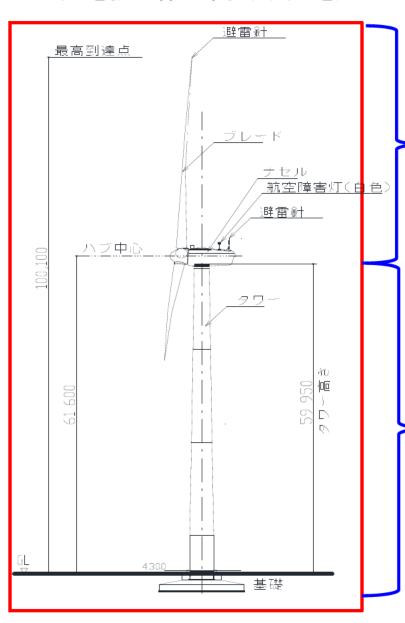
第16回新エネルギー発電設備 事故対応・構造強度WG 【資料1-3】

白馬ウインドファームの ブレード折損事故について (中間報告)

2019年3月11日 白馬ウインドファーム株式会社

目次


- 1. 風車選定のプロセス
- 2. 当該風車が準拠する法律・規格など
- 3. 型式認証 (Type certificate) の取得状況
- 4. 当該風車の耐風速
- 5. 基礎の耐力
- 6. 風車が風に正対する場合のブレード応力
- 7. 風車の破損状況
- 8. 17号機のNo.1ブレード破損状況
- 9.17号機の他ブレードと10号機のブレード解体調査
- 10. 各風車の破損状況と分析
- 11. 風向計の耐風強度

1. 風車選定のプロセス

年	月日	項目	備考
2001(H13)	5月28日	風力発電規程(改訂)JEAC5005-2001	・一次評価で各メーカーの機種よりスペックに対する信頼性が高く、サービス体制、 納期等の面で、高い管理能力を有すること。
2005(H17)		社内風車機種選定会議	・二次評価において年間推定発電量、設備利用率等を比較し 三社に絞り込み、各社の発電機のパワーカーブ等を勘案した結果
		新エネルギー等事業者支援対策費補助金申請	①発電量が多い。 ②システム効率が高い。③発電利用率が高い。 評価が最も高いGE製に決定した。
2006(H18)	12月08日	風車機材発注(GEドイツ工場)	
	6月20日	建築基準法改正	- 高さ60mを超える風力発電機について、第三者機関による構造審査の義務付
2007(H19)	8月29日	工事計画届出書	
2007(H19)	11月27日	風力発電設備支持物構造設計指針·同解説(2007年版)	国土交通大臣の認定及び建築確認を取得している事が必須条件
	12月18日	性能評価申請	- 基礎、タワーについて構造評価 ・強風シミュミレーションを行い最大風速62.4m/S(3秒平均)で検討
	3月01日	日本型風力発電が介づイン台風・乱流対策編	
	3月31日	建築構造物性能評価合格	
2008 (H20)	5月02日	工事計画変更届出書	- タワ-高さ基礎形状寸法変更に伴う届出書
2008 (H2U)	5月07日	国土交通大臣認定取得	
	5月23日	建築確認済証取得	- 風車基礎工事着手
	6月24日	風車機材輸入(ブレード)	
2009(H21)	3月13日	5号機プレード折損事故発生日	────────────────────────────────────
	12月18日	電気事故報告受理日(最終)	────────────────────────────────────
2010(H22)		建築完了検査日	③受入時にUT検査、内外の目視点検の実施
		使用前安全管理審査(適合)	
2011(H23)	8月27日	風力発電規程(改訂) JEAC 5005-2011	3

2. 当該風車が準拠する法律・規格など

風力発電機全体の準拠法:発電用風力設備に関する技術基準を定める省令(風技)

風力発電機:GE1.5sle ナセル・ハブ・ブレード

の準拠規格:IEC61400-1

SECOND EDITION

設計:GE Energy GmbH

製造:ナセル GE社

ハブ GE社

ブレード LM社

タワー・基礎の準拠法:建築基準法

設計者: 一般 (株)きんでん一級建築士事務所

タワー (株)きんでん一級建築士事務所

基礎 青木あすなろ建設株式会社

製造:タワー 韓国 東国製鋼

高力ボルト 阪急鉄工(株)

施工:基礎 青木あすなろ建設(株)

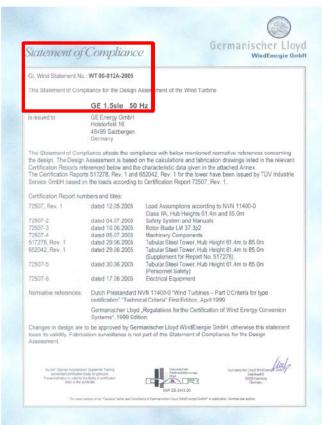
組立・試験 (株)きんでん

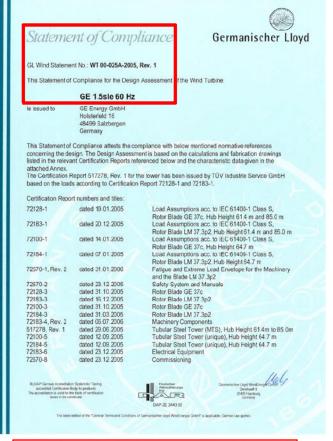
3. 型式認証 (Type certificate) の取得状況

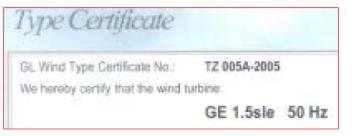
GE 1.5sle の認証取得状況は下表の通り

	設計評価 (Design Assessment)	型式認証 (Type Certificate)
1.5sle 50Hz	取得	取得
1.5sle 60Hz	取得	

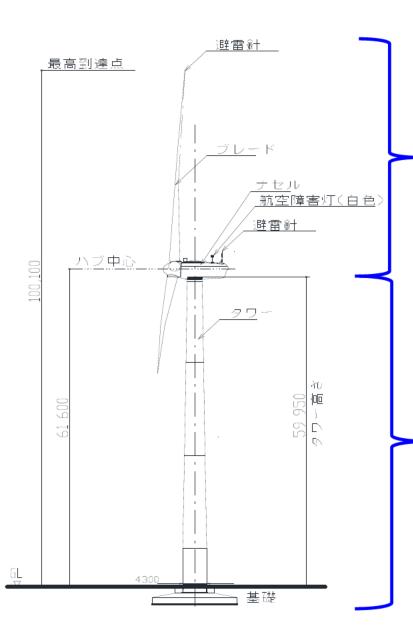
型式認証 (Type Certificate)


1.5sle 50Hz: 型式認証を取得


1.5sle 60Hz: 設計評価にて荷重条件(Load Assumptions)、荷重計算 (Load Calculations)やその他安全設計機能はすべて評価・審査を完了


- 1.5sle 50Hz/60Hzのコンポーネントの違いは電源周波数の相違による機器 のみが該当
 - ①增速機
 - ②発電機
 - ③モータ・ギア類
 - 4照明器具

3. 型式認証 (Type certificate) の取得状況



GL Wind Statement No.: WT 00-025A-2005, Rev. 1

This Statement of Compliance for the Design Assessment c

GE 1.5sle 60 Hz

4. 当該風車の耐風速

ナセル・ハブ・ブレード

設計上の耐風速: Ve50=55m/s(3秒平均)

*全方向から、風を受けても安全上問題の無い 風速値となっている。

ナセル・ハブ・ブレードの耐風速は、現在、確認中。

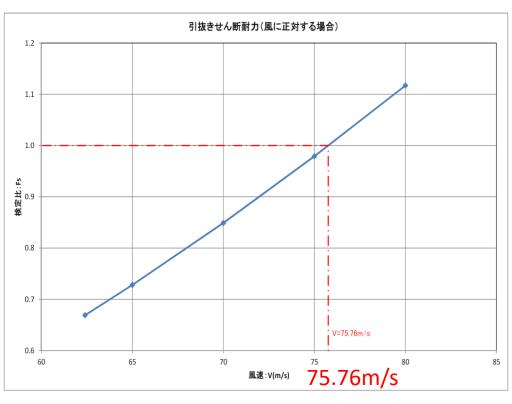
タワー・アンカーリング・基礎

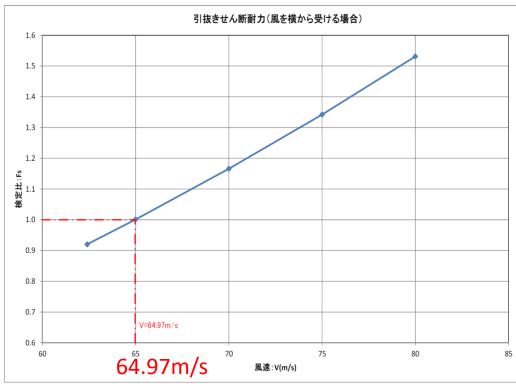
設計風速:62.4m/s(10分平均)

地形的要因などを考慮して、

Vo=34m/sを増速させた風速

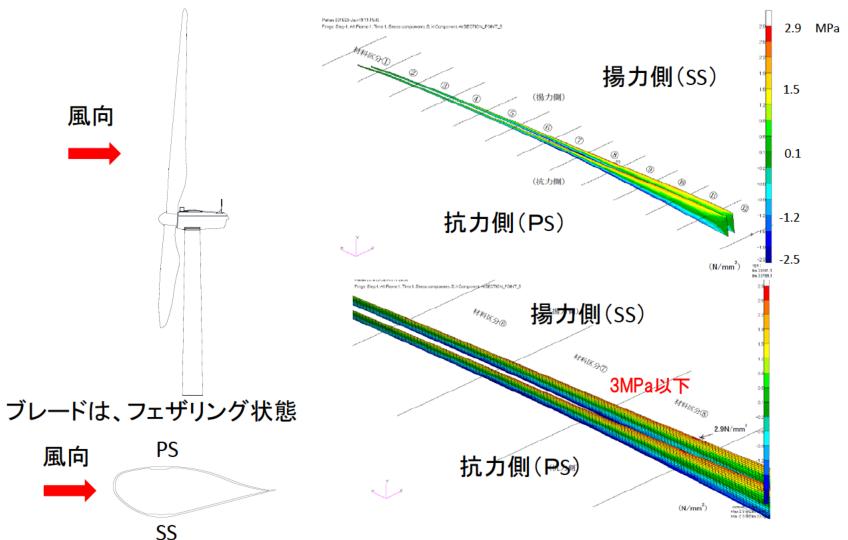
- *構造計算上、タワー・アンカーリング・基礎の耐風速を 検証した。
- ·タワー 約80m/s(正対)、約66m/s(横風)
- ·アンカーリング 約77m/s(正対)、約66m/s(横風)
- ·基礎 <u>約75m/s(正対)、約65m/s(横風)</u>


風に正対する場合は、75m/s(10分平均)に耐えることが可能。


5. 基礎の耐力

基礎のコンクリートに発生する引抜きせん断力の照査

今回、タワー・アンカーリング・基礎のうち、耐風速が最も低くなる基礎の応力照査の状況を以下に示す。


- ・風車が風に正対する場合は、風速75m/s以上の引抜き耐力を有する。
- ・風車が風を横から受ける場合は、風速65m/s以下で引抜き耐力が超過する。

6. 風車が風に正対する場合のブレード応力

風車が風速70m/sの一様流に正対する場合のブレードに発生する応力を求めた。 風に正対する場合、抗力側、揚力側も3MPaとなり材料強度に比べ小さい応力となっている。

7. 風車の破損状況

風車No.	風向計
3号機	損傷
5号機	損傷
6号機	損傷
8号機	損傷
10号機	損傷
11号機	損傷
13号機	損傷
14号機	損傷
17号機	損傷
19号機	損傷
20号機	損傷

7号機	軽微な損傷

_ 4.1.75=			
<u> </u>	3-制御		
停止	誤旋回		
停止			
_	誤旋回		
_	誤旋回		
	誤旋回		
	誤旋回		
停止			
	誤旋回		
1	誤旋回		
_	誤旋回		
	誤旋回		
停止			

追随	

⇒	ピッチシステム	ロータ二次 ブレーキシステム
		異常
	異常	異常
		_
	異常	
	異常	_
		_
	異常	_
	異常	異常
	異常	異常
	_	_

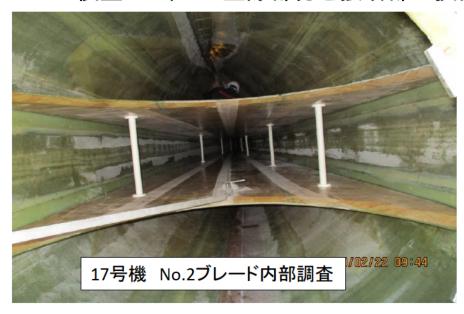
	3-	
誤	旋回数	
	0	
1[回未満	
1[回未満	
1[回未満	
2[回未満	
	0	
2[回未満	
3[回未満	
	5回	
2[回未満	
	0	

ブレート゛
異常なし
異常なし
異常なし
異常なし
* 異常なし
異常なし
異常なし
異常なし
折損
異常なし
異常なし

0	異常なし

8. 17号機のブレード破損状況

17号機のNo.1ブレードは、現地確認の結果、破断面が斜めになっており、曲げとねじりを同時に受けて破断したものと推測される。

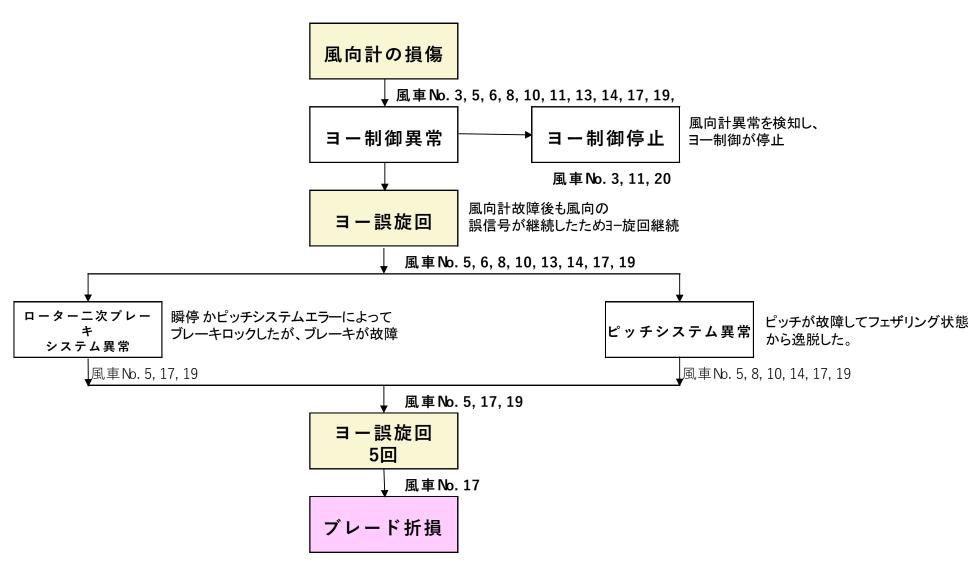


9.17号機の他ブレードと10号機のブレード解体調査

17号機のNo.2とNo.3ブレードについて内部点検を実施したたが、桁とシェルの接合部の異常や桁の白化現象は発見されなかった。

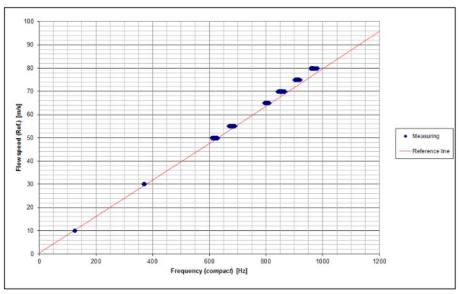
10号機においても、UT検査で異常が発見されたブレードを解体し、状況確認を行ったが、接着部に僅かな空隙はあったが、接着面は確保されており異常は認められなかった。

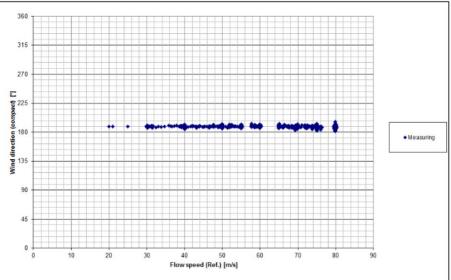
UT検査では、この空隙部分を接着部の損傷と判断した可能性が高い。



このことより、ブレードの折損は、桁とシェルの接合部から発生したものではないと推測される。

10. 各風車の破損状況と分析


風向計の損傷からブレード折損までの過程



11. 風向計の台風強度

風向計、風速計ともに風洞試験によって80m/sまで耐風速が確認されている

