カーボンニュートラルチャレンジ2050 アクションプラン

Carbon Neutral Challenge 2050 Action Plan

2021年6月28日 一般社団法人 日本ガス協会

1-1. カーボンニュートラルチャレンジ2050

- ガス業界として「2050年のガスのカーボンニュートラル化」へ挑戦する旨を宣言し、脱炭素社会の実現に向 けた決意を2020年11月に表明。
- 2050年を見据えて、トランジション(移行)期において、下記3点の多様なアプローチを複合的に組み合わ せた取り組みを行い、脱炭素社会の実現に繋げる。
 - ①徹底した天然ガスシフト・天然ガスの高度利用 ②ガス自体の脱炭素化 ③CCU/CCSや海外貢献等の取り組み
- メタネーションや水素の直接利用等、脱炭素化に向けた複数の手段を活用し、次世代の熱エネルギーを供給 する産業(次世代熱エネルギー産業※)として、ガスのカーボンニュートラル化の実現を目指す。

※『2050年カーボンニュートラルに伴うグリーン成長戦略』における「成長が期待される重点14分野」のひとつ

ガスのカーボンニュートラル化に向けたシナリオ

温室効果ガス 排出量

トランジション期における取り組み

①徹底した天然ガスシフト・天然ガスの高度利用(お客さま先での取り組み)

石油・石炭からの燃料転換、コージェネレーションや燃料電池等の普及拡大、機器の高効率化等、 お客さま先での取り組みにより徹底した天然ガスシフト・天然ガスの高度利用を進める。

②ガス自体の脱炭素化(供給側取り組み)

脱炭素社会の実現に向け、メタネーションや水素利用等、 供給側のイノベーションにより、ガス自体の脱炭素化を進める。

③CCU/CCSや海外貢献等の取り組み

CCU/CCSに関する技術開発とその活用や、国内で開発した革新的なガス機器やエンジニアリング力の 海外展開等による世界のCO2削減への貢献、カーボンニュートラルLNGの活用等に取り組む。

2030年

国の方向性

ガスのカーボン ニュートラル化

2050年

脱炭素社会

現在

© 2021 The Japan Gas Association

1-2. ガス業界が目指す姿

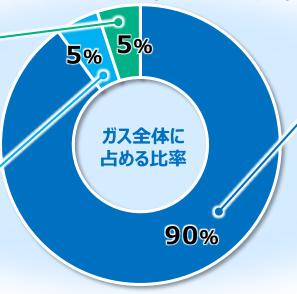
● 資源エネルギー庁電力・ガス事業部の研究会として開催された「2050年に向けたガス事業の在り方研究会」を 通して議論を深め、2050年やマイルストーンとしての2030年目標を設定。

2030年

ガスのカーボンニュートラル化率5%以上を実現 メタネーションの実用化を図る(カーボンニュートラルメタンの都市ガス導管への注入1%以上)

2050年

複数の手段を活用し、ガスのカーボンニュートラル化の実現を目指す


※メタネーション設備の大容量化の課題、安定的かつ低廉な水素調達等、大きな課題への解決にチャレンジ ※不確実性は多いが、脱炭素化に資する様々な手立てを駆使し、実現に向けてチャレンジ

2050年ガスのカーボンニュートラル化の実現に向けた姿

バイオガス その他脱炭素化の手立て

- CCU/CCS
- カーボンニュートラル LNG(CNL)^{※1}
- 海外貢献、DACCS ※2、植林

水素直接利用

カーボンニュートラル メタン (CNメタン*3)

- ※1. 天然ガスの採掘から燃焼に至るまでの工程で発生 する温室効果ガスを森林の再生支援などによる CO2削減分で相殺したLNG(液化天然ガス)
- ※2. Direct Air Carbon Capture with Storage (CO2の直接回収・貯留技術)
- ※3. 脱炭素製造された水素とCO2を合成したメタン
- グラフの数値はイノベーションが順調に進んだ場合の 到達点の一例を示すもの
- 水素やCO₂等は政策等と連動し、経済的・物理的に アクセス可能であるという前提

2. アクションプラン ~3つのAction~

Action 1

2030年NDC 達成への貢献

※NDC: 我が国の温室効果ガス削減目標

Action 2

メタネーション実装への挑戦

Action 3

水素直接供給への挑戦

2030年NDC達成への貢献

POINT

- 脱炭素技術の実用化までのトランジション期において、足元から天然ガスの普及拡大を進めることで、社会 全体のCO2排出量を削減していくことが重要。
- 2030年NDC(我が国の温室効果ガス削減目標:2013年度比▲46%※)達成に向け、即効性があり、 CO2削減の寄与度が高い大規模産業用ユーザー等の他の化石燃料から天然ガスへの燃料転換、分散型 エネルギーシステム(コージェネ、燃料電池等)の普及拡大による高度利用と併せて、導入が拡大している カーボンニュートラルLNGや社会実装に向けた検討が進むCCU等の普及促進を全国大で加速。ガスの利用 拡大を通じて、レジリエンスの強化や電力の需給安定化に寄与。
- トランジション期では、これらの取り組みにより、累積CO2を削減した上で、将来的にはガス自体を脱炭素化したカーボンニュートラルメタンに置き換えることで、ガスのカーボンニュートラル化を実現。

※政府の地球温暖化対策推進本部の会合および気候サミットにおける総理発言(2021年4月22日開催)

【Action 1】2030年NDC達成への貢献(天然ガス転換:産業分野、海上輸送分野)

- 産業分野における他の化石燃料から天然ガスへの燃料転換・高度利用は、確実かつ大規模なCO2削減が 見込める一方、大規模な転換コストとランニングコスト上昇が見込まれることから、事業者の努力に加え、補助 金等の導入に向けた支援も求め、転換を加速。
- 海上輸送分野におけるCO2削減は大きな効果を見込むことができ、近年では大手ガス事業者も参画し、都市 圏を中心にLNG船へのバンカリング※拠点形成の整備が進展。今後の拠点整備に向け、ガス事業者が主 体的に整備エリアの拡大に関与。 ※船舶への燃料供給

天然ガス転換の推進

天然ガス転換に加え、エネルギー計測やバーナー開発等の 技術支援を実施し、天然ガスの高度利用を促進。

■石炭・石油→天然ガス転換によるCO2削減ポテンシャル

天然ガス転換事例

■産業分野(旭化成株式会社様:延岡地区)

従来燃料 石炭

ガスタービンコージェネレーション

更新設備 発電:37,000kW 蒸気: 140t/h

LNG受入設備 LNGタンク: 6,500kL

内航船受入設備、LNG気化器、ガス導管など

年間約16万t-CO2の排出量削減 (旭化成様全体の年間CO2排出量の5%相当)

■都市圏の港湾部中心に、バンカリング拠点の整備が進展

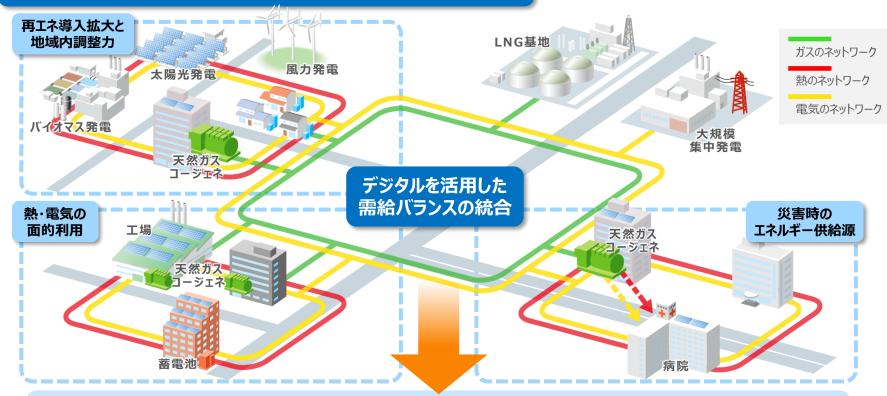
北九州港

新設

2019年5月、西部ガス・九州電 力・中国電力・日本郵船の4社は、 北九州港で初のLNGバンカリング を実証事業として実施

出典:西部ガスホームページ

石炭火力発電


天然ガス火力発電

2022年運開予

【Action 1】2030年NDC達成への貢献(分散型エネルギーシステム)

- コージェネレーション・燃料電池などの「分散型エネルギーシステム」の普及拡大を通じて、大幅な省エネとレジリエンス強化に貢献。
- 地域の特性にも通じた各地のガス事業者が地元の自治体や企業と一体となり、再生可能エネルギーの導入を拡大し、デジタル技術を活用した高度なマネジメントを通じてスマートエネルギーネットワークを構築することで、地域のレジリエンス強化を図りつつ、更なる低・脱炭素化を推進。

分散型エネルギーを活用したスマートエネルギーネットワークの構築

将来的にはメタネーション等によるCNメタンへの転換を推進し、地域の脱炭素化を図る

【Action 1】2030年NDC達成への貢献(カーボンニュートラルLNG、CCU/CCS)

- カーボンニュートラルLNG(CNL)は、2019年6月に、東京ガスが国内で初めて導入決定を発表した後、 北海道ガス、大阪ガス、東邦ガスも導入を発表する等、ガス事業者による導入が進展しており、今後、制度 課題への対応等、さらなる導入拡大に向けた仕組み作り等に取り組んでいく。
- CCUは、大手ガス事業者を中心に、鉄鋼業界や化学業界等の産業界との連携を通じたCO2分離回収などの技術開発や、化学原料やコンクリート用途等での社会実装可能なスキームを検討。

カーボンニュートラルLNGの導入拡大

CNLの 導入事例

- ■東京ガスが、日本初となるCNL導入決定を発表 (2019年6月)
- ■同社がCNLバイヤーズアライアンス (需要家15社) を設立
- ■北海道ガス、大阪ガス、東邦ガスが導入を公表

今後のJGAの 取り組み ガス事業者と連携しさらなる導入拡大に向けた 仕組み作り等に取り組む

出典: https://carbon-neutral-lng.jp/を加工

CCU/CCSの普及促進

CCU(再利用)

CCU事業実用化に向けた技術開発

⇒お客さま先の排出CO₂を回収、活用する 技術開発、サービス化に向けた取り組みを

CCS (貯留)

政府主導のプロジェクトやEOR*プロジェクトへの参画

⇒CO₂を微細 気泡化し、効率 的に地下貯留 ^{フィルタ} するマイクロバブル 技術等の実証への 取り組み RITEと特許を共同保有 (co₂を微細気泡化して地下EA)

※ Enhanced Oil Recovery:原油增進回収法

CCU/CCS (分離回収)

CO2分離回収コストの低減に向けた技術開発 ⇒冷熱を利用した大気中のCO2

直接回収の研究開発(Cryo-DAC)を実施(東邦ガス)
※NEDOとの共同研究

Cryo-DACの
活用イメージ

メタネーション実装への挑戦


POINT

- メタネーションにより合成されるメタンは、**都市ガス導管等の既存インフラ・既存設備を有効活用でき、社会** コストの抑制が可能であり、効率的な脱炭素化手段として大きなポテンシャルを有する。
- 小規模プラントの実証に成功したサバティエ反応式※1メタネーションのスケールアップ/各ガス事業者が主体となるパイロットプラント実証など、都市ガス導管注入・商用化への道筋をつける。
- 加えて、水素製造のコストダウン技術開発や、革新技術であるSOEC式※2メタネーションの研究開発、スケールアップを進めると共に、業界内・他業界との連携により、将来的なCNメタンの大幅な価格低減化を図り、商用化を実現する。

%1 触媒を介して H_2 と CO_2 を反応させて CH_4 を生成(メタン合成)する技術 %2 CO_2 と H_2 Oの両方を同時に電気分解(共電解)して CH_4 を生成(メタン合成)する技術

メタネーションコスト低減に向けた取り組みイメージ

- 脱炭素化された水素とCO2から作られるカーボンニュートラルメタンについて、2050年に現在のLNGと同水準の価格を目指す。
- 価格低減のためには水素製造、CO2回収およびメタネーションについてのコスト低減、技術開発が必要であり、実現に向けた取り組みを進めていく。

【Action 2】メタネーション実装への挑戦 (CNメタン製造実証、革新的研究開発)

- CNメタンの商用化に向け、製造プラントの大型化や実証を推進するとともに、水素製造コストの低減に向けた技術開発を実施。先行事例として、NEDO事業において、INPEXと日立造船によるCNメタンの小型製造プラント(8Nm³/h)の技術開発・実証が行われている。
- 既往技術であるサバティエ反応式に比べ、より変換効率の高いSOEC式メタネーションは大阪ガスが基礎研究に成功。今後、国の支援も受けつつ、実用技術としての研究開発を推進。
- CO2の安定・安価な調達に向けては、産業ユーザーの排出するCO2の回収、大気中のCO2回収技術である DAC (Direct Air Capture) 技術等の革新的な研究開発を推進。

CNメタン製造実証と大型化による価格低減

大阪・関西万博での実証提案

大阪ガスでは、2025年の大阪・関西万博に向けて、会場の 生ごみから発生するバイオガスと再エネ由来の水素からCNメタンを製造するメタネーション実証を提案中

水素製造コストの低減に向けた技術開発

東京ガスでは、燃料電池の 世界初の商用化や水素製造装置の開発等で培った 技術やノウハウを活かし、安 価かつ大量の水素製造に向けた電解装置の技術開発に取り組んでいる。

革新的な研究開発による将来のコスト低減

■SOEC共電解技術によるメタネーションの高効率化

■CO₂回収方法とDAC技術等の研究開発推進

研究内容	詳細
CO ₂ 回収方法	メタネーション装置から近い大口需要家のガス 消費から発生するCO2や近隣の鉄鋼工場・発 電所・化学工場から発生するCO2回収方法の 研究開発
DAC技術	DAC要素技術開発

【Action 2】メタネーション実装への挑戦(国内外サプライチェーン構築)

- CNメタンの製造・商用化のためには、大量かつ低価格の水素、CO2、再生可能エネルギーの確保や、これらの 安定した供給体制の確立が必要となる。これに向けた課題を解決するために、国内あるいは海外における適 地での製造を念頭においたフィージビリティスタディ(実行可能性調査)を行っていく。
- サプライチェーン構築に向け、商社やエンジニアリング等様々な**業界と連携しつつ**、検討を進めていく。

CNメタンを含む水素キャリアのサプライチェーン (製造 ~ 輸送 ~ 利用) 直接利用 再生可能エネルギー 水素製造 CH₄ H₂ メタン 燃料電池 **導管供給** 発電所等 CO₂ 熱利用 CO₂回収 製造 輸送

検 討テ マ

■安価な再生可能エネルギーの調達

■安価な水素製造およびメタネーショ ンプラントの開発

■液化基地、LNG船、受入れ基地、 パイプライン等既存インフラにおける CNメタンと天然ガスとの併用

■熱量引き下げに向けた準備・検討等

利 用

■利用時のCO2排出に対する カーボンニュートラル制度の確立

Action 3

水素直接供給への挑戦

POINT

- 沿岸部を中心とした適地に、新たに水素導管を敷設し、ローカル水素ネットワークでの水素の直接 供給を目指す。
- 水素については、国の水素・燃料電池戦略協議会の中間取りまとめ等の動向も踏まえつつ、製造・輸入・供給・利用等の面での課題について、多彩なアライアンスパートナーとの協業を視野に入れた検討を行っていく。

【Action 3】 水素直接供給への挑戦

- 今後もガス事業者が地元の行政等と連携しながら水素直接供給の取り組みを推進し、地域における大規模な水素直接供給のローカルネットワークを形成。
- 水素サプライチェーン構築にあたっての課題は、①水素製造、②水素海上輸送、③水素タンク、④水素導管 供給、⑤消費機器開発、⑥その他保安面等が挙げられるが、ガス業界としては、①、④~⑥を中心に検討を 実施。

水素サプライチェーンに向けた検討

HARUMI FLAG※への水素供給(東京ガス)

HARUMI FLAGに 水素パイプラインを整 備し、各街区に設置 する純水素型燃料電 池への水素供給を行 う予定。

※東京2020オリンピック・パラリンピック選手村活用後、新築住宅として完成予定。

出典:東京都「選手村の整備」

新エネルギー社会実現構想の策定 (常磐共同ガス)

独自に、水素パイプラインの敷設や水素需要創出策としての産業団地整備などを盛り込んだ「新エネルギー社会実現構想」を策定。

水素直接供給に向けた課題整理・検討

①水素製造

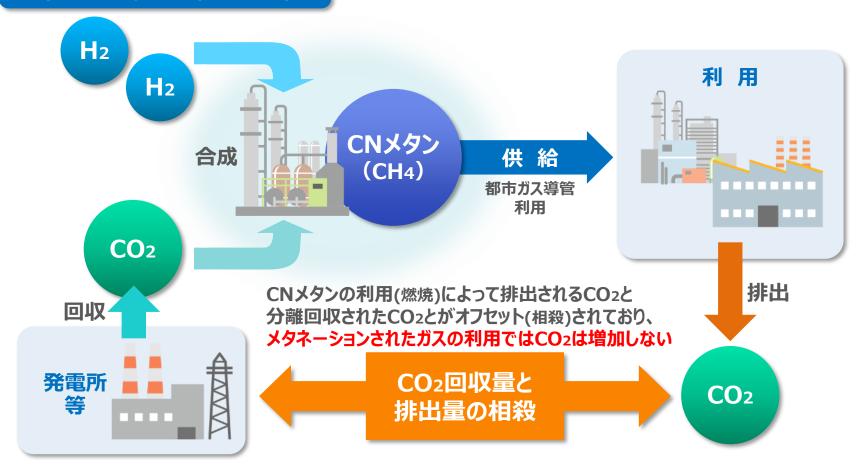
→ Action2に記載

②水素海上輸送

③水素タンク

国の水素・燃料電池戦略 協議会等で検討

- ④水素導管供給
 - ■ローカル水素ネットワーク構築に向けた適地選定
 - ■水素導管敷設に伴う安全性評価
- 5消費機器開発
 - ■水素用ガス機器の研究、開発支援
- 6その他保安面等
 - ■水素直接供給における安全検証


3. アクションプラン ~実現に向けたロードマップ~

4. 制度課題への取り組み

メタネーションにより製造されたCNメタンや、クレジットを活用したCNL等の普及拡大を通じ、2050年カーボンニュートラルを実現していくために、わが国の法律、制度においても、各種の取り組みの社会的意義が適切に評価されるよう、国に制度整備に向けた取り組みを求めていく。

メタネーションによるCO2排出削減効果

5. 推進体制

- 日本ガス協会内に、ガス業界のカーボンニュートラルを推進する組織として、「カーボンニュートラル委員会」を 新設。
- 委員は、地方部会長7名で構成され、委員長は地方部会長会議議長が務める。
- 官民の連携も図り、カーボンニュートラルの実現に向けた取り組みを推進。

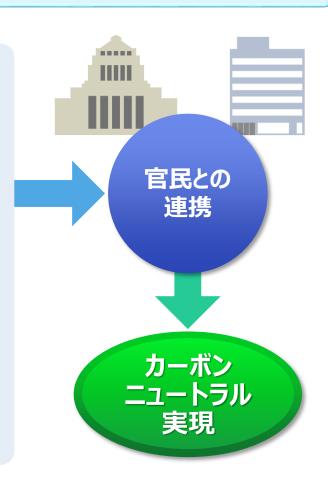
ガス事業者

カーボンニュートラル委員会

役 割

- ●アクションプランの実行に向けた具体的検討
- ●アクションプランの進捗状況に対する意見交換やカーボンニュートラル化の取り組みに対する事業者間での情報交換
- ●アクションプランにおける各種取り組みの対外発信

委員会体制


季員長 地方部会長会議※1議長 (東京ガス社長)

委 員 地方部会長7名※2

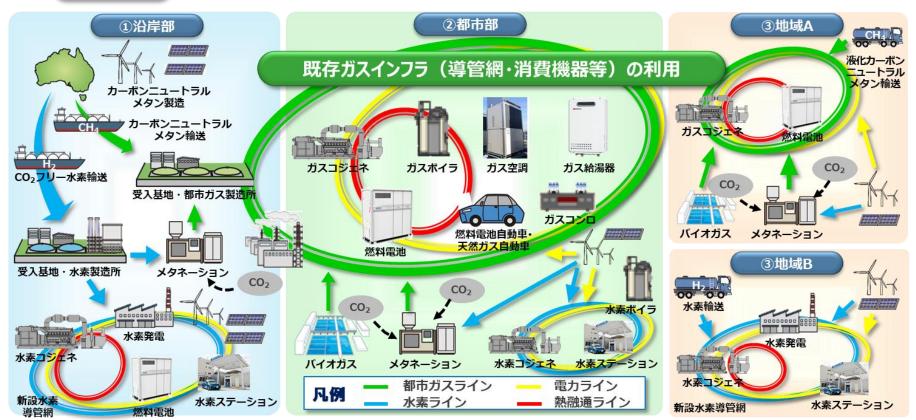
※1. 地方部会長会議:全国7つの地方部会の長が集まる会議体

※2. 地方部会長: 地方部会長会社7社

(北海道ガス、東部ガス、東京ガス、東邦ガス、大阪ガス、広島ガス、西部ガス) の社長

6. 最後に

カーボンニュートラル実現に向けた決意


- ■全国のガス事業者がそれぞれの果たすべき役割を認識し、トランジション期の天然ガスシフト・高度利用の推進、将来に向けての都市ガスの脱炭素化に正面から向き合い、自らの努力と創意工夫による様々な手段を駆使した取り組みを進めることで、次世代熱エネルギー産業への進化と、2050年ガスのカーボンニュートラル化の実現を目指す。
- ■但し、実現のためには、例えば、**水素やCO2の大量・安価な調達、制度面におけるCO2削減量の帰属の問題**など、ガス業界だけでは解決が困難な課題も存在。
- こうした点の課題克服、およびイノベーションを伴う技術開発に対して、 経済産業省の官民協議会等との連携を図りつつ、継続的なご支援を いただきながら、官民・業界の枠を超えた取り組みにチャレンジしていく。

【参考】**2050年のガス供給の絵姿**(2020年11月公表)

- 既存ガスインフラを活用できるカーボンニュートラルメタン(CNメタン)や水素直接利用を適材適所に使い分け、再工ネを含めたエネルギー全体の最適化を通じて2050年の脱炭素社会の実現に貢献。
 - ① 沿岸部 海外輸入水素を起点として水素導管網の構築、国内外でのCNメタン製造や国内輸入
 - ② 都市部 CNメタンを既存のガス設備を利活用して、安価に脱炭素化
 - ③ 地 域 CNメタンと水素を使い分け、各導管網内で地産地消し、地域を活性化

