

1

新地発電所 揚炭機損壊メカニズムと対策について

2022年 8月 29日

次

- 1. 揚炭設備の概要
- 2. 揚炭機の構造
- 3. 揚炭機の損壊状況
- 4. 損壊メカニズム解析手順
- 5. 解析結果
- 6. 損壊メカニズムまとめ
- 7. 今回の地震を踏まえた対策の方向性

1. 揚炭設備の概要

▶ 定格容量1,500t/hの揚炭機が,相馬港の専用バース上に東西 方向に連なって4基設置

2. 揚炭機の構造

≻今回の地震で損壊したNo.3, 4揚炭機の構造

※揚炭機はクレーン設備に該当するため、クレーン等安全規則に基づき設置

3. 揚炭機の損壊状況

健全な揚炭機

損壊したNO.3, NO.4揚炭機

- ▶ 揚炭機上部のバランシングレバー部 (三角形の部分)が大きく損傷
- ▶ 脚部については曲がりはあるものの損 壊には至っていない

(1) 揚炭機地震波の取得

5. 解析結果 (バース地盤への地震波)

- ▶ まず18秒から南北方向(揚炭機走行方向に対して直角方向)に500Gal程度の 揺れが始まる。
- ➤ その後20秒から東西方向(揚炭機走行 方向)の1,500Galを超える大きな揺れが 重なった。東西方向の揺れが卓越した解 析結果となった。
- ▶ 上下方向については最大で230Gal程度の揺れであった。

© 2022 Soma Kvodo I

5. 解析結果(加速度評価)

トップフレーム部は上下方向の加速度が揚炭機地盤面より増幅され,最大2,040Galと大きくなった。

5. 解析結果(加速度評価)

(2) 揚炭機バラストタンク部に掛かる加速度

トップフレーム同様, バラストタンク部も上下方向の加速度も増幅した。

バランシングレバー頂部において,3,000Gal以上の南北方向加速度が発生した。 東西,上下方向共に1,000Gal以上の大きな加速度が発生した。

5. 解析結果(荷重評価)

5 10 15	8,000 6,000 4,000 0 ₩1 ∰ -2,000 -6,000 -6,000 -10,000 -12,000	
		2.5 2.0 2.7 2.0 2.7 30 51 52 55 54 5 時刻[S]

			<u>i</u>	単位:kN
部位	右前	左前	右後	左後
最大値	4,047	6,030	1,896	2,546
最小値	-3,693	-3,516	-8,385	-10,047

バランシングレバー頂部へつながっている部材について,ト ップフレーム側(右前,左前)とバラストタンク側(右後,左後)に大きな引張荷重と圧縮荷重が繰り返し加わり、この 部分が最初に破損したと推定。

5. 解析結果(許容応力との比較)

(5)バランシングレバー部に掛かる応力

今回の時刻歴解析で、バランシングレバーに作用した最大応力

上図	軸力+曲げ (最大) [N/mm²]	軸力のみ (最大) [N/mm²]	許容応力 (降伏点/引張強度) [N/mm ²]
1	-973	-194	(325/ <mark>490</mark>)
2	-603	-520	(460/ <mark>570</mark>)

最大応力は,降伏点ばかりでなく, 引張強度を越えている。

通常軸力が支配的である部材に対して、今回の地震では曲げ応力が 大きく作用し、引張強度を超えて損 壊に至った結果となった。

- (1) 揚炭機に作用した加速度は、火力発電所の耐震設計規程に定める196Gal (0.2G) を大きく越える大きな地震であった。
- (2)損壊メカニズムについては、地震発生から南北方向(走行方向に対して直角方向) に揺すられ、その後東西方向(走行方向)の大きな震動が加わり、トップフレーム側 、バラストタンク側の垂直加速度(上下動)になった。その揺れに伴う大きな荷重がバ ランシングレバー頂部へ向かう部材に働き、大きな負荷が加わった。
- (3) バランシングレバー頂部に向かう部材に作用する引張と圧縮の応力が部材の許容応 力を大幅に超えて損壊に至ったと推定した。

④ ブーム・BE部落下

7. 今回の地震を踏まえた対策の方向性

- ▶ K-NET相馬で観測された最大加速度は昨年が647Gal,今回が745Gal(1.15倍)と類似地震であった。
- > しかし、東西方向の応答スペクトル解析結果, 卓越する周期には大きな違いが見られる。
- ▶ 揚炭機の固有振動数は0.8秒~1.8秒であるが、今回の地震の東西方向(揚炭機の走行方向)における周期1秒の加速度は、昨年500galに対し、1,800gal(3.6倍)と非常に大きな加速度を観測した。

- 脚部からの地震エネルギーが揚炭機上部へ増幅して伝わることを抑制するために「バランシングレバー上下の揺れを分散しやすい構造」や「免振装置」を検討(対策品イメージは次頁)
- 揚炭機運転席位置を安全重視した箇所への変更対策, 遠隔操作対策の検討

以上