グリーンイノベーション基金事業

「次世代デジタルインフラの構築」プロジェクトに関する 研究開発・社会実装計画 (改定案)

令和<u>5</u>年<u>9</u>月<u>12</u>日 経済産業省 商務情報政策局

目次

1. 背景·目的	3
2. 目標	1 <u>3</u> 0
3. 研究開発項目と社会実装に向けた支援	<u>22</u> 17
4. 実施スケジュール	<u>31</u> 24
5. 予算	38 28

1. 背景·目的

- 半導体・情報通信産業の重要性と課題解決の方向性
 - ▶ 情報の利活用、デジタル化が急速に進展する中、カーボンニュートラルは、製造・サービス・輸送・インフラなど、あらゆる分野で電化・デジタル化が進んだ社会によって実現される。したがって、電化・デジタル化の基盤である、半導体・情報通信産業は、グリーンとデジタルを同時に進める上での鍵である。
 - ▶ 特に、日本が世界に先駆けてグリーンとデジタルが両立した持続可能な社会を構築するためには、「産業のコメ」であり、あらゆる社会・経済活動に深く関係し、データ通信、処理等の根幹を担う半導体やデジタル産業について、時代の変化を正確に捉え、競争力を高めることが必要である。
 - ▶ カーボンニュートラルと社会のデジタル化を同時に達成するためには、デジタル化によるエネルギー利用の効率化・省 CO₂化(グリーン by デジタル)と、デジタル化に伴って増大するデジタルインフラの消費電力量の抑制(グリーン of デジタル)を両輪で進めていくことが重要である。
 - グリーン by デジタルについては、例えばあらゆる産業分野における DX (デジタルトランスフォーメーション) の推進が重要であり、こうしたデジタル化の進展は、人・物・金の流れの最適化が進むことなどにより、エネルギーの効率的な利用を可能とし、省 CO₂ 化にもつながる。
 - ▶ 他方で、グリーン of デジタルについては、デジタルインフラの消費電力量増大に対して、あらゆる電気機器に使用されるパワー半導体の高性能化・普及拡大に加えて、データを処理するデータセンターの省エネ化や端末側における効率的なデータ処理技術の開発が重要である。
 - ▶ 市場調査によると、DX の国内市場は 2030 年度には 3 兆 425 億円、世界市場は 2 兆 2,540 億米ドルの規模に成長すると予測されている。
 - > パワー半導体は自動車・産業機器、電力・鉄道、家電など、生活に関わる様々な電気機器の制御に使用されている。カーボンニュートラルに向けた電化社会にとって、こうした電気機器の省電力化は極めて重要である。
 - ▶ 世界の用途別電力需要のうち、約半分がモーターによる電力となっており、モーターの駆動に使用するインバータ(パワー半導体を使った機器)の効率を1%改善するだけで、大幅な省電力効果が期待される。例えば、HVの電力損失のうち、約20%がパワー半導体による損失であり、サーバ消費電力のうち、約25%がパワー半導体が使用されている電源の損失と言われていることから、損失低減は非常に重要である。
 - ▶ パワー半導体産業は、現在約3兆円の市場規模であるが、2030年には5兆円、2050年には10兆円市場になる見通しである。本分野は、日本企業がシェア29%を保有するなど、半導体産業の中では日本企業が強みを持っている分野である。
 - ▶ パワー半導体の省エネ化技術として、次世代パワー半導体(SiC(シリコンカーバイド)、 GaN(窒化ガリウム)、Ga₂O₃(酸化ガリウム))が挙げられる。これらの次世代パワー半 導体は今後の自動車の電動化、再生可能エネルギー(再エネ)などの電力、データセンター

- の増加など社会的要因によって需要が拡大する見通しである。
- ▶ 例えば SiC は、2020 年代半ばから後半にかけて電動車・充電インフラ、GaN は 2025 年サーバ内電圧変換器、2030 年データセンター向け電源への需要拡大が予想されており、これらの次世代パワー半導体の高性能化・高信頼化に加えて、普及促進に向けたコスト低減が重要である。
- ▶ また、住宅や工場、自動車などの電化やデジタル化が進むことにより、デジタル関連の消費電力は増加し、CO2排出が増えることが予見される。現状、世界のデータ量は年間約30%のペースで急増している。それに伴い、データセンターサーバの市場規模は拡大の一途であり、2019年は6兆円、2030年には25兆円の市場となる見通しとなっている。
- データセンター市場は、世界的なサーバメーカーがシェア上位を占めており、日本勢は海外市場で苦戦している状況である。一方で、これまではサーバメーカーがサーバ単位でセット販売していたが、GAFAM(Google, Amazon, Facebook, Apple, Microsoft)等が主導し、自ら要素デバイスを選定して、ODM(Original Design Manufacture)企業に製造を委託し、購入するという、市場のオープン化が進んでいる。こうしたゲームチェンジの進展により、我が国を含めたデバイス企業が、いち早く技術的優位性を確保して各デバイスのレイヤーマスターとなることで、データセンターサーバ市場に参入することが可能である。
- ▶ また、これまでは従来型データセンターから効率の良い大規模なクラウド型・ハイパースケール型 データセンターに置き換わることにより、世界のデータセンターの電力消費量の増加は比較的抑 制できていた。
- ▶ 一方で、今後は大規模データセンターの急増により、データセンター全体の電力消費量も増加に転じることが予想され、これまでの技術進化では、電力消費量の増加に追いつかないと予想される。
- ▶ こうした背景の下、本プロジェクトでは光電融合技術等をデータセンターに適用することで、省エネ化を実現する。
- ➤ 新しいデータセンターの普及には研究開発に加えて、自然災害等に対する BCP (事業継続計画: Business Continuity Plan) や再エネの有効利用などの観点も踏まえた立地計画に関する政策も重要である。
- ⇒ 端末側で処理を行うエッジコンピューティング技術の高性能化とプラットフォームの構築は、クラウドにあがるデータ量を削減することになるため、データ量に比例した利用料を徴収するプラットフォーマーである GAFAM 等が投資を実施するインセンティブは働きにくい。
 - 他方で、多くの企業がプラットフォームを活用することを通して、新たなソフトウェアやサービスが 生み出される可能性があり、プラットフォームを構築することにより生み出される潜在的な価値 は大きいと考えられる。しかしながら、一定規模の集積がないとプラットフォームが持つ効果が十 分に発揮できず、ユーザーが求める利便性にも応えられずプラットフォームの収益性が見込めな いため、プラットフォーム構築への投資が行われてこなかった。このような背景によりプラットフォー ムが構築されず、エッジ側のデータ圧縮が行われないため、依然としてクラウドへの送信データ量

が削減されず、データ送信に必要な電力の抑制が進んでこなかったことから、現状では、DX による省エネの効果が限定的になっていると考えられる。

他方で、プラットフォームへの参画企業が多くなり規模が拡大すると、プラットフォームの価値や競争力が向上し、プラットフォームの収益性が発生することにより、自走することが可能となる。また、プラットフォームへの参画企業が多くなることで、ソフトウェア、サービス等が新たに生み出されることによる経済波及効果も期待できる。特にエッジコンピューティングの中でも、日本が強みを持つ画像センサなど様々なセンサを活用した IoT センシングに対応したプラットフォーム、すなわち IoT センシングプラットフォームを日本企業が中心となって構築することで、画像センサ等多様なセンサのデータの統合管理、エッジ AI 処理、データ量削減を我が国が中心となって取組を進めることができる。

以上のことから、ハードウェア、ソフトウェア、システムベンダー、ユーザー等の多様な企業が参画 した IoT センシングプラットフォームの構築を、政府が支援することで、IoT センシングプラットフォームの競争力の強化と経済成長が実現される。

加えて、多様な企業の参画が進むことにより、画像センサ等様々なセンサデータの大幅な軽量 化などの効率的なデータ処理技術の開発が促進され、IoT センシングプラットフォームが普及 拡大を通じて、ネットワーク全体の電力を大幅に削減でき、幅広い事業領域における省エネ化 が実現される。

このように、将来的な経済波及効果と CO₂ 削減効果が期待できることから、本プロジェクトにおいて IoT センシングプラットフォームの構築に取り組むこととする。

本プロジェクトを取りまく現状と課題解決の具体的方策 【次世代グリーンパワー半導体開発】

- ▶ パワー半導体は様々な用途で使われているが、例えば電動車では 400V であった電池電圧が800Vに高電圧化する等の変化が起こっている。400Vの電池電圧であればパワー半導体に求められる耐圧は 700V 程度で良かったが、800V の電池電圧になるとパワー半導体に求められる耐圧は 1.2kV 程度となる。1.2kV でも Si パワー半導体は動作可能であるが、材料の性質として SiC のような次世代パワー半導体の方が高性能な動作が可能であり、次世代パワー半導体が必要とされている。
- ▶ また、モーターやサーバ電源において、パワー半導体が高周波で動作することによって、その他の 部品のサイズを小さくすることが出来るため、モーターや電源等の小型化や高効率化が可能と なる。従来の Si パワー半導体に比べて次世代パワー半導体は高周波動作が可能であり、電 動車の電費や電源損失の低減に重要である。
- 次世代パワー半導体の普及促進に向けては、高性能化・高効率化に加えて、コスト低減が 非常に重要であり、我が国でも多数の支援を実施してきた。一方で、過去の支援においては、 開発した技術の応用等の実用化面での課題が指摘されている。
- ▶ 他国においても、多数の国の支援策が存在しているが、具体的なユースケースを指定した事

- 業や省エネ実証事業など、実証に向けた支援が実施されている。さらに、パイロットライン構築なども実施されており、ユースケースの開発が促進されるようなプロジェクトも存在している。
- ➤ こうした背景もあり、次世代パワー半導体の市場シェアは、従来の Si(シリコン)パワー半導体の市場シェアに対してゲームチェンジが起こりつつある。Si パワー半導体では、インフィニオンテクノロジーが圧倒的シェアを有しているが、SiC パワー半導体では、STMicroelectronics、Wolfspeed(Cree)、ロームなどが拮抗している状態である。また、GaN パワー半導体では、従来の Si パワー半導体とはメーカの顔ぶれが大きく異なり、大半がベンチャー企業となっている。
- 次世代パワー半導体においても、Si パワー半導体と同様に素材(ウェハ)が重要であるが、SiC パワー半導体市場においては圧倒的に米国勢がシェアの過半を占めている。ウェハは安定供給及びコストの面で非常に重要であり、シェア拡大のためには国内のウェハ産業も強化する必要がある。
- 過去の国家事業、今後の市場予測などを踏まえて、本プロジェクトでは、事業対象を細分化して、ユーザー側のリクワイヤメントを取り入れながら開発を実施する。具体的には、今後市場拡大が見込まれる以下のアプリケーションを想定し、技術開発を実施する。
 - ① 電動車・産業機器向け
 - ② 再エネ等電力向け
 - ③ サーバ等電源機器向け
- ➤ それぞれの分野において、次世代パワー半導体の高性能化・高効率化を実現するとともに、 低コスト化技術も開発することで、普及促進を実現する。

【次世代グリーンデータセンター技術開発】

- 電力消費量が増加するデータセンターに対して、革新的省エネ技術である「光電融合技術」がゲームチェンジ技術として登場している。光電融合技術は、電子デバイスに光エレクトロニクスを融合し、電気配線を光配線に置き換えることで、省エネ化・大容量化・低遅延化を実現する技術である。これにより、例えばネットワークシステム全体で電力消費が 1/100 になるといわれている。本技術は、まだコンピュータ内に実装されていないが、各国で国・民間プロジェクトが立ち上がり、大きな研究開発トレンドとなっている(日本はいち早く NEDO「超低消費電力型光エレクトロニクス実装システム技術開発事業」(2012~2021 年度)を組成し、研究開発に着手しており、技術で先行している)。
- ▶ 例えば、NTT は、IOWN(Innovative Optical and Wireless Network)構想を 2019 年に提唱し、海外プレーヤーを巻き込んだ IOWN グローバル・フォーラム(NTT、インテル、ソニーにより 2020 年に設立)で国際標準にむけた議論等を開始している。本構想では、 ネットワークから端末、チップの中にまで光電融合技術を導入することにより、実現が困難であった超低消費電力化、超高速処理の達成を目指しており、2024 年の仕様確定、2030 年の 実現を目指している。
- ▶ また、データセンターでは、建物や空調に比べて、サーバを構成する要素デバイス (CPU、メモ

- リ等)が消費電力の大きな割合を占める。そのため、本プロジェクトの目標であるデータセンターあたり 3540%以上の省エネ化を実現するために、サーバを構成する要素デバイスの省エネ化開発を一体的に実施する必要がある。
- ▶ さらに、サーバを CPU やメモリ等の機能単位で分割し、計算負荷に最適配置することで、システム全体を高効率化する、ディスアグリゲーション技術も検討が進められている。IOWN 構想では、フォトニック・ディスアグリゲーテッド・コンピューティングを提唱しており、従来のサーバ指向のコンピューティングから光伝送路に基づくサーバレスなコンピューティングへパラダイムシフトを狙っている。
- ➤ このような背景の下、以下の3つの開発項目を実施することで、データセンターの省エネ化を実現する。
 - ① 光エレクトロニクス技術の開発
 - ② 光に適合したチップ等の高性能化・省エネ化技術の開発
 - ③ ディスアグリゲーション技術の開発
- ➤ これらの技術開発を実施することで、IOWN 構想も活用しながら、ゲームチェンジが進みつつある市場に参入・シェアの拡大を実現する。

【IoT センシングプラットフォームの構築】

- データセンターの省エネ化に加えて、データの効率的な処理についても並行して技術開発、社会実装を進めることで、デジタルインフラ全体の省エネ化が期待される。
- 現状一極集中となっているクラウドコンピューティングに加えて、端末側でも一定程度のデータ 処理を行うエッジコンピューティングを組み合わせることで、効率的なデータ処理が可能である。
- ▶ この際、クラウドデータセンターと端末との間に中間的なサーバ(エッジサーバ)を設置する方法もあるが、究極的にはエッジ端末(エンドポイント)内部で可能な限り処理を行うエッジコンピューティングが重要である。
- ▶ 特に、大容量のデータを処理するセンシングにおいては、センサ内部でデータを圧縮し、低容量の情報のみエッジサーバもしくはクラウドデータセンターに送信して、エッジ側での状況を判断するシステムが重要である。
- - ① エッジ信号処理技術の開発
 - ② SDK(ソフトウェア開発キット)¹及びプラットフォームの開発
 - ③ ハードウェア基板の開発
 - ④ アプリケーション実証
- ➤ これにより、本技術とデータセンターの省エネ化と併せてデジタルインフラ全体の省エネ化を実現

¹ ソフトウェア開発に必要な文書やプログラムなどをまとめてパッケージにしたもの

する。現状、IoT センシングプラットフォーム構築に不可欠な、センサデータのエッジ信号処理の技術的ハードルが高いため、エッジ側における GAFAM のサービス提供は限定的である。

▶ 本事業ではこのような状況に対し、センサデータの取り扱いに強みを持つセンサメーカー等が中心となって IoT センシングプラットフォームを構築し、エッジ側に広く普及するサービスを提供する基盤を社会実装していく。

関連基金プロジェクトと既存事業

- ▶ 関連基金プロジェクト
 - 本プロジェクトで関連する基金プロジェクトとして、「次世代蓄電池・次世代モーターの開発」等の自動車に関連するプロジェクトがある。これらのプロジェクトは、開発したパワー半導体の社会実装先であることからそれぞれの事業に対して自由度が損なわれないよう留意しつつ連携を検討する。

▶ 既存事業

○ NEDO「超低消費電力型光エレクトロニクス実装システム技術開発」 (2012~2021 年度、2021 年度予算額 15.0 億円)

(https://www.nedo.go.jp/activities/ZZJP_100057.html) .

従来は電気配線を用いていた半導体チップ間、サーバボード間を光配線で接続し、データ通信を行う基盤技術を確立。本基金プロジェクトではこの基盤技術を活用して、実際の CPU、アクセラレータ、メモリ等をより高速に光接続する技術を開発し、新しい高性能・省エネデータセンターの実現に貢献する。

○ NEDO「高効率・高速処理を可能とする次世代コンピューティングの技術開発」(2018 ~2027 年度、2023 年度予算額 49 億円の内数)

(https://www.nedo.go.jp/activities/ZZJP_100123.html) .

データセンター内の多数のサーバ間の接続を自在に切り替える低消費電力光電ハイブリッドスイッチを開発。本基金プロジェクトで開発された高性能・省エネデータセンターと組み合わせることにより、更なる効率化を実現でき、将来的に相互に連携する技術である。

また、センサデバイスなどのデータ処理時の電力効率を改善するエッジ AI 半導体を開発。本基金プロジェクトでは、センサデバイスのデータ処理の観点で既存 NEDO 事業よりもさらに電力効率を改善するための革新的処理技術を開発する。

○ NEDO「ポスト 5G 情報通信システム基盤強化研究開発事業」 (2019 年度 ~ 、基金 総額 7,950 億円の内数)

(https://www.nedo.go.jp/activities/ZZJP_100172.html) .

超低遅延や多数同時接続といった機能が強化された5G(ポスト5G)に対応した情報通信システムを構成する各要素(コアネットワーク、伝送路、基地局)の技術開発に取り組む。本基金プロジェクトで開発された高性能・省エネデータセンターと組み合わ

せることによって、デジタルインフラの高度化を実現でき、将来的に相互に連携する技術で ある。

○ NEDO「省エネエレクトロニクスの製造基盤強化に向けた技術開発事業」 (2021~ 2025 年度、2023 年度予算額 27 億円の内数)

(https://www.nedo.go.jp/koubo/IT2_100182.html) 。

 Ga_2O_3 パワー半導体及び Si パワー半導体に関する支援を実施。 Ga_2O_3 は次世代パワー半導体の 1 つであるが、耐圧に関する高いポテンシャルを有している一方で、熱伝導において大きな課題もあり、適した用途が見出せていない。通常パワー半導体は、トランジスタによってスイッチング動作を実現するが、まずは初期段階のダイオードにおいて、 Ga_2O_3 の最適な用途を見出すため、当初予算で支援している。一方で、本基金プロジェクトでは、今後 10 年程度で急速に市場が立ち上がるとされている SiC、GaN に関する研究開発を実施する。 SiC や GaN は既に市場の一部で使われ始めているが、材料本来のポテンシャルを発揮しきれていないため、今後ますますの性能改善が繰り返される中で、他国に先駆けで革新的技術を導入し、競争力を高めることが、我が国パワー半導体産業の競争力強化につながる。

○ 文部科学省「革新的パワーエレクトロニクス創出基盤技術研究開発事業」(2021~ 2025 年度)

(https://www.mext.go.jp/b_menu/boshu/detail/mext_00103.html) 。 電気機器の超省エネ・高性能化を実現するため、GaN 等の研究開発における我が国の優位性を活かして、GaN 等の特性を十分に活かした革新的なパワエレ技術を創出する事業。本基金事業の次世代パワー半導体でも GaN は候補の 1 つであるが、研究開発の重複を避けるために GaNonGaN に関連する技術(GaNonGaN デバイス、GaN ウェハ)については、本基金事業の対象外とする。

□ 環境省「GaN 技術による脱炭素社会・ライフスタイル先導イノベーション事業」(2014 ~2021 年度)

(https://www.env.go.jp/earth/earth/ondanka/energy-taisakutokubetsu-kaikeir03/matetr03-27.pdf) .

民生・業務部門を中心にライフスタイルに関連の深い多種多様な電気機器(照明、パワコン、サーバ、動力モーター、変圧器、加熱装置等)に組み込まれている各種デバイスを、高品質 GaN(窒化ガリウム)基板を用いることで高効率化し、徹底したエネルギー消費量の削減を実現する技術開発及び実証を行う事業。本基金事業の次世代パワー半導体でも GaN は候補の 1 つであるが、研究開発の重複を避けるために GaNonGaN に関連する技術(GaNonGaN デバイス、GaN ウェバ)については、本基金事業の対象外とする。

○ 内閣府「SIP 第二期」(2018~2022 年度) (https://www8.cao.go.jp/cstp/gaiyo/sip/sip2pd.html)。 SIP フィジカルは、IT の専門家でなくても容易に高度なソリューションを創出できる共通 プラットフォームを構築することを目的としている。社会課題の解決の成功事例を複数、 社会へ示すことで、CPS(Cyber Physical System)を実社会に普及させることを志 向している。既存のプラットフォームを活用しながら、フィジカル空間において DX 化が進ん でいない"もの"や"こと"に対して、実現可能性の検証を行う。

本基金プロジェクトは、DX の社会実装を通じて 2050 年のカーボンニュートラル実現 に向けた GX への貢献を目的としており、サービス提供者が使いやすいプラットフォームの 構築、エッジ領域の低消費電力化など、社会実装に向けた課題を解決するための技術 開発を行う。

なお、本基金プロジェクトではセンサデバイスの高感度化等、センサそのものの開発は対象外とする。

- グリーン成長戦略の実行計画における記載(抜粋)
 - (6) 半導体·情報通信産業
 - ① デジタル化によるエネルギー需給の効率化・省 CO₂化 (グリーン by デジタル)<現状と課題>

デジタル化の進展は、人・物・金の流れの最適化が進むことなどを通じ、エネルギーの効率的な利用・省 CO₂ 化にもつながる。例えば、企業のシステムをクラウド化することにより8割の省エネを達成できることや、テレワーク・オンライン会議によって移動に伴うエネルギーを削減することが出来ることなど、デジタル化による省エネ効果は、あらゆる産業に大きく寄与するものである。2050 年カーボンニュートラルの実現に向け、社会・経済全体でエネルギーの効率的利用を達成するために、デジタル化を支えるデータセンター、情報通信インフラなどの国内整備、都市部だけでない地域のデジタル活用・省 CO₂ 化などに取り組むとともに、あらゆる産業分野においてデジタル化、DX を後押しすることが必要である。

<今後の取組>

DX 推進、グリーンなデータセンターの国内立地推進、次世代情報通信インフラ整備を進めることで、日本が世界一のグリーン・デジタル大国となることを目指す。

DX 推進として、具体的には、遠隔・非対面・非接触といった社会生活のオンライン化を実現できるような次世代ソフトウェアの研究開発や、デジタル技術活用による地域の省 CO₂ 化推進のための実証などを支援することで、技術の確立、競争力強化を進めるとともに、各産業・企業・地域における DX を更に加速するための方策の検討を進める。今後、社会・経済システム、企業の DX を進め、2030 年には、DX 関連の市場規模で 24 兆円獲得を目指す。

デジタル化が更に進み、新たなデジタルサービスを提供するためにも、データセンター拠点の整備、データセンター国内立地を進めることが重要である。また、データセンターが社会・経済の重要インフラとなる中、レジリエンスの観点がこれまで以上に重要になってきている。 現在、日本は、

東京・大阪にデータセンターの多くが集中している状況であり、レジリエンスの観点から問題を抱えている。このような環境変化や、今後増大するデータセンターの需要に鑑みて、データセンターの国内立地・誘致、最適配置につながるよう、データセンター集積拠点の整備を後押しするため、立地計画策定などの政策パッケージを検討し、早期に実行する。同時に、データセンターの国内立地促進に向け、データセンターのゼロエミッション化・レジリエンス強化のモデル創出や再エネなど脱炭素電源の導入を促進するための実証・補助事業・制度支援等を実施する。

また、データセンターの立地促進のためには、脱炭素電力の購入の円滑化を進める必要がある。このため、需要家の利便性向上に向け、非化石価値取引市場などの制度の在り方の検討を進める。

これらの取組により、2030年には、国内データセンターサービス市場 3 兆円、データセンター 投資 1 兆円規模を目指す。

情報通信インフラについては、ポスト 5G、高度化された 5G や光エレクトロニクスの高度化に向けた研究開発・標準化を支援する。また、2030 年の Beyond 5G の実現に向けては、「Beyond 5G 推進戦略」に基づき、産学官の協力の下、着実に取組を進める。

② デジタル機器・産業の省エネ・グリーン化(グリーン of デジタル) <現状と課題>

「グリーン by デジタル」により CO2排出が減る一方で、住宅や工場、自動車等の電化やデジタル化が進むことにより、デジタル関連の消費電力は増加し、CO2排出が増えることが予見される。例えば、大規模データセンターは、大型火力発電所の発電量に匹敵する電力を消費するものがある。また、IT 関連の消費電力は、デジタル関連の消費電力は、今後、飛躍的に増加していく見込みである。そのため、実質的な CO2削減の観点からは電気機器、データセンターや通信ネットワークでの更なる省エネ化や再エネ利活用等の省 CO2化を促進することが重要である。

現に、国際的にデジタルプラットフォームを展開する企業では、再生可能エネルギー発電への投資やグリーン電力の購入により、カーボンニュートラルを目指す動きも出てくるなど、情報通信産業において、グリーン化は既に大きな動きとなっている。

さらに、あらゆる電気機器に組み込まれているパワー半導体、情報処理に不可欠なメモリ、 半導体や、光エレクトロニクス(光配線)、ソフトウェアなどの分野では、省エネ化・高性能化 に向けた投資や研究開発競争が激化しており、情報通信産業全体として、省エネ化、グリー ン化をいち早く達成することが競争力の源泉となる。

今後は、パワー半導体(国内企業で世界シェア 29%)など、日本企業が強みを持っている分野を伸ばすとともに、メモリや光エレクトロニクス、ハイパフォーマンスコンピューティングなどの半導体関連や、データセンター、5Gやポスト 5G、高度化された 5G、Beyond 5Gなどの情報通信インフラの省エネ化・省 CO2化・高性能化・早期導入を進めていくことが必要である。

このように、グリーンとデジタルを両立させ、成長していくために、デジタル機器・産業の省エネ

化とデータセンター等でデジタル分野が使用する電力の脱炭素化は必須である。

<今後の取組>

幅広い分野で使われているパワー半導体や、情報処理に不可欠なメモリなどの半導体、データセンター、情報通信インフラの省エネ化・省 CO2化・高性能化を進めて、グリーン・デジタル 社会の構築を目指す。以下、具体的な分野について、それぞれ記載する。

ア) パワー半導体等の研究開発、実用化、普及拡大

パワー半導体や次世代半導体の利活用については、従来の Si パワー半導体の高性能化に加えて、超高効率の次世代パワー半導体 (GaN、SiC、Ga₂O₃等)の実用化に向けて、放射光・中性子線施設を活用した物性評価や、高速電子計算機の活用による材料探索等、アカデミアが保有する半導体関連技術・施設等も活用し、研究開発を支援するとともに、導入促進のために、半導体サプライチェーンの必要な部分に設備投資支援などを実施することで、2030年までには、省エネ 50%以上の次世代パワー半導体の実用化・普及拡大を進める。これにより、日本企業が世界市場シェア4割(1.7兆円)を獲得すること目指す。

また、次世代省エネ機器(モータ制御用半導体等)、次世代パワーエレクトロニクス技術(AI 等を活用した高効率制御等)、次世代モジュール技術(高放熱材料等)や次世代受動素子・実装材料(コイル等)などの研究開発を進めるとともに、Si パワー半導体・次世代半導体の成果を用いて、現時点から応用可能な用途(電動車・データセンター電源・電力変換器・LED等)に係る技術の実証・実装・高度化を支援する。

イ)グリーンデータセンターの推進

データセンターの省エネ化に向けて、サーバを構成する要素デバイス(CPU、アクセラレータ、メモリ等)の高性能化・省エネ化技術に、光配線技術といった光エレクトロニクス技術を融合(光電融合)したシステムの開発・実証や、データセンターを制御するソフトウェアによる性能・消費電力の最適化技術を開発、省エネ半導体の製造拡大のための設備投資支援を行う。また、データセンターでの脱炭素電力の利活用や、再エネ活用型データセンターの需要サイドでのニーズ醸成等を促進する。こうした取組により、2030年までに全ての新設データセンターの30%以上の省エネ化、国内データセンターの使用電力の一部の脱炭素化を目指す。

こうした取組を着実に進めるとともに、電力消費量が増加する電気・情報通信産業も含めた省エネ・省 CO2推進のための制度など、カーボンニュートラルに向け必要となる制度の検討を進めることで、半導体・情報通信産業の 2040 年のカーボンニュートラル実現を目指す。

2. 目標

【次世代グリーンパワー半導体開発】

- アウトプット
 - ▶ 研究開発の目標
 - 1. 2030 年までに、次世代パワー半導体を使った変換器などの損失を 50%以上低減及 び量産時に従来の Si パワー半導体と同等のコストを達成
 - 2. 2030 年までに、8 インチ(200mm)SiC ウェハにおける欠陥密度 1 桁以上の削減 及びコスト低減

(目標設定の考え方)

- 1. 世界の電力需要のうち、約半分がモーターである。モーターを回転させるパワーエレクトロニクス機器(パワー半導体を活用した機器)の動作効率が 1%改善するだけで、電力消費量は大幅に低減する。損失低減と効率改善は必ずしも 1 対 1 対応ではないが、例えば電動車においては、損失のうち約 20%が半導体の損失であると言われており、50%の損失改善は電動車の 5 ~10%程度電費改善につながると言われている。また、次世代パワー半導体は、性能は優れているが、ウェハが小口径であることに加えて、材料の価格及び製造工程の価格が高いために、従来の Si パワー半導体と比べて導入コストが高い。コストを従来の Si と同等とすることで普及拡大を目指す。
- 2. 開発したウェハを使ったデバイス等が、従来の Si パワー半導体同等のコストを実現するために必要なウェハサイズと欠陥密度及びウェハ自体のコスト低減を目標値に設定。コスト目標は、目標1の性能改善(損失 50%の低減)がデバイス製造技術により達成できる前提で、開発したウェハによる歩留まり改善などの成果も考慮した上で設定する。

(目標達成の評価方法)

- 1. パワー半導体を使用して設計したパワーエレクトロニクス機器(例えばインバータ等)を 試作し、動作させて評価を行う。または、実際の機器が使用される場合と同じ条件で動 作させた時の変換器の損失を評価する。また、ウェハの大口径化、ウェハの低欠陥化 (歩留まり改善)、性能改善(チップ面積削減)などの技術開発を実施して、チップ、 モジュール、システム等のコスト見積もりを実施して同耐圧・出力の Si 製品と比較する。
- 2. ウェハの口径の評価及び X 線等を活用した結晶欠陥密度の評価を行う。ウェハコストは、ウェハの生産性や材料費等に加えて、デバイスメーカを活用した評価結果(歩留まり改善結果)なども考慮して算出する。

(目標の困難性)

1. 現在の技術開発のトレンドラインから想定される 2030 年時点のパワー半導体の性能を

上回る性能を目指しており、実現には欠陥低減などの材料に近い開発とともに、制御技術などの実証に近い開発も並行して進める必要があり、実現には高いハードルが存在する。また、低コスト化についても、材料コストが Si に比べて 1 桁程度高いため、Si よりも1 桁以上の性能改善効果を実現する必要があり、高いハードルが存在する。

2. ウェハの大口径化及び低欠陥密度化については、現在の標準的な製造手法である「昇華法」で到達可能であるかどうかがわからず、「ガス法」や「溶液法」といった様々な手法を開発し、目標達成に向けて適切な手法を選択する必要があり、実現には高いハードルが存在する。

アウトカム

次世代パワー半導体による電気機器の損失低減により、サーバ電源、電動車、洋上風力発電等の送電網の高効率化が実現できる。これにより、国内および世界の CO_2 削減効果について以下のように算出した。

CO₂削減効果(ポテンシャル推計)

- 国内: 433~437 万トン- CO₂/年(2030年)、983 万トン- CO₂/年(2050年)
- 世界: 1.58 億トン- CO₂/年(2030 年)、3.41 億トン- CO₂/年(2050 年)

【算定の考え方】

パワー半導体の性能改善による各種アプリケーションにおける半導体部分の CO_2 排出量の削減効果を見積もった。あくまでも半導体を活用している部品の CO_2 排出量削減効果としているが、普及促進や部材の消費量削減なども、波及効果として予想される。

(1) 電動車関連の CO₂ 削減効果:

- 国内: 330 万トン- CO2/年(2030年)、660 万トン- CO2/年(2050年)
- 世界: 1.4 億トン- CO2/年(2030年)、2.8 億トン- CO2/年(2050年)

【算定の考え方】

電動車の CO_2 排出量と日本の自動車の平均走行距離を元に、1 台あたりの年間の CO_2 排出量を算出。ここに、電動車関連市場予測で述べられている 2030 年時点の 電動車の普及率を 50%として、全電動車の CO_2 排出量を算出した。さらに、電動車の損失割合を 20%とし、本プロジェクトによる事業成果である損失改善効果を 50%として削減量を算出した。また、2050 年は電動車普及率を 100%として算出した。

【利用したパラメータ】

表 1 電動車関連の CO2 削減効果算出に使用したパラメータ

パラメータ		国内	世界
1	電動車の CO ₂ 排出量(g- CO ₂ /km) ²	90	90
2	平均走行距離(km) ^{3,4}	9,360	21,726
3	総自動車数(台) ⁵	78,289,437	1,433,182,438
4	2030 年電動車普及率(%) ⁶	50	50
(5)	2050 年電動車普及率(%)	100	100
6	電動車における半導体損失(%) ⁷	20	20
7	本プロジェクトによる損失低減効果(%)	50	50

表1に用いたパラメータを用いて、以下の計算式によりCO2削減効果を見積もった。

計算式: ①×②×③×(④or⑤)/100×⑥/100×⑦/100

(2) 再Iネ等電力関連の CO2 削減効果:

○ 国内: 3~7 万トン- CO2/年(2030年)、86 万トン- CO2/年(2050年)

○ 世界: 450 万トン- CO2/年(2030年)、2,700 万トン- CO2/年(2050年)

【算定の考え方】

洋上風力により発電された電力が、火力により発電された電力を代替して、送電に使用される電力変換器の損失が低減すると仮定。2030年及び2050年の国内の洋上風力の導入量については、グリーンイノベーション基金「洋上風力発電の低コスト化」プロジェクトで記載されている、2030年1.68~3.68GW、2050年45GWとした。また世界の導入量としては、既報告により234GW、1,400GWとした。設備利用率及び火力平均の電力排出係数についても、グリーンイノベーション基金「洋上風力発電の低コスト化」プロジェクトに記載されている33.2%、0.66kg-CO2/kWhとした。現行の半導体

https://www.jsae.or.jp/engine_rev/backnumber/09-06/09-06-01.html

https://www.meti.go.jp/policy/chemical_management/law/prtr/r1kohyo/05todokedegaiyou/syousai/11.pdf

https://www.fhwa.dot.gov/ohim/onh00/bar8.htm

https://www.jama.or.jp/industry/ebook/2020/PDF/MIoJ2020 j.pdf

² 出所:公益社団法人自動車技術会 HP「特集:将来の EV 大量普及と電力供給システム」より

³ 出所:経済産業省「令和元年度 届出外排出量の推計方法等に係わる資料 詳細版」を基に試算

⁴ 出所:アメリカ運輸省統計「Average Annual Miles per Driver by Age Group」より

⁵ 出所:一般社団法人日本自動車工業会「日本の自動車工業 2020」より

⁶ 出所: Boston Consulting Group プレスリリース「世界の電動車(xEV)シェアは 2030 年に 51%へ。日本では 2030 年に 55%、ハイブッド車が引き続きシェアを維持(2020 年 1 月 10 日)」より https://www.bcg.com/ja-jp/press/10january2020-electric-car

⁷ 出所: トヨタ自動車株式会社「高効率 SiC パワー半導体(2014 年 5 月 20 日)」より https://global.toyota/jp/download/3519696」

変換器による損失は 2%と仮定し、本プロジェクトによる損失低減効果を 50%として CO₂ 削減量を算出した。

【利用したパラメータ】

表 2 洋上風力発電における CO2 削減効果算出に使用したパラメータ

	パラメータ	日本	世界
1	2030 年洋上風力発電量(GW) ^{8,9}	1.68~3.68	234
2	2050 年洋上風力発電量(GW) ^{7,10}	45	1,400
3	③ 設備利用率(%) ⁷ 33.2 33		33.2
	2030 年度の火力平均の		
4	電力排出係数 (kg-CO₂/kWh) ⁷	0.66	0.66
(5)	現行の半導体変換損失(%)11	2	2
6	本プロジェクトによる損失低減効果(%)	50	50

表 2 に用いたパラメータを用いて、以下の計算式により CO_2 削減効果を見積もった。 計算式: (①or②)×8760 (時間: 24 時間×365 日)×③×④×⑤/100×⑥/100

(3) サーバ電源関連の CO2 削減効果:

○ 国内: 100 万トン-CO2/年(2030年)、237 万トン-CO2/年(2050年)

○ 世界: 1,390 万トン-CO₂/年(2030年)、3,370 万トン-CO₂/年(2050年)

【算定の考え方】

2019年の世界及び国内のデータセンターの消費電力量は、それぞれ 200TWh,

16

⁸ 出所: グリーンイノベーション基金「洋上風力発電の低コスト化」プロジェクトに関する研究開発・社会実装計画より https://www.meti.go.jp/press/2021/10/20211001004/20211001004-2.pdf

⁹ 出所:世界風力会議(GWEC)「Offshore wind will surge to over 234 GW by 2030, led by Asia-Pacific(2020年8月5日掲載)」より https://gwec.net/gwec-offshore-wind-will-surge-to-over-234-gw-by-2030-led-by-asia-pacific/

¹⁰ 公益財団法人自然エネルギー財団「洋上風力発電に関する世界の動向[第2版] (2021年6月) 」より予測 https://www.renewable-ei.org/pdfdownload/activities/202106_OffshorewindInfo.pdf

¹¹ 有識者ヒアリングの結果に基づき試算

14TWh とされている¹²。大規模データセンターの消費電力量の増加分¹³を考慮すると、2030年、2050年の消費電力はそれぞれ表 3 となる。なお、計算負荷が将来にわたってこのまま増加し、現在入手可能な最新機器で情報処理を継続した場合の消費電力は表 3 よりも数桁大きい ¹⁴。

国内及び世界のデータセンターの現在の消費エネルギーは、表 3 に示した通りであるが、このうち、電源が占める損失は 25%とされている。

表 3 世界及び国内のデータセンター消費電力量(TWh)

	2019年	2030年	2050年
国内	14	18	43
世界	200	252	612

【利用したパラメータ】

①2030年、2050年データセンターの消費電力:表3に記載の通り

②サーバ消費電力に占める電源の損失割合 14:25%

③効率改善効果:50%

④排出係数: 0.441Mt- CO₂/TWh

計算式: ①×2/100×3/100×4×100

▶ 経済波及効果(世界市場規模推計)

○ パワー半導体全体:5兆円(2030年)、10兆円(2050年)

○ 次世代パワー半導体: 0.5 兆円(2030年)、3.7 兆円(2050年)

【算定の考え方】

2020 年のパワー半導体市場全体が約 3.2 兆円といわれており、2030 年には約 5 兆円になるといわれている¹⁴。これらの値を使って CAGR(年平均成長率)を計算し、2050 年の市場規模を推定した。

また、次世代パワー半導体については、2020年の市場規模が約900億円で、 CAGR 20%で成長するといわれており、2030年には約5,500億円に成長するとされ

https://www.jst.go.jp/lcs/proposals/index.html

¹² 出所:国立研究開発法人科学技術振興機構 低炭素社会戦略センター 低炭素社会の実現に向けた技術および経済・社会の定量的シナリオに基づくイノベーション政策立案のための提案書「情報化社会の進展がエネルギー消費に与える影響(Vol.2)」及び「情報化社会の進展がエネルギー消費に与える影響(Vol.3)」より

¹³ 出所:IEA「Global data centre energy demand by data centre type, 2010-2022」より

https://www.iea.org/data-and-statistics/charts/global-data-centre-energy-demand-by-data-centre-type-2010-2022

¹⁴ 出所: NEDO「低炭素社会を実現するパワーエレクトロニクスプロジェクト」より

ている 15 。徐々に成長率が減少することも見越して、2050年にかけて平均的な CAGR として 10%程度を仮定して 2050年の市場規模を推定した。

【次世代グリーンデータセンター技術開発】

- アウトプット
 - 研究開発の目標
 - 3. 2030 年までに、研究開発開始時点で普及しているデータセンターと比較して 4035%

 ※以上の省エネ化を実現
 - ※省電力アクセラレータ及び不揮発メモリ(事業中止分)を除く研究開発の目標

(目標設定の考え方)

3.2030年に向けて、データ量の急増にあわせてデータセンターの消費電力量が増加に転じると見込まれる中、現在の消費電力量と同等程度に抑えるために必要な省エネ目標を設定。

(目標達成の評価方法)

3. 本プロジェクトで開発した各要素デバイス、およびそれらにより構成されるサーバシステムの性能あたりの電力削減効果を評価¹⁶した上で、2030 年時点でのデータセンターの消費電力内訳を調査し、データセンターとしての省エネ効果を算出・評価する。

(目標の困難性)

3. データセンターは、サーバを構成する多くの要素デバイス、建物、空調等が電力を消費するため、各要素デバイスだけで実現できる省エネ化には限界があり、データセンターの省エネ化 4035%以上という目標を達成するためには、複数の要素デバイス開発や制御技術開発においていずれも革新性の高い省エネ目標を設定し、一体的に取り組むことで初めて達成できる野心的な目標である。

● アウトカム

▶ CO₂削減効果(ポテンシャル推計)

○ 国内: 130110 万トン- CO2/年(2030年)、750660 万トン- CO2/年(2050

¹⁵ 出所: Omdia「SiC & GaN Power Semiconductors Report - 2020」より

¹⁶ CPU やアクセラレータについては、広く実績のあるベンチマーク(HPL、HPL-AI、HPCG など)を用いて性能当たりの電力削減効果を評価する。必要に応じて事業開始時点のサーバ機器を保管し、本プロジェクトの成果を製品化したサーバ機器と電力削減効果を比較する。メモリ(DRAM)については、状態保持時間、読出回数を評価することによりリフレッシュ・ライトバックにかかる電力の削減効果を定量的に評価する。光電融合デバイス、光スマート NIC については、開発した技術における伝送容量当たりの消費エネルギーを評価し、事業開始時点の電気配線やネットワークに対する電力削減効果を算出する。ディスアグリゲーションについては、適切に選択したワークロードを演算処理してその性能・電力を参考に、制御システムの電力削減効果を評価する。

年)

○ 世界: 17601560万トン- CO₂/年(2030年)、1億8009450万トン- CO₂/年(2050年)

【算定の考え方】

2019 年及び 2030 年、2050 年の消費電力はそれぞれ表 4 となる。 (表 3 の再掲)

表 4 世界及び国内のデータセンター消費電力量(TWh) ※表 3 の再掲

	2019年	2030年	2050年
国内	14	18	43
世界	200	252	612

本プロジェクトの省エネ目標(データセンターによる省電力化 4035%、普及率を40%@2030年、100%@2050年)を表4の予測値に適用すると、それぞれ消費電力量の削減量は表5のようになる。

表 5 本プロジェクト成果を適用した場合の消費電力量の削減量(TWh)

	2030年	2050年
国内	3	17 15
世界	40 35	245 214

 CO_2 削減効果は表 2 の数字に CO_2 排出係数 0.441kg- CO_2 /kWh をかけ算することで算出した。

経済波及効果(市場規模推計)

○ 国内:約0.6兆円(2030年)、約2.1兆円(2050年) ○ 海外:約14兆円(2030年)、約78兆円(2050年)

【算定の考え方】

データセンターシステムの投資額は、2019年に世界 214,902百万米ドル、国内 12,056百万米ドルであり、2025年には世界 271,579百万米ドル(CAGR 4%)、国内 13,198百万米ドル(CAGR1.5%)と推計されている¹⁷。この投資額を基に世界 CAGR4%、国内 CAGR1.5%のまま成長すると仮定すると、2030年には

¹⁷ Gartner, Inc., Forecast: Enterprise IT Spending by Vertical Industry Market, Worldwide, 2019-2025, 1Q21 Update, Inna Agamirzian, et al., March 2021, End-User Spending basis. CAGR は経済産業省による算出。

世界で約 14 兆円 (国内 0.6 兆円) (普及率 40%を想定)、2050 年には世界で約 79 兆円 (国内 2.1 兆円)の市場規模と推定される。

データセンターが提供するクラウドサービスの市場規模は更に大きく¹⁸、国民生活においてはクラウドサービスやそれを利用する様々なアプリケーションによって、自動運転をはじめとする様々なタスクの自動化や、医療をはじめとする様々なサービスの遠隔共存化など、イノベーションを享受できるようになる。

【IoT センシングプラットフォームの構築】

- アウトプット
 - ▶ 研究開発の目標
 - 4. 2030 年までに、端末におけるエッジコンピューティング技術を開発し、本技術を活用したシステム全体の消費電力量¹⁹を 40%削減する。

(目標設定の考え方)

4. デジタル化の進展に伴う各種エッジデバイスからネットワークを経由してデータセンターに送信されるデータ量の急増に伴い、ネットワーク及びデータセンターの消費電力量が増加すると見込まれる中、IoT センシングプラットフォームの構築に基づくエッジサーバとネットワークの電力削減と、IoT 導入後の製造・物流等事業所における電力削減を合わせた、総合的な消費電力を、現在のネットワーク及びデータセンターの電力量と同水準とするために必要な省エネ目標を設定。

(目標達成の評価方法)

4. IoT センシングプラットフォームの構築によるセンサデバイスから送信されるデータの圧縮効果を評価するとともに、2030 年時点でのセンサデバイスの普及予測及びセンサデバイスや情報処理に必要な電力も加味した上で、省エネ効果を算出・評価する。

(目標の困難性)

4. センサデバイスは市場から高解像化を求められており、データ容量は増加する傾向。クラウドとエッジ端末の間に設けたエッジサーバでデータ処理を行う分散コンピューティングも提唱されているが、エッジ端末からエッジサーバへのデータ送信が行われることから、ネットワークの消費電力は減らない。従って、データ処理をエンドポイントを含むなるべくエッジ側で実施するとともに、処理自体の省電力化も達成する必要があり、抜本的な情報処理の見直しが必要である。

¹⁸ Gartner: https://www.itnext.in/article/2020/11/18/global-public-cloud-end-user-spending-grow-18-2021-gartner

¹⁹ データセンター、ネットワーク、エッジサーバ、エッジデバイスの消費電力量の合計

アウトカム

➤ CO₂削減効果(ポテンシャル推計) ※技術の普及率を100%と仮定

○ 国内: 0.55 億トン- CO₂/年(2030年)、4.23 億トン- CO₂/年(2050年)

○ 世界:11億トン-CO2/年(2030年)、84.7億トン-CO2/年(2050年)

【算定の考え方】

M2M の需要は様々な調査レポート 20 で増加するという予測がなされており、2030 年には 1,250 億個になるとされている 21 。

DBJ レポート²²によると、M2M センサ搭載数は約 14%であり、それを元に試算すると、2020 年 0.63 億台に対して、2030 年で 7.4 億台、2050 年で 60 億台のセンサ数となる見通し。

「4K 画像+既存圧縮技術」に対して本事業で開発する信号処理技術を適用した場合の CO2 削減効果を試算すると、2030 年、2050 年の CO2 削減効果はそれぞれ表 6 となる。

表 6 本プロジェクト成果を適用した場合の CO2 削減効果(億トン- CO2/年)

	2030年	2050年
国内	0.55	4.23
世界	11	84.7

▶ 経済波及効果(市場規模推計)

○ 国内:約2兆円(2030年)、約12兆円(2050年)

○ 海外:約70 兆円(2030年)、約270 兆円(2050年)

【算定の考え方】

センサ台数の将来予測値に対して、センサの単価と整備するプラットフォームサービスの利用料を仮定して試算した。

センサ台数の将来予測値については、 CO_2 削減効果算出過程と同様に、調査レポート 20 に記載されている 20%の CAGR を元に試算した。

センサの単価については、市販されている AI 機能を搭載したインテリジェントセンサ²³の 製品単価を参考にして 10,000 円と仮定し、プラットフォームサービスの利用料は、サブ

²¹ IHS Markit, The Internet of Things: a movement, not a market

²⁰ Cisco Annual Internet Report (2018~2023)

²² DBJ, 1 兆個のセンサによる社会変革~トリリオン・センサ・サミット 2015 報告~

²³ https://www.sony.com/ja/SonyInfo/News/Press/202005/20-037/

スクリプションサービスの平均額 2,000 円24と仮定した。

3. 研究開発項目と社会実装に向けた支援

- 【研究開発項目1】次世代パワー半導体デバイス製造技術開発
 - ▶ 目標:2030 年までに、次世代パワー半導体を使った変換器などの損失を 50%以上低減及び量産時に従来の Si パワー半導体と同等のコストを達成
 - ▶ 研究開発内容:

【 (1/2→1/3 補助) + (1/10 インセンティブ)】

パワー半導体はあらゆる電気機器に使用されているが、今後の社会情勢を鑑みて、特に注 目する応用先として、以下の応用先に適用可能なパワー半導体の開発を想定。パワー半導 体は耐圧毎に技術課題に対する解決方法が異なるため、各用途に応じた耐圧レンジ

(1.2kV 級である電動車、1.7kV 級である産業機器、3.3kV 級以上の再工ネ等電力、750V 級以下のサーバ電源等)で細分化し、複数の取組を並行させる。

- ① 電動車・産業機器向けパワー半導体
- ② 再エネ等電力向けパワー半導体
- ③ サーバ等電源機器向けパワー半導体

本プロジェクトはエンドユーザーも巻き込んだ開発を実施することを必須としており、事業体制に組み込むかエンドユーザーのリクワイヤメントを逐次収集し、必要に応じて開発目標を修正しながら研究開発を実施し、社会実装を実現する。

下記の①から③に記載した内容はあくまでも例示であって、記載内容以外のデバイス開発についての提案を妨げるものではない。他方で、GaNonGaNや Ga_2O_3 については、並行する別の予算事業にて研究開発を実施しているため、対象外とする。

① 電動車・産業機器向けパワー半導体の開発

電動車や産業機器(データセンター向け空調や無停電電源、太陽光発電のパワーコンディショナー、xEV の充電ステーション等)の高効率化に向けては、高耐圧、低抵抗かつ高速・高周波スイッチングが重要で、次世代パワー半導体の SiC が適している。

今後更なる性能改善の要求に対しては、デバイス性能の改善やモジュール技術の進化など、総合的な観点で開発を進めていく必要がある。例えば、更なる低抵抗化を実現するためには、ゲートと呼ばれる制御端子とチャネルと呼ばれる電流が流れる部分の間の欠陥密度低減が重要な要素の1つであり、SiC においては長年課題とされていて、継続的な技術開発が必要である。また、変換器の小型化に向けては高出力密度化が重要であるが、高出力密度化によって、一般的には発熱等による効率低下が問題となる。Siに比べて SiC は材料の性質として熱伝導率が高いことから、高出力密度化しつつも高

²⁴ https://ampmedia.jp/2018/07/24/subscription-service/

効率化が期待されているが、同時にモジュール技術の開発も重要である。さらに、制御技術も損失に影響を与えるという報告がなされており、Si に比べて高速に動作する SiC に適した制御技術も重要である。

このため、本プロジェクトでは、大口径ウェハでオン抵抗低減等を達成する性能改善と同時に、既存の次世代パワー半導体デバイスより優れた信頼性を有するデバイスを開発する。また、開発したパワー半導体の性能を最大限に引き出すための制御 IC、モジュール技術等も開発することで、従来の変換器(インバータ、コンバータなど)を凌駕する性能を実証する。

② 再エネ等電力向けパワー半導体の開発

洋上風力発電等の再生可能エネルギーの普及のためには、高効率で送電する送電網の構築が重要である。従来は、交流電力の送配電技術が用いられていたが、近年世界中で直流送電の開発が進められている。例えば、欧州や中国では直流送電の使用が先行している。直流送電技術により、高効率送電が出来るようになるとともに、例えば高電圧直流送電では長距離送電のコストも低減できることから、再生可能エネルギーの普及やデータセンター等の省エネ化に効果があると考えられる。

一方で、直流送電を実現するためには、直流遮断器及び電力変換器が必要であるが、従来の Si でこれらを実現する場合、IGBT(Insulated Gate Bipolar Transistor)を適用せざるを得ない。IGBT は電子と正孔の両方を電気伝導に使用するトランジスタとなっており、高耐圧動作及び大電流動作が可能なパワー半導体である。しかしながら、オン動作時に、ドリフト層と呼ばれる電流経路上にキャリアが蓄積してしまい、オン状態からオフ状態にスイッチングするターンオフスイッチング時に、この蓄積したキャリアの消失に時間が必要となる。その結果、キャリアの蓄積がない MOSFET(Metal Oxide Semiconductor Field Effect Transistor)と比べて高速性に課題がある。SiC はその物性的特徴から、MOSFET でも高耐圧及び大電流動作が可能であるため、Si IGBT に比べて高速に動作することが可能である。これにより、スイッチング周波数を高くすることが出来るため、変換器を小型化することが可能である。

このため、本プロジェクトでは、高周波スイッチング、低抵抗、高信頼性、低コストを兼 ね備えた高耐圧 SiC MOSFET の開発と、その成果を活用した直流遮断器および電力 変換器等の開発を行う。

③ サーバ等電源機器向けパワー半導体の開発

サーバ電源、民生機器電源等の電源省エネ化に向けては、低抵抗かつ高速・高周波スイッチングが重要であり、次世代パワー半導体の GaN が最も適しているとされている。現在も一部の AC アダプタには GaN が使用され、アダプタの小型化が実現されているが、従来の Si に比べてコストが高いこと等が原因で、アダプタ以外の社会実装が遅れて

いる。一方で、高周波スイッチングによる受動部品の小型化が期待できるという物性的メリットから、サーバ電源等の効率改善が期待される。

このため、Si に対して圧倒的に優れた性能を実現しつつ、信頼性やコスト面で Si と同等レベルにするような技術開発が必要である他、高周波・高速に動作する GaN を使いこなすための回路技術開発が必要である。本プロジェクトでは、GaN デバイスの性能改善に向けた開発を実施すると同時に、高信頼性化・低コスト化技術の開発及び GaN デバイスに適した回路等の開発を実施して想定されるアプリケーションの省エネ化を実証し、社会実装を加速する。

(委託・補助の考え方)

- ▶ 本研究開発項目について、既に次世代パワー半導体の市場が創出されつつあり、2025 年 頃以降に本格的に普及拡大していくことが見込まれており、事業リスクに比して実施者の裨益 が相対的に大きいと考えられるため、補助事業とする。
- 補助率については目標達成に向けた要素技術開発を行う事業前半を 1/2 とする。社会実装に向けた実証技術開発を行う事業後半は、実施者のコミットメントを高め、社会実装を加速化させるため、補助率を 1/3 とする。
- ▶ 要素技術開発とは、例えば高品質ゲート界面実現に向けた製造技術開発や、エピタキシャル層の結晶成長技術等を指す。
- 実証技術開発とは、例えば要素技術開発で開発した技術を組み合わせて検証するための開発などを指す。
- 【研究開発項目2】次世代パワー半導体に用いるウェハ技術開発
 - ▶ 目標:2030年までに、8インチ(200mm)SiC ウェハにおける欠陥密度1桁以上の削減及びコスト低減
 - ▶ 研究開発内容:

【(9/10 委託→2/3 補助→1/2 補助)+(1/10 インセンティブ)】

SiC は Si と C の 2 種類の元素により構成される化合物半導体であり、ウェハ中に多数の 欠陥があるため、性能や信頼性、歩留まりに悪影響を与えている。一部の用途では SiC の適 用が始まっているが、さらなる普及を考えるとウェハサイズ、ウェハ価格、製造歩留まり、性能等 により、従来の Si パワー半導体に比べてコストが高いことが課題であり、コスト低減が非常に重要である。

また、現在主に SiC を昇華させて再結晶化する昇華法による量産がされているが、今後の 大口径化、高品質化のニーズに対しては、ガス原料を反応させて結晶化するガス法や炭素含 有 Si 溶液中で結晶化する溶液法といった別の製造方法も候補として挙げられている。 こうした 手法に対して、現時点で絞り込むことが出来ないことから、当初は候補となる複数の手法による 大口径化、高品質化に向けた開発を実施し、ステージゲートによって、技術方式の絞り込みを

実施する。

また、本プロジェクトは、デバイスメーカを実施体制に組み込むか、外注先とするかは事業者の判断に委ねるが、少なくとも2社以上のデバイスメーカによる評価を実施することを必須としており、プロジェクト期間中に開発したウェハについては、適宜デバイスメーカによる試作・評価を通じてウェハ単独での性能改善効果(歩留まり改善、抵抗値低減など)を評価するとともに、こうした評価結果をもとにコスト試算を実施して、都度目標に反映する。

(委託・補助の考え方)

- ➤ 本研究開発項目について、高品質ウェハの製造技術は次世代パワー半導体の性能を大きく左右する技術であり、実施者の裨益が相対的に小さく、波及性が大きい基盤領域であるため、事業開始当初の要素技術開発期間は委託事業で研究開発を実施。
- ▶ 要素技術開発を実施した後、要素技術を活用した8インチ化に向けた技術開発や結晶成長 速度の向上などの低コスト化に向けた技術開発の期間は、補助率2/3の補助事業とする。
- その後、ステージゲート審査で有望な技術の絞り込みを行って、実証段階に進むことになるため、補助率 1/2 の補助事業とし、実施者の自立化を促していく。

● 【研究開発項目3】 次世代グリーンデータセンター技術開発

▶ 目標: 2030 年までに、研究開発開始時点で普及しているデータセンターと比較して 4035% 以上の省エネ化を実現

▶ 研究開発内容:

データセンターは、サーバを構成する多くの要素デバイス、建物、空調等が電力を消費するため、各要素デバイスだけで実現できる省エネ化には限界がある。データセンターの省エネ化 4035%以上という目標を達成するために、以下に示す各要素デバイスおよびディスアグリゲーション技術の開発において、いずれも高い省エネ化目標を設定し、各事業者が連携して一体的に取り組む。そのため、各研究開発内容を実施する事業者による共同提案を想定する。ただし、他の研究開発内容の実施者と相互協力体制の構築が見込まれる場合は、一部の研究開発内容を単独または共同で部分提案することも可能とする。なお、不揮発メモリ開発は、材料開発からデバイス開発までを含むより長期的なテーマであるため、他の研究開発内容との共同提案は想定しない。

① 光エレクトロニクス技術の開発

【 (2/3→1/2 補助) + (インセンティブ 1/10)、光電融合デバイス開発は (9/10 委託→2/3 補助) + (インセンティブ 1/10) 】

(光電融合デバイス開発)

チップ間などのサーバボード上短距離通信において高速化が進むことで、現状の電気配線では消費電力が増大するため、光配線化が急務である。チップ間の光配線のための超小型光トランシーバ「光電融合デバイス」は未開拓市場である。

2025 年以降に主流となる通信規格 PCIe6.0 に対応した高速化技術を開発し、チップ間接続の消費電力 90%削減を目指す。また、本事業の共通光配線技術として採用する。

(光スマート NIC 開発)

データセンターの CPU にかかる大きな計算負荷を低減するために、通信に係る処理を 分担するプロセッサを搭載したスマート NIC (NIC: ネットワークインターフェースカード) が注目されている。スマート NIC を世界に先駆けて光化するとともに、光伝送装置を小型化・一体化してデータセンター間の長距離光通信からサーバ内光配線までをシームレスに光接続できる「光スマート NIC」を開発し、ビットあたり消費電力を 1/10 に改善すると共に、データセンターネットワークの消費電力 25%削減を目指す。

② 光に適合したチップ等の高性能化・省エネ化技術の開発【(2/3→1/2 補助) + (インセンティブ 1/10)】

(省電力 CPU 開発)

サーバ向け CPU は、データセンターにおいて最も電力を消費する要素デバイスの一つであり、省エネ化はデータセンター全体の省エネ化において極めて重要である。光配線を実装すると共に、省エネ性能に優れる ARM アーキテクチャ²⁵を用いた上で、微細化、回路設計技術の高度化等により、現行 CPU に対し 10 倍の電力効率向上を目指す。

(省電力アクセラレータ開発) ²⁶

AI の計算においては、汎用 CPU だけでなく「アクセラレータ」と呼ばれる AI 計算に優れたプロセッサを追加することによって、処理性能、省エネ性能を大幅に向上できる。

5 TB/s 以上の高速なメモリ通信速度により、GPU²⁷等ではカバーしきれない幅広いアプリケーションに対応できる省電力アクセラレータを開発し、現行 CPU 比 10 倍の電力効率向上を目指す。

²⁵ ARM 社が設計・ライセンスしているプロセッサ用アーキテクチャであり、スマートフォンや組み込み機器などの低電力アプリケーション向けのプロセッサコアに用いられている。

 $^{^{26}}$ 実施者の申し出に基づき、第 12 回 産業構造審議会 グリーンイノベーションプロジェクト部会 産業構造転換分野ワーキンググループ(令和 5 年 3 月 17 日)での議論を踏まえ取り組みを中止。

²⁷ Graphics Processing Unit。コンピュータグラフィックスを高速に処理するために開発されたプロセッサであるが、深層学習においても CPU に比べて高い性能を発揮するため、AI 用途にも活用されている。

(不揮発メモリ開発) 28

DRAM²⁹(メインメモリ)の大幅な省エネ化に向けては、不揮発性の導入が必要である。DRAM と同等の書き込み速度を持つ不揮発メモリ³⁰の中から、大容量化やコストの面で DRAM 代替が可能な不揮発メモリを実用化し、消費電力 60%削減を目指す。

なお、材料開発からデバイス開発までを含むより長期的なテーマであるため、他のテーマとは公募を分けることを想定し、2030年のプロジェクト終了までに新しいメモリデバイスの実用化を目指す。

(広帯域 SSD 開発)

SSD(フラッシュメモリ)³¹においては、データ量の急増に伴い、それを活用するプロセッサからのアクセスが増えるため、インターフェースの高速化が課題である。しかし、2025 年以降は発熱のため電気配線では帯域向上が難しくなると予測されている。光インターフェースを搭載することで、発熱を抑制して並列化により 128GB/s の大幅な広帯域化を目指す。また、これによりディスアグリゲーション技術によるシステムの 20%省エネ化に貢献する。

③ ディスアグリゲーション技術の開発

【 (2/3→1/2 補助) + (インセンティブ 1/10)】

データセンターは数多くのサーバから構成されており、デバイス単位では、未使用状態になる時間が多く、効率化が必要である。負荷に応じて機能(デバイス)ごとに柔軟に計算リソースを割り当てるディスアグリゲーション技術に伝送遅延が小さい光配線を導入し、より柔軟な制御を実現する。AI を活用した割り当て制御ソフトを開発し、他の事業者と緊密に連携して、①や②で開発した要素デバイスを光接続したシステム実証を実施することにより、システム全体で20%の省エネ化を目指す。

(委託・補助の考え方)

▶ 光エレクトロニクスによる光配線やディスアグリゲーションによる動的な効率化を採用したデータセンターは、市場に存在しておらず、現時点では事業性は予見できない。また、各要素技術において、チャレンジングな省エネ化目標を設定するなど革新的な研究開発内容であることに加え、システムとして連携動作させるため、個別企業で実施することが困難な協調領域の開発で

²⁸ 実施者の申し出に基づき、第 32 回 産業構造審議会 グリーンイノベーションプロジェクト部会 産業構造転換分野ワーキンググループ(令和 7 年 5 月 26 日)での議論を踏まえ取り組みを中止。

²⁹ Dynamic Random Access Memory。コンピュータ用半導体メモリの一種。データを保持するために記憶保持動作が必要(揮発性)。

³⁰ データを保持するために記憶保持動作が不要で、電源を落としても記憶が保持されるメモリ。

³¹ Solid State Drive。半導体メモリをハードディスクのように使用できるようにした補助記憶装置の一種。主にフラッシュメモリ(不揮発メモリの一種)が使われている。

ある。そのため、前半の5年(5年後にステージゲートを想定)は補助率を2/3とし、後半の3年程度はサーバシステムとしての実証段階であり社会実装を見据えるため補助率を1/2とする。

- ▶ 光電融合デバイス開発は、実施者の裨益が相対的に小さく、波及性が大きい基盤領域であるため委託での開始を想定し、後半の3年は補助率を2/3とする。
- ▶ 不揮発メモリの開発については、材料から研究開発に取り組む必要があり、デバイスの実用化までに他テーマより時間がかかるため研究期間は最大で10年を想定する。

● 社会実装に向けた支援

- 2025年のステージゲート審査にむけて、本プロジェクトが目指すデータセンターに向けた試作機を開発し、大阪万博関連の展示等を検討。
- ▶ IOWN GLOBAL FORUM や Open Compute Project 等の、国際的なオープンフォーラムにおけるグローバルニーズや仕様化議論を参照し、柔軟な研究計画・目標の見直し。
- プロジェクト内の技術的な連携に加えて、技術・市場動向(エネルギー消費量も含む)を踏まえたプロジェクトの方向性の議論、社会実装を見据えたユーザーとの議論、他国のプレーヤーやコンソなどとのグローバルな連携の議論を行う場(協議会等)を設置。他府省庁のオブザーバ参加も可能とする。協議会等の設置に際しては、中心となる事業者がリーダーシップを発揮できる体制や、知財やノウハウの保護を踏まえたオープン&クローズ戦略に留意する。
- ガバメントクラウドを含む国内における需要創出の検討。
- ▶ 高い省エネ効果を有する機器の導入を促進する補助金や税制優遇等の検討。

● 【研究開発項目4】 IoT センシングプラットフォームの構築

▶ 目標: 2030 年までに、端末におけるエッジコンピューティング技術を開発し、本技術を活用した システム全体の消費電力量を 40%削減する。

▶ 研究開発内容:

デジタル化の進展は、人・物・金の流れの最適化が進むことなどを通じ、エネルギーの効率的な利用・省 CO₂ 化にもつながる。従って、スマートシティ、スマートファクトリ等の DX 化を進めることが重要であるが、その実現には様々なセンサデバイスを組み合わせた情報処理と処理結果に基づき適切に判断をするシステムを必要な個数配置することが重要。従って、DX 化の進展に伴う消費電力の増大に対しては、センサデバイスの省電力化に加えて、情報処理結果の判断に必要なシステムの省電力化が求められる。

本研究開発項目では、DX 化を推進するための技術開発と DX 化を実現した際の情報処理 に係る消費電力の削減に資する技術開発を一体的に進める。

情報処理に係る消費電力の削減については、既存のデータ処理シーケンスを抜本的に見直して、処理後の情報精度と処理に係る消費電力量の両立を達成する技術開発を実施する。

DX 化の推進については、高解像なセンサデバイスや革新的な情報処理技術を使いこなすためのアプリ開発環境整備(以下、プラットフォーム)を開発する。

これらは、一体的に開発することによって成果を最大化できるため、幹事企業を中心にエコシステムの様々なレイヤーの事業者が連携して取り組む。ただし、他の研究開発内容の実施者と相互協力体制の構築が見込まれる場合は、一部の研究開発内容を単独または共同で部分提案することも可能とする。なお、センサデバイス自体の高性能化等の技術開発は本事業の対象外とする。

① エッジ信号処理開発

【 (9/10 委託→2/3 補助→1/3 補助) + (インセンティブ 1/10)】

画像などを利用した DX 促進のためには、アプリケーション開発者が様々なセンサから取得したデータを、各ユースケースに合致するように取り扱えることが重要である。他方で、画像センサ以外の多くのセンサは、取得したアナログ情報を、アプリケーション開発者にとって意味のある情報に変換する効率的な信号処理が整備されていない。

本研究開発内容では、多種多様なセンサに対してアプリケーション開発者が必要とする情報を、可能な限り高精度に出力するためのエッジ信号処理技術の開発を行う。

また、アプリケーション毎に必要なセンサデータは千差万別であると同時に、1つのセンサではなく複数のセンサ情報を統合した処理が必要であるため、エッジ型で統合する処理技術の開発も行う。

加えて、これらの信号処理を実行する半導体チップの開発を行う。

② SDK 及びプラットフォームの開発

【 (2/3 補助→1/2 補助→1/3 補助) + (インセンティブ 1/10)】

DX 化を促進するためには、①で開発した信号処理をエンドユーザーが使いこなすことが必要であり、例えば革新的なサービスを提供するスタートアップのようなデベロッパーでも、容易にアプリケーションやソフトウェアの開発ができるような環境整備やツールの開発、ソリューション構築、運用など、エッジ処理の社会実装の加速等をするためのプラットフォームが必要であり、その開発を行う。

加えて、こうした AI 処理においては、学習データ構築の工数が非常に多く、社会実装の障壁となることから、AI 学習データ構築の高効率化技術も開発し、上記プラットフォームに実装する。

③ ハードウェア基板開発

【(2/3 補助→1/2 補助→1/3 補助)+(インセンティブ 1/10)】

①及び②で開発した技術を活用できるようにするためには、一定のルールに基づいて構成されるハードウェアが必要である。加えて、エンドユーザーがソリューションを導入する際、

ユースケース毎に必要となるセンサデバイス及びデータが異なる。したがって、本研究開発 内容では、①及び②の技術を活用するための要件を定義した上で、様々なセンサを搭 載可能なハードウェア基板を開発する。

④ アプリケーション開発

【(2/3 補助→1/3 補助)+(インセンティブ 1/10)】

①から③で開発する技術を社会実装して、CO₂ 削減効果を実証するためのアプリケーションの開発を実施する。開発内容については提案者に一任するが、複数のセンサを活用することと、省エネ効果(CO₂ 削減効果)を実証できることを要件とする。

(委託・補助の考え方)

- ➤ エッジ信号処理開発については、端末内部でのコンピューティング処理となり、この部分は本技術開発のコアであるため、初回ステージゲート審査までは委託事業として実施。その後、補助事業に移行し、補助率を 2/3、1/3 として補助率を段階的に下げて事業を実施する。
- ➤ SDK 及びプラットフォームの開発は、DX 化を進めるためのコア技術であると同時に共通基盤 技術であるが、実施者に裨益するテーマでもあるため初回のステージゲート審査までは補助率 2/3 の補助事業として実施。ステージゲート審査後は、補助率を 1/2、1/3 として段階的に 下げて事業を実施する。
- ▶ ハードウェア基板開発は、開発内容①及び②を活用するためのハードウェア基板であり、当初は要素技術開発の色彩が強いため補助率 2/3 の補助事業として実施。ステージゲート審査後は、それまでに開発した技術を応用して、様々なセンサへの適用拡大を実施するために、補助率 1/2、1/3 と段階的に下げて事業を実施する。
- アプリケーション開発は、開発者に裨益する部分が大きいため補助事業として実施し、事業期間前半は補助率 2/3、ステージゲート審査後、最大3年間は補助率 1/3の補助事業として実施。それ以降は、エコシステム拡大のため民間事業者単独の取組に移行する。

● 社会実装に向けた支援

- 事業実施期間中に開発する技術の有効性を検証するために、エンドユーザー(サービス提供者やアプリケーション開発者など)によるデモを実施し、その結果を取組に反映する。
- ▶ IoT センシングプラットフォームの活用による省エネ化の取組内容の記載を、省エネ法における 定期報告書の記載に追加することを検討する。また、特定エネルギー消費機器におけるトップ ランナー制度、事業所におけるベンチマーク制度の中に位置づけることを検討する。
- 事業者から提案のあった規制・制度的措置の必要性について、経済産業省として、省内又は必要に応じて関係省庁との間で検討し、具体的な取組を推進する。
- ▶ 標準化戦略について、事業者において市場創出と海外市場の獲得に向けた標準化戦略 (デジュール・フォーラム・デファクト標準の組み合わせと選択から成り立つものであり、規格開

発の範疇を超えて、オープン&クローズ戦略全体の検討を前提とする。)を検討し、具体的な 取組を推進することに対して、経済産業省として必要な支援を行う。

▶ 当初の計画より前倒しで補助事業を終了し社会実装に取り組む場合には、前倒しインセンティブ措置を講じる。その際の「社会実装の前倒し実施に係るインセンティブ率」については、 (総事業費) × (社会実装の前倒し実施に係るインセンティブ率 (前倒し年数に2%を乗じた値)) × (目標の達成度や前倒し達成の困難度°等)とする。32

4. 実施スケジュール

【研究開発項目1】次世代パワー半導体デバイス製造技術開発 【研究開発項目2】次世代パワー半導体に用いるウェハ技術開発

プロジェクト期間

一般的な技術開発トレンドからの前倒し開発を実施するため、複数の技術開発要素を組み合わせた開発を実施するため、2021 年から最長 2030 年までの 10 年間を想定。一方で、半導体の世界は技術進化が速いので、前倒しで実用化可能な場合には、10 年未満であっても事業終了をするとともに実用化フェーズへと移行することを妨げない。

確実な社会実装を実現するために、提案時からエンドユーザーのオブザーバ参加など、ユーザー側のリクワイヤメントを取り入れながらプロジェクトを進めることを必須とする。また、技術開発動向の変化が激しい分野でもあるため、毎年の WG の議論を経て、ユーザーのリクワイヤメントを基にして目標を修正。

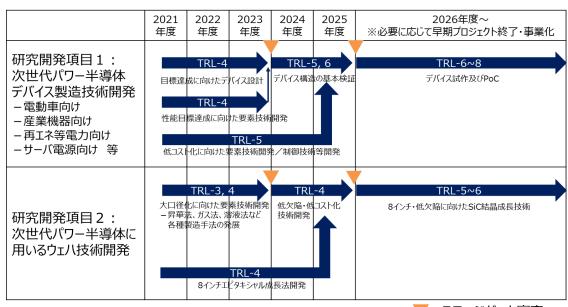
● キーマイルストーン・ステージゲート設定

研究開発目標の達成には、様々なアプローチが考えられることから、具体的な達成方法・スケジュールは提案者の創意工夫に委ねることを原則とするが、以下の通り、事業化段階の切れ目において、キーマイルストーン及びステージゲートを設定し、事業の進捗を見て、継続可否を判断する。ステージゲート審査については、デバイス開発は、10年未満の事業化も想定し、2~3年に1度実施。ウェハ開発は、当初5年間は目標達成に向けて様々な手法に取り組むが、5年目のステージゲート審査において、開発する技術の絞り込みを実施する。ステージゲートで審査する目標ス

【研究開発項目1】次世代パワー半導体デバイス製造技術開発

ペック等については、有識者意見も踏まえて決定する。

- 目標達成に向けたデバイス設計及び製造上の要素技術等の開発(2023年頃)
 - 高品質ゲート界面実現に向けた製造技術開発
 - 高品質エピタキシャル結晶成長技術 等


32 前倒し達成の困難度については、TRLの上昇幅や海外競合企業の取組状況等を加味して設定するものとする。

- 低コスト化に向けた要素技術開発及び制御技術等の開発(2025年頃)
 - 高歩留まり実現に向けた製造プロセス全体の最適化
 - -デジタル制御技術等を活用した高効率制御方法の開発 等
- デバイス試作及び PoC(2030 年頃)
 - 各種用途における信頼性実証
 - 低損失変換器実証 等

【研究開発項目2】 次世代パワー半導体に用いるウェハ技術開発

- 大口径・高品質化に向けた基礎検討(2023年頃)
 - 小口径もベースにした低欠陥化に向けた要素技術開発
 - -200mm 実現に向けた結晶成長技術の基本開発 等
- 低コスト化に向けた要素技術開発(2025年頃)
 - 高速成長と高品質の両立化技術
 - 低欠陥化技術 等
- 高品質 200mm SiC バルクウェハ実証(2030 年頃)

表 6. プロジェクトの想定スケジュール(例)(研究開発項目 1、2)

▼ : ステージゲート審査

【研究開発項目3】次世代グリーンデータセンター技術開発

プロジェクト期間

サーバを構成する各要素デバイスおよび光配線技術の開発を一体的に実施し、最終的にディス

アグリゲーション技術によるシステム実証を実施するため、2021 年度から 2028 年度までの最大 8 年間を想定する。不揮発メモリ開発については、材料から研究開発に取り組む必要があり、デバイスの実用化までに他テーマより時間がかかるため研究期間は最大で 10 年を想定し、光配線の実装は実施しない。以下のスケジュールは、あくまで一例であり、事業者の提案において、早期の目標達成のために最適なスケジュールを組むことは妨げない。

実施者は、成果物を世界市場で事業化するために、海外市場を中心にビジネス展開を担当する国際ビジネス化戦略担当を任命し、当該担当者は NEDO に対して、その活動内容および最新の市場動向およびビジネス戦略を報告する。海外プレーヤーとの戦略的な連携を推奨。

また実施者は、プロジェクト内の技術的な連携に加えて、技術・市場動向(エネルギー消費量も 含む)を踏まえたプロジェクトの方向性の議論、社会実装を見据えたユーザーとの議論、他国のプレーヤーやコンソなどとのグローバルな連携の議論を行う場(協議会等)を設置する。他府省庁のオブザーバ参加も可能とする。協議会等の設置に際しては、中心となる事業者がリーダーシップを発揮できる体制や、知財やノウハウの保護を踏まえたオープン&クローズ戦略に留意する。

● キーマイルストーン・ステージゲート設定

研究開発目標の達成には、様々なアプローチが考えられることから、具体的な達成方法・スケジュールは提案者の創意工夫に委ねることを原則とするが、以下の通り、事業化段階の切れ目において、キーマイルストーン及びステージゲートを設定し、事業の進捗を見て、継続可否を判断する。また、提案に際しては、進捗が明確となるよう 2~3 年ごとにマイルストーン目標を設定するよう事業者に求める。

(研究開発内容①) 光エレクトロニクス技術の開発

(研究開発内容②) 光に適合したチップ等の高性能化・省エネ化技術の開発

(研究開発内容③) ディスアグリゲーション技術の開発

- ①および②で開発した高速光配線を備えた要素デバイス試作機と、③で開発した制御 ソフトウェアを適用したサーバシステムの実証に合わせてステージゲートを実施(下表の例 では 2025 年度)
- 不揮発メモリについては、材料開発・基礎プロセス開発後、および大規模化技術開発後にステージゲートを実施。

表7:プロジェクトの想定スケジュール(例) (研究開発項目3)

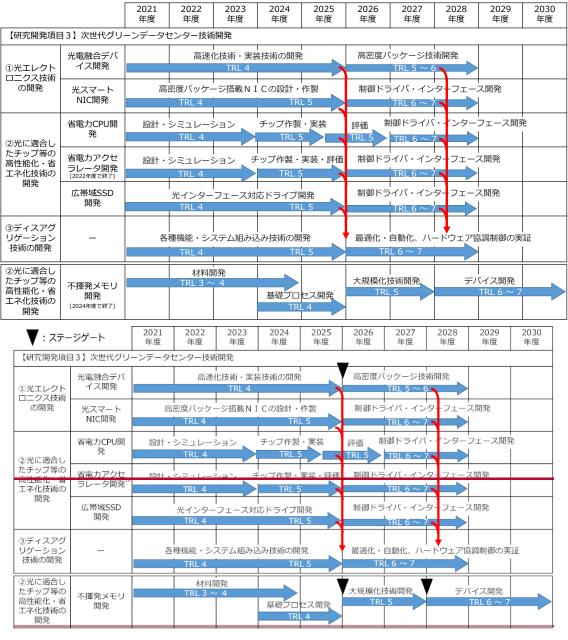
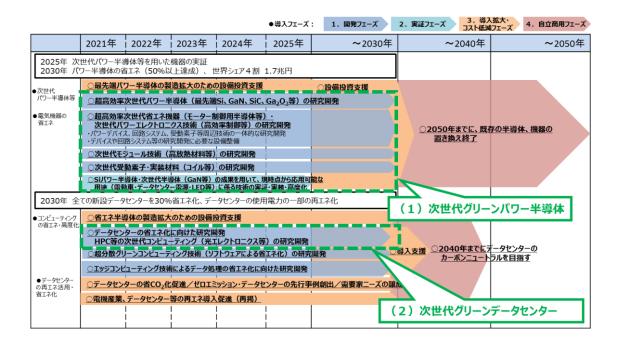



表8:社会実装スケジュール

【研究開発項目4】IoT センシングプラットフォームの構築

● プロジェクト期間

2023 年から最長 2030 年までの 8 年間を想定。一方で、2020 年代後半にポスト 5G が主流となり、IoT がますます進展することが予想される中で、前倒しで実用化可能な場合には、8 年未満であっても事業を終了するとともに実用化フェーズへと移行することを妨げない。

確実な社会実装を実現するために、提案時からエンドユーザー(サービス提供者、アプリケーション開発者など)のリクワイヤメントを取り入れることや、様々なセンサメーカーのオブザーバ参加を必須とする。公募に際して事前に個別分野を指定はしないが、提案書には適用を想定する分野と、普及のための規制・制度的措置の必要性を記載する。採択後は当該分野における具体的な取組を実施することにコミットする。また、NEDOの技術・社会実装推進委員会や以下に述べるステージゲート審査において、プロジェクトの進捗や海外動向等を踏まえて、目標や方向性を修正する。

● キーマイルストーン・ステージゲート設定

研究開発目標の達成には、様々なアプローチが考えられることから、具体的な達成方法・スケジュールは提案者の創意工夫に委ねることを原則とするが、以下の通り、事業化段階の切れ目において、キーマイルストーン及びステージゲートを設定し、事業の進捗を見て、継続可否を判断する。ステージゲート開催時期について、一回目は 2025 年度までに実施する。

(研究開発内容①) エッジ信号処理開発

(研究開発内容②) SDK 及びプラットフォームの開発

(研究開発内容③) ハードウェア基板開発

(研究開発内容④) アプリケーション開発

- ①、②、③で開発した信号処理技術、プラットフォーム、ハードウェア基板を組み合わせた 高機能エッジ処理システムの動作実証に合わせてステージゲートを実施(下表の例では 2025 年度、2028 年度)。
- ④アプリケーション開発については、2025 年度のステージゲート審査において何を実証するのかを確認した上で、事業期間の後半でその実証に向けた技術開発を行う。

表9:プロジェクトの想定スケジュール(例)(研究開発項目4)

表10:社会実装スケジュール

5. 予算

事業総額(国費負担額のみ。インセンティブ分を含む額):上限 1,901.21,836.1 億円33

次世代グリーンパワー半導体:上限 518486 億円

【研究開発項目1】次世代パワー半導体デバイス製造技術開発

予算額:上限 332300 億円

予算根拠:過去の NEDO 事業の研究開発期間・規模を参考に、開発するウェハのサイズの

違いも考慮して試算。

【研究開発項目2】次世代パワー半導体に用いるウェハ技術開発

予算額:上限 186 億円

予算根拠:過去の NEDO 事業の、研究開発期間・規模を参考に、開発するウェハのサイズ

の違いも考慮して試算。

次世代グリーンデータセンター:上限 892781.1 億円

【研究開発項目3】次世代グリーンデータセンター技術開発

①光エレクトロニクス技術の開発

(光電融合デバイス開発)

予算額:上限56億円

予算根拠:想定されるプロセスルールにおけるLSI・光集積回路の開発費、光モジュール実装装置、高速光信号評価装置などについて過去のNEDO事業等の情報を基に試算。

(光スマート NIC 開発)

予算額:上限110億円

予算根拠:想定されるプロセスルールにおけるLSI・光集積回路の開発費、光モジュール実装装置、高速光信号評価装置などについて過去のNEDO事業等の情報を基に試算。

②光に適合したチップ等の高性能化・省エネ化技術の開発

-

^{33「}省電力アクセラレータ開発」(事業費上限 90 億円)については、取組を中止していることから、中止までに要した事業費約 12.2 億円を控除した約 77.8 億円を事業費総額から控除している。「不揮発メモリ開発」(事業費上限 65 億円)については、取組を中止していることから、中止までに要した事業費約 31.9 億円を控除した約 33.1 億円を事業費総額から控除している。また、次世代パワー半導体デバイス製造技術開発(事業費上限 332 億円)については、研究開発の効率化等により 32.0 億円を事業費総額から控除している。そのため、事業費総額の上限については、プロジェクトを組成した当初の事業総額である上限 1,410 億円に対して、77.8142.9 億円を控除し、第 16 回 産業構造審議会 グリーンイノベーションプロジェクト部会 産業構造転換分野ワーキンググループ (令和 5 年 6 月 8 日)での議論を踏まえ、取組を追加した「IoT センシングプラットフォームの構築」(事業費上限 569 億円)を加算した額としている。

(省電力 CPU 開発)

予算額:上限502億円

予算根拠:想定されるプロセスルールにおける各種 LSI およびパッケージの開発費、IP ライセンス費、設計・検証労務費などについて過去の NEDO 事業や技術トレンド等の情報を基に試算。

(省電力アクセラレータ開発) 2022 年度で終了 26

予算額: 上限 90 億円

予算根拠:想定されるプロセスルールにおける LSI およびパッケージの開発費、設計・検証作業外注費などについて過去の NEDO 事業や技術トレンド等の情報を基に試算。

(不揮発メモリ開発) 2024 年度で終了²⁸

予算額:上限65億円

予算根拠: 材料成膜装置費、デバイス作製装置費、チップ開発費などについて過去の

NEDO 事業等の情報を基に試算。

(広帯域 SSD 開発)

予算額:上限19億円

予算根拠:デバイス開発費、部材費などについて過去の NEDO 事業等の情報を基に試 算。

③ディスアグリゲーション技術の開発

予算額:上限50億円

予算根拠:制御ソフトウェアコーディング作業外注費などについて過去の NEDO 事業や他のシステム開発の公開情報等の情報を基に試算。

IoT センシングプラットフォームの構築:上限 569 億円

【研究開発項目4】IoT センシングプラットフォームの構築

①エッジ信号処理開発予算額:上限 110 億円

予算根拠: エッジ処理技術を実装したカメラ開発費などについて過去の NEDO 事業の情報を元に試算。

②SDK 及びプラットフォームの開発

予算額:上限360億円

予算根拠:ソフトウェアディベロップメントキット及び IoT センシングプラットフォームのコーディング

に要する経費などについて NEDO 事業の情報を元に試算。

③ハードウェア基板開発

予算額:上限95億円

予算根拠: IoT センサ基板開発費などについて過去の NEDO 事業の情報を元に試算。

④アプリケーション開発

予算額:上限4億円

予算根拠:アプリケーション開発費及び実証費などについて過去の NEDO 事業の情報を元

に試算。

● 取組状況が不十分な場合の国費負担額の返還率:返還が決定した時点における目標達成度を考慮し、WGにおいて、「10%、30%、50%」の3段階で評価

(参考) 改訂履歴

- ·2021年10月 制定
- •2023年 3月 改定
- •2023年 9月 改定
- •2025年○月 改定