

再工ネ出力制御の低減に向けた取組について

2021年10月28日 中部電力パワーグリッド株式会社

(1) 再エネの導入状況

電力需給の現状について(2020年度実績)

エリアの電力需要・需要量(kW、kWh)

▶ 最大需要: 2,624.3万kW(2020/8/2014時台)

最低需要: 825.8万kW(2020/5/6 6時台)

平均需要: 1,487.5万kW

年間電力需要量:約1,303億kWh

エリアの発電電力量(kWh)と電源別シェア

総発電電力量:約1,284億kWh

うち、再エネ発電量:約246億kWh(シェア:約19%)

水力(揚水除く):97.5億kWh

風力:5.5億kWh

太陽光:124.9億kWh

地熱: 0億kWh

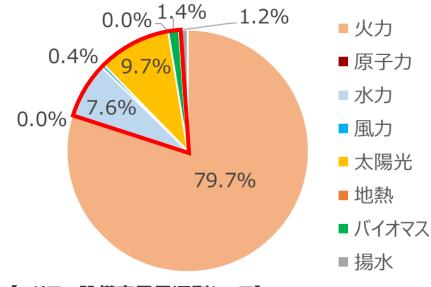
バイオマス: 18.2 億kWh

エリアの設備容量(kW)と電源別シェア

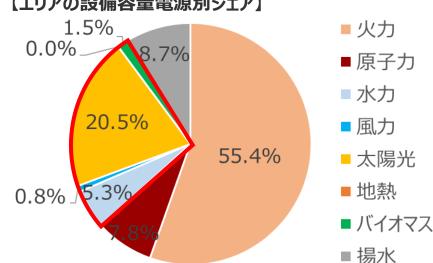
総設備容量:約4,661万kW

うち、再エネ容量:約1,313万kW(シェア:約28%)

水力(揚水除く):249万kW


風力:37万kW

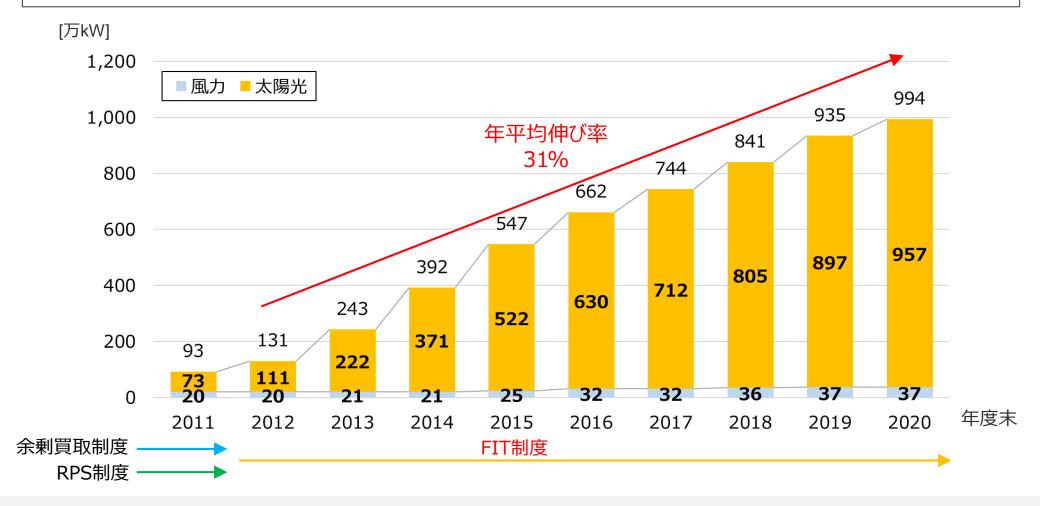
太陽光:957万kW


地熱:0.03万kW

バイオマス:69万kW

【エリアの発電電力量電源別シェア】

【エリアの設備容量電源別シェア】



[※]値は送電端値

再エネの導入状況

○中部エリアの太陽光、風力発電設備の連系量は、2012年7月の固定価格買取制度(FIT法) 施行以降急増し、2020年度末時点で994万kWとなっている。

(2)優先給電ルールを踏まえた取組 (供給対策、系統対策)

軽負荷期の需給バランスの実績

[万kW]

○ 2021年GWの5月3日の需給バランスは以下の通り

		太陽光比率最大時(12時)	需要最大時 (20時)	
	需要	1,031	1,114	
		電源 I・Ⅱ	289	744
	火力	電源Ⅲ	33	44
		計	322	788
		太陽光	806	0
	再工ネ	風力	13	4
		一般水力	112	185
発電出力		地熱	0	0
(送電端) 		バイオマス	10	10
 ※四捨五入のため		計	941	200
合計が一致しない	原 -	子力	0	0
場合があります	揚水・	蓄電池	▲ 177	94
	連系統	泉活用	▲ 55	33
	再エネと	出力制御 日力制御	0	0
	発電は	出力計	1,031	1,114

(参考)太陽光の過去最大出力実績:845万kW(2021/4/26)

①供給対策:火力の最低出力(電源皿)

2021年7月末時点

	事業者と契約する出力 制御時の最低出力率	事業者数 (設備容量)	備考					
	自家消費相当分まで抑制	2(11.4万kW)	【50%を超える理由】 ・ 前日の指令を受けて出力を抑制する場合、バーナー切替作業等が必要となる。これを実施する場合、緊急的に作業員の手配をすることとなり、通常の運転にも支障があるため、対応できない。また、燃料、SOx・NOx低減のために注入する薬品、産廃の受入れ					
①電源Ⅲ 火力(石油)	0~30%以下	1(22.6万kW)						
	31~50%以下	0	調整について、運転計画にもとづいて1週間前に発注するが、出力抑制すると燃料・薬品 タンクが容量を超過する虞がある。					
	51%以上	2(35.6万kW)	• 石油精製の過程で発生する余剰燃料の処理が困難となり、生産計画の変更が発生する ため、発電出力抑制不可。 【その他の内容】					
	その他	2(8.8万kW)	 製油所の操業に必要な蒸気量が減少するため、発電出力制御困難だが、可能な範囲で出力抑制を実施する。 					
	合計	7(78.4万kW)	• 工場の操業に影響するため、発電出力抑制不可だが、常時の操業において系統への逆潮流はほとんどない。					
	自家消費相当分まで抑制	0						
	0~30%以下	1(62.8万kW)	【 5 0 %を超える理由】 ・ 設備を安定して運転できる下限。これ以上の抑制は設備に損傷を与える恐れがある。					
②電源Ⅲ	31~50%以下	0	• 発電に伴い発生する蒸気を、工場の製造に使用しているため、発電出力抑制不可。					
火力(石炭)	51%以上	2(21.0万kW)	【その他の内容】 ・ 発電に伴い発生する蒸気をコンビナートに供給しており、蒸気の需要により排気流量(発					
	その他 1 (3.1万kW)		電量に連動)が変動するため、具体的な抑制量は約束できないが、可能な範囲で対応 する。					
	合計	4(87.0万kW)	<i>9</i> ω ₀					
	自家消費相当分まで抑制	3(2.3万kW)						
	0~30%以下	2(1.7万kW)	【50%を超える理由】 ・ 工場の操業に影響するため、発電出力抑制不可。					
③電源Ⅲ	31~50%以下	2(2.5万kW)	・ 工場生産に伴う副生ガスを使った発電のため、発電出力抑制不可。					
火力(LNG)	51%以上	5(11.0万kW)	工場への蒸気供給量が減少し、操業に影響を与えるため、発電出力抑制不可。【その他の内容】					
	その他	1(2.9万kW)	• 工場の操業に影響するため、発電出力抑制不可だが、至近で売電(系統への逆潮 流)実績なし。					
7	合計 1 3(20.4万kW		//IL/ 大順の (の)					

①供給対策:バイオマスの最低出力

2021年7月末時点

			2021-1717/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7/7					
	事業者と契約する出力 制御時の最低出力率	事業者数 (設備容量)	man and the second sec					
	自家消費相当分まで抑制	0						
	0~30%以下	0						
④混焼	31~50%以下	1(14.9万kW)	【50%を超える理由】					
バイオマス	51%以上	3(19.0万kW)	• 設備を安定して運転できる下限。これ以上の抑制は設備に損傷を与える恐れがある。					
	その他	0						
	合計	4(33.9万kW)						
	自家消費相当分まで抑制	0						
	0~30%以下	0	【50%を超える理由】 ・ 発電機特性上、定格出力未満で運転するとボイラ燃焼不安定、蒸気温度低下によりト					
⑤専焼	31~50%以下	4(0.2万kW)	リップに至るため、発電出力抑制不可。 ・ ボイラ負荷を下げると流動層温度が下がり、70%以下になると不完全燃焼等のトラブルが					
バイオマス	51%以上	1 4(18.0万kW)	発生する可能性がある。 - 月間計画で燃料搬入数量を決定しているため、出力抑制により燃料の消費が減少した場合、燃料の保管スペースがない。					
	その他	0	出力を下げると燃焼不良が発生するため、安定運転を行える最低出力を設定。燃料調達の調整が困難であり、抑制した場合、燃料供給体制に影響を及ぼすため。					
	合計	18(18.2万kW)						
⑥地域資源 バイオマス	合計	7 3(27.7万kW)						

②系統対策:連系線の運用容量

○ 中部関西間連系線の中部→関西向きの運用容量は、周波数維持限度値となっている。

5. 周波数維持限度値の考え方と判定基準(3)

55

地域間連系線

7. 運用容量算出結果(2)

72

4 算出方法

- ▶関西以西、北陸の5社の需要実績を用いて、運用容量算出方法(共通)に記載の方法により算出した値から、BTBの運用容量(30万kW)を減じ²⁾、中部関西間連系線の周波数維持限度値を算出する。
 - 2) 中部関西間連系線ルート断事故時は南福光BTBも停止する場合があることから、BTBの設備容量(最大30万kW)を減じる。

(需要から運用容量を算出しているため、運用容量が下がることもある。)

- ⑤ 電源制限・負荷制限の織り込み
 - ▶中部系統 電源制限、負荷制限:あり
 - ▶関西以西、北陸系統 電源制限、負荷制限:なし ただし、非常に稀頻度ではあるが周波数が59.1Hzに至る場合には負荷側UF Rが動作し、負荷遮断に至る(2019年度 第1回運用容量検討会 資料1参照)

中部系統において、連系線2回線故障により系統分離が発生し、規定の周波数限度を上回る(または下回る)場合には、周波数を規定の範囲内に収めるため、電源制限(または負荷制限)を行う。

2021年度 関西向き運用容量

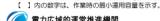
[万kW]

f	面	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月
	昼間	62(4) (0(1)) 1)	60(④)	75(4)	104(4)	115(④)	前半100(④) 後半87(④)	75(④)	前半84(④) 後半89(④)	107(4)	113(4)	95(4)	前半81(④) 後半74(④)
	夜間	90(4) (0(1)) 1)	85(4)	86(4)	109(4)	110(4)	前半107(④) 後半98(④)	96(4)	前半102(④) 後半110(④)	115(④)	133(4)	128(4)	前半117(④) 後半106(④)

平日 中部関西間連系線 前半67(4) 前半59(4) 前半58(4) 昼間 35(4) 36(4) 45(4) 74(4) 81(4) 46(4) 80(4) 84(4) 72(4) 後半57(4) 後半64(4) 後半52(4) 前半82(4) 前半90(4) 前半100(4) 夜間 後半78(4) 後半100(4 後半90(4)

[万kW]

地域間連系線 名称	断面		GW	ね	年末年始	
	特殊日	昼間	35(4)	90(4)	55(4)	
中部関西間連系線	神外日	夜間	54(4)	95(4)	105(4)	


○運用容量を休日、特殊日相当として扱う日

	GW	盆	年末年始
休日相当	4/30	_	12/28 • 29 • 1/4
特殊日	5/2~5	8/12~15	12/30~1/3

- (1 平日は休日及び特殊日を除く日(休日及び特殊日明けの夜間帯のうち0:00~8:00を除く)とする。
- ※2 休日または特殊日明けの夜間帯のうちO:OO~8:OOは、休日または特殊日の夜間帯の運用容量とする。
- ※3 月(3月、9月、11月前後半含む)をまたぐ休日明けの夜間帯のうち0:00~8:00 は 当月(3月、9月、11月は後半)の休日の夜間帯の運用容量とする。

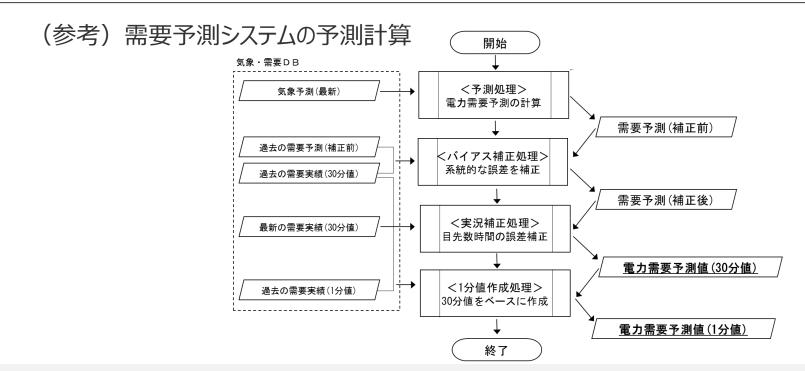
() 内の数字は、運用容量決定要因(①熱容量、②同期安定性、③電圧安定性、④周波数維持)を示す。

 中部関西間連系線作業時は、中部関西間連系線を 開放し中部北陸間交流連系とした場合の値

<判定基準>

- ▶ 中部の周波数が、59.5Hzから60.5Hzの範囲を維持できること。
- ➤ 関西以西・北陸の周波数が、59.2Hzから60.6Hzの範囲を維持できること。

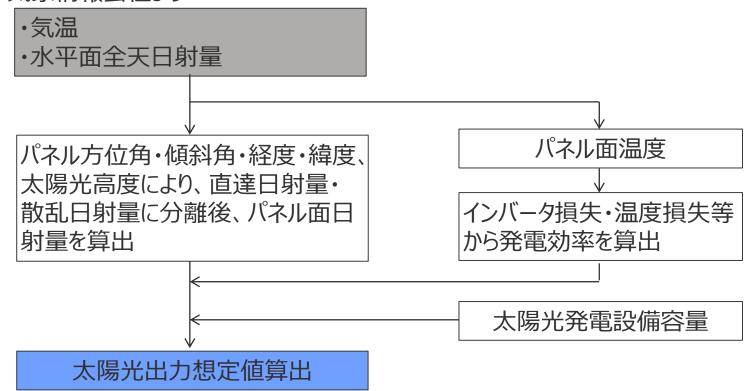
電力広域的運営推進機関 第4回運用容量検討会資料1-3(2021年2月12日)より抜粋



(3) 出力制御の効率化

需要予測手法と予測精度向上

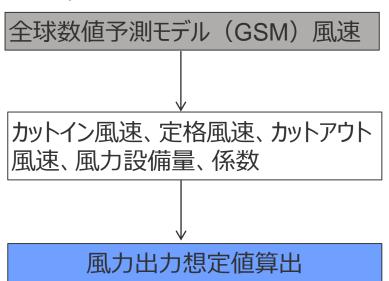
- ○電力需要の予測は、中央給電指令所員が予測対象日の気象予測や過去の需要実績データ、気象 データ、曜日差、大口需要家の操業状況等を個別に分析し需要を予測している。
- ○また、電力需要予測システムの開発を行い、2018年4月より運用を開始している。気温、湿度、不快 指数、日射量等の気象データ(愛知・岐阜・三重・静岡・長野)並びに曜日データ等を基に、重回帰 モデルにより電力需要を予測している。
- ○人間系と需要予測システムによる予測を組み合わせ、需要予測精度向上を図っている。

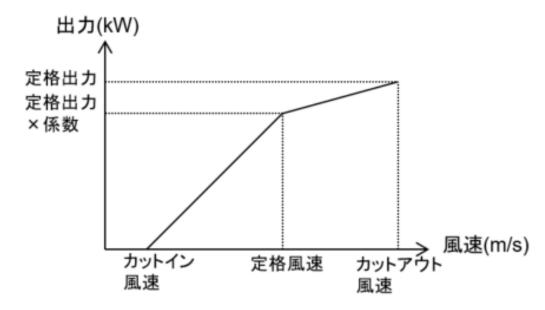


太陽光出力想定値の算出方法

- 太陽光出力想定値は、気象情報会社から送信される日射量(水平面全天日射量)等を基に算出している。
 - ✓ 当社の供給エリアを14区域に分割
 - ✓ 各区域の日射量等の予測を基に中部エリアの太陽光出力を算出

気象情報会社より




風力出力想定値の算出方法

○ 風力出力想定値は、風力サイトごとにパワーカーブを参考に整定を行い、気象情報会社から送信される風速を基に算出している。

気象情報会社より

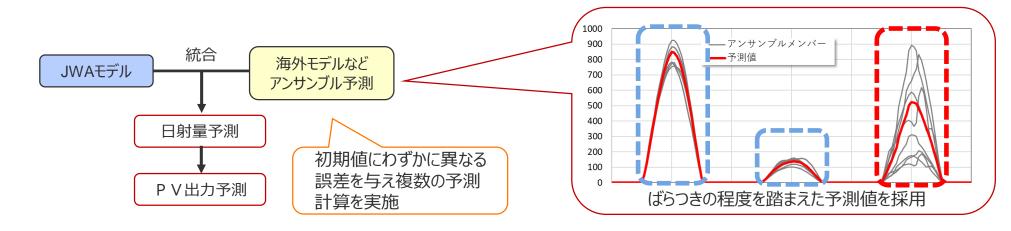
予測誤差実績(2020年度)

- ○2020年度の需要および太陽光・風力の予測誤差実績は以下の通り。引き続き予測精度向上に取り 組んでいく。
- ✓ 需要誤差実績(前日夕方の最大需要想定と最大需要実績の平均誤差率)

[%]

4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	年間
2.0	2.4	2.6	2.6	2.3	2.3	1.1	1.4	1.9	1.8	1.8	2.0	2.0

✓ 太陽光・風力予測誤差実績(前日夕方予測と実績の1日の最大誤差の年間平均)


▶ 太陽光:954MW(参考:年度末設備量比 9.8%)

▶ 風力 : 59MW(参考:年度末設備量比15.8%)

再エネ予測精度の向上(複数の気象モデルの統合予測)

- 予測の大外しを回避するため、アンサンブル予測により日射量予測を統合し、PV出力予測精度 向上に取り組んでいる。
 - ✓ 日本気象協会(JWA)や海外等の<u>複数のモデル予測値を統合</u>
 - ✓ アンサンブル予測を活用して予測値のばらつきの程度も考慮
 - ✓ 統合した日射量予測値を用いてPV出力予測値を算出

- ・2017年4月に前々日予測を対象に導入 ⇒RMSEで約10%程度の改善効果を確認
- ・一方で、快晴時の予測が過小になる傾向がみられたため、モデルの改良を実施
- ・モデル改良により、RMSEが前日予測・当日予測で15%程度改善することを確認
 - ⇒2019年4月に前日・当日予測にも導入

電源(太陽光、風力)のオンライン化

○中部エリアにおけるオンライン化の状況

		中部(2021年7月末時点) 【万kW】
	① オンライン化率 ((②+④)/(②+③+④))	45.2%
	② 新・無制限無補償ルール、オンライン事業者	169.9
太 陽 光	③ 旧ルール、オフライン事業者	206.3
光	④ オンライン制御可能な旧ルール事業者	現在、切替依頼中
	⑤ 旧ルール事業者のオンライン切替率 (④/(③+④))	况任、 切首 "仅积中
	⑥ オンライン化率 ((⑦+⑨)/(⑦+⑧+⑨))	16.6%
風	⑦ 新・無制限無補償ルール、オンライン事業者	6.1
風力	⑧ 旧ルール、オフライン事業者	30.7
	⑨ オンライン制御可能な旧ルール事業者	現在、切替依頼中

○旧ルール事業者へのオンライン化推奨のお願い

オンライン制御の推奨

再工ネ全体の制御量低減に加えて、**お客さまの売電機会損失の低減(気象状況によって、当日に一部の制御が解除される可能性があります。)や人件費削減(現地での手動操作が不要となります。)の観点から出力制御機能付PCSへの切替**が国の審議会において推奨されておりますので、ご検討をお願いします。ご希望される場合は、弊社ネットワークコールセンターまでご相談ください。

なお、出力制御機能付PCSへの切替にあたっては、通信環境の整備(高圧連系の場合はインターネット回線の整備、特別高圧連系の場合は専用通信回線〔CDTを含む〕の改良工事)が必要となりますが、**切替に関わる費用は、お客さまのご負担**となります。

旧ルール事業者にご案内した ダイレクトメールに記載