

# ネガティブエミッション技術 のLCA/TEAに関する現状と課題

2023年5月15日

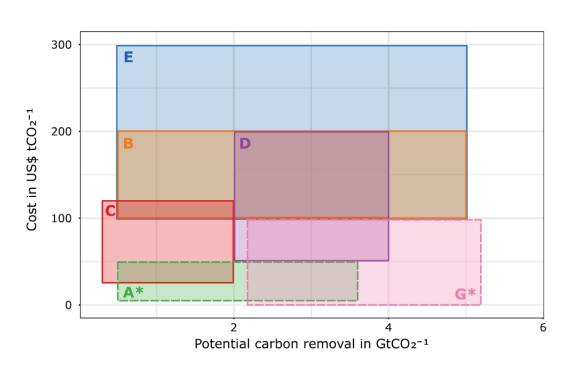
森本 慎一郎

環境・社会評価研究チーム

ゼロエミッション国際共同研究センター

国立研究開発法人 産業技術総合研究所

### CO2の循環とNETsの評価




国立研究開発法人產業技術総合研究所 2

### CO2削減ポテンシャルとコスト評価



- ➤ NETs技術のLCA/TEA研究は2018年より増加傾向。
- ▶評価に関する世界的な基準・ガイドラインは存在しない。



|                     | ポテンシャル算定法                      |
|---------------------|--------------------------------|
| A. 植林(AR)           | 瘦地面積                           |
| B. バイオ発電<br>(BECCS) | 土地利用可能量(食料との分配)と貯留ポテンシャル       |
| C. バイオ<br>チャー (BC)  | BCに使えるバイオマス生産<br>量             |
| D. 風化促進<br>(EW)     | 作物用土地面積など統一され<br>た考え方がない。      |
| E. DAC              | 無制限であるが予算規模をポ<br>テンシャルと考える方法あり |
| F. 海洋プラン<br>クトン(OF) | モデルシミュレーションに<br>よって計算          |
| G. 土壌炭化<br>(SCS)    | 土壌中の炭素有機物が飽和す<br>るまで           |

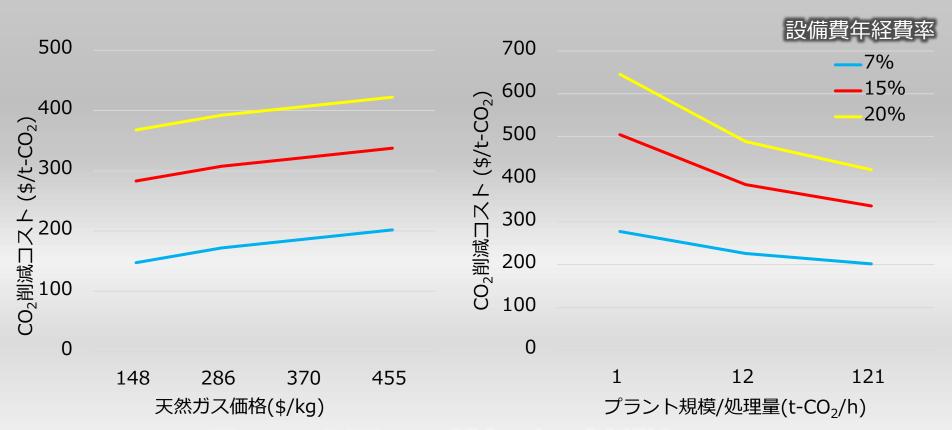
#### 図 1 ネガティブエミッション技術のコストとポテンシャル

Sabine Fuss, Negative emissions—Part 2: Costs, potentials and side Effects, Environ. Res. Lett. 13 (2018)

国立研究開発法人産業技術総合研究所

#### NETsにおけるLCA/TEAの課題




- 1. ライフサイクルインベントリーデータにおける透明性の確保
  - ●バックグラウンド/フォアグラウンドデータにおける不確実性の排除
- 2. 適切な評価範囲の設定と機能単位
  - ●再生資源を二次利用する場合や副生成物等のアローケーション
  - ●異なる資源(製品)を評価する場合の共通の機能単位
- 3. 時間的要素(dynamic/consequential LCA)の考え方
- ●反応が遅い技術もあり、将来の環境変化など時間的要素をどのよう に考慮するか

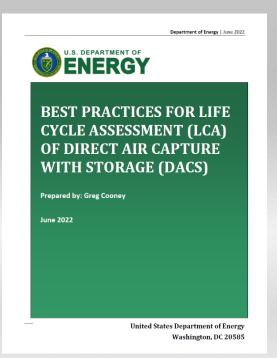
#### LCA/TEAのルール形成が重要

#### DAC における評価の不確実性

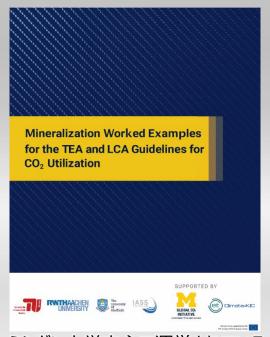


- ➤ Carbon Engineering社のDACプロセスによるコスト分析。
- ▶ DACプロセスの経済性は燃料価格、プラント規模だけでなく大気中 CO₂濃度、温度、その他プロセス条件の影響を受ける。




#### 図2 DACにおけるCO。削減コストの感度解析

D.W.Keith, A Process for Capturing CO2 from the Atmosphere, Joule 2(8), (2018).


#### NETsのLCA/TEAにおける研究・ガイドライン例



- ▶ DACなど、LCAガイドラインが公表されているNETs技術はある。
- ▶ 風化促進、ブルーカーボンなどTRLが相対的に低い技術はガイドラインが存在しない。



U.S.DOEによるDACのLCAに 関する算定方法の研究例。



ミシガン大学中心で運営されている Global CO2 initiativeによる鉱物 化のLCA算定方法の研究例。



IEAGHGによるDACのTEA研究 例。IEAGHGはCCUに関する LCAガイドラインも公表。



## ご清聴ありがとうございました

森本慎一郎 Shinichirou Morimoto sh-morimoto@aist.go.jp

国立研究開発法人產業技術総合研究所