FIT/FIP 制度におけるバイオマス燃料のライフサイクル GHG 排出量の既定値について (案)

バイオマス持続可能性ワーキンググループ 2023 年 11 月

Ι	I . はじめに	2
((1) ライフサイクル GHG の既定値の作成について	2
((2) ライフサイクル GHG 確認に当たっての既定値の適用について	5
Π	🛮 . 農産物の収穫に伴って生じるバイオマスのライフサイクルGHG既定値	7
	1. 既定値の算定結果	
	2 . パーム油のライフサイクルGHG既定値の計算過程	
	2 – 1. CPO	
	(1)対象工程等	
	(2) 工程別の排出量の計算	
	2 – 2.パームステアリン	
	(1) 対象工程等	
	(2) 工程別の排出量の計算	
	3. PKSのライフサイクルGHG既定値の計算過程	
	(1) 対象工程等	
	(2) 工程別の排出量の計算	
	4. パームトランクのライフサイクルGHG既定値の計算過程	
	(1) 対象工程等	
	(2) 工程別の排出量の計算	
	Ⅲ.輸入木質バイオマスのライフサイクルGHG既定値	
	1. 既定値の算定結果	
	- ・	
	- ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	(1) 対象工程等	
	(2) 工程別の排出量の計算	
	、 - /	
	- 1)対象工程	
•	(2) 工程別の排出量の計算	
	2 – 3. <mark>製材等残材</mark> 由来の木質チップ	
	(1) 対象工程等	
	(2) 工程別の排出量の計算	
	3. 木質ペレットのライフサイクルGHG既定値の計算過程	
	3 - 1. 林地残材等由来のペレット	
	(1) 対象工程等	
((2) 工程別の排出量の計算	54
3	3 – 2. <mark>その他伐採木</mark> 由来のペレット	62
	(1) 対象工程	
	(2) 工程別の排出量の計算	
	3 - 3. <mark>製材等残材</mark> 由来のペレット	
	(1)対象工程	
	(2) 工程別の排出量の計算	
	V. 国内木質バイオマスのライフサイクルGHG既定値	
	1. 既定値の算定結果	
	- ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
	/. 改訂履歴	

I. はじめに

(1) ライフサイクル GHG の既定値の作成について

本文書は、FIT/FIP 制度におけるバイオマス燃料(既存燃料)のライフサイクル GHG の確認に活用されることを想定した既定値と、参考情報として既定値の計算過程について記したものである。

各バイオマス燃料のライフサイクル GHG の既定値を算出するに当たっては、以下に示す FIT/FIP 制度におけるライフサイクル GHG 計算方法に従いつつ、EU RED2 において活用されている既定値や、過去の WG において業界団体から示された情報等を参考とした。

(参考) FIT/FIP 制度におけるライフサイクル GHG 計算方法

- 1. 対象ガス
- ① 算定すべき GHG の種類は二酸化炭素 (CO₂)、メタン (CH₄)、一酸化二窒素 (N₂ O) とする。
- ② 温暖化係数はメタン (CH₄): 25、一酸化二窒素 (N₂O): 298 とする。
- 2. バウンダリ及び算定式
- ① 土地利用変化を含む炭素ストックの変化、栽培、加工、輸送、発電を算定対象とするが、計上する対象工程・排出活動はバイオマス種別の判断を行う。
- ② 発電所やバイオマス燃料の製造工場などの設備建設による排出は考慮しない。
- ③ CO_2 回収・隔離、 CO_2 回収・代替利用 (バイオマス起源の CO_2 に限る) による GHG 排出が回避できる場合、排出削減として考慮することができる。
- ④ 活動量の把握方法や排出係数の設定は「再生可能エネルギー等の温室効果ガス削減効果に関する LCA ガイドライン」を参考とできるものとする。

(算定式) E_{bio} = e_{stock} + $e_{cultivate}$ + $e_{processing}$ + $e_{transportation}$ + $e_{generation}$ - e_{rccs} - e_{rccr} E_{elec} = E_{bio} / η el

ここで、

Ebio =発電効率による変換前の燃料利用による GHG 総排出

estock =土地利用変化を含む炭素ストックの変化に伴う排出量・排出削減量

ecultivate =栽培による排出量

eprocessing =加工による排出量

etransportation =輸送による排出量

egeneration =発電による排出量

erccs = CO2回収・隔離による排出削減量

 $e_{rccr} = CO_2$ 回収・代替利用(バイオマス起源の CO2 を回収するもののみを対象とする) による排出削減量

Eelec =発電効率を加味したバイオマス発電電力の GHG 排出量

η el =バイオマス発電の発電効率

- 3. 各工程の計算方法
- i) 土地利用変化を含む炭素ストックの変化
- ① 土地利用変化を含む炭素ストックの変化については、現段階においては、直接的土地 利用変化のみを計上するものとする。^{注)}
 - 注)森林の炭素ストックにおいては、森林から農地に土地利用が転用される等の直接土地利用変化以外にも、木材の成長した量以上に木材の伐採・搬出・枯死が起こることにより炭素ストックが減少するケースがあり、このようなケースに関して本 WG では今後の国際的な議論の動向に応じ検討するものとした。

直接土地利用変化の排出量は、起算日からの土壌・植生中の炭素ストックの変化(当該年と起算日の炭素ストックの差異)を20年で均等配分したものとし、起算日は2008年1月1日とする。

- ii) 栽培(原料栽培·採取)
- ① 原料の栽培に要した化石燃料や電力・熱の消費、投入する肥料及び化学物質の製造・調達・使用、有機物の発酵及び施肥に伴う GHG の排出を計上しなければならない。
- ② 発生した CO₂を回収・隔離、または代替利用 (バイオマス起源の CO₂を回収するもののみを対象とする) している場合、排出量から控除してもよい。
- iii)加工(前処理·変換)
- ① 加工工程については、加工に要した化石燃料や電力・熱の消費、化学物質の製造・調達・使用に伴う GHG の排出を計上しなければならない。
- ② 発生した CO₂を回収・隔離、または代替利用 (バイオマス起源の CO₂を回収するもののみを対象とする) している場合、排出量から控除してもよい。
- iv) 輸送(原料輸送·燃料輸送)
- ① 原料の輸送や貯蔵に要した化石燃料や電力・熱の消費、燃料の輸送や貯蔵に要した化石燃料や電力・熱の消費に伴う GHG の排出を計上しなければならない。
- ② 復路の排出を考慮するものとする。特に海上輸送に関しては、バイオマスかさ密度を 考慮した船の燃費を用いるものとし、当面の間、特定の航海パターンを取らない場合 については空荷輸送の航海距離比率を 30%とし、往復航路による輸送による(同一 の港を往復する)場合は、復路が空荷でないことを確認出来ない限り、バイオマス燃 料の輸送距離と同等の空荷の輸送を計上するものとする。
- v)発電
- ①バイオマス燃料の使用からの CO_2 排出についてはOとみなす。
- ② CH₄、N₂O の排出は含めるものとする。
- 4. アロケーション等
- ① 計上する対象工程・排出活動、アロケーションの対象に関しては、バイオマス種別に 特定するものとする。
- ② 配分方法は熱量按分法とする。
- 5. 発電効率等
- ①発電効率は送電端効率、燃料の発熱量は低位発熱量基準とする。

②熱電併給設備の場合には、発電効率による変換前のバイオマス燃料のライフサイクル GHG につき、生産する電力と熱(バイオマス燃料の加工等を含む所内消費分を除く)でのエクセルギー按分を行い、電力分に割り当てられる排出量を特定する。具体的には以下の式に従う。

(算定式)
$$E_{\text{cogen-bio}} = E_{\text{bio}} \times [\eta_{\text{el}} / \{\eta_{\text{el}} + \eta_{\text{h}} \times (T_{\text{h}} - 290) / T_{\text{h}}\}]$$

 $E_{\text{elec}} = E_{\text{cogen-bio}} / \eta_{\text{el}}$

ここで、

E_{cogen-bio} =発電効率による変換前のバイオマス燃料による GHG 総排出 (熱電併給設備 における発電分)

Ebio =発電効率による変換前のバイオマス燃料による GHG 総排出

η el = 熱電併給設備における発電効率 (年間の発電量を年間の投入熱量で除したもの)

η_h =熱電併給設備における熱効率(年間の熱供給量を年間の投入熱量(バイオマス燃料の加工等を含む所内消費分を除く)で除したもの)

T_h =熱電併給設備において供給される熱の絶対温度(K)

なお、余剰熱が暖房用に 150°C(423.15K)未満で外部供給された場合、熱のカルノー効率の算定において熱温度(T_h)を 150°C(423.15K)と設定できるものとする。

< 既定値の算定に当たっての主な出所>

本文書で示す既定値の計算過程では、EU RED2 の代表値の計算過程について解説した以下の文書の値を引用しており、以降では簡略な出所の表記としている。¹

- ✓ Definition of input data to assess GHG default emissions from biofuels in EU legislation, JRC(2017a)
- ✓ Solid and gaseous bioenergy pathways:input values and GHG emissions ,JRC(2017b)

なお、EU RED2 の既定値は、加工工程について、代表値より安全側の値を採用すべきとして、液体燃料については代表値の 40%増の値、固体燃料については代表値の 20%増の値を既定値としていることから 2 、本文書においても加工工程に関して計算された値に対して液体燃料については 40%増の値、固体燃料については 20%増の値を既定値としている。(但し、 \mathbf{J} クレジット制度の方法論の諸元を引用した、国内木質バイオマスの加工工程を除く。 3)

¹ JRC(2017a)、JRC(2017b)ともにスプレッドシートによる計算過程の一部が、

https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/ALF-BIO/datasets/biofuels jrc annexv com2016-767 v1 july17/VER2017-07-31/、https://energy.ec.europa.eu/database-biomass en に各々掲載されており(2022年11月11日現在)、出所で示したものはこれらから引用したものも含まれる。

² https://www.env.go.jp/content/900442666.pdf (2022 年 11 月 11 日閲覧)

³ Jクレジット制度の方法論の排出量の諸元は、元より保守性が確保されていると考えられるため。

<既定値の位置づけ>

本文書で示す既定値は、一定の条件を満たすバイオマス燃料に対して FIT/FIP 制度に おいて適用可能なライフサイクル GHG 排出量を示したものであり、個々のバイオマスに ついてより詳細な条件を特定し、更なる削減を反映したライフサイクル GHG 排出量を個 別計算により確認することを妨げるものではない。また、ここで示す既定値は、2008 年 1 月以降の直接的土地利用変化がないことが既定値の適用条件の一つとなる。 また、本文書で示す既定値は、今後必要に応じて見直すものとする。

(2) ライフサイクル GHG 確認に当たっての既定値の適用について

過去のWGにおいて確認されたとおり、既定値を用いてライフサイクルGHGの確認を行う場合、既存認証スキームを活用する方法とFIT/FIP専用の確認スキームを活用よる方法の2種類がある。これらいずれの方法においても、既定値の適用に当たっては以下に留意する必要がある。

- 本文書で示す既定値の単位は、バイオマス燃料発熱量当たりのライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)と示している。FIT/FIP 制度が求めるライフサイクル GHG の排出量の基準は、発電電力量(送電端)当たりの値となっているため、本文書内の既定値を用いる際には、既定値を発電事業者が確認できる発電効率で除することで、発電電力量当たりの値を算出する必要がある。(なお、熱電併給を行うバイオマス発電所については、発電電力量当たりの値に換算する前に、バイオマス燃料のライフサイクル GHG を、生産する電力と熱でのエクセルギー(熱から力学的な仕事として取り出すことができるエネルギー量)により按分する。)
- 既定値を適用する際には、各区分に該当するか否かを確認することが必要となる。 例えば、距離等の数値による区分の場合は、実際の輸送距離が、既定値の区分の範 囲内であることを確認する必要がある。
- 本文書の既定値では、工程別のライフサイクル GHG 既定値も示している。これは、一部の工程については既定値を適用し、その他の工程は個別計算をすることで全体のライフサイクル GHG を把握することを念頭に置いている。

<木質バイオマスの区分>

- 木質バイオマスのライフサイクル GHG 既定値区分として、林地残材等、その他伐採木、製材等残材を設けており、これらの定義、及び国内木質バイオマスの基本的な確認方法は表 1 のとおりとする。
- なお、具体的な確認方法については、国内木質バイオマスは林野庁「木質バイオマス発電・証明ガイドライン」に基づく伝達情報を利用することとし、輸入木質バイオマスは各第三者認証スキームにおいて整備される確認方法に従うものとする。

表 1 木質バイオマスのライフサイクル GHG 既定値区分の定義

ライフサイクル GHG 既定値区分	定義	基本的な確認方法 (国内木質バイオマス)
製材等残材	木材の加工時等に発生する、端材、おがくず、 樹皮等の残材	由来証明が「製材等残材」であるもの
林地残材等	用材生産を主目的とする伐採により発生する低質材(端材、枝条を含む)、間伐材等。その他、エネルギー利用目的以外の伐採等により発生する病虫害や自然災害による被害木、剪定枝、ダム流木等(廃棄物の場合を除く)。	ライフサイクル GHG 既定値区分「製材等残材」「その他伐採木」以外の木質バイオマス
その他伐採木	エネルギー利用を目的とする伐採により発 生する木質バイオマス	当面、伐採齢が 20 年以下で主伐する場合(伐 採届等で確認)を、エネルギー利用目的の伐 採とみなし、その他伐採木とする

Ⅱ. 農産物の収穫に伴って生じるバイオマスのライフサイクルGHG既定値

1. 既定値の算定結果

現状、FIT/FIP 制度において認められている農産物の収穫に伴って生じるバイオマスは、 以下の3種類が挙げられる。

- パーム油
- PKS
- パームトランク

パーム油については、CPO とパームステアリンの 2 つのバイオマス燃料種を対象に、各々について搾油工程における廃液由来のメタン回収をするケース、しないケースの 2 種類の区分を設けた。

PKS、パームトランクについては、海上輸送によるライフサイクル GHG の排出が大きな割合を占めることから、主な生産国から日本までの距離を念頭に、 $6,500 \mathrm{km}$ 、 $9,000 \mathrm{km}$ の 2 種類の距離の区分を設けるとともに、船のサイズについても Handy Size・

Supramax の2種類の区分を設けた。

更に、パームトランクについては、原料生産国においてペレット化することを想定する とともに、乾燥工程の熱源として化石燃料を利用するケースとバイオマス燃料を利用する ケースの2種類の区分を設けた。

各燃料のライフサイクル GHG の既定値の算定結果は以下のとおり。

	- " "	• • • • • • • • • • • • • • • • • • • •
工程	メタン回収なし	メタン回収あり
栽培工程	19	0.32
輸送工程(FFB 輸送)	1	.21
加工工程(搾油)	29.81	5.21
輸送工程(CPO 輸送)	4.02	<mark>4 4.03</mark>
発電		0
合計	54.36 54.37	29.76 29.77

表 2 CPO のライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)

表 3 パームステアリンのライフサイクル GHG 既定値(g-CO2eg/MJ-燃料)

工程	メタン回収なし	メタン回収あり	
栽培工程	19.67		
輸送工程(FFB 輸送)		1.24	
加工工程(搾油)	30.36	5.31	
輸送工程(CPO 輸送)		0.15	
加工工程(精製)	1.49		
加工工程(分離)		0	
輸送工程	0.01.0.00		
(パームステアリン輸送)	3.91 3.92		
発電	0		
合計	56.81 56.83	31.76 31.78	

表 4 PKS のライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)

工程	Handy Size 6,500km 輸送	Supramax 6,500km 輸送
輸送工程(生産国内輸送)	0.	66
輸送工程(海上輸送)	7.33	4.68
輸送工程(日本国内輸送)	0.40	0.42
発電	0.	26
合計	8.65 8.67	6.00 <mark>6.02</mark>

工程	Handy Size 9,000km 輸送	Supramax 9,000km 輸送
輸送工程(海上輸送)	10.14 10.15	6.48
(その他工程は	は6,500km 輸送と同じため	略)
合計	11.46 11.49	7.80 <mark>7.82</mark>

表 5 パームトランクのライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)

工程		石燃料利用 统電力利用)	乾燥:バイオマス利用 (造粒:系統電力利用)		
上性	Handy Size 6,500km 輸送	Supramax 6,500km 輸送	Handy Size 6,500km 輸送	Supramax 6,500km 輸送	
輸送工程 (パームトランク収集)	0.	83	1.06		
加工工程	29.48	31.32	15.07 15.20		
輸送工程 (生産国内輸送)		0.	55		
輸送工程(海上輸送)	3.11	2.01	3.11	2.01	
輸送工程 (日本国内輸送)		$\frac{0.32}{0.32}$	<mark>0.34</mark>		
発電	0.25				
合計	34.53 36.40	33.43 35.30	$\frac{20.35}{20.51}$	19.25 19.41	

	乾燥:化石	5燃料利用	乾燥:バイオマス利用		
工程	(造粒:系統	充電力利用)	(造粒:系統電力利用)		
上往	Handy Size	Supramax	Handy Size	Supramax	
	9,000km 輸送	9,000km 輸送	9,000km 輸送	9,000km 輸送	
輸送工程(海上輸送)	4.30	2.78	4.30	2.78	
(その他工程は 6,500km 輸送と同じため略)					
合計	35.72 37.59	$\frac{34.20}{36.07}$	$\frac{21.54}{21.70}$	$\frac{20.02}{20.18}$	

2. パーム油のライフサイクルGHG既定値の計算過程

2-1. CPO

(1) 対象工程等

<対象工程>

 ${
m CPO}$ はアブラヤシの果房の実を絞って生成される精製前の油である。 ${
m CPO}$ における対象工程は図 1 のとおり想定した。

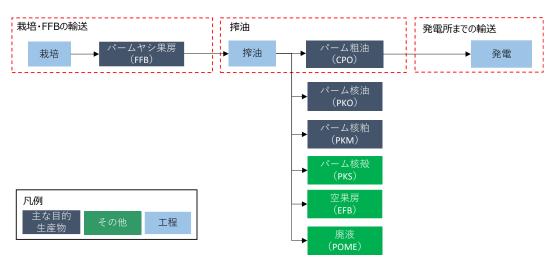


図 1 パーム油 (CPO) のライフサイクル GHG 対象工程

<アロケーション>

アロケーションの対象に関して、FIT/FIP 制度においてはバイオマス種別に特定するものとしていることから、ここで対象を定めた。具体的には、産出物を「主な目的生産物」と「それ以外」に振り分け、搾油工程において供出される産出物のうち、パーム粗油(CPO)、パーム核油(PKO)、パーム核粕(PKM)を「主な目的生産物」と判断しアロケーションの対象とした。

アロケーションの比率については、FIT/FIP 制度においては熱量按分法とすることが定められており、本資料では EU RED2 の既定値の諸元を多く引用していることから、EU RED2 の既定値で用いられている CPO へのアロケーション比率 84%を用いるものとした。

表 6 EU RED2 の既定値で用いられている CPO へのアロケーション比率

Table 216 LHV of palm oil

Component	Weight fraction of FFB	Source	LHV _{-vap} (MJ/kg)	Source	Moisture	Output in allocat. def. LHV-	LHV of dry part of moist biomass (MJ/kg)
Palm oil	0.200	1	37	6	0 %	7.393	37.0
Palm kernel meal	0.029	2, 3	16.4	2	10 %	0.481	16.7
Palm kernel oil	0.024	1	37	6	0 %	0.888	37
Excess nutshells	0.074	5	0 (*)	4	10 %	0.000	17.3
Allocation to crude palm oil			84 %		Total	8.762	

出所) JRC(2017a)

(2) 工程別の排出量の計算

<栽培工程>

栽培工程における各排出活動の排出量の計算結果は以下のとおり。

表 7 FFB 重量当たり得られる CPO 熱量の計算

	諸元	値	単位	出典
1	FFB(湿潤)に対する CPO 重量発生比率	0.1998	t-CPO/t-FFB wet	JRC(2017a)
2	CPO 発熱量	37,000	MJ-CPO/t-CPO	JRC(2017a)
3	FFB(湿潤)重量当たり 得られる CPO 熱量	7,393	MJ-CPO/t-FFB wet	=①x②

表 8 農機等による燃料消費による排出量の計算

	諸元	値	単位	出典				
1)	FFB (湿潤) 当たりの投入軽 油	2.37	l-軽油/t-原料	JRC(2017a)				
2	軽油発熱量	36	MJ/l-軽油	JRC(2017a)				
3	軽油排出係数(燃焼時のメタ ン・N2O含まない)	95.1	g-CO2eq/MJ-軽 油	JRC(2017a)				
4	FFB(湿潤)当たり排出量	8,114	g-CO2eq/t-原料	=(1)×(2)×(3)				
5	FFB(湿潤)重量当たり得ら れる CPO 熱量	7,393	MJ-燃料/t-原料	表 7				
6	CPO アロケーション比率	0.84		JRC(2017a)				
7	当該排出活動の GHG 排出量	0.92	g-CO2eq/MJ-燃 料	=4/5×6				

表 9 投入肥料 (K2O) の製造による排出量の計算

	諸元	値	単位	出典				
1	FFB(湿潤)当たりの酸化カ リウム投入	9.18	kg/t-原料	JRC(2017a)				
2	酸化カリウム製造排出原単位	413	g-CO2eq/kg	COMMISSION IMPLEMENTING REGULATION (EU) 2022/9964				
3	FFB(湿潤)当たり排出量	3,791	g-CO2eq/t-原料	=(1)×(2)				
4	FFB(湿潤)重量当たり得ら れる CPO 熱量	7,393	MJ-燃料/t-原料	表 7				
(5)	CPO アロケーション比率	0.84	_	JRC(2017a)				
6	当該排出活動の GHG 排出量	0.43	g-CO2eq/MJ-燃 料	=3/4×5				

 4 Rules to verify sustainability and greenhouse gas emissions saving criteria and low indirect landuse change-risk criteria

表 10 投入肥料 (窒素系肥料) の製造による排出量の計算

	諸元	値	単位	出典
1	FFB(湿潤)当たりの窒 素系肥料投入	5.10	kg/t-原料	JRC(2017a)
2	窒素系肥料製造排出原単 位	4,572	g-CO2eq/kg	JRC(2017a)
3	FFB(湿潤)当たり排出 量	23,317	g-CO2eq/t-原料	=①×②
4	FFB(湿潤)重量当たり 得られる CPO 熱量	7,393	MJ-燃料/t-原料	表 7
(5)	CPO アロケーション比率	0.84	_	JRC(2017a)
6	当該排出活動の GHG 排出 量	2.65	g-CO2eq/MJ-燃 料	=3/4×5

表 11 投入肥料 (リン酸系肥料) の製造による排出量の計算

	諸元	値	単位	出典			
1	FFB(湿潤)当たりのリン酸 系肥料投入	1.66	kg/t-原料	JRC(2017a)			
2	リン酸系肥料製造排出原単位	544	g-CO2eq/kg	COMMISSION IMPLEMENTING REGULATION (EU) 2022/996 ⁵			
3	FFB(湿潤)当たり排出量	903	g-CO2eq/t-原 料	=①×②			
4	FFB(湿潤)重量当たり得ら れる CPO 熱量	7,393	MJ-燃料/t-原 料	表 7			
(5)	CPO アロケーション比率	0.84	_	JRC(2017a)			
6	当該排出活動の GHG 排出量	0.10	g-CO2eq/MJ - 燃料	=3/4×5			

表 12 投入肥料による排出 (EFB コンポスト) による排出量の計算

	諸元	値	単位	出典
1	FFB(湿潤)重量当たり EFB コンポスト由来 メタン排出	4.10	kg-CH4/t-原料	Jannick Schmidt(2007)
2	メタン GWP	25	_	FIT/FIP 制度における計算方 法
3	FFB(湿潤)当たり排出量	102,500	g-CO2eq/t-原 料	=①×②×1,000
4	FFB(湿潤)重量当たり得ら れる CPO 熱量	7,393	MJ-燃料/t-原料	表 7
(5)	CPO アロケーション比率	0.84	_	JRC(2017a)
6	当該排出活動の GHG 排出量	11.65	g-CO2eq/MJ - 燃料	=3/4×5

11

 $^{^{5}}$ Rules to verify sustainability and greenhouse gas emissions saving criteria and low indirect landuse change-risk criteria

表 13 投入殺虫剤の製造による排出量の計算

	諸元	値	単位	出典			
1	FFB(湿潤)当たりの殺虫剤 投入	0.74	kg/t-原料	JRC(2017a)			
2	殺虫剤製造排出原単位	12,011	g-CO2eq/kg	JRC(2017a)			
3	FFB(湿潤)当たり排出量	8,888	g-CO2eq/t-原料	=(1)×(2)			
4	FFB(湿潤)重量当たり得ら れる CPO 熱量	7,393	MJ-燃料/t-原料	表 7			
(5)	CPO アロケーション比率	0.84	_	JRC(2017a)			
6	当該排出活動の GHG 排出量	1.01	g-CO2eq/MJ - 燃料	=3/4×5			

表 14 土壌からの窒素系肥料由来の N2O 漏出の排出量の計算

	諸元		単位	出典
1	FFB(湿潤)当たりの窒素肥 料投入	5.10	kg/t-原料	JRC(2017a)
2	排出原単位(直接排出)	0.0097	kg-N2O/kg	2022 年日本国温室効果ガスイ ンベントリ報告書(0.62% [kg-N2O-N/kg-N] ×44/ 28)
3	排出原単位(間接排出・大気 沈降)	0.0016	kg-N2O/kg	2006 年 IPCC ガイドラインの デフォルト値より導出 (窒素肥料の揮散割合 0.10[kg- NH3-N + NOX-N/kg] ×排出係数 0.010 [kg-N2O- N/kg-NH3-N+NOx-N]×44/ 28)
4	排出原単位(間接排出・溶 脱)	0.0035	kg-N2O/kg	2006 年 IPCC ガイドライン のデフォルト値より導出(溶脱 流出する窒素の割合 0.30×排出 係数 0.0075 [kg-N2O-N/kg- N]×44/ 28)
(5)	N2O ∅ GWP	298	_	FIT/FIP 制度における計算方法
6	FFB(湿潤)当たり排出量	22,493	g-CO2eq/t 原 料	=①x (②+③+④) x⑤×1,000
7	FFB(湿潤)重量当たり得ら れる CPO 熱量	7,393	MJ-燃料/t-原料	表 7
8	CPO アロケーション比率	0.84	_	JRC(2017a)
9	当該排出活動の GHG 排出量	2.56	g-CO2eq/MJ-燃 料	=6/8×9

<輸送工程(FFB 輸送)>

FFB輸送工程における各排出活動の排出量の計算結果は以下のとおり。

表 15 FFB 輸送工程による排出量の計算

	諸元	値	単位	出典
1	距離(農園→搾油工場)	50	km	JRC(2017a)
2	往復燃費 12t トラック	2.24	MJ-軽油 /tkm	JRC(2017a)
3	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g- CO2eq/MJ- 軽油	JRC(2017a)
4	軽油由来の排出原単位(燃焼 時のメタン・N2O 含まない)	213.0	g- CO2eq/tkm	=2×3
(5)	CH4 排出原単位(トラック利 用時)	0.0034	g-CH4/tkm	JRC(2017a)
6	N2O 排出原単位(トラック利 用時)	0.0015	g-N2O/tkm	JRC(2017a)
7	CH4 排出原単位(トラック利 用時)CO2 換算	0.085	g- CO2eq/tkm	=⑤×25
8	N2O 排出原単位(トラック利 用時)CO2 換算	0.447	g- CO2eq/tkm	=⑥×298
9	陸上輸送の GHG 排出原単位	<mark>213.6</mark>	g- CO2eq/tkm	=4+7+8
10	FFB(湿潤)重量当たり得ら れる CPO 熱量	7,393	t-原料/MJ-燃 料	表 7
(11)	CPO へのアロケーション比率	0.84	_	JRC(2017a)
12)	当該工程の GHG 排出量	1.21	g- CO2eq/MJ- 燃料	=①×⑨/⑩×⑪

<加工工程(搾油)>

搾油工程における排出量の計算結果は以下のとおり。なお、EU 既定値にならい、加工工程は算出値の 1.4 倍とした。

表 16 CPO 加工工程 (搾油) の排出量の計算 (メタン回収なし)

	諸元	値	単位	出典
1	投入電力	0.000078	MJ-電力/MJ-燃料	JRC(2017a)
2	投入軽油	0.00445	MJ-軽油/MJ-燃料	JRC(2017a)
3	電力排出係数(系統電力)	$\frac{240.7}{238.7}$	g-CO2eq/MJ-電力	GREET2022 よりインドネシ アの排出係数
4	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017a)
⑤	PKS 及び繊維質の燃焼による CH4 排出	0.000700	g-CH4/MJ-燃料	JRC(2017a)
6	PKS 及び繊維質の燃焼による N2O 排出	0.000996	g-N2O/MJ-燃料	JRC(2017a)
7	POME 由来メタン発生(回収 なし)	0.9844	g-CH4/MJ-燃料	JRC(2017a)
8	電力由来の排出原単位	0.0186	g-CO2eq/MJ-燃料	=①×③
9	軽油由来の排出原単位(燃焼 時のメタン・N2O 含まない)	0.42	g-CO2eq/MJ-燃料	=②×④
10	PKS 及び繊維質の燃焼による CH4 排出(CO2 換算)	0.0175	g-CO2eq/MJ-燃料	=⑤×25
(1)	PKS 及び繊維質の燃焼による N2O 排出(CO2 換算)	0.30	g-CO2eq/MJ-燃料	=⑥×298
12	POME 由来メタン発生(回収 なし)(CO2 換算)	24.61	g-CO2eq/MJ-燃料	=⑦×25
13	CPO へのアロケーション比率	0.84	_	JRC(2017a)
14)	当該工程の GHG 排出量	21.29	g-CO2eq/MJ-燃料	$= (8+9+10+11+12) \times 13$
15	当該工程の GHG 排出量(保 守性担保のため⑭を 40%増))	29.81	g-CO2eq/MJ-燃料	=(14) × 1.4

表 17 CPO 加工工程 (搾油) の排出量の計算 (メタン回収あり)

	諸元	値	単位	出典
1	投入電力	0.000078	MJ-電力/MJ-燃料	JRC(2017a)
2	投入軽油	0.00445	MJ-軽油/MJ-燃料	JRC(2017a)
3	電力排出係数(系統電力)	$\frac{240.7}{238.7}$	g CO2eq/MJ-電力	GREET2022 よりインドネシ アの排出係数
4	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017a)
⑤	PKS 及び繊維質の燃焼による CH4 排出	0.000700	g-CH4/MJ-燃料	JRC(2017 a)
6	PKS 及び繊維質の燃焼による N2O 排出	0.000996	g-N2O/MJ-燃料	JRC(2017 a)
7	POME 由来メタン発生(回収 あり)	0.1477	g-CH4/MJ-燃料	JRC(2017 a)
8	電力由来の排出原単位	0.0186	g-CO2eq/MJ-電力	=(1)×(3)
9	軽油由来の排出原単位(燃焼 時のメタン・N2O 含まない)	0.42	g-CO2eq/MJ-燃料	=(2)×(4)
10	PKS 及び繊維質の燃焼による CH4 排出(CO2 換算)	0.0175	g-CO2eq/MJ-燃料	=⑤×25
(1)	PKS 及び繊維質の燃焼による N2O 排出(CO2 換算)	0.30	g-CO2eq/MJ-燃料	=⑥×298
12	POME 由来メタン発生(回収 あり)(CO2 換算)	3.69	g-CO2eq/MJ-燃料	=⑦×25
13	CPO へのアロケーション比率	0.84	_	JRC(2017a)
14)	当該工程の GHG 排出量	3.72	g-CO2eq/MJ-燃料	$= (8+9+10+11+12) \times 13$
15	当該工程の GHG 排出量(保 守性担保のため⑭を 40%増))	5.21	g-CO2eq/MJ-燃料	=(4)×1.4

<輸送工程(CPO 輸送)>

CPO 輸送工程における排出量の計算結果は以下のとおり。

表 18 CPO 輸送工程(生産国内輸送)による排出量の計算

	諸元	値	単位	出典
1	距離(搾油工場→港)	120	km	JRC(2017a)
2	往復燃費	0.81	MJ-軽油/tkm	JRC(2017a)
3	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽 油	JRC(2017a)
4	軽油由来の排出原単位(燃焼 時のメタン・N2O 含まない)	<mark>77.1</mark>	g-CO2eq/tkm	=2×3
5	CH4 排出原単位(トラック利 用時)	0.0034	g-CH4/tkm	JRC(2017a)
6	N2O 排出原単位(トラック利 用時)	0.0015	g-N2O/tkm	JRC(2017a)
7	CH4 排出原単位(トラック利 用時)CO2 換算	0.085	g-CO2eq/tkm	$=$ $ (5) \times 25 $
8	N2O 排出原単位(トラック利 用時)CO2 換算	0.447	g-CO2eq/tkm	$= 6 \times 298$
9	陸上輸送の GHG 排出原単位	77.7	g-CO2eq/tkm	=4+7+8
10	バイオマス燃料発熱量	37,000	MJ-燃料/t-燃料	JRC(2017a)
(1)	当該工程の GHG 排出量	0.25	g-CO2eq/MJ-燃 料	=(1)×(9)/(10)

表 19 CPO 海上輸送工程による排出量の計算

	諸元	値	単位	出典
1	距離	9,000	km	尼馬代表港(遠距離)-日本間の概算距離
2	海上輸送排出原単位 (ケミカルタンカ ー)	0.158	MJ-重油/tkm	JRC(2017a)
3	重油排出係数	94.2	g-CO2eq/MJ-重 油	JRC(2017a)
4	バイオマス燃料発熱 量	37,000	MJ-燃料/t-燃 料	JRC(2017a)
(5)	当該工程の GHG 排 出量	3.62	g-CO2eq/MJ-燃 料	=(1)×(2)×(3)/(4)

表 20 CPO 輸送工程 (日本国内輸送) による排出量の計算

	諸元	値	単位	出典
1	輸送距離	20	km	第 12 回 WG 資料 4 を参 考に設定
2	往復燃費 10t トラック	2.92- 3.06	MJ-軽油/tkm	表 118より
3	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017a)
4	軽油由来の排出原単位(燃焼 時のメタン・N2O 含まな い)	$\frac{277.7}{290.5}$	g-CO2eq/tkm	=2×3
(5)	CH4 排出原単位(トラック 利用時)	$\frac{0.0034}{0.0034}$	g-CH4/tkm	JRC(2017a)
6	N2O 排出原単位(トラック 利用時)	0.0015	g-N2O/tkm	JRC(2017a)
7	CH4 排出原単位(トラック 利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤ $ imes25$
8	N2O 排出原単位(トラック 利用時)CO2 換算	0.447	g-CO2eq/tkm	$=$ 6×298
9	陸上輸送の GHG 排出原単位	<mark>278.2</mark> 291.1	g-CO2eq/tkm	=4+7+8
10	バイオマス燃料発熱量	37,000	MJ-燃料/t-燃料	JRC(2017a)
11)	当該工程の GHG 排出量	0.15 0.16	g-CO2eq/MJ-燃料	①×9/10

<発電工程>

発電工程における排出 (メタン、N2O) については、EURED2 のパーム油既定値や、第 12 回 WG における業界団体による報告に基づきゼロとした。

2-2. パームステアリン

(1) 対象工程等

<対象工程>

パームステアリンは、CPO を生成して得られる RBD パーム油を分離することでパームオレインとともに得られる。パームステアリンにおけるライフサイクル GHG の対象工程は、図 2 のとおり想定した。なお、精製・分離は生産国内で行われることを想定した。

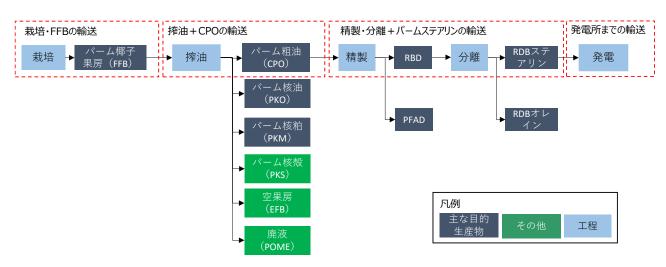


図 2 パーム油 (パームステアリン) のライフサイクル GHG 対象工程

<アロケーション>

アロケーションの対象については、搾油工程で発生する算出物については CPO と同様に設定した。精製工程、分離工程では、図 2 のとおり主な目的生産物を想定し、アロケーションの対象とした。

搾油工程における CPO へのアロケーション比率については同様に 0.84 とした。精製工程、分離工程におけるアロケーションの比率は以下のとおりとした。

	1	2	3
	発生重量比率	発熱量(MJ/t)	アロケーション比率
	NESTE	JRC(2017a)	$=$ ① $/\Sigma(①×②)$
RBD	0.9575	37000	0.9575
PFAD	0.0425	37000	0.0425

表 21 精製工程におけるアロケーションの比率

表 22 分離工程におけるアロケーションの比率

	1	2	3
	発生重量比率	発熱量(MJ/t)	アロケーション比率
	第12回バイオ	第12回バイオ	=①/ Σ (① × ②)
	WG資料4	WG資料4	
パームステアリン	0.25	36,326	0.25
パームオレイン	0.75	36,326	0.75

(2) 工程別の排出量の計算

<栽培工程>

栽培工程における各排出活動の排出量の計算結果は以下のとおり。

表 23 FFB 重量当たり得られるパームステアリン熱量の計算

	諸元	値	単位	出典
1	FFB(湿潤)重量当たり CPO 重量発生比率	0.1998	t-CPO/t-FFB wet	JRC(2017a)
2	CPO に対する RBD 重量 発生比率	0.9575	t-RBD/t-CPO	NESTE 社ウェブサイト ⁶
3	RBD に対するパームステ アリン重量発生比率	0.250	t-パームステア リン/t-RBD	第 12 回バイオ WG 資料 4
4	パームステアリン発熱量	36,326	MJ/t-パームス テアリン	第 12 回バイオ WG 資料 4 記載 の値から単位換算
(5)	FFB (湿潤) 重量当たり 得られるパームステアリ ン熱量	1,737	MJ-パームステ アリン/t- FFB wet	=①x②x③x④

表 24 農機等による燃料消費による排出量の計算

	諸元	値	単位	出典
1	FFB (湿潤) 当たりの軽油投 入	2.37	1-軽油/t-原料	JRC(2017a)
2	軽油発熱量	36	MJ-軽油/l-軽油	JRC(2017a)
3	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽 油	JRC(2017a)
4	FFB(湿潤)当たり排出量	8,114	g-CO2eq/t-原料	=(1)×(2)×(3)
5	FFB (湿潤) 重量当たり得られるパームステアリン熱量	1,737	MJ-燃料/t-原料	表 23
6	パームステアリンへのアロケ ーション比率(搾油工程以 降)	0.201	-	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション比率、表 22 パームステアリンのアロケーション比率を乗じて算出
7	当該排出活動の GHG 排出量	0.94	g-CO2eq/MJ-燃 料	=4/5×6

-

 $^{^6}$ https://www.neste.com/products/all-products/raw-materials/pfad-residue-palm-oil-refining#b7a200a8 (2022 年 11 月 10 日閲覧)より、PFAD 発生比率の $3.5\sim~5\%$ 中央値を 100%から差し引いて算出

表 25 投入肥料 (K2O) の製造による排出量の計算

	諸元	値	単位	出典
1	FFB(湿潤)当たりの酸化カ リウム投入	9.18	kg/t-原料	JRC(2017a)
2	酸化カリウム製造排出原単位	413	g-CO2eq/kg	COMMISSION IMPLEMENTING REGULATION (EU) 2022/996 ⁷
3	FFB(湿潤)当たり排出量	3,791	g-CO2eq/t-原料	=(1)×(2)
4	FFB (湿潤) 重量当たり得られるパームステアリン熱量	1,737	MJ-燃料/t-原料	表 23
(5)	パームステアリンへのアロケ ーション比率 (搾油工程以 降)	0.201	_	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション比率、表 22パームステアリンのアロケーション比率を乗じて算出
6	当該排出活動の GHG 排出量	0.44	g-CO2eq/MJ-燃 料	=3/4×5

表 26 投入肥料 (窒素系肥料) の製造による排出量の計算

	* * * * * * * * * * * * * * * * * * * *			
	諸元	値	単位	出典
1	FFB(湿潤)当たりの窒素系肥 料投入	5.10	kg/t-原料	JRC(2017a)
2	窒素系肥料製造排出原単位	4,572	g-CO2eq/kg	JRC(2017a)
3	FFB(湿潤)当たり排出量	23,317	g-CO2eq/t-原料	=(1)×(2)
4	FFB(湿潤)重量当たり得られるパームステアリン熱量	1,737	MJ-燃料/t-原料	表 23
(3)	パームステアリンへのアロケー ション比率 (搾油工程以降)	0.201	_	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション比率、表 22パームステアリンのアロケーション比率を乗じて算出
6	当該排出活動の GHG 排出量	2.70	g-CO2eq/MJ-燃料	=3/4×5

表 27 投入肥料 (リン酸系肥料) の製造による排出量の計算

	諸元	値	単位	出典
1	FFB(湿潤)当たりのリ ン酸系肥料投入	1.66	kg/t-原料	JRC(2017a)
2	リン酸系肥料製造排出原 単位	544	g-CO2eq/kg	COMMISSION IMPLEMENTING REGULATION (EU) 2022/9968
3	FFB(湿潤)当たり排出 量	903	g-CO2eq/t-原料	=①×②
4	FFB(湿潤)重量当たり 得られるパームステアリ ン熱量	1,737	MJ-燃料/t-原料	表 23
(5)	パームステアリンへのア ロケーション比率(搾油 工程以降)	0.201	+	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション比率、表 22パームステアリンのアロケーション比率を乗じて算出
6	当該排出活動の GHG 排出 量	0.10	g-CO2eq/MJ-燃料	=3/4×5

 8 Rules to verify sustainability and greenhouse gas emissions saving criteria and low indirect landuse change-risk criteria

 $^{^{7}\,}$ Rules to verify sustainability and greenhouse gas emissions saving criteria and low indirect landuse change-risk criteria

表 28 投入肥料による排出 (EFB コンポスト) による排出量の計算

	諸元	値	単位	出典
1	FFB(湿潤)重量当たり EFB コンポスト由来メタン 排出	4.10	kg-CH4/t-原料	Jannick Schmidt(2007)
2	メタン GWP	25	_	FIT/FIP 制度における計算方 法
3	FFB(湿潤)当たり排出量	102,500	g-CO2eq/t-原料	=①×②×1,000
4	FFB (湿潤) 重量当たり得られるパームステアリン熱量	1,737	MJ-燃料/t-原料	表 23
5	パームステアリンへのアロ ケーション比率 (搾油工程 以降)	0.201	_	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション比率、表 22 パームステアリンのアロケーション比率を乗じて算出
6	当該排出活動の GHG 排出 量	11.86	g-CO2eq/MJ-燃料	=3/4×5

表 29 投入殺虫剤の製造による排出量の計算

	諸元	値	単位	出典
1	FFB(湿潤)当たりの殺 虫剤投入	0.74	kg/t-原料	JRC(2017a)
2	殺虫剤製造排出原単位	12,011	g-CO2eq/kg	JRC(2017a)
3	FFB(湿潤)当たり排出 量	8,888	g-CO2eq/t-原料	=①×②
4	FFB (湿潤) 重量当たり 得られるパームステアリ ン熱量	1,737	MJ-燃料/t-原料	表 23
(5)	パームステアリンへのア ロケーション比率(搾油 工程以降)	0.201	_	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション比率、表 22 パームステアリンのアロケーション比率を乗じて算出
6	当該排出活動の GHG 排 出量	1.03	g-CO2eq/MJ-燃料	=3/4×5

表 30 土壌からの窒素系肥料由来の N2O 漏出の排出量の計算

	諸元	値	単位	出典
1	FFB(湿潤)当たりの窒素 肥料投入	5.10	kg/t-原料	JRC(2017a)
2	排出原単位(直接排出)	0.0097	kg-N2O/kg	2022 年日本国温室効果ガスインベントリ報告書(0.62% [kg-N2O-N/kg-N]×44/28)
3	排出原単位(間接排出・大 気沈降)	0.0016	kg-N2O/kg	2006 年 IPCC ガイドラインのデフォルト値より導出(窒素肥料の揮散割合 0.10[kg·NH3·N + NOX·N/kg]×排出係数 0.010 [kg·N2O·N/kg·NH3·N+NOx·N]×44/ 28)
4	排出原単位(間接排出・溶 脱)	0.0035	kg-N2O/kg	2006 年 IPCC ガイドラインのデフォルト値より導出(溶脱流出する窒素の割合 0.30×排出係数 0.0075 [kg-N2O-N/kg-N]×44/28)
(5)	N2O ∅ GWP	298	_	FIT/FIP 制度における計算方法
6	FFB(湿潤)当たり排出量	22,493	g-CO2eq/t-原料	=①× (②+③+④) ×⑤×1,000
7	FFB(湿潤)重量当たり得 られるパームステアリン熱 量	1,737	MJ-燃料/t-原料	表 23
8	パームステアリンへのアロ ケーション比率(搾油工程 以降)	0.201	_	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション比率、表 22 パームステアリンのアロケーション比率を乗じて算出
9	当該排出活動の GHG 排出 量	2.60	g-CO2eq/MJ-燃 料	=6/7×8

<輸送工程(FFB 輸送)>

FFB 輸送工程における各排出活動の排出量の計算結果は以下のとおり。

表 31 FFB 輸送工程による排出量の計算

	諸元					
	諸元			1 11		
1	距離(農園→搾油工場)	50	km	JRC(2017a)		
2	往復燃費 12t トラック	2.24	MJ-軽油/tkm	JRC(2017a)		
3	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017a)		
4	軽油由来の排出原単位(燃焼 時のメタン・N2O 含まな い)	213.0	g-CO2eq/tkm	=2×3		
5	CH4 排出原単位(トラック 利用時)	0.0034	g-CH4/tkm	JRC(2017a)		
6	N2O 排出原単位(トラック 利用時)	0.0015	g-N2O/tkm	JRC(2017a)		
7	CH4 排出原単位(トラック 利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤ $ imes25$		
8	N2O 排出原単位(トラック 利用時)CO2 換算	0.447	g-CO2eq/tkm	=⑥×298		
9	陸上輸送の GHG 排出原単位	213.6	g-CO2eq/tkm	=4+7+8		
10	FFB (湿潤) 重量当たり得られるパームステアリン熱量	1,737	MJ-燃料/t-原料	表 23		
(11)	パームステアリンへのアロケ ーション比率 (搾油工程以 降)	0.201	_	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション 比率、表 22パームステアリンのアロケーション比率を乗じて算出		
12	当該工程の GHG 排出量	$\frac{1.23}{1.24}$	g-CO2eq/MJ-燃料	=①×⑨/⑩×⑪		

<加工工程(搾油)>

搾油工程における排出量の計算結果は以下のとおり。

表 32 CPO 発熱量当たり得られるパームステアリン熱量

	諸元	値	単位	出典
1	CPO 発熱量当たり発生する RBD 発熱量	0.9575	MJ-RBD/MJ- CPO	NESTE 社ウェブサイト ⁹
2	RBD 発熱量	37,000	MJ/t-RBD	JRC(2017a)
3	RBD に対するパームステア リン重量発生比率	0.250	t-パームステアリ ン/t-RBD	第 12 回バイオ WG 資料 4
4	パームステアリン発熱量	36,326	MJ/t-パームステ アリン	第 12 回バイオ WG 資料 4 記載 の値から単位換算
5	RBD 発熱量当たり発生する パームステアリン発熱量	0.245	MJ-パームステア リン/MJ-RBD	=3×4/2
6	CPO 発熱量当たり得られる パームステアリン熱量	0.235	MJ-パームステア リン/MJ-CPO	=①×⑤

表 33 CPO 加工工程 (搾油) の排出量の計算 (メタン回収なし)

	諸元	値	単位	出典
1	投入電力	0.000078	MJ-電力/MJ-原料	JRC(2017a)
2	投入軽油	0.00445	MJ-軽油/MJ-原料	JRC(2017a)
3	電力排出係数(系統電力)	$\frac{240.7}{238.7}$	g-CO2eq/MJ-電力	GREET2022 よりインドネシア の排出係数
4	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017a)
(5)	PKS 及び繊維質の燃焼による CH4 排出	0.000700	g-CH4/MJ-原料	JRC(2017a)
6	PKS 及び繊維質の燃焼による N2O 排出	0.000996	g-N2O/MJ-原料	JRC(2017a)
7	POME 由来メタン発生(回収 なし)	0.9844	g-CH4/MJ-原料	JRC(2017a)
8	電力由来の排出原単位	0.0186	g-CO2eq/MJ-電力	=(1)×(3)
9	軽油由来の排出原単位(燃焼 時のメタン・N2O 含まない)	0.42	g-CO2eq/MJ-原料	=(2)×(4)
10	PKS 及び繊維質の燃焼による CH4 排出(CO2 換算)	0.0175	g-CO2eq/MJ-原料	=⑤×25
(1)	PKS 及び繊維質の燃焼による N2O 排出(CO2 換算)	0.30	g-CO2eq/MJ-原料	=⑥×298
12	POME 由来メタン発生(回収 なし)(CO2 換算)	24.61	g-CO2eq/MJ-原料	=⑦×25
13	CPO 熱量当たり得られるパー ムステアリン熱量	0.235	MJ-燃料/MJ-原料	表 32
14)	パームステアリンのアロケー ション比率(搾油工程以降)	0.201	-	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション比率、表 22 パームステアリンのアロケーション比率を乗じて算出
15)	当該工程の GHG 排出量	21.69	g-CO2eq/MJ-燃料	$= (8+9+0+10+12) /13\times14$
16	当該工程の GHG 排出量(保守 性担保のため⑮を 40%増))	30.36	g-CO2eq/MJ-燃料	=①5×1.4

⁹ https://www.neste.com/products/all-products/raw-materials/pfad-residue-palm-oil-refining#b7a200a8 (2022 年 11 月 10 日閲覧)より、PFAD 発生比率の 3.5~ 5% 中央値を 100%から差し引いて算出

表 34 CPO 加工工程 (搾油) の排出量の計算 (メタン回収あり)

	諸元		単位	出典
1	投入電力	0.000078	MJ-電力/MJ-原 料	JRC(2017a)
2	投入軽油	0.00445	MJ-軽油/MJ-原 料	JRC(2017a)
3	電力排出係数(系統電力)	240.7 238.7	g-CO2eq/MJ-電力	GREET2022 によりインド ネシアの排出係数
4	軽油排出係数((燃焼時の メタン・N2O 含まな い))	95.1	g-CO2eq/MJ-軽 油	JRC(2017a)
(5)	PKS 及び繊維質の燃焼に よる CH4 排出	0.000700	g-CH4/MJ-原料	JRC(2017a)
6	PKS 及び繊維質の燃焼に よる N2O 排出	0.000996	g-N2O/MJ-原料	JRC(2017a)
7	POME 由来メタン発生 (回収あり)	0.1477	g-CH4/MJ-原料	JRC(2017a)
8	電力由来の排出原単位	0.0186	g-CO2eq/MJ-原 料	=①×③
9	軽油由来の排出原単位 (燃焼時のメタン・N2O 含まない)	0.42	g-CO2eq/MJ-原 料	=②×④
10	PKS 及び繊維質の燃焼に よる CH4 排出(CO2 換 算)	0.0175	g-CO2eq/MJ-原 料	=⑤×25
(1)	PKS 及び繊維質の燃焼に よる N2O 排出(CO2 換 算)	0.30	g-CO2eq/MJ-原 料	=⑥×298
12	POME 由来メタン発生 (回収あり)(CO2 換 算)	3.69	g-CO2eq/MJ-原 料	=⑦×25
13	CPO 熱量当たり得られる パームステアリン熱量	0.235	MJ-燃料/MJ-原 料	表 32
14)	パームステアリンのアロ ケーション比率(搾油工 程以降)	0.201	_	表 6CPO へのアロケーション比率、表 21RBD へのアロケーション比率、表 22パームステアリンのアロケーション比率を乗じて算出
15)	当該工程の GHG 排出量	3.79	g-CO2eq/MJ-燃 料	= (8+9+10+11)+12) /13× 14
16	当該工程の GHG 排出量 (保守性担保のため⑮を 40%増))	5.31	g-CO2eq/MJ-燃 料	=(4)×1.4

<輸送工程(CPO 輸送)>

CPO 輸送工程における排出量の計算結果は以下のとおり。

表 35 CPO 輸送工程の排出量の計算

	諸元	値	単位	出典		
1	距離(搾油工場→精製工場)	72	km	ヒアリングにより把握		
2	往復燃費	0.811	MJ-軽油/tkm	JRC(2017a)		
3	軽油排出係数(燃焼時のメタン・ N2O 含まない)	95.1	g-CO2eq/MJ-軽 油	JRC(2017a)		
4	軽油由来の排出原単位(燃焼時の メタン・N2O 含まない)	77.1	g-CO2eq/tkm	=2×3		
(5)	CH4 排出原単位(トラック利用 時)	0.0034	g-CH4/tkm	JRC(2017a)		
6	N2O 排出原単位(トラック利用 時)	0.0015	g-N2O/tkm	JRC(2017a)		
7	CH4 排出原単位(トラック利用 時)CO2 換算	0.085	g-CO2eq/tkm	=⑤×25		
8	N2O 排出原単位(トラック利用 時)CO2 換算	0.447	g-CO2eq/tkm	=⑥×298		
9	陸上輸送の GHG 排出原単位	$\frac{77.7}{}$	g-CO2eq/tkm	=4+7+8		
10	CPO 発熱量	37,000	MJ/t-原料	JRC(2017a)		
11)	CPO 熱量当たり得られるパーム ステアリン熱量	0.235	MJ-燃料/MJ-原 料	表 32		
12	パームステアリンへのアロケーション比率(CPO 輸送工程以降)	0.239	_	表 21RBD へのアロケーション比率、表 22 パームステアリンのアロケーション比率を乗じて算出		
13	CPO 輸送(生産国内)工程の GHG 排出	0.15	g-CO2eq/MJ-燃 料	=(1)×(2)×(3)/(0)/(1)×(12)		

<精製工程>

CPO 精製工程における排出量の計算結果は以下のとおり。

表 36 RBD 発熱量当たり得られるパームステアリン発熱量の計算

	諸元	値	単位	出典
1	RBD 発熱量	37,000	MJ/t-RBD	JRC(2017a)
2	RBD に対するパームステアリ ン重量発生比率	0.25	t-パームステアリ ン/t-RBD	第 12 回バイオ WG 資料 4 記載の 値から単位換算
3	パームステアリン発熱量	36,326	MJ/t-パームステ アリン	第 12 回バイオ WG 資料 4 記載の 値から単位換算
4	RBD 発熱量当たり得られるパ ームステアリン発熱量	0.245	MJ-パームステア リン/MJ-RBD	=2×3/1

表 37 CPO 精製工程の排出量の計算

	諸元	値	単位	出典
1	投入電力	0.00116	MJ-電力/MJ-原料	JRC(2017a)
2	投入リン酸	0.00002	kg/MJ 原料	JRC(2017a)
3	投入酸性白土(Bleaching earth)	0.00025	kg/MJ-原料	JRC(2017a)
4	投入蒸気(NG boiler)	0.0116	MJ-蒸気/MJ- 原 料	JRC(2017a)
5	電力排出係数(系統電力)	240.7 238.7	g-CO2eq/MJ-電力	GREET2022 によりインドネシア の排出係数
6	リン酸排出係数	3,124.7	g-CO2eq/kg	JRC(2017a)
7	酸性白土排出係数	199.8	g-CO2eq/kg	COMMISSION IMPLEMENTING REGULATION (EU) 2022/99610
8	蒸気由来の CH4 排出係数(NG boiler)	0.0028	g-CH4/MJ-蒸気	JRC(2017a)
9	蒸気由来の N2O 排出係数(NG boiler)	0.0011	g-N2O/MJ-蒸気	JRC(2017a)
10	蒸気由来の CO2 排出	56.2	g-CO2/MJ-蒸気	JRC(2017a)
11)	電力由来の GHG 排出	0.28	g-CO2eq/MJ-原料	$=(1)\times(5)$
12	リン酸由来の GHG 排出	0.06	g-CO2eq/MJ-原料	$=2\times6$
13	酸性白土由来の GHG 排出	0.05	g-CO2eq/MJ-原料	=
14)	蒸気由来の CH4 排出	0.0008	g-CO2eq/MJ-原料	$=4\times8\times25$
15	蒸気由来の N2O 排出	0.0038	g-CO2eq/MJ-原料	$=4\times9\times298$
16	蒸気由来の CO2 排出	0.6519	g-CO2eq/MJ-原料	$=4\times10$
17)	RBD 発熱量当たり得られるパ ームステアリン発熱量	0.245	MJ-燃料/MJ-原料	表 23
18	パームステアリンへのアロケ ーション比率(精製工程以 降)	0.25	_	表 22 パームステアリンのアロケー ション比率
19	当該工程の GHG 排出量	1.07	g-CO2eq/MJ-燃料	=(10)+(1)+(2)+(3)+(4)+(5)+(6) × (8)/ (17)
20	当該工程の GHG 排出量(保 守性担保のため⑩を 40%増))	1.49	g-CO2eq/MJ-燃料	=(9)×1.4

<分離工程>

分離工程については、ヒアリングや文献調査¹¹の結果、常温で液体のパームオレイン と固体のパームステアリンに分離されることが明らかとなったため、排出量は計上しな い。

 $^{^{10}}$ Rules to verify sustainability and greenhouse gas emissions saving criteria and low indirect land-use change-risk criteria

¹¹ パームステアリンの液相酸素酸化反応と生成物の分離(鳥羽,1990)日本油化学会誌 第39巻第5号

<パームステアリン輸送工程>

パームステアリン輸送工程における排出量の計算結果は以下のとおり。なお、パームステアリンの輸送時の加温は、輸送動力用エンジンの排熱が利用されていることから計上していない。

表 38 パームステアリン輸送工程(生産国内輸送)の排出量の計算

	諸元	値	単位	出典			
1	距離	35	km	発電所立地情報から保守的に設定			
2	往復燃費 40t トラック	0.811	MJ-軽油/tkm	JRC(2017a)			
3	軽油排出係数(燃焼時のメ タン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017a)			
4	軽油由来の排出原単位(燃 焼時のメタン・N2O	<mark>77.1</mark>	g-CO2eq/tkm	=2×3			
5	CH4 排出原単位(トラック 利用時)	0.0034	g-CH4/tkm	JRC(2017a)			
6	N2O 排出原単位(トラッ ク利用時)	0.0015	g-N2O/tkm	JRC(2017a)			
7	CH4 排出原単位(トラック 利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤ $ imes25$			
8	N2O 排出原単位(トラッ ク利用時)CO2 換算	$\textcolor{red}{0.447}$	g-CO2eq/tkm	=⑥×298			
9	陸上輸送の GHG 排出原単 位	<mark>77.7</mark>	g-CO2eq/tkm	=4+7+8			
10	バイオマス燃料発熱量	36,326	MJ-燃料/t-燃料	第 12 回 WG 資料 4 記載の値から 単位換算			
(11)	当該工程の GHG 排出量	0.07	g-CO2eq/MJ-燃料	=(1)×(9)/(10)			

表 39 パームステアリン海上輸送工程の排出量の計算

	諸元	値	単位	出典		
1	距離	9,000	km	尼馬代表港(遠距離)-日本間の概算距離		
2	海上輸送排出原単位(ケ ミカルタンカー)	0.158	MJ-重油/tkm	JRC(2017a)		
3	重油排出係数	94.2	g-CO2eq/MJ-重油	JRC(2017a)		
4	バイオマス燃料発熱量	36,326	MJ-燃料/t-燃料	第 12 回 WG 資料 4 記載の値から 単位換算		
(5)	当該工程の GHG 排出量	3.69	g-CO2eq/MJ-燃料	=(1)×(2)×(3)/(4)		

表 40 パームステアリン輸送工程(日本国内輸送)の排出量の計算

	諸元	値	単位	出典
1	距離	20	km	第 12 回 WG 資料 4 を参考に設定
2	往復燃費 10t トラック	$\frac{2.92}{3.06}$	MJ-軽油/tkm	表 118より
3	軽油排出係数(燃焼時の メタン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017a)
4	軽油由来の排出原単位 (燃焼時のメタン・N2O 含まない)	$\frac{277.7}{290.5}$	g-CO2eq/tkm	=(2)×(3)
(5)	CH4 排出原単位(トラッ ク利用時)	0.0034	g-CH4/tkm	JRC(2017a)
6	N2O 排出原単位(トラッ ク利用時)	0.0015	g-N2O/tkm	JRC(2017a)
7	CH4 排出原単位(トラッ ク利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤ $ imes25$
8	N2O 排出原単位(トラッ ク利用時)CO2 換算	0.447	g-CO2eq/tkm	=⑥×298
9	陸上輸送の GHG 排出原 単位	$\frac{278.2}{291.1}$	g-CO2eq/tkm	=4+7+8
10	バイオマス燃料発熱量	36,326	MJ-燃料/t-燃料	第 12 回 WG 資料 4 記載の値から 単位換算
11)	当該工程の GHG 排出量	$\frac{0.15}{0.16}$	g-CO2eq/MJ-燃料	=①×⑨/⑩

<発電工程>

発電工程における排出(メタン、N2O)については、EU RED2 の既定値・第 12 回 WG 資料 4 における業界団体による報告ともに計上していないことに倣った。

3. PKSのライフサイクルGHG既定値の計算過程

(1) 対象工程等

<対象工程>

PKS はオイルパームの実の核を囲った殻を砕いた残渣であり、パーム椰子の実の搾油工程において発生するバイオマスである。PKS におけるライフサイクル GHG の対象工程は、図 3 のとおり想定した。なお、PKS は主な目的生産物ではないものと判断し、搾油工場からの輸送工程以降の排出量を計上するものとした。

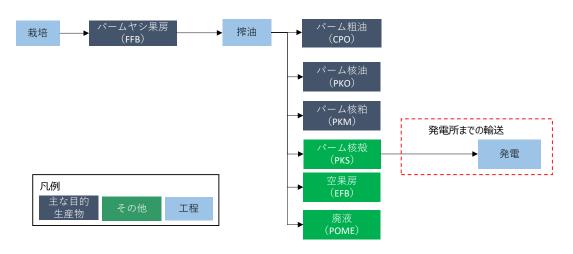


図 3 PKS のライフサイクル GHG 対象工程

<海上輸送の扱い>

なお、海上輸送に関しては、第 10 回 WG において復路便の扱いを定めた。具体的には、特定の航路パターンを取らない場合は空荷輸送の比率を全航海距離の 30%と設定するものとし、これらの判断は暫定的にバイオマス種別に設定するものとした。これに対し、第 9回 WG において、PKS については特定の航海パターンを取らないことが報告されていることから、海上輸送の排出量に関しては、空荷輸送の比率を全航海距離の 30%と設定する値を用いるものとした。

(2) 工程別の排出量の計算

<輸送工程>

PKS の生産国内の輸送工程における排出量の計算結果は以下のとおり。

諸元 単位 出典 距離 1 120 km JRC(2017a) (搾油工場→港) 往復燃費 40t トラッ 0.811 MJ-軽油/tkm JRC(2017b) 軽油排出係数(燃焼 JRC(2017b) 時のメタン・N2O含 95.1 g-CO2eq/MJ-軽油 まない) 軽油由来の排出原単 位(燃焼時のメタ 77.1g-CO2eq/tkm $=2\times3$ 4 ン・N2O 含まない) CH4 排出原単位(ト JRC(2017b) 0.0034g-CH4/tkm ラック利用時) N2O 排出原単位(ト (6) 0.0015g-N2O/tkm JRC(2017b) ラック利用時) CH4 排出原単位(ト ラック利用時)CO2 0.085= 5×25 g-CO2eq/tkm N2O 排出原単位(ト ラック利用時) CO2 0.447g-CO2eq/tkm $=6\times 298$ 換算 陸上輸送の GHG 排 9 77.7g-CO2eq/tkm =4+7+8出原単位 バイオマス燃料発熱 MJ-燃料/t-燃料 (10)14,020 Phyllis2 (Net calorific value (LHV)) 量 $= 1 \times 9/10$ 当該工程の排出量 0.66g-CO2eq/MJ-燃料 (11)

表 41 PKS 輸送工程(生産国内輸送)の排出量の計算

海上輸送距離については、マレーシア、インドネシア産を念頭に、日本から距離が遠い 代表港として 9,000km、距離が近い代表港として 6,500km の輸送距離とした。

海上輸送のGHG排出原単位として、空荷輸送の比率を全航海距離の30%と想定したEU RED2既定値で用いられている排出原単位を引用した。EU RED2既定値で用いられている排出原単位(JRC(2017b))を用いて、かさ密度0.3t/m3を想定した値を用いるものとした。PKSの海上輸送工程における排出量の計算結果は以下のとおり。

表 42 PKS 海上輸送工程の排出量の計算(Handy Size・6,500km 輸送の場合)

	諸元	値	単位	出典
1	距離	6,500	km	尼馬代表港(遠距離)-日本間の概算距離
2	海上輸送排出原単位 (かさ密度 0.3t/m3、 Handy Size)	15.8	g-CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	14,020	MJ-燃料/t-燃料	Phyllis2 (Net calorific value (LHV))
4	当該工程の GHG 排出量	7.33	g-CO2eq/MJ-燃料	$=(1)\times(2)/(3)$

表 43 PKS 海上輸送工程の排出量の計算(Handy Size・9,000km 輸送の場合)

	諸元	値	単位	出典
(D 距離	9,000	km	尼馬代表港(中距離)-日本間の概算距離
(海上輸送排出原単位 (かさ密度 0.3t/m3、 Handy Size)	15.8	g-CO2eq/tkm	JRC(2017b)
(;	③ バイオマス燃料発熱量	14,020	MJ-燃料/t-燃料	Phyllis2 (Net calorific value (LHV))
(2	当該工程の GHG 排出量	10.14 10.15	g-CO2eq/MJ-燃料	=①x②/③

表 44 PKS 海上輸送工程の排出量の計算(Supramax・6,000km 輸送の場合)

	諸元	値	単位	出典
1	距離	6,500	km	尼馬代表港(中距離)-日本間の概算距離
2	海上輸送排出原単位 (かさ密度 0.3t/m3 以上、 Handy Size)	10.10	g- CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	14,020	MJ-燃料/t- 燃料	Phyllis2 (Net calorific value (LHV))
4	当該工程の GHG 排出量	4.68	g- CO2eq/MJ -燃料	=①x②/③

表 45 PKS 海上輸送工程の排出量の計算(Supramax・9,000km 輸送の場合)

				, , , , , , , , , , , , , , , , , , , ,
	諸元	値	単位	出典
1	距離	9,000	km	尼馬代表港(遠距離)-日本間の概算距離
2	海上輸送排出原単位 (かさ密度 0.3t/m3 以 上、Handy Size)	10.10	g- CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	14,020	MJ-燃料/t-燃 料	Phyllis2 (Net calorific value (LHV))
4	当該工程の GHG 排出量	6.48	g-CO2eq/MJ -燃料	=(1)x(2)/(3)

表 46 PKS 輸送工程 (日本国内輸送) の排出量の計算

	諸元	値	単位	出典
1	距離	20	km	第 12 回 WG 資料 3 を参考に設定
2	往復燃費 10t トラック	2.92 3.06	MJ-軽油/tkm	表 118より
3	軽油排出係数(燃焼時のメ タン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
4	軽油由来の排出原単位(燃 焼時のメタン・N2O 含ま ない)	$\frac{277.7}{291.0}$	g-CO2eq/tkm	=2×3
5	CH4 排出原単位(トラッ ク利用時)	0.0034	g-CH4/tkm	JRC(2017b)
6	N2O 排出原単位(トラッ ク利用時)	0.0015	g-N2O/tkm	JRC(2017b)
7	CH4 排出原単位(トラッ ク利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤ $ imes25$
8	N2O 排出原単位(トラッ ク利用時)CO2 換算	0.447	g-CO2eq/tkm	=⑥×298
9	陸上輸送の GHG 排出原単 位	$\frac{278.2}{291.5}$	g-CO2eq/tkm	=4+7+8
10	バイオマス燃料発熱量	14,020	MJ-燃料/t-燃料	Phyllis2 (Net calorific value (LHV))
(1)	当該工程の GHG 排出量	$\frac{0.40}{0.42}$	g-CO2eq/MJ-燃料	=(1)×(9)/(0)

<発電工程>

発電工程の排出については、EU RED2 既定値で用いられている農業残渣の既定値を用いて計算した。

表 47 発電工程の排出量の計算

諸元		値	単位	出典
1	CH4 排出量(農業残渣)	0.002	g-CH4/MJ-農業残渣	JRC(2017b)
2	N2O 排出量(農業残渣)	0.0007	g-N2O/MJ-農業残渣	JRC(2017b)
3	発電工程の排出量	0.26	g-CO2eq/MJ-燃料	= ①×25+②×298

4. パームトランクのライフサイクルGHG既定値の計算過程

(1) 対象工程等

<対象工程>

パームトランク(OPT)は、パームヤシの実 (FFB) を栽培する際に発生する古木であり、パーム農園で発生する。パームトランクは搾油工場に収集され、搾油工場に併設された設備においてペレット化されることでバイオマス燃料として活用される。対象工程としては、農園からペレット工場(搾油工場に併設されていることを想定)までの輸送以降の排出を計上するものとした。対象工程は以下のとおりである。

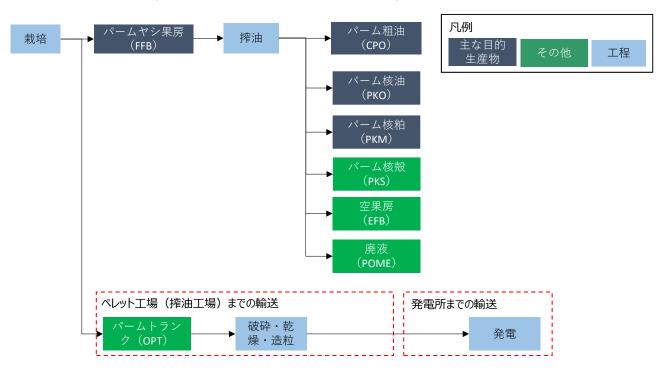


図 4 パームトランクペレットのライフサイクル GHG 対象工程

<海上輸送の扱い>

海上輸送に関しては、第9回WGにおいてペレットについては特定の航海パターンを取らないことが報告されていることから、海上輸送の排出量に関しては、空荷輸送の比率を全航海距離の30%と設定する値を用いるものとした。

(2) 工程別の排出量の計算

<輸送工程(パームトランク収集)>

パームトランク発生地点(農園)から搾油工場までの輸送における排出量の計算結果は以下のとおり。

表 48 パームトランク輸送工程(パームトランク収集)の排出量の計算(乾燥熱源に化石燃料を利用する場合)

諸元		値	単位	出典
1	距離(農園→搾油工場)	50	km	JRC(2017a)
2	往復燃費 12t トラック	2.24	MJ-軽油/tkm	JRC(2017a)
3	軽油排出係数(燃焼時の メタン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017a)
4	軽油由来の排出原単位 (燃焼時のメタン・N2O 含まない)	<mark>213.0</mark>	g-CO2eq/tkm	=2×3
(5)	CH4 排出原単位(トラッ ク利用時)	0.0034	g-CH4/tkm	JRC(2017b)
6	N2O 排出原単位(トラッ ク利用時)	0.0015	g-N2O/tkm	JRC(2017b)
7	CH4 排出原単位(トラッ ク利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤×25
8	N2O 排出原単位(トラッ ク利用時)CO2 換算	0.447	g-CO2eq/tkm	=⑥×298
9	陸上輸送の GHG 排出原 単位	<mark>213.6</mark>	g-CO2eq/tkm	=4+7+8
10	パームトランクの重量当 たり発熱量	13,300	MJ-原料/t-原料	JRC(2017b)(絶乾発熱量 19,000MJ/t に含水率 30%を想定)
(11)	ペレット 1MJ に要する原 料パームトランクの熱量 (乾燥熱源に化石燃料を 利用する場合)	1.035	MJ-原料 /MJ-燃料	JRC(2017b) (自然乾燥後の原木比率)
12	当該工程の GHG 排出量	0.83	g-CO2eq/MJ-燃料	$= (1) \times (9)/(0) \times (1)$

表 49 パームトランク輸送工程 (パームトランク収集) の排出量の計算 (乾燥熱源にバイオマス を利用する場合)

	諸元	値	単位	出典
1	距離(農園→搾油工場)	50	km	JRC(2017a)
2	往復燃費 12t トラック	2.24	MJ-軽油/tkm	JRC(2017a)
3	軽油排出係数(燃焼時のメ タン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017a)
4	軽油由来の排出原単位(燃 焼時のメタン・N2O 含ま ない)	<mark>213.0</mark>	g-CO2eq/tkm	=2×3
5	CH4 排出原単位(トラッ ク利用時)	0.0034	g-CH4/tkm	JRC(2017b)
6	N2O 排出原単位(トラッ ク利用時)	0.0015	g-N2O/tkm	JRC(2017b)
7	CH4 排出原単位(トラッ ク利用時)CO2 換算	0.085	g-CO2eq/tkm	=(5)×25
8	N2O 排出原単位(トラッ ク利用時)CO2 換算	0.447	g-CO2eq/tkm	=⑥×298
9	陸上輸送の GHG 排出原単 位	213.6	g-CO2eq/tkm	=4+7+8
10	パームトランクの重量当た り発熱量	13,300	MJ-原料/t-原料	JRC(2017b)(絶乾発熱量 19,000MJ/t に含水率 30%を想定)
(1)	ペレット 1MJ に要する原料パームトランクの熱量(乾燥熱源にバイオマスを利用する場合)	1.32	MJ-原料 /MJ-燃料	JRC(2017b) (自然乾燥後の原木比率)
12	当該工程の GHG 排出量	1.06	g-CO2eq/MJ-燃料	=(1)×(9)/(10)×(1)

<加工工程(乾燥熱源に化石燃料を利用する場合)>

パームトランクをペレット化する際に、乾燥熱源に化石燃料を利用する場合の加工工程における排出量の計算結果は以下のとおり。

表 50 パームトランク加工工程(破砕)の排出量の計算(乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1	投入軽油	0.003357	MJ-軽油/MJ-原料	JRC(2017b)
2	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
3	CH4 排出原単位(破砕機械利用 時)	0.0000092	g-CH4/MJ-原料	JRC(2017b)
4	N2O 排出原単位(破砕機械利用 時)	0.0000385	g-N2O/MJ-原料	JRC(2017b)
(5)	CH4 排出原単位(破砕機械利用 時)CO2 換算	0.00023	g-CO2eq/MJ-原料	=③×25
6	N2O 排出原単位(破砕機械利用 時)CO2 換算	0.01147	g-CO2eq/MJ-原料	$=4\times298$
7	破砕後 1MJ 当たりの破砕工程の GHG 排出原単位	0.32 0.33	g-CO2eq/MJ-原料	$=(1)\times(2)+(5)+(6)$
8	ペレット 1MJ に要する原料パームトランクの熱量 (乾燥熱源に化石燃料を利用する場合)	1.01	MJ-原料 /MJ-燃料	JRC(2017b)
9	当該工程の GHG 排出量	$\frac{0.32}{0.33}$	g-CO2eq/MJ-燃料	=7/8
10	当該工程の GHG 排出量(保守 性担保のため⑨を 20%増)	0.39 0.40	g-CO2eq/MJ-燃料	$= 9 \times 1.2$

表 51 パームトランク加工工程(乾燥)の排出量の計算(乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1	投入熱量(蒸気)	0.185	MJ-蒸気 MJ-燃料	JRC(2017b)
2	天然ガスボイラ効率	0.9	MJ-蒸気/MJ-天然ガス	JRC(2017b)
3	天然ガス排出係数(燃焼時のメ タン・N2O 含まない)	66	g-CO2eq/MJ-天然ガス	JRC(2017b)
4	天然ガスボイラ排出原単位(燃 焼時のメタン・N2O 含まな い)	<mark>73.3</mark>	g-CO2eq/MJ-蒸気	=3/2
5	天然ガスボイラ燃焼時 CH4 排 出原単位	0.0028	g-CH4/MJ-蒸気	JRC(2017b)
6	天然ガスボイラ燃焼時 N2O 排 出原単位	0.00112	g-N2O/MJ-蒸気	JRC(2017b)
7	天然ガスボイラ・CH4 排出原 単位(CO2 換算)	0.07	g-CO2eq/MJ-蒸気	=⑤ $ imes25$
8	天然ガスボイラ・N2O 排出原 単位(CO2 換算)	$\frac{0.33376}{0.33376}$	g-CO2eq/MJ-蒸気	=⑥×298
9	当該工程の GHG 排出量	12.21 13.64	g-CO2eq/MJ-燃料	=①× (④+⑦+8)
10	当該工程の GHG 排出量(保守 性担保のため⑨を 20%増)	$\frac{14.65}{16.37}$	g-CO2eq/MJ-燃料	= ⑨×1.2

表 52 パームトランク加工工程(造粒)の排出量の計算

	諸元	値	単位	出典
1	投入電力	0.050	MJ-電力/MJ-ペレット	JRC(2017b)
2	電力排出係数(系統電力)	240.7 238.7	g-CO2eq/MJ-電力	GREET2022 よりインドネ シアの排出係数
3	電力由来の排出原単位	<mark>12.04</mark> 11.94	g-CO2eq/MJ-燃料	=①×②
4	投入軽油	0.0020	MJ-軽油/MJ-燃料	JRC (2017b)
5	軽油排出係数(燃焼時のメ タン・N2O含まない)	<mark>95.1</mark>	g-CO2eq/MJ-軽油	JRC (2017b)
6	軽油由来の排出原単位(燃 焼時のメタン・N2O 含ま ない)	0.19	g-CO2eq/MJ-軽油	=@×⑤
7	CH4 排出原単位(ペレッ ト化工程全体)	0.00000153	g-CH4/MJ-燃料	JRC (2017b)
8	N2O 排出原単位(ペレッ ト化工程全体)	0.00000640	g-N2O/MJ-燃料	JRC (2017b)
9	CH4 排出原単位(ペレッ ト化工程全体)CO2 換算	0.00004	g-CO2eq/MJ-燃料	=⑦×25
10	N2O 排出原単位(ペレッ ト化工程全体)CO2 換算	0.00191	g-CO2eq/MJ-燃料	=®×298
11)	当該工程の GHG 排出量	12.04 12.13	g-CO2eq/MJ 燃料	=3+6+9+10
12	当該工程の GHG 排出量 (保守性担保のため⑪を 20%増)	14.44 14.55	g-CO2eq/MJ-燃料	=(1)×1.2

<加工工程(乾燥熱源にバイオマスを利用する場合)>

パームトランクをペレット化する際に、乾燥熱源にバイオマスを利用する場合の加工工程における排出量の計算結果は以下のとおり。なお、造粒工程の排出量は、乾燥熱源に化石燃料を利用する場合と同じ値である。

表 53 パームトランク加工工程(破砕)の排出量の計算(乾燥熱源にバイオマスを利用する場合)

	諸元	値	単位	出典
1	投入軽油	0.003357	MJ-軽油/MJ-原料	JRC(2017b)
2	軽油排出係数 (燃焼時のメタン・N2O 含ま ない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
3	CH4 排出原単位(破砕機械利 用時)	0.0000092	g-CH4/MJ-原料	JRC(2017b)
4	N2O 排出原単位(破砕機械利 用時)	0.0000385	g-N2O/MJ-原料	JRC(2017b)
(5)	CH2 排出原単位(破砕機械利 用時)CO2 換算	0.00023	g-CO2eq/MJ-原料	$= 3 \times 25$
6	N2O 排出原単位(破砕機械利 用時)CO2 換算	0.01147	g-CO2eq/MJ-原料	$=$ 4×298
7	破砕後 1MJ 当たりの破砕工 程の GHG 排出原単位	$\frac{0.32}{0.33}$	g-CO2eq/MJ-原料	$= (1) \times (2) + (5) + (6)$
8	ペレット 1MJ に対する原料 パームトランクの熱量 (乾燥熱源にバイオマスを利 用する場合)	1.291	MJ-原料 /MJ-燃料	JRC(2017b)
9	当該工程の GHG 排出量	$\frac{0.412}{0.427}$	g-CO2eq/MJ-燃料	$=$ \bigcirc \times \bigcirc
10	当該工程の GHG 排出量(保 守性担保のため⑨を 20%増)	$\frac{0.49}{0.51}$	g-CO2eq/MJ-燃料	$= 9 \times 1.2$

表 54 パームトランク加工工程(乾燥)の排出量の計算(乾燥熱源にバイオマスを利用する場合)

	諸元	値	単位	出典
1	投入熱量(蒸気)	$\frac{0.240}{0.239}$	MJ-蒸気/MJ-燃料	JRC(2017b)
2	ウッドチップボイラ・CO2 排 出原単位	0.487 0	g-CO2/MJ-蒸気	バイオマス由来の排出は計上 しない
3	ウッドチップボイラ・CH4 排出原単位	0.005751	g-CH4/MJ-蒸気	JRC(2017b)
4	ウッドチップボイラ・N2O 排出原単位	0.001150	g-N2O/MJ-蒸気	JRC(2017b)
5	ウッドチップボイラ・CH4 排出原単位(CO2 換算)	$\frac{0.144}{0.144}$	g-CO2eq/MJ-蒸気	=3×25
6	ウッドチップボイラ・N2O 排出原単位(CO2 換算)	$\frac{0.343}{0.343}$	g-CO2eq/MJ-蒸気	=④×298
7	当該工程の GHG 排出量	$\frac{0.117}{0.12}$	g-CO2eq/MJ-燃料	$= (1) \times (2 + (5) + (6))$
8	当該工程の GHG 排出量(保 守性担保のため⑦を 20%増)	0.14	g-CO2eq/MJ-燃料	=⑦×1.2

<輸送工程(パームトランクペレット輸送)>

搾油工場から生産国内、海上輸送、日本国内を含むパームトランクペレットの輸送における排出量の計算結果は以下のとおり。

	200	/ * /		コールがない */ かに田 東*/ ロ み
	諸元	値	単位	出典
1	距離(搾油工場→港)	120	km	JRC(2017a)
2	往復燃費 40t トラック	0.811	MJ-軽油/tkm	JRC(2017b)
3	軽油排出係数(燃焼時のメ タン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
4	軽油由来の排出原単位(燃 焼時のメタン・N2O 含ま ない)	<mark>77.1</mark>	g-CO2eq/tkm	=2×3
5	CH4 排出原単位(トラック 利用時)	0.0034	g-CH4/tkm	JRC(2017b)
6	N2O 排出原単位(トラッ ク利用時)	0.0015	g-N2O/tkm	JRC(2017b)
7	CH4 排出原単位(トラック 利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤ $ imes25$
8	N2O 排出原単位(トラッ ク利用時)CO2 換算	0.447	g-CO2eq/tkm	=⑥×298
9	陸上輸送の GHG 排出原単 位	<mark>77.7</mark>	g-CO2eq/tkm	=4+7+8
10	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 10%を想定)
11)	当該工程の GHG 排出量	$\frac{0.54}{0.55}$	g-CO2eq/MJ-燃料	=①x⑨/⑩

表 55 パームトランクペレット輸送工程(生産国内輸送)の排出量の計算

海上輸送の GHG 排出原単位として、空荷輸送の比率を全航海距離の 30%と想定した EU RED2 既定値で用いられている排出原単位を引用した。日本国内における木質ペレットの品質基準として、かさ密度 0.65-0.7t/ m3 とする木質ペレットの品質基準があることから 12、かさ密度 0.65t/m3 の排出原単位を引用した。

表 56 パームトランクペレット海上輸送工程の排出量の計算(Handy Size 6.500km 輸送)

	諸元	値	単位	出典
1	距離	6,500	km	尼馬代表港(中距離)-日本間の概算距離
2	海上輸送排出原単位 (かさ密度 0.65t/m3 以 上、Handy Size)	8.17	g- CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	17,100	MJ-燃料/t- 燃料	JRC(2017b)(絶乾発熱量 19,000MJ/t に対し含水率 10%を想定)
4	当該工程の GHG 排出量	3.11	g- CO2eq/MJ- 燃料	=①×②/3

39

^{12 &}lt;u>https://www.nedo.go.jp/content/100932088.pdf</u> (2022年11月10日閲覧)

表 57 パームトランクペレット海上輸送工程の排出量の計算(Handy Size 9,000km 輸送)

	諸元	値	単位	出典
1	距離	9,000	km	尼馬代表港(遠距離)-日本間の概算距離
2	海上輸送排出原単位(か さ密度 0.65t/m3 以上、 Handy Size)	8.17	g-CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃料	JRC(2017b)(絶乾発熱量 19,000MJ/t に 対し含水率 10%を想定)
4	当該工程の GHG 排出量	4.30	g-CO2eq/MJ-燃料	$=(1)\times(2)/(3)$

表 58 パームトランクペレット海上輸送工程の排出量の計算(Supramax 6,500km 輸送)

	諸元	値	単位	出典
1	距離	6,500	km	尼馬代表港(中距離)-日本間の概算距離
2	海上輸送排出原単位(か さ密度 0.65t/m3 以上、 Handy Size)	5.28	g- CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	17,100	MJ-燃料/t- 燃料	JRC(2017b)(絶乾発熱量 19,000MJ/t に対し含 水率 10%を想定)
4	当該工程の GHG 排出量	2.01	g- CO2eq/MJ- 燃料	=①×2/3

表 59 パームトランクペレット海上輸送工程の排出量の計算(Supramax 9,000km 輸送の場合)

	諸元	値	単位	出典
1	距離	9,000	km	尼馬代表港(遠距離)-日本間の概算距離
2	海上輸送排出原単位(か さ密度 0.65t/m3 以上、 Handy Size)	5.28	g- CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	17,100	MJ-燃料/t- 燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 10%を想定)
4	当該工程の GHG 排出量	2.78	g- CO2eq/MJ- 燃料	=①×2/3

表 60 パームトランクペレット輸送工程(日本国内輸送)の排出量の計算

	諸元	値	単位	出典
1	距離	20	km	第 12 回 WG 資料 3 を参考に設定
2	往復燃費 10t トラック	2.92 3.06	MJ-軽油/tkm	表 118より
3	軽油排出係数(燃焼時の メタン・N2O 含まない)	95.1	g ⁻ CO2eq/MJ- 軽油	JRC(2017b)
4	軽油由来の排出原単位 (燃焼時のメタン・N2O 含まない)	$\frac{277.7}{291.0}$	g- CO2eq/tkm	=2×3
(5)	CH4 排出原単位(トラッ ク利用時)	0.0034	g-CH4/tkm	JRC(2017b)
6	N2O 排出原単位(トラッ ク利用時)	0.0015	g-N2O/tkm	JRC(2017b)
7	CH4 排出原単位(トラッ ク利用時)CO2 換算	0.085	g- CO2eq/tkm	$=$ $\textcircled{4}\times25$
8	N2O 排出原単位(トラッ ク利用時)CO2 換算	0.447	g- CO2eq/tkm	=⑤×298
9	陸上輸送の GHG 排出原 単位	278.2 291.5	g- CO2eq/tkm	=4+7+8
10	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃 料	同上(絶乾発熱量 19,000MJ/t に対し含水率 10%を想定)
(1)	当該工程の GHG 排出量	0.32 0.34	g- CO2eq/MJ- 燃料	=①×⑨/⑩

<発電工程>

発電工程の排出については、EU RED2 既定値で用いられている木質ペレットの既定値を用いて計算した。

表 61 発電工程の排出量の計算

	諸元	値	単位	出典
1	CH4 排出量(ペレット)	0.00297	g-CH4/MJ-ペレット	JRC(2017b)
2	N2O 排出量(ペレット)	0.00059	g-N2O/MJ-ペレット	JRC(2017b)
3	発電工程の排出量	0.25	g-CO2eq/MJ-燃料	①×25+②×298

Ⅲ. 輸入木質バイオマスのライフサイクルGHG既定値

1. 既定値の算定結果

輸入木質バイオマスについては、木質チップ、木質ペレット各々の燃料について、以下 の3種類の原料種に応じて設定した。

- 林地残材等
- その他伐採木
- 製材等残材

また、海上輸送工程については、日本に輸入される代表的な産出国を想定して輸送距離を設定した。具体的には、木質チップについては 6,500km、11,600km、18,000km の 3種類、木質ペレットについては 6,500km、9,000km、18,000km の 3種類の区分とともに、Handy Size・Supramax の 2種類の船のサイズに応じた既定値の区分を設けた。

更に、木質ペレットについては、乾燥工程の熱源として化石燃料を利用するケースとバイオマス燃料を利用するケースの 2 種類の区分を設けた。

各燃料のライフサイクル GHG の既定値の算定結果は以下のとおり。

表 62 輸入木質チップ(林地残材等)のライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)

		1
工程	Handy Size 6,500km 輸送	Supramax 6,500km 輸送
輸送工程(林地残材等収集)	1.23 1.24	
加工工程	0.38 0.40	
輸送工程(チップ生産国内輸送)	1.74 1.75	
輸送工程(チップ海上輸送)	14.13 8.98	
輸送工程(日本国内輸送)	0.44	
発電	0.41	
合計	18.31 18.37	13.16 13.22

工程	Handy Size 11,600km 輸送	Supramax 11,600km 輸送
輸送工程(チップ海上輸送)	25.21	16.02
(その他工程)	は 6,500km 輸送と同じため略	
合計	29.39 29.45	20.20 20.26

工程	Handy Size 18,000km 輸送	Supramax 18,000km 輸送	
輸送工程(チップ海上輸送)	39.13	24.86	
(その他工程)	す 6,500km 輸送と同じため略	.)	
合計	43.31 43.37	29.04 29.10	

表 63 輸入木質チップ (<mark>その他伐採木</mark>) のライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)

工程	Handy Size 6,500km 輸送	Supramax 6,500km 輸送
栽培工程	1.09 1.11	
加工工程	0.38 0.40	
輸送工程(チップ生産国内輸送)	1.74 1.75	
輸送工程(チップ海上輸送)	14.13 8.98	
輸送工程(日本国内輸送)	<mark>0.42</mark> 0.44	
発電	0.41	
合計	18.17 18.24	13.02 13.09

工程	Handy Size 11,600km 輸送	Supramax 11,600km 輸送
輸送工程(チップ海上輸送)	25.21	16.02
(その他工程)	す 6,500km 輸送と同じため略)
合計	29.25 29.32	20.06 20.13

工程	Handy Size 18,000km 輸送	Supramax 18,000km 輸送
輸送工程(チップ海上輸送)	39.13	24.86
(その他工程)	は 6,500km 輸送と同じため略)
合計	43.17 43.24	28.90 28.97

表 64 輸入木質チップ(<mark>製材等残材</mark>)のライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)

工程	Handy Size 6,500km 輸送	Supramax 6,500km 輸送
加工工程	0.38 0	
輸送工程(チップ生産国内輸送)	1.74 1.75	
輸送工程 (チップ海上輸送)	14.13	8.98
輸送工程(日本国内輸送)	0.42 0.44	
発電	0.41	
合計	17.08 16.73	11.93 11.58

工程	Handy Size	Supramax
上性	11,600km 輸送	11,600km 輸送
輸送工程(チップ海上輸送)	25.21	16.02
(その他工程)	は 6,500km 輸送と同じため略	
合計	28.16 27.81	18.97 18.62

工程	Handy Size 18,000km 輸送	Supramax 18,000km 輸送		
輸送工程(チップ海上輸送)	39.13	24.86		
(その他工程は 6,500km 輸送と同じため略)				
合計	42.08 41.73	27.81 27.46		

表 65 輸入木質ペレット (林地残材等) のライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)

T-10	乾燥:化石燃料利用 (造粒:系統電力利用)		乾燥:バイオマス利用 (造粒:系統電力利用)		
工程	Handy Size 6,500km 輸送	Supramax 6,500km 輸送	Handy Size 6,500km 輸送	Supramax 6,500km 輸送	
輸送工程(林地残材等収集)	1.24	1.18	1.59	1.51	
輸送工程(原料輸送)	0.89	0.85	1.13 1.08		
加工工程	$\frac{23.94}{25.78}$ $\frac{9.53}{9.66}$			<mark>-9.66</mark>	
輸送工程(ペレット生産国内 輸送)	1.35 1.36				
輸送工程 (ペレット海上輸送)	3.11	2.01	3.11	2.01	
輸送工程(日本国内輸送)	0.32 0.34				
発電	0.25				
合計	31.10 32.87 30.00 31.77 17.28 17.31 16.18 16				

	乾燥:化石燃料利用 (造粒:系統電力利用)		乾燥:バイオマス利用 (造粒:系統電力利用)	
工程	Handy Size 9,000km 輸送	Supramax 9,000km 輸送	Handy Size 9,000km 輸送	Supramax 9,000km 輸送
輸送工程 (ペレット海上輸送)	4.30	2.78	4.30	2.78
(その他工程は 6,500km 輸送と同じため略)				
合計	32.29 34.06	$\frac{30.77}{32.54}$	18.47 18.50	16.95 16.98

工程	乾燥:化7 (造粒:系約	5燃料利用 充電力利用)	乾燥:バイオマス利用 (造粒:系統電力利用)		
上性	Handy Size 18,000km 輸送	Supramax 18,000km 輸送	Handy Size 18,000km 輸送	Supramax 18,000km 輸送	
輸送工程 (ペレット海上輸送)	8.60	5.56	8.60	5.56	
	(その他工程は 6,5	00km 輸送と同じた	め略)		
合計	36.59 38.36	$\frac{33.55}{35.32}$	$\frac{22.77}{22.80}$	19.73 19.76	

表 66 輸入木質ペレット(<mark>その他伐採木</mark>)のライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)

				-	
T-10		5燃料利用 充電力利用)	乾燥:バイオマス利用 (造粒:系統電力利用)		
工程	Handy Size Supramax 6,500km 輸送 6,500km 輸送		Handy Size Suprama: 6,500km 輸送 6,500km 輸		
栽培工程	1.11	1.06	1.41	1.36	
輸送工程(原料輸送)	0.89	0.85	1.13 1.08		
加工工程	23.94	<mark>25.78</mark>	9.53 9.66		
輸送工程(ペレット生産国内 輸送)	1.35 1.36				
輸送工程(ペレット海上輸 送)	3.11	2.01	3.11	2.01	
輸送工程 (日本国内輸送)	0.32 0.34				
発電	0.25				
合計	$\frac{30.97}{32.75}$	29.87 31.65	17.10 17.16	16.00 16.06	

		5燃料利用	乾燥:バイオマス利用 (造粒:系統電力利用)		
工程		充電力利用) 			
	Handy Size	Supramax	Handy Size	Supramax	
	9,000km 輸送	9,000km 輸送	9,000km 輸送	9,000km 輸送	
輸送工程(ペレット海	4.30	2.78	4.30	2.78	
上輸送)	4.50	2.10	4.50	2.10	
(その他工程は 6,500km 輸送と同じため略)					
合計	32.16 33.94	$\frac{30.64}{32.42}$	18.29 18.35	16.77 16.83	

工程		5燃料利用 充電力利用)	乾燥:バイオマス利用 (造粒:系統電力利用)	
工作	Handy Size 18,000km 輸送	Supramax 18,000km 輸送	Handy Size 18,000km 輸送	Supramax 18,000km 輸送
輸送工程(ペレット海 上輸送)	8.60	5.56	8.60	5.56
	(その他工程は 6,500km 輸送と同じため略)			
合計	36.46 38.24	$\frac{33.42}{35.20}$	$\frac{22.59}{22.65}$	19.55 19.61

表 67 輸入木質ペレット(<mark>製材等残材</mark>)のライフサイクル GHG 既定値(g-CO2eq/MJ-燃料)

			_	-	
	乾燥:化石燃料利用		乾燥:バイオマス利用		
工程	(造粒:系統	流電力利用)	(造粒:系統電力利用)		
上作	Handy Size	Supramax	Handy Size	Supramax	
	6,500km 輸送	6,500km 輸送	6,500km 輸送	6,500km 輸送	
加工工程	13.77	14.92	5.06	5.18	
輸送工程(ペレット生産国内	1.07.1.00				
輸送)	1.35 1.36				
輸送工程(ペレット海上輸	3.11	2.01	3.11	2.01	
送)	5.11	2.01	5.11	2.01	
輸送工程(日本国内輸送)	0.32 0.34				
発電	0.25				
合計	18.80 19.98	17.70 18.88	10.09 10.24	8.99 9.14	

		5燃料利用	乾燥:バイオマス利用 (造粒:系統電力利用)	
工程	(造粒:系統電力利用)			
	Handy Size	Supramax	Handy Size	Supramax
	9,000km 輸送	9,000km 輸送	9,000km 輸送	9,000km 輸送
輸送工程(ペレット海	4.30	2.78	4.30	2.78
上輸送)	4.00	2.10	4.50	2.70
(その他工程は 6,500km 輸送と同じため略)				
合計	$\frac{19.99}{21.17}$	$\frac{18.47}{19.65}$	11.28 11.43	9.76 9.91

工程		5燃料利用 充電力利用)	乾燥:バイオマス利用 (造粒:系統電力利用)	
工性	Handy Size 18,000km 輸送	Supramax 18,000km 輸送	Handy Size 18,000km 輸送	Supramax 18,000km 輸送
輸送工程(ペレット海 上輸送)	8.60	5.56	8.60	5.56
(その他工程は 6,500km 輸送と同じため略)				
合計	$\frac{24.29}{25.47}$	$\frac{21.25}{22.43}$	15.58 15.73	$\frac{12.54}{12.69}$

2. 木質チップのライフサイクルGHG既定値の計算過程

2-1. 林地残材等由来の木質チップ

(1) 対象工程等

<対象工程>

対象工程は以下の赤枠のとおりである。

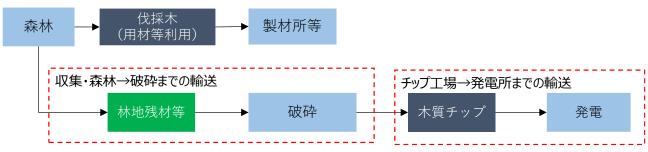


図 5 林地残材等由来の木質チップのライフサイクル GHG 対象工程

<海上輸送の扱い>

海上輸送に関しては、第 10 回 WG において復路便の扱いを定めた。これに対し、第 9 回 WG において、木質チップについては特定の航海パターンを取る(専用船による往復航路を取る)ことが報告されていることから、海上輸送の排出量に関しては、復路を空荷とする原単位を用いるものとした。

(2) 工程別の排出量の計算

<輸送工程(林地残材等収集)>

輸送工程(林地残材等収集)における排出量の計算結果は以下のとおり。

	200 小質ノノン間に上は(竹色次門 竹の木) りが出重された					
	諸元	値	単位	出典		
1	投入軽油	0.0120	MJ-軽油 /MJ-原料	JRC (2017b)		
2	軽油排出係数(燃焼時のメタン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC (2017b)		
3	CH4 排出原単位(農機利用時)	0.00000257	g-CH4 /MJ-原料	JRC (2017b)		
4	N2O 排出原単位(農機利用時)	0.00001075	g-N2O/MJ-原料	JRC (2017b)		
5	CH4 排出原単位(農機利用時)CO2 換算	0.00006	g-CO2eq/MJ-原料	=③×25		
6	N2O 排出原単位(農機利用時)CO2 換算	0.00320	g-CO2eq/MJ-原料	$=4\times298$		
7	林地残材等 1MJ 当たりの林地残材等 収集工程の GHG 排出原単位	1.14447	g-CO2eq/MJ-原料	=(1)×(2)+(5)+(6)		
8	チップ製造に要する林地残材等量	1.079	MJ-原料 /MJ-燃料	JRC (2017b)		
9	当該工程の GHG 排出量	1.23 1.24	g-CO2eq/MJ-燃料	$=7\times8$		

表 68 木質チップ輸送工程(林地残材等収集)の排出量の計算

<加工工程>

加工工程(破砕)における排出量の計算結果は以下のとおり。

表 69 木質チップ加工工程(破砕)の排出量の計算

	諸元	値	単位	出典
1	投入軽油	0.0034	MJ-軽油/MJ-燃料	JRC(2017b)
2	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
3	CH4 排出原単位(破砕機械利 用時)	0.0000092	g-CH4/MJ-燃料	JRC(2017b)
4	N2O 排出原単位(破砕機械利 用時)	0.0000385	g-N2O/MJ-燃料	JRC(2017b)
5	CH4 排出原単位(破砕機械利 用時)CO2 換算	0.00023	g-CO2eq/MJ-燃料	=③×25
6	N2O 排出原単位(破砕機械利 用時)CO2 換算	0.01147	g-CO2eq/MJ-燃料	=④×298
7	当該工程の GHG 排出量	$\frac{0.32}{0.33}$	g-CO2eq/MJ-燃料	$=(1)\times(2)+(5)+(6)$
8	当該工程の GHG 排出量(保守 性担保のため⑦を 20%増)	0.38 0.40	g-CO2eq/MJ-燃料	=⑦×1.2

<輸送工程(チップ輸送)>

チップ工場から生産国内、海上輸送、日本国内を含む木質チップの輸送における排出 量の計算結果は以下のとおり。

表 70 木質チップ輸送工程(生産国内輸送)の排出量の計算

	諸元	値	単位	出典
1	距離	300	km	木質バイオマス供給事業者のプラント 立地を参考に設定
2	往復燃費 40t トラック	0.811	MJ-軽油/tkm	JRC(2017b)
3	軽油排出係数(燃焼時 のメタン・N2O 含まな い)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
4	軽油由来の排出原単位 (燃焼時のメタン・ N2O 含まない)	77.1	g-CO2eq/tkm	JRC(2017b)
(5)	CH4 排出原単位(トラ ック利用時)	0.0034	g-CH4/tkm	JRC(2017b)
6	N2O 排出原単位(トラ ック利用時)	0.0015	g-N2O/tkm	JRC(2017b)
7	CH4 排出原単位(トラ ック利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤ $ imes25$
8	N2O 排出原単位(トラ ック利用時)CO2 換算	$\textcolor{red}{\textbf{0.447}}$	g-CO2eq/tkm	=⑥×298
9	陸上輸送の GHG 排出原 単位	<mark>77.7</mark>	g-CO2eq/tkm	=4+7+8
10	バイオマス燃料発熱量	13,300	MJ-燃料/t-燃料	JRC(2017b)(絶乾発熱量 19,000MJ/t に対し含水率 30%を想定)
11)	当該工程の GHG 排出量	1.74 1.75	g-CO2eq/MJ-燃料	=(1)x(9)/(10)

海上輸送のGHG排出原単位として、空荷輸送の比率を全航海距離の30%と想定したEU RED2 既定値で用いられている排出原単位を参考に(かさ密度が0.22t/m3の排出原単位 を参照した)、空荷の復路便が往路便と同等の距離と想定した原単位を独自に算出した。

表 71 木質チップ海上輸送工程の排出量の計算(Handy Size 6,500km 輸送)

	諸元	値	単位	出典
1	海上輸送距離	6,500	km	ベトナム代表港~日本間を目安
2	海上輸送排出原単位 (かさ密度 0.22t/m3 以 上、Handy Size)	28.91	g-CO2eq/tkm	JRC(2017b)より算定
3	バイオマス燃料発熱量	13,300	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 30%想定)
4	当該工程の GHG 排出量	14.13	g-CO2eq/MJ-燃料	=(1)×(2)/(3)

表 72 木質チップ海上輸送工程の排出量の計算(Handy Size 11,600km 輸送)

	諸元	値	単位	出典
1	海上輸送距離	11,600	km	オーストラリア代表港~日本間を目安
2	海上輸送排出原単位(か さ密度 0.22t/m3 以上、 Handy Size)	28.91	g-CO2eq/tkm	JRC(2017b)より算定
3	バイオマス燃料発熱量	13,300	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 30%想定)
4	当該工程の GHG 排出量	25.21	g-CO2eq/MJ-燃料	$=(1)\times(2)/(3)$

表 73 木質チップ海上輸送工程の排出量の計算(Handy Size 18,000km 輸送)

	諸元	値	単位	出典
1	海上輸送距離	18,000	km	米国東海岸代表港~日本間を把握
2	海上輸送排出原単位 (かさ密度 0.22t/m3 以上、Handy Size)	28.91	g-CO2eq/tkm	JRC(2017b)より算定
3	バイオマス燃料発熱量	13,300	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 30%を想定)
4	当該工程の GHG 排出 量	39.13	g-CO2eq/MJ-燃料	=①x②/3

表 74 木質チップ海上輸送工程の排出量の計算(Supramax 6,500km 輸送の場合)

	諸元	値	単位	出典
1	海上輸送距離	6,500	km	ベトナム代表港~日本間を目安
2	海上輸送排出原単位(か さ密度 0.22t/m3 以上、 Supramax)	18.37	g-CO2eq/tkm	JRC(2017b)より算定
3	バイオマス燃料発熱量	13,300	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 30%を想定)
4	当該工程の GHG 排出量	8.98	g-CO2eq/MJ-燃料	$=(1)\times(2)/(3)$

表 75 木質チップ海上輸送工程の排出量の計算(Supramax 11,600km 輸送の場合)

	諸元	値	単位	出典
1	海上輸送距離	11,600	km	オーストラリア代表港~日本間を目安
2	海上輸送排出原単位 (かさ密度 0.22t/m3 以 上、Supramax)	18.37	g-CO2eq/tkm	JRC(2017b)より算定
3	バイオマス燃料発熱量	13,300	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 30%を想定)
4	当該工程の GHG 排出 量	16.02	g-CO2eq/MJ-燃料	=①×2/3

表 76 木質チップ海上輸送工程の排出量の計算 (Supramax 18,000km 輸送の場合)

			_	•
	諸元	値	単位	出典
1	海上輸送距離	18,000	km	米国東海岸代表港~日本間を目安
2	海上輸送排出原単位 (かさ密度 0.22t/m3 以 上、Supramax)	18.37	g-CO2eq/tkm	JRC(2017b)より算定
3	バイオマス燃料発熱量	13,300	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 30%を想定)
4	当該工程の GHG 排出 量	24.86	g-CO2eq/MJ-燃料	=①x②/3

表 77 木質チップ輸送工程 (日本国内輸送) の排出量の計算

	諸元	値	単位	出典
1	距離	20	km	第 12 回 WG 資料 2 を参考に設定
2	往復燃費 10t トラック	2.92 3.06	MJ-軽油/tkm	表 118より
3	軽油排出係数(燃焼時の メタン・N2O 含まない)	95.1	g- CO2eq/MJ- 軽油	JRC(2017b)
4	軽油由来の排出原単位 (燃焼時のメタン・N2O 含まない)	$\frac{277.7}{291.0}$	g- CO2eq/tkm	JRC(2017b)
(5)	CH4 排出原単位(トラッ ク利用時)	0.0034	g-CH4/tkm	JRC(2017b)
6	N2O 排出原単位(トラッ ク利用時)	0.0015	g-N2O/tkm	JRC(2017b)
7	CH4 排出原単位(トラッ ク利用時)CO2 換算	0.085	g- CO2eq/tkm	$=$ $ (5) \times 25 $
8	N2O 排出原単位(トラッ ク利用時)CO2 換算	0.447	g- CO2eq/tkm	$= 6 \times 298$
9	陸上輸送の GHG 排出原 単位	$\frac{278.2}{291.5}$	g- CO2eq/tkm	=4+7+8
10	バイオマス燃料発熱量	13,300	MJ-燃料/t-燃 料	JRC(2017b)(絶乾発熱量 19,000MJ/t に対し 含水率 30%を想定)
11)	当該工程の GHG 排出量	$\frac{0.42}{0.44}$	g- CO2eq/MJ- 燃料	$= (1) \times (9)/(0)$

<発電工程>

発電工程の排出については、EU RED2 既定値で用いられている木質ペレットの既定値を用いて計算した。

表 78 発電工程の排出量の計算

	諸元	値	単位	出典
1	CH4 排出量(木質チップ)	0.00489	g-CH4/MJ-チップ	JRC(2017b)
2	N2O 排出量(木質チップ)	0.00098	g-N2O/MJ-チップ	JRC(2017b)
3	発電工程の排出量	0.41	g-CO2eq/MJ-燃料	①×25+②×298

2-2. <mark>その他伐採木</mark>由来の木質チップ

(1) 対象工程

<対象工程>

対象工程は以下のとおりである。

図 6 その他伐採木由来の木質チップのライフサイクル GHG 対象工程

<海上輸送の扱い>

海上輸送の扱いは2-1. 林地残材等由来の木質チップと同じ。

(2) 工程別の排出量の計算

<栽培工程>

栽培工程における排出量の計算結果は以下のとおり。

	諸元	値	単位	出典				
1	投入軽油	0.01066	MJ-軽油/MJ-原料	JRC(2017b)				
2	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	同上				
3	CH4 排出原単位(農機利用 時)	0.00000816	g-CH4/MJ-原料	JRC(2017b)				
4	N2O 排出原単位(農機利用 時)	0.00003413	g-N2O/MJ-原料	JRC(2017b)				
5	CH4 排出原単位(農機利用 時)CO2 換算	0.00020	g-CO2eq/MJ-原料	=②×25				
6	N2O 排出原単位(農機利用 時)CO2 換算	0.01017	g-CO2eq/MJ-原料	=③×298				
7	栽培工程の GHG 排出原単位	1.02414	g-CO2eq/MJ-原料	$=(1)\times(2)+(5)+(6)$				
8	チップ製造に要する <mark>その他伐</mark> <mark>採木</mark> 量	1.079	MJ-原料/MJ-燃料	JRC(2017b)				
9	当該工程の GHG 排出量	1.09 1.11	g-CO2eq/MJ-燃料	$=$ \bigcirc \times \otimes				

表 79 木質チップ栽培工程の排出量の計算

<加工工程(破砕)>

加工工程(破砕)の排出量は2-1. 林地残材等由来の木質チップと同じ。

<輸送工程(チップ輸送)>

輸送工程(チップ輸送)の排出量は2-1. 林地残材等由来の木質チップと同じ。

<発電工程>

発電工程の排出量は2-1. 林地残材等由来の木質チップと同じ。

2-3. 製材等残材由来の木質チップ

(1) 対象工程等

<対象工程>

対象工程は以下のとおりである。

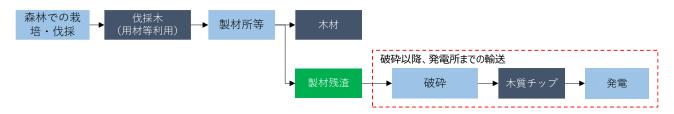


図 7 木質チップ (<mark>製材等残材</mark>) のライフサイクル GHG 対象工程

<海上輸送の扱い>

海上輸送の扱いは2-1. 林地残材等由来の木質チップと同じ。

(2) 工程別の排出量の計算

<加工工程(破砕)>

加工工程(破砕)における排出については、製材等残材由来の木質チップの加工工程は存在しないため、ゼロとした。

<輸送工程(チップ輸送)>

輸送工程(チップ輸送)の排出量は2-1. 林地残材等由来の木質チップと同じ。

<発電工程>

発電工程の排出量は2-1. 林地残材等由来の木質チップと同じ。

3. 木質ペレットのライフサイクルGHG既定値の計算過程

3-1. 林地残材等由来のペレット

(1) 対象工程等

<対象工程>

対象工程は以下のとおりである。

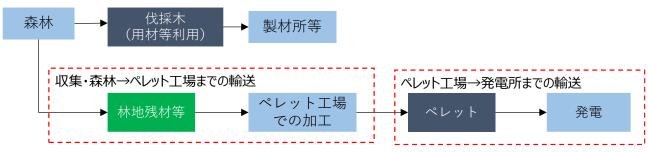


図 8 木質ペレット(林地残材等由来)のライフサイクル GHG 対象工程

<海上輸送の扱い>

海上輸送に関しては、第9回WGにおいてペレットについては特定の航海パターンを取らないことが報告されていることから、海上輸送の排出量に関しては、空荷輸送の比率を全航海距離の30%と設定する値を用いるものとした。

(2) 工程別の排出量の計算

<輸送工程(林地残材等収集)>

林地残材等収集工程の計算結果は以下のとおり。

表 80 木質ペレット輸送工程(林地残材等収集)の排出量の計算 (乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1	投入軽油	0.0120	MJ-軽油/MJ-原料	JRC(2017b)
2	軽油排出係数(燃焼時のメ タン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
3	CH4 排出原単位(農機利 用時)	0.00000257	g-CH4/MJ-原料	JRC(2017b)
4	N2O 排出原単位(農機利 用時)	0.00001075	g-N2O/MJ-原料	JRC(2017b)
(5)	CH4 排出原単位(農機利 用時)CO2 換算	0.00006	g-CO2eq/MJ-原料	=3×25
6	N2O 排出原単位(農機利 用時)CO2 換算	0.00320	g-CO2eq/MJ-原料	=④×298
7	林地残材等 1MJ 当たりの 林地残材等収集工程の GHG 排出原単位	1.14447	g-CO2eq/MJ-原料	=①×2+5+6
8	ペレット製造に要する林地 残材等量(自然乾燥前)	1.090 1.035	MJ-原料/MJ-燃料	JRC (2017b)
9	当該工程の GHG 排出量	1.24 1.18	g-CO2eq/MJ-燃料	$=$ \bigcirc \times \bigcirc 8

表 81 木質ペレット輸送工程(林地残材等収集)の排出量の計算(乾燥熱源にバイオマスを利用する場合)

	諸元	値	単位	出典
1	投入軽油	0.0120	MJ-軽油/MJ-原料	JRC (2017b)
2	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC (2017b)
3	CH4 排出原単位(農機利用時)	0.00000257	g-CH4/MJ-原料	JRC(2017b)
4	N2O 排出原単位(農機利用時)	0.00001075	g-N2O/MJ-原料	JRC(2017b)
5	CH4 排出原単位(農機利用時) CO2 換算	0.00006	g-CO2eq/MJ-原料	=3×25
6	N2O 排出原単位(農機利用時) CO2 換算	0.00320	g-CO2eq/MJ-原料	$= 4 \times 298$
6	林地残材等 1MJ 当たりの輸送工 程の GHG 排出原単位	1.14447	g-CO2eq/MJ-原料	=(1)×(2)+(5)+(6)
8	ペレット製造に要する林地残材 等量(自然乾燥前)	1.393 1.323	MJ-原料/MJ-燃料	JRC (2017b)
9	当該工程の GHG 排出量	$\frac{1.59}{1.51}$	g-CO2eq/MJ-燃料	$= \bigcirc \times \bigcirc \times \bigcirc$

<輸送工程(加工前輸送)>

輸送工程(加工前輸送)の計算結果は以下のとおり。

表 82 木質ペレット輸送工程(加工前輸送)の排出量の計算(乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1	距離	100	km	JRC (2017b)
2	往復燃費 40t トラック	0.811	MJ-軽油/tkm	JRC (2017b)
3	軽油排出係数(燃焼時の メタン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC (2017b)
4	軽油由来の排出原単位 (燃焼時のメタン・N2O 含まない)	77.1	g-CO2eq/tkm	=2×3
5	CH4 排出原単位(トラッ ク利用時)	0.0034	g-CH4/tkm	JRC (2017b)
6	N2O 排出原単位(トラッ ク利用時)	0.0015	g-N2O/tkm	JRC (2017b)
7	CH4 排出原単位(トラッ ク利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤×25
8	N2O 排出原単位(トラッ ク利用時)CO2 換算	0.447	g-CO2eq/tkm	=⑥×298
9	林地残材等の発熱量	9,500	MJ-原料/t-原料	同上(絶乾発熱量 19,000MJ/t に対し含水率 50%を想定)
10	陸上輸送の GHG 排出原 単位	0.812 0.817	g-CO2eq/MJ-原料	=①× (④+⑦+8) /9
11)	ペレット製造に要する林 地残材等量(自然乾燥 前)	1.090 1.035	MJ-原料/MJ-燃料	JRC(2017b)
12	当該工程の GHG 排出量	$\frac{0.89}{0.85}$	g-CO2eq/MJ-燃料	$=$ $\textcircled{10} \times \textcircled{11}$

表 83 木質ペレット輸送工程(加工前輸送)の排出量の計算(乾燥熱源にバイオマスを利用する場合)

	諸元	値	単位	出典
1	距離	100	km	JRC (2017b)
2	往復燃費 40 トラック	0.811	MJ-軽油/tkm	JRC (2017b)
3	軽油排出係数(燃焼時の メタン・N2O 含まな い)	95.1	g-CO2eq/MJ-軽油	JRC (2017b)
4	軽油由来の排出原単位 (燃焼時のメタン・N2O 含まない)	77.1	g-CO2/tkm	=2×3
(5)	CH4 排出原単位(トラッ ク利用時)	$\frac{0.0034}{0.0034}$	g-CH4/tkm	JRC (2017b)
6	N2O 排出原単位(トラ ック利用時)	0.0015	g-N2O/tkm	JRC (2017b)
7	CH4 排出原単位(トラッ ク利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤×25
8	N2O 排出原単位(トラ ック利用時)CO2 換算	$\textcolor{red}{0.447}$	g-CO2eq/tkm	=⑥×298
9	林地残材等の発熱量	9,500	MJ-原料/t-原料	同上(絶乾発熱量 19,000MJ/t に対し含水率 50%を想定)
10	陸上輸送の GHG 排出原 単位	$\frac{0.812}{0.817}$	g-CO2eq/MJ-原料	=①× (④+⑦+8) /9
(1)	ペレット製造に要する林 地残材等量(自然乾燥 前)	1.393 1.323	MJ-原料/MJ-燃料	JRC(2017b)
12	当該工程の GHG 排出量	1.13 1.08	g-CO2eq/MJ-燃料	$=$ (1) \times (1)

<加工工程(乾燥熱源に化石燃料を利用する場合)>

ペレット化する際に、乾燥熱源に化石燃料を利用する場合の加工工程における排出量の計算結果は以下のとおり。

表 84 木質ペレット加工工程(破砕)の排出量の計算(乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1	投入軽油	0.003357	MJ-軽油/MJ-原料	JRC (2017b)
2	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC (2017b)
3	CH4 排出原単位(破砕機械利 用時)	0.0000092	g-CH4/MJ-原料	JRC (2017b)
4	N2O 排出原単位(破砕機械利 用時)	0.0000385	g-N2O/MJ-原料	JRC (2017b)
5	CH4 排出原単位(破砕機械利 用時)CO2 換算	0.00023	g-CO2eq/MJ-原料	$=$ 3×25
6	N2O 排出原単位(破砕機械利 用時)CO2 換算	0.01147	g-CO2eq/MJ-原料	=④×298
7	破砕工程の GHG 排出原単位	$\frac{0.32}{0.33}$	g-CO2eq/MJ-原料	$=(1)\times(2)+(5)+(6)$
8	ペレット製造に要する林地残材 等量(自然乾燥後)	1.035 1.010	MJ-原料/MJ-燃料	JRC(2017b)計算デー タより導出
9	当該工程の GHG 排出量	0.33	MJ/MJ-燃料	$=7\times8$
10	当該工程の GHG 排出量(保守 性担保のため⑨を 20%増)	0.40	g-CO2eq/MJ-燃料	=9×1.2

表 85 木質ペレット加工工程(乾燥)の排出量の計算(乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1)	投入熱量 (蒸気)	0.185	MJ-蒸気 /MJ-燃料	JRC (2017b)
2	天然ガスボイラ効率	0.9	MJ-蒸気/MJ-天然ガ ス/	JRC (2017b)
3	天然ガス排出係数 (燃焼時のメ タン・N2O 含まない)	66	g-CO2eq/MJ-天然ガ ス	JRC (2017b)
4	天然ガスボイラ排出原単位(燃焼時のメタン・N2O 含まない)	<mark>73.3</mark>	g-CO2eq/MJ-蒸気	=3/2
5	天然ガスボイラ燃焼時 CH4 排 出原単位	0.00280	g-CH4/MJ-蒸気	JRC (2017b)
6	天然ガスボイラ燃焼時 N2O 排 出原単位	0.00112	g-N2O/MJ-蒸気	JRC (2017b)
7	天然ガスボイラ・CH4 排出原 単位(CO2 換算)	0.070	g-CO2eq/MJ-蒸気	=⑤×25
8	天然ガスボイラ・N2O 排出原 単位(CO2 換算)	0.33376	g-CO2eq/MJ-蒸気	=⑥×298
9	当該工程の GHG 排出量	12.21 13.64	g-CO2eq/MJ-燃料	$= (1) \times (4) + (7) + (8)$
10	当該工程の GHG 排出量(保守 性担保のため⑨を 20%増)	14.65 16.37	g-CO2eq/MJ-燃料	= ⑨×1.2

表 86 木質ペレット加工工程(造粒)の排出量の計算(乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1)	投入電力	0.050	MJ-電力/ MJ-燃料	JRC (2017b)
2	電力排出係数(系統電力)	146.3	g-CO2eq/MJ-電力	GREET2022 より 米国フロリダ州の排 出係数
3	電力由来の排出原単位	7.41 7.32	g-CO2eq/MJ-燃料	$=$ ① \times ②
4	投入軽油	0.0020	MJ-軽油/MJ-燃料	JRC (2017b)
5	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC (2017b)
6	軽油由来の排出原単位(燃焼時のメタン・N2O含まない)	0.19	g-CO2eq/MJ-軽油	=4×5
7	CH4 排出原単位(ペレット化 工程全体)	$\frac{0.00000153}{0.00000153}$	g-CH4/MJ-燃料	JRC (2017b)
8	N2O 排出原単位(ペレット化 工程全体)	0.00000640	g-N2O/MJ-燃料	JRC (2017b)
9	CH4 排出原単位(ペレット化 工程全体)CO2 換算	0.00004	g-CO2eq/MJ-燃料	=⑦×25
10	N2O 排出原単位(ペレット化 工程全体)CO2 換算	0.00191	g-CO2eq/MJ-燃料	$= 8 \times 298$
11)	当該工程の GHG 排出量	7.41 7.51	g-CO2eq/MJ-燃料	=3+6+9+10
12	当該工程の GHG 排出量(保守 性担保のため⑪を 20%増)	8.89 9.01	g-CO2eq/MJ 燃料	=(1)×1.2

<加工工程(乾燥熱源にバイオマスを利用する場合)>

ペレット化する際に、乾燥熱源にバイオマスを利用する場合の加工工程における排出量の計算結果は以下のとおり。なお、造粒工程の排出量は、乾燥熱源に化石燃料を利用する場合と同じ。

表 87 木質ペレット加工工程(破砕)の排出量の計算(乾燥熱源にバイオマスを利用する場合)

	諸元	値	単位	出典
1	投入軽油	0.003357	MJ-軽油/MJ-原料	JRC(2017b)
2	軽油排出係数(燃焼時のメタン・ N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
3	CH4 排出原単位(破砕機械利用 時)	0.0000092	g-CH4/MJ-原料	JRC (2017b)
4	N2O 排出原単位(破砕機械利用 時)	0.0000385	g-N2O/MJ-原料	JRC (2017b)
5	CH4 排出原単位(破砕機械利用 時)CO2 換算	0.00023	g-CO2eq/MJ-原料	=③×25
6	N2O 排出原単位(破砕機械利用 時)CO2 換算	0.01147	g-CO2eq/MJ-原料	$=4\times298$
7	破砕工程の GHG 排出原単位	0.33	g-CO2eq/MJ-原料	$= (1) \times (2) + (5) + (6)$
8	ペレット製造に要する林地残材等量 (自然乾燥後)	1.291	MJ-原料/MJ-燃料	JRC(2017b)
9	当該工程の GHG 排出量	0.412 0.43	g-CO2eq/MJ-燃料	=⑦×8
10	当該工程の GHG 排出量(保守性担 保のため⑨を 20%増)	$\frac{0.5}{0.51}$	g-CO2eq/MJ-燃料	=9×1.2

表 88 木質ペレット加工工程(乾燥)の排出量の計算(乾燥熱源にバイオマスを利用する場合)

	諸元	値	単位	出典
1	投入熱量 (蒸気)	0.239	MJ-蒸気/MJ-燃料	JRC(2017b)
2	ウッドチップボイラ・CO2 排 出原単位	0	g-CO2/MJ-蒸気	バイオマス由来の 排出は計上しない
3	ウッドチップボイラ・CH4 排出原単位	$\frac{0.005751}{0.005751}$	g-CH4/MJ-蒸気	JRC(2017b)
4	ウッドチップボイラ・N2O 排出原単位	0.001150	g-N2O/MJ-蒸気	JRC(2017b)
5	ウッドチップボイラ・CH4 排出原単位(CO2 換算)	0.144	g-CO2eq/MJ-蒸気	=③×25
6	ウッドチップボイラ・N2O 排出原単位(CO2 換算)	0.487 0.343	g-CO2eq/MJ-蒸気	$=4\times298$
7	当該工程の GHG 排出量	0.116 0.12	g-CO2eq/MJ-燃料	$=(1)\times((2)+(5)+(6))$
8	当該工程の GHG 排出量(保 守性担保のため⑦を 20%増)	0.14	g-CO2eq/MJ-燃料	=⑦×1.2

<輸送工程(ペレット輸送)>

バイオマス燃料発熱量

当該工程の GHG 排出量

(10)

(11)

輸送工程(ペレット輸送)における排出量の計算結果は以下のとおり。

諸元 値 単位 木質バイオマス供給事業者のプラント立 1 距離 300 km 地を参考に設定 2 往復燃費 40t トラック 0.811 MJ-軽油/tkm JRC(2017b) 軽油排出係数(燃焼時の g-CO2eq/MJ-(3) 95.1 JRC(2017b) メタン・N2O 含まない) 軽油 軽油由来の排出原単位 (燃焼時のメタン・N2O 77.1g-CO2eq/tkm = \bigcirc \times \bigcirc (4) 含まない) CH4 排出原単位(トラッ (5)0.0034g-CH4/tkm JRC(2017b) ク利用時) N2O 排出原単位(トラッ (6) 0.0015JRC(2017b) g-N2O/tkm ク利用時) CH4 排出原単位(トラッ $\overline{7}$ 0.085 $=(5) \times 25$ g-CO2eq/tkm ク利用時)CO2 換算 N2O 排出原単位(トラッ g-CO2eq/tkm (8) 0.447 $=6\times 298$ ク利用時) CO2 換算 陸上輸送の GHG 排出原単 77.7g-CO2eq/tkm =4+7+8位

表 89 木質ペレット輸送工程(生産国内輸送)の排出量の計算

海上輸送の GHG 排出原単位として、空荷輸送の比率を全航海距離の 30%と想定した EU RED2 既定値で用いられている排出原単位を引用した。日本国内における木質ペレットの品質基準として、かさ密度 0.65-0.7t/mとする木質ペレットの品質基準があることから 13、かさ密度 0.65t/m3 の排出原単位を引用した。

MJ-燃料/t-燃

g-CO2eq/MJ-

燃料

17,100

1.35 1.36

JRC(2017b) (絶乾発熱量 19,000MJ/t に

 $=(1)\times(9)/(10)$

対し含水率 10%を想定)

表 90 木質ペレット海上輸送工程の排出量の計算(Handy Size 6.500km 輸送)

	諸元	値	単位	出典
1	距離	6,500	km	ベトナム代表港~日本間を目安
2	海上輸送排出原単位 (かさ密度 0.65t/m3 以 上、Handy Size)	8.17	g-CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 10%想定)
4	当該工程の GHG 排出量	3.11	g-CO2eq/MJ-燃料	$=(1)\times(2)/(3)$

59

^{13 &}lt;u>https://www.nedo.go.jp/content/100932088.pdf</u> (2022年11月10日閲覧)

表 91 木質ペレット海上輸送工程の排出量の計算(Handy Size 9,000km 輸送)

	諸元	値	単位	出典
1	距離	9,000	km	カナダ西海岸代表港~日本間を目安
2	海上輸送排出原単位 (かさ密度 0.65t/m3 以 上、Handy Size)	8.17	g-CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃料	同上(絶乾発熱量 19,000MJ/t に対し 含水率 10%想定)
(4)	当該工程の GHG 排出量	4.30	g-CO2eg/MJ-燃料	$=(1)\times(2)/(3)$

表 92 木質ペレット海上輸送工程の排出量の計算(Handy Size 18,000km 輸送)

				· · · · · · · · · · · · · · · · · · ·
	諸元	値	単位	出典
1	距離	18,000	km	米国東海岸代表港~日本間を目安
2	海上輸送排出原単位 (かさ密度 0.65t/m3 以 上、Handy Size)	8.17	g-CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃料	同上(絶乾発熱量 19,000MJ/t に対し 含水率 10%を想定)
4	当該工程の GHG 排出量	8.60	g-CO2eq/MJ-燃料	$=(1)\times(2)/(3)$

表 93 木質ペレット海上輸送工程の排出量の計算(Supramax 6,500km 輸送の場合)

	諸元	値	単位	出典
1	距離	6,500	km	ベトナム代表港~日本間を目安
2	海上輸送排出原単位 (かさ密度 0.65t/m3 以 上、Supramax)	5.28	g-CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃料	同上(絶乾発熱量 19,000MJ/t に対し 含水率 10%を想定)
4	当該工程の GHG 排出量	2.01	g-CO2eq/MJ-燃料	$=(1)\times(2)/(3)$

表 94 木質ペレット海上輸送工程の排出量の計算(Supramax 9,000km 輸送の場合)

	***		- 11 - 11 11	F, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	諸元	値	単位	出典
1	距離	9,000	km	カナダ西海岸代表港~日本間を目安
2	海上輸送排出原単位 (かさ密度 0.65t/m3 以 上、Supramax)	5.28	g-CO2eq/tkm	JRC(2017b)
3	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃料	同上(絶乾発熱量 19,000MJ/t に対し 含水率 10%を想定)
4	当該工程の GHG 排出量	2.78	g-CO2eq/MJ-燃料	$=(1)\times(2)/(3)$

表 95 木質ペレット海上輸送工程の排出量の計算(Supramax 18,000km 輸送の場合)

	· · · · · · · · · · · · · · · · · · ·					
	諸元	値	単位	出典		
1	距離	18,000	km	米国東海岸代表港~日本間を把握		
2	海上輸送排出原単位 (かさ密度 0.65t/m3 以 上、Supramax)	5.28	g-CO2eq/tkm	JRC(2017b)		
3	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水率 10%を想定)		
4	当該工程の GHG 排出量	5.56	g-CO2eq/MJ-燃料	$=(1)\times(2)/(3)$		

表 96 木質ペレット輸送工程(日本国内輸送)の排出量の計算

		値	単位	出典
1	距離	20	km	第 12 回 WG 資料 3 を参考に設定
2	往復燃費 10t トラック	<mark>2.92</mark> 3.06	MJ-軽油/tkm	表 118より
3	軽油排出係数(燃焼時 のメタン・N2O 含ま ない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
4	軽油由来の排出原単位 (燃焼時のメタン・ N2O 排出含まない)	$\frac{277.7}{291.0}$	g-CO2eq/tkm	JRC(2017b)
(5)	CH4 排出原単位(ト ラック利用時)	0.0034	g-CH4/tkm	JRC(2017b)
6	N2O 排出原単位(ト ラック利用時)	0.0015	g-N2O/tkm	JRC(2017b)
7	CH4 排出原単位(ト ラック利用時)CO2 換算	0.085	g-CO2eq/tkm	=⑤ $ imes25$
8	N2O 排出原単位(ト ラック利用時)CO2 換算	$\frac{0.447}{}$	g-CO2eq/tkm	=⑥×298
9	陸上輸送の GHG 排出 原単位	$\frac{278.2}{291.5}$	g-CO2eq/tkm	=4+7+8
10	バイオマス燃料発熱量	17,100	MJ-燃料/t-燃料	JRC(2017b) (絶乾発熱量 19,000MJ/t に 対し含水率 10%を想定)
(1)	当該工程の GHG 排出 量	0.32 0.34	g-CO2eq/MJ-燃料	=①×⑨/⑩

<発電工程>

発電工程の排出については、EU RED2 既定値で用いられている木質ペレットの既定値を用いて計算した。

表 97 発電工程の排出量の計算

	諸元	値	単位	出典
1	CH4 排出量(ペレット)	0.00297	g-CH4/MJ-ペレット	JRC(2017b)
2	N2O 排出量(ペレット)	0.00059	g-N2O/MJ-ペレット	JRC(2017b)
3	発電工程の排出量	0.25	g-CO2eq/MJ-燃料	①×25+②×298

3-2. <mark>その他伐採木</mark>由来のペレット

(1) 対象工程

<対象工程>

対象工程は以下のとおりである。

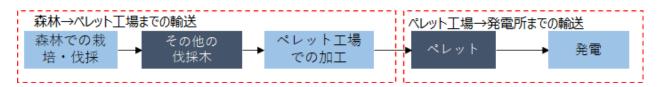


図 9 木質ペレット (その他伐採木由来) のライフサイクル GHG 対象工程

<海上輸送の扱い>

海上輸送の扱いは3-1. 林地残材等由来のペレットと同じ。

(2) 工程別の排出量の計算

<栽培工程>

栽培工程の計算結果は以下のとおり。

表 98 木質ペレット栽培工程の排出量の計算(乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1	投入軽油	0.01066	MJ-軽油/MJ-原料	JRC(2017b)
2	軽油排出係数(燃焼時のメ タン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
3	CH4 排出原単位(農機利 用時)	0.00000816	g-CH4/MJ-原料	JRC(2017b)
4	N2O 排出原単位(農機利 用時)	0.00003413	g-N2O/MJ-原料	JRC(2017b)
(5)	CH4 排出原単位(農機利 用時)CO2 換算	0.00020	g-CO2eq/MJ-原料	=3×25
6	N2O 排出原単位(農機利 用時)CO2 換算	0.01017	g-CO2eq/MJ-原料	=④×298
7	<mark>その他伐採木</mark> 1MJ 当たり 栽培工程の GHG 排出原単 位	1.02414	g-CO2eq/MJ-原料	=①×2+5+6
8	ペレット製造に要する <mark>その</mark> <mark>他伐採木</mark> 量(自然乾燥前)	1.090 1.035	MJ-原料/MJ-燃料	JRC (2017b)
9	当該工程の GHG 排出量	1.11 1.06	g-CO2eq/MJ-燃料	=⑦×8

表 99 木質ペレット栽培工程の排出量の計算(乾燥熱源にバイオマスを利用する場合)

	諸元	値	単位	出典
1	投入軽油	0.01066	MJ-軽油/MJ-原料(自然乾燥前)	JRC(2017b)
2	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	95.1	g-CO2eq/MJ-軽油	JRC(2017b)
3	CH4 排出原単位(農機利用 時)	0.00000816	g-CH4/MJ-原料	JRC(2017b)
4	N2O 排出原単位(農機利用 時)	0.00003413	g-N2O/MJ-原料	JRC(2017b)
5	CH4 排出原単位(農機利用 時)CO2 換算	0.00020	g-CO2eq/MJ-原料	=③×25
6	N2O 排出原単位(農機利用 時)CO2 換算	0.01017	g-CO2eq/MJ-原料	=④×298
7	その他伐採木 MJ 当たりの栽培 工程の GHG 排出原単位	1.02414	g-CO2eq/MJ-原料	=(1)×(2)+(5)+(6)
8	ペレット製造に要する <mark>その他伐</mark> <mark>採木</mark> 量(自然乾燥前)	1.393 1.323	MJ-原料/MJ-燃料	JRC (2017b)
9	当該工程の GHG 排出量	1.41 1.36	g-CO2eq/MJ-燃料	=⑦×8

<輸送工程(加工前輸送)>

輸送工程(加工前輸送)の排出量は3-1. 林地残材等由来のペレットと同じ。

<加工工程>

加工工程の排出量は、乾燥熱源に化石燃料を利用する場合、乾燥熱源にバイオマスを利用する場合ともに3-1. 林地残材等由来のペレットと同じ。

<輸送工程(ペレット輸送)>

輸送工程(ペレット輸送)の排出量は3-1. 林地残材等由来のペレットと同じ。

<発電工程>

発電工程の排出の排出量は3-1. 林地残材等由来のペレットと同じ。

3-3. 製材等残材由来のペレット

(1) 対象工程

<対象工程>

対象工程は以下のとおりである。

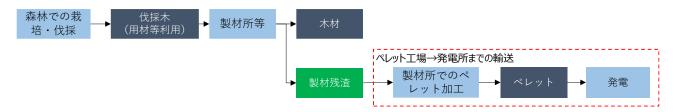


図 10 木質ペレット(製材等残材由来)のライフサイクル GHG 対象工程

<海上輸送の扱い>

海上輸送の扱いは3-1. 林地残材等由来のペレットと同じ。

(2) 工程別の排出量の計算

<加工工程(乾燥熱源に化石燃料を利用する場合)>

ペレット化する際に、乾燥熱源に化石燃料を利用する場合の加工工程における排出量の計算結果は以下のとおり。なお、EU RED2 既定値にならい、破砕工程は含めていない。

表 100 木質ペレット加工工程(乾燥)の排出量の計算(乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1	投入熱量 (蒸気)	0.111	MJ-蒸気/MJ-燃料)	JRC(2017b)
2	天然ガスボイラ効率	0.9	MJ-蒸気/MJ-天然ガス	JRC(2017b)
3	天然ガス排出係数(燃焼時の メタン・N2O 含まない)	66	g-CO2eq/MJ-天然ガス	JRC(2017b)
4	天然ガスボイラ排出原単位 (燃焼時のメタン・N2O 含ま ない)	<mark>73.3</mark>	g-CO2eq/MJ-蒸気	=3/2
5	天然ガスボイラ燃焼時 CH4 排出原単位	0.0028	g-CH4/MJ-蒸気	JRC(2017b)
6	天然ガスボイラ燃焼時 N2O 排出原単位	0.00112	g-N2O/MJ-蒸気	JRC(2017b)
7	天然ガスボイラ・CH4 排出原 単位(CO2 換算)	0.070	g-CO2eq/MJ-蒸気	=⑤×25
8	天然ガスボイラ・N2O 排出原 単位(CO2 換算)	<mark>0.33376</mark>	g-CO2eq/MJ-蒸気	=⑥×298
9	当該工程の GHG 排出量	7.33 8.18	g-CO2eq/MJ-燃料	=①×(④+⑦+ ⑧)
10	当該工程の GHG 排出量(保 守性担保のため⑨を 20%増)	8.79 9.82	g-CO2eq/MJ-燃料	= ⑨×1.2

表 101 木質ペレット加工工程(造粒)の排出量の計算(乾燥熱源に化石燃料を利用する場合)

	諸元	値	単位	出典
1	投入電力	0.028	MJ-電力/MJ-燃料	JRC(2017b)
2	電力排出係数(系統電力	148.1 146.3	g-CO2eq/MJ-電力	GREET2022 により米 国フロリダ州の排出係数
3	電力由来の排出原単位	$\frac{4.15}{4.10}$	g-CO2eq/MJ-燃料	=①×②
4	投入軽油	0.0016	MJ-軽油/MJ-燃料	JRC (2017b)
5	軽油排出係数(燃焼時のメタ ン・N2O 含まない)	$\frac{95.1}{}$	g-CO2eq/MJ-軽油	JRC (2017b)
6	軽油由来の排出原単位(燃焼時のメタン・N2O含まない)	0.15	g-CO2eq/MJ-軽油	=4×5
7	CH4 排出原単位(ペレット化工 程全体)	0.00000153	g-CH4/MJ-燃料	JRC (2017b)
8	N2O 排出原単位(ペレット化工 程全体)	0.00000640	g-N2O/MJ-燃料	JRC (2017b)
9	CH4 排出原単位 (ペレット化工 程全体) CO2 換算	0.00004	g-CO2eq/MJ-燃料	=⑦×25
10	N2O 排出原単位(ペレット化工 程全体)CO2 換算	0.00191	g-CO2eq/MJ-燃料	=®×298
11)	当該工程の GHG 排出量	$\frac{4.15}{4.25}$	g-CO2eq/MJ 燃料	=3+6+9+10
12	当該工程の GHG 排出量(保守 性担保のため⑪を 20%増)	4.98 5.10	g-CO2eq/MJ-燃料	=(1)×1.2

<加工工程(乾燥熱源にバイオマスを利用する場合)>

ペレット化する際に、乾燥熱源にバイオマスを利用する場合の加工工程における排出量の計算結果は以下のとおり。造粒工程の排出量は、乾燥熱源に化石燃料を利用する場合と同じ。

表 102 木質ペレット加工工程(乾燥)の排出量の計算(乾燥熱源にバイオマスを利用する場合)

	諸元	値	単位	出典
1	ボイラ用バイオマス投入	0.143	MJ-蒸気/MJ-燃料	JRC(2017b)
2	ウッドチップボイラ・CO2 排 出原単位	0	g-CO2/MJ-蒸気	バイオマス由来の 排出は計上しない
3	ウッドチップボイラ・CH4 排 出原単位	0.005751	g-CH4/MJ-蒸気	JRC(2017b)
4	ウッドチップボイラ・N2O 排 出原単位	0.001150	g-N2O/MJ-蒸気	JRC(2017b)
5	ウッドチップボイラ・CH4 排 出原単位(CO2 換算)	0.144	g-CO2eq/MJ-蒸気	$=$ 3×25
6	ウッドチップボイラ・N2O 排 出原単位(CO2 換算)	0.343	g-CO2eq/MJ-蒸気	=④×298
7	当該工程の GHG 排出量	0.07	g-CO2eq/MJ-燃料	$= 1 \times (2 + 5 + 6)$
8	当該工程の GHG 排出量(保守 性担保のため⑦を 20%増)	0.08	g-CO2eq/MJ-燃料	=⑦×1.2

<輸送工程(ペレット輸送)>

輸送工程(ペレット輸送)の排出量は3-1. 林地残材等由来のペレットと同じ。

<発電工程>

発電工程の排出の排出量は3-1. 林地残材等由来のペレットと同じ。

IV. 国内木質バイオマスのライフサイクルGHG既定値

1. 既定値の算定結果

国内木質バイオマスについては、輸入木質バイオマスと同様、木質チップ、木質ペレット各々の燃料について、以下の3種類の原料種に応じた既定値を設定した。

- 林地残材等
- その他伐採木
- 製材等残材

また、輸送工程については、トラックの最大積載量と輸送距離に応じた区分を詳細に設定し、輸送対象物(原木・チップ・ペレット)別の既定値として整理した。

加工工程については、ペレットの乾燥工程の熱源として、化石燃料を利用するケースと バイオマス燃料を利用するケースの2種類の区分を設けた。なお、チップ、ペレットとも に日本独自の排出原単位を活用したため、輸入木質バイオマスとは異なる値となってい る。

<木質チップ>

木質チップの既定値は以下のとおり。

表 103 国内木質チップ(林地残材等)のライフサイクル GHG 既定値

(g-CO2eq/MJ-燃料)

	(8 7)
工程	排出量
輸送工程(林地残材等収集)	0.66 1.65
輸送工程(原木輸送)	表 106 を参照
加工工程(破砕)	4.39
輸送工程(チップ輸送)	表 107 を参照
発電	0.41

表 104 国内木質チップ(<mark>その他伐採木</mark>)のライフサイクル GHG 既定値

(g-CO2ea/MJ-燃料)

	(g 0020q/M0 ////
工程	排出量
栽培工程(伐採収集含む)	1.09 1.11
輸送工程(原木輸送)	表 106 を参照
加工工程(破砕)	4.39
輸送工程(チップ輸送)	表 107 を参照
発電	0.41

表 105 国内木質チップ(<mark>製材等残材</mark>)のライフサイクル GHG 既定値

(g-CO2eq/MJ-燃料)

	(g COZeq/Mo AMA)
工程	排出量
加工工程(破砕)	4.39
輸送工程(チップ輸送)	表 107 を参照
発電	0.41

表 106 国内木質チップのライフサイクル GHG 既定値(原木輸送の排出)

(g-CO2eq/MJ-燃料)

							,	g cc z cq/i	- //11
輸送距離 トラック 最大積載量	雅 10km	20km	30km	40km	50km	100km	150km	200km	300km
4トン車以上	0.56 0.60	1.12 1.20	1.69 1.80	$\frac{2.25}{2.41}$	2.81 3.01	5.62 6.01	8.43 9.02	$\frac{11.23}{12.03}$	16.85 18.04
10トン車以上	0 <mark>.32</mark> 0.33	0.63 0.66	0.9 <mark>5</mark> 0.99	1.26 1.32	$\frac{1.58}{1.65}$	<mark>3.15</mark> 3.31	4.73 4.96	<mark>6.31</mark> 6.61	9.46 9.92
20 トン車以上	0.19 0.21	$\frac{0.39}{0.42}$	$\frac{0.58}{0.63}$	$\frac{0.78}{0.84}$	$\frac{0.97}{1.05}$	1.94 2.10	$\frac{2.92}{3.15}$	3.89 4.21	$\frac{5.83}{6.31}$

表 107 国内木質チップのライフサイクル GHG 既定値(チップ輸送の排出)

(g-CO2eq/MJ-燃料)

								g coacq/i	120 /////
輸送距離 トラック 最大積載量	10km	20km	30km	40km	50km	100km	150km	200km	300km
4トン車以上	<mark>0.43</mark> 0.46	0.87 0.93	<mark>1.30</mark> 1.39	1.74 1.86	$\frac{2.17}{2.32}$	$\frac{4.34}{4.65}$	<mark>6.51</mark> 6.97	8.68 9.29	13.01 13.94
10トン車以上	0.24 0.26	$\frac{0.49}{0.51}$	$\frac{0.73}{0.77}$	0.97 1.02	1.22 1.28	$\frac{2.44}{2.55}$	3.65 3.83	4.87 5.11	7.31 7.66
20トン車以上	$\frac{0.15}{0.16}$	0.30 0.32	$\frac{0.45}{0.49}$	$\frac{0.60}{0.65}$	$\frac{0.75}{0.81}$	$\frac{1.50}{1.62}$	$\frac{2.25}{2.44}$	3.00 3.25	4.50 4.87

<木質ペレットの排出>

木質ペレットの既定値は以下のとおり。

表 108 国内木質ペレット(林地残材等)のライフサイクル GHG 既定値

(g-CO2eq/MJ-燃料)

	(8 1 -				
工程	乾燥:化石燃料利用	乾燥:バイオマス利用			
上往	(造粒:系統電力利用)	(造粒:系統電力利用)			
輸送工程(林地残材等収集)	<mark>0.66</mark>	0.85			
制及工性 (外地)(外等权条)	1.59	$\frac{2.03}{2.03}$			
輸送工程(原木輸送)	表 111 を参照	表 112 を参照			
加工工程	23.39	17.54			
輸送工程(ペレット輸送)	表 113 を参照				
発電	0.25				

表 109 国内木質ペレット(<mark>その他伐採木</mark>)のライフサイクル GHG 既定値

(g-CO2eq/MJ-燃料)

工程	乾燥:化石燃料利用	乾燥:バイオマス利用		
	(造粒:系統電力利用)	(造粒:系統電力利用)		
栽培工程 (伐採収集含む)	1.11 1.06	1.41 1.36		
輸送工程(原木輸送)	表 111 を参照	表 112 を参照		
加工工程	23.39	17.54		
輸送工程(ペレット輸送)	表 113 を参照			
発電	0.25			

表 110 国内木質ペレット(製材等残材)のライフサイクル GHG 既定値

(g-CO2eq/MJ-燃料)

工程	乾燥:化石燃料利用 (造粒:系統電力利用)	乾燥:バイオマス利用 (造粒:系統電力利用)		
加工工程	13.77 14.98	5.06 5.24		
輸送工程(ペレット輸送)	表 113 を参照			
発電	0.25			

表 111 国内木質ペレットのライフサイクル GHG 既定値(原木輸送の排出・乾燥工程が化石燃料利用の場合)

(g-CO2eq/MJ-燃料)

							(}	g COZeq/N	10 86/17/
輸送距離 トラック 最大積載量	10km	20km	30km	40km	50km	100km	150km	200km	300km
4トン車以上	$\frac{0.57}{0.58}$	1.13 1.15	$\frac{1.70}{1.73}$	$\frac{2.27}{2.31}$	<mark>2.84</mark> 2.88	<mark>5.67</mark> 5.77	<mark>8.51</mark> 8.65	$\frac{11.35}{11.54}$	17.02 17.31
10トン車以上	$\frac{0.32}{0.32}$	$\frac{0.64}{0.63}$	<mark>0.96</mark> 0.95	$\frac{1.27}{1.27}$	$\frac{1.59}{1.59}$	3.19 3.17	$\frac{4.78}{4.76}$	$\frac{6.37}{6.34}$	9.56 9.51
20 トン車以上	$\frac{0.20}{0.20}$	$\frac{0.39}{0.40}$	$\frac{0.59}{0.61}$	0.79 0.81	0.98 1.01	$\frac{1.96}{2.02}$	<mark>2.95</mark> 3.03	<mark>3.93</mark> 4.03	$\frac{5.89}{6.05}$

表 112 国内木質ペレットのライフサイクル GHG 既定値(原木輸送の排出・乾燥工程がバイオマス利用の場合)

(g-CO2eg/MJ-燃料)

							\ {	g COZeq/M	10 38W4-17
輸送距離 トラック 最大積載量	10km	20km	30km	40km	50km	100km	150km	200km	300km
4トン車以上	$\frac{0.73}{0.74}$	$\frac{1.45}{1.47}$	$\frac{2.18}{2.21}$	$\frac{2.90}{2.95}$	<mark>3.63</mark> 3.69	<mark>7.25</mark> 7.37	10.88 11.06	14.50 14.75	$\frac{21.75}{22.12}$
10トン車以上	0.41 0.41	0.81 0.81	1.22 1.22	1.63 1.62	$\frac{2.04}{2.03}$	$\frac{4.07}{4.05}$	6.11 6.08	8.14 8.11	$\frac{12.22}{12.16}$
20 トン車以上	$\frac{0.25}{0.26}$	$\frac{0.50}{0.52}$	$\frac{0.75}{0.77}$	1.00 1.03	1.26 1.29	$\frac{2.51}{2.58}$	3.77 3.87	$\frac{5.02}{5.16}$	7.53 7.74

表 113 国内木質ペレットのライフサイクル GHG 既定値 (ペレット輸送の排出)

(g-CO2eq/MJ-燃料)

輸送距離 トラック 最大積載量	10km	20km	30km	40km	50km	100km	150km	200km	300km
4トン車以上	$\frac{0.29}{0.31}$	$\frac{0.58}{0.62}$	$\frac{0.87}{0.93}$	$\frac{1.16}{1.24}$	$\frac{1.45}{1.55}$	2.89 3.10	$\frac{4.34}{4.65}$	5.78 6.19	8.68 9.29
10トン車以上	$\frac{0.16}{0.17}$	$\frac{0.32}{0.34}$	$\frac{0.49}{0.51}$	$\frac{0.65}{0.68}$	$\frac{0.81}{0.85}$	1.62 1.70	$\frac{2.44}{2.55}$	$\frac{3.25}{3.40}$	4.87 5.11
20トン車以上	0.10 0.11	$\frac{0.20}{0.22}$	$\frac{0.30}{0.32}$	$\frac{0.40}{0.43}$	$\frac{0.50}{0.54}$	1.00 1.08	$\frac{1.50}{1.62}$	$\frac{2.00}{2.17}$	3.00 3.25

2. 国内木質バイオマスのライフサイクルGHG既定値の計算過程

<対象工程>

国内木質バイオマスのライフサイクル GHG の対象工程は、Ⅲ.で述べた輸入木質バイオマスと同じとした。また、栽培工程、発電工程に関してはⅢ.で述べた輸入木質バイオマスと同じ値とし、加工工程、輸送工程については以下のとおり、日本独自の状況を踏まえ計算した。

<加工工程>

国内木質バイオマスの加工工程の排出量は、以下のとおり算定を行った。なお、製材等 残材由来のペレットの加工工程については国内木質バイオマスの諸元が得られなかったた め輸入木質バイオマスと同じ値とした。

表 114 木質チップ加工時(国内木質バイオマス)の GHG 排出量の計算

	諸元	値	単位	出所
1	木質チップ製造由来 排出量	0.05	t-CO2eq/t-燃料	Jクレジット制度方法論 EN-R-001 (ver.1.7) バイ オマス固形燃料 (木質バイオマス) による化石燃 料又は系統電力の代替
2	バイオマス燃料発熱 量	11,400	MJ-燃料/t-燃料	JRC(2017b)(絶乾発熱量 19,000MJ/t に対し含水 率 40%を想定)
3	当該工程の排出量	4.39	g-CO2eq/MJ-燃 料	=①÷②×1,000,000

表 115 木質ペレット加工時(国内木質バイオマス/乾燥熱源は化石燃料)の GHG 排出量の計算

	諸元	値	単位	出所
1	木質ペレット製造由 来排出量(乾燥熱源 は化石燃料)	0.4	t-CO2eq/t-燃 料	J クレジット制度方法論 EN-R-001 (ver.1.7) バ イオマス固形燃料(木質バイオマス)による化石 燃料又は系統電力の代替
2	バイオマス燃料発熱 量	17,100	MJ-燃料/t-燃 料	JRC(2017b)(絶乾発熱量 19,000MJ/t に対し含水 率 10%を想定)
3	当該工程の排出量	23.39	g- CO2eq/MJ- 燃料	$=$ ① \div ② \times 1,000,000

表 116 木質ペレット加工時(国内木質バイオマス/乾燥熱源はバイオマス)の GHG 排出量の計算

	諸元	値	単位	出所
1	木質ペレット製造由 来排出量(乾燥熱源 はバイオマス)	0.3	t-CO2eq/ t- 燃料	Jクレジット制度方法論 EN-R-001 (ver.1.7) バイ オマス固形燃料 (木質バイオマス) による化石燃 料又は系統電力の代替
2	バイオマス燃料発熱 量	17,100	MJ-燃料/t-燃 料	JRC(2017b) (絶乾発熱量 19,000MJ/t に対し含水 率 10%を想定)
3	当該工程の排出量	17.54	g- CO2eq/MJ- 燃料	=①÷②×1,000,000

<輸送工程(林地残材等収集)>

木質バイオマス燃料利用環境評価・効率化調査報告書(令和4年3月、一般社団法人日本木質バイオマスエネルギー協会)では、日本国内における間伐材の伐採・搬出における排出量の計算結果について図 11 のとおり記している。当該排出を林地残材等の収集に応じたものと考え、保守的に車両系による排出(5.78 14.56kg-CO2/wet-t)を引用するものとした。具体的な計算過程は表 117 のとおり。

伐採工程の作業種別GHG排出量 伐採工程におけるGHG排出量 (搬出材1t生産当たり) (kg-CO2) (kg-CO2/wet-t) 架線系 車両系 主伐 3.91V 8.43V 架線系 車両系 利用間伐 主伐 6.21 13.38 伐倒 0.16V 0.16V 利用間伐計 12.30 14.56 3.14V 集材 木寄 4.56V 造材 2.41Ve 2.41Ve 搬出 2.04Ve 2.04Ve V=伐採材積m³/ha,Ve=搬出材積m³/ha 表: 林業作業におけるCO2排出量算定と収支分析,2011, 仲畑らより引用 伐採工程におけるGHG排出量 伐採工程の作業種別GHG排出量 (搬出材1t生産当たり) (kg-CO2) (kg-CO2/wet-t) 架線系 車両系 架線系 車両系 主伐 3.91V 8.43V 2.46 主伐 5.31 利用間伐 利用間伐計 4 88 5.78 集材 3.14V 木寄 4.56V 造材 2.41Ve 2.41Ve

図 11 国内における伐採工程における GHG 排出量の分析

2.04Ve

V=伐採材積m³/ha,Ve=搬出材積m³/ha 表: 林業作業におけるCO2排出量算定と収支分析,2011,

搬出

2.04Ve

出所)木質バイオマス燃料利用環境評価・効率化調査報告書(令和 4 年 3 月、一般社団法人日本木質バイオマスエネルギー協会)

表 117 国内木質バイオマスの林地残材等収集のライフサイクル GHG の計算

	諸元	値	単位	出所
1)	林地残材等の収集による排出量 (搬出材重量当たり)	$\frac{5,780}{14,560}$	g-CO2eq/搬出材 wet-t	木質協(2022)
2	同上(搬出材熱量当たり)	$\frac{0.608}{1.533}$	g-CO2eq/MJ-搬出材	=①÷9,500 (表 120)
3	バイオマス燃料製造に必要な搬出材の 量(チップの場合)	1.079	MJ-搬出材/MJ-燃料	表 121
4	同上(乾燥工程が化石燃料利用のペレ ットの場合)	$\frac{1.090}{1.035}$	MJ-搬出材/MJ-燃料	表 121
5	同上(乾燥工程がバイオマス利用のペレットの場合)	1.393 1.323	MJ-搬出材/MJ-燃料	表 121
6	輸送工程(林地残材等収集)の排出量 (チップの場合)	$\frac{0.66}{1.65}$	g-CO2eq/MJ-燃料	=2×3
7	同上(乾燥工程が化石燃料利用のペレ ットの場合)	$\frac{0.66}{1.59}$	g-CO2eq/MJ-燃料	=2×4
8	同上(乾燥工程がバイオマス利用のペレットの場合)	$\frac{0.85}{2.03}$	g-CO2eq/MJ-燃料	=2×5

<輸送工程(トラック輸送)>

JRC(2017b)における往復燃費の計算を参考に、 $トラックのサイズ別の燃費について以下の省エネ法告示<math>^{14}$ に従い算出した。

- ⑦ 軽油を燃料とする貨物自動車であって、燃費を把握できないもの又はその燃費が⑥における基準を下回っているものにあっては次の式 x=15.0 / (y/100) $^{0.812}/z^{0.654}$
- これらの式において、x、y及びzは、それぞれ次の数値を表すものとする。
 - x:貨物輸送量当たりの燃料使用量(単位 リットル/トンキロ)
 - y:積載率(単位 %)
 - z:貨物自動車の最大積載量(単位 kg)

表 118 国内木質バイオマスの既定値の算定に用いた往復燃費

トラックの	①最大積 載量トン	②積載率	③往路燃費 l-軽油/tkm	④ 空 荷 想 定 時 積 載 率	⑤空荷想定 燃費 l-軽油/tkm	⑥復路燃費 l-軽油/tkm	⑦往復燃費 MJ-軽油 /tkm
サイズ(最大 積載量)	=	JRC (2017b)	省エネ法告示 に基づき①② から算定	共同ガイ ドライン Ver.3.2 ¹⁵	省エネ法告 示に基づき ① ④ から算 定	=(5) × ((1) × (4)) ÷ ((1) × (2))	= (③+⑥) ×軽油発熱 量(低位発熱 量36 MJ/l)
4 トン以上	<mark>4</mark>	$\frac{0.675}{0.675}$	0.091	0.1	0.429	0.064	5.56
10 トン以上	10	0.675	0.05	0.1	0.236	0.035	3.0 <mark>6</mark>
20 トン以上	<mark>20</mark>	0.675	0.0318	0.1	$\frac{0.15}{0.15}$	0.022	1.94

¹⁴ 貨物輸送事業者に行わせる貨物の輸送に係るエネルギーの使用量の算定の方法(令和4年3月31 日経済産業省告示第84号)燃費判断基準等

 $^{^{15}}$ ロジスティクス分野における $\mathrm{CO}2$ 排出量算定方法共同ガイドライン $\mathrm{Ver.}~3.2$ (令和5年6月)

輸送由来の排出量については、以下のとおり算出した。

表 119 国内木質バイオマスの輸送工程(原木輸送・バイオマス燃料輸送)既定値の計算式

原木輸送	=輸送距離(km)×(サイズ別往復燃費(MJ-軽油/tkm, 表 118より)
	×軽油排出係数(95.1g-CO2eq/MJ-軽油, JRC(2017b)より)
	+CH4 排出原単位(トラック利用時)(<mark>0.0034</mark> g-CH4/tkm, JRC(2017b)より)×25
	+N2O 排出原単位(トラック利用時)(<mark>0.0015</mark> g-N2O/tkm, JRC(2017b)より)×298)
	÷原木の発熱量(MJ/t, 表 120 より)
	×各バイオマス燃料の製造に必要な原木量(MJ-原木/MJ-バイオマス燃料,表 121より)
チップ・	=サイズ別往復燃費(MJ-軽油/tkm, 表 118より)×輸送距離(km)
ペレット輸送	×軽油排出係数(95.1g-CO2eq/MJ-軽油, JRC(2017b)より)
	÷各バイオマス燃料の発熱量(MJ/t,表 120より)

表 120 原木・バイオマス燃料の発熱量

	含水率 (JRC(2017a)より)	発熱量(絶乾木材発熱量 19,000MJ/t (JRC(2017a)より)×(1-含水率))
原木	50%	9,500
チップ	40%	11,400
ペレット	10%	17,100

出所)JRC(2017b) (ただしチップに関しては国産材の実態に応じて設定)

表 121 各バイオマス燃料の製造に必要な原木量(自然乾燥前)

バイオマス燃料	必要原木(MJ-原木/MJ-燃料)
チップ	1.079
ペレット(乾燥工程が化石燃料利用の場合)	1.090 <mark>1.035</mark>
ペレット (乾燥工程がバイオマス利用の場合)	1.393 <mark>1.323</mark>

出所)JRC (2017b)

V. 改訂履歴

版数	発行日	改訂履歴
第1版	2023年3月	初版発行
第2版	2023年11月	第三次中間整理のパブコメを踏まえ、木質ペレットの歩
		留まりの算定における自然乾燥工程を排除、および化石
		燃料消費におけるメタン、N2O 排出を計上
		木質バイオマス燃料利用環境評価・効率化調査報告書の
		訂正を踏まえ、日本国内における間伐材の伐採・搬出に
		おける排出量を修正
		事務局精査により、国内木質バイオマスの輸送に係る燃
		費を修正、「製材残渣」の名称を「製材等残材」に変更、
		「その他の伐採木」の名称を「その他伐採木」に変更、
		Ⅱ及びⅢにおいて参照する乾燥工程における化石燃料利
		用時のボイラ効率 90%を反映、製材等残材の破砕工程の
		排出を排除、電力排出係数の訂正