総合資源エネルギー調査会 自主的安全性向上・技術・人材WG 第11回会合 資料1

Risk-Informed Decision Making

George Apostolakis
Head, Nuclear Risk Research Center, Tokyo
apostola@mit.edu

Presented at the METI Working Group Meeting September 26, 2016

Risk-Informed Decision Making (1)

- Decision making must be based on the current state of knowledge of the decision maker (DM)
 - > The current state of knowledge regarding design, operation, and regulation is key.
 - ➤ The current state of knowledge is informed by science, engineering, and operating experience, including past incidents.
- What we know about plant behavior is not easily available to the DM
 - > Accident sequences, human performance, risk significance of systems, structures, and components, etc
 - Example: Until the Reactor Safety Study, the significance of support systems and human errors had not been appreciated

Risk-Informed Decision Making (2)

- PRAs provide this information to the DM
 - PRAs do not predict the future
 - > PRAs tell us what we know now regarding potential accident sequences, their likelihood, and consequences
- Since decision making should be based on the totality of our knowledge, the characterization "riskinformed" would appear to be superfluous
 - A fuzzy concept that may be abused
- However, it is useful as a communication tool among industry and regulatory staffs.

Communication with the Public

- The traditional "deterministic" regulatory system does not communicate well
 - > Saying that plants are safe because they meet the regulations is a mystifying message to the public
 - Even communication among experts is impeded
- Risk metrics such as core damage frequency (CDF) and large release frequency (LRF) communicate clearly the risks that are being managed
- Understanding the concept of residual risk is important
 - No industrial activity or facility imposes zero risk

Evolution of RIDM in the U.S.A.

- The NRC's 1995 PRA Policy Statement encourages (but does not require) increased use of PRA methods to promote regulatory stability and efficiency.
- The use of PRA should be increased to the extent supported by the state of the art and data and in a manner that complements the defense-in-depth philosophy.
- PRA should be used to reduce unnecessary conservatisms associated with current regulatory requirements.

NRC Policy Statement on the USE of PRA in Regulations (1995)

- Deterministic approaches to regulation consider a limited set of challenges to safety and determine how those challenges should be mitigated.
- A probabilistic approach to regulation enhances and extends this traditional, deterministic approach, by:
 - (1) Allowing consideration of a broader set of potential challenges to safety,
 - (2) providing a logical means for prioritizing these challenges based on risk significance, and (3) allowing consideration of a broader set of resources to defend against these challenges.

Experience with RIDM in the U.S.A.

- Supplementing the traditional regulations
 - Station Blackout Rule (10 CFR 50.63)
 - ✓ Its significance identified by PRA
 - > Maintenance management (10 CFR 50.65)
 - > Fire protection (10 CFR 50.48(c)
 - √ Voluntary
- New reactor certification and licensing (10 CFR 52.47 and 52.79)
- Changes in the plant licensing basis (Regulatory Guide 1.174)
- Prioritization of issues according to risk significance has saved resources thus improving safety indirectly

Reactor Oversight Process

Motivation

➤ The previous inspection, assessment and enforcement processes were not clearly focused on the most safety important issues and were overly subjective

Challenges

- Hundreds of affected NRC and industry staff
- > Development of performance indicators using plant data
- Quality of the licensee PRAs
- Establishing the Action Matrix

Outcomes

- > Improves the consistency and objectivity of inspections
- Provides explicit guidance on the regulatory response to inspection findings
- ➤ Focuses NRC and licensee resources on those aspects of performance that have the greatest impact on safe plant operation

Realizing the Full Benefits of RIDM in Japan

- The establishment of ROP is a major step forward
- It is not the final goal
- Establishing RIDM is a major undertaking for both the regulator and the industry
- We need a roadmap to identify the needs and solutions in a systematic way, including:
 - ➤ Infrastructure development (people, organizations, standards; peer reviews; safety goals)
 - > "Good" PRAs meeting international standards of practice
 - Developing acceptable PRA models for hazards of great interest in Japan (earthquakes, tsunamis, volcanos)
 - Developing processes for risk-informing regulations (would the regulator use its own PRAs or rely on the peer-reviewed industry PRAs?)

NRRC Activities

- Position paper for proper application of RIDM in Japan
 - Establishment of RIDM Promotion Team
 - Pilot projects for establishing "Good" PRAs: Ikata Unit 3, Kashiwazaki-Kariwa Units 6 and 7
- White paper on RIDM applications in the U.S.A.
 - What was the motivation?
 - How can Japan benefit from the U.S. experience?
- Research projects
 - Human Reliability Analysis
 - Seismic PRA
 - ✓ SSHAC process for Ikata Unit 3 (Senior Seismic Hazard Analysis Committee)
 - > Fire PRA
 - Volcano PRA

Summary

- Decision making should be based on the current state of knowledge
 - > PRA results are an essential part of this knowledge
- PRAs provide metrics that facilitate communication with the public
- PRAs consider a broader set of potential challenges to safety and prioritize these challenges based on risk significance (we can't do everything)
- RIDM allows more effective and efficient use of resources, thus improving safety indirectly
- A roadmap is needed for developing RIDM processes in a systematic way