く砂層型メタンハイドレート研究開発>

生産技術の開発 長期陸上産出試験

MH21-S研究開発コンソーシアム 長期陸上産出試験チーム

2025年10月24日(金)

フェーズ4実行計画

目的

- 1. 長期産出試験を行うことで、メタンハイドレート分解挙動の把握や生産挙動予測精度の 向上に必要な**長期生産挙動のデータを取得**する。
- 2. 生産阻害要因等の技術的課題の解決策の検証や、長期生産に伴う課題の抽出を行う。

実施内容:

- ① モニタリング、坑井仕上げ、出砂対策などの技術検討を実施し、産出試験計画並びに機器仕様などの計画を策定する。
- ② データ取得井(GDW)及び生産井(PTW)を掘削する。また、試験設備の調達・据え付けなど産出試験の準備をする。また、産出試験を実施する。取得されたデータを、貯留層評価チームと共有し、解析に着手する。
- ③ 産出試験で用いる全坑井の廃坑作業を完了し原状復帰する。

ご参考:上記はマイルストーン②として、第44回・第45回開発実施検討会でご審議頂いております。

マイルストーン②とは

長期陸上産出試験の長期生産挙動データの取得と生産技術の実証が充分に実施されていること。 (フェーズ 4 実行計画より)

フェーズ4における成果(長期生産挙動データの取得)

ガス産出試験概要

ガス産出試験期間	2023年9月19日(ESP運転開始)~2024年7月30日(Jet Pumpの運転終了) (<mark>約10か月間</mark> 、合計:315日間)
ガス生産期間 (OBV開放〜Jet Pump停止まで)	2023年10月24日~2024年7月30日 (約9か月間、合計: 280日間)
ガス生産日数 (ガス生産期間から非生産日数を除いた期間)	216 日間
非生産日数 (Non-Productive Time)	64日間

過去の産出試験との比較

産出試験名	試験場所	産出期間 (日)	仕上げ長さ (メートル)	産出ガス量 (立方メートル)
マリック 2002	マッケンジーデルタ、カナダ	5	N.A.	470
マリック 2007	マッケンジーデルタ、カナダ	12.5	12	830
マリック 2008	マッケンジーデルタ、カナダ	6	12	13,000
イグニックシクミ 2012	ノーススロープ、米国	30	9.1	24,000
第1回海洋産出試験 2013	第二渥美海丘、日本	6	39	119,000
第2回海洋産出試験 2017	第二渥美海丘、日本	P2井: 24	P2井: 45.4	P2井: 222,600
第2四/英/广连山武阙 2017 		P3井: 12	P3井: 41	P3井: 40,850
アラスカ長期陸上産出試験 2023-24	ノーススロープ、アラスカ州 米国	216	7.8	319,800

フェーズ4における成果(長期生産挙動データの取得)

ガス産出試験で取得できたデータ

- ガス生産レート
- 水生産レート
- 生産水に含まれる砂量
- 地上試験設備での運転状況

- 地表面変異データ
- 試験前後の3D DAS VSPデータ
- ✓ 試験前後のCross Well Seismicデータ

坑内センサーでの取得データ(温度・圧力・音響・ひずみ)

		GDW	PTW-1	PTW-2	STW
度センサー	DTS	✓	✓	^	~
響センサー	DAS	√	✓	✓	✓
温度センサー	BPT (Behind Casing P/T)	✓	✓	✓	
ボ みセンサー	DSS (Strain sensor array)	✓	✓	√	
温度センサー	UPT Upper Completion P/T)		✓		
	Start of data acquisition	Nov. 2022	Feb. 2023	Dec. 2023	May 2019
	End of data acquisition	Oct. 2024	Oct. 2024	Oct. 2024	Oct. 2024

DAS VSP: DASケーブルを用いたVertical Seismic Profileデータ取得

Cross Well Seismic: 坑井間地震探査データ取得

SH.	曲.	١,	,44	
洏	尸	ヒュ	ノサ	_

圧力・流

ひず

圧力・沿

フェーズ4における成果(生産技術の実証)

生産技術の実証 (第44回開発実施検討会資料。結果に関する整理は「総合的検証に基づく技術課題の抽出 と解決策の検討に関する成果と今後の課題」で実施。)

項目		成果
リスク	対策項目 (第39回開発実施検討会 2022年6月23日)	
1	長期産出試験実現のための試験スキーム	10か月超の産出試験・データ取得を実施
2	出砂対策	大量の出砂が発生する状況にはなっていない
3	出水対策	ポンプの減圧能力を妨げる状況にはなっていない
4	再ハイドレート化対策	メタノール・ヒートトレースはよく機能
	(センサー関連)	
5	掘削作業時のケーブルセンサーへのダメージ回避	センサーダメージなく設置できた
6	パーフォレーション時のセンサーケーブルダメージ回避	成功裏に穿孔できた
7	坑口装置周りの複雑な構造による現地での設置時の不具合対策	成功裏に設置できた
上記」	以外の補足説明項目	
8	メタンハイドレートを世界で初めてエネルギー源として利用	生産ガスをエネルギー源として使用
9	リアルタイムモニタリングシステム	本プロジェクト実行に役立った M!!の1-9

フェーズ4における成果(第45回開発実施検討会以降のアップデート)

出砂対策装置の引抜作業について

- ✓ 目的
 - ▶ 産出試験最終段階で、坑内圧力は減圧できたが、メタンハイドレート(MH)層にその減圧が伝わらなかった現象が確認された。
 - ▶ 出砂対策装置周辺にその原因があることも想定されたため、出砂対策 装置を引抜き、砂のつまり状況等(砂の粒度分析・実際の装置の一部を 使い砂を含む生産流体の流れ具合の再現を試みる等)の分析を通して確認 することにより、今後のメタハイ開発計画に資する。
- ✓ 作業概要

➤ 5月末 Tubingに穴を開け、坑内に詰まっている砂を排出

(引き抜きやすくすることを企図)

▶ 6月 オペレータ・関連企業でリスクアセスメント実施

➤ 7月初旬 再度Tubing下部に穴を開け砂を排出

▶ 7/15 リグアップから現地作業開始

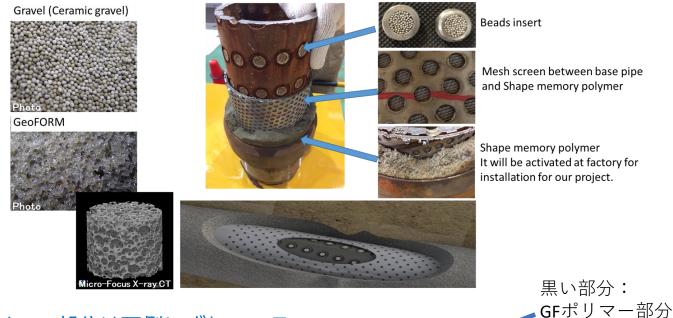
▶ 7/26 引抜完了

合計1,750回のJarring実施

(振動等を与えて坑内に抑留したツール等を回収する手法)

フェーズ4における成果(第45回開発実施検討会以降のアップデート)

出砂対策装置内部エロージョン


表面に発生したスキンの状況 (産出試験最終局面のJet Pump運転時 に出砂対策装置内外の差圧が大きくなっ たので、この際にスキン生成されたもの と考えられる。)

出砂対策装置引抜時の大きな引っ張り応力によりビーズインサート穴が拡大している。 如何に出砂対策装置/ケーシング間の密着度 が大きかったことがこれでわかる。

フェーズ4における成果(第45回開発実施検討会以降のアップデート)

(参考資料) 元々の出砂対策装置

地表側 引き上げた際にずれたと考えられるが、GFポリマー部分は下側にずれている。

回収した出砂対策装置の一部を使用し、産総研他のラボで分析作業を実施中。

2023年2月5日出砂対策装置設置時の写真

のストッパー

まとめ

 \Rightarrow

- 1. 長期産出試験を行うことで、MH分解挙動の把握や生産挙動予測精度の向上に必要な 長期生産挙動のデータを取得する。
 - ⇒ 10か月超の産出試験データを取得できた。
 - ⇒ 66か月超の種々データ取得を実施。(STW掘削後2019年5月~2024年10月)
- 2. 生産阻害要因等の技術的課題の解決策の検証や、長期生産に伴う課題の抽出を行う。

項目		成果
リスク	対策項目 (第39回開発実施検討会 2022年6月23日)	
1	長期産出試験実現のための試験スキーム	10か月超の産出試験・データ取得を実施
2	出砂対策	大量の出砂が発生する状況にはなっていない
3	出水対策	ポンプの減圧能力を妨げる状況にはなっていない
4	再ハイドレート化対策	メタノール・ヒートトレースはよく機能
	(センサー関連)	
(5)	掘削作業時のケーブルセンサーへのダメージ回避	センサーダメージなく設置できた
6	パーフォレーション時のセンサーケーブルダメージ回避	成功裏に穿孔できた
7	坑口装置周りの複雑な構造による現地での設置時の不具合対策	成功裏に設置できた
上記」	・ 以外の補足説明項目	
8	メタンハイドレートを世界で初めてエネルギー源として利用	生産ガスをエネルギー源として使用
9	リアルタイムモニタリングシステム	本プロジェクト実行に役立った

⇒ 出砂対策装置の回収を実施。回収した装置の分析を通し今後のMH開発に資する。