体的に示すとともに、労働者も企業が示す能力要件に照らして不足している職業能力の開発向上を図ることができるよう、双方をつなぐ「共通言語」が求められている。

（1）技能検定制度

技能検定は、労働者が有する技能を一定の基準に基づき検定し公証する国家検定制度であり、ものづくり労働者を始めとする労働者の技能習得意欲を増進させるとともに、労働者の社会的地位の向上などに重要な役割を果たしている。

技能検定は、厚生労働大臣が、厚生労働省令で定める職種ごとに等級(一部職種を除く)して、実技試験と学科試験により実施しており、合格者は「技能士」と称することができる。

技能検定の職種は、2021年4月1日現在、130職種であり、製造業における中心的な検定職種(機械保全職種、電子機器組立て職種など)については、特に工業高校生の受検が過去6年間で急増している。2018年4月1日からは、エントリーレベルの3級の受検資格を更に緩和したところであり、今後とも、技能検定の受検勧奨などを通じた普及拡大を図ることにより技能習得に取り組む若年者が増えることが期待されている。

本制度は1959年度から実施され、2019年度には全国で約87万人の受検申請があり、約36万人が合格している。制度開始からの累計では、延べ約734万人が技能士となっている。

また、ものづくり分野において人材を確保するためには、労働者の有する能力が公証される技能検定により、キャリアアップの動機付けを行うことが効果的である。このことから、2017年9月から、技能検定2級と3級について、都道府県などが受検料の軽減を図ることにより、技能検定を受検しやすい環境を整備する場合に、当該経費について支援を行っている。具体的には、ものづくり分野の技能検定の2級又は3級の実技試験を受検する35歳未満の者に対して、最大9,000円を支援するものであり、技能習得に取り組む若年者が増えることが期待されている。
山口県周南市の光和電業（株）（従業員49名）は、受変電盤、配分電盤、各種制御盤、操作盤、分電盤、端子盤、監視設備盤などの製造を主な業務とし、「お客様に対して絶対的なものを納めること」をモットーとしている会社である。そのため、技能検定を受けるなど、常日頃レベルアップを心掛け、開発を繰り返していくことが一番の課題であると考えている。

技能検定の受験料は同社が負担しており、技能士の資格を取った場合、報奨金を支給している。資格というのは個人的に属するものであり、できるところなら個人の責任で取ってほしい。ただし、会社で使う資格に関しては何らかの補助は出さないといけないと考えている。

同社は、自社の技能レベルを向上させるためには、各個人が技能検定に挑戦し、技能を習得していくことが必要だと考えている。技能や知識に自信がない人は、技能検定の合格を目指して勉強をすることで、知識が定着し、勉強した分だけ、自身の活躍する場も広がってくると考えている。例えば、組立てについては求められる水準まで技能を高めることは大変な苦労を要するが、その水準に到達した後は、ひとつの峰を越えたように、スムーズに次のステップへ進むことができる。製図については、技能検定への挑戦を通じて、難しい計算に対する理解を深めることにつながり、結果として技量が向上する。また、技能検定では、JIS規格などの知識もある程度身についておく必要があり、そのような知識に関する本を読み込むなどにより、関連する知識を習得している。

技能検定は、技能の習得はいい機会だと考えており、ものづくりに対する教育的な側面も持っていると考えている。

同社の光弘邦幸代表取締役は、「ものをつくることのために、若い人は技能検定を受けて技能を習得していく、このようなことを続けていくことが必要だろうと思う。ものをつくるのが楽しくなると、伸びしろは無限大になる。」と語る。

写真：作業の様子

（2）職業能力評価基準

職業能力評価基準は、職業能力を客観的に評価する能力評価のいわば「ものさし」なるよう、業界団体との連携の下、詳細な企業調査による職務分析に基づき、本事業をこなすために必要な職業能力や知識に関し、担当者から組織や部門の責任者に必要とされる能力水準までレベルごとに整理し、体系化したものである。

業種横断的な経理・人事等の事務系のほか、電気機械器具製造業、自動車製造業、金属プレス加工業等製造業・建設業を含む業種別に策定しており、2021年4月現在、56業種が完成している。
職業能力評価基準

1. 概要
○ 職業能力評価基準は、職業能力が適切に評価される社会基盤づくりとして、平成14年から国と業界団体と連携の下で策定に着手。
○ 組織・部門の責任者まで4つのレベルに設定し、管理・体系化。

2. 内容
○ 仕事のこなすために必要な「知識」や「技術・技能」に加えて、どのように行動すべきかといった「業務遂行能力」を判断する基準。
○ 幅広い業種・職種を対象に、各企業において、この基準をカスタマイズの上、能力開発指針、職務要件書及び採用選考の基準などに活用することを想定。

3. 実績
○ 業種横断的な経理・人事等の事務系9職種、電気機械器具製造業、ホテル業など56職種で完成(令和3年4月1日現在)。

業種ごとの策定状況

<table>
<thead>
<tr>
<th>業種</th>
<th>完成年月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気通信工事</td>
<td>平成17年3月</td>
</tr>
<tr>
<td>製造業関係</td>
<td>平成17年3月</td>
</tr>
<tr>
<td>建設業関係</td>
<td>平成17年3月</td>
</tr>
<tr>
<td>金属プレス加工業</td>
<td>平成17年3月</td>
</tr>
<tr>
<td>ロジスティクス分野</td>
<td>平成17年3月</td>
</tr>
<tr>
<td>卸売業関係</td>
<td>平成17年3月</td>
</tr>
<tr>
<td>金融・保険業関係</td>
<td>平成17年3月</td>
</tr>
<tr>
<td>サービス業関係</td>
<td>平成17年3月</td>
</tr>
<tr>
<td>サービス業関係</td>
<td>平成17年3月</td>
</tr>
<tr>
<td>業務活動関係</td>
<td>平成17年3月</td>
</tr>
</tbody>
</table>

（3）社内検定認定制度
社内検定認定制度は、職業能力の開発及び向上と労働者の経済的・社会的地位の向上に寄与するため、事業主などが、その事業に関連する職種について雇用する労働者の有する職業能力の程度を検定する制度であって、技能振興上奨励すべき一定の基準を満たすものを厚生労働大臣が認定する制度である。

2021年4月1日現在、48事業主等120職種が認定されており、認定を受けた社内検定について「厚生労働省認定」を表示することができる。

キャリア形成支援

（1）キャリアコンサルティング
人生100年時代の到来による職業人生の長期化や働き方の多様化、DXの加速化に加え、新型コロナウイルス感染症の感染拡大による雇用の不透明さが増す中で、労働者は、自身のキャリアの振り返りや今後のキャリアを考える機会が増え、企業は、組織戦略として、従業員のキャリア形成支援を考える機会が増えている。キャリアコンサルティングを行う専門職として、2016年4月より国家資格化された「キャリアコンサルタント」の登録者数は、2021年1月現在、5万7千人に上っている。5年ごとの更新講習の受講や、守秘義務・信用失墜行為の禁止等の規定により、知識・技能の質が担保されているキャリアコンサルタントは、キャリア支援の社会インフラとして活動の機会に広がりがみられる。あわせて、技能検定制度の下、キャリアコンサルティングの職種の技能検定（1級、2級）が実施されている。

また、企業等に対しては、年齢、就業年数、昇進等の節目において、従業員が定期的にキャリアコンサルティングやキャリア研修を受ける機会を設定する仕組みである「セルフ・キャリアドック」を普及拡大するため、企業訪問等による勧奨や、相談・研修等の実施を通じて、その導入や取組定着の支援等を行っている。

2020年度からは、高齢期も見据えたキャリア形成支援を推進するため、労働者のキャリアプラン再設計や企業内の取組を支援する「キャリア形成サポートセンター」を整備し、労働者等及び企業に対しキャリアコンサルティングを中心とした支援を実施している。
ジョブ・カード制度の活用

ジョブ・カードは、2008年制度創設当初、職業能力の形成機会に恵まれない者を念頭に、主に職業訓練場面における利用を柱に運用され、その後、雇用情勢や政策の力点の変化に応じて、今日では、求職者・在職者・学生等を対象に、広く普及するものとして展開されている。

2015年には、職業能力開発促進法において、職業経歴等記録書として位置づけられた。また、運用のコンセプトについては、生涯を通じたキャリア・プランニング及び職業能力証明の機能を持つツールとして明確化され、個人のキャリア形成や多様な人材の円滑な就職促進に役立てられている（2020年3月末現在のジョブ・カードの作成者数は、累積で約251万人）。

ジョブ・カードは、特にキャリアコンサルティングの過程での活用が有用であり、企業内のキャリア形成支援の場面（個人の職業能力の見える化や人材育成、社員のモチベーション向上、職場定着）等における活用を通じて、組織の活性化等につながることが期待される。現在のキャリア形成サポートセンター等での活用に加え、今後進められるジョブ・カードのデジタル化により、一層利便性の高い政策ツールとして普及促進を図っていく。
就職氷河期世代の方への支援

(1) 就職氷河期世代の方向けの「短期資格等習得コース事業」の実施

就職氰河期世代の方への支援として、2020年度から「短期資格等習得コース事業」を実施している。具体的には、国からこの事業の委託を受けた、IT、運輸、建設、農業といった人材ニーズの高い11の業界団体が、1か月から3か月程度の短期間で取得でき、安定就労につながる資格等の習得支援と、職務経験、仕事ぶりの評価の情報を蓄積し、応募書類等として活用する。さらに、同事業では、求職中の非正規雇用労働者の方が働きながら受講しやすい夜間や土日、eラーニング等の訓練を提供している。
就職氷河期世代の方向けの短期資格等習得コースの実施

就職氷河期世代の方向けの「短期資格等習得コース」により、短期間で取得でき、安定就労につながる資格等の習得を支援するため、業界団体等に委託し、訓練と職場体験等を組み合わせ、正社員就職を支援する出口一体型の訓練を行う。さらに、求職中の非正規雇用労働者が働きながら受講しやすい夜間、土日やeラーニング等の訓練を提供する。

厚生労働省
委託
業界団体等
出口一体型

資格・技能例
• IT系エンジニア
• 小型クレーン、フォークリフト、安全講習
• 自動車運転免許（大型一種、大型二種、中型、準中型）等

求職者向け支援
○業界団体傘下の求人事業所において、半日から3日間程度の職場見学・職場体験
○ハローワーク等と連携した就職支援

非正規雇用労働者向け支援
○必要に応じて雇用事業所において、OJTを実施等

求職者
ハローワーク
業界団体
非正規雇用労働者を雇用する事業所
直接申込

労働局
サポート

※本事業で実施される訓練、職場見学・職場体験等については、職業訓練受講給付金の給付対象とする。
第3章
ものづくりの基盤を支える教育・研究開発

新型コロナウイルス感染症の感染拡大は、世界の人々の生命や生活のみならず、経済、社会、国際政治経済秩序、さらには人々の行動・意識・価値観まで多方面に波及している。この影響は広範で長期にわたるために、感染症が収束したポスト・コロナの世界は、新たな世界、いわゆる「ニューノーマル」へと移行するとの見方がある。また、世界的でデジタル化の動きや自国中心主義の高まりとあいまって、国際政治経済秩序は大きく変容し、今後の世界秩序に大きな影響を与えかねない状況にある。

このような新たな社会に対応し、デジタル技術を使いこなすための知識や技術を身に付ける新たな価値を生み出すことができる人材が我が国において求められている。ものづくり分野においても、変化に対応でき、新たな価値を生み出す人材を量・質共に充実させることが重要である。文部科学省はこのような人材を育成するため、今後は学びの変革に向けた先導的な取組を積極的に進めていく必要がある。

これを踏まえ、教育や科学技術イノベーション、文化芸術、スポーツの各分野において、デジタルトランスフォーメーション（DX）に係る取組を早急かつ一体的に推進するため「文部科学省デジタル化推進プラン」を策定し、これに基づき、GIGAスクール構想による1人1台端末の活用を始めとする学校教育の充実や大学におけるデジタル活用の推進、デジタル社会の早期実現に向けた研究開発等に取り組む。

同時に、ものづくりへの関心・素養を高める小学校、中学校、高等学校における特色ある取組の一層の充実や、大学の工学関連学部、高等専門学校、専門高校、専修学校などの各学校段階における職業教育などの推進が必要である。また、伝統的な技法や最新技術などの活用による、文化財を活かした新たな社会的経済的価値の創出や、文化や伝統技術を後世に継承する取組なども重要となっている。さらに、イノベーションの源泉としての学術研究や基礎研究の重要性も盤みつつ、ものづくりに関する基盤技術の開発や研究開発基盤の整備も不可欠である。

なお、これらの施策について、政策評価制度を通じて必要性・有効性・効率性等を客観的に評価・検証し、その結果を踏まえた見直しを行いつつ実施することとする。

新型コロナウイルス感染症という未曾有の危機に見舞われた2020年。我が国を始めとする世界中の人々の生活様式は一変した。人と人との接触機会の低減や地域間の往来の制限は、テレワークやオンライン会議といったデジタルツールの活用が社会に急速に浸透する契機となるなど、「フィジカル」の空間から「サイバー」の空間への移行が劇的に進展し、"個々人の生活様式"を変えるほどの大きなパラダイムシフトが発生した。

このような帕ラダイムシフトは、同時に我が国のデジタル化の遅れを露呈させる契機となった。事実、新型コロナウイルス感染症の感染拡大に伴い、急激に進展したデジタル化やオンライン化に、我が国の社会構造が追い付いていけど、あるあるに至る場面・各種活動への影響があった。教育の面においても同様で、例えば、公立学校ではICT環境の整備が十分でなかったことにより、同時多方向性のオンライン教育の実施率が15%にとどまるなど子供たちの学習機会の支障が生じたことは記憶に新しい。

新たな日常としての現下の状況は勿論、ポスト・コロナ、さらにはその先の未来社会においても、デジタル化促進の重要性は日進月歩で増していくと想定される。このような中、教育・科学技術イノベーション、文化芸術、スポーツの各分野において、高まる新たなニーズや期待に随時機動的に応えつつ、ポスト・コロナ期のニューノーマルに的確に対応していくために必要なDXに係る取組を早急かつ一体的に推進していかなければならない局面を迎えている。

このような認識の下、文部科学省では、2020年9月に「文部科学省デジタル化推進本部」を設置し、教育、科学技術イノベーション、文化芸術、スポーツの各分野におけるデジタル化に向けた取組を相乗的に加速させつつ、中長期的視野から競争力の源泉となる新たな成長基盤の構築を推進していかなければならない。

このような認識の下、文部科学省では、2020年9月に「文部科学省デジタル化推進本部」を設置し、教育、科学技術イノベーション、文化芸術、スポーツの各分野におけるデジタル化を迅速かつ強力に推進するための検討を行い、同年12月に「文部科学省デジタル化推進プラン」を策定したところである。

第1節 教育・研究等に係るデジタル化のビジョン

新型コロナウイルス感染症という未曾有の危機に見舞われた2020年。我が国を始めとする世界中の人々の生活様式は一変した。人と人との接触機会の低減や地域間の往来の制限は、テレワークやオンライン会議といったデジタルツールの活用が社会に急速に浸透する契機となるなど、「フィジカル」の空間から「サイバー」の空間への移行が劇的に進展し、"個々人の生活様式"を変えるほどの大きなパラダイムシフトが発生した。

このようなパラダイムシフトは、同時に我が国のデジタル化の遅れを露呈させる契機となった。事実、新型コロナウイルス感染症の感染拡大に伴い、急激に進展したデジタル化やオンライン化に、我が国の社会構造が追い付いていけど、あるあるに至る場面・各種活動への影響があった。教育の面においても同様で、例えば、公立学校ではICT環境の整備が十分でなかったことにより、同時多方向性のオンライン教育の実施率が15%にとどまるなど子供たちの学習機会の支障が生じたことは記憶に新しい。

新たな日常としての現下の状況は勿論、ポスト・コロナ、さらにはその先の未来社会においても、デジタル化促進の重要性は日進月歩で増していくと想定される。このような中、教育・科学技術イノベーション、文化芸術、スポーツの各分野において、高まる新たなニーズや期待に随時機動的に応えつつ、ポスト・コロナ期のニューノーマルにの的確に対応していくために必要なDXに係る取組を早急かつ一体的に推進していかなければならない局面を迎えている。

デジタル化やDXの促進が、国民一人ひとりの幸福（well-being）を高めるものでなければならないことを心に留めつつ、今こそ、ソフト・ハードの両面から、各分野におけるデジタル化に向けた取組を相乗的に加速させつつ、中長期的視野から競争力の源泉となる新たな成長基盤の構築を推進していかなければならない。

このような認識の下、文部科学省では、2020年9月に「文部科学省デジタル化推進本部」を設置し、教育、科学技術イノベーション、文化芸術、スポーツの各分野におけるデジタル化を迅速かつ強力に推進するための検討を行い、同年12月に「文部科学省デジタル化推進プラン」を策定したところである。
教育におけるデジタル化の推進

（1）GIGAスクール構想による1人1台端末の活用を始めとした学校教育の充実

Society 5.0時代を生きる子供たちにふさわしい、全ての子供たちの可能性を引き出す個別最適な学びと協働的な学びの実現に向けて、GIGAスクール構想による義務教育段階の1人1台端末環境が2020年度末までに実現することを踏まえて、ハード・ソフト・人材が一体となった取組を一層加速していくこととしている。

ハード面としては、児童生徒1人1台端末環境と高速大容量の通信ネットワークとの一体的な整備を進め、ソフト面としては、学習者用デジタル教科書の普及促進や、CBTの活用推進、先端技術の効果的な利活用の推進等に取り組むこととしている。また、人材面としては、GIGAスクールサポーター等による支援、教師のICT活用指導力向上のための指導者の養成研修の充実等に取り組むこととしている。

（2）大学におけるデジタル活用の推進

「デジタルを活用した大学・高専教育高度化プラン」により、大学や高等専門学校においてデジタル技術を積極的に取り入れて、「学修者本位の教育の実現」や「学びの質の向上」のための取組における環境を整備することで、ポスト・コロナ時代の高等教育における教育手法の具体化を図り、その成果を普及することとしている。

また、対面授業と遠隔授業を組み合わせたハイブリッド型授業による質の高い教育を実現するため、新型コロナウイルス感染症の感染拡大に伴い大学で取り組まれた工夫を踏まえ、教育再生実行会議や中央教育審議会大学分科会において検討を進めている。

大学入学者選抜におけるデジタル活用については、各大学が電子出願の導入や、新型コロナウイルス感染症対策としてICTを活用した面接等の実施に取り組んでいるほか、（独）大学入試センターではCBTに関する研究・開発等を進めている。

さらに、国立大学法人等におけるオンライン教育と対面教育の双方のメリットをいかした効果的なハイブリッド教育研究を実施するための環境整備として、キャンパス内の基幹回線や電源の強化、教室等における換気空調の整備などを推進している。

（3）生涯学習・社会教育におけるデジタル化の推進

デジタル化社会は、様々な情報や手続きがインターネット等を経由して行われ、ICT等の活用は生活の利便性を向上させるばかりでなく、感染症や災害に関する正しい情報や知識を得、身を守り命を守る上で必要不可欠なものとなる。

このため、生涯を通して誰もがいつでもどこでも学ぶことができるよう、インターネット等を活用して、生涯学習・社会教育の学びの機会などのデジタル化を推進することとしている。

例えば、文部科学省では、地方自治体や社会教育施設におけるICTを活用した取組を推進するため、オンライン研修会の開催による記録関係者との意見交換や、各種会議や社会教育主事講習等の研修会を通じて、既存の財源の更なる活用の促進やICT活用事例の収集・周知に取り組んでいる。

また、高等学校卒業程度認定試験等の手続き業務を電子化し、受験者がインターネットを通して自宅や身近な場所から簡単に受験申請や合格証明書等が
入手できるようにするためのシステム構築に取り組んでいるところである。
専修学校においても遠隔教育授業を実施するために必要な環境整備に加え、先端技術を活用した教育手法、コンテンツ、カリキュラムの開発・実証を行い、成果の横展開に取り組むこととしている。

（4）教育データの利活用による、個人の学び、教師の指導・支援の充実、EBPMの推進
学習者・教師・学校・行政機関等が、それぞれの立場から教育データを効果的に利活用することにより、個人の活用による学習等のサポート、教師による個に応じた指導や支援、新たな知見の創出、政策への反響等を行うよう、初等中等教育における教育データの利活用に関して取組を加速する。また、初等中等教育段階における標準化の進展や社会全体のデジタル化の進展の状況を踏まえ、生涯を通じた学びにおける標準化的範囲の拡大等の検討や、調査・PHRなどにおける教育データの多面的な利用の推進のほか、教育データの分析・研究に関する国としての機能の段階的な構築、研究機関や地方自治体等と連携した分析・利活用を進め、教育データの活用によるEBPMの推進を図ることとしている。

2 デジタル社会の早期実現に向けた研究開発
（1）デジタル社会への最先端技術・研究基盤の活用
デジタル社会において、我が国の研究活動を更に発展させていくためには、多様な研究開発インフラのスマート化・頑強化が必要である。
そのため、スーパーコンピュータ「富岳」や学術情報ネットワーク「SINET」等を始めとした次世代情報インフラの強化、研究施設・設備・機器のリモート化・スマート化の推進等を行い、インフラの更なる高度化・DXを進めることとしている。
また、これらの活動を通じ、ライフサイエンス、マテリアル、情報等の多様な分野において潮流となっているデータ駆動型研究開発の推進や、官民連携による最先端技術の実地での試用、防災シミュレーションや気象予報・気候変動予測の高精度化等を図ることとしている。

（2）将来のデジタル社会に向けた基幹技術の研究開発
真の「デジタル強国」に向けた基盤構築を進めるため、政府戦略等を踏まえ、将来の産業競争力の源泉となる重要基幹技術へ集中的に投資を行うこととしている。
具体的には、情報科学やマテリアル等の最先端分野やセキュリティ、プライバシー等の分野において官民の研究開発力を最大化するとともに、計算資源の更なる高度化を図る。

また、AI技術においては、政府の「AI戦略2019」（2019年6月11日）等を踏まえ、理論を始めとする基盤技術の研究から、防災・ヘルスケア等の社会実装に向けた研究開発を幅広く実施する。
量子技術においては、政府の「量子技術イノベーション戦略」（2020年1月21日）等を踏まえ、量子コンピュータ、量子計測、センシング等の量子技術の研究開発を実施し、基幹技術の獲得を目指すこととしている。

（3）研究環境のデジタル化推進
デジタル社会を先導する「研究DX」の実現に向け、一気通貫した研究環境のデジタル化を進めるとともに、各研究開発機関等と連携し、今後の新型コロナウイルス感染症の感染拡大の中で獲得したノウハウやグッド・プラクティス等の横展開を進め、研究システム改革・ファンディング改革を進める必要がある。
そのため、研究マネジメントに必要な各種情報、研究評価結果・成果情報に加え、公募型研究費に係る申請・審査・管理、共用施設・設備の公募・選定等に係る各種手続きのデジタル化を図るとともに、従来の枠組みにとらわれない学術情報・データ等の流通手段（研究データ基盤・プレプリント等）を検討することとしている。
さらに、研究活動の機械化・遠隔化・自動化や、DX人材の育成・確保を推進することとしている。
(1) 文化芸術 DX（デジタルトランスフォーメーション）戦略
文化芸術立国の実現に向けては、国民一人一人が「いつでも・どこでも・何度でも」身近に文化芸術に触れることができる社会環境を整備することが必要であり、文化芸術分野における DX 化の実装を集中的に図ることが効果的である。そのために、オンライン配信等の鑑賞形態の多様化や新たな収益モデルの模索等を通じたウィズ・コロナ時代の「新たな日常」への対応や、文化資源のデータベース化・データアーカイブ化を図っている。

加えて、城郭等の史跡や文化財建造物の分野においても東日本大震災及び熊本地震による城の石垣の崩落等の被害を踏まえ、大規模地震等の自然災害に影響される石垣の危険箇所を事前に特定するとともに、早期復旧を図るため、3D 計測による石垣等の測量図化を実施している。また、文化財建造物の日常点検に資するよう、AI を利用した文化財建造物の破損状況の分析等を、効率的に実施するための共有システムの構築を行っている。

(2) デジタル社会におけるスポーツの新たな展開
デジタル社会におけるスポーツの新たな展開として、デジタル技術・最先端技術を活用し、他分野・業者等と連携・融合しながら、新たなスポーツの「見る」、「みる」、「ささえる」の実現を目指す。具体的な取組としては、「デジタル技術を通じた新たな運動・スポーツ機会の創出、動作分析等による選手トレーニングの効率化」や「デジタル技術の活用により、会場の一体感や試合・競技の臨場感を観客に提供するための取組の推進」、「リモートでの選手のサポート」等を推進する。このような取組を通じて、DX 時代におけるスポーツ活動をより一層発展させていくことをとしている。

(3) 文部科学省内の情報基盤の刷新等
文部科学省職員が利用する端末やネットワーク等を構成する現行の情報基盤「文部科学省行政情報システム」は、2016 年度より整備・運用が開始され、2021 年度中に更改の時期を迎えているが、更改後の新たなシステムにおいては中央省庁初の全クラウド化を導入することで、クラウドサービスが提供するデータ保存容量無制限のストレージ、ファイル共有編集機能、チャット機能等を採用することにより職員の業務効率を向上させるとともに、地震、停電などによる停止の影響も左右されない、災害耐性の高いシステム環境を実現する。また、安定的な通信接続の確保、職員用端末の軽量化などの改善も図り、テレワークや WEB 会議など「新たな日常」「ニューノーマルな働き方」に対応した勤務環境を提供することとしている。

(4) DX人材の育成・確保
GIGA スクール構想の着実な実現や教育研究分野におけるデータの活用の推進等、これからの政策立案及び実施に当たっては、教育、科学技術イノベーション、文化芸術、スポーツといった分野に関わらず、DX の積極的な推進及びそれを陰から支えるサイバーセキュリティの確保が不可欠であるが、そのための人材確保の実態は十分というには程遠い状況であり、今後、組織的に計画的に育成・確保を図っていこうとしている。具体的には、DX 人材の候補となる者を対象に、教育・研修制度の充実や戦略的なキャリアパスの形成、関係各機関との人事交流の推進、また、高度なスキルを身につけた者に対するインセンティブの付与を通じて、文部科学行政における迅速かつ強力な DX の推進を可能とする人材の育成・確保に取り組むこととしている。

コラム
教育の風を興す熊本県高森町の遠隔教育
熊本県高森町では、2015 年度から 2020 年度まで連続して 6 年間文部科学省の委託事業を受け、テレビ会議システムを活用し、専門家（機関）と教室、教室と教室を接続した遠隔教育による主体的・対話的で深く深い学びの実現に取り組んできた。今回の新型コロナウイルス感染症の拡大においては、今までの遠隔教育の取組の成果を活かし、休校期間中のオンライン学習を始め教員のテレワークによる在宅からのオンライン学習も行った。それらのノウハウを活かし、対面授業においてもオンラインによるウィズ・コロナの授業づくりを行っている。また、児童生徒の習熟度にあわせたオンラインレッスン、病気療養中の児童生徒と接続した遠隔授業授業に取り組んでいる。現在、1人1台
のタブレット端末環境や安定した校内通信環境に加えて、全家庭 Wi-Fi 環境が実現し、持ち帰り学習の質的向上による個別最適化された学びや児童生徒の主体的活用が更に加速している。

「AI 戦略 2019」においては、数理・データサイエンス・AI に関して、「文理を問わず全ての大学・高専生（約 50 万人卒/年）が初級レベルの能力を習得すること」、「大学・高専生（約 25 万人卒/年）が自らの専門分野への応用基礎力を習得すること」が、目標として掲げられている。その実現のため、文部科学省では、数理・データサイエンス・AI 教育の基本考え方、学修目標・スキルセット、教育方法などを体系化したモデルカリキュラム（リテラシーレベル・応用基礎レベル）を策定・活用するとともに、教材等の開発や、教育に活用可能な社会の実課題・実データの収集・整備を通じて全国の大学などへの普及・展開を推進している。また、同戦略では、大学・高専における数理・データサイエンス・AI 教育のうち、優れた教育プログラムを政府が認定することを掲げており、リテラシーレベルについては、2021年に順次認定し、応用基礎レベルについては、2021年度中の制度構築を予定している。本認定制度は、各大学等の取組について、政府だけでなく産業界を始めとした社会全体として積極的に評価する環境を醸成し、より質の高い教育を牽引していくことを目標としている。

Society 5.0 に向けた人材育成の推進（高等教育段階における数理・データサイエンス・AI 教育）

コラム

新型コロナウイルス感染症の感染拡大による研究環境の変化を踏まえ、科学技術・学術審議会の学術分科会と情報委員会との連携の下、学術研究及びそれを支える情報科学技術の振興方策について審議が行われ、2020年9月に合同提言が取りまとめられた。

新型コロナウイルス感染症の感染拡大により社会の在り方が変容した結果、「コロナ新時代」とも呼ばれる新たな時代が到来し、時間的・地理的制約を超えた新たな活動スタイルが普及するとともに、データ駆動の活動が社会のあらゆる分野に波及・進展している一方で、学術情報のデジタル化やデータ活用のための環境整備の遅れなどの課題が指摘されている。本提言では、このような新型コロナウイルス感染症の感染拡大が浮き彫りにした課題の克服を通じて、より良い未来社会、Society 5.0 の実現に向けた変革につなげるという視点を持つことが重要であるとされている。

新型コロナウイルス感染症の感染拡大を背景にした新たな時代においては、科学技術・学術審議会の学術分科会と情報委員会との連携の下、学術研究及びそれを支える情報科学技術の振興方策について審議が行われ、2020年9月に合同提言が取りまとめられた。

新型コロナウイルス感染症の感染拡大により社会の在り方が変容した結果、「コロナ新時代」とも呼ばれる新たな時代が到来した。時間的・地理的制約を超えた新たな活動スタイルが普及するとともに、データ駆動の活動が社会のあらゆる分野に波及・進展している一方で、学術情報のデジタル化やデータ活用のための環境整備の遅れなどの課題が指摘されている。本提言では、このような新型コロナウイルス感染症の感染拡大が浮き彫りにした課題の克服を通じて、より良い未来社会、Society 5.0 の実現に向けた変革につなげるという視点を持つことが重要であるとされている。

コラム

コロナ新時代に向けた今後の学術研究及び情報科学技術の振興方策について（提言）
第2節 ものづくり人材を育む教育・文化芸術基盤の充実

1 各学校段階における特色ある取組
(1) 小・中・高等学校の各教科における特色ある取組

我が国の競争力を支えているものづくりの次代を担う人材を育成するためには、ものづくりに関する教員を充実させることが重要である。文部科学省では、中央教育審議会の答申（2016年12月）を踏まえ、2017年に小・中学校学習指導要領を、2018年に高等学校学習指導要領を改訂した。小学校の「理科」「図画工作」「家庭」、中学校の「理科」「美術」「技術・家庭」、高等学校の「工芸」「家庭」に関係する教科を中心に、それぞれの教科の特質を踏まえ、ものづくりに関する教育を行うこととしている。例えば、小学校の「図画工作」では、造形遊びをする活動や絵や立体、工作に表す活動、鑑賞の活動を通して、生活や社会の中の形や色などと豊かにかかわる資質・能力を育成することとしている。その際、技能の習得に当たっては、手や体全体の感覚などを働かせ、材料や用具を使い、表し方などを工夫して、創造的に作ったり表したりすることができるようすることとしている。

中学校の「理科」では、原理や法則の理解を深めるためのものづくりなど、科学的な体験を重視している。中学校の「技術・家庭」では、技術が生活の向上や産業の経済を支えるものなどを新たに明記するとともに、ものづくりに関する実践的・体験的な活動を通じて、技術によってよりよい生活や持続可能な社会を構築する資質・能力を育成することとしている。

また、高等学校の専門教科「工業」では、安全・安心な社会における、職業人としての倫理観、環境保全やエネルギーの有効な活用、産業のグローバル競争の激化、情報技術の技術革新の開発が加速化することなどを踏まえ、ものづくりを通して、地域社会の健全で持続的な発展を担う職業人を育成するため、教科目標に「ものづくり」を明記するとともに、実践的・体験的な学習活動を通じた資質・能力の育成を一層重視するなどの教育内容の充実を図っている。

佐賀市立大詫間小学校では、自然豊かな環境に恵まれた中、「自分の思いを豊かに表現できる子」を目指す子供像として、全校51名の児童が学んでいる。第5、6学年は複式学級であり、図画工作の授業も複式で行っている。

第5、6学年では、地場産品のひとつとして指定を受けている「諸富家具」で使用されている木材を工場から譲っていただき、その板をどのように活かしていくか考え、生活や役立つものを作る「我ら木工クリエーター」という題材に取り組んだ。授業の導入では木材に触れる時間を十分に取り、子供たちがそのよさを感じ取ることができるようにした。その後、友達と意見交換をしたり、授業外で家族の意見を聞いたりしながら、使う場所や用途を考える過程を経てデザインを考えていた。製作では、のこぎりや金づちなどの用具を活用し、表現に適した方法を組み合わせて表していた。どの用具をどのように使ったのか、子供同士でアドバイスし合いながら、表し方を工夫することができ、活動が進むにつれて、子供たちの作品への愛着が深まり、作品と子供の生活がつながっていく様子が感じられるようにならった。

出来上がった作品は、ペン立て、小物入れ、壁掛け、時計板などパラエティーに富み、実際に使うことをよく考えたものとなっていた。この活動を通して、子供たちは、つくりだす喜びを味わうとともに、形や色などにかかわり深く豊かな生活を創造しようとすることができたようである。

写真: ICTを活用して、自分の考えたデザインを発表する
写真: 用具を活用して、創造的に表している
埼玉大学教育学部附属中学校の2年生は、毎年技術・家庭科技技術分野の授業でロボットコンテストに取り組んでいる。本年度は「新型コロナウイルス感染症で苦労している飲食店の皆さんを元気にしよう」をテーマに、テーブルを消毒するロボットの開発に取り組んだ。

生徒たちは、動力伝達に関する知識だけでなく、学校生活の清掃活動の経験なども活かして、どのような作業が必要か、それを実現するためにはどのような動力伝達の機構が必要か、グループごとにアイデアを出し合い、試作した。そして、動作テストを繰り返し行いにしていた。さらに、学習成果の発表の場である校内ロボットコンテストを、本年度は新型コロナウイルス感染症対策としてオンライン形式で実施することで、保護者の方々も含めた多くの方々に、自分たちがつくりあげたロボットを紹介することができた。

解決が困難な問題を、自ら解決策を考えて具体的な形に作り上げ、さらに、異なる考えをもつ友達等と意見交換する中でよりよい新たな解決策を創造するというこのような経験は、「ものづくり」の大切さを実感できる学びである。学習後には、生徒たちから「どんな困った問題も、ものづくりで解決できすることが分かった」「これからも、ものづくりで多くの人々を幸せにしたい」などの感想を聞くことができた。

熊本県立球磨工業高等学校は、機械科、電気科、建築科（建築コース・伝統建築コース）、建設工学科の4科を有し、「ものづくりを通した人づくり」を学校目標として、将来の工業技術者の育成に取り組んでいる。同校は、伝統建築の重要文化財継承に貢献する卓越した技能を有する人材の育成を目指す、全国唯一の伝統建築専攻科を設置しており、学校全体で地域に根ざした伝統的なものづくり教育に力を注いでいる。

同校が所在する人吉・球磨地域は、以前は鍛冶屋町としても栄えており、多くの鍛冶職人が町を支えていたが、現在は数件のみとなり伝統技術の存続・継承が大きな課題となっている。

機械科では、地域の伝統技術を継承するために10数年前から和釘の製作に取り組んでいる。この取組は、地域の観光船事業を営む「球磨川くだり（株）」から、和船の建造や修理に必要な「舟釘」の製作依頼を受け、年間約300本を製作し寄贈している。この和釘は一般的に使用されている「洋釘」に似ており、鍛造により生徒が1本1本叩きながら手作りしている。

和釘の製作は、加熱をする際に色による温度判断や、エアハンマーによる強弱の叩き加減、金属組織を整える熱処理など、「目」「音」「感触」による素早い判断が求められ、一瞬の判断が品質を損ねてしまうほど、非常に繊細な技術が必要である。生徒たちはこの取組を通して多くの失敗を重ねの中で、ハンマーの当て方や加熱の温度を考え、自ら工夫し、うまくできたことを仲間と共有することで、完成精度を高めてきた。また、製作した和釘が実際に活用されることで、依頼者の信頼と安心、生徒自身の喜びにもつながり、ものづくりに対するあくなき探究心が向上した。
和釘は、洋釘と比較して寿命が長く、しなやかで丈夫であり、建立されて1,000年以上となる法隆寺や薬師寺など数多くの神社や寺などの新築や修復の依頼を受けており、その際にもこの和釘を使用している。また、機械科では、和釘を製作するだけではなく、地元の鍛冶屋を訪れて職人技を見たり、伝統建築物を実際に見て触れたりする授業を取り入れている。地域の歴史と職人の技術・技能との関連性について体験を通して理解することで、学習内容をより深化させ、生徒の主体的な態度の育成にもつながっている。

2020年度は、7月の豪雨災害により同校の生徒と職員で、被災直後から授業の一環として、特に被災状況が激しかった「人吉旅館（国指定重要文化財）」を始めとする地元地域での災害復興ボランティア活動を行っている。生徒たちは、変わり果てた故郷の光景に大きな衝撃を受けたが、自分たちにできることに精一杯取り組んだ。地域の方々の前向きな姿勢と向き合い、ボランティアに対する感謝の言葉を受けることで、日頃支えている地域に大きく貢献することができた。生徒たちにとって、この経験はものづくりにおいて重要な感性や思いやりの育成につながった。

同校は、今後も日本古来の伝統技術を存続・継承するため、更なる技術・技能の向上に努め、地域貢献だけではなく災害復興にも貢献できる人材の育成を目指すこととしている。

写真：和釘（階折釘） 写真：鍛冶屋見学 写真：階折釘を使用した祠

(2) 大学の人材育成の現状及び特色ある取組

ものづくりと関連が深い「工学関係学科」では、2020年度現在、38万2,341人（国立12万176人、公立2万2,552人、私立23万7,613人）の学生が在籍している。2019年度の卒業生8万5,631人のうち約60％が就職し、約36％が大学院などに進学している。職業別では、ものづくりと関連が深い機械・電気分野を始めとする専門的・技術的職業従事者となる者が約81％を占めており、産業別では、製造業に就職する者が約27％を占めている（表321-1）。

また、工学系の大学院においては、職業別では、専門的・技術的職業従事者の者が、修士課程（博士課程前期を含む）修了者で就職する者が約91％（表321-2）、博士課程修了者で就職する者が約90％を占めている（表321-3）。産業別では、修士課程修了後に就職するもののうち、製造業に就職する者では約58％、博士課程修了後に製造業に就職する者では約34％を占めている。

<table>
<thead>
<tr>
<th>表 321-1 大学（工学関係学科）の人材育成の状況</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>卒業者数</td>
</tr>
<tr>
<td>就職者数</td>
</tr>
<tr>
<td>就職者の割合</td>
</tr>
<tr>
<td>製造業就職者数</td>
</tr>
<tr>
<td>製造業就職者の割合</td>
</tr>
<tr>
<td>専門的・技術的職業従事者数</td>
</tr>
<tr>
<td>専門的・技術的職業従事者の割合</td>
</tr>
</tbody>
</table>

資料：文部科学省「学校基本調査」
大学では、その自主性・主体性の下で多様な教育を展開しており、我が国のものづくりを支える高度な技術者を多数輩出してきたところである。工学分野については、専門の深い知識と同時に幅広い知識・俯瞰的視野を持つ人材育成を推進するため、2018年6月に学科ごとの縦割り構造の見直しなどを促進するために大学設置基準などを改正したところである。今後、当該制度改正による工学系教育改革の実施などを通じて、工学系人材の育成を戦略的に推進していくところである。

<table>
<thead>
<tr>
<th>大学院修士課程（工学関係専攻科）の人材育成の状況</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>卒業者数</td>
</tr>
<tr>
<td>就職者数</td>
</tr>
<tr>
<td>就職者の割合</td>
</tr>
<tr>
<td>製造業就職者数</td>
</tr>
<tr>
<td>製造業就職者の割合</td>
</tr>
<tr>
<td>専門的・技術的職業従事者数</td>
</tr>
<tr>
<td>専門的・技術的職業従事者の割合</td>
</tr>
</tbody>
</table>

資料：文部科学省「学校基本調査」

<table>
<thead>
<tr>
<th>大学院博士課程（工学関係専攻科）の人材育成の状況</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>卒業者数</td>
</tr>
<tr>
<td>就職者数</td>
</tr>
<tr>
<td>就職者の割合</td>
</tr>
<tr>
<td>製造業就職者数</td>
</tr>
<tr>
<td>製造業就職者の割合</td>
</tr>
<tr>
<td>専門的・技術的職業従事者数</td>
</tr>
<tr>
<td>専門的・技術的職業従事者の割合</td>
</tr>
</tbody>
</table>

資料：文部科学省「学校基本調査」

大学では、その自主性・主体性の下で多様な教育を展開しており、我が国のものづくりを支える高度な技術者を多数輩出してきたところである。工学分野については、専門の深い知識と同時に幅広い知識・俯瞰的視野を持つ人材育成を推進するため、2018年6月に学科ごとの縦割り構造の見直しなどを促進するために大学設置基準などを改正したところである。今後、当該制度改正による工学系教育改革の実施などを通じて、工学系人材の育成を戦略的に推進していくところである。

図321-4 工学系大学卒業後就職者における産業別の比較（学士課程）

●1990年度から2019年度にかけて、製造業分野への就職者が大幅に減少する中、通信分野やサービス業分野への就職者が増加している。

1990年度産業別就職者数（68,901）

2019年度産業別就職者数（51,203）

資料：2020年度文部科学省「学校基本調査」に基づき作成
例えば、実際の現場での体験授業やグループ作業での演習、発表やディベート、問題解決型学習など教育内容や方法の改善に関する取組が進められているほか、教員の指導力を向上させるための取組などが進められている。また、工学英語プログラムの実施、海外大学との連携による交流プログラムなど、グローバル化に対応した工学系人材の育成に向けた取組が行われている。

コラム 大学（工学系）における取組

－東京電機大学－

東京電機大学もののづくりセンター（https://www.mono.dendai.ac.jp）は、同大学の建学の精神である「実学尊重」を具現化した施設として 2017 年 4 月に開設され、同大学の「ものづくり」の中心として、①学生自ら技術的素養を深める教育の場、②学生・教職員の研究支援の場、③ものづくりに関する講座・講習、及び、④企業の技術開発を支援する社会貢献の場、を提供している。

東京千住キャンパスに設置された「もののづくりセンター千住」は、センターの中核施設である。大規模実験やドローンの飛行試験も可能な多目的スペースを始め、作業種別・目的に応じた 8 つのスペースを有し、多種多様な機械や各種測定機器、工具等を用意している。これらの機器の中には、3D プリンタ、レーザ加工機（木・プラスチック用及び金属用）、5 軸マシニングセンタ、3 次元計測機等、学生の創造力を刺激する装置もそろっている。当センターは加工の場だけではなく、スタッフによる技術相談、パーツセンターによる部材・部品の販売・調達サービスも提供している。

もののづくりの基本である安全教育も推進しており、利用には安全講習の受講（ライセンス取得）を必須とし、これまで 2,500 名超が受講している。将来的には、技術者の基礎的素養としての安全教育を全学的に標準化すべく取り組んでいる。なお、新型コロナウイルス感染症の感染拡大の状況においても、これらの講習会をオンラインで実施している。また、昨秋のオンライン学園祭では、催し物や各学科・研究室紹介の動画配信を、センターの多目的スペースの特設スタジオから行った。

今後、学生向け加工講習会を始め、地域貢献に資する子供向けものづくり教室や企業向けの講習会・技術相談会等を企画し、多くの利用者で賑わう、活気溢れる「もののづくりセンター」の実現を目指す。
－広島大学－
広島大学では、2018年度内閣府「地方大学・地域産業創生交付金」の採択を受け、「デジタルものづくり教育研究センター」を、2019年2月に設置した。センター内には、技術・研究領域別に「材料モデリングセミナー」、「データ駆動型スマートシステム」及び「スマート検査・モニタリング」の3つの共創コンソーシアムが設けられている。いずれも産学連携のもと、社会実装につなげるための研究開発を進める一方で、「材料シミュレーション」、「モデルベース開発」、「スマートセンシング」などの研修プログラムを用意し、デジタルイノベーション人材の創出に向けた教育活動を行っており、これが当該研究センターの大きな特徴となっている。
広島大学では、これらの研修プログラムを発展させ、モデルやデータを用いたデジタルものづくり技術を産業に直結させる人材の養成を目指して、2021年4月大学院先進理工系科学研究科に新たな学位プログラム「スマートイノベーションプログラム」が開設された。

写真：共創コンソーシアムにおける研修風景

（3）高等専門学校の人材育成の現状及び特色ある取組
高等専門学校は、中学校卒業後の早い年齢から、5年一贯の専門的・実践的な技術者教育を特徴とする高等教育機関として、2020年度現在、57校（国立51校、公立3校、私立3校）が設置されており、5万3699人（国立4万8170人、公立3616人、私立1913人、専攻科生を除く）の学生が在籍している。

2019年度の卒業生、9769人のうち約6割が就職しており、就職率は毎年100％近く、極めて高い水準を維持している。産業別では、製造業に就職する者が約5割となっており、職業別では、ものづくりに関連が深い機械・電気分野を始めとする専門的・技術的職業従事者となる者が9割を占めている（表321-5）。

<table>
<thead>
<tr>
<th>表321-5 高等専門学校の人材育成の現状</th>
<th>15年度</th>
<th>16年度</th>
<th>17年度</th>
<th>18年度</th>
<th>19年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>卒業者数</td>
<td>9,764</td>
<td>10,086</td>
<td>9,960</td>
<td>10,009</td>
<td>9,769</td>
</tr>
<tr>
<td>就職者数</td>
<td>5,688</td>
<td>5,828</td>
<td>5,964</td>
<td>5,973</td>
<td>5,841</td>
</tr>
<tr>
<td>就職者の割合</td>
<td>57.9%</td>
<td>57.4%</td>
<td>59.6%</td>
<td>59.4%</td>
<td>59.3%</td>
</tr>
<tr>
<td>就職率</td>
<td>99.3%</td>
<td>99.3%</td>
<td>99.5%</td>
<td>99.5%</td>
<td>99.2%</td>
</tr>
<tr>
<td>製造業就職者数</td>
<td>2,916</td>
<td>2,886</td>
<td>2,967</td>
<td>2,945</td>
<td>2,807</td>
</tr>
<tr>
<td>製造業就職者の割合</td>
<td>51.6%</td>
<td>49.9%</td>
<td>50.0%</td>
<td>49.6%</td>
<td>48.4%</td>
</tr>
<tr>
<td>専門的・技術的職業従事者数</td>
<td>5,301</td>
<td>5,410</td>
<td>5,582</td>
<td>5,564</td>
<td>5,445</td>
</tr>
<tr>
<td>専門的・技術的職業従事者の割合</td>
<td>93.8%</td>
<td>93.5%</td>
<td>94.1%</td>
<td>93.0%</td>
<td>94.0%</td>
</tr>
</tbody>
</table>

資料：文部科学省「学校基本調査」
高等専門学校は、実験・実習を中心とする体験重視型の教育に特徴がある。具体的な取組としては、産業界や地域との連携による教育プログラムの開発や、長期インターンシップの実施、学生の創意工夫の成果を発揮するための課外活動を実施しているほか、教員の指導力を向上させる取組として、企業からの教員派遣や企業での教員研修などが実施されている。これらの取組を通じて、高等専門学校は社会から高く評価される実践的・創造的なものづくり人材の育成に成功している。

文部科学省としても、社会的要請が高く、人材不足が深刻化しているサイバーセキュリティ分野の人材育成など、高等専門学校教育の充実に向けた取組を進めている。

また、近年は、工業化による経済発展を進める開発途上国を中心として、高等専門学校教育における 15 歳という早期からの専門人材育成が高く評価されている。そのため、(独)国立高等専門学校機構において、各国のニーズを踏まえた技術者教育の充実に向け、教育カリキュラムの開発や教員研修などの支援を進めている。

コラム 高等専門学校における取組

小山工業高等専門学校
－アイデア対決・全国高等専門学校ロボットコンテスト－
「アイデア対決・全国高等専門学校ロボットコンテスト」（通称・高専ロボコン）は、高等専門学校の学生がチームを結成し、毎年異なるルールの下、自らの頭で考え、自らの手でロボットを作ることを通じて、独創的な発想を具現化し、「ものづくり」を実践する課外活動である。

2020 年度の第 33 回大会は初のオンライン開催となり、「だれかをハッピーにするロボットを作ってキラリ輝くパフォーマンスを自慢しちゃおうコンテスト（略称・はぴ☆ロボ自慢）」という競技課題の下、参加チームが自らテーマを設定し、技術とアイデアを駆使して、人々を幸せにすることを目指したロボットパフォーマンスを行い、得点を競った。

2020 年 11 月に地区大会を勝ち抜いた 28 チームによる全国大会が行われ、競技の結果、小山工業高等専門学校が超優秀賞（優勝相当）を受賞し、内閣総理大臣賞状が授与された。

長岡工業高等専門学校
－全国高等専門学校ディープラーニングコンテスト（DCON2019）－
長岡工業高等専門学校では、製造現場でのアナログメーターの点検作業や巡視作業等、人が目視で行っている点検業務作業を自動化し、収集したデータをもとに品質改善やコスト削減につなげる AI カメラシステム「METERAI」を開発した。このシステムは 2019 年の全国高等専門学校ディープラーニングコンテスト（DCON2019）で、その事業性を高く評価され、見事最優秀賞を受賞。さらに、開発に協力した企業から「人手を掛けずに済むほか、取得できるデータ量が格段に増すため、新たな知見や兆候の発見を期待できる」と評価を受け、このような企業の声や、長岡市の支援を受け、2020 年 7 月に「IntegrAI（インタグライ）」を起業し、2021年度以降に本格的な事業化を目指している。
（4）専門高校の人材育成の現状及び特色ある取組
高等学校における産業教育に関する専門学科（農業、工業、商業、水産、家庭、看護、情報及び福祉の各学科）を設置する学校（専門高校）は、2020年度現在、1,498校設置されており、55万3,444人の生徒が在籍している。2019年度の卒業生18万8,366人のうち、約54%が就職している。そのうち、2020年度現在、ものづくりに関連が深い工業に関す

表321-6 専門高校（工業に関する学科）の人材育成の状況

<table>
<thead>
<tr>
<th>年度</th>
<th>卒業者数</th>
<th>就職者数</th>
<th>就職者の割合</th>
<th>就職率</th>
</tr>
</thead>
<tbody>
<tr>
<td>15年度</td>
<td>80,593</td>
<td>54,285</td>
<td>67.4%</td>
<td>99.3%</td>
</tr>
<tr>
<td>16年度</td>
<td>80,811</td>
<td>54,540</td>
<td>67.5%</td>
<td>99.4%</td>
</tr>
<tr>
<td>17年度</td>
<td>79,793</td>
<td>54,217</td>
<td>67.9%</td>
<td>99.5%</td>
</tr>
<tr>
<td>18年度</td>
<td>79,523</td>
<td>54,256</td>
<td>68.1%</td>
<td>99.5%</td>
</tr>
<tr>
<td>19年度</td>
<td>78,573</td>
<td>53,585</td>
<td>68.3%</td>
<td>99.5%</td>
</tr>
</tbody>
</table>

資料: 文部科学省「学校基本調査」（就職率は「高等学校卒業（予定）者の就職（内定）状況調査」、就職を希望する生徒の就職希望率を表している。）

経済のグローバル化や国際競争の激化、産業構造の変化、IoTやAIを始めとする技術革新や情報化の進展などから、職業人として必要とされる専門的な知識や技術及び技能はより一層高度化している。また、熟練技能者の高齢化や若年ものづくり人材の不足などが深刻化する中で、ものづくりの将来を担う人材の育成が喫緊の課題となっている。

このような中で、専門高校は、ものづくりに携わる有為な職業人を育成し、職業人として必要とされる豊かな人間性、生涯学び続ける力や社会の中で自らのキャリア形成を計画・実行できる力を身に付けていく教育機関として大きな役割を果たしている。また、地元企業などでの就業体験活動や技術指導など、地域や産業界との連携を通じた実践的な学習活動を行い、地域産業を担う専門的職業人を育成している。

文部科学省では、2014年度から、社会の変化や産業の動向などに対応した、高度な知識・技能を身に付け、社会の第一線で活躍できる専門的職業人を育成することを目的として、先進的な卓越した取組を行う専門高校（専攻科を含む）を指定して実践研究を行う「スーパー・プロフェッショナル・ハイスクール」事業を展開している。
2020年度の時点で、10校の指定校においては、育成を目指す人材像を明確にして、大学・高等専門学校・研究機関・企業などと連携した講義の実施、最先端の研究指導、実践的な技術指導なども含め、高度な人材を育成するため開催すべき人材育成プログラムについて実践研究が行われており、事業終了後は、それらの成果の活用及び全国への普及を図ることとしている。

工業科を設置する高等学校の指定校では、我が国のものづくり産業の発展に寄与し、第一線で活躍できる専門的職業人を育成している。産学官の連携を一層図り、工業に関する諸課題を解決するための高いレベルの研究指導や技術指導により、生徒が主体的、協働的に学び、ものづくりの高度な知識や技術及び技能を身に付けることにつながる人材育成プログラムに取り組んでいる。例えば、防災、減災時の対応や災害発生時に適切な対応が求められる災害にも適切に対応できるエンジニアを育成するため、産業技術者や大学関係者から指導を受けるなど、産学官が協働した実践的な学習活動が行われている。

また、2019年度から、高等学校が自治体、高等教育機関、産業界などと協働してコンソーシアムを構築し、地域課題の解決などを通じた探究学びを実現する「地域との協働による高等学校教育改革推進事業」を実施している。職業教育を主体とする専門学科では、本事業のプロフェッショナル型において、専門的な知識・技術を身に付け地域を支える専門的職業人を育成するため、地域の産業界などと連携・協働しながら地域課題の解決などに向けた探究的な学びを専門教科・科目を含めた各教科・科目などの中で位置付け、体系的に学習するカリキュラム開発を実施する。

例えば、工業科を設置する高等学校の指定校では、スマートシティを実現するために必要となる先進的な知識・技術を身に付け、ものづくりを通じ地域の課題を解決できる技術者の育成を目指して、地域の産業界や高等教育機関などと協働した実践的な学習活動が行われている。

指定校以外の工業科を設置する高等学校では、企業技術者や高度熟練技能者を招いて、担当教員とチームで学習活動の指導を行っている。産業現場における長期の就業体験学習や、先端的な技術を取り入れた自動車やロボットなどの高度なものづくり、地域の伝統産業を支える技術者・技能者の育成、温暖化防止など環境保全に関する技術の研究など、特色ある様々な取組を産業界や関係機関などとの連携を深めながら実施している。さらに、各地域で開催されるものづくりイベントにおいては、生徒がものづくり体験学習の講師を務めたり、地域企業の技術者などと交流したりすることを通じて、地域のものづくり産業が培ってきた技術力の高さや職業人としての誇りを理解させるなど、ものづくりへの興味・関心を高めている。

また、将来、起業や会社経営を目指す生徒はもちろんのこと、それ以外の生徒においても社会の変化に対応したビジネスアイデアを提案して製品化することができるような、アントレプレナーシップの育成を図るため、生徒の意見の学び成果や高校生の視点で見た気づきを活かした製品の開発に地元企業と連携して取り組み、試作品の製作や製品企画のプレゼンテーションを通じて、製品の開発から販売までを体験させる実践的な学習活動も行われている。

工業科以外の農業、水産、家庭などの学科においても、地域産業を活かしたものづくりのスペシャリスト育成に関する教育が展開されている。例えば、農業科においては、規格外農産物などの未利用資源を有効活用した商品開発に向けた研究や、地域の女性起業家と連携したブランド品の共同開発が行われている。水産科においては、未利用資源を貴重な水産資源として有効活用する方法を研究し、地域の特産品を開発するなどの取組や、水産教育と環境教育、起業家教育を融合させた学習活動が行われている。家庭科においては、地域産業の織物技術を活用して、新たな織物やアパレル商品を企画・提案したり、製作したりして地域活性化につながるものづくり教育を進めている。

このほか、2020年度第3次補正予算においては、Society 5.0時代における地域の産業を育てる職業人育成を進めるため、ウィズ・コロナ、ポスト・コロナ社会、技術革新の促進やDXを見据えた、農業や工業等の職業系専門高校における最先端のデジタル化に対応した産業教育装置の整備について、国が緊急的に補助し、専門高校の教育環境の整備充実に取り組む。

あわせて、産業教育設備の整備については、設備の老朽化による更新需要の増加や産業界におけるデジタル化などを踏まえ、専門高校においてより時代に即した人材育成を図ることができるよう、2021年度から地方交付税措置を充実することとした。
地域産業を支え、ものづくりを通して地方創生を担う技術者の育成プログラム

2017年度に「スーパー・プロフェッショナル・ハイスクール（SPH）」に指定された山梨県立甲府工業高等学校では、本科生が、専門的で実践的な技術・技能を身に付けて、自ら考え行動できる思考力と、課題解決力・創造力を兼ね備えた先進的技術者の育成を目指した取組を行っている。

また、2020年度に開設した専攻科創造工学科では、生産技術者としての技術・技能を持ち、生産工程の手順や設備、装置を設計する能力等を有する先進的設計技術者の育成を目標とした取組を行うことで、本科で身に付けた資質・能力を更に伸ばし、本科3年間と専攻科創造工学科2年間の5年一貫の工業教育により、生産現場のリーダーとして地域産業を支え、ものづくりを通して地方創生を担う技術者の育成を目標とした教育プログラムの開発を行っている。

具体的には、1年次では、地域の政治・経済・産業の理解を図り、キャリア構築の礎を築くことを目的とした「実践社会学」を設定しており、2年次では、日本と山梨の経済の動向を把握し、経済学に関する理論及び起業について理解を深める「起業経済学」や、全国的な地方創生の先行例を学び、山梨の特性に即した課題に取り組んでいく「地方創生概論」等の科目を設定している。

また、甲府工業高等学校版デュアルシステムにより、生徒は、将来の就職先を視野に入れ、1人あたり5社の地元企業で実習を行っている。実習先の選定に当たっては、協力を得た地元企業の人事担当者を招聘・ガイダンスを行い決定している。生徒は、2年次になると、原則として自らが体験した企業実習先から企業を選定し、その選定した企業と協働した創造研究に取り組むことになる。専攻科創造工学科は機械、電子の複合的な技術を身に付けるため、両分野の横断的な学習ができるような教育課程になっており、身に付けた複合的な技術を用いて、ソーラーカーの製作等に取り組んでいる。

企業実習先へのアンケートでは、7割を超える企業から、先進的設計技術者として活躍が期待できると回答を得ており、地方創生の観点で地域産業界から大きく期待されている。
コラム
「全国産業教育フェア」における「ロボット競技発表会」での取組
発想力と創造力を発揮してロボットを製作し、次世代を担う技術者としての資質を向上

2020年10月に開催された「第30回全国産業教育フェア」大分大会は、新型コロナウイルス感染症の感染拡大防止のため、参集型とインターネット型を併用して実施された。本大会では、全国規模の作品・研究発表を始め研究成果や生徒作品の展示、各種デモンストレーション、学校生産物等の展示販売など、産業教育の魅力を全国に発信するとともに、特設HPに生徒実行委員会のLIVEレポートや各催事の発表などを掲載し、専門高校等の魅力を全国へ発信した。

また、「第28回全国高等学校ロボット競技大会」大分大会に代わり実施された「ロボット競技発表会」で、ロボットを製作する過程を通じて高度な技術・技能を習得し、ものづくりへの興味関心を高めるとともに、次世代を担う技術者としての資質を向上させることを目的として、大分県内の工業高等学校等10校が参加し、それぞれのチームが仲間と協力し合い、創造力を発揮して発表会用のロボットを製作し、用意されたミッションに挑んだ。

ロボット競技においては、ロボットを製作し的確に操作する高度な知識・技術はもちろんのこと、豊かな発想力や創造力、仲間とのチームワークが求められる。今回のコースは、3分間の競技時間の中で、ロボット競技会で使用されるロボット「親猿」と自立型ロボット「子猿」が力を合わせ、大分県内の名所を巡りながら、国宝「宇佐神宮」に大分県の特産物「関あじ・関さば・城下かれい・カボス」を奉納するイメージで構成されており、コース中には、半球やパイプなど凹凸に富んだ床面や2か所の橋などの難所が設けられた。

各チームの高校生たちは、試行錯誤して様々な工夫を凝らした自作のロボットを操作しながら各種障害をクリアして得点を競い合うとともに、他の高等学校の生徒との交流を通じて更にものづくりへの関心を深めた。

写真：大分県立鶴崎工業高等学校のメンバーとロボット
写真：ロボット競技発表会の様子

コラム
専門高校の特色ある取組

－香川県立高松工芸高等学校の取組－
大会やコンクールへの積極的参加及び7学科の専門分野を活かしたものづくり人材の育成
香川県立高松工芸高等学校では、高校生アメリカンロボットフットボール全国大会やジャパンマイコンカーラリー全国大会など、全国的な規模のロボット競技大会への参加や各種ポスターコンクール、マーク・キャラクターデザイン等の制作を通して、技術力の向上や作画、プレゼンテーション技法を習得できるよう指導している。
また、同校では香川県の伝統工芸である香川漆器を全国にPRするため、7科（工芸科・デザイン科・機械科・工業化学科・建築科・電気科・美術科）がそれぞれの専門分野を活かして、橫断的に協力してものづくりを行う部活動「creative7」が活躍している。
香川県では、生活様式の変化や大量生産方式による安価な生活用品の普及などによる漆器の需要低迷から、香川漆器を含む香川漆芸の普及と後継者の育成が課題となっている。

216
同校「creative7」は、香川漆器を手に取ってもらう機会を増やし、漆器の良さを広めることを目的として、研究施設「次世代工房 NexLab（ネクスラボ）」でレーザ加工機・3D プリンタ・真空吸着ロクロ等の最新機器をオペレーティングし、量産することで、品質のばらつきがなく、安価で若い世代が「欲しい」と思う香川漆器を製作し、新たな需要を開拓する新商品の開発や地域ブランドの活用など、地域企業等と連携して学校全体でもののづくり人材の育成に取り組んでいる。

同校は、これらの実績が高く評価され、2020 年 1 月第 8 回ものづくり日本大賞「ものづくりの将来を担う高度な技術・技能」分野のうち「青少年支援部門」において、文部科学大臣賞を受賞している。

2020 年度においては、例年実施している企業見学をリモートで開催するなど ICT を活用した取組にもチャレンジしている。

写真：高校生アメリカンロボットフットボール全国大会の様子
写真：「creative7」による漆 PR プロジェクトの様子

（5）専修学校の人材育成の現状及び特色ある取組

高等学校卒業者を対象とする専修学校の専門課程（専門学校）では、2020 年度時点で、工業分野の学科を設置する学校は 473 校（公立 2 校、私立 471 校）となっており、9 万 5,593 人（公立 159 人、私立 9 万 5,434 人）の生徒が在籍している。2019 年度の卒業生 3 万 2,322 人のうち 82%が就職しており、そのうち関連する職業分野への就職が 94%を占めている（表 321-7）。

<table>
<thead>
<tr>
<th>表 321-7 専修学校の工業分野における人材育成の状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>工業分野の学科を設置する専門学校数、在籍する生徒数</td>
</tr>
<tr>
<td>学校数</td>
</tr>
<tr>
<td>公立・私立の内訳</td>
</tr>
<tr>
<td>473 校</td>
</tr>
<tr>
<td>（公立）2 校</td>
</tr>
<tr>
<td>（私立）471 校</td>
</tr>
<tr>
<td>工業分野の学科を設置する専門学校の卒業生の状況</td>
</tr>
<tr>
<td>卒業生数</td>
</tr>
<tr>
<td>2019 年度卒業生</td>
</tr>
<tr>
<td>32,322 人</td>
</tr>
<tr>
<td>94%</td>
</tr>
</tbody>
</table>

資料：2020 年度「学校基本調査」を基に文部科学省作成
人口減少、少子・高齢化社会を迎える我が国にとって、経済成長を支える専門人材の確保は重要な課題である。専修学校は、職業や実際生活に必要な能力の育成や、教養の向上を図ることを目的としており、柔軟で弾力的な制度の特色を活かして、社会の変化に即応した実践的な職業教育を行う中核的機関として、我が国の産業を支える専門的な職業人材を養成する機関として大きな役割を果たしてきた。ものづくり分野においても、地域の産業界などと連携した実践的な取組を行っており、ものづくり人材の養成はもとより、地域産業の振興にも大きな役割を担っていることが期待されている。

文部科学省では、専修学校を始めとした教育機関が産業界などと協働して、中長期的な人材育成に向けた協議体制の構築などを進めるとともに、来るべきSociety 5.0などの時代に求められる能力、各地域の課題解決などに資する能力を身に付けるため、個々の教育機関が取り組む職業実践専門課程の開発を進めている。

表 321-8 産業実践専門課程 認定学校数・学科数

<table>
<thead>
<tr>
<th>学校数</th>
<th>学科数</th>
</tr>
</thead>
<tbody>
<tr>
<td>合計</td>
<td>1,070 (38.5%)</td>
</tr>
</tbody>
</table>

備考：()内の数字は全専門学校数(2,779校)、修業年限2年以上の全学科数(7,446学科)に占める割合(修業年限2年未満の学科のうち設置している専門学校数は不明のため全専門学校数に占める認定学科数を有する学校数の割合を記載)。2021年3月25日現在
資料：文部科学省HP及び文部科学省「学校基本調査」を基に作成

コメント

－学校法人穴吹学園 穴吹情報デザイン専門学校－

学校法人穴吹学園穴吹情報デザイン専門学校では、文部科学省から「専修学校による地域産業中核的人材養成事業」の委託を受け、広島県福山市の基幹産業である「ものづくり」を支える製造業における深刻かつ慢性的な人手不足を解消するため、地域の産・官・学と連携して、ITを活用した生産性向上やIoT、AI等の技術革新に対応できる「ものづくり人材」を養成するカリキュラムを開発している。

具体的な取組として、製造業約300社に対するニーズ調査等に基づき、有識者による会議（ものづくりIT人材養成機関会）で地域を対象としたカリキュラムを策定、実証講座を実施し、地域産業の改革に向けたモニタリングを行っている。また、「課題を発見し解決する力」を養成するため、PBL（課題解決型学習 Problem-based Learning）を導入し、シラバス・コマシラバスの作成を行っている。

これらの取組により、地域のニーズを反映したカリキュラムを開発・導入し、地域もものづくり企業への就労意識を啓発することによって、地元で働く人材の確保を目指す。
キャリア教育

今日、グローバル化や少子高齢化が進展する中で、日本社会の様々な領域において構造的な変化が進行しており、特に、産業や経済の分野においてその変容の度合いが著しく大きく、雇用形態の多様化・流動化に直結している。このような中で現在の若者と呼ばれる世代は、例えば、若年層の完全失業率や非正規雇用率の高さ、無業者や早期離職者の存在などに見られるように「学校から社会・職業への移行」が円滑に行われていないという点において大きな困難に直面しているといわれている。

このような状況に鑑み、若者が将来の生き方や進路に夢や希望を持ち、その実現を目指して、学校での生活や学びに意欲的に取り組めるようになることが必要である。そのためには、「学校から社会・職業への移行」を円滑にし、社会的・職業的自立に向け、必要な基盤となる資質・能力を育てるキャリア教育の果たす役割は重要である。

初等中等教育におけるキャリア教育の推進

新しい小・中学校学習指導要領(2017年3月告示)及び高等学校学習指導要領(2018年3月告示)においては、キャリア教育の充実を図ることについて明示された。文部科学省では、キャリア教育を推進するため、児童生徒が自らの学習活動などの学びのプロセスを記述し振り返ることのできる教材「キャリア・パスポート」の導入・活用に向け、文部科学省が作成した例示資料などの都道府県教育委員会などへの周知や、チャレンジ精神や他者と協働しながら新しい価値を創造する力など、これからの時代に求められる資質・能力の育成を目指した「小・中学校等における起業体験推進事業」(図321-10)など、キャリア教育の実践の普及・促進に向けた施策を展開している。

表321-9 若者の『学校から社会・職業への移行』

<table>
<thead>
<tr>
<th>年齢</th>
<th>完全失業率</th>
<th>非正規雇用率</th>
<th>離職率</th>
</tr>
</thead>
<tbody>
<tr>
<td>15～24歳</td>
<td>3.8% / 23万人</td>
<td>23.9% / 89万人</td>
<td>高校卒業者</td>
</tr>
<tr>
<td>15～24歳</td>
<td>2.2% / 56万人</td>
<td>39.5%*3</td>
<td>大学卒業者</td>
</tr>
<tr>
<td>若業者数</td>
<td>3.28%*3</td>
<td>2017年3月</td>
<td>2020年</td>
</tr>
</tbody>
</table>

表注4：15～34歳の非労働人口のうち家事も通学もしていない者のうち、15～24歳の若業者数。

図321-10 起業体験活動の実践事例
表321-11 2018年度における職場体験・インターンシップ実施率

<table>
<thead>
<tr>
<th>学校</th>
<th>実施している学校の割合※1</th>
<th>在学中に体験した生徒の割合※2</th>
</tr>
</thead>
<tbody>
<tr>
<td>公立中学校</td>
<td>97.7%</td>
<td>-</td>
</tr>
<tr>
<td>公立高等学校（全体）</td>
<td>87.5%</td>
<td>35.8%</td>
</tr>
<tr>
<td>普通科</td>
<td>(86.1%)</td>
<td>(23.1%)</td>
</tr>
<tr>
<td>職業に関する学科</td>
<td>(94.9%)</td>
<td>(70.6%)</td>
</tr>
<tr>
<td>総合学科</td>
<td>(91.9%)</td>
<td>(47.4%)</td>
</tr>
</tbody>
</table>

資料：国立教育政策研究所生徒指導・進路指導研究センターの資料を基に文部科学省作成
※1 公立高等学校については、全日制における実施率。
※2 3年間を通じて1回でも体験した3年生の数を体験者数とし、3年生全体に占める割合。
※3 中学校は、原則全員参加のためデータが存在しない。

職場体験やインターンシップを一過性の行事として終わらせることのないよう、学校における事前指導や事後指導の実践に当たっては、日常の教育活動と関連付けて職場体験の狙いや効果を高めるための工夫が求められる。

その他、(一社)未来の大人応援プロジェクトでは、地域における次期の担い手となる高校生などの若者が、ソーシャルビジネス注1の手法を通じて社会を学ぶことにより、周囲の大人とともに地域課題の解決に取り組む活動である「Social Business Project (ソーシャルビジネスプロジェクト：略称 SBP)」の普及に取り組んでいる。また、毎年8月には、三重県伊勢市において、この活動に取り組む各地の高校生が集い、実践発表や開発した商品の紹介・販売を行う「全国高校生SBP交流フェア」を行っている（図321-12）。

注1 各種社会的課題（高齢化問題、環境問題、子育て・教育問題など）を市場として捉え、その解決を目的とする事業。「社会性」「事業性」「革新性」の3つを要件とする。推進の結果として、経済の活性化や新しい雇用の創出に寄与する効果が期待される。（出典：経済産業省「ソーシャルビジネス推進研究会報告書」2011年3月）
加えて、文部科学省、厚生労働省、経済産業省の3省は、学校、地域、産業界が一体となって社会全体でキャリア教育を推進する気運を高めるため、「キャリア教育推進連携シンポジウム」を実施しており、また、文部科学省と経済産業省は、学校関係者や地域社会、産業界といった関係者の連携・協働による取組を表彰する「キャリア教育推進連携表彰」なども実施している。

②大学等におけるインターンシップの推進

大学などにおいてキャリア教育の一環として行われるインターンシップは、学生の大学などにおける学修の深化や新たな学習意欲の喚起につながるとともに、主体的な職業選択や高い職業意識の育成が図られる有益な取組である。

2016年6月から「インターンシップの推進に関する調査研究協力者会議」を開催し、適正なインターンシップの普及に向けた方策や更なる推進に向けた具体的方策などを検討を行い、2017年6月に議論のまとめを行った。その内容を踏まえ、優れたインターンシップを広く全国に普及させるための「大学等におけるインターンシップの届出・表彰制度」を実施しており、2019年度は新潟大学が最優秀賞を受賞したほか4件の取組を表彰した。加えて、（独）日本学生支援機構と連携しながら、教育的効果の高いプログラムを構築・運営する専門人材の育成・配置などに取り組んでいる。

図321-13 「大学等におけるインターンシップ表彰」受賞大学一覧（2020年3月）

人生100年時代の到来に向けた社会人の学び直しの推進

人工知能などの技術の進展に伴う産業構造の変化や、人生100年時代ともいわれる長寿命化社会の到来、新型コロナウイルス感染症の感染拡大など、これからの我が国は大きな変化に直面することとなる。このような時代に対応するためには、学校を卒業した後も、キャリアチェンジやキャリアアップのために大学や専門学校などで、新たな知識や技能、教養を身に付けることができるような社会人の学び直しの体系的拡充や、社会教育施設などにおける生涯学習の推進、スポーツを通じた健康増進などにより、生涯現役社会の実現に取り組む必要がある。

（１）社会人の学び直しのための実践的な教育プログラムの充実・学習環境の整備

①実践的なリカレントプログラムの充実

社会人が大学などで学び直しを行うに当たっては、休日や夜間などの開講時間の配慮や、学費の負担に対する経済的な支援の問題などがあること、社会人のニーズにあわせた実践的なリカレントプログラムが少ないこと及び企業等の評価や支援環境が十分でないことなどが課題として挙げられており、現時点では約51万人にとどまっており、大学などにおける社会人の学びは進んでいない状況である。
図 322-1 社会人が考える大学などで学習しやすくなるために必要な取組（複数回答）

○社会人が考える大学などで学習しやすくなるために必要な取組（複数回答）

このことを踏まえ、文部科学省では、多様なニーズに対応する教育機能の拡充を図り、社会人の学びを推進するために、大学・専修学校における実践的なプログラムの開発・拡充に取り組んでいる。

具体的には、大学において、IT 技術者を主な対象とした短期の実践的な学び直しプログラムの開発・実施に取り組んでいるほか、2019 年度より、実践的なプログラムを実施するために不可欠な実務家教員育成の質・量の充実を図るため、実務家教員育成に関するプログラムの開発・実施など、産学共同による人材育成システムを構築する取組を実施している。

放送大学においては、社会的に関心の高いテーマの番組放送や、キャリアアップに資する実践的な公開講座のインターネット配信・認証を行い、「リカレント教育」の拠点として、一層高度で効果的な学びの機会を全国へ提供できるよう取組を進めており、数理・データサイエンス・AI 人材育成に関するリテラシーレベルの講座を 2021 年 4 月に開講することとしている。

また、新型コロナウイルス感染症の感染拡大の影響により、雇用構造の転換が進展する中で、非正規雇用労働者・失業者、希望する就職ができていない若者等の支援として、全国の大学等を中心とした連携体制において、即効性があり、かつ質の高いリカレントプログラムの開発を行い、全国のリカレント教育のニーズに応え、円滑な就職・転職を促す「就職・転職支援のための大学リカレント教育推進事業」を 2021 年度に実施することとしている。

さらに、機械や AI では代替できない、創造性・感性・デザイン性・企画力など、社会人が新たな価値を創造する力を育成することが求められている社会背景を踏まえ、大学等と企業が連携してプログラム開発・実施を行う「大学等における価値創造人材育成拠点の形成事業」を 2021 年度より実施することとしている。

加えて、専修学校におけるリカレント教育機能の強化に向けて、短期的な学びを中心とする分野横断型のリカレント教育プログラムの開発や、e ラーニングを活用した講座の開催手法の実証・リカレント教育の実施運営体制の検証に取り組んでいるほか、2020 年度からは新たに非正規雇用者などのキャリアアップを目的とした産学連携によるプログラムの開発・実証を行うなど、リカレント教育の実践モデルの形成に取り組んでいる。

このほか、多様なニーズに対応する教育機能の拡充を進めるため、大学などにおける社会人や企業のニーズに応じた実践的かつ専門的なプログラムを「職業実践力育成プログラム（BP）」として文部科学大臣が認定している（2021 年 3 月現在で 314 課程を認定）。同様に、専修学校においても社会人が受講しやすい工夫や企業等との連携がされた実践的・専門的なプログラムを「キャリア形成促進プログラム」として文部科学大臣が認定している（2021 年 3 月現在で 14 校、18 課程を認定）。これらを踏まえ、更なる社会人向け短期プログラムの開発を促進している。
組込みシステム技術者のための技術展開力育成プログラム（enPIT-Pro Emb）—名古屋大学—

自動車や家電製品や工作機械など様々な機械には、多くの場合コンピュータが組込まれている。組込みシステムとは、それら機械に組込まれたコンピュータシステムであり、ものづくり産業では、組込みシステム技術者の育成が急務である。名古屋大学は、静岡大学・広島大学・愛媛大学・南山大学とともに、enPIT-Pro Embで社会人の育成に取り組んでいる。

enPIT-Pro Embにおいて、名古屋大学では、自動車に搭載されるコンピュータシステムの開発に必要な技術教育を担当しており、社会人のニーズに合わせて、次のように多様な学び方を提供している。①「車載組込みシステムコース」は、120時間かけて車載組込みシステム技術を広く・深く、対面やリアルタイムのオンラインで体系的に学ぶ。②「車載組込みシステムスペシャリストコース」では、30時間かけて自動車セキュリティなど特定の車載技術領域の技術を狭く・深く学ぶ。③「組込みシステム基礎コース」では、30時間かけて基礎的な組込み技術をe-Learningコンテンツで学ぶ。④「科目受講」では、1科目（6時間）だけを選択して、狭く・深く、対面やオンラインで学ぶ。

自動車の組込みシステム技術者のニーズは、今後ますます高まることが想定される。つながるクルマや自動運転などを開発するためには、今まで以上に、高度な組込みシステム技術が必要になる。今後も、我が国のものづくり産業で働く組込みシステム技術者の人材育成に貢献していく。詳しくは、enPIT-Pro Embのウェブページを参照されたい。

https://www.nces.i.nagoya-u.ac.jp/enpit-pro-emb/

写真：制御コンピュータを搭載した模型自動車を用いた演習（名古屋大学）

造形構想研究科クリエイティブリーダーシップコース—武蔵野美術大学—

急激な社会変化にも柔軟かつ創造的に対応できる構想力を兼ね備えた人材の育成を目的とし武蔵野美術大学90周年となる2019年に造形構想学部・造形構想研究科を新設し、クリエイティブイノベーション学科、大学院クリエイティブリーダーシップコースを設置するとともに、市ヶ谷キャンパスにソーシャルクリエイティブ研究所を設置した。

本コースは、独自の造形教育（アート・デザイン教育）と教養教育で培ってきた「創造的思考力」を基盤とし、徹底したプロジェクト実践型カリキュラムを展開している。

多種多様な市場で活躍し、社会を取手とするトップクリエイター、起業家、専門家を招き、ディスカッション形式による授業（クリエイティブリーダーシップ特論）と呼ばれる2週間単位で様々なプロジェクトを遂行する短期集中型の実践プログラム型授業（造形構想基盤演習・講義）の二つを中核としている。

また、パートナー企業とともにリアルな課題を取り扱う産学プロジェクト、サービスデザインと呼ばれるデザインを活用した事例開発の実践を理論・手法の面から学ぶ授業や、実際の起業のアプローチを実践する授業など、研究領域に関する幅広い視点の獲得を目指す。

アート・デザインを学んだ経験がない社会人大学院生、他大学卒業の学生への「創造的思考力」習得のためのプログラムとして、造形教育（アート・デザイン・プログラミング等）に関する演習・実習授業を実施し、自己表現を行うとともに、造形に関する知識・技能を習得し、物事を批判的に捉え課題を発見する力を身に付けられるように工夫している。
学校法人小山学園 専門学校東京テクニカルカレッジは、IT系・建築系・バイオ環境系に11の学科を擁する工業系の専修学校であり、講義科目で得た知識技術を実習科目により確認する「体験的学び」に重きを置いている。

特に問題解決型授業リアルジョブプロジェクト（RJP）においては、自ら考え問題解決できる技術者の育成を目標に、仲間と話し合い、自ら考え、行動する力を養うため、学生が主体となり、専門知識・技術を活かして企画を提案・実行するプログラムを実施している。

例えば、IT系学科では、RJPにおいて、授業で身につけたショッピングサイト、SNSやIoTをつくる技術を応用して、地雷を探知するIoTシステムやバスの到着をSNSに知らせてくるIoTシステムを作成する取組を行うなど、実践的な職業教育を実施している。

社会人が働きながらプログラム習得を可能とするため、都心型キャンパスとして、市ヶ谷キャンパス（市ヶ谷駅徒歩3分）を整備し、大学院プログラムについては18時以降に開設している。

2021年度からは、造形構想学部クリエイティブイノベーション学科の学生が市ヶ谷キャンパスに移ってくれることにより、学部学生を交えたプロジェクトなどが展開され、社会人大学院生と学部生が交じることで起こる新たな展開が期待される。
第2節 ものづくり人材を育む教育・文化芸術基盤の充実

この節では、ものづくり基盤を支える教育・研究開発について考察する。特に社会人向けプログラムの開発や、学びを支援する機会の拡充が重要であるとされている。文部科学省においては、開講時間の配慮や情報の提供を拡充し、リカレント教育を受けられる機会を整備している。このほか、2020年度からは、多様な年代の女性の社会参画を推進するため、キャリアアップやキャリアチェンジに向けた意識醸成や相談体制の充実を含め、学習プログラムの開発など、女性の多様なチャレンジを総合的に支援するモデルの開発を行っている。

電気通信大学は、電気通信大学は武蔵野の緑溢れる東京都調布市にある国立大学法人で、理念として人類の持続的発展に貢献する知と技の創造と実践を目指している。プログラムは、特に実践式の学びを通じて、社会人を対象として、大学の教育・研究資源を活かし一定の教育計画のもとに編纂された、体系的な知識・技術の習得を目指した教育プログラムを提供することを目的としている。2020年に文部科学省「職業実践力育成プログラム（BP）」として認定され、2021年2月には厚生労働省「特定一般教育訓練講座」の指定を受けている。

本プログラムは、Web・ネットワークを中心に扱うプログラムである。本学教員と実務家による専門的な講義と実践的な演習を通じて、基礎から応用・最先端までの体系的な知識・技能を短期間で修得できる。具体的には、Pythonプログラミング演習を始めとするWeb技術・サイバーセキュリティやネットワークに関する内容を体系的に講義・演習を提供し、ウェブサイトのデザインやアプリケーション開発に必要な知識・技術・技能を習得できる内容となっている。講義形式は、社会人であっても無理なく受講でき、感染症の予防にも配慮して、対面形式、リアルタイム配信、オンデマンド対応を適宜選択でき、遠隔地からの受講に際してもSlackを通じて講師に直接質問することが可能です。なお、本プログラムの修了者には、更なるステップアップとして深層学習やセキュリティの基礎から、自然言語処理・ゲームAIや制御セキュリティ等の応用・最新技術までを学べる「AI・セキュリティ人材育成プログラム」を用意している。
文部科学省では、社会人や企業などの学び直しニーズを整理し、各大学・専修学校などが開設する社会人向けのプログラムや社会人の学びを応援する各種制度の情報に効果的・効率的にアクセスすることができる機会を充実するため、2020年度から「マナパス－社会人の大学等での学びを応援するサイト－」を本格的に運用している。

本年度はコンテンツの充実を図るため、大学・専門学校等が行う約5,500件のリカレント講座の情報掲載し、分野や地域・通学・通信の別等に応じて多様な講座の検索を可能とした。また、実際に学び直しを行った社会人をロールモデルとして紹介し、大学等での学びやその成果のイメージを具体的に持ってもらうよう、修了生インタビューの掲載数を増加している。さらに、今後の社会において必要となる知識やスキルなどをテーマごとに取り上げ、対応するリカレント講座を紹介するための特集ページの充実や、トップページを改修することで検索性の向上を図るなどの取組を行っている。今後も、本ポータルサイトの利便性向上や内容の充実に向けた改善を進め、社会人の学びの意欲を喚起し、学びへと誘導することができるよう取組を進めていく。

（2）ものづくりの理解を深めるための生涯学習
①ものづくりに関する科学技術の理解の促進
国立研究開発法人科学技術振興機構が運営する「日本科学未来館」では、先端の科学技術を分かりやすく紹介する展示の制作や解説、講演、イベントの企画・実施などを通じて、研究者と市民の交流を図っている。常設展示「未来をつくる」では、ポストAI時代の持続的な人間社会の発展における自然観や世界観を考える「計算機と自然、計算機の自然」、「2030年のコミュニケーション」をテーマに15歳から25歳のチームが研究者やクリエイターとともにビジョンを実現するためのプロトタイプ展示を製作し、10年後のコミュニケーションの未来像を来館者と共有的「ビジョナリーラボ」などの展示を通じ、Society 5.0が実現した社会で新たな価値観を問い直し、参加者が科学技術と社会の関係を考える機会を提供している。
また、制作した展示や得られた成果を全国の科学館に展開することで、全国的な科学技術コミュニケーション活動の活性化に寄与している。日本科学未来館が提供するワークショップは、第一線の研究者や企業等と科学コミュニケーターが一緒に作り上げている。「プログラミングで探る自動運転車のしくみ」というプログラムでは、ワークショップと対話を通じて、先端科学技術への理解を深めるとともに、子供に
ものづくりの面白さを伝えるなどの取組を実施している。

写真：ワークショップの様子

②公民館・図書館・博物館などにおける取組
地域の人々にとって最も身近な学習や交流の場である公民館や博物館などの社会教育施設では、ものづくりに関する取組を一層充実することが期待されている。

公民館では、地域の自然素材などを活用した親子参加型の工作教室や、高齢者と子供が一緒にものづくりを行うなどの講座が開催されている。このような機会を通じて子供たちがものを作る楽しさの過程を学ぶことにより、ものづくりへの意欲を高めるとともに、地域の子供や住民同士の交流を深めることができ、地域の活性化にも資する取組となっている。

図書館では、技術や企業情報、伝統工芸、地域産業に関する資料など、ものづくりに関する情報を含む様々な資料の収集や保存、貸出、利用者の求めるに応じた資料提供や紹介、情報の提示などを行うレファレンスサービスなどの充実を図っており、「地域の知の拠点」として住民にとって利用しやすく、身近な施設となるための環境整備やサービスの充実に努めている。

博物館では、実物、模型、図表、映像などの資料の収集・保管・調査・研究・展示を行っており、日本の伝統的なものづくりを後世に伝える役割を担っている。また、ものづくりを支える人材の育成に資するため、子供たちに対して、博物館資料に関係した工作教室などの「ものづくり教室」を開催し、その楽しさを体験し、身近に感じることができるような取組も積極的に行われている。

伝統工芸「手漉き和紙」を未来へ繋ぐ―安部榮四郎記念館―

安部榮四郎記念館は、和紙の博物館として「手漉き和紙」を周知・伝承する事業に取り組んでいる。島根県は昭和初期より民芸運動が盛んでいたこともあり、今も多くの伝統工芸を有している。国の重要無形文化財「雁皮紙」保持者・故安部榮四郎の民芸運動に加わり、良質な和紙にこだわる民芸の精神を貫いた。当館が2016年に全国手漉き和紙生産者アンケート調査を実施し、明らかになった問題点、課題は深刻であり、約30年から40年後には手漉き和紙が無くなるのではないかという危機感が生まれた。この調査結果をもとにシンポジウムを開催し、全国の和紙を展示し周知したところ、シンポジウム会場には150人の定員に対して200人が参加し、1週間の展示期間中には鑑賞者5,000人という期待以上の成果が生じた。

2020年度から行っている「和紙を未来へ繋ぐ事業」は、アンケート調査で明らかになった課題をどのようにして解決していくかに焦点を絞った事業である。アンケート調査で明らかになった問題点は、①和紙原料の不足、②後継者がいないこと、③販路の開拓と製品開発の問題、④紙漉きに必要な用具の調達ができないことなどであった。「和紙を未来へ繋ぐ事業」では、日本独自の抄紙法流し漉きに欠かせない植物性粘液質を取り出すトロロアオイの栽培と和紙の原料・ミツマタの栽培を行った。栽培する場所については高齢者からの聞き取り調査、植物の分布調査を行いながら、過去に栽培していた地元八雲町の杉や樫が育っている山林を候補に挙げた。トロロアオイの栽培においては、休耕田を借り試験栽培し、ミツマタ
栽培においては種の採取、挿し木、局納ミツマタの農家からの苗の提供植樹を行い、その過程を記録した。また、体験プログラムとして、2020年8月に「和紙を活かす！一紙漉き体験とうちわ作り、和紙と写真を未来へ残す」ワークショップ、同年11月、12月に「和紙を知る!!－出雲民藝紙の全行程を体験し和紙工芸品作りに挑戦」を行った。募集条件は全て参加という厳しい条件だったが、和紙は漉くだけが仕事ではないため、原料から作る工程や、漉いた紙を利用した生活に役立つものをつくることまで行った。
さらに、手漉き和紙の後継者育成として松江工業高等専門学校と連携し、紙漉き技術の電子データ化に取り組んでいる。ここでは、熟練した職人と紙漉き道具にモーションセンサーを付け動きのデータを記録することができるため、今後、後継者の動きも測定し比較しながら育成に利用する予定である。
これらの事業の成果は、「原料栽培、道具の記録、和紙の活用、技術のデータ記録」として和紙製造レシピ本にまとめ書籍化し後世に伝えることとなる。この事業では、何より地域の力、産学官の連携、そして沢山の地域の住民の協力を必要としている。人材育成は人や技術を育つことはいうまでもないが、作る側の正しい情報発信と、技術を使うことにより人の目と心を豊かにし、感動する心を育てるという重要な役割もある。
ものづくりにおける女性の活躍促進

(1) 女性研究者への支援

女性研究者の活躍を促し、その能力を発揮させていくことは、我が国の経済社会の再生・活発化や男女共同参画社会の推進に寄与するものである。しかし、我が国の女性研究者の割合は年々増加傾向にあるものの、2020年3月時点で16.9%であり、先進諸国と比較すると依然として低い水準にある（図323-1・2）。

「第5次男女共同参画基本計画～すべての女性が輝く令和の社会へ～」（2020年12月25日閣議決定）及び「第6期科学技術・イノベーション基本計画」（2021年3月26日閣議決定）においては、大学の研究者の採用に占める女性の割合について、2025年までに理学系20%、工学系15%、農学系30%、医学・歯学・薬学系合わせて30%、人文科学系45%、社会科学系30%という成果目標が掲げられている。

図323-1 日本の女性研究者数及び全研究者数に占める割合の推移

図323-2 女性研究者数の割合の国際比較

資料: 総務省「科学技術研究調査」を基に文部科学省作成

OECD「Main Science and Technology Indicators」（英国、韓国：2018年、フランス、ドイツ：2017年時点）
NSF「Science and Engineering Indicators 2020」（米国：2017年時点）を基に文部科学省作成
文部科学省では、「ダイバーシティ研究環境実現イニシアティブ」により、研究者の研究と出産・育児などの両立や、女性研究者の研究力向上を通じたリーダー育成を一体的に推進するなど、女性研究者の活躍促進を通じた研究環境のダイバーシティ実現に関する取組を実施する大学などを重点支援するとともに、「特別研究員（RPD）事業」として出産・育児による研究活動の中断後の復帰を支援する取組を拡充するなど、女性研究者への支援の更なる強化に取り組んでいく。

(2) 理系女子支援の取組
内閣府は、ウェブサイト「理工チャレンジ（リコチャレ）～女子中高校生・女子学生の理工系分野への選択～」において、理工系分野での女性の活躍を推進している大学や企業など「リコチャレ応援団体」の取組やイベント、理工系分野で活躍する女性からのメッセージなどを情報提供している。また、2020年8月にオンラインシンポジウム「進路で人生どう変わる？理系で広がる私の未来2020」を同ウェブサイト上に掲載し、全国の女子中高生とその保護者・教員へ向けて、理工系で活躍する多様なロールモデルからのメッセージを配信した。
また、国立研究開発法人科学技術振興機構では、「女子中高生の理系進路選択支援プログラム」を実施している。これは、科学技術分野で活躍する女性研究者・技術者、女子学生などと女子中高生の交流課題の提供や実験教室、出前授業の実施などを通じて女子中高生の理系分野に対する興味・関心を喚起し、理系進路選択の支援を行うプログラムである。

図 323-3 進路選択に影響を与えた人物

- 進路選択にあたっては、文・理を問わず、両親の影響が大きい。高校教師及び先輩・友人からの影響が続く。
- 男性は父親、女性は母親の影響が大きい。特に理系選択に関しては、男性に対しては父親、女性に対しては母親及び父親の影響が大きい。

※回答者は最大2人まで選択

資料：経済産業省 2015年度産業技術調査事業「産業界の人材ニーズに応じた理工系人材育成のための実態調査」
久留米工業高等専門学校では、理工系分野の中で最も進学率の低い工学系に焦点を絞り、理系・文系への進路選択が未定の女子中学生を対象とした「モノづくりって楽しい！〜久留米発理工系女子の萌芽支援プロジェクト〜」を実施している。このプロジェクトの最大の目的は、専門５学科（機械工学科、電気電子工学科、制御情報工学科、生物応用化学科、材料システム工学科）が一丸となり、モノづくりの楽しさを通じて工学系への関心の萌芽を促すことである。工学系への関心が低い女子中学生にもその楽しさを伝える取組として、身近な存在である女子高専生の出身中学への派遣や、出前授業を設けている。派遣時には中学校教諭とも面談する。また、女子高専生をTAとする女子中学生対象の公開講座、将来像を想像してもらうための保護者同伴のシンポジウム、座談会を実施している。

国立循環器病研究センターは、国立高度専門医療研究センターとしては初めて、「ダイバーシティ研究環境実現イニシアティブ（先端型）」として選定され、①海外派遣等を通じて女性研究者の研究力を向上させる、②ポジティブ・アクションのもと、女性研究者の新規採用、上位職への登用を推進する、③外国人研究者支援、働き方と医療安全のための取組を行う、という目標の下、より広いダイバーシティ研究環境の形成に取り組んでいる。

コラム
久留米工業高等専門学校「モノづくりって楽しい！〜久留米発理工系女子の萌芽支援プロジェクト〜」

ダイバーシティ研究環境実現イニシアティブによる大学の取組

—国立循環器病研究センター—
国際的に活躍する女性研究者の支援と上位職登用の推進活動
国立循環器病研究センターは、国立高度専門医療研究センターとしては初めて、「ダイバーシティ研究環境実現イニシアティブ（先端型）」として選定され、①海外派遣等を通じて女性研究者の研究力を向上させる、②ポジティブ・アクションのもと、女性研究者の新規採用、上位職への登用を推進する、③外国人研究者支援、働き方と医療安全のための取組を行う、という目標の下、より広いダイバーシティ研究環境の形成に取り組んでいる。

写真：「ウェブシステムデザインプログラム」ガイダンス風景（2019年）
図：ダイバーシティ研究支援の取組
写真：研究報告会の様子
4 文化芸術資源から生み出される新たな価値と継承

(1) 文化財の保存・活用

過疎化や少子高齢化などを背景に文化財の担い手が減少し、その確実な継承が危機に瀕していることを踏まえ、「文化財保護法及び地方教育行政の組織及び運営に関する法律の一部を改正する法律（平成30年法律第42号）」（以下「改正法」という。）が国会での審議を経て、2018年6月1日に成立した。

地域の文化財の確実な継承を図るには、今まで文化財の保存・活用を主に担ってきた所有者、管理団体、地方自治体の文化財保護行政担当者に加えて、地域住民や地域で活動する多様な民間団体、観光やまちづくり、教育などの行政の他部局など、地域の様々な主体が一体となって、文化財の保存・活用に参画し、取り組んでいくことが大変効果的である。改正法では、地域社会総がかりで文化財の継承に取り組むため、都道府県における文化財保存活用大綱と、市町村における文化財保存活用地域計画が創設された。

また、地域の活動主体の取組を促進するため、地域において文化財保存・活用の事業や調査研究を行ったりする民間団体を、市町村が「文化財保存活用支援団体」として指定できる仕組みが創設された。

(2) 重要無形文化財の伝承者養成

文化財保護法に基づき、工芸技術などの優れた「わざ」を重要無形文化財として指定し、その「わざ」を高度に体得している個人や団体を「保持者」「保持団体」として認定している。

文化庁では、重要無形文化財の記録の作成や、重要無形文化財の公開事業を行うとともに、保持者や保持団体などが行う研修会、講習会や実技指導に対して補助を行うなど、優れた「わざ」を後世に伝えるための取組を実施している。

(3) 選定保存技術の保護

文化財の保存のために欠くことのできない伝統的な技術又は技能で保存の措置を講ずる必要のあるものを選定保存技術として選定し、その保持者又は保存団体を認定している。

文化庁では、選定保存技術の保護のため、保持者や保存団体が行う技術の練磨、伝承者養成などの事業に対し必要な補助を行うなど、人材育成に資する取組を進めていく。

表324-1 選定保存技術

<table>
<thead>
<tr>
<th>選定保存技術</th>
<th>現在の選定・認定件数</th>
<th>2021年1月1日現在</th>
</tr>
</thead>
<tbody>
<tr>
<td>保 持 者</td>
<td>保存団体</td>
<td>保 持 者</td>
</tr>
<tr>
<td>77件</td>
<td>48件</td>
<td>保持者数</td>
</tr>
</tbody>
</table>

備考：保存団体には重複認定があるため、（ ）内は実団体数を示す。
同一件定保存技術について保持者と保存団体を認定しているものがあるため、保持者と保存団体の計が選定保存技術の件数とは一致しない。
資料：文化庁作成

ユネスコ無形文化遺産

－伝統建築工匠の技：木造建造物を受け継ぐための伝統技術－

2020年12月にオンラインで行われた無形文化遺産保護条約政府間委員会において、「伝統建築工匠の技：木造建造物を受け継ぐための伝統技術」が我が国22件目のユネスコ無形文化遺産に登録された。

本件は、選定保存技術（保存団体認定）の17件で構成され、木工、屋根葺・左官・茅採取・築製作など、建築遺産とともに古代から途絶えることなく伝統を受け継ぎながら、工夫を重ねて発展してきた伝統的な建築修理技術である。法隆寺を始めとする我が国が誇る木造建造物や日本の建築文化を支える無形文化遺産の保護・伝承の事例で、無形と有形の文化遺産の不可分性を示し、持続可能な開発を体現していること、コミュニティの参画の模範的な事例となることなどが高く評価された。
地域における伝統工芸の体験活動

文化庁では、「伝統文化親子教室事業」において、次代を担う子供たちが、伝統文化などを計画的・継続的に体験・修得する機会を提供する取組に対して支援し、我が国の歴史と伝統の中から生まれ、大切に守り伝えられてきた伝統文化などを将来にわたって確実に継承し、発展させることとしている。

2020年度においては、宮城県仙台市において手すき和紙を地域の子供たちが体験するなど、伝統工芸に関しては35の教室を採択し、人材育成に取り組んでいる。

伝統文化親子教室事業

－宮城の手すき和紙体験教室（東北工芸ことはじめ（宮城県）)－

宮城の手すき和紙体験教室では、地域に伝わる柳生和紙の技法を受け継ぐ手すき和紙の体験を行っている。

手すき和紙の伝統を正確に伝えるため、教室の最初に、日本の手すき和紙の歴史・技術・原料・道具等についての学習を行うとともに、原料となるコウゾとトロロアオイ畑の見学も行い、その後、工房で流しすきをして和紙を制作する体験を行っている。

また、教室の最終回には、各自が仕立てた和紙を使用して、ブックカバーの制作を行うことで、和紙が現代の生活にも活かせることを実感し、親しみを深められる内容としている。

文化遺産の保護／継承

世界文化遺産に登録されている「富岡製糸場と絹産業遺産群」は、ものづくりに関する文化遺産といえる。生糸の生産工程を表し、養蚕・製糸の分野における技術交流と技術革新の場として世界的な意義を有する遺産である。また、「明治日本の産業革命遺産 製鉄・製鋼、造船、石炭産業」は、我が国が19世紀半ば以降に急速な産業化を成し遂げたことの証であり、西洋から非西洋国家に初めて産業化の旅が成功したことの物語である。

また、ユネスコ無形文化遺産には2014年に「和紙：日本の手漉和紙技術」が登録された。2020年には、「伝統建築工の技：木造建築物を受け継ぐための伝統技術」として社寺や城郭など、我が国の伝統的な木造建築物の保存のために欠くことのできない伝統的な木工、屋根葺き、左官、畳製作などの17件の選定保存技術が一括して登録された。

文化芸術資源を活かした社会的・経済的価値の創出

文化芸術資源の維持・保存の基盤を支える教育・研究開発

これらの取組は、文化財の保存や普及啓発などに効果があるほか、文化芸術資源を活かした社会的・経済的価値の創出につながるものである。文化庁では、本物の文化財の保存・活用と並行して、伝統的な技法・材料や先端技術などを活かした文化財のデジタルアーカイブ、模写模造、高精細レプリカ、パーカラリアリティーなどの取組を進めている。
国内外における情勢変化と新型コロナウイルス感染症の感染拡大の中、科学技術・イノベーション政策については、グローバル課題への対応と国内の社会構造の改革の両立への貢献が求められている。第5期の「科学技術基本計画」の期間中の科学技術・イノベーション政策を振り返ると、Society 5.0 の前提となるデジタル化が十分進まず、その本来の力を生かされていないことや、論文に関する国際的な地位の低下傾向、厳しい研究環境の継続などが課題となっている。

2020年12月の201回国会において、科学技術基本法が改正され、科学技術・イノベーション政策について、イノベーションの創出を法の対象と位置づけ、自然科学と人文・社会科学の融合による、人間や社会の総合的解読と課題解決に資する「総合知」の創出・活用が重要であるとされた。

Society 5.0 を現実のものとするため、2021年3月に策定された第6期の「科学技術・イノベーション基本計画」に基づき、「総合知」やエビデンスを活用しつつ、バックキャストにより政策を立案し、イノベーションの創出により社会変革を進めていく必要がある。

第3節 Society 5.0 を実現するための研究開発の推進

1 ものづくりに関する基盤技術の研究開発

(1) 新たな計測分析技術・機器の研究開発

先端計測分析技術・機器は、世界最先端の独創的な研究開発成果の創出を支える共通的な基盤であると同時に、その研究開発の成果がノーベル賞の受賞につながることも多く、科学技術の進展に不可欠なキーテクノロジーである。このため、国立研究開発法人科学研究振興機構が実施する「研究開発展開事業（先端計測分析技術・機器開発プログラム）」（事業期間：2004年度から2020年度）を通じて、世界最先端の研究者やものづくり現場のニーズに応えられる我が国発のオンリーワン、ナンバーワンの先端計測分析技術・機器の開発などを産学連携で推進することで、研究開発基盤の強化に取り組んだ。開発されたプロトタイプ機が製品化に至った事例は、2020年度末の時点で69件になる。

2018年度からは、国立研究開発法人科学研究振興機構が実施する「未来社会創造事業（共通基盤領域）」において、革新的な知や製品を創出する共通基盤システム・装置を実現するための研究開発を推進している。

(2) 最先端の大型研究施設の整備・活用の推進

①大型放射光施設（SPring-8）の整備・活用

大型放射光施設（SPring-8）は光速近くまで加速した電子の進行方向を曲げたときに発生する極めて明るい光である「放射光」を用いて、物質の原子・分子レベルの構造や機能の解析が可能な世界最高性能の研究基盤施設である。本施設は1997年から整備が開始されており、環境・エネルギー・創薬など、我が国が経済成長を牽引する様々な分野で革新的な研究開発に貢献している。SPring-8を実施された産業利用に関する課題数は全課題数の2割を超えており、放射光を用いたX線計測・分析技術は、特に材料評価において欠くことができないツールとして、企業のものづくりを支えている。

2020年度末には生み出された累計論文数も17,000篇を超えるなど、産学官の広範な分野の研究者などによる利用及び成果の創出が着実に進んでいる。

②X線自由電子レーザー施設（SACLA）の整備・共用

X線自由電子レーザー施設（SACLA）は、レーザーと放射光の長慢を併せ持つ究極の光を発振、原素レベルの超微細構造や化学反応の超高速動態・変化現象を計測・分析する世界最先端の研究基盤施設であり、結晶化が困難な膜タンパク質の解析、ねん活反応の即時観察、新機能材料の生成など広範な科学技術分野において、新しい研究領域の開拓や先端的・革新的な成果の創出が期待されている。「第3期科学技術基本計画」（2006年3月28日閣議決定）における国家基幹技術として、2006年度より国内
の 300 以上の企業の技術を結集して開発・整備を進め、2012 年 3 月に共用を開始、2017 年度からは 3 本のビームラインの同時共用の実現によって利用機会が拡大した。2019 年度には、従来観測できなかった鉄鋼材料の超急速加熱過程（1 秒間で 1 万℃の加熱速度）における組織変化の観測に世界で初めて成功するなど、画期的な成果が着実に生まれてきた。

③大強度陽子加速器施設（J-PARC）の整備・共用
大強度陽子加速器施設（J-PARC）は、世界最高レベルのビーム強度を持つ陽子加速器から生成される中性子、ミュオン、ニュートリノなどの多彩な二次粒子を利用して、素粒子物理から革新的な新材料や新薬の開発につながる研究など、広い分野における基礎研究から産業応用まで様々な研究開発に貢献する施設である。特に中性子は、放射光と比較して軽元素をよく観測できること、ミクロな磁場観測できること、物質への透過力に優れていることなどの特徴を有するため、他の量子ビームとの相補的な利点が期待されている。物質・生命科学実験施設（特定中性子線施設）では、革新的な材料や新しい薬の開発につながる構造解析などが進められている。例えば、2020 年度には、建設機械から水道管まで広範な用途にあるダクタイル鉄について、力を加えて変形中の内部組織変化を原子レベルで観測し、引張る力と圧縮する力を繰り返して変形させると強度が増加するメカニズムを解明するなど、産業用途から基礎物理に至る幅広い分野での利用が期待されている。文部科学省は、この次世代放射光施設についても官民地域パートナーシップにより推進することとしており、国立研究開発法人量子科学技術研究開発機構（QST）を施設の整備・運用を進める国に主体とし、さらに、2018 年 7 月、（一財）光科学イノベーションセンターを代表とする、宮城県、仙台市、国立大学法人東北大学及び（一社）東北経済連合会の 5 者を地域・産業界のパートナーとして選定した。

現在、2023 年度の完成を目指して、次世代放射光施設の整備が進められており、2021 年末頃からは加速器等の機器の据付を開始する予定である。

④官民地域パートナーシップによる次世代放射光施設の推進
次世代放射光施設は、軽元素を感度良く観察できる高輝度な軟 X 線を用いて、従来の物質構造に加え、物質の機能に影響を与える電子状態の可視化が可能な次世代の研究基盤施設で、学術研究だけでなく触媒化学や生命科学、磁性・スピントロニクス材料、高分子材料などの産業利用も含めた広範な分野での利用が期待されている。文部科学省は、この次世代放射光施設について官民地域パートナーシップにより推進することとしており、国立研究開発法人量子科学技術研究開発機構（QST）を施設の整備・運用を進める国に主体とし、さらに、2018 年 7 月、（一財）光科学イノベーションセンターを代表とする、宮城県、仙台市、国立大学法人東北大学及び（一社）東北経済連合会の 5 者を地域・産業界のパートナーとして選定した。

現在、2023 年度の完成を目指して、次世代放射光施設の整備が進められており、2021 年末頃からは加速器等の機器の据付を開始する予定である。

⑤革新的ハイパフォーマンス・コンピューティング・インフラ（HPCI）の構築
HPCI は、世界最高水準の計算性能を有するスーパーコンピュータ「富岳」（ふがく）（2021 年 3 月共用開始）と、高速ネットワークでつながれた国内の大学及び研究機関のスーパーコンピュータやストレージから構成されており、多様な利用者のニーズに対応した計算環境を提供するものである。文部科学省では、HPCI の効果的・効率的な運営を進めながら、その利用を推進している。HPCI を通じて、ものづくりを含む様々な分野での研究開発で成果が創出されており、我が国の産業競争力の強化などに貢献している。
⑥スーパーコンピュータ「富岳」の開発

最先端のスーパーコンピュータは、科学技術や産業の発展などで国の競争力を左右するものであり、各国が開発に力を入れている。文部科学省では、我が国が直面する社会的・科学的課題の解決に貢献するため、「富岳」を開発するプロジェクトを推進し、2021年3月にその共用を開始した。開発当初より、ものづくり・創薬・エネルギー分野など計9課題を、「富岳」を活用する重点分野として指定し、各分野で用いるアプリケーションをシステムと協調的に開発してきた。現在、開発されたアプリケーションを用いて、ものづくり分野を始めとした様々な分野で、画期的な成果が創出されるよう、利用者の裾野拡大や産業界にも使いやすい利用環境の構築に取り組んでいる。

（3）未来社会の実現に向けた先端研究の抜本的強化

①次世代の人工知能に関する研究開発

社会・経済の様々な場面において人工知能の役割への関心が大きく高まっており、人工知能技術について、教育改革、研究開発、社会実装などの観点からの総合的な政策パッケージとして、「AI戦略2019」が2019年6月に取りまとめられた。本戦略に基づく取組が、関係府省の連携の下、一体的に進められている。研究開発については、本戦略に基づき、AI関連中核センター群（国立研究開発法人産業技術総合研究所、国立研究開発法人理化学研究所、情報通信研究機構）を中核とし、大学・公的研究機関をつなぐネットワークである、「人工知能研究開発ネットワーク」が2019年12月に設立された。このほか、戦略では、人工知能に関する基盤的・融合的な研究開発の推進や、研究インフラの整備などを進めることとされている。

各省における取組としては、まず、総務省は、国立研究開発法人情報通信研究機構（NICT）と連携しながら、ビッグデータ処理に基づく人工知能技術や、脑科学の知見に学ぶ人工知能技術の研究開発に取り組んでおり、NICT ユニバーサルコミュニケーション研究所において主にビッグデータ解読技術や多言語音声翻訳技術などの研究開発を、またNICT脑情報通信融合研究センター（CiNet）では脳の仕組みを解明し、その仕組みを活用したネットワーク制御技術、脳機能計測技術などの研究開発を行っている。さらに、現在、情報通信審議会において、「自然言語処理技術」及び「脳情報通信技術」について重点的に議論し、次世代人工知能の社会実装の推進方策について検討を行っている。次に、文部科学省は、「AIP
（Advanced Integrated Intelligence Platform Project：人工知能／ビッグデータ／IoT／サイバーセキュリティ統合プロジェクト」として、国立研究開発法人理化学研究所に設置した革新知能統合研究センター（AIPセンター）において、①深層学習の原理解明や汎用的な機械学習の基盤技術の構築、②日本が強みを持つ分野の更なる発展や我が国の社会的課題の解決のための人工知能等の基盤技術の研究開発、③人工知能技術の普及に伴って生じる倫理的・法的・社会的問題（ELSI）に関する研究などを実施している。2020年度からは、AI戦略に基づき、Trusted Quality AI（AIの判断根拠の理解・説明可能化）などの研究開発を推進しており、新型コロナウイルス感染症対策に関するAI技術を用いた研究開発（メディアや人流解析を通じた行動変容の促進、個別最適化など）も進めている。このほか、国立研究開発法人科学技術振興機構（JST）において、人工知能などの分野における若手研究者の独創的な発想や、新たなイノベーションを切り開く挑戦的な研究課題に対する支援を一体的に推進している。経済産業省は、先進的な人工知能の開発・実用化と基礎研究の進展の好循環（エコシステム）を形成するため、2015年5月1日に国立研究開発法人産業技術総合研究所に「人工知能研究センター」を設立。人工知能研究センターでは、これまでAIの要素機能の研究開発で多数の成果を挙げ、使いやすい形のプログラムに実装したソフトウェアモジュールを構築・公開し、生産性の向上、健康、医療・介護、空間の移動などの分野で広範な応用技術を開拓してきた。2020年度においては、これまでの研究開発で実用化を通じて明らかになってきた、実世界にAIを埋め込んでいくために更に必要な基盤技術に焦点をあて、人間と協調できるAI、実世界で信頼できるAI、容易に構築できるAIと3つの柱のもと、基礎研究を社会実装につなげるための研究開発を進めている。また、海外の研究機関・大学と協力関係を構築しており、国内外問わず活動を進めている。

②マテリアル革新力強化に向けた研究開発の推進

マテリアル革新力強化に向けた研究開発の推進

文部科学省では、文部科学省に係る、基礎的・先導的な研究から実用化を展望した技術開発までを戦略的に推進している。具体的には、我が国の資源制約を克服し、産業競争力を強化するため、材料の高性能化に不可欠な希少元素（レアアース・レアメタルなど）の革新的な代替材料開発を目指し、4つの材料領域（磁石材料、触媒・電池材料、電子材料及び構造材料）を特定して、物質中の元素機能の理論的解明から新材料の創製、特性評価までを密接な連携・協働の下で一体的に推進する「元素戦略プロジェクト」などの研究開発プロジェクトや、最先端の研究設備とその活用のノウハウを有する機関が緊密に連携し、全国的な共用体制を構築することで、産学官の利用者に対して最先端技術の利用機会と高度な技術支援を提供する「ナノテクノロジープラットフォーム」を設立。革新的な機能を有するものプロジェクト技術の確立していない材料を社会実装につなげるため、プロセス上の課題を解決するための学理・サイエンス基盤の構築を目指した「材料の社会実装に向けたプロセスサイエンス構築事業（Materealize）」を実施している。

また、「マテリアル革新力強化戦略」においては、データを基軸とした研究開発プラットフォームの整備とマテリアルデータの活用促進の必要性を掲げた準備会合」を設置し、マテリアル・イノベーション戦略の強化に向けた検討を実施。2020年6月に、マテリアル革新力強化のための戦略研究策定に向けた基本的な考え方や、①データを基軸としたマテリアル研究開発のプラットフォーム整備、②革新的なマテリアル技術・実装領域の戦略的推進、③マテリアル・イノベーションエコシステムの構築、④マテリアル革新力を支える人材の育成・確保といった今後の取組の方向性等を取りまとめてきた。
られており、文部科学省では、国立研究開発法人物質・材料研究機構のデータバンクと「ナノテクノロジープラットフォーム」の全国的な共用体制を基盤とした、産学官のマテリアルデータの戦略的な収集・共有・利活用のためのプラットフォームの整備を推進するとともに、我が国が真に伸ばすべきマテリアル分野の重要技術領域において、社会的・産業のニーズが高いことに加えデータサイエンスとの親和性が高く効率的な成果創出が期待される研究課題を設定し、重点的に取り組むこととしている。

国立研究開発法人物質・材料研究機構においては、新物質・新材料の創製に向けたブレークスルーを目指し、計測・評価技術、シミュレーション技術、材料の設計手法や新規製造プロセスの開拓、物質の無機、有機の垣根を越えたナノスケール特有の現象・機能の探索など、物質・材料の基礎研究及び基盤的研究所を行っている。また、環境・エネルギー・資源問題の解決や安心・安全な社会基盤の構築という人類共通の課題に対応した研究開発として、超耐熱合金や白色LED照明用蛍光材料、次世代太陽電池材料などの環境・エネルギー材料の高度化などに向けた研究開発や、同機構に設置した構造材料研究拠点での構造材料の信頼性や安全性を確保するための研究開発を実施している。さらに、マテリアル分野のイノベーション創出を強力に推進するため、基礎研究と産業界のニーズの融合による革新的材料創出の場や、世界中の研究者が集うグローバル拠点を構築するとともに、これらの活動を最大化するための研究基盤の整備を行う事業として「革新的材料開発力強化プログラム～M³(M-Cube)」を実施している。
③量子技術イノベーションの戦略的な推進

量子科学技術は、例えば近年爆発的に増加してい
るデータの超高速処理を可能とするなど、新たな価
値創出の核となる強みを有する基盤技術であり、
欧米等では「第2次量子革命」と謳い、量子科学技
術に関する世界的な研究開発が激化している。また、
欧米を中心に海外では、「量子技術」はこれまでの
常識を凌駕し、社会に変革をもたらす重要な技術と
位置づけ、政府主導で研究開発戦略を策定し、研究
開発投資額を増加している。さらに、世界各国の大
手IT企業も積極的な投資を進め、ベンチャー企業の
設立・資金調達も進んでいる。

このような量子科学技術の先進性やあらゆる科学
技術を支える基盤性と、国際的な動向を鑑み、政府
は2020年1月に策定した、「量子技術イノベーション
戦略」において、①生産性革命の実現、②健康・
長寿社会の実現、③国及び国民の安全・安心の確保
を将来の社会像として掲げ、その実現に向けて、「量
子技術イノベーション拠点」を発足した。当該拠点は、量子コンピュータ
を構成するデバイスからソフトウェア、利活用技術
の各要素や、量子暗号、量子センサなど幅広い分野
の研究組織からなり、各分野における研究開発等の
推進を行う。さらに、国立研究開発法人理化学研究
所を中核組織として位置付け、拠点横断的な取組を
行うことで、関係機関が総力を結集して基礎研究か
ら技術実証、国際連携や人材育成に至る幅広い取組
を進めるつつ、研究開発拠点の形成、④知的財産・国際標準化戦
略、⑤優れた人材の育成・確保を進めている。この
うち、研究開発拠点の形成については、2020年度
中に国内8拠点からなる「量子技術イノベーション
拠点」を発足した。当該拠点は、量子コンピュータ
を構成するデバイスからソフトウェア、利活用技術
の各要素や、量子暗号、量子センサなど幅広い分野
の研究組織からなり、各分野における研究開発等の
推進を行う。さらに、国立研究開発法人理化学研究
所を中核組織として位置付け、拠点横断的な取組を
行うことで、関係機関が総力を結集して基礎研究か
ら技術実証、国際連携や人材育成に至る幅広い取組
を進めるとともに、国内外の企業等からの投資を呼び
込むため、学問が一体となって研究開発や量子技
術の社会実装を加速することを目指している。

内閣府では、2018年度から実施している「戦略
的イノベーション創造プログラム（SIP）第2期」
において、①レーザ加工、②光・量子通信、③光
電子情報処理と、これらを統合したネットワーク型
製造システムの研究開発及び社会実装を推進してい
る。そのうち①におけるフォトニック結晶レーザー
(PCSEL)の研究開発では、世界初のPCSEL搭載の
高性能LiDARシステム開発に成功するとともに、超
小型レーザ加工システムに向けた更なる高精度・
高性能化に取り組んでいる。また、2020年6月、「官
民研究開発投資拡大プログラム（PRISM）」に「量子
技術領域」を設置し、官民の研究開発投資の拡大に
資する研究開発を支援している。

総務省及び国立研究開発法人情報通信研究機構
は、計算機では解読不可能な量子暗号技術や単一光
子から情報を取り出せる量子信号処理に基づく量子通
信技術の研究開発に取り組んでいる。また、総務省
では、2020年度から地上系の量子暗号通信距離の
更なる超长距離化技術（長距離リンク技術及び中継技
術）の研究開発を推進している。さらに、地上系で
開発が進められている量子暗号技術を衛星通信に導
入するための、宇宙空間という特別な環境下でも
動作可能なシステムの構築、高速移動している人工
衛星からの光を地上局で正確に受信できる技術及び
小型衛星にも搭載できる技術の研究開発に取り組
んでいる。

文部科学省では、2018年度より実施している「光・
量子飛躍フラッグシッププログラム（Q-LEAP）」
において、①量子情報処理（主に量子シミュレータ・
量子コンピュータ）、②量子計測・センシング、③次
世代レーザーを対象とし、プログラムディレクター
によるきめ細かな進捗管理によりプロトタイプによる
実証を目指す研究開発を行うFlagshipプロジェクトや基礎基盤研究を推進している。また、2020年
度より新たに量子生命・量子AIのFlagshipプログラ
ムを開始したほか、新領域として④人工生命プログラム領域を設置し持続的な量子技術分野の人
材層の強化を目的とした教育プログラムの開発を行う共通的コアプログラムや独創的サブプログラム
の開発を推進している。

国立研究開発法人量子科学技術研究開発機構
では、世界トップクラスの量子科学技術研究開発プ
ラットフォームの構築を目指し、重粒子線がん治療
装置の小型化・高強度化の研究、世界トップクラスの
高強度レーザー（J-KAREN）やイオン照射研究施設
（TIARA）などの量子ビーム施設を活用した先端的
研究を実施している。さらに、2019年4月に量子
生命科学領域を創設し、量子計測・センシングなどの
量子科学技術を生命科学に応用し、生命科学の革
新や新たなイノベーションの創生を目指す量子生命
科学の基盤技術開発に取り組んでいる。

経済産業省では、機能性材料などの加工品質の向
上や自動車部品などの加工プロセスの効率化などに
より、我が国のものづくり産業の優位性を将来にわ
たって確保するため、2016年度から「高効率・高
輝度な次世代レーザー技術の開発事業」を実施して
いる。非熱加工などの次世代レーザー加工の技術開
発に注力し、最適な加工条件の導出を可能とするデー
タベースの基盤を構築している。

また、経済産業省では、2016年度より「IoT推
進のための模拠的な技術開発事業」において、社会

総務省及び国立研究開発法人情報通信研究機構
は、計算機では解読不可能な量子暗号技術や単一光
子から情報を取り出せる量子信号処理に基づく量子通
信技術の研究開発に取り組んでいる。また、総務省
では、2020年度から地上系の量子暗号通信距離の
更なる超長距離化技術（長距離リンク技術及び中継技
術）の研究開発を推進している。さらに、地上系で
開発が進められている量子暗号技術を衛星通信に導
入するため、宇宙空間という特別な環境下でも
動作可能なシステムの構築、高速移動している人工
衛星からの光を地上局で正確に受信できる技術及び
小型衛星にも搭載できる技術の研究開発に取り組
んでいる。

文部科学省では、2018年度より実施している「光・
量子飛躍フラッグシッププログラム（Q-LEAP）」
において、①量子情報処理（主に量子シミュレータ・
量子コンピュータ）、②量子計測・センシング、③次
世代レーザーを対象とし、プログラムディレクター
によるきめ細かな進捗管理によりプロトタイプによる
実証を目指す研究開発を行うFlagshipプロジェクトや基礎基盤研究を推進している。また、2020年
度より新たに量子生命・量子AIのFlagshipプログラムを開始したほか、新領域として④人工生命プログラム領域を設置し持続的な量子技術分野の人材層の強化を目的とした教育プログラムの開発を行う共通的コアプログラムや独創的サブプログラムの
開発を推進している。

国立研究開発法人量子科学技術研究開発機構
では、世界トップクラスの量子科学技術研究開発プ
ラットフォームの構築を目指し、重粒子線がん治療
装置の小型化・高強度化の研究、世界トップクラスの
高強度レーザー（J-KAREN）やイオン照射研究施設
（TIARA）などの量子ビーム施設を活用した先端的
研究を実施している。さらに、2019年4月に量子
生命科学領域を創設し、量子計測・センシングなどの
量子科学技術を生命科学に応用し、生命科学の革新
や新たなイノベーションの創生を目指す量子生命
科学の基盤技術開発に取り組んでいる。

経済産業省では、機能性材料などの加工品質の向
上や自動車部品などの加工プロセスの効率化などに
より、我が国のものづくり産業の優位性を将来にわた
って確保するため、2016年度から「高効率・高輝度
な次世代レーザー技術の開発事業」を実施している。
非熱加工などの次世代レーザー加工の技術開発に注力し、最適な加工条件の導出を可能とするデナ
タベースの基盤を構築している。

また、経済産業省では、2016年度より「IoT推
進のための模拠的な技術開発事業」において、社会
に広範に存在している「組合せ最適化問題」に特化した量子コンピュータ（量子アニーリングマシン）の技術開発に取り組んできた。2018年度より開始した「高効率・高速処理を可能とするAIチップ・次世代コンピューティングの技術開発事業」において、当該技術の開発領域を拡大し、量子アニーリングマシンのハードウェアからソフトウェア、アプリケーションに至るまで、一体的な開発を進めており、2019年度からは新たに、共通ソフトとハードをつなぐインターフェイス積層回路の開発を開始した。

加えて、クラウドコンピューティングの進展などにより課題となっているデータセンタの消費電力抑制に向けて、「超低消費電力型光エレクトロニクス実装に向けた技術開発事業」において、電子回路と光回路を組み合わせた光エレクトロニクス技術の開発に取り組んでいる。

資料：内閣府SPIシンポジウム2020発表資料（光・量子を活用したSociety5.0実現化技術）（2020年11月17日）

図33-4 量子技術に関連する取組

資料：内閣府SPIシンポジウム2020発表資料（光・量子を活用したSociety5.0実現化技術）（2020年11月17日）
第3章

Society 5.0 を実現するための研究開発の推進

④環境・エネルギー分野における研究開発の推進

温室効果ガスの大幅な削減と経済成長を両立させるためには、非連続なイノベーションにより、社会実装可能なコストを可能な限り早期に現実化することが重要であり、2019年6月に閣議決定された「パリ協定に基づく長期戦略」に基づき、2020年1月に統合イノベーション戦略推進会議において「革新的環境イノベーション戦略」が決定された。

2020年10月の臨時国会での総理所信表明においても、気候変動問題への対応が国家としての最重要課題のひとつとして位置づけられ、2050年までのカーボンニュートラルの実現という目標が掲げられ、2020年12月には、脱炭素化に向けた革新的技術を着実に社会実装するための「グリーン成長戦略」が策定された。環境エネルギー分野における技術革新を支えるため、従来の延長線上にない技術の創出などが必要となっている。

文部科学省において、徹底した省エネルギー社会を目指した研究開発を関係府省及び関係研究機関と連携して推進している。例えば、2014年のノーベル物理学賞を受賞した青色発光ダイオード（LED）の発明に代表される次世代半導体の研究開発は、我が国が強みを有する分野のひとつであり、大きな省エネ効果が期待される窒化ガリウム（GaN）などの次世代半導体を用いたパワーデバイスなどの2030年の実用化に向け、理論・シミュレーションも活用した材料創製からデバイス・システム応用までの次世代半導体に係る研究開発を一体的に推進している。また、GaN等の優れた材料特性を実現できるパワーデバイスやその特性を最大限活かすことのできるパワーエレクトロニクス回路システム、その回路動作に対応できる受動素子等を創出し、2050年カーボンニュートラルを支える超省エネ・高性能なパワーエレクトロニクスシステムの創出を実現するため、革新的パワーエレクトロニクス創出基盤技術開発事業を実施していく。

このほか、国立研究開発法人科学技術振興機構（JST）は、温室効果ガス削減に大きな可能性を有し、かつ従来技術の延長線上にない革新的な技術の研究開発を競争的環境下で推進している。例えば、2019年のノーベル化学賞を受賞した研究開発においても、固体質量塩素（左）京都大学 水落憲和教授 提供、レーザー加工（右）東京大学 小林洋平教授 提供のアニーリングマシン開発を実現している。
蓄電池の発明に代表される、我が国が強みを有する蓄電池分野については、現在の蓄電池を大幅に上回る性能を備える次世代蓄電池技術に関する基礎から実用化まで一貫した研究開発を推進している。さらに、これら環境・エネルギー分野における研究開発を技術確立に向けて力強く推進するため、世界的な叡智を幅広く結集すべく、2020年1月に国立研究開発法人産業総合技術研究所内にゼロエミッション国際共同研究センターを設立したところ。研究センター長として、2019年にノーベル化学賞を受賞された吉野彰博士が就任し、欧米等の研究機関との国際連携を実施していく。

(4) 科学技術イノベーションを担う人材力の強化
① 若手研究者の安定かつ自立した研究の実現
科学技術イノベーションは我が国の成長戦略の重要な柱のひとつであり、我が国が成長を続け、新たな価値を生み出していくためには、博士後期課程学生を含む若手研究者の育成・確保が重要である。
そのためには、若手研究者の安定した雇用と流動性的両立を図りながら、自らの自由な発想に基づいた研究に挑戦することができるよう、研究環境を整備していくことが求められている。しかし、近年、我が国における博士後期課程への入学者数は減少傾向にあり、また、大学本務教員に占める40歳未満の若手の割合も低下しているなど、若手研究者が厳しい状況に置かれている(図331-5・6)。
文部科学省では、優れた若手研究者が産学官の研究機関において、安定かつ自立した研究環境を得て自主的・自立的に研究を進めるよう研究者及び研究機関に対して支援を行う「卓越研究員事業」を2016年度より実施している。

また、2021年度からは優秀な学生が安心して博士後期課程へ進学し、研究に専念できる環境を整備するため、博士後期課程学生の処遇向上とキャリアパス確保を一体的に実施する大学に対して支援を行う「科学技術イノベーション創出に向けた大学フェローシップ創設事業」などの新たな施策にも取り組んでいる。

②キャリアパスの多様化
科学技術イノベーションの推進に向けては、優秀な若手研究者が、社会の多様な場で活躍できるように促していくことが重要であり、多様な職種のキャリアパスの確立を進めることが求められる。

文部科学省では、複数の大学などでコンソーシアムを形成し、企業などと連携して、研究者の流動性を高めつつ、安定的な雇用を確保しながらキャリアアップを図る「科学技術人材育成のコンソーシアムの構築事業」を実施している。

また、各分野の博士人材などについて、データサイエンスなどを活用し、アカデミア・産業界を問わず活躍できるトップクラスのエキスパート人材を育成する研修プログラムの開発を目指す「データ関連人材育成プログラム」を2017年度から実施している。

さらに、世界トップレベルの研究者育成プログラムを開発し、組織的・戦略的な研究者育成を推進する研究機関に対して支援を行う「世界で活躍できる研究者育成事業」を2019年度より実施している。

なお、国立研究開発法人科学技術振興機構においては、産学官で連携し、研究者や研究支援人材を対象とした求人・求職情報など、当該人材のキャリア開発に資する情報の提供及び活用支援を行うため、「研究人材キャリア情報活用支援事業」を実施しており、「研究人材のキャリア支援ポータルサイト（JREC-IN Portal）」を運営している。

③科学技術イノベーションを担う多様な人材の育成・活躍促進
科学技術イノベーションの推進のためには、研究者のみならず、その活動を支える多様な人材の育成・活躍促進が必要である。文部科学省では、研究者の研究活動活性化のための環境整備、大学などの研究開発マネジメント強化及び科学技術人材の研究職以外の多様なキャリアパスの確立を図る観点も含め、大学などにおける研究マネジメント人材（リサーチ・アドミニストレーター（URA））の支援方策について調査研究などを実施している。2018年度に「リサーチ・アドミニストレーター活動の強化に関する検討会」において、URAの知識・能力の向上と実務能力の可視化に資するものとして認定制度の導入に向けた論点整理がまとめられた。この論点整理を踏まえ、2021年度に認定制度の導入に向けた調査研究を実施しており、2021年度中には認定制度
度の導入を予定している。
そのほか、我が国の優秀な人材層に、プログラム・マネージャー（PM）という新たなイノベーション創出人材モデルと資金配分機関などで活躍するキャリアパスを提示・構築するために、PMに必要な知識・スキル・経験を実践的に習得する「プログラム・マネージャーアーの育成・活躍促進プログラム」を実施している。
また、科学技術に関する高等の専門的応用能力を持ち計画や設計などの業務を行う者に対し、「技術士」の資格を付与する「技術士制度」を設けている。技術士試験は、理工系大学卒業程度の専門的学識などを確認する第一次試験（2020年度合格者数6,380名）と技術士になるのに相応しい高等の専門的応用能力を確認する第二次試験（同2,415名）からなる。2020年度第二次試験の部門別合格者は表331-7のとおりである。

<table>
<thead>
<tr>
<th>技術部門</th>
<th>受験者数（名）</th>
<th>合格者数（名）</th>
<th>合格率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>機械</td>
<td>766</td>
<td>140</td>
<td>18.3</td>
</tr>
<tr>
<td>船舶・海洋</td>
<td>6</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>航空・宇宙</td>
<td>39</td>
<td>7</td>
<td>17.9</td>
</tr>
<tr>
<td>電気電子</td>
<td>952</td>
<td>123</td>
<td>12.9</td>
</tr>
<tr>
<td>化学</td>
<td>119</td>
<td>29</td>
<td>24.4</td>
</tr>
<tr>
<td>繊維</td>
<td>40</td>
<td>9</td>
<td>22.5</td>
</tr>
<tr>
<td>金属</td>
<td>53</td>
<td>19</td>
<td>35.8</td>
</tr>
<tr>
<td>資源工学</td>
<td>14</td>
<td>3</td>
<td>21.4</td>
</tr>
<tr>
<td>建設</td>
<td>11,763</td>
<td>1,214</td>
<td>10.3</td>
</tr>
<tr>
<td>上下水道</td>
<td>1,237</td>
<td>181</td>
<td>14.6</td>
</tr>
<tr>
<td>衛生工学</td>
<td>420</td>
<td>32</td>
<td>7.6</td>
</tr>
</tbody>
</table>

資料：文部科学省作成

注2 2020年度技術士第二次試験追試験合格者を含まない。表331-7の合格者数及び合格率についても同様である。

④次代の科学技術イノベーションを担う人材の育成
次代を担う科学技術人材を育成するため、初等中等教育段階から理数系科目への関心を高め、理数好きの子供たちの裾野を拡大するとともに、その才能を伸ばすため、次のような取組を総合的に推進し、理数系教育の充実を図っている。
文部科学省では、先進的な理数系教育を実施する高等学校などを「スーパーサイエンスハイスクール（SSH）」に指定し、国立研究開発法人科学技術振興機構を通じて支援を行うことで、生徒の科学的な探究能力等を培い、将来の国際的な科学技術人材などの育成を図っている。具体的には、学習指導要領によらないカリキュラムの開発・実践や課題研究の推進を通じた科学技術人材の育成などを実施するとともに、他校への成果の普及に取り組んでいる。2021年度においては、全国218校の高等学校などが特色ある取組を進めている。
国立研究開発法人科学技術振興機構は、意欲・能力のある高校生を対象とした、国際的な科学技術人材を育成するプログラムの開発・実施を行う大学を「グローバルサイエンスキャンパス（GSC）」において選定し、支援している。これに加え、2017年度から、理数分野で特に意欲や突出した能力を有する小中学生を対象に、その能力の更なる伸長を図る
ため、大学などが特別な教育プログラムを提供する「ジュニアドクター育成塾」を開始した。
加えて、文部科学省では、全国の自然科学系分野を学ぶ学部学生などが自主研究を発表し、全国レベルで切磋琢磨を行うとともに、企業関係者などと交流を図ることができる機会として、「第 10 回サイエンス・インカレ」を 2021 年 1 月下旬から 2 月下旬にかけてオンライン開催し、書類審査を通過した計 40 組が発表を行った。
さらに、国立研究開発法人科学技術振興機構では、数学、物理、化学、生物学、情報、地理、地学の国際科学オリンピックや国際学生科学技術フェア（ISEF）注 3 などの国際科学技術コンテストの国内大会の開催や、国際大会への日本代表選手の派遣、国際大会の日本開催に対する支援などを行っている。
また、2019 年度は、全国の高校生などが学校対抗・チーム制で理科・数学などにおける筆記・実技の総合力を競う場として、「第 7 回科学の甲子園全国大会」（2020 年 12 月 19 日から 21 日）が茨城県つくば市において開催され、京都府代表チームが優勝した。
さらに、国立研究開発法人科学技術振興機構では、数学、物理、化学、生物学、情報、地理、地学の国際科学オリンピックや国際学生科学技術フェア（ISEF）注 3 などの国際科学技術コンテストの国内大会の開催や、国際大会への日本代表選手の派遣、国際大会の日本開催に対する支援などを行っている。

表 331-8 国際科学オリンピック国内大会への参加者数の推移
※参加者数は次年度の国際大会に向けた、主に高校生を対象とした国内大会の受験者数を指す。

<table>
<thead>
<tr>
<th>年度</th>
<th>数学</th>
<th>物理</th>
<th>化学</th>
<th>生物学</th>
<th>地学</th>
<th>情報</th>
<th>地理</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>180</td>
<td>250</td>
<td>260</td>
<td>310</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2005</td>
<td>200</td>
<td>250</td>
<td>270</td>
<td>320</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2006</td>
<td>220</td>
<td>250</td>
<td>280</td>
<td>340</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2007</td>
<td>240</td>
<td>270</td>
<td>290</td>
<td>360</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2008</td>
<td>260</td>
<td>290</td>
<td>300</td>
<td>380</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2009</td>
<td>280</td>
<td>310</td>
<td>310</td>
<td>400</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2010</td>
<td>300</td>
<td>330</td>
<td>320</td>
<td>420</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2011</td>
<td>320</td>
<td>350</td>
<td>330</td>
<td>440</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2012</td>
<td>340</td>
<td>370</td>
<td>340</td>
<td>460</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2013</td>
<td>360</td>
<td>390</td>
<td>350</td>
<td>480</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2014</td>
<td>380</td>
<td>410</td>
<td>360</td>
<td>500</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2015</td>
<td>400</td>
<td>430</td>
<td>370</td>
<td>520</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2016</td>
<td>420</td>
<td>450</td>
<td>380</td>
<td>540</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2017</td>
<td>440</td>
<td>470</td>
<td>390</td>
<td>560</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2018</td>
<td>460</td>
<td>490</td>
<td>400</td>
<td>580</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2019</td>
<td>480</td>
<td>510</td>
<td>410</td>
<td>600</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>2020</td>
<td>500</td>
<td>530</td>
<td>420</td>
<td>620</td>
<td>300</td>
<td>350</td>
<td>300</td>
</tr>
</tbody>
</table>

備考：「数学」は JMO（高校生以下対象）と JJMO（中学生以下対象）の二つの国内大会の合計値
資料：文部科学省作成
注 3 International Science and Engineering Fair
福島県立福島高等学校では、2007年度から3期にわたってSSHの指定を受け、高い専門性と地域のリーダーとしての資質を併せもつ世界で活躍する科学技術系人材の育成に取り組んでいる。全生徒が3年間を通して探究活動に関する学校設定科目「ベーシック探究」を履修し、第1学年で探究活動の手法を学び、第2学年で課題研究に取り組み、第3学年で研究成果を論文にまとめる。また、大学、研究機関、民間事業所等への訪問など、実社会に目を向けた主体的・協働的な学びを通して、学校での学びがそれぞれの現場でどう活用されているのかを理解させ、課題発見力・解決力の育成を行っている。

学校設定科目「アドバンス探究」では理科系に特化した専門的な課題研究を実施している。「プラズマによる気流制御技術を用いた小型風力発電風車の製作」では、気流を可視化する装置や高電圧でプラズマを発生させ周辺の気流を制御することが可能な風車を設計・自作し、この技術が発電システムの高効率化につながることを実験から導いた。
文部科学省では、我が国全体のアントレプレナーシップ醸成をより一層促進するとともに、我が国のベンチャー創出力の強化に資することを目的として、「次世代アントレプレナー育成事業（EDGE-NEXT）」を2017年度から実施しており、複数大学からなるコンソーシアムに対し、アントレプレナー育成に係る高度なプログラム開発等、エコシステム構築を支援している。例として、Tokai-EDGE（Tongali）プロジェクトでは、名古屋大学、名古屋工業大学、岐阜大学、三重大学、豊橋技術科学大学が、それぞれの得意分野や特徴的な取組を活かし、東海地区の大学生等を対象としたアントレプレナーシップ教育のプログラムを実施している。
北海道大学 数理・データサイエンス教育研究センターでは、企業や地方自治体との共同研究を基礎とした、産学官地域連携型人材育成基盤「北大モデル」を提唱している。さらに、その具現化を目指し、「次世代スマートインフラ管理人材育成創出コンソーシアム」や、寄附講座「ニトリみらい社会デザイン講座」などの産学連携拠点を、センター内に設置している。

このコンソーシアムや寄附講座に、高度で専門的なスキル修得に励む博士後期課程の学生が直接参画することで、「問題の所在の明確化から解決策のデザインまでを可能とするデザイン力」を有する人材の社会への輩出を推進している。「北大モデル」実現のための取組は、「企業から提供されるサービスやものづくり」と「人材育成」が直結して未来の社会を創造する、新しい大学の教育モデルの好事例蓄積につながっている。

2019年のノーベル化学賞を吉野彰旭化成（株）名誉フェローが受賞した。受賞理由は「リチウムイオン電池の開発」であり、携帯電話などのモバイル機器の普及につながるとともに、電気自動車や蓄電池システムなど化石燃料に頼らない社会の実現に向けた貢献が評価された。世界の人々の暮らしに豊かさをもたらすだけでなく、地球環境問題にも大きく貢献している。

吉野氏は1981年に、導電性のポリアセチレンの研究を行う過程で、充電可能な二次電池の負極として使用することができることが分かり、充電池の研究を始めた。様々な材料を試行錯誤の末、1985年に、正極にコバルト酸リチウム、負極に炭素材料を用いたリチウムイオン電池の原型を世界で初めて完成させた。

この研究開発の原点は、福井謙一氏（1981年ノーベル化学賞受賞）のフロンティア電子理論にさかのぼる。その理論の下で白川英樹氏（2000年ノーベル化学賞受賞）がポリアセチレンを発見した。吉野氏はポリアセチレンを産業応用できないか研究を行い、最終的にリチウムイオン電池の開発に至った。リチウムイオン電池は、学界における学術研究・基礎研究の成果を、吉野氏が産業界で継承したことによって生み出された。
（5）科学技術イノベーションの戦略的国際展開
①戦略的国際共同研究プログラム（SICORP）
我が国の研究力向上などのために研究開発における国際ネットワークを強化するため、大学などにおける国際共同研究を強力に支援することが求められている。これに応えるべく、「戦略的国際共同研究プログラム（SICORP）」では、対等な協力関係の下で、戦略的に重要なものとして国が設定した協力対象国・地域及び研究分野における国際共同研究を支援している。国際協力によるイノベーション創出のため、多様な研究内容・体制に対応するタイプを設け、相手国との合意に基づく国際共同研究を推進し、相手国との相互補益を原則としつつも、我が国の課題解決型イノベーションの実現に貢献することを目指している。

②地球規模課題対応国際科学技術協力プログラム（SATREPS）
我が国の科学技術イノベーションを国際展開し、世界的な「STI for SDGs」活動を牽引するため、我が国の優れた科学技術と政府開発援助（ODA）との連携により、開発途上国のニーズに基づき、環境・エネルギー・防災分野、生物資源分野、感染症分野における地球規模課題の解決と将来的な社会実装につながる国際共同研究を推進している。出口ステークホルダーとの連携・共有を促すスキームを活用し、SDGs達成に向けて研究成果の社会実装を加速させる。2021年4月時点、これまで世界52カ国で156課題のプロジェクトが実施されており、両国の科学技術の発展や人材育成にも大きく貢献し、社会実装につながる成果を生み出している。

（6）その他のものづくり基盤技術開発
①ロボット研究に関する取組
文部科学省では、ロボット新戦略の3つの柱のうち「日本が世界のロボットイノベーション拠点となる」柱に対する「ロボット創出力の抜本的強化」の柱における、「次世代に向けた技術開発」に基づき、人とロボットの協働を実現するため、産業や社会に実装され、大きなインパクトを与えるような要素技術となるAI、センシング・認識技術、機構・駆動（アクチュエーター）・制御技術、超寿命の小型軽量蓄電池技術などの開発を推進することとしている。
小惑星探査機「はやぶさ 2」

小惑星探査機「はやぶさ 2」は、世界で初めて小惑星から物質（イトカワの微粒子）を持ち帰った「はやぶさ」の後継機として開発された。有機物や含水鉱物を含み、太陽系の初期の姿に近いとされる小惑星「リュウグウ」を探査し、そのサンプルを持ち帰り分析することで、太陽系の成立ちや生命起源の謎を明るくすることを目的としている。

2014年12月に打ち上げられた「はやぶさ 2」は、2018年6月に「リュウグウ」に到着し、地球との距離が約3億kmという超遠隔運用、探査機との通信時間が往復最大約40分という状況を踏まえた探査機の自律制御運用など、高度なロボット技術が活用された。

サンプル採取のためのタッチダウン（着陸）では、事前に目印となるターゲットマーカー（球形でフラッシュの光が当たると反射する）を投下し、リュウグウへの降下の途中から自律運転に切り替え、ターゲットマーカーを補足・自動追尾し目標点への着陸・サンプル採取に成功した（1回目：誤差約1m、2回目：誤差約60cmという高精度で成功）。小惑星表面への人工クレーター作成では、爆薬が詰められた衝突装置を分離し、装置の爆発時のエネルギーにより装置底面の金属が高速で発射されリュウグウ表面に衝突し、直径約10mのクレーター作成に成功した。2回目の着陸は、人工クレーターの周辺部で行われ、表面物質と比べて太陽風や宇宙線による変質が少ない小惑星の地下物質を採取できたとみられている。探査においては、小惑星への2度の着陸成功、小惑星への人工クレーターの作成成功など数々の世界初の快挙を成し遂げた。

2019年11月にリュウグウを出発した「はやぶさ 2」は、2020年12月5日に地球近傍に帰還し、分離したカプセルは翌12月6日に豪州の砂漠帯に着陸・回収された。カプセル内には約5.4gのリュウグウ由来のサンプル（目標値0.1gの約50倍）が確認され、今後、詳細な分析が行われる予定。探査機本体は正常でエンジンの燃料も約半分残る事から、新たな小惑星の探査に向かっている。

「はやぶさ 2」に搭載された機器や部品の製作には、大学や研究機関、大小様々な企業がかかわり、それぞれの得意なもののづくりの技術が活用されている。超遠隔操作や自律制御の技術は、人間が立ち入れない過酷な環境下でのリモート作業や自動運転等のロボット技術へ活用できる可能性があり、探査機の高精度の制御・運用技術は、今後の探査計画に活用されることが期待されている。
２ 産学官連携を活用した研究開発の推進

(1) 省庁横断的プロジェクト「戦略的イノベーション創造プログラム (SIP)」

SIP は、総合科学技術・イノベーション会議（以下、CSTI）が司令塔機能を発揮して、省庁の枠や旧来の分野を超えたマネジメントにより、科学技術イノベーションを実現するため2014年度に創設したプログラムであり、現在実施しているSIP第2期においては、国民にとって真に重要な社会的課題や日本経済再生に寄与し、世界を先導する11の課題に取り組んでいる。

本プログラムの特長は、課題ごとにプログラムディレクターを選定し、これを中心に省庁連携による分野横断的な取組を産学官連携で推進し、基礎研究から実用化、事業化の出口までを見据えて一貫通貫で研究するものであり、社会実装を控えた成果が生み出され、産業界からの評価も高い。

SIP第1期（2014年度から2018年度）の成果の一例として、災害時の情報集約を電子地図上で行い、関係機関への情報共有を可能とする技術「基盤的防災情報流通ネットワーク (SIP4D)」が開発され、2020年7月の九州豪雨災害等において、被災状況の把握、ライフラインの復旧、孤立集落の解消などの災害対応の取組に活用されてきた実績がある。また、自動運転に必要な高精度3次元地図を含むダイナミックマップの統一仕様を業界横断的に策定し、この成果を踏まえ電機、地図、測量会社と自動車メーカー各社が、ダイナミックマップ基盤（株）を設立し、2019年3月から全国自動車専用道路の高精度3次元地図（約3万キロメートル）の商用配信を開始した。同社の提供する電子3次元地図を活用して、2021年3月、本田技研工業が世界初となるレベル3技術を搭載した自動運転車の発売を開始した。
（2）官民研究開発投資拡大プログラム（PRISM）
日本経済の力強い再生を目指し、科学技術イノベーションの一層の活性化、効率化と、経済社会と科学技術イノベーションの有機的連携の強化を図る観点から、「科学技術イノベーション官民投資拡大イニシアティブ」が 2016 年 12 月に取りまとめられ、これを踏まえ、2018 年度に内閣府に PRISM を創設した。
本プログラムは、研究開発成果の活用による財政支出の効率化への貢献にも配慮しつつ、官民で民間研究開発投資誘発効果の高い領域注4 を設定。CSTI が策定する各種戦略などに基づく技術領域において、民間研究開発投資の誘発又は財政支出の効率化に資する研究開発を、SIP との一体的運用を図りつつ、府省連携の下で機動的に推進するものである。
プログラムの実施に当たっては、領域ごとに、推進費の配分や評価などに強い権限を持った領域統括を設置し、省庁を越えた施策の連携を促すなど、各施策の効率的・効果的実施を確保している。
また、対象施策ごとに各省庁がプログラムディレ

注4 AI技術、建設・インフラ維持管理/防災・減災技術、バイオ技術
クターを任命し、全体の研究計画の策定・変更、予算配分の権限を集中させることなどを必須要件とし、SIP型マネジメントの各省庁への拡大を図っている。これまでも、CSTIが策定した各種戦略などを踏まえ、インフラ、創薬、農業などのデータ連携基盤の確立に重点化し配分を行ってきており、今後とも、CSTIが策定する各種戦略などを踏まえ、各府省庁の事業の加速などにより、官民の研究開発投資の拡大に向け推進する。

(3)産学共同研究等、技術移転のための研究開発、成果の活用促進
ものづくり基盤技術の高度化や新事業・新製品の開拓につながる多様な先端的・独創的・独創的研究成果を生み出す「知」の拠点である大学などと企業の効果的な協力関係の構築は、我が国のものづくりの効率化や高付加値化に資するものである。このような産学官連携活動はこれまで増加傾向にあり、大学などと民間企業との共同研究実施件数は2019年度には2万9,255件、このうち1,000万円以上の実施件数は1,461件、大学などの特許権実施件数は1万8,794件となっているなど、着実に進展している（図332-4）。

図332-3 PRISMに係るマネジメント体制

図332-4大学等における産学官連携活動

※国立大学（短期大学を含む）、国公私立高等専門学校、大学共同利用機関が対象。
資料：文部科学省「2019年度大学等における産学連携等実施状況について」(2021年1月29日)
一方、1,000万円以上の共同研究の全体に占める割合は高くなく本格的な産学官連携に課題が存在していた。このような課題を踏まえ、「日本再興戦略2016」（2016年6月2日閣議決定）においては、研究者個人と企業の一組織（開発本部）との連携にとどまっていた産学官連携を、大学・国立研究開発法人・企業のトップが関与する、「組織」対「組織」の本格的産学官連携へと発展させるため、産学官連携の体制を強化し、企業から大学・国立研究開発法人などへの投資を2025年までに3倍に増やすこととされている。

このため、文部科学省及び経済産業省は、2016年度より「イノベーション促進産学官対話会議」を共同で開催し、大学・国立研究開発法人が産学官連携機能を強化するうえでの課題とそれに対する処方箋を取りまとめた「産学官連携による共同研究強化のためのガイドライン」を策定し、その普及に努めるとともに、2019年度より当該ガイドラインの実効性を向上させるための検討を始め、2020年度には実現上のポトルネック解消に向けた処方箋と、新たに産業界／企業における課題と処方箋についてまとめた「産学官連携による共同研究強化のためのガイドライン【追補版】」を公表した。

また、本格的な産学官連携の実現に向けて、国立研究開発法人科学技術振興機構では、産学官が集う大規模産学連携拠点を構築し、基礎研究段階から実用化までの研究開発を集中的に実施し、革新的なイノベーションの創出を目指す取組として、2013年度より「センター・オブ・イノベーション（COI）プログラム」を実施している。トライアル拠点として採択された中から正式拠点に昇格した拠点を含め、18のCOI拠点が活動を推進している。

さらに、2016年度より「産学共創プラットフォーム共同研究推進プログラム（OPERA）」を実施しており、民間企業とのマッチングファンドにより、複数企業からなるコンソーシアム型の連携による非競争領域における大型共同研究と博士課程学生などの人材育成、大学の産学連携システム改革などを一体的に推進することで、「組織」対「組織」による本格的産学連携を実現し、我が国のオープンイノベーションの本格的駆動を図ることを目指している。

2019年度からは、上記の拠点型産学連携制度（COI、OPERA等）を「共創の場形成支援」として大変化し、一体的なマネジメントを推進しており、2020年度からは「共創の場形成支援プログラム（COI-NEXT）」を開始し、社会変革や社会課題解決につながる産学官連携によるオープンイノベーションを促進するため、バックキャスト型の研究開発を行う産学官共創拠点の形成支援等を行っている。

加えて、2018年度より、文部科学省では、「オープンイノベーション機構の整備事業」を開始し、企業の事業戦略に深くかかわる大型共同研究（競争領域に重点）を集中的にマネジメントする体制の整備を通じて、大型共同研究を推進している。

大学等発ベンチャーの新規創設数は、一時期減少傾向にあったが、近年は回復基調にあり、2019年度の実績は204件となった（図322-5）。今後は、真に市場ニーズを捉え、強くグローバルに成長することのできる質の高い大学等発ベンチャーの創出に向けて、創意業後の販路開拓などのビジネス面を含め、持続的な経営に資する環境を整備していく必要がある。

このため、国立研究開発法人科学技術振興機構では、大学等発ベンチャーの創出を目指した支援を行う「大学発新産業創出プログラム（START）」を実施している。さらに、「出資型新事業創出支援プログラム（SUCCESS）」を実施し、国立研究開発法人科学技術振興機構の研究開発成果を活用するベンチャー企業の設立・増資に際して、出資等を行うことにより、当該企業の事業活動を通じて研究開発成果の実用化を促進している。

また、文部科学省では、学部学生や大学院生、若手研究者などに対するアントレプレナー育成プログラムの実施により、我々が国全体のアントレプレナーシップ醸成をより一層促進するとともに、我が国のベンチャー創出力の強化に資することを目的として、「次世代アントレプレナー育成事業（EDGE-NEXT）」を2017年度から実施している。
その他の取組として、国立研究開発法人科学技術振興機構においては、産学連携により大学などの研究成果の実用化を促進するため、大学などの個々の研究者が創出した成果を産学が共同で実用化に向けた研究開発を行うとともに、学から産への技術移転を行う「研究成果最適展開支援プログラム（A-STEP）、大学などにおける研究成果の戦略的な海外特許取得の支援や、大学などに散在している特許権などの集約・パッケージ化による活用促進、大学などの特許情報のインターネットでの無料提供（J-STORE）などを通じて、大学などの知的財産活動の総合的活用を支援する「知財活用支援事業」を実施している。また、研究開発税制について、共同研究などを通じた試験研究を促進するため、民間企業が大学などと行う共同試験研究のために支出した試験研究費について、一般の試験研究費よりも高い税額控除率を適用できる措置を設けている。

（4）大学等における研究成果の戦略的な創出・管理・活用のための体制整備

大学などの優れた研究成果を活かすためには、成果を統合発展させ、国際競争力のある製品・サービスとするための産業との協力の推進が不可欠であり、これはものづくり産業の活性化にも資するものである。そのため、大学などにおいて、研究成果の民間企業への移転を促進し、それらを効果的にイノベーションに結びつける観点から、戦略的な産学官連携機能の強化を図っている。1998年に制定された「大学等における技術に関する研究開発の移転の促進に関する法律（平成10年法律第52号）」は、上記のような研究成果移転の促進により、我が国の産業の技術の向上と大学などにおける研究活動の活性化を図ることを目的とした法律である。本法に基づき実施計画を承認されたTLO（Technology Licensing Organization）注5は、2020年度末で34機関となっている。

この点、昨今の第4次産業革命への対応ともあいまって、大学における研究成果の社会還元を一層進めることができ産業技術の向上や新たな事業分野の開拓に資することとなる。このようなことから、2019年度より、文部科学省では、「イノベーションマネジメントハブ形成支援事業」を開始し、大学、産業界、TLOのネットワーク強化を図ることを通じて、大学における知的財産の効果的活用や共同研究の構築に資する環境整備を推進している。

（5）地域科学技術イノベーション創出のための取組

地域における科学技術の振興は、地域産業の活性化や地域住民の生活の質の向上に貢献するものである

注5 大学等の研究成果に基づく特許権などについて企業に実施許諾を与え、その対価として企業から実施料収入を受け取り、大学等が研究者（発明者）に研究資金として還元することなどを事業内容とする機関。
り、ひいては我が国全体の科学技術の高度化・多様化につながるものとして、国として積極的に推進している。一方、地域イノベーション・エコシステムの形成と地方創生の実現に向けては、イノベーション実現のきっかけ・仕組みづくりの量的拡大を図る段階から、具体的に地域の技術シーズなどを活かし、地域からグローバル展開を前提とした社会的なインパクトの大きい事業化の成功モデルを創出する段階へと転換が求められている。

このため、文部科学省では、2016年度より開始した「地域イノベーション・エコシステム形成プログラム」により、地域の成長に貢献しようとする地域大学に事業プロデュースチームを創設し、地域の競争力の源泉（コア技術など）を核に、地域内外の人材や技術を取り込み、グローバル展開が可能な事業化計画を策定し、リスクが高いが社会的インパクトが大きい事業化プロジェクトを支援している。

2019年度までに全21地域が採択されている（図332-6）。また、2020年度は、補正予算により神奈川地域においてSmartAmp法を活用した新型コロナウイルスの迅速検査システムの開発を支援した。

2021年度からは、産学官共創拠点の形成を支援する「共創の場形成支援（COI-NEXT）」において、地域が自律的に地域課題解決・地域経済発展を進めることができる持続的な地域産学官共創システムの形成支援を行うことを予定している。

図332-6 地域イノベーション・エコシステム形成プログラム支援地域一覧

資料：文部科学省作成
第2部

令和2年度においてものづくり基盤技術の振興に関して講じた施策

はじめに

以下では、2020年度においてものづくり基盤技術の振興に関して講じた施策を報告する（経済産業省、厚生労働省、文部科学省の省庁連携施策には小見出しに連携省庁を記載する）。
第1章
ものづくり基盤技術の研究開発に関する事項

第1節 ものづくり基盤技術に関する研究開発の推進等

1 ものづくり基盤技術に関する研究開発の実施及びその普及

(1) 研究開発税制等（中小企業技術基盤強化税制）
試験研究費の総額に応じて税額控除を認める制度。
試験研究費の増加割合に応じた税額控除率（大企業は6％～14％、中小企業等は「中小企業技術基盤強化税制」として12％～17％）を適用するとともに、
特別試験研究費（大学、国の研究機関、企業等との共同・委託研究等の費用）の総額に係る税額控除制度、
試験研究費の額が平均売上金額の10％相当額を超える場合の控除率の割増措置等を引き続き講じた。
2021年度税制改正において、控除率の下限の6％から2％への引き下げも含めた控除率の増加インセンティブを強化する見直しを行った。
また、売上げが基準年度に比べて2％以上減少しているが、試験研究費を増加させている場合は、税額控除上限を5％上乗せすることとした。
さらに、クラウド環境で提供するソフトウェア等の試験研究に要した費用について、研究開発税制の対象とする等の見直しを行った。

(2) ものづくり基盤技術の開発支援
① AIチップ・次世代情報処理技術・情報通信技術等の開発（133億10百万円（当初）、1,100億円（2019年度補正）、900億円（2020年度第3次補正））
IoT社会の到来により増加した膨大な量の情報を効率的に活用するため、ネットワークのエッジ側で動作する超低消費電力の革新的AIチップに係るコンピューティング技術や、新原理により高速化と低消費電力化を両立する次世代コンピューティング技術（量子コンピュータ、脳型コンピュータ等）等の開発を実施した。
加えて、AIチップ開発に必要な設計ツール等の開発環境、共通基盤技術、開発に必要な知見等を提供することにより、ネットワークのエッジ側で動作する超低消費電力の革新的AIチップに係るコンピューティング技術や、新原理により高速化と低消費電力化を両立する次世代コンピューティング技術（量子コンピュータ、脳型コンピュータ等）等の開発を実施した。
さらに、各国で商用サービスが始まりつつある5Gに対応して、超低遅延や多数同時接続といった機能が強化されたポスト5Gに対応した情報通信システムの開発・製造基盤を強化するため、2019年度補正にて立ち上げた「ポスト5G情報通信システム基盤強化研究開発事業」によりポスト5G情報通信システムの開発を実施した。
② AIP：人工知能／ビッグデータ／IoT／サイバーセキュリティ統合プロジェクト（100億3百万円）
国内機関、労働省、文科省、厚労省、農水省、経産省、国交省
国立研究開発法人理化学研究所（RIKEN）に設置した革新知能統合研究センター（AIPセンター）において、深層学習の原理理解や汎用的な機械学習の基盤技術の構築、日本が強みを持つ分野の更なる発展や我が国の社会的課題の解決のための人工知能等の基盤技術の研究開発、人工知能技術の普及に伴って生じる倫理的・法的・社会的問題（ELSI）に関する研究などを実施している。また、国立研究開発法人科学技術振興機構（JST）における、人工知能などの分野における若手研究者の独創的な発想や、新たなイノベーションを切り開く挑戦的な研究課題に対する支援を一体的に推進している。
※運営費交付金中の推計額を含む
③ 次世代人工知能・ロボットの物中核となるインテグレーテ技術開発事業（17億円）
少子高齢化が急激に進展する中で、日本の強みであるロボット技術等とAI技術を活用・融合させ、顕著化する様々な社会課題を解決することが急務となっており、特にものづくり現場等の実世界におけるAI技術の早期の社会実装が強く求められている。
本事業では、製品の多品種化・短サイクル化・規制強化等製造業を取り巻く環境が厳しさを増す中、これまでも設計や製造現場に蓄積されてきた“熟練者の技”を暗黙知(経験や勘)の伝承・効率的活用を支えるAI技術を活用し、2019年度より着手し、2020年度も引き続き研究開発を実施した。
④ 研究成果展開事業（先端計測分析技術・機器開発プロ gram）（国立研究開発法人科学技術振興機
構築運営費交付金の内数

独創的な研究開発を支える基盤を整備するため、先端計測分析における革新的な要素技術開発、機器開発の推進及びこれまでの開発成果の活用・普及を促進した。

⑤ 材料の社会実装に向けたプロセスサイエンス構築事業（Materealize）（3億６百万円）

大学・国立研究開発法人等において、産学官が連携した体制を構築し、革新的な機能を有するもののプロセス技術の確立していない材料を社会実装につなげるため、プロセス上の課題を解決するための学理・サイエンス基盤としてプロセスサイエンスの構築（Materealize）に向けた取組を推進した。

⑥ ナノテクノジープラットフォーム（14億７百万円）

ナノテクノロジーに関する最先端の研究設備とその活用のノウハウを有する機関が協力して、全国的な共用体制を構築することにより、産学官の利用者に対し、最先端設備の利用機会と高度な技術支援を提供した。

⑦ 元素戦略プロジェクト＜研究拠点形成型＞（16億86百万円）＜経済産業省、文科省＞

我が国の産業競争力強化に不可欠である希少元素（レアアース・レアメタル等）の革新的な代替材料を開発するため、物質中の元素機能の理論的解明から新材料の創製、特性評価までを密接な連携・協働の下で一体的に推進した。

⑧ 量子技術イノベーションの戦略的な推進（約 205億円）※内閣府、総務省、文科省、経済産業省

量子科学技術の先進性やあらゆる科学技術を支える基盤と、国際的な動向をかんがみて、政府は2020年１月に策定した「量子技術イノベーション戦略」において、生産性革命の実現、健康・長寿社会の実現、国及び国民の安心・安全の確保を目的として、量子科学技術の研究開発を推進している。 этом Утверждается, что за 2020 год были начаты следующие программы и проекты:

1. **量子技術イノベーション戦略**:
 - **研究開発拠点の形成**: 2020年度中に国内8拠点からなる「量子技術イノベーション拠点」として発足した。当該拠点は、量子コンピュータを構成するデバイスからソフトウェア、利活用技術の各要素を、量子通信、量子センサなど幅広い分野の研究組織から成り、各分野における研究開発等の推進を行う。さらに、国立研究開発法人材料科学研究所を中核組織として位置付け、拠点横断的な取組を行うことで、関係機関が総力を結集して基礎研究から技術実証、国際連携や人材育成に至る幅広い取組を進めるとともに、国内外の企業等から投資を呼び込むため、産学官が一体となって研究開発や量子技術の社会実装を加速することを目指している。また、重点的な研究開発につながる施策として、関係各省は次の取組を実施している。

2. **研究開発拠点の形成**: 2020年度中に国内8拠点からなる「量子技術イノベーション拠点」として発足した。当該拠点は、量子コンピュータを構成するデバイスからソフトウェア、利活用技術の各要素を、量子通信、量子センサなど幅広い分野の研究組織から成り、各分野における研究開発等の推進を行う。さらに、国立研究開発法人材料科学研究所を中核組織として位置付け、拠点横断的な取組を行うことで、関係機関が総力を結集して基礎研究から技術実証、国際連携や人材育成に至る幅広い取組を進めるとともに、国内外の企業等から投資を呼び込むため、産学官が一体となって研究開発や量子技術の社会実装を加速することを目指している。また、重点的な研究開発につながる施策として、関係各省は次の取組を実施している。
ニーリングマシンのハードウェアからソフトウェア、アプリケーションに至るまで、一体的な開発を進めており、2020年度からは新たに、共通ソフトとハードをつなぐインターフェイス集積回路の開発を開始した。加えて、クラウドコンピューティングの進展などにより課題となっているデータセンターの消費電力抑制に向けて、「超低消費電力型光エレクトロニクスの実装向け技術開発事業」において、電子回路と光回路を組み合わせた光エレクトロニクス技術の開発に取り組んでいる。

※運営費交付金中の推計額を含む。

⑨ 宇宙産業技術情報基盤整備研究開発事業 (SERVISプロジェクト) (5 億 10 百万円)
我が国宇宙産業の競争力、自立性強化のため、民生分野における優れた技術を活用した高性能かつ低コストな宇宙用部品・コンポーネントやロケットの実用化を目的として、中小、ベンチャー企業等への研究開発及び軌道上実証支援を実施。衛星データビジネスを支えるインフラとして世界的にニーズが高まっている小型衛星用ロケットでは、抜本的な低コスト化実現に向かった自律飛行安全性システム等の開発を行った。

⑩ 宇宙太陽光発電における無線送受電技術の高効率化に向けた研究開発事業 (2 億 50 百万円)
宇宙太陽光発電システムは、昼夜・天候等にほとんど左右されることなく安定した量の太陽エネルギーを得ることができる宇宙空間において発電した電力をマイクロ波などに変換の上、地上へ伝送し、地上で電力に変換して利用する将来のエネルギーシステムである。2020年度は、宇宙太陽光発電システムの実現に必要な発電や送電を一つのパネルで行う発送電一体型パネルの開発や、マイクロ波による無線送電技術の効率改善に資する送電部の高効率化のための技術開発等を行った。

⑪ 石油資源を遠隔探知するためのハイパースペクトラルセンサの研究開発事業費 (7 億 50 百万円)
我が国石油資源の遠隔探知能力の向上等を実現するため、高い波長分解能を有するハイパースペクトルセンサ（HISUI）を開発し、国際宇宙ステーションの「きぼう」日本実験棟に取り付け、宇宙環境における実証を通じてその有用性を評価・検証する事業である。2019年度に国際宇宙ステーションの「きぼう」日本実験棟に搭載後、2020年度は機器の初期チェックアウトや地上データ処理システムの開発等を進めた。

⑫ 環境調和型プロセス技術の開発事業 (42 億円)
我が国の鉄鋼業は、排熱回収利用等の主要な省エネ設備を既に導入しており、製鉄プロセスにおけるエネルギー効率が現在、世界最高水準であることから、既存技術の導入によるエネルギーの削減ポテンシャルは少ない状況。他方で、高炉法による製鉄プロセスでは鉄鉱石を石炭コークスで還元するため、多量の二酸化炭素排出は避けることができない。このため、製鉄プロセスにおける大幅な CO₂ 排出削減、省エネを目指し、（ア）水素還元活用プロセス技術（COURSE50）、（イ）フェロコース技術の開発を行った。 （ア）については、製鉄所から発生する二酸化炭素の約 3 割を削減することを目指して、コークス製造時の副産ガスに含まれる水素を用いて鉄鉱石を還元するための技術開発及び製鉄プロセスにおける未利用排熱を有効に二酸化炭素の分離回収のための技術開発を行った。
（イ）については、製鉄プロセスから約 10％の省エネを目指して、金属鉱を含んだコークス（フェロコース）を用いて鉄鉱石の還元反応を低温化・高効率化するための技術開発を行った。

⑬ サプライチェーン強靱化に資する技術開発・実証 (29 億 99 百万円)
新型コロナウイルス感染症の世界的な流行によって顕在化したグローバルサプライチェーンの寸断リスクに対処するため、我が国製造事業者による国内生産拠点整備やアジア諸国等への多元化等に向けて、サプライチェーンの強靱化に資する技術開発等を行った。具体的には、（ア）部素材の代替・使用量低減に資する技術、（イ）製造工程間でのシームレスなデータ連携や企業間でのセキュアなデータ共有を可能にするデジタル技術、（ウ）サプライチェーンの迅速・柔軟な組換えに資する衛星を活用した状況把握システムの開発・実証を行った。

⑭ 計算科学等による先端的な機能性材料の技術開発事業 (24 億 76 百万円)
従来技術の延長線上にない機能を有する超先端材料の創製とその開発スピードの劇的な短縮を目指し、計算科学、プロセス技術、計測技術から成る革新的な材料開発基盤技術の開発を行った。

⑮ 省エネ型化学品製造プロセス技術の開発事業 (22 億円)
我が国が国際的に強みを有する触媒技術を活用することで、資源利用の高度化と製造プロセスのエネルギー消費量削減を目指し、（ア）二酸化炭素を水を原料に太陽エネルギーで
ラスチック原料等の基幹化学品を製造する製造プロセス技術（人工光合成）
（イ）砂から有機ケイ素原料を直接合成し、同原料から次世代 LED 封止材等の高機能有機ケイ素部材を製造する製造プロセス技術
（ウ）機能性化学品の製造手法を従来のバッチ法からフロー法へ置き換え、廃棄物排出量を大幅削減する革新的な省エネ型の化学品製造プロセス技術

の開発を行った。
(5)省エネ型電子デバイス材料の評価技術の開発事業（26 億 80 百万円）
電池・素材メーカー関のすり合わせを高度化し、電池の新材料が全体制電池材料として有用か否かを評価するため、標準電池の開発を行うとともに、標準電池の一部を新材料に入れ替えて性能評価の共通基盤の構築に取り組んだ。また、コンピュータシミュレーション等を用いた高速・高効率な安全性予測手法の開発に取り組んだ。
⑨炭素循環社会に贡献するセルロースナノファイバー関連技術開発（6 億 55 百万円）
木質バイオマスを原料とするセルロースナノファイバーについて、社会実装・市場拡大の早期実現に向け、製造プロセスにおけるコスト低減、製造方法の最適化、量産効果が期待できる用途に応じた複合化技術・加工技術等の開発を促進し、同時に安全性評価に必要な基盤情報の整備を行った。
⑧積層造形部品開発の効率化のための基盤技術開発事業（1 億 20 百万円）
金属積層造形技術（金属 3D プリンタ）は、多品種少量生産や、複雑形状による製品・部材の高機能化等を可能とするものであり、その開発の付加価値を求め、産業競争力を維持・強化していくために有用な金属加工技術である。しかし、造形中の金属の挙動については分かっていないことも多く、造形物の品質の再現性や均一性の確保が難しいことから、金属積層技術を用いた製品・部材の新規開発には大きなコストと時間が掛かることが課題となっている。こうした課題を解決するため、2019 年度より、造形中の金属の溶融凝固現象の解明や、高度モニタリング及びフィードバック制御機能の開発、積層造形技術による開発・評価手法の開発を行っている。
⑨省エネ型・低温室効果を達成できる次世代冷媒・冷凍空調技術及び評価手法の開発事業（6 億 50 百万円）
2016 年のモントリオール議定書改正により、先進国は、代替フロン（HFC）を、2029 年までに 70%、2036 年までに 85%削減する必要がある。しかし、現時点でエネルギー効率等を十分に満たす次世代冷媒は存在せず、実用化に当たっては、燃焼性等の課題に関するリスク評価手法の確立、また、更なる HFC 削減に向けては、省エネ・低温室効果を両立する新冷媒や、次世代冷媒の特性に対応した機器の開発が必要不可欠。そのため、本事業では、次世代冷媒のリスク評価手法の確立、次世代冷媒の開発、新たな次世代冷媒に対応した省エネルギー型冷凍空調機器等の開発を推進している。
⑫革新性蓄電池実用化のための基盤技術の開発事業（34 億円）
次世代自動車の普及に向けて、ガソリン車並みの航続距離と車としての価値（低重量や高積載容量、短時間充電など）の両立を実現するためには、高いエネルギー密度や耐久性・安全性を持つ革新性蓄電池の技術開発が不可欠となる。このため、2030 年にリチウムイオン電池より性能を大幅に向上させた新原理の革新性蓄電池を開発するため、電池の材料開発・評価や生産方法の検討などの基盤技術開発を行った。
⑩次世代電動航空機に関する技術開発事業（13 億 50 百万円）
電動航空機のコア技術並びに電気推進システム技術などを開発し、次世代航空機に必要な技術を世界に先駆けて実証することを目的とし、航空機の運航時の CO2 排出量低減に向けて、電動推進のために必要なコア技術（高エネルギー密度の電池や高出力密度のモータ等）を開発する。2020 年度は電池やモータ等の試作品の設計・検証を進めた。
⑫次世代複合材創製技術開発事業（14 億 50 百万円）
航空産業の CO2 削減要求を満たすために必要な軽量化と高航続距離に対応可能な生産性を両立し得る新たな複合材料を用いた構造材料や革新的な生産性を実現する製造技術などの進化基盤技術を開発する。2020 年度は熱可塑性炭素繊維強化プラスチック（CFRP）やセラミック複合材（CMC）など先端複合材料の要素技術開発及びそれらを用いた構造設計開発を進めた。
（3）国家基幹技術の開発・利用によるものづくり基盤の強化
①大型放射光施設（SPring-8）の整備・共用（95 261
億 18 百万円

大型放射光施設（SPring-8）は、光速近くまで加速した電子の進行方向を変えることで発生する極めて明るい X 線「放射光」を用いて、物質の原子・分子レベルの構造などを解析できる世界最高性能の研究基盤施設である。材料科学や環境・エネルギー、生命科学、創薬等、我が国の経済成長を牽引する様々な分野で革新的な研究開発に貢献している。産業利用の割合は約 2 割と、諸外国の同様の施設と比べても高い。2020 年度は年間約 11,000 人の産官学の研究者に利用された。

※ SPring-8 及び SACLA で一体的に運用する経費を含む。

② X線自由電子レーザー施設（SACLA）の整備・共用（69 億 15 百万円

X線自由電子レーザー施設（SACLA）は、レーザーと放射光の特長を併せ持つ高度な光を発生させ、原子レベルの超微細構造や化学反応の超高速動態・変化を瞬時に計測・分析する世界最先端の研究基盤施設である。光合成メカニズムの解明や、燃料電池の開発、創薬など、学術・産業ともに世界最先端の革新的な研究開発成果が創出されている。

※ SPring-8 及び SACLA で一体的に運用する経費を含む。

③ 大強度陽子加速器施設（J-PARC）の整備・共用（157 億 10 百万円（当初）、27 億 22 百万円（2020 年度第 3 次補正））

大強度陽子加速器施設（J-PARC）は、極めて大強度の陽子加速器により生成された中性子やミュオン、ニュートリノ等を利用して、種粒子物理、生命科学、材料科学、環境・エネルギー分野などの幅広い分野の研究開発が可能な研究基盤施設である。特に中性子線施設では、持続可能な社会の構築に資する全固体セラミックス電池や固体冷媒などの開発につながる画期的な研究成果が創出されており、全実験課題のうち 2～3 割が民間企業による産業利用である。2020 年度は年間延べ6,800人以上の産学官の研究者に利用された。

④ 官民地域パートナーシップによる次世代放射光施設の推進（17 億 32 百万円（当初）、36 億 93 百万円（2020 年度第 3 次補正））

最先端の科学技術は、物質の「構造解析」に加え「機能理解」が重要となっており、物質の電子状態やその变化を高精度で追える次世代放射光施設（軟 X 線向け高輝度 3GeV 級放射光源）の早期整備が求められている。同施設は、学術・産業ともに高い利用ニーズを見込まれることから、財源負担を含めて官民地域が共同する枠組みにより整備することとされており、2019 年度より仙台市において建設を開始し、2023 年度中の稼働を目指して整備を進めている。

⑤ 革新的ハイパフォーマンス・コンピューティング・インフラ（HPCI）の構築（146 億 81 百万円）

HPCI は、世界最高水準の計算性能を有するスーパーコンピュータ「富岳」（2021 年 3 月共用開始）を中核とし、国内の大学等のスーパーコンピュータやストレージを高速ネットワークでつなぎ、多様な利用者のニーズに対応する計算環境を提供するものであり、2012 年 9 月末に共用を開始以降、ものづくりを含む様々な分野における研究開発で活用されている。例えば、自動車の開発などで従来行われている風洞実験では実現が難しい、高速走行時に車両が蛇行した際の走行安全性をシミュレーションで実現することで、設計期間の短縮、コスト削減による産業競争力の強化への貢献が期待されている。

⑥ スーパーコンピュータ「富岳」の開発（59 億 75 百万円（当初）、324 億 89 百万円（2020 年度第 3 次補正））

最先端のスーパーコンピュータは、科学技術や産業の発展などで国の競争力を左右するため、各国が開発に力を入れている。文部科学省では、我が国が直面する社会・科学的課題の解決に貢献するため、2014 年度より「京」の後継機である「富岳」を開発するプロジェクトを推進し、2021 年 3 月にその共用を開始した。また、システムとアプリケーションを協調的に開発することで、ものづくり分野を始めとした様々な分野で画期的な成果が創出されるよう、研究者・技術者や産業界などの利用者が使いやすい環境の構築に取り組んだ。2020 年 6 月と 11 月に発表されたスーパコンランキングでは「富岳」が 4 つのランキング（TOP500、HPCG、HPL-AI、Graph500）において 2 期連続で世界 1 位を獲得した。

⑦ AI 技術とものづくり技術の融合を目指した研究拠点の整備（194 億 99 百万円（2016 年度第 2 次補正）、20 億 3 百万円（2019 年度補正））

AI 技術と我が国の強みであるものづくり技術の融合を目指し、AI 技術の研究開発及び社会実装を加速化するため、国内外の聡智を集めた産学官一体の研究拠点の構築に 2016 年度より取り組み、センサ等の試作環境やロボット利用の模擬環境、世界トップレベルの
人工知能処理性能を有する計算システム「AI 橋渡し クラウド（ABCI）」を 2016 年度第 2 次補正（194 億 99 百万円）にて整備した。模擬環境研究拠点では、民間企業を中心とする産学官の共同研究が 2020 年度までに約 80 件（2021 年 4 月 1 日時点）実施され、ABCI は 2020 年度に約 360 件（2021 年 4 月 1 日時点）を超える研究プロジェクトで活用された。さらに、ABCI は需要の増加に対応するため 2019 年度補正予算（20 億 3 百万円）を措置して能力拡充を実施した。

⑥ 政府衛星データのオープン＆フリーハイ化及びデータ利用環境整備等事業（13 億円）

質・量が抜本的に向上している地球観測衛星データは、防災、農林水産業、インフラ管理等の様々な分野での利用が期待されている。しかし、データが有償であることや、膨大なデータ量であるために一般コンピュータでの処理が困難であること等を理由に、産業利用は限定的であった。このため、衛星データや地上データ（人流、統計データ等）、AIや画像解析用のソフトウェアが原則無償で利用可能な政府衛星データプラットフォーム「Tellus」の開発・運用を実施。2020年度は、搭載データの拡充や機能追加等を継続して実施し、また、衛星データを用いたデータコンテストや衛星データ活用促進のためのイベントデータ分析トレーニング等も開催した。

（4）提案公募型の技術開発支援

① 中小企業技術革新制度

「中小企業等経営強化法（平成 11 年法律第 18 号）」に基づき、新産業の創出につながる新技術開発のための特定補助金等の指定及び特定補助金等における中小企業者向け支出の目標額の設定、特定補助金等を利用して開発した成果の事業化支援措置等の方針の作成により、国等の研究開発予算の中小企業者への提供拡大及び技術開発成果の事業化を図った。

② 戦略的基盤技術高度化支援事業（131 億 20 百万円の内訳）

我が国経済を牽引していく重要産業分野の競争力を支える特定ものづくり基盤技術の高度化等に向け、中小企業・小規模事業者が産学官連携して行う製品化につながる可能性の高い研究・開発及び販路開拓への取組を支援することとし、2020年度は105件を採択した。

③ ものづくり・商業・サービス高度連携促進事業（10 億 5 百万円）

コネクテッド・インダストリーズの取組を広く普及させるため、また、地域経済を牽引する事業がもたらす地域経済への波及効果を高めるため、中小企業・小規模事業者等が連携して行う高度なプロジェクトの実施に必要な設備投資等を支援することとし、2020年度は71件を採択した。

④ ものづくり・商業・サービス高度連携促進事業（10 億 5 百万円）

コネクテッド・インダストリーズの取組を広く普及させるため、また、地域経済を牽引する事業がもたらす地域経済への波及効果を高めるため、中小企業・小規模事業者等が連携して行う高度なプロジェクトの実施に必要な設備投資等を支援することとし、2020年度は71件を採択した。

（5）オープンイノベーション拠点 TIAの取組＜経産省、文科省＞

オープンイノベーション拠点の研究開発を加速させるため、国立研究開発法人産業技術総合研究所（AIST）、国立研究開発法人物質・材料研究機構（NIMS）、筑波大学、大学共同利用機関法人高エネルギー加速器研究機構（KEK）、東京大学、東北大学及び（一社）日本経済団体連合会が連携してオープンイノベーション拠点である「TIA」を推進してきた。民間企業が TIAを活用して、優れた性能を有する半導体の研究開発を行うなど、民間企業や大学等と連携網を広げ、産学官
2 技術に関する研修及び相談・助言等

(1) (独) 中小企業基盤整備機構における経営相談・専門家派遣事業 ((独) 中小企業基盤整備機構交付金の内数)

(独) 中小企業基盤整備機構では、中小企業支援の高度な専門性と知見を有する専門家等が、創業予定者や創業間もない企業、経営革新や新事業開拓を目指している中小企業、その他経営課題の解決に取り組む中小企業等に対して、経営相談及び専門家派遣等を通じて成長発展段階に応じたハンズオン支援を実施した。

(2) 中小企業・小規模事業者ワンストップ総合支援事業 (42億 40百万円の内数)

中小企業・小規模事業者等が抱える様々な経営課題に対応するワンストップ相談窓口として、各都道府県に「よろず支援拠点」を配置し、一歩踏み込んだ専門的な助言を行うとともに、特に高度・専門的な経営課題に対応するために専門家派遣を実施した。また、国際市場に精通した専門家等で構成される「グローバル・ネットワーク協議会」を設置し、全国各地の有望企業群が取り組むグローバル市場も視野に入れた事業化戦略の立案や販路開拓等を支援した。

3 知的財産の取得・活用に関する支援

(1) 模倣品・海賊版対策について

2004年8月に経済産業省に設置された政府模倣品・海賊版対策総合窓口 (一元的相談窓口) において、権利者等からの模倣品・海賊版に関する相談や情報提供を受け付け、関係省庁と連携して解決への対応を行うとともに必要に応じて外国政府等の働きかけを実施した。

また、外国政府の制度・運用等の対応に問題があることにより、知的財産権に関し利益が適切に保護されていない事業がある場合、本窓口に対する申立てに基づき日本政府が調査を行い、必要があれば二国間協議等を実施する「知的財産権の海外における侵害状況調査制度」の運用を行っている。

(2) 知的資産経営の推進

我が国企業における自主的な知的資産経営報告書の作成による無形資産の「見える化」の促進に向けたため、「知的資産経営 WEEK2020」の開催を支援し、各セミナー等において講演を通じ情報提供を行うことで、知的資産経営の更なる普及・啓発を図った。

(3) 営業秘密及び限定提供データ

(1) 営業秘密管理に関する普及啓発

官民の実務者間において企業情報の漏えいに関する最新の手口やその対策に関する情報交換を緊密に行う場である「営業秘密官民フォーラム」を2020年6月に開催するとともに、判例分析や逮捕情報等に関する情報を掲載した営業秘密に関するメールマガジン「営業秘密のツボ」を毎月配信している。

また、秘密情報の漏えいを未然に防止するための様々な対策を取りまとめた「営業情報の保護ハンドブック～企業価値向上に向けて～」(2016年2月公表)やその簡易版となる小冊子「営業情報の保護ハンドブックのてびき～情報管理も企業力～」(2016年12月公表)、「不正競争防止法（平成5年法律第47号）」によく保護を受けるために必要となる最低限の水準の対策を示す「営業秘密管理指針」(2019年1月改訂)等の周知活動を、HPや講演において引き続き行った。

さらに、グローバル化により海外進出の日系企業が増加する中で、海外での意図しない営業秘密・技術流出防止を目指すべく、在外日系中堅・中小企業を主なターゲットにむけて、現地専門家によるハンズオン支援と情報提供活動を通じて、営業秘密管理体制の整備・強化を支援するための「中小企業アウトリーチ事業」を2019年度から中国で実施しており、2020年度は中国に加えてタイ及びベトナムでも実施した。また現地制度や裁判例の動向と個別支援から得られた知見等を踏まえて、現地における営業秘密の管理に必要な留意点や契約ひな形等を盛り込んだ「営業秘密管理マニュアル」を取りまとめた。
②限定提供データに関する取組

IoT、ビッグデータ、AI 等の活用が進展する第 4 次産業革命を背景に、データの利活用を促進するための環境整備を目的として、「限定提供データ」の制度の創設等を盛り込んだ不正競争防止法の改正を行った（2018 年 5 月公布、限定提供データに関する規定等は 2019 年 7 月施行）。さらに、データ利活用を進めめるための事前対策のポイントをフェーズごとに取りまとめた「データ利活用のポイント集」やその簡易版となる小冊子「データ利活用のてびき」を 2020 年 6 月に策定・公表、限定提供データの要件の考え方や不正競争行為に該当する事例などを盛り込んだ「限定提供データに関する指針」（2019 年 1 月公表）と併せて HP や講演において周知活動を行った。

(4) 知財権情報の活用に関する支援

①特許情報プラットフォーム（J-PlatPat）（（独）工業所有権情報・研修館運営費交付金の内数）

特許情報を活用した効率的な先行技術調査や技術開発等を促進するため、インターネット上の無料サービス「特許情報プラットフォーム（J-PlatPat）」を通じて、国内外で発行された 1 億件以上の特許、実用新案、意匠及び商標の公報並びに審査関連情報を提供し、審査関連情報については、「ワン・ポータル・システム（OPD）照会」を通じて、世界各国の特許出願に関する情報を一括把握することが可能である。

2020 年度には、J-PlatPat の機能改善（中国語・韓国語文献の日本語機械翻訳の改良や特許実用新案分類照会（PMGS）における一覧しやすい簡易表示の追加）を実施した。

②特許出願技術動向調査

大学、公的研究機関や企業等における研究開発活動の検討や効果的な出願戦略の構築のための資料、及び行政機関の科学技術政策等の策定のための基礎資料の提供を目的として、今後の進展が予想される技術テーマを選定し、特許出願技術動向の調査を行っている。2020年度は、7の技術テーマについて調査を実施した。

(5) 権利化に対する支援

①円滑な権利化に対する支援

中小企業の円滑な特許権取得を促進するため、全ての中小企業を対象として、特許料（第 1 年分から第 10 年分）、審査請求料、特許協力条約（PCT）に基づく国際出願に要する手数料（調査手数料、送付手数料、予備審査手数料）、現実の 1 分の 1 に軽減する措置及び国際出願手数料や取扱手数料の 2 分の 1 に相当する額を交付する措置を講じている。

また、中小ベンチャー企業・小規模企業を対象として、一定の要件を満たした場合に特許料（第 1 年分から第 10 年分）、審査請求料、PCT 国際出願に係る手数料（調査手数料、送付手数料、予備審査手数料）を 3 分の 1 に軽減する措置及び国際出願手数料や取扱手数料の 3 分の 2 に相当する額を交付する措置を講じている。なお、中小企業による 2020 年度の軽減措置の利用件数は 62,921 件（暫定値）であった。

②早期権利化に対する支援

これまでの特許制度を巡る情勢変化や新たな課題を踏まえ、2023 年度までに特許の「権利化までの期間」と「一次審査通知までの期間」をそれぞれ、平均約 14か月以内、平均約 10か月以内とするなど、「世界最速・最高品質の特許審査」の実現を目指している。また、研究開発成果の早期活用、グローバルな経済活動等に対する支援を目的として、一定の要件を満たす特許出願について、出願人からの申請を受けて審査、審理を通常より早く行う早期審査・早期審理を継続して実施した。加えて、地震により被災した企業の企業活動に必要な技術を早期に保護し、活用可能とするため、「災害救助法（昭和 22 年法律第 118 号）」の適用される地域（東京都を除く。）に住所又は居所を有する被災した企業、個人等が簡便な手順で早期審査・早期審理を継続して実施した。さらに、新たな技術開発を行い、市場を開拓する段階にあるベンチャー企業に特許権の取得をサポートするため、「ベンチャー企業対応支援早期審査」及び「ベンチャー企業対応スーパー早期審査」を 2018 年 7 月より開始した。

※出願人が補正等をすることに起因して特許庁から再度の応答等を出願人に求めるような場合や、特許庁に応答期間の延長や早期の審査を求める場合等の、出願人に認められている手続を利用した場合を除く。

③世界で通用する安定した権利の設定に向けたインフラ整備

企業活動のグローバル化や事業形態の多様化に伴い、企業の知的財産戦略も事業を起点としたものに移りつつある。そこで、事業で活用される知的財産の包
括的な取得を支援するために、2013 年 4 月から「事業戦略対応まとめ審査」を開始した。「事業戦略対応まとめ審査」は、新規の事業や国際展開を見据えた事業に係る製品・サービスを構成する複数の知的財産（特許・意匠・商標）を対象として、事業説明を受けた上で、分野横断的に一括して審査を行うものである。これにより、企業の望むタイミングで、企業の事業展開を支える知財網の形成が可能となる。

近年、AI 関連技術の発展はめざましく、AI 関連発明の特許出願は様々な分野で増加している。AI 関連技術は代表的な融合技術であり、AI に関する技術水準の把握のみならず、様々な技術分野における AI の応用状況などを的確に把握する必要がある。そこで、特許庁は、2021 年 1 月に、AI 関連発明を対象に、より効率的かつ高品質な審査を実施するために、各審査部門の担当技術分野を超えて連携する AI 審査支援チームを発足させた。AI 審査支援チームでは、最新の AI 関連技術に関する知見や審査事例の蓄積・共有及び関連する特許審査施策の検討等を行っている。

(6) 知的財産の戦略的な活用に対する支援
① 知的財産に関するワンストップ相談窓口「知財総合支援窓口」（（独）工業所有権情報・研修館運営費交付金の内数）
（独）工業所有権情報・研修館（INPIT）では、中小企業等が抱える知的財産に関する悩みや相談に対応する「知財総合支援窓口」を 47 都道府県に設置し、様々な専門家のほか、中小企業支援センターや商工会・商工会議所、よろず支援拠点等の支援機関とも連携したワンストップサービスを提供している。2020 年度の相談件数は 118,514 件であった。また、地域経済を支える中小・ベンチャー企業等に対して、知財の戦略的活用を見据えた中長期的な支援計画を策定し、様々な専門人材を活用した重点的な支援を実施した。2020 年度の対象件数は 62 社であった。
② 中小企業等外国出願支援事業（中小企業等海外出願・侵害対策支援事業補助金の内数）
中小企業等による戦略的な外国出願を促進するため、（独）日本貿易振興機構（JETRO）や都道府県等中小企業支援センター等を通じて、外国への事業展開等を計画している中小企業に対し、外国への出願に要する費用（外国特許庁への出願料、国内・現地代理人費用、翻訳費用）の一部を助成した。2020 年度の採択件数は 822 件であった。
③ 中小企業等海外侵害対策支援事業（中小企業等海外出願・侵害対策支援事業補助金の内数）
中小企業等の海外での適時適切な産業財産権の侵害防止を支援するため、（独）日本貿易振興機構を通じて、模倣品に関する調査や模倣品業者に対する警告・行政処理手続に要する費用を補助し、採択件数は 14 件であった。さらに、海外で自社のブランドや地域団体商標を現地企業に冒頭出願された中小企業等に対し、異議申立や無効審判請求、取消審判請求等の、冒険商標を取り消すために要する費用を補助し、採択件数は 21 件であった。
④ 海外知的財産プロデューサーによる支援（（独）工業所有権情報・研修館運営費交付金の内数）
海外における事業展開を知的財産リスクマネジメント及び知的財産活用の視点から支援するため、海外での事業展開が期待される有望技術を有する中小企業等に対して、知的財産マネジメントの専門家（海外知的財産プロデューサー）を派遣している。
2020 年度は、6 人の海外知的財産プロデューサーにより、140 社（2021年 4 月 1 日時点）の支援を行った。
⑤ 開放特許情報データベースの提供（（独）工業所有権情報・研修館運営費交付金の内数）
特許の活用を促進するため、大学、公的研究機関や企業等が保有する知的財産権で、他者にライセンス又は権利譲渡する意思のある特許（開放特許）の情報を、「開放特許情報データベース」において提供している（登録件数：約 20 万 5,000 件（2021年 4 月 1 日時点））。
⑥ リサーチツール特許データベースの提供（（独）工業所有権情報・研修館運営費交付金の内数）
ライフサイエンス分野において研究を行うための道具として使用される特許又は方法に関する日本特許（リサーチツール特許）の使用を促進するため、大学、公的研究機関や企業等が保有するリサーチツール特許の情報を、「リサーチツール特許データベース」において提供している（登録件数：約 300 件（2021年 4 月 1 日時点））。
(7) 技術情報の管理に関する取組（16 億円の内数）
「産業競争力強化法等の一部を改正する法律（平成 30 年法律第 26 号）」において、事業者が保有する重要な技術情報の適切な管理に対し、国が認定した機関（認定件数：6 件（2021 年 3 月 28 日現在））から認証を受けることができる「技術情報管理認証制度」を創設した。
2020年度は、適切な技術情報管理の構築に向けたアドバイス等を行う専門家の派遣や、制度に関心の高い業界団体等との連携、広報活動など、制度の普及・改善に向けた取組を実施した。

4 戦略的な標準化・認証の推進

(1) 中堅・中小企業等における標準化の戦略的活用の推進
「成長戦略フォローアップ」(2020年7月閣議決定)、「知的財産推進計画2020」(2020年5月知財戦略本部会合決定)に基づき、「新市場創造型標準化制度」を活用して中小企業等から規格の提案のあった案件について、2014年から2021年3月末までに規格を42件策定した。さらに、自治体・産業振興機関、地域金融機関、大学・公的研究機関（パートナー機関）と(一財)日本規格協会(JSA)が連携し、地域において標準化の戦略的活用に関する情報提供・助言等を行う「標準化活用支援パートナーシップ制度」のパートナー機関数を2015年から2021年3月末までに168機関に拡大した。また、中小企業等向けに、標準化に関する戦略的活用についてのセミナーを、2020年度は2021年3月末までに43件実施した。

(2) 戦略的な国際標準化の推進(45億20百万円)
我が国企業が有する優れた技術・製品を国内外に普及させるに当たっては、関連する国際標準を戦略的に策定することが重要となる。このため、先端医療機器、ロボット等の我が国が技術的優位を有する尖端分野や、自動走行システム等の経済的波及効果の大きい社会システムに関連する分野、シェアリングエコノミーなどのサービス分野において、国際標準原案の開発、当該原案の国際標準化機関への提案等を実施した。また、その過程で得られた知見をもとに普及を図った試験・認証基盤の構築等を実施するとともに、国際標準化に必要な場合は日本産業規格(JIS)の開発にあわせて行う、2016年4月より運用を開始した。2020年度においては、大型パワーコンディショナで34件の共同研究/認証実験、大型蓄電池で53件(2021年3月末時点)の共同実験及び共同研究を実施した。また、両施設を活用し、我が国の国際競争力強化に資する試験手法及び国際標準開発を行った。

(4) アジア諸国等との協力関係強化
我が国企業のアジア諸国での事業展開及びアジア市場の獲得を促進するため、我が国企業が強みを持つ製品や技術が適正に評価される性能評価方法等の国際標準化について、アジア諸国の標準化機関と協力してワークショップ・セミナーを開催した。また、国際基準化分野での連携強化のため、ビルの省エネ・再生エネルギーを目的として、Zero Energy Buildingに関するガイドライン及び評価方法の普及に資する研修をASEAN向けに実施した。さらに、国際標準化機構(ISO)、国際電気標準会議(IEC)及びASEAN品質標準諮問委員会(ACCSQ)傘下のWGと連携し、アジア地域向けの標準化人材育成ワークショップを開催した。

(5) 標準化人材の育成
① 標準化資格制度の実施
(一財)日本規格協会において、標準化や規格開発に関する専門知識を備えた人材を「規格開発エキスパート」として評価して登録する「標準化人材登録制度」(2017年6月創設)を実施。規格開発エキスパート404名、規格開発エキスパート補42名を登録(2021年4月1日時点)。
② 大学等における標準化教育の推進
標準化に関する講義を実施するため、大学等へ講師として職員を派遣した。また、2017年度に開発した標準化教育のファカルティ・ディベロップメント教材を公開し、標準化教育コンテンツを充実させた。
③ 若手育成のための国際標準化人材育成講座の実施
国際標準化交渉をリードできる人材を育成するため、(一財)日本規格協会と連携して、ISO及びIECにおける標準化に携わる若手を対象とした「ISO/IEC国際標準化人材育成講座」を実施。2020年度には、同講座を2回実施し、計33名が修了した。また、このほかに、受講者同士のネットワークの維持・強化を図ることを目的として、同講座の修了者を対象とした合同研修会を開催した。
5 科学技術イノベーション人材の育成・確保

（1）卓越研究員事業（17億 56百万円）
優れた若手研究者が産学官の研究機関において安定かつ自立した研究環境を得て自主的・自立的研究に専念できるよう、研究者及び研究機関に対して支援を行う取組を実施した。2019年度から、若手研究者と研究機関をつなぐブリッジプロモーターによるマッチングを促進する新たな取組を導入しており、2020年度はブリッジプロモーターを2機関に増加して、更なるマッチングの充実を図った。

（2）次世代アントレプレナー育成事業（EDGE-NEXT）（4億 45百万円）
これまで各大学等で実施してきたアントレプレナー育成に係る取組の成果や知見を活用しつつ、学生等によるアイデア創出にとどまらず、実際に起業まで行える実践プログラムの構築を通じて、我が国全体のアントレプレナーシップ醸成をよろい層促進するとともに、我が国のベンチャー創出力の強化に資する取組の支援を実施した。

（3）女性研究者・技術者への支援（19億80百万円）

（4）リサーチ・アドミニストレーターに係る資証制度の構築（53百万円）

第2節 ものづくり事業者と大学等の連携

1 大学等の能力を活用した研究開発の促進

（1）大学発新産業創出プログラム（START）（国立研究開発法人科学技術振興機構運営費交付金の内数）
起業前の段階から、公的資金と民間の事業化ノウハウ等を組み合わせることにより、成長性のある大学等発ベンチャーの創出を目指した支援を行った。

（2）研究成果最適展開支援プログラム（A-STEP）（国立研究開発法人科学技術振興機構運営費交付金の内数）
大学等の研究成果の実用化促進のため、大学や公的研究機関等における有望なシーズ発掘から事業化に至るまで、切れ目なく支援を行った。

（3）オープンイノベーション機構の整備事業（19億 35百万円）
企業の事業戦略に深く関わる大型共同研究（競争領域に重点）を集中的にマネジメントする体制の整備を通じて、大型共同研究の推進により民間投資の促進を図った。

（4）共創の場形成支援プログラム（COI-NEXT）（国立研究開発法人科学技術振興機構運営費交付金の内数）
社会変革や社会課題解決につながる産学官連携によるオープンイノベーションを促進するため、大学等を中核としたバックキャスト型の本格的な共同研究の推進と環境づくりを行う、産学官共創拠点の形成を支援した。

（5）センター・オブ・イノベーション（COI）プログラム（国立研究開発法人科学技術振興機構運営費交付金の内数等）
大学や公的研究機関、企業等が集う、世界と戦える大規模産学連携研究開発拠点を構築・運営し、社会実装を目指して産学協働で研究開発を集中的に実施することで、革新的なイノベーションの連続的な実現と、新産業の創出を目指す支援を行った。

（6）産学共創プラットフォーム共同研究推進プログラム（OPERA）（国立研究開発法人科学技術振興機構運営費交付金の内数）
民間企業とのマッチングファンドにより、複数企業からなるコンソーシアム型の連携による非競争領域における大型共同研究と博士課程学生等の人材育成、大学の産学連携システム改革等を一体的に推進するコ
とで、我が国のオープンイノベーションを加速するための支援をした。

（7）地域イノベーション・エコシステム形成プログラム（36億24百万円（当初）、46百万円（2020年度第1次補正））

d地域の成長に貢献しようとする地域大学に事業プロデュースチームを創設し、地域の競争力の源泉（コア技術等）を核に、地域内外の人材や技術を取り込み、グローバル展開が可能な事業化計画を策定し、リスクは高いが社会的インパクトが大きい事業化プロジェクトを支援した。

2 大学等の研究成果の利用の促進

（1）知財活用支援事業（国立研究開発法人科学技術振興機構運営費交付金の内数）
優れた研究成果の発掘、特許化を支援するために、一貫した取組を進めている。具体的には、大学等における研究成果の戦略的な海外特許取得の支援、各大学等に設置している特許権等の集約・パッケージ化による活用促進を実施するなど、大学等の知的財産の総合的活用を支援した。

（2）産学連携知的財産アドバイザーによる支援（（独）工業所有権情報・研修館運営交付金の内数）
地方創生に資する大学等の活動を促進するため、事業化を目指す産学連携プロジェクトを展開する大学に知的財産の専門家である産学連携知的財産アドバイザーを派遣し、知識財産マネジメントを核とする支援を行う「産学連携知的財産アドバイザー派遣事業」を実施っている。2020年度は全29大学に派遣した。

（1）ハローワークにおけるきめ細かなマッチング支援
ハローワークにおいては、分かりやすい求人票の作成に向けた助言・指導や、企業説明会・就職面接会を開催などに取り組む等のきめ細かなマッチング支援を行っている。

（2）人材確保等支援助成金による職場定着の促進等（82億63百万円）
雇用管理改善や生産性向上等により「魅力ある職場づくり」に取り組む事業主等に対して人材確保等支援助成金の支給を行った。

（3）中途採用等支援助成金による転職・再就職者の採用機会の拡大（22億77百万円）
中途採用者の能力評価、賃金、処遇等の制度を整備した上で、中途採用者の採用を拡大させた事業主に対して中途採用等支援助成金（中途採用拡大コース）の支給を行った。

（4）製造業における外国人材受入れ支援事業（2億50百万円）
2019年4月1日より、新たな在留資格、「特定技能」による外国人材の受入れが開始され、経済産業省の所管では、製造3分野（素形材産業、産業機械製造業、電気・電子情報関連産業）において、3,208名の外国人材を受け入れている（2020年12月末時点）。

本事業では、製造3分野の「特定技能」で在留する外国人材の受入れを円滑に行うために、特に中小企業に向けて、制度説明や優良な取組を紹介するセミナーを実施するとともに、中小企業及び外国人材向けの相談窓口の開設・運営等を行った。また、製造3分野で従事する外国人材の技能水準を確保する製造分野特定技能1号評価試験について、問題を作成・翻訳し、2020年10月から2021年3月にかけて国内で実施した。

2 景気循環に対応した雇用の維持・安定対策

（1）労働移動支援助成金による成長分野等への人材移動の実現（13億46百万円）
事業規模の縮小に伴い離職を余儀なくされる労働
者等に対し、再就職を実現するための支援を職業紹介事業者に委託した事業主や求職活動のための休暇を与えた事業主に対して費用の一部を助成する労働移動支援助成金（再就職支援コース）の支給を行った。また、事業規模の縮小等に伴い離職を余儀なくされた労働者等の早期雇入れや当該労働者への訓練（OJTを含む。）を行った事業主に対する労働移動支援助成金（早期雇入れ支援コース）の支給を行った。

なお、今後労働力人口の減少が見込まれる中で経済成長を図っていくためには、労働生産性を高めていくことが不可欠である。このため、事業所における生産性向上の取組を支援するため、生産性向上を図った事業者が労働移動支援助成金等労働関係助成金（一部）を利用する場合に、その助成額又は助成率の割増し等を行った。

（2）雇用調整助成金による雇用の維持・安定（62億30百万円）

景気の変動などの経済上の理由により、事業活動の縮小を余儀なくされた事業主が、休業、教育訓練又は出向により、労働者の雇用維持を図った場合に、雇用調整助成金の支給を行った。

（3）在籍型出向の活用による雇用維持への支援（46億43百万円）

2020年度第3次補正予算において、新型コロナウイルス感染症の影響により事業活動の一時的な縮小を余儀なくされた事業主が、在籍型出向により雇用維持をする場合に出向先の双方に対し助成を行う「産業雇用安定助成金」の創設や、企業間の出向・移籍の斡旋を行う「産業雇用安定センター」によるマッチング支援体制の強化等により在籍型出向を活用した雇用維持を図る事業主に対する支援を行った。

3 労働力需給調整機能の強化

（1）求人関係情報の積極的な提供等

ハローワークインターネットサービスにおいて、全国のハローワークで受け付けた求人の情報提供を引き続き実施している。

（2）製造業の請負事業の適正化及び雇用管理改善の推進（15百万円）

製造業の請負事業の適正化及び雇用管理改善に向けた取組を促進するため、2007年6月に策定・公表した「製造業の請負事業の雇用管理の改善及び適正化の促進に取り組む請負事業主及び発注者が講ずべき措置に関するガイドライン」に基づく審査基準により優良事業者の認定及びセミナーの開催等の周知を行うとともに、電話相談による支援等を実施した。

4 若年者の就業支援の推進及び職業意識の啓発

（1）地域若者サポートステーション（52億99百万円）＜厚労省、文科省＞

若年無業者等の就業を支援するため、地域公共団体との協働により、地域の若者支援機関からなるネットワークを構築・維持するとともに、その拠点となる地域若者サポートステーションを設置し、キャリアコンサルタント等による専門的な相談や各種プログラムの実施など、多様な就労支援メニューを提供する「地域若者サポートステーション事業」を2006年度に創設した。

2020年度の取組として、サポステへの誘導の手法の一環として、福祉機関等へのアウトリーチを積極的に実施した。

（2）新卒者等に対する就労支援（新卒応援ハローワーク）（87億29百万円）

大学院・大学・短大・高専・専修学校などの学生や既卒未就職者を対象に専門的支援を行う新卒応援ハローワーク等においては、広域的な求人情報の提供や、就職支援セミナー・面接会を実施した。また、学生や既卒者の支援を専門に行う相談員である就職支援ナビゲーターを新卒応援ハローワーク等に配置し、担当者制を基本とした個別相談・求人紹介等就職活動を豊かにするための支援を行うとともに、大学等との連携による学校への出張相談等を行った。さらに、就職後の職場定着支援等の相談窓口を設置し、就職活動から、職場で活躍するまでの総合的なサポートを実施した。2020年度においては、これらの就労支援を全国56か所で実施した。

（3）フリーター等に対する就労支援（わかものハローワーク）（29億68百万円）

主に正社員就職経験が乏しいフリーターを対象に、正社員就職実現を目指した専門的支援を行うわかものハローワーク等において、担当制によるきめ細かな職業相談・応募先の設定等の面接指導や応募書類作成・職業相談等を行った。2020年度においては、これらの就労支援を全国28か所のわかものハローワーク等で実施した。
第2章　職業能力の開発及び向上

第2節　職業能力の開発及び向上

<table>
<thead>
<tr>
<th>1</th>
<th>産業構造の転換や人生100年時代を見据えた人材開発施策の推進</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ハロートレーニング(公的職業訓練)の推進</td>
</tr>
</tbody>
</table>

(1) 公共職業訓練の推進
公共職業能力開発施設では、ものづくり分野を中心として、離職者の再就職の支援や在職労働者のスキルアップ、高度な技能者の養成、学卒者に対する労働市場の適応性の育成を目的に、職業訓練プログラムを提供している。

(2) 求職者支援制度の推進
非正規雇用の労働者など雇用保険を受給できない求職者に対するセーフティネットとして、求職者支援制度の推進を行っている。
（3）生産性向上人材育成支援センターの取組

生産性向上人材育成支援センターは、中小企業等の労働生産性向上に向けた人材育成を支援することを目的として、中小企業等の労働者一人一人の生産性向上を支援するため、民間機関等を活用し、企業の生産性向上に必要な知識やスキル等の習得を図る生産性向上支援訓練を実施している。

さらに、2018年度からは、IT技術の進展に対応するために、中小企業や製造現場などの在職者を対象とした、ITの活用や情報セキュリティなどのIT理解・活用力の習得を図るIT理解・活用力訓練を実施している。

（4）職業訓練の質の向上

民間教育訓練機関の提供する職業訓練サービスの質の確保・向上を図るため、厚生労働省では、2011年12月に「民間教育訓練機関における職業訓練サービスガイドライン」を策定し、PDCAサイクルを活用することによる職業訓練サービスの質の向上の取組を進めている。2014年度よりガイドライン研修を実施しており、公的職業訓練のうち委託訓練の契約及び求職者支援訓練の認定に当たっては、ガイドライン研修の受講を要件化している（2020年度末までに約55件の研修を実施している）。

また、職業訓練サービスガイドライン適合事業所認定の認定制度については、2016年度及び2017年度の試行実施を経て、2018年度より本格実施している。2018年度から2020年度までに、43事業所が適合事業所として認定された。

（5）地域創生人材育成事業

人手不足分野を抱えている地域において、従来の公的職業訓練の枠組みでは対応できない、地域の創意工夫を活かした人材育成の取組を支援するために、「地域創生人材育成事業」を実施した。この事業は、都道府県から提案を受けた事業計画の中から効果が高いと見込まれる取組を選定し、新たな人材育成プログラムの開発を都道府県に委託して実施したものである。2020年度までに、32の都道府県において地域の実情に応じた事業が実施された。

3 事業主が行う職業能力開発の推進

（1）事業主に対する助成金の支給

①人材開発支援助成金の活用促進（914億92百万円（当初）、10億百万円（2020年度第3次補正））

企業内における労働者のキャリア形成を効果的に促進するため、雇用する労働者に対して職業訓練などを計画に沿って実施した事業主に対して、訓練経費や訓練期間中の賃金の一部等を助成している。さらに、製造業や建設業等の分野において厚生労働大臣の認定を受けた一定の雇用型訓練（「特定分野認定実習併用職業訓練」）を行う事業主及び事業主団体等に対して、高率・高額助成での支援を行った。

また、経済産業省と連携し、中小企業等の生産性向上のため、認定事業分野別経営力向上推進業務として行う、事業分野別指針に定められた事項に関する研修を実施した場合を、当該助成金制度の対象としている。

②認定職業訓練に対する支援（11億61百万円）

事業主や事業主の団体等が行う職業訓練のうち、教科、訓練期間、設備等が厚生労働省令で定める基準に適合して行われている認定職業訓練施設（全国1,056施設（2020年4月末時点））について、国や都道府県が定める補助要件を満たす場合に、これを運営する中小企業等に対して、運営等に要する経費の一部について補助を行った。

さらに、IT技術の進展に対応するために、中小企業や製造現場などの在職者を対象とした、ITの活用や情報セキュリティなどのIT理解・活用力の習得を図るIT理解・活用力訓練を実施している。

（2）認定職業訓練に対する支援（11億61百万円）

事業主や事業主の団体等が行う職業訓練のうち、教科、訓練期間、設備等が厚生労働省令で定める基準に適合して行われている認定職業訓練施設（全国1,056施設（2020年4月末時点））について、国や都道府県が定める補助要件を満たす場合に、これを運営する中小企業事業主等に対して、国及び都道府県からその運営等に要する経費の一部について補助を行った。

（3）セルフ・キャリアドックの普及促進（17億62百万円）

労働者のキャリア形成を支援するため、年齢、就業年数、役職等の範囲において定期的にキャリアコンサルティングを受ける機会を設定する仕組みである「セルフ・キャリアドック」を企業に広めることを目的に、キャリア形成サポートセンターにおける周知や勧奨、相談・研修等の実施を通じて導入及び取組定着の支援を行った。
第2章
ものづくり労働者の確保等に関する事項

第3節 ものづくりに関する能力の適正な評価、労働条件の確保・改善

1 職業能力評価制度の整備

(1) 技能検定制度の運用（35億 46百万円）
技能検定制度は、労働者の有する技能の程度を検定し、これを公証する国家検定制度である。また、労働者の技能及び地位の向上を図ることを目的とした国家検定であり、機械加工、電子機器組立て等のものづくり産業に関係の深い職種を中心に130職種について実施している。
なお、130職種のうち111職種は都道府県知事が、19職種は民間の指定試験機関が実施することとなっている（2021年4月1日時点）。
ただし、2020年度は、新型コロナウイルス感染症の状況を踏まえ、一部の試験が中止となった。

(2) 社内検定認定制度の推進
社内検定認定制度は、職業能力の開発及び向上並びに労働者の経済的社会的地位の向上に資するため、事業主等が、その事業に関連する職種について雇用する労働者の有する職業能力の程度を検定する制度である。同制度では、技能振興上奨励すべき一定の基準を満たすものを厚生労働大臣が認定することとされており、2021年4月1日時点、48事業主等120職種が認定されている。

2 「ものづくり立国」の推進

(1) 各種技能競技大会等の実施
① 各種技能競技大会等の推進（13億 30百万円）
技能の素晴らしさ、重要性について若者を始めとする国民各層に深く浸透させるため、各種技能競技大会を開催している。このうち最も規模の大きい技能五輪全国大会は、都道府県ごとに行われる地方大会で選抜された青年技能者（原則23歳以下）が参加して毎年開催されている。2020年度（第58回技能五輪全国大会）は11月13日から11月16日にかけて、新型コロナウイルス感染症の感染拡大防止を図る観点から無観客で開催され、40職種に944名の青年技能者が参加した。
② 卓越した技能者（現代の名工）の表彰制度（25百万円）
広く社会一般に技能尊重の気運を浸透させ、もって技能者の地位及び技能の向上を図るとともに、青少年が、その適性に応じ、誇りと技能を持って技能労働者となり、その職業に精進する気を高めることを目的として、卓越した技能者（現代の名工）の表彰を実施している。2020年度は11月9日に、新型コロナウイルス感染症の感染拡大防止対策を徹底した上で、各部門を代表する20名の技能者を招いて表彰式を開催した。
催し、150名を表彰した。なお、1967年度に第1回の表彰が行われ以来、2020年度の第54回の表彰まで、被表彰者は計6,646名となった。

（2）若年技能者人材育成支援等事業（35億55百万円）<厚労省、文科省>
若年技能者の技能向上、若者が進んで技能者を目指す環境の整備等を目的として、2013年度に「若年技能者人材育成支援等事業」を創設した。
2020年度末までに、ものづくりに関わる優れた技能や経験を有する12,190人を「ものづくりマイスター」として認定・登録した。「ものづくりマイスター」を企業、業界団体、教育訓練機関に派遣し、若年技能者等に対する実技指導を行った。
また、同年度末までに、ITリテラシーの強化や、将来のIT人材育成に向けて、小生から高校生にかけて段階的に情報技術に関する興味を喚起するとともに、情報技術を使いこなす職業能力を付与するため、情報技術関連の優れた技能をもつ技能者410人を「ITマスター」として認定・登録し、学校等に派遣した。
さらに、同年度末までに、ものづくり現場の環境変化に伴い、IT技術を活用した生産性向上等に関する指導も求められていることを踏まえ、中小企業等に対するIT技術を活用した効率的なものづくりに関する実技指導を行うため、ものづくりの知識・技能等に加え、改善の能力やITの技能等について一定の要件を満たす熟練技能者を「テックマイスター」として49人を認定し、中小企業等に派遣し従業員等に実技指導を行うこととしている。加えて、地域関係者の創意工夫による取組を一層推進することを図り、地域における技能尊重気運の醸成を図った。
なお、2020年度は、新型コロナウイルス感染症の影響により、多くの取組が中止となったが、一部において、リモートによる実技指導や、感染防止対策を徹底した上で実施した。

（3）製造業安全対策官民協議会
2017年3月に発足した、厚生労働省、経済産業省、中央労働災害防止協会及び製造業主要10団体で構成する「製造業安全対策官民協議会」において、製造業における安全対策の更なる強化に向け、リスクアセスメント標準手法等の開発を通じ、事業者の自主的な改善や新たな取組を促進している。

（4）あんぜんプロジェクト等の推進
事業場等における安全活動の活性化のため、安全な職場づくりに熱心に取り組んでいる事業場等に国民や取引先に注目するよう「あんぜんプロジェクト」を実施した。また、同プロジェクトの一環として、「見える」安全活動コンクールを実施した。

3 労働条件の確保・改善

（1）労働条件の確保対策
労働基準監督署等において、製造業も含め、長時間労働の抑制や賃金不払事案の解消等の一般労働条件の確保・改善及び安全衛生の確保に的確に対応するとともに、解雇等の事案にも適切に対応した。
第3章 ものづくり基盤産業の育成に関する事項

第1節 産業集積の推進等

支援に取り組んだ。

さらに、カーボンニュートラルやデジタル等の重点分野における案件形成を貿易保険で支援すべく、(株)日本貿易保険（NEXI）に「LEAD イニシアティブ」を創設し、2025年度までに1兆円の案件形成を目指すこととした。

（4）レアアース・レアメタルの安定供給確保＜経産省、文科省＞

高付加価値産業に必要不可欠なレアアース・レアメタルについては、特定供給国の政策に左右されない産業構造の確立を目指して、代替材料・使用量削減技術開発やリサイクル等を推進している。2012年度から実施している「次世代自動車向け高効率モータ用磁性材料開発」を新たに「輸送機器の抜本的な軽量化に資する新構造材料等の技術開発事業」と名称を変更し、モータの高効率化・小型化を実現するため、従来以上に強力かつ希少金属の使用を大幅に削減した磁石材料の開発を行っている。また、「資源循環システム高度化促進事業」により、我が国の都市鉱山の有効利用を促進し、資源の安定供給及び資源・省エネルギー化を実現するため、廃品・廃部品の自動選別技術及び高効率製鍊技術の開発を行っている。さらに、「サプライチェーン強化に資する技術開発・実証」により、供給途絶リスクの高いレアアースのサプライチェーン強化につなげるため、レアアースの使用を極力減らす、又は使用しない高性能磁石の開発や不純物等が多く利用が難しい低品位レアアースを利用するための技術開発等を行っている。

加えて、消費国間の連携強化として、レアメタル主な消費国である日米欧の政策当局者及び技術専門家が、レアメタル供給を取り巻く世界的な問題について共通理解を深め、レアメタル代替技術やリサイクル技術などといった将来の安定供給を目指した情報交換を行うため、日米欧三極クリティカルマテリアル会合を毎年開催している。2020年度は11月にオンラインで第10回目の会合を開催した。
(5) 地域イノベーション基盤整備事業 (5 億 50 百万円 (2019年度補正))
技術革新が急速に進む中でも地域企業によるイノベーション創出し、生産性向上を図るため、公設試験研究機関、大学等による企業支援体制構築に資する先端設備の初期導入・人材育成を支援した。

(6) 医療機器産業の振興
日本の優れた「ものづくり技術」を活用した医療機器等との「医工連携」による開発・事業化事業及び医療上の価値が高く、競争力のポテンシャルが高い分野における世界最先端の医療機器の開発を推進した。また、開発の指針となる開発ガイドライン（手引き）の策定を実施した。

2 環境性能の高い製品の普及促進等

(1) 次世代自動車普及目標・長期目標
日本は、2030 年の新車販売台数に占める次世代自動車の割合を 5 〜 7 割（ハイブリッド自動車 30 〜 40%、電気自動車・プラグインハイブリッド自動車は 20 〜 30%、燃料電池自動車は 3%程度、クリーンディーゼル自動車は 5 〜 10%）にする普及目標を設定している。また、2050 年までの長期ゴールとして、世界で供給する日本車について、1 台当たりの温室効果ガス排出量を 8 割程度削減することを目指すとともに、究極的には電源のゼロエミッション化を図るとともに、燃料から走行までトータルでの温室効果ガス排出量をゼロにする「Well-to-Wheel Zero Emission」を掲げている。
2019 年 6 月に取りまとめた 2030 年度の乗用車燃費基準においては、2030 年度の乗用車燃費基準における目標年度が到来した 2020 年度燃費基準を達成していることを条件に、2030 年度燃費基準の達成度に応じて減免する仕組みに切り替えた上で 2 年間延長された。

(2) 環境性能に優れた自動車に対する自動車関係諸税
2021 年度税制改正において、自動車重量税のエコカー減税については、燃費性能がより優れた自動車の普及を促進する観点から、目標年度が到来した 2020 年度燃費基準を達成していることを条件に、2030 年度燃費基準の達成度に応じて減免する仕組みに切り替えられた上で、適用期限が 2 年間延長された（2021 年 5 月から 2023 年 4 月末まで）。その際、2 回目車検時の免許対象について電気自動車等やこれらと同等の燃費性能を有するハイブリッド車等に重点化が図られた。また、クリーンディーゼル車の取扱いについても、見直しを行った。
自動車税及び軽自動車税の環境性能割については、燃費性能に応じた税率区分を設定し、その区分を 2 年ごとに見直すことにより燃費性能がより優れた自動車の普及を促進するものであり、2020 年度末が見直しの時期に当たることから、目標年度が到来した 2020 年度燃費基準の達成状況を考慮しながら、2030 年度燃費基準の下で税率区分が見直された。
自動車税・軽自動車税の軽減措置（グリーン化特例（軽課））については、クリーンディーゼル車を対象から除くとともに、適用対象を電気自動車等に限定した上で 2 年間延長された。

(3) 次世代自動車普及に向けた取組（258 億 93 百万円（当初）、116 億 97 百万円（経済産業省 36 億 97 百万円、環境省 80 億 円）（2020年度第3次補正））
運輸部門における低炭素化に貢献するだけでなく、災害時に非常用電源として活用することが可能な次世代自動車の普及を促進するため、車両や外部給電器等の購入支援を行った。第 3 次補正予算においては、グリーン社会の実現を進めるため、電気自動車・燃料電池自動車等の導入拡大を図るとともに、日常・非常時ともに活用できる充電設備／外部給電器の普及や、再エネ電力を使ったゼロカーボンのライフ・ワークスタイルの普及促進を図った。
また、電気自動車等の普及に必要な充電インフラの整備を促進するため、充電設備及び設置工事費の一部補助を通じて高速道路のサービスエリア、パーキングエリアや道の駅、マンション等への整備を進めた。さらに、2021 年 3 月末までに約 146 か所の水素ステーションを整備し、燃料電池自動車や水素ステーションの低コスト化に向けた技術開発や規制の見直しなどを進めた。

(4) 高性能建材等の実証・普及に向けた支援（459 億 50 百万円の内数）
既存住宅の断熱・省エネ性能の向上を図るため、工期短縮可能な高性能断熱建材や蓄熱・調湿等の付加価値を有する省エネ建材の導入の実証を支援した。
3 産業界の取組に関する支援

(1) サポカー補助金（1,127億円）

高齢運転者による交通事故が相次いでいることを踏まえ、高齢運転者の交通安全対策として、65歳以上 の高齢者を対象に、安全運転支援装置を搭載した安全運転サポート車（サポカー）の購入等を補助するサポ カー補助金を措置したところであるが、サポカーの需 要増に伴う納期の遅延等の影響に鑑み、予算の繰越しを行って2020年度も事業を引き続き実施した。

具体的には、対歩行者衝突被害軽減ブレーキやペダ ル踏み間違った急発進抑制装置を搭載したサポカーの購 入に対しては最大10万円、後付けのペダル踏み間違った急発進抑制装置の購入・設置に対しては最大4万 円の補助を行った。

(2) 多様なモビリティ導入支援事業（7億70百万円）

2019年6月の「未就学児等及び高齢運転者の交通安全緊急対策」を踏まえ、高齢運転者の自動車に代わる移動手段についての検討を行い、2020年度、電動アシスト自転車については、高齢者等に対して安全 講習会の実施を前提とした貸出事業を支援するととも に利用形態に関するデータ収集を実施した。電動車いすについては、社会における理解の増進や受容性の向上 のため、地域における電動車いすの導入実証や、安全 な利用に関する周知等の取組を行った。

第2節 中小企業の育成

1 取引条件の改善

(1) 下請等中小企業の取引条件の改善

サプライチェーン全体にわたる取引環境の改善を図ることを目的とした対策パッケージ「未来志向型の取 引慣行に向けて」に基づき、2021年3月末までに 自動車や電機・情報通信機器など16業種49団体に おいて、取引適正化と付加価値向上に向けた自主行動計画を策定された。

また、全国に120名規模の下請Gメンを配置し、 下請中小企業に対し、年間約4,000件のヒアリング を実施している。2021年3月、中小企業庁において、 各団体が実施した自主行動計画のフォローアップ調査 結果及び下請Gメンによるヒアリング調査結果を取 りまとめて公表するとともに、自主行動計画策定団体 に対し、更なる取組を要請した。

フォローアップ調査によれば、下請代金の現金払化 については着実に改善傾向にあるものの、手形等のサイトは90日や120日に張り付いており、手形 の割引料が下請代金に加味されていないといった課題 も生じている。こうした課題を解決するため、2020年 7月から有識者を交えた検討会（約束手形を始め とする支払条件の改善に向けた検討会）を開催。手形払いの現金化や、手形等のサイトの短縮や割引料の負担といった約束手形に関する論点について議論を行い、手形等のサイトを60日以内とするなど、下請 代金の支払手段に関する通達（手形通達）の見直しを行うこととした。

さらに、中小企業の知的財産取引においては、公正 な条件での適正な契約が結ばれていなかったといった 課題が生じている。こうした課題を解決するため、 2020年7月から有識者を交えた検討会（知的財産取 引検討会）を開催。知的財産取引における契約のガイ ドラインと契約書のひな形を策定し、周知・普及や、 知財支援の体制強化、中小企業の気づきや知財経営への取組を促すことなどを盛り込んだ報告書を 取りまとめ、公表した。

加えて、2020年8月及び12月に「型取引の適正 化推進協議会」を開催し、2019年12月に取りまとめ タレント取引の適正化推進協議会報告書」を踏まえた 各産業界における型取引の適正化への取組の報告を受 けるとともに、2020年10月には型取引を行う約3万 社の事業者に書面調査を実施し、取組の進捗状況の 確認を行った。このほか、型取引の成功事例を示すた め、モデル事業者による実証事業を行った。

また、「中小企業・小規模事業者の活力向上のため
の関係省庁連絡会議」の下に設置された「下請等中小企業等の取引条件改善に関するワーキンググループ」が 2020 年 6 月及び 8 月に開催され、下請取引適正化に向けた取組についてなどを議論した。さらに、2020 年 12 月に「中堅企業・中小企業・小規模事業者の活力向上のための関係省庁連絡会議」へと引き継がれ、2021 年 1 月には同会議の下に設置された「中小企業等の活力向上に関するワーキンググループ」が開催され、中小企業・小規模事業者の活力向上に向けて、取引条件の改善、生産性向上等の中小企業・小規模事業者が抱える諸課題の実態を把握し、対応策を検討した。

（2）下請代金支払遅延等防止法（下請法）
下請取引の適正化、下請事業者の利益保護のため、公正取引委員会と中小企業庁が密接な協力関係の下、「下請法（昭和 31 年法律第 120 号）」を執行した。中小企業庁は、約 5 万件の親事業者及び当該親事業者と下請取引を行う約 30 万件の下請事業者に対して定期調査を実施するとともに、下請法違反事実に関する情報提供・申告等を行うための「申告情報受付窓口」により、下請法違反に関する情報収集を行ったほか、2020 年度には、339 社の親事業者へ立入検査等を行い、うち支払遅延、下請代金の減額等の下請法違反又は違反のおそれが認められた 268 社の親事業者に対し、書面による改善指導を行うなど、下請法の厳格な運用に努めた。

（3）下請中小企業振興法（下請振興法）
2021 年 3 月に、「下請中小企業振興法（昭和 45 年法律第 145 号）」の「振興基準」に、①知的財産の取扱い、②手形等の支払サイトの短縮化及び割引料負担の改善、③フリーランスとの取引、④親事業者に対する協議を下請事業者から申し出やすい環境の整備など、親事業者と下請事業者の望ましい取引慣行を追記し、改正を行った。改正された「振興基準」については、改正内容を産業界が策定する自主行動計画や国が策定する業種別下請ガイドライン等にも反映することになった。

また、下請 G メンによる下請中小企業へのヒアリングを通じて取引実態を確認し、2020 年 6 月及び 7 月に業所管省庁から所管業界や事業者への優良事例の共有、ヒアリングや指導等を行った。

（4）下請取引適正化のための普及・啓発
①下請かけこみ寺（9 億 77 百万円の内数）
全国 48 か所に設置した「下請かけこみ寺」において、中小企業の取引に関する相談対応、裁判外紛争解決手続（ADR）を実施した。
②講習会、セミナーの開催等（9 億 77 百万円の内数）
下請法の違反行為を未然に防止するため、親事業者の調達担当者等を対象として下請法、下請ガイドライン（自動車産業など 18 業種）、価格交渉サポートセミナーに関するインターネットを活用したオンライン形式での講習会を開催した。また、広く下請法等の遵守を呼びかけるシンポジウム等をオンラインで開催した。
③パートナーシップ構築宣言
感染症の影響等により、中小企業・小規模事業者に経営環境悪化のしわ寄せが及ばないよう取引適正化等を促進するために、大企業と中小企業の連携による生産性向上に取り組むことや望ましい取引慣行の遵守を経営責任者の名で宣言する「パートナーシップ構築宣言」の仕組みを導入した。2021 年 3 月末までに 1,056 社が宣言した。

2 中小企業の経営の革新及び創業促進

（1）経営革新の促進
経済的環境の変化に即応して中小企業が行う新商品の開発又は生産、新役務の開発又は提供、商品の新たな生産又は販売の方式の導入、役務の新たな提供の方式の導入その他の新たな事業活動を行うことにより、経営の相当程度の向上を図る経営革新を支援するため、以下のような支援措置を行った。
①新事業活動促進資金（財政投融資）
中小企業等経営強化法に基づく経営革新計画の承認を受け、経営革新のための事業を行う個別の中小企業者、組合及び任意グループに対し、（株）日本政策金融公庫が融資を実施した。
②中小企業信用保険法の特例
中小企業等経営強化法に基づく経営革新計画の承認を受け、当該事業を行う際の資金供給を円滑化するため、信用保証協会において、「中小企業信用保険法（昭和 25 年法律第 264 号）」に規定する普通保険、無担保保険及び特別小口保険等の特例による支援を実施した。
（2）創業・ベンチャーの促進

① 新創業融資制度（財政投融資）
（株）日本政策金融公庫が、新たに事業を開始する者や新規開業して税務申告を2期終えていない者に対し、無担保・無保証で融資を実施した。

② 創業者向け保証
民間金融機関による創業者への融資を後押しするため、信用保証協会において、これから創業する者又は創業後5年未満の者等を対象とする保証制度を実施した。

③ ファンド出資事業
本事業は、民間の投資会社が運営する投資ファンドについて、(独)中小企業基盤整備機構が出資（原則、ファンド総額の2分の1以内）を行うことで、民間資金の呼び水としてファンドの組成を促進し、創業又は成長初期の段階にあるベンチャー企業（中小企業）や新事業展開等により成長を目指す中小企業への投資機会の拡大を図るものである。起業支援ファンドについては、累積出資先ファンド数125件、出資総額3,893億円を、累積投資先数3,366件に至った。また、中小企業成長支援ファンドについては、累積出資先ファンド数129件、出資総額1兆357億円を、累積投資先数1,840件に至った（両ファンドともに2021年4月1日時点実績）。また、「健康・医療事業分野投資促進出資事業」を活用し、2021年4月1日までに起業支援ファンドを2件、中小企業成長支援ファンドを8件組成した。

④ エンジェル税制
創業間もない中小企業への個人投資家（エンジェル）による資金供給を促進するため、一定の要件を満たす中小企業に対して、個人投資家が投資を行った時点で、当該株式を譲渡した時点で所得税の優遇を受けることができる制度。当該制度を通じて、創業間もない企業の資金調達を支援した。

⑤ オープンイノベーション促進税制
2020年度税制改正において、大企業等がスタートアップ企業とのオープンイノベーションに向け、スタートアップ企業の新規発行株式を一定額以上取得する場合、その株式の取得価額の25%が所得控除される制度を創設した。

（3）新事業促進支援事業

① 地域産業資源活用・農商工等連携事業
中小企業による新事業活動の促進のため、中小企業等経営強化法、「地域産業資源活用促進法（平成19年法律第39号）」、「農商工等連携促進法（平成20年法律第38号）」に基づき、中小企業者が行う新商品、新サービスの開発や、それらの販路開拓の取組に対し、予算、財政等を活用した支援を実施した。

② 新事業活動促進資金（財政投融資）（再掲 第2部第3章第2節第2.（1）参照）
③ 中小企業信用保証法の特例（再掲 第2部第3章第2節第2.（1）②参照）
④ 商業・サービス競争力強化連携支援事業（131億20百万円の内数）
中小企業・小規模事業者が、異分野の中小企業と連携し、産学官連携して行う新しいサービスモデルの開発等を支援する事業であり、2020年度は39件採択した。

（4）中小企業の海外展開支援
国Characteristic での需要減少や国際競争の激化による産業構造の変化等に直面する中、中小企業が成長するためにも、アジア等の新興国を始めとする成長著しい海外市場で新たな需要を獲得することが喫緊の課題となっている。このため、中小企業の本格的な海外展開に向け、資金面を含め総合的な支援策を講じていくこととしている。

① 現地進出支援強化事業（14億20百万円の内数）
中小企業の海外展開を後押しするため、(独)日本貿易振興機構による情報提供、海外展示会や商談会等のオンライン化を図り、販路拡大を支援、商談後のフォローアップ、現地進出後の事業安定・拡大支援（プラットフォーム事業）など、段階に応じた支援を提供し、海外進出、または発展させるまでを一貫して支援した。

② JAPANブランド育成支援事業（10億円の内数）
中小企業等が、海外展開や全国展開、インバウンド需要の獲得を目指して、新商品・サービス開発やブラ
ンディング等の取組を行う際に、経費の一部を補助する事業であり、2020年度は当初予算で192件、補
正予算で281件の事業を採択した。

③ 海外展開・事業再編資金（財政投融資）
経済の構造的変化に適応するために海外展開又は海
外展開事業の再編を行うことが経営上必要な中小企業
の資金繰りを支援するため、（株）日本政策金融公庫
による融資を実施した。

④ 海外展開を担う人材育成の支援（42億7百万円
の内数）

（ア）技術協力活用型・新興国市場開拓事業（研修・
専門家派遣事業）
開発途上国のリーダーとしての活躍が期待される産
業人材に対し、日本企業が有する専門技術やノウハウ
、経営管理手法等の習得に向けた日本への研修、専門家派遣による現地指導等に対する支援をする
ことで、我が国企業の海外進出や開発途上国の発展を
促進するもの。具体的には、アジアを始めとする開発
途上国の産業技術者や経営管理者等の人材を対象に日
本国内の企業の製造ライン等現場を活用した研修や、
我が国からの専門家派遣による現地企業でのOJTを
含む技術指導等に対する支援を行った。

（イ）技術協力活用型・新興国市場開拓事業（国際
化促進インターンシップ事業）
日本企業が高度外国材の活用を通じて競争力を高める機会を提供するべく、日本企業によ
る海外学生等を通じたインターンシッププログラムを実施した。

⑤ 海外知的財産プロデューサーによる支援（3）
工業所有権情報・研修資料提供費交付金の内数（再
掲 第2部第1章第1節3.（6）④参照）

⑥ 知的財産に関するワンストップ相談窓口「知財総合
支援窓口」（再掲 第2部第1章第1節3.（6）①参照）

⑦ 中小企業等外国出願支援事業（再掲 第2部第1
章第1節3.（6）②参照）

⑧ 中小企業等外国出願支援事業（再掲 第2部第1
章第1節3.（6）③参照）

⑨ 新輸出大国コンソーシアム（253億89百万円の
内数（当初）、32億94百万円の内数（2020年度
第3次補正））

（独）日本貿易振興機構、（独）中小企業基盤整備機
構、商工会議所、商工会、金融機関等の支援機関を結
集するとともに、幅広い分野における292名の専門
家を確保（2021年4月1日時点）し、海外展開を
図る中堅・中小企業に対して、事業計画の策定から販
路開拓、現地での商談サポートに至るまで、総合的な
支援をきめ細かに実施した。

３ 中小企業のものづくり基盤技術強化

（1）戦略的基盤技術高度化支援事業（再掲 第2
部第1章第1節1.（4）②参照）

（2）中小企業・小規模事業者人材対策事業（10億
50百万円の内数）

中小企業・小規模事業者は、その経営課題に応じ、
地域内外の女性・若者・シニア等の多様な人材から、
必要な人材を確保できるように、企業の魅力発信やマッ
チングの促進等を実施した。

③ 中小企業大学校における人材育成支援（（独）
中小企業基盤整備機構交付金の内数）

中小企業の人材育成支援であるため、中小企業大学校
において、中小企業等の工場長や生産現場の監理・監督
者を対象に、効果的な品質管理、発注管理、工程管理の
ノウハウを提供する工場管理者養成コースを実施した。

（4）中小企業等経営強化法

中小企業等経営強化法に基づく経営力向上計画を策
定し、認定された企業に対し、中小企業経営強化税制
や（株）日本政策金融公庫の融資制度等の支援制度を
講じ、2021年1月末時点で、116,479件を認定。

（5）中小企業投資促進税制

機械装置等を取得した場合に、取得価額の30％
の特別償却又は7%の税額控除（税額控除は資本金
3,000万円超の法人を除く)ができる措置を講じた。2021年度税制改正において、適用期限を2年間延長（2022年度まで）することとされた。

(6) 中小企業経営強化税制

中小企業等経営強化法に基づき経営力向上計画の認定を受けた中小企業が、その経営力向上計画に基づき経営力向上設備等を取得した場合に、即時償却又は10%の税額控除（資本金3,000万円超の法人の税額控除は7%）ができる措置を講じた。2020年4月には新型コロナウイルス感染症対策として、デジタル化設備を類型に追加した。2021年度税制改正において、新たな類型として経営資源集約化設備を追加した上で、適用期限を2年間延長（2022年度まで）することとされた。

第3節 戦略分野（自動走行、ロボット等）での産業育成

1 戦略分野における基盤整備

(1) 次世代人工知能・ロボット中核技術開発（50億円）

産業競争力を強化し、顕在化する様々な社会課題を解決するキーテクノロジーであるAI技術を実世界のすみずみまで実装させていくために必要となる次世代AI基盤技術開発として、過去の研究成果を踏まえ、「人と協調できるAI」「実世界で信頼できるAI」「容易に構築・導入できるAI」の研究開発に新たに着手した。また、「生産性」、「健康・医療・介護」、「空間の移動」分野における人工知能技術等の社会実装を目指した研究開発を実施した。

(2) 高効率・高速処理を可能とするAIチップ・次世代コンピューティングの技術開発事業（94億20百万円）

IoT社会の到来により増加した膨大な量の情報を効率的に活用するため、ネットワークのエッジ側で動作する超低消費電力の革新的AIチップに係るコンピューティング技術や、新原理により高速化と低消費電力化を両立する次世代コンピューティング技術（量子コンピュータ、脳型コンピュータ等）等の開発を実施した。

(3) ポスト5G情報通信システム基盤強化研究開発事業（1,100億円）（2019年度補正）、900億円（2020年度第3次補正）

各国で商用サービスが始まりつつある5Gに対し、更に超低遅延や多数同時接続といった機能が強化された「ポスト5G」に対応した情報通信システムの開発・製造基盤を強化するため、2019年度に「ポスト5G情報通信システム基盤強化研究開発事業」を立ち上げ、ポスト5G情報通信システムの開発を実施した。

(4) 健康・医療情報を活用した行動変容促進事業

日常生活の健康データは、予防・健康増進に加えて、患者の行動変容の促進やQOLの向上等、医療現場での利用においても期待が高まっている。そのため、糖尿病等の生活習慣病やその他疾患領域において、医療現場と民間企業が連携し、IoT機器（ウェアラブル端末等）等から取得した日常生活の健康データについて、患者の予防・改善に向けた行動変容を促すアプローチの方法や医療現場等での活用手法に関する研究事業を実施した。

(5) 革新的ロボット研究開発等基盤構築事業（3億50百万円）

サービスロボットの社会実装の促進に向けて、ユーザの業務フローを改善し、ロボットフレンドリー化するため、メーカーのみならず、ユーザーや情報通信企業等が連携し、研究開発等を実施。また、産業用ロボットの更なる高度化に向けて、産業界が協調しつつ、大学等研究機関との間で、汎用動作計画、ハンドリング、遠隔操作技術、素材等に関する基礎応用研究を実施した。

(6) ロボット・ドローンが活躍する省エネルギー社会の実現プロジェクト（40億円）

物流やインフラ点検等を効率化できるロボットやドローンの性能評価基準、運航管理システム、衝突回避技術等について福岡ロボットテストフィールド等を活用し開発。その成果を国際標準化に結びつけるとともに、世界の最新技術を日本に集め、日本発のルールでロボット・ドローンの開発競争を加速させる仕掛けを
構築した。

（7）高度な自動走行・MaaS等の社会実装に向けた研究開発・実証事業（50億円）

世界に先駆けて車両の効率的な走行を可能とする自動走行技術の社会実装を実現し、省エネルギーを推進するため、安全性評価手法の研究開発を進めるとともに、高度な自動走行・MaaS（Mobility as a Service）の実証等を実施した。

（8）次世代自動車等の開発加速化に係るシミュレーション基盤構築事業（10億円）

世界各国で進む環境規制の高まりや自動走行などの新たな技術領域への対応など、自動車設計・開発現場の高機能化・複雑化が進む中、自動車開発の上流工程の効率化が重要であり、自動車の開発・性能評価のプロセスをパーセント・シミュレーションで行うMBD（モデュールベース開発）の推進が不可欠である。

このため、自動車メーカー、サプライヤー、エンジニアリングメーカー等が参加するモデュールベース開発の研究会を開催し、新規分野での協調領域に関するモデル流通のガイドラインの整備やアカデミアとも連携した協調領域のモデル開発等を進めている。2020年度はEV（電気自動車）の電力マネジメント及び熱マネジメントのモデルの高度化を図るとともに、新領域として自動運転のガイドラインを構築した。

（9）産業系サイバーセキュリティ推進事業（（独）情報処理推進機構運営費交付金のうち19億30百万円）

重要インフラや我が国経済・社会の基盤を支える産業における、サイバー攻撃に対する防護力を強化するため、（独）情報処理推進機構（IPA）に設置する産業サイバーセキュリティ推進センターにおいて、官民の共同によりサイバーセキュリティ対策の中核となる人材を育成。また、制御システムの安全検証等を実施。

（10）研究開発税制等（中小企業技術基盤強化税制）（再掲 第2部第1章第1節1．（1）参照）

2 サイバーセキュリティの強化

（1）産業系サイバーセキュリティ推進事業（再掲第2部第3章第3節1．（9）参照）
第1節 学校教育におけるものづくり教育の充実

1. 初等中等教育において講じた施策

（1）スーパー・プロフェッショナル・ハイスクール（4億 85百万円の内数）
社会の変化や産業の動向等に対応した、高度な知識・技能を身に付け、社会の第一線で活躍できる専門的職業人を育成するため、先進的な卓越した取組を行う専門高校をスーパー・プロフェッショナル・ハイスクール（SPH）として指定し、その取組を支援した。

（2）全国産業教育フェアの開催（22百万円）
全国の専門高校等の生徒の学習成果を総合的に発表する場を提供し、学習意欲等を高めるとともに、産業界、教育界を始め、国民一般に広く産業教育への理解を深めてもらうため、専門高校等の生徒の研究発表や作品展示等を行う全国産業教育フェアを2020年10月24日に大分県において開催した。

（3）地域との協働による高等学校教育改革推進事業（2億 52百万円）
高等学校が自治体、高等教育機関、産業界等と協働してコンソーシアムを構築し、地域課題の解決を通じた探究的な学びを実現する取組を推進している。この取組のうちプロフェッショナル型において、地域に求められる人材を育成するため、地域の産業界等と連携・協働しながら地域課題の解決等の探究的な学びを実現する取組を支援した。

（4）教員研修の実施（（独）教職員支援機構の運営費交付金の内数）
職業に関する教科の教員等を対象とした研修を実施した。

（5）産業教育施設・設備の整備
公立高等学校における産業教育施設の整備に係る費用について、学校施設環境改善交付金の対象としてその一部を補助した。また、私立高等学校における産業教育施設・設備の整備に係る経費については、それぞれ高等学校産業教育設備整備費補助及び私立高等学校産業施設整備費補助の対象としてその一部を補助した。

さらに、2020年度第3次補正予算においては、最先端のデジタル化に対応した産業教育装置の整備について国が緊急的に補助することとした。

（6）スーパーサイエンスハイスクール（国立研究開発法人科学技術振興機構運営費交付金の内数等）
将来国際的に活躍し得る科学技術人材の育成を図るため、先進的な理数系教育を実施する高等学校等を指定し、学習指導要領によらないカリキュラムの開発・実践や課題研究の推進、観察・実験等を通じた体験的・問題解決的な学習等を推進する。

（7）理数教育充実のための総合的な支援（19億12百万円）
理科教育における観察・実験や指導の充実に向けた指導体制を整えるための理科観察・実験アシスタントの配置の支援や、「理科教育振興法（昭和28年法律第186号）」に基づき、観察・実験に係る実験用機器を始めとした理科、算数・数学教育に使用する設備の計画的な整備を進めている。

（8）知的財産に関する創造力・実践力・活用力開発事業（（独）工業所有権情報・研修館運営費交付金の内数）
アイデアを知的財産へ具体化、模擬的な出願書類を作成する過程を通じて、新しいものや仕組みを企画・提案する「創造力」、その企画・提案を実社会のルールの中で実現させていく「実践力」、更にアイデアや創意工夫を実社会の中で形にして活用する「活用力」を付けてもらうことを目的として、知的財産に関する創造力・実践力・活用力開発事業を実施した。また、2020年度からは知的財産の保護や権利の活用についての知識や情意、態度を育む取組を支援することを目的として、知的財産開発校支援事業も実施した。
2 専修学校教育において講じた施策

（1）専修学校による地域産業中核的人材養成事業（9億 62百万円）
専修学校等を始めとした教育機関が産業界等と協働して、分野に応じた中長期的な人材育成に向けた協議体制の構築等を進めるとともに、これらの時代に対応した教育プログラム等の開発や効果的な産学連携教育の実施のためのガイドラインの作成等の取組を実施した。

（2）「職業実践専門課程」の認定
2014年度から、企業等との密接な連携を通じ、より実践的な職業教育の質の確保に組織的に取り組む専修学校の専門課程を文部科学大臣が認定する「職業実践専門課程」制度を実施（認定学校数：1,070校、認定学科数：3,149学科（2021年3月25日時点））。

（3）「キャリア形成促進プログラム」の認定
2018年度から、専修学校における社会人が受講しやすい工夫や企業等との連携がされた実践的な短期プログラムを「キャリア形成促進プログラム」として文部科学大臣が認定する制度を創設（認定学校数：14校、認定課程数：18課程（2021年3月25日時点））。

3 高等専門学校において講じた施策

社会的要請が高い分野における実践的・創造的な技術者を育成する高等専門学校の教育活動を支える基盤的な経費の充実を図るとともに、高専教育の高度化、日本型高等教育制度の海外展開と国際化を一体的に推進する取組を重点的に支援した。

（2）専修学校教育における施策

（3）高等専門学校において講じた施策

（4）大学教育において講じた施策

（1）Society 5.0に対応した高度技術人材育成事業（9億 20百万円）
大学と企業等の産業界が連携し、我が国の成長を牽引する分野の専門人材を育成する実践的な教育を促進するため、「Society 5.0に対応した高度技術人材育成事業」を実施している。そのうち、情報技術を活用して社会課題を解決できる人材を育成する「成長分野を支える情報技術人材の育成拠点の形成（enPiT：Education Network for Practical Information Technologies）」において、2019年度は学士課程3〜4年生を主な対象とする課題解決型学修中心のプログラムと、社会人を主な対象とする体系的に高度な短期の実践教育プログラムの開発・実施を進めた。

例えば、早稲田大学を中心とする「スマートエスキー：スマートシステム＆サービス技術の産学連携イノベーティブ人材育成」の取組では、AI・IoT・ビッグデータ技術分野のビジネススクールとして社会人及びビジネスプログラムを開発・実施し、ビジネスからセンサまで全領域の体系的な学び、システム＆デザイン思考科目、実問題を持ち込みマンツーマン指導で制作・研究する修了制作を通じ、特定領域を深めつつ技術群を組み合わせて価値を創造する実践力の養成を図っている。

（2）職業実践力育成プログラム（BP）
社会人の職業に必要な能力の向上を図る機会の拡大を目指し、大学等における社会人や企業等のニーズに応じた実践的・専門的なプログラムを「職業実践力育成プログラム」（BP）として文部科学大臣が認定する制度を実施（認定課程数：314課程（2021年3月時点））。

（3）卓越大学院プログラム（77億 48百万円）
各大学が自身の強みを核に、これまでの大学院改革の成果を活かし、国内外の大学・研究機関・民間企業等と組織的な連携を行いつつ、世界最高水準の教育力・研究力を結集した5年一貫の博士課程学位プログラムを構築することで、あらゆるセクターを牽引する卓越した博士人材を育成するとともに、人材育成・交流及び新たな共同研究の創出が持続的に展開される卓越した拠点を形成する取組を推進する。
1 一般市民や若年層に対する普及啓発

（1）日本科学未来館での取組（国立研究開発法人 科学技術振興機構運営費交付金の内数）

2020年度においては新型コロナウイルス感染症対策の観点から、接触の多い体験型コンテンツは実施を自粛した（親子で体験する無料スペース「おや？おっこひろば」、実験やゲームなどにより先端科学と暮らしとの関わりを紹介する「アクティビティ@コ・スタジオ」等）。一方、オンラインによるトークイベントやワークショップを拡充し、来館にとらわれない科学コミュニケーション活動の普及展開を推進した。また、小・中・高等学校等への遠隔授業として、Web会議システムを用いた学校団体向けプログラムを実施し、新型コロナウイルス感染症の感染拡大状況下における学習支援活動も推進した。

（4）文化財の保存技術の保護（4億44百万円）

選定保存技術の保持者・保存団体が行う伝承者養成や技術の錬磨等に対して補助を行うとともに、支援が必要な文化財の保存技術を対象として保存団体等が行う伝承者養成等に補助を行った。

2 技術者に対する生涯学習の支援

（1）研究人材キャリア情報活用支援事業（国立研究開発法人科学技術振興機構運営費交付金の内数）

研究人材・技術者のキャリア形成・能力開発に資するため、能力開発や再教育のためのeラーニング教材をポータルサイト上で提供した。
1 開発途上国（インドネシア、カンボジア、ベトナム、ミャンマー）に対し、我が国がこれまで国及び民間の双方において培ってきた技能評価システムのノウハウの移転を進めた（新型コロナウイルス感染症による影響に伴い、オンラインで実施した）。

具体的には、旋盤、フライス盤等の機械加工職種、電気機器組立て職種、機械検査職種等に係る技能検定に必要な試験基準の作成や試験の採点に関する研修、技能評価トライアルなどの実施により、日本式の技能検定に関するノウハウを移転した。

さらに、我が国及び現地国政府機関、企業等で構成する官民合同委員会を開催し、事業の実施状況の確認、今後の取組等について議論し、事業の継続的な改善を図った。

2 JICA事業への協力等政府間の技術協力

外務省及び（独）国際協力機構（JICA）と連携し、開発途上国の人づくりを支援するため、我が国の経済社会の発展を支えてきた人材養成に係るノウハウを活用した。また、開発途上国における職業能力開発関係施設の整備・運営等に関する助言、職業能力開発分野の専門家の派遣、職業能力開発分野の研修員の受入れに対する協力等を行った。

3 外国人技能実習制度（64億4百万円）

外国人技能実習制度は、技能等の移転を通じた開発途上地域等への国際協力の推進を目的に、1993年に創設されたものである。2017年11月1日に、外国人の技能実習の適正な実施及び技能実習生の保護を図るため、管理監督体制の強化や制度の拡充などを内容とする「外国人の技能実習の適正な実施及び技能実習生の保護に関する法律（平成28年法律第89号）」が全面施行された。制度の適正な実施のため、外国人技能実習機構（OTIT）において、監理団体及び実習実施者に対する実地検査、技能実習生に対する母国語相談等を実施している。
第6章
災害等からの復旧・復興、強靭化

第1節 東日本大震災に係るものづくり基盤技術振興対策

1 資金繰り対策

(1) 震災からの再建・再生に向けた資金繰り支援
　①被災中小企業への資金繰り支援（政策金融）
　　東日本大震災により被害を受けた中小企業・小規模事業者への資金繰り支援として、（株）日本政策金融公庫・（株）商工組合中央金庫において、「東日本大震災復興特別貸付」を引き続き実施した。
　　また、原発事故に係る警戒区域等の公示の際に当該区域内に事業所を有していた中小企業者等や、地震・津波により事業所等が全壊・流失した中小事業者等に対しては、県の財団法人等を通じ、貸付金利を実質無利子化する措置を引き続き実施した。
　②被災中小企業への資金繰り支援（信用保証）
　　東日本大震災により被害を受けた中小企業・小規模事業者を対象に、既存の一般保証や災害関係保証、セーフティネット保証とは別枠の保証制度である「東日本大震災復興緊急保証」を引き続き実施した。
　③二重債務問題対策
　　2011年度に東日本大震災の被災各県の中小企業再生支援協議会の体制を拡充する形で設置した、総合相談窓口である「産業復興相談センター」と、債権買取等を行う「産業復興機構」による中小事業者等の事業再生支援を引き続き実施した。

(2) 中小企業組合等共同施設等災害復旧費補助金（75億76百万円）
　　東日本大震災に係る被災地域の復旧及び復興を促進するため、①複数の中小企業等から構成されるグループが復興事業計画を作成し、地域経済や雇用維持に重要な役割を果たすものとして県から認定を受けた場合に、計画実施に必要な施設・設備の復旧に掛かる費用に対して、国が2分の1、県が4分の1の補助、②商工会等の中小企業者のための指導・相談施設等の災害復旧事業に掛かる費用に対して、国が2分の1の補助、を実施し、被災された中小企業等のグループなどの施設の復旧等に対する支援を行った。

(3) 復旧・復興のための支援専門家派遣
　　（独）中小企業基盤整備機構が福島県（福島市）、宮城県（仙台市）、岩手県（盛岡市）に設置している中小企業復興支援センターにて、中小企業の相談対応や被災した中小企業、自治体及び支援機関（各種経済団体）に対して、専門家を無料で派遣する等の事業を実施した（震災復興支援アドバイザー制度）。

2 工場等の復旧への支援

(1) 仮設工場、仮設店舗等整備事業等（総額371億円）
　　東日本大震災により甚大な被害を受けた被災中小企業等が早期に事業を再開するための支援として、
　　（独）中小企業基盤整備機構が仮設工場、仮設店舗等を整備し、市町村を通じて原則無償で貸し出す事業を実施した。これまで、6県53市町村において、648案件が竣工している（2021年3月末時点）。また、2014年度から仮設施設の有効活用等を行う被災市町村に対する助成支援を開始。これまでに142件の仮設施設の解体・撤去や移設に要する経費を助成している（2021年3月末時点）。

(2) 中小企業組合等共同施設等災害復旧費補助金（75億76百万円）
　　東日本大震災に係る被災地域の復旧及び復興を促進するため、①複数の中小企業等から構成されるグループが復興事業計画を作成し、地域経済や雇用維持に重要な役割を果たすものとして県から認定を受けた場合に、計画実施に必要な施設・設備の復旧に掛かる費用に対して、国が2分の1、県が4分の1の補助、を実施し、被災された中小企業等のグループなどの施設の復旧等に対する支援を行った。

(3) 復旧・復興のための支援専門家派遣
　　（独）中小企業基盤整備機構が福島県（福島市）、宮城県（仙台市）、岩手県（盛岡市）に設置している中小企業復興支援センターにて、中小企業の相談対応や被災した中小企業、自治体及び支援機関（各種経済団体）に対して、専門家を無料で派遣する等の事業を実施した（震災復興支援アドバイザー制度）。

3 職業能力の開発及び向上

(1) 人材開発支援助成金の特例措置の実施（69百万円）　【一部再掲】
　　東日本大震災復興対策の特例措置として、福島県の事業主が一般訓練及び認定実習併用職業訓練を行う場合については、助成率の引上げ等を引き続き実施した。

4 原子力災害からの復興支援

(1) 福島県における医療関連拠点整備
　　福島県における地域産業の活性化につなげる取組として、福島県立医科大学を中心とした創薬拠点の整備
等を行う事業、大型動物を用いた安全性評価や「医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律（昭和35年法律第145号）」の許認可等に関するコンサルティング等の機能、企業や医療機関が活用できるトレーニングセンター設備を備えた拠点「ふくしま医療機器開発支援センター」を整備する事業について、原子力災害等からの復興等のために設置された福島県原子力災害等復興基金を通じて支援を行った。

第2節 熊本地震に係るものづくり基盤技術振興対策

1 資金繰り対策

（1）震災からの再建・再生に向けた資金繰り支援

熊本地震により被害を受けた中小企業・小規模事業者に対して、（株）日本政策金融公庫及び（株）商工組合中央金庫による「平成28年熊本地震特別貸付」や、信用保証協会による通常とは別枠での100%保証である「セーフティネット保証4号」などの資金繰り支援を引き続き実施した。また、熊本地震により直接又は間接的に被害を受けた小規模事業者に対し、無担保・無保証人で利用できる（株）日本政策金融公庫による小規模事業者経営改善資金（マル経融資）の貸付限度の拡充や金利の引下げを実施した（熊本地震型の2020年度までの実績は、97件、4.0億円（2021年1月末時点））。

2 工場等の復旧への支援

（1）中小企業組合等共同施設等災害復旧費補助金

4億53百万円

熊本地震に係る被災地域の復旧及び復興を促進するため、複数の中小企業等から構成されるグループが復興事業計画を作成し、地域経済や雇用維持に重要な役割を果たすものとして県から認定を受ける場合には、計画実施に必要な施設・設備の復旧に掛かる費用に対して、国が2分の1、県が4分の1の補助を実施し、被災した中小企業等のグループの施設の復旧等に対して支援を行った。

第3節 平成30年7月豪雨に係るものづくり基盤技術振興対策

1 資金繰り対策

（1）災害からの再建・再生に向けた資金繰り支援

①平成30年7月豪雨特別貸付（財政投融資）

（株）日本政策金融公庫が、平成30年7月豪雨により被害を受けた中小企業・小規模事業者への資金繰り支援。平成30年7月豪雨特別貸付の運用開始後2021年3月末までの貸付実績は、約1,600件、約180億円となった。

②信用保証による資金繰り対策

平成30年7月豪雨により被害を受けた中小企業・小規模事業者を対象に、岡山県、広島県及び愛媛県の一部地域において、既存の一般保証とは別枠のセーフティネット保証4号及び災害関係保証を発動した。

③政府関係金融機関の運営に必要な経費（マル経融資の貸付限度額・金利引下げ措置の拡充【財政投融資】）

平成30年7月豪雨により直接又は間接的に被害を受けた小規模事業者に対し、無担保・無保証人で利用できる（株）日本政策金融公庫によるマル経融資の貸付限度の拡充や金利の引下げを実施した。（平成30年7月豪雨型の2020年度までの実績は、164件、8.3億円（2021年1月末時点））。

2 工場等の復旧への支援

（1）中小企業組合等共同施設等災害復旧費補助金

6億40百万円

平成30年7月豪雨に係る被災地域（岡山県、広島県、愛媛県）の復旧及び復興を促進するため、複数の中小企業等から構成されるグループが復興事業計画を作成し、地域経済や雇用維持に重要な役割を果たすものとして県から認定を受けた場合に、計画実施に必要な施設・設備の復旧に掛かる費用に対して、国が2分の1、県が4分の1の補助を実施し、被災した中小企業等のグループの施設の復旧等に対して支援を行った。
第4節 北海道胆振東部地震に係るものづくり基盤技術振興対策

1 資金繰り対策
(1) 震災からの再建・再生に向けた資金繰り支援
① 災害復旧貸付（財政投融資）
（株）日本政策金融公庫が、平成30年北海道胆振東部地震により被害を受けた中小企業・小規模事業者への資金繰りを支援した。
② 信用保証による資金繰り対策
平成30年北海道胆振東部地震により被害を受けた中小企業・小規模事業者を対象に、一般保証とは別枠の災害関係保証を発動した。

第5節 令和元年台風第19号に係るものづくり基盤技術振興対策

1 資金繰り対策
(1) 震災からの再建・再生に向けた資金繰り支援
① 令和元年台風第19号等特別貸付（財政投融資）
（株）日本政策金融公庫が、令和元年台風第19号等（令和元年台風第19号、第20号及び第21号をいう。）により被害を受けた中小企業・小規模事業者への資金繰りを支援。「令和元年台風第19号等特別貸付」の運用開始後、2021年3月末までの貸付実績は、約1,600件、約240億円となった。
② 信用保証による資金繰り対策
令和元年台風第19号等により被害を受けた中小企業・小規模事業者を対象に、岩手県、宮城県、福島県、茨城県、栃木県、群馬県、千葉県、東京都、神奈川県及び長野県の一部地域において、既存の一般保証とは別枠のセーフティネット保証4号及び災害関係保証を発動した。
③ 政府関係金融機関の運営に必要な経費（マル経融資の貸付限度額・金利引下げ措置の拡充【財政投融資】）
令和元年台風第19号等により直接又は間接的に被害を受けた小規模事業者に対し、無担保・無保証人で利用できる（株）日本政策金融公庫によるマル経融資の貸付限度の拡充や金利の引下げを実施した。（令和元年台風第19号等型の2020年度の実績は、200件、9億78百万円（2021年1月末時点））

2 工場等の復旧への支援
(1) 小中企業組合等共同施設等災害復旧費補助金（144億円（2019年度予備費）、179億円（2019年度補正））
令和元年台風第19号等に係る被災地域（宮城県、福島県、栃木県、長野県）の復旧及び復興を促進するため、複数の中小企業等から構成されるグループが復興事業計画を作成し、地域経済や雇用維持に重要な役割を果たすものとして県から認定を受けた場合に、国の特別な助成を行う。令和元年台風第19号等型の2020年度の実績は、200件、9億78百万円（2021年1月末時点））

第6節 令和2年7月豪雨に係るものづくり基盤技術振興対策

1 資金繰り対策
(1) 震災からの再建・再生に向けた資金繰り支援
① 令和2年7月豪雨特別貸付（財政投融資）
（株）日本政策金融公庫が、令和2年7月豪雨により被害を受けた中小企業・小規模事業者への資金繰りを支援。「令和2年7月豪雨特別貸付」の運用開始後2021年3月末までの貸付実績は、約190件、約24億円となった。
② 信用保証による資金繰り対策
令和2年7月豪雨により被害を受けた中小企業・小規模事業者を対象に、無担保・無保証人で利用できる（株）日本政策金融公庫によるマル経融資の貸付限度の拡充や金利の引下げを実施した。
③ 政府関係金融機関の運営に必要な経費（マル経融資の貸付限度額・金利引下げ措置の拡充【財政投融資】）
令和2年7月豪雨により直接又は間接的に被害を受けた小規模事業者に対し、無担保・無保証人で利用できる（株）日本政策金融公庫によるマル経融資の貸付限度の拡充や金利の引下げを実施した（令和2年7月豪雨特別貸付）の運用開始後、2022年3月末までの貸付実績は、約30件、約5億80百万円（2022年3月末時点））。
第7節 新型コロナウイルス感染症に係るものづくり基盤技術振興対策

1 資金繰り対策
（1）新型コロナウイルス感染症の感染拡大による業況悪化からの再建・再生に向けた資金繰り支援

新型コロナウイルス感染症の感染拡大の影響により業況が悪化している中小企業・小規模事業者を対象に、（財政投資）

政府関係金融機関による資金繰り支援を拡充した（令和2年7月豪雨型2020年度の実績は、4件、0.9億円（2021年1月末時点））。

3 事業再建に向けた支援

（1）被災小規模事業者再建事業（持続化補助金）による事業再建支援（113億54百万円（2020年度予備費）、11億38百万円（2020年度第3次補正））

令和2年7月豪雨により業況が悪化した小規模事業者が事業再建に関する新たな経営計画を早期に作成する際、計画のうち取り組む経路開拓等の経費を支援した（2021年2月末時点採択件数：700件）。

2 サプライチェーン改革

（1）サプライチェーンの強靭化に向けた取組

新型コロナウイルス感染症の感染拡大の影響を受けた小規模事業者に対し、無担保・無保証人で利用できる（財政投資）日本政策金融公庫によるマル経融資の貸付限度度の拡充や金利の引下げを実施した（新型コロナウイルス型の2020年度の実績は、29,559件、1,619.5億円（2021年1月末時点））。

290
ものづくり分野に関係する主な表彰等制度

ものづくりの基盤技術の振興とともに、我が国のものづくり産業の発展に資する取組を行った企業又は個人に対する主な表彰等制度を概観する。

<table>
<thead>
<tr>
<th>表彰制度名</th>
<th>表彰対象・概要</th>
<th>担当省庁</th>
<th>交付賞</th>
<th>頻度等</th>
</tr>
</thead>
<tbody>
<tr>
<td>ものづくり日本大賞</td>
<td>我が国産業・文化を支えてきた「ものづくり」を継承・発展させるため、ものづくりを支える人材の意欲を高め、その存在を広く社会に知られるようにすることを目的に、製造・生産現場の中核を担っている中堅人材や、伝統的・文化的な「技」を支えてきた熟練人材、今後を担う若年人材など、「ものづくり」に携わっている各世代の人材のうち、特に優秀と認められる人材を表彰。</td>
<td>経済産業省製造産業局ものづくり政策審議室</td>
<td>内閣総理大臣賞（経済産業省は新規募集、選定、厚生労働省・文部科学省・国土交通省は既存表彰事業から選定する形で4省上申）</td>
<td>内閣総理大臣賞、経済産業大臣賞、文部科学大臣賞</td>
</tr>
<tr>
<td>産業標準化事業表彰</td>
<td>高度な標準策定能力を有し、標準化を企業戦略に生かせる人材の育成の強化を図ることを目的に、国際機関における国際標準策定や、国内規格（JIS）策定といった標準化活動に優れた功績を有する個人、組織を表彰。</td>
<td>経済産業省産業技術環境局基準認証政策課</td>
<td>内閣総理大臣賞（経済産業大臣賞総務大臣賞、文部科学大臣賞、厚生労働大臣賞、農林水産大臣賞、国土交通大臣賞）</td>
<td>内閣総理大臣賞、経済産業大臣賞、産業技術環境局長賞</td>
</tr>
<tr>
<td>ロボット大賞</td>
<td>ロボット技術の開発と事業化を促進し、技術革新と用途拡大を加速する、社会に役立つロボットに対する国民の認知度を高め、ロボットの需要を喚起することなどを目的に、将来の市場創出への貢献度や期待度が高いと考えられるロボット・応用システム並びにロボットに関連するビジネス・社会実装、要素技術、研究開発及び人材育成を表彰。</td>
<td>経済産業省産業技術環境局産業機械課ロボット政策室</td>
<td>経済産業大臣賞総務大臣賞、文部科学大臣賞、厚生労働大臣賞、農林水産大臣賞、国土交通大臣賞</td>
<td>経済産業大臣賞総務大臣賞、文部科学大臣賞、厚生労働大臣賞、農林水産大臣賞、国土交通大臣賞</td>
</tr>
<tr>
<td>製品安全対策優良企業表彰</td>
<td>事業者の製品安全に関する積極的な取組を促進し、社会全体として製品安全の価値を定着させることを目的として、製品安全の確保に向け積極的に取り組んでいる製造者・輸入事業者・小売販売事業者等のうち、優れていていると認められた企業・団体を表彰。</td>
<td>経済産業省産業機械課製品安全課</td>
<td>経済産業大臣賞</td>
<td>経済産業大臣賞</td>
</tr>
<tr>
<td>知財功労賞</td>
<td>知的財産権制度の発展及び普及・啓発に貢献のあった個人、また、同制度を有効に活用し円滑な運営・発展に貢献のあった企業等に対して表彰。</td>
<td>経済産業省特許庁総務部秘書課総務企画調査課</td>
<td>経済産業大臣賞</td>
<td>経済産業大臣賞</td>
</tr>
<tr>
<td>表彰制度名</td>
<td>表彰対象・概要</td>
<td>担当省庁</td>
<td>交付賞</td>
<td>頻度等</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>はばたく中小企業・小規模事業者 300 社</td>
<td>中小企業・小規模事業者の社会的認知度の向上や、そこで働く人たちのモチベーションの向上等を目的に、革新的な製品・サービス開発、地域経済の活性化、多様な人材活用等の観点から、優れた取組を行っている事業者を選定・公表。</td>
<td>経済産業省 中小企業庁 技術・経営革新課</td>
<td>未定</td>
<td>【中小企業関係団体等からの推薦】</td>
</tr>
<tr>
<td>新・ダイバーシティ経営企業 100 選</td>
<td>ダイバーシティ推進を経営成果に結びつけている企業の先進的な取組を広く紹介し、取り組む企業のすそ野拡大を目的に、「ダイバーシティ経営」（多様な人材を活かし、その能力が最大限発揮できる機会を提供することで、イノベーションを生み出し、価値創造につなげている経営）に優れた企業を表彰。</td>
<td>経済産業省 経済産業政策局 経済社会政策室</td>
<td>経済産業大臣賞</td>
<td>【一般公募】 2020年度で終了</td>
</tr>
<tr>
<td>卓越した技能者（現代の名工）の表彰制度</td>
<td>広く社会一般に技能尊重の気風を浸透させて技能者の地位及び技能水準の向上を図るとともに、青少年がその適正に応じ、誇り希望を持って技能労働者となり、その職業に精進する気運を高めることを目的として卓越した技能者を表彰。</td>
<td>厚生労働省 人材開発統括 官付能力評価担当参事官室</td>
<td>厚生労働大臣賞</td>
<td>【都道府県等からの推薦】 ＜毎年＞ 推薦受付期間： 2月～3月</td>
</tr>
<tr>
<td>職業能力開発関係厚生労働大臣表彰</td>
<td>認定職業訓練や技能検定又は技能振興の推進、技能水準の向上又は技能労働者の処遇・地位の向上に資するとともに、「職業能力開発促進法（昭和44年法律第64号）」の周知徹底を図ることを目的に、認定職業訓練関係・技能検定関係・技能振興関係の優良事業所・団体及び功労者を表彰。</td>
<td>厚生労働省 人材開発統括 官付能力評価担当参事官室</td>
<td>厚生労働大臣賞</td>
<td>【都道府県等からの推薦】 ＜毎年＞ 推薦受付期間： 8月上旬まで</td>
</tr>
<tr>
<td>若年者もののづくり競技大会</td>
<td>職業能力開発施設、認定職業訓練施設、工業高校等において技能を習得中の原則20歳以下の若者に対して技能レベルを競う場を提供することにより、これから若者に目標を付与し、技能を向上させることにより就業促進を図り、併せて若年技能者の根拠の拡大を図ることを目的として開催。その各競技職種の金賞受賞者を表彰。</td>
<td>厚生労働省 人材開発統括 官付能力評価担当参事官室</td>
<td>厚生労働大臣賞</td>
<td>＜毎年＞ 開催時期： 毎年夏頃</td>
</tr>
<tr>
<td>技能五輪全国大会</td>
<td>日内の原則23歳以下の青年技能者の技能レベルを競うことにより、青年技能者に努力目標を与えるとともに、技能に身近に触れることを提供するなど、広く国民一般に対して技能の重要性、必要性をアピールし、技能尊重気風の醸成を図ることを目的として開催。その各競技職種の金賞受賞者及び最優秀選手団を表彰。</td>
<td>厚生労働省 人材開発統括 官付能力評価担当参事官室</td>
<td>厚生労働大臣賞</td>
<td>＜毎年＞ 開催時期： 毎年秋頃</td>
</tr>
<tr>
<td>表彰制度名</td>
<td>表彰対象・概要</td>
<td>担当省庁</td>
<td>交付賞</td>
<td>頻度等</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>障害者技能競技大会 (アビリンピック)</td>
<td>障害者が日々培った技能を互いに競い合うことにより、その職業能力の向上を図るとともに、企業や社会一般の人々が障害者に対する理解と認識を深め、その雇用の促進を図ることを目的に、アビリンピックの愛称の下、全国障害者技能競技大会を実施。その金賞受賞者を表彰。</td>
<td>厚生労働省人材開発統括官付特別支援室</td>
<td>厚生労働大臣賞</td>
<td>＜国際大会開催年度を除き毎年秋頃＞</td>
</tr>
<tr>
<td>技能グランプリ</td>
<td>技能グランプリは、技能士の技能の一層の向上を図ることを目的として、各都道府県から選抜（年齢制限なし）された特に優れた技能を有する1級技能士等（単一等級含む）が参加する技能競技大会。各競技別の金賞受賞者のうち、特に顕著な成績を収めた者に対して、内閣総理大臣賞が授与される。</td>
<td>内閣総理大臣賞</td>
<td>厚生労働大臣賞</td>
<td>＜隔年＞</td>
</tr>
<tr>
<td>職業能力開発論文コンクール</td>
<td>職業能力開発関係者の意識の啓発を図り、職業能力開発の推進と向上に資することを目的として、執筆された職業能力開発の実践に係る論文のうち、優秀な論文を選定。その優れた論文を表彰。</td>
<td>厚生労働省人材開発統括官付訓練企画室</td>
<td>厚生労働大臣賞</td>
<td>＜隔年＞ <一般公募></td>
</tr>
<tr>
<td>職業訓練教材コンクール</td>
<td>職業訓練指導員の技術水準の向上を図り、もって職業訓練の推進と向上に資することを目的として、公共職業訓練又は認定職業訓練等において、訓練を担当する職業訓練指導員等が開発した教材のうち、その使用により訓練の実施効果が上がり、創意工夫にあふれ、広く関係者に普及するに足る優れたものを選定。その優れた作品を表彰。</td>
<td>厚生労働省人材開発統括官付訓練企画室</td>
<td>厚生労働大臣賞</td>
<td>＜隔年＞ <一般公募></td>
</tr>
</tbody>
</table>

ものづくり分野に関係する主な表彰等制度

第 7 章