


ライフサイクルGHG既定値の見直しについて

2025年10月

資源エネルギー庁

輸入木質バイオマスの加工工程に係るライフサイクルGHG既定値について

- 木質ペレット輸入量は増加傾向であり、東南アジアを中心として供給源の多様化がみられる。
- こうした状況を踏まえ、輸入木質バイオマスの加工工程に係るライフサイクルGHG既定値の見直 しについて、ご議論いただきたい。

木質ペレット輸入量の内訳 (2024年)

輸入元	輸入量 (千トン)	割合
ベトナム	3,315	52%
カナダ	1,167	18%
米国	1,118	18%
マレーシア	403	6%
インドネシア	315	5%
その他	63	1%
合計	6,381	100%

出典:貿易統計(HSコード4401.31-000)

出典:2024年の木材輸入実績(令和7年3月 林野庁 木材貿易対策室から抜粋)

輸入木質バイオマスの加工工程に係るライフサイクルGHG既定値の見直し案

- 現状、**輸入木質バイオマスの加工工程に係る既定値**については、EUにおける既定値の扱いや確認の簡便性等を踏まえ、**生産国によらず一律のLCA電力排出係数に基づき算定**している。
- 一方、供給源の多様化を考慮すると、各生産国のLCA電力排出係数に基づき算定したほうが、 自主的取組等を進める上で、利用実態を適切に反映できるものと考えられる。
- したがって、輸入木質バイオマスの加工工程に係る既定値については、**各生産国のLCA電力排出** 係数に基づき算定することとしてはどうか。
 - ※各生産国のLCA電力排出係数は、JRCが整理した電源別のLCA電力排出係数を、IEA統計に基づく各国の電源構成により加重平均した値を用いる。
 - ※これらはパブリックコメントに付した上で、2026年度以降の計算に適用するものとして公表することとする。
 - ※なお、既定値に適用するLCA電力排出係数は、各国の電源構成の動向等を踏まえ、必要に応じて見直すものとする。

輸入木質バイオマスの加工工程に係るライフサイクルGHG既定値の見直し案

	生産国 LCA電力排出係数		(例)輸入木質ペレットの加工工程 (乾燥工程にバイオマス利用)の ライフサイクルGHG既定値[g-CO2/MJ-燃料]		
		[g-CO2eq/MJ-電力]	出典	製材等残材	林地残材等 その他伐採木
}	見行の既定値	146.3	GREET2022(アルゴンヌ国立研究所のLCAモデル)	5.18	9.66
見直し案	ベトナム	152.08	JRC(WELL-TO-WHEELS Report version 4.a)が整理した電源別のLCA電力排出係数を、IEA統計(The World Energy Balances)に基づく各国の電源構成(2019~2023年の直近5年平均)により加重平均した値	5.29	9.36
	カナダ			1.20	2.05
	米国	119.84		4.21	7.42
	マレーシア	100.16		6.57	11.64
	インドネシア	246.79		8.48	15.04

農産物の収穫に伴って生じるバイオマスに係るLCA電力排出係数の扱い

- 一部の農産物の収穫に伴って生じるバイオマスについても、ライフサイクルGHG既定値の算定において、系統電力のLCA電力排出係数を採用。
- ・ 出典の一貫性や見直し作業の効率性等の観点から、これらについても、**輸入木質バイオマスと同** じ方法で計算したLCA電力排出係数を採用することとしてはどうか。
 - ※計算方法や適用時期等については、前頁で述べた輸入木質バイオマスに係るライフサイクルGHG既定値の見直し案に同じ。 ※EFBなどの新規燃料については現時点で調達・使用実績がないため、生産国等は今後の実績を踏まえ見直すものとする。

農産物の収穫に伴って生じるバイオマスに係るライフサイクルGHG既定値における LCA電力排出係数の見直し案

バイオマス/工程	生産国	現行の既定値における LCA電力排出係数 [g-CO2eq/MJ-電力] 出典:GREET2022	見直し案 出典:JRCのLCA電源別排出係数と IEAの電源構成により計算
CPO加工工程(搾油) CPO精製工程 パームトランク加工工程(造粒) EFB加工工程(洗浄・破砕・造粒) カシューナッツ殻油加工工程(前処理・加水分解等) カシューナッツ殻加工工程(搾油)	インドネシア	238.7	246.79
	マレーシア	I	190.16
ナッツ殻類加工工程(造粒) コーンストロー加工工程(破砕・造粒)	中国	193.17	184.89