産業構造審議会グリーンイノベーション部会工ネルギー構造転換分野WG説明資料

提案プロジェクト名 革新的分離剤による低濃度CO₂分離システムの開発

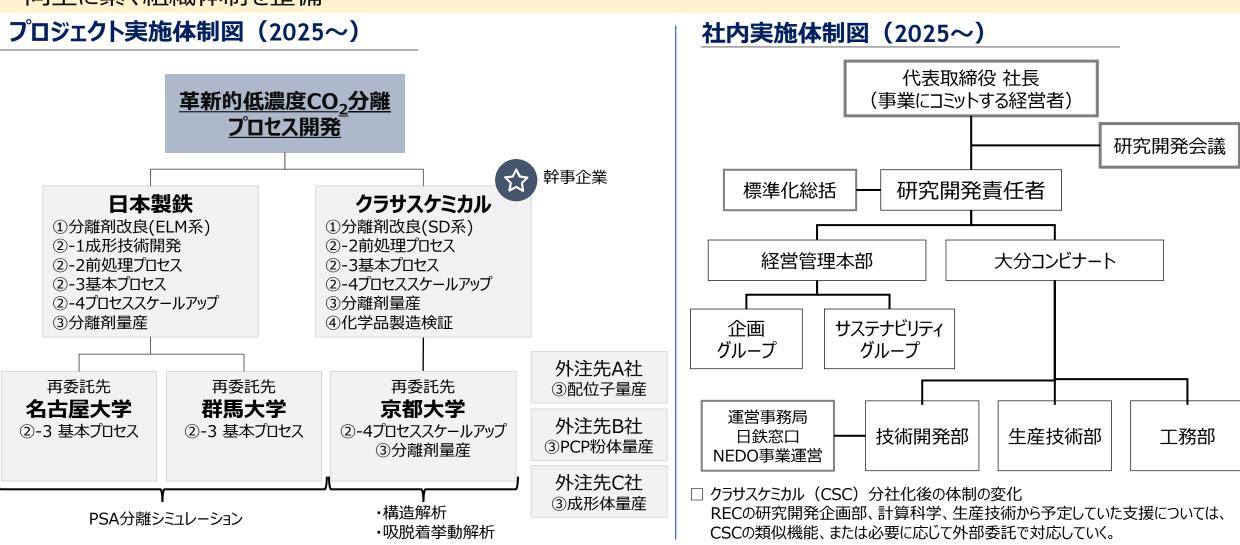
提案者名: クラサスケミカル株式会社 代表名: 代表取締役 福田 浩嗣

(共同提案者:**日本製鉄株式会社**)

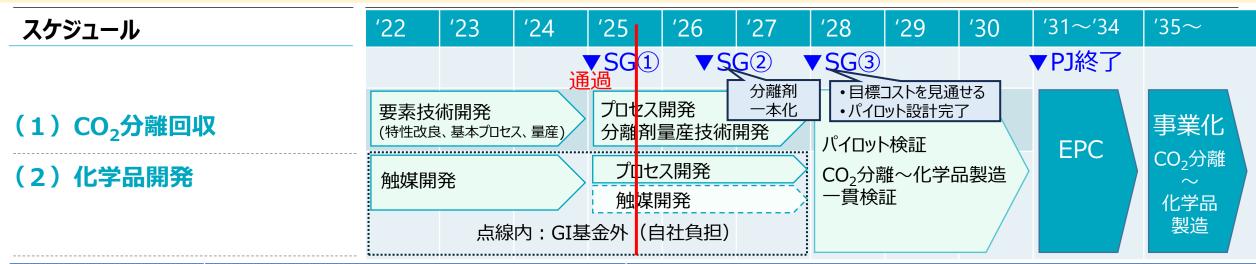
目次

□ 公開パート	
(1)事業推進体制	P4
(2) 事業の進捗状況	P5
(3)前回WG以降 経営者としてのGI基金事業への関与	P6
(4)当初の計画との乖離があった場合、その乖離への対応	P7
(5)標準化への取組み	P8
□ 非公開パート	
(1)事業の進捗状況	P10~11
(2)具体的なビジネスモデル	P12
(3) 具体的な出口戦略	P13
(4) 国際競争についての現状認識	P14
(5) 事業推進上のリスク要因及び想定されるシナリオ	P15
(6)次回WGまでの目標並びに現状の課題と解決プラン	P16
令和6年度モニタリングWGでのご意見への対応状況など	P17~20
令和5年度モニタリングWGでのご意見への対応状況など	P21~24

公開パート


クラサスケミカル株式会社

(1) 事業推進体制


- プロジェクトメンバーの特長を生かした研究開発実施体制と役割分担をステージ進行とともに再構築
- 社内は研究開発会議で議論された研究開発方針を踏まえ、機動的に経営資源を投入し、社会実装、企業価値 向上に繋ぐ組織体制を整備

(2) 事業の進捗状況

- 要素技術に目途を付け、2024年度ステージゲート(SG①)を通過
- 抽出した課題を踏まえ、プロセス開発、量産技術開発を推進中

	開発の概要	進捗
分離剤特性改良 ~2024年度	• PCPの特性改良(吸着開始圧の低減)	• PCPを構成する配位子、結晶構造の検討により、目標を達成したPCP を創出(完了)
プロセス開発 ~2027年度	最適な分離条件(PSA運転条件)の確立排ガス前処理を含むプロセスの設計パイロット設計	ラボPSA評価機により分離条件の分離特性への影響を把握夾雑物影響を想定したプロセス案構築と課題抽出完了PSAベンチの設置を完了し、評価開始(日本製鉄と共同)
量産技術開発 ~2027年度	• PCP原料、PCP製造、成形体製造法の確立	数百g~kg/B規模での入手性、製造技術に目途PCP(粉)からPCP(成形体)の製法検討により、PSAベンチの評価に供する成形体を取得。スケールアップに向けた課題抽出。

(3) 前回WG以降 経営者としてのGI基金事業への関与

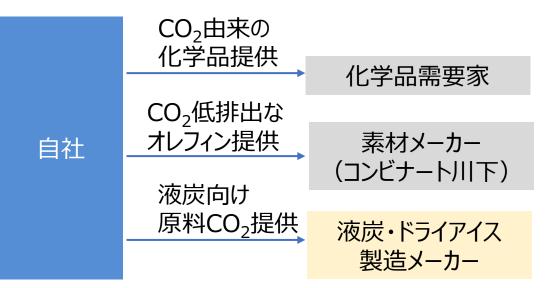
- 代表取締役が各会議体に出席し、開発方向性、研究リソース配分等の議論に参画
- 取締役会、経営会議で審議・決裁するなど、要所で適切な審議と承認・決裁を実施

カーボンニュートラルへの取り組み

- 当社はこれまでも石油化学事業を通じて、多様な産 業の発展と人びとの豊かなくらしを支えてきたが、これ からはこの基幹産業の役割を果たしつつ、炭素循環 型のグリーンケミカル産業へと変革する必要があると 考えている。私たちは化学の力でイノベーションを起こ し、さらなる進化を成し遂げていき、これからもお客さ まや地域社会とともに歩み、豊かで安心な明日のくら しを支えていく。
- 当社はクラサスケミカル発足にあたって、COっの排出 量削減について新たに目標を設定し、CO2の排出量 を「2035年に2020年比で30%削減」、さらに 「2050年にネットゼロを達成すること」と掲げ、2050 年ネットゼロに向けては革新的技術の社会実装を目 指す。本事業実装による「CO。分離回収プラント事 業および分離剤事業の創出・拡大」に加え、化石由 来資源に依存しないCOっを活用した化学品事業の ビジネスモデルを創出していくことで、カーボンニュート ラル社会の実現に向けて貢献していく

	経営者の関与の内容	開催状況
取締役会	SG①後の第2フェーズの委託契約締結について、重要な契約案件として、審議し、承認。	25年 7月
経営会議	以下の議事につき審議し、決裁。 ・ 研究設備投資執行 ・ SG①後の第 2 フェーズの委託契約締結 ・ SG②追加に伴う契約内容変更	25年 3月 5月 7月
研究開発会議	• 技術開発の進捗報告と、次の開発ステップの 方向性や研究リソース、研究設備投資につい て議論し、方針を決定。	半期毎
技術開発 進捗報告会	・本事業の社会実装に向けた、事業面での戦略や事業性に関する議論(当社既存事業との連携に向け議論)。実装を念頭とした事業展開についての議論も実施。	半期毎

(4) 当初の計画との乖離があった場合、その乖離への対応

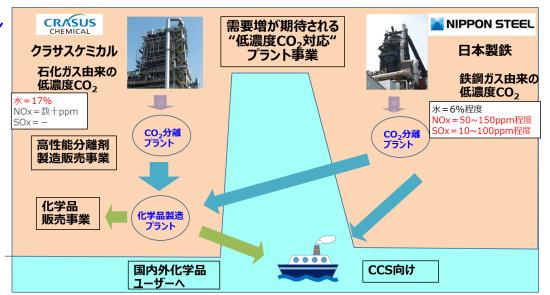

- CHEMICAL
- SG②にて、分離剤を一本化。コンソーシアム内のリソースを集中することで、開発のスピードアップを図る
- 開発競争を踏まえ、社会実装の早期化を目指し、出口戦略の追加(液炭)を実施

■ 研究開発計画のアップデート

SG②: コンソーシアム内で開発を進める分離剤を1本化し、リソースの集中化による開発スピードアップを図る

事業戦略のアップデート

- 当初計画では、回収COっを原料とした化学品の提供、及び COっ低排出なオレフィンの提供を計画
- CO₂分離回収の開発競争が激しい現状認識を踏まえ、いち 早く社会実装に結び付け、技術の汎用化・標準化を目指す ために、液炭製造向けの原料CO2提供を計画に追加する


経営会議にて審議、決裁し、取締役会に報告

(5)標準化への取組み

- 従来技術で対応できない低濃度CO₂排ガスからのCO₂分離回収技術を、自社が世界に先駆け社会実装する
- ・ 自社オレフィンのカーボンニュートラル化、回収COっを原料とした化学品販売を進め、新たなビジネスモデルを構築する
- 戦略的出願、ノウハウのクローズド戦略を組合せ、運転実績を踏まえた技術としての優位性を訴求する

クラサスケミカル ビジネスモデル

ステップ 1

- 自社のナフサクラッカーへの実装
- 回収COっを原料とした化学品の提供
- 製造時に排出されるCOっを低減したオレフィンの提供

ステップ2

• 同業他社、低濃度 CO_2 排出元への技術ライセンス、 分離剤ビジネス

標準化戦略

- 他社に先駆けて社会実装することによる、技術の汎用化・標準化
- 鉄鋼と化学の排ガスの検討を通じた、適用ガスの拡大
- CO₂原料化学品の価値を訴求し、既存製法の置換

知財戦略

- 分離剤、成形技術、プロセスについて、他社に模倣されないように戦略的に知財化を行う
- 石化系ガスに特化したプロセスの一部は、知財化せず、ノウハウとしての秘匿も視野に入れる
- CO₂原料化学品の基礎技術は、積極的に知財化を行う

