2018年1月24日

再生可能エネルギーの大量導入に対応する 次世代ネットワークの在り方について

東京電力パワーグリッド株式会社 取締役副社長 岡本 浩

目次

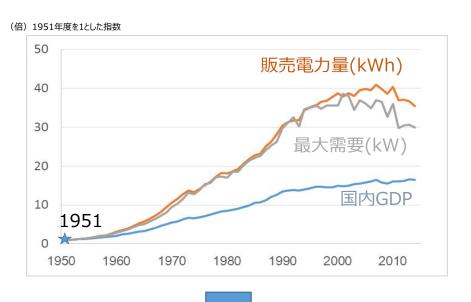
- 1. 電気事業の事業環境の変化
- 2. アンバンドリング後の発電(小売)事業者と送配電事業の役割
- 3. 発電事業のための需給・系統シミュレーション
- 4. 事業環境変化に対応した合理的なネットワーク形成(C&M)

1. 電気事業の事業環境の変化

Utility 1.0:電気事業の誕生と急激な発展

Utility 2.0: 自由化による発電・小売の競争

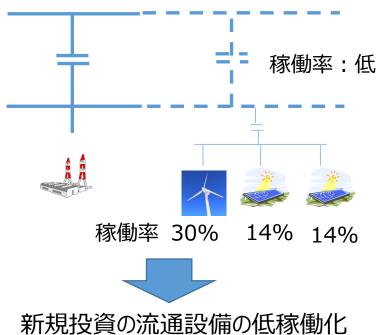
(アンバンドリングによる役割分担の明確化)



分散化・脱炭素化・ 人口減少(需要減少)・ デジタライゼーション

Utility 3.0: 他事業との融合(?)

需要減少・分散化・低炭素化の影響


需要減少

既存流通設備の稼働率低下

分散化 · 低炭素化

送配電事業者の維持費用・投資の回収が困難化

アンバンドリング後のネットワークの考え方

垂直統合時代は、発電と流通(送配)の一体的な計画・運用で効率化

アンバンドリング (役割分担の明確化)

【計画】

発電投資:BGが計画・リスク評価(系統制約の考慮が課題)

送配投資:送配が需要と発電(市場)を想定し、流通設備を計画

将来想定の不確実性を考慮した 効率的な設備形成が課題

【運用】

発電出力(GC前):BG(市場)が決定

発電出力(GC後): 送配が市場で調達した資源を活用して、需給

バランス維持・混雑処理を最小コストで実施

【発電価値の取引】

kWh市場

ΔkW市場 ΔkW,ΔkWh

kW市場

非化石市場

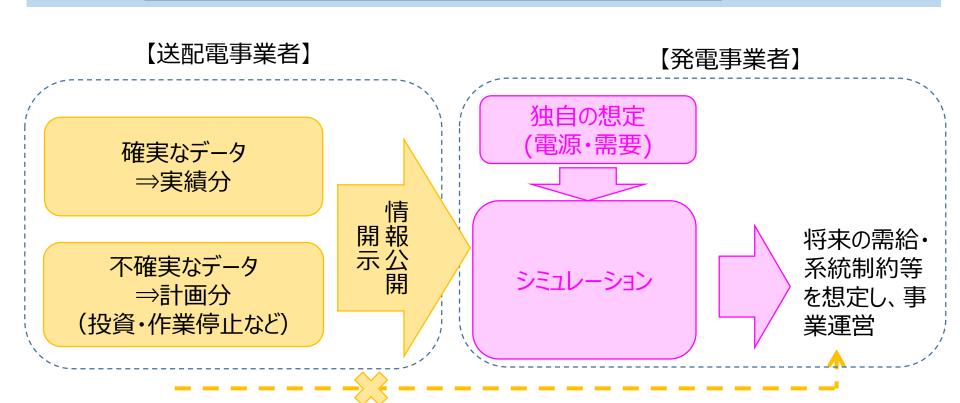
2. アンバンドリング後の発電(小売)事業者と送配電事業者の役割分担

【発電事業者】 (小売事業者)

【競争環境の変化も考慮した事業運営】

- ■運用(GC前後)
 - ▶経済性(市場)に基づき発電
- ■発電設備の投資・維持管理
 - ▶市場収益想定し、事業性判断
 - ▶需給・系統制約による影響を自ら評価 (収益減少リスク等)
- ■行動原理:経済性の追求
 - >多様な事業戦略

【送配電事業者】

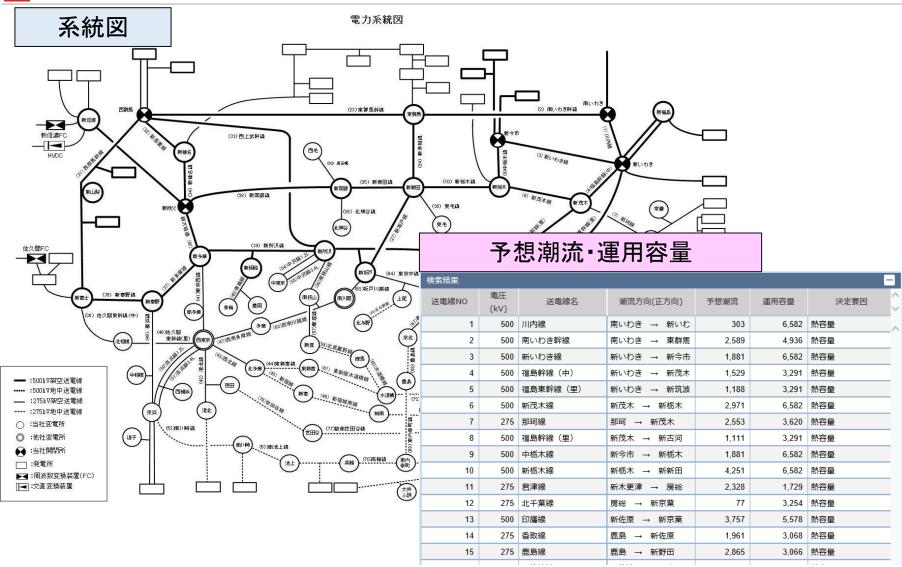


/ <u>運営・投資費用の効率化と</u>) - 公平性・透明性の確保 -

- ■運用(GC後)
 - ▶需給バランス維持
 - ▶混雑処理
 - ⇒市場を通じてkW、∆kW調達
- ■送配電設備の投資・維持管理
 - ▶投資・費用の効率化
- ■行動原理:公平性・透明性の確保、確実な 投資・費用回収
 - ▶市場参加者等への適切な情報開示

3. 発電事業のための需給・系統シミュレーション 基本的な考え方

- 発電事業者が需給・系統制約による影響を自ら評価(シミュレーション等)・判断し、多様 な事業戦略を選択
- 送配電事業者はそのために必要な情報公開・開示(実績および将来の計画)を行う
- ただし、送配電事業者は発電事業者の判断に結果責任を負わない


結果責任無し

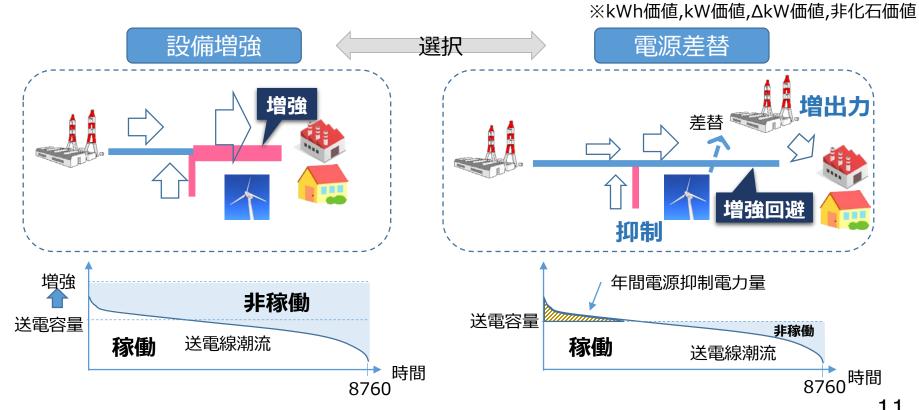
需給・系統シミュレーションに必要なデータ

	【既に公開中のデータ】		【シミュレーションに必要なデータ】	
<対象範囲>	広域系統(上位2電圧)		154kV以上 (変圧器2次母線66kV以上)	
電源に関するデータ	-		実績	電源運転出力 (出力カーブ)
			計画	新設•停廃止
需要に関するデータ	_		実績	地点別需要 (需要カーブ)
送配電に関するデータ	実績	系統構成 送電線潮流	系統構成 送電線潮流 変圧器潮流 電源線潮流 投資・廃止・作業停止	
	計画	系統構成 送電線潮流 投資·廃止·作業停止		
				0

8

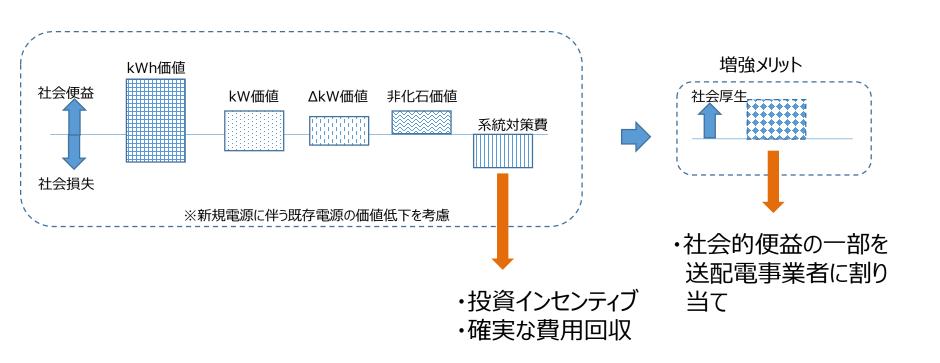
【参考】OCCTO公開データイメージ(東京エリア)

出所:電力広域的運営推進機関HP__系統情報サービス__地内基幹送電線関連情報_地内基幹送電線運用容量・予想潮流 http://occtonet.occto.or.jp/public/dfw/RP11/OCCTO/SD/LOGIN_login# ©TEPCO Power Grid Inc. All Rights Reserved.

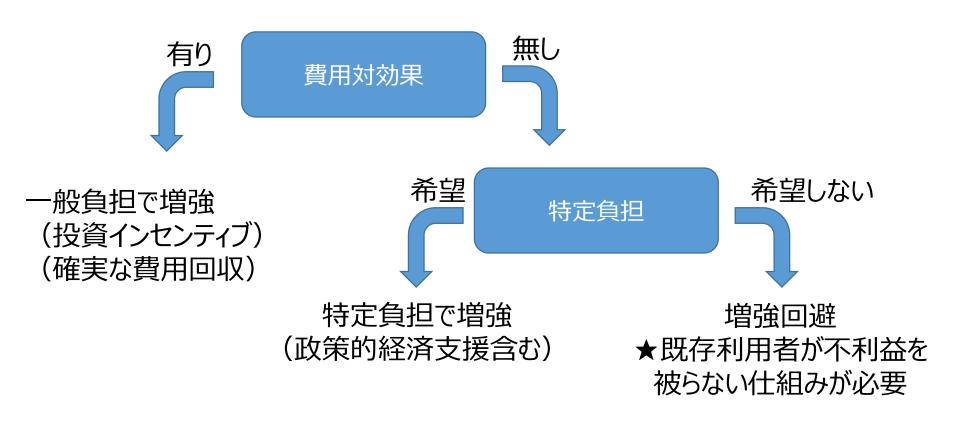

9

系統シミュレーションのイメージ

実績潮流図 発電出力実績 発電計画 地点別需要実績 発電出力想定 地点別需要想定 (系統制約非考慮) 送配電計画 (計画潮流図) シミュレーション 発電事業者 (系統制約考慮) 発電事業性評価 事業判断・資金調達


事業環境変化に対応した合理的なネットワーク形成(C&M)

- ■費**用対便益の低い設備増強を回避**し、電源・流通全体でのコスト最小化 (再エネ接続に限定した課題ではない)
 - 想定潮流の合理化:発電と送配電の役割分担を踏まえたルール設定
 - 費用対便益:設備増強と電源差替の費用※を定量的に比較
 - Non-firm接続:一時的な電源抑制を許容



費用対便益の高いネットワーク投資の評価

■ 費用対便益の低い設備増強を回避し、電源・流通全体でのコスト最小化をはかる

系統接続の費用負担

