千葉・山倉水上メガソーラー発電所 太陽電池破損事故

2019年10月28日

京セラTCLソーラー合同会社

目次

- 1. 発電所の概要
- 2. 太陽電池設備(アイランド)構成部材・係留方法
- 3. 事故の概要及び被害の状況
- 4. 原因の調査
- 4-1 要因分析・絞り込み
- 4-2 台風15号の風速について(近隣被害含む)
- 4-3 破損状況 (構成部材等)
- 4-4 破損状況 (アンカーと係留線)
- 5. アイランド破損推定原因
 - 5-1 アイランドとアンカー配置図
 - 5-2 アイランドの破損起点の推測理由
- 6. 今後のスケジュールと再発防止について

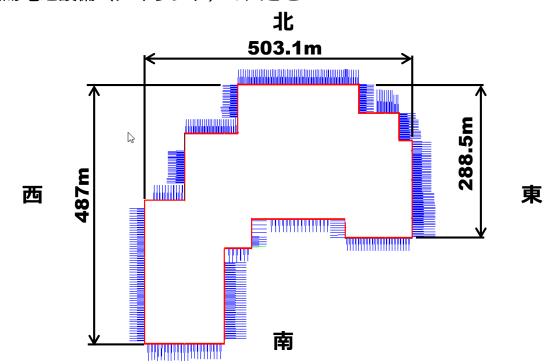
1. 発電所の概要

所在地: 千葉県市原市山田橋シウノ谷420 他

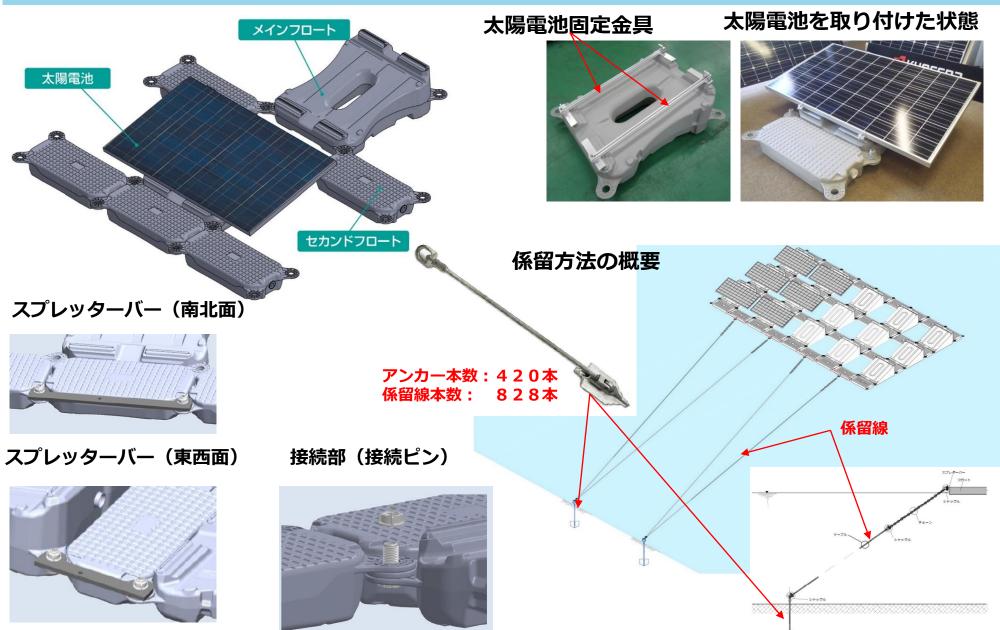
発電所設置面積:約18万㎡ 発電所容量:13.7MW

年間予想発電量:合計1,617万kWhの見込み

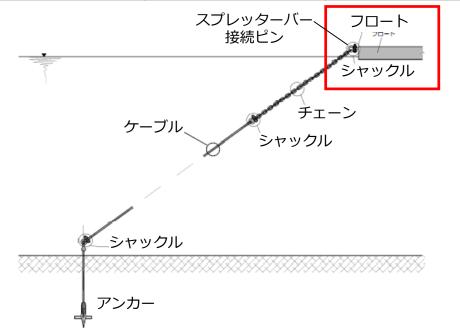
(一般家庭約4,970世帯分の年間電力消費量に相当)

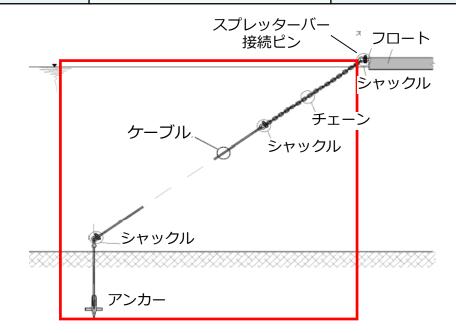

発電事業者:京セラTCLソーラー合同会社

太陽電池パネル出力・枚数: 270W×50,904枚


フロート : シエルテール製工事着工年月: 2016年1月 運転開始年月: 2018年3月

太陽電池設備(アイランド)の大きさ


2. 太陽電池設備(アイランド)構成部材・係留方法



2. 水上フロート構成部材・アイランド係留方法

部材	用途	概略図	
接続タブ	フロートの一部を構成 し、フロート同士ある いはフロートとスプ レッダーバーを接続す るためのタブ		
接続ピン	フロートの接続に使用 するピン		
スプレッダーバー	チェーンを接続し、フロートの接続タブニ箇所に固定		

部材	用途	概略図
スプレッダーバーとケーブルを チェーン 接続するもので係留線の長さを 調整		
ケーブル		
シャックル	次の二つの部材を接続 ・ケーブルとチェーン ・ケーブルとアンカー	P
アンカー	アイランドを地底に係留	

3. 事故の概要及び被害の状況

事故の状況

2019年9月9日

6:30頃 監視センター(佐倉市)並びに電気主任技術者携帯端末にて 直流漏電を感知(箇所不明)。

7:30頃 電気主任技術者が現地に急行、太陽電池設備の破損を確認。

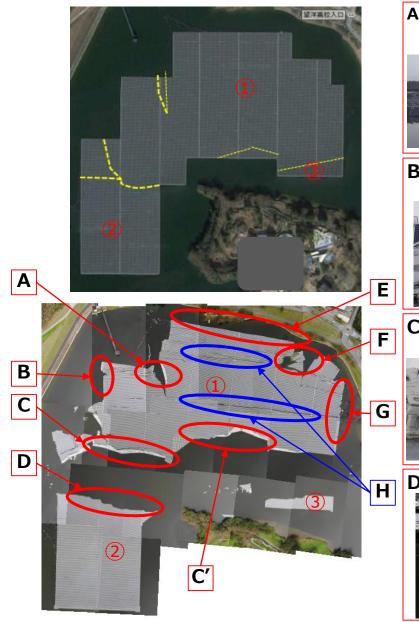
7:50頃 全PCSの停止操作を開始。(~8:30頃)

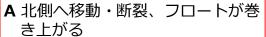
13:00頃 太陽電池設備の一部発火を覚知。県消防指令センターへ通報 (指令センターから市原市消防署へ連絡)。

14:00頃 消火活動開始。

17:20 鎮火。

被害の状況


人的被害:なし


物的被害:山倉ダムの水上に設置された太陽電池50,904枚のうち77%程度

が風に流され破損し、一部が発火、焼損。

3. 事故の概要及び被害の状況

◆左図黄色点線部によりアイランドが三つに分断

E 北側のアンカーの影響で水中に引き込まれる

B アンカーから離脱し北側へ移動 フロート・パネルが隆起

F 火災発生箇所、燃えた部材の大 半は沈没

C 断裂しロール状にフロートが巻き上がる C'

G パワコンへの配線収束部

D 断裂した部分の接続ピン破損

H フロート・パネルが隆起

3. 事故の概要及び被害の状況

◆強風/感電防止/火災防止 対策

強風対策

- 1. 工事用アンカー追加
- 2. ロープにより分断箇所を連結
- 3. 浮き上がり防止のため周辺フロートに注水
- 4. 部品等の飛散防止

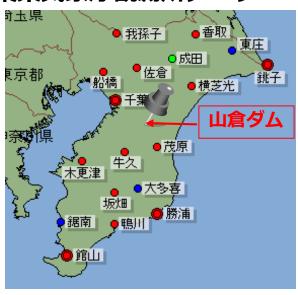
感電防止対策

- 1. 太陽電池水没箇所を特定
- 2. 水没箇所のケーブル切断可否を判断
- 3. ケーブル切断否の箇所は接近禁止
- 4. ケーブル切断否の箇所に接近する場合は日没後
- 5. 作業は感電防止保護具を着用(絶縁手袋・絶縁長靴等)
- 6. 水没した太陽電池を撤去
- 7. 第三者に対しては立入禁止表示をフェンスに設置、周知

火災防止対策

- 1. ドローンにより温度測定、異常個所を特定
- 2. 異常個所発見の場合、感電の危険性を排除し、太陽電池を撤去

目次


- 1. 発電所の概要
- 2. 太陽電池設備(アイランド)構成部材・係留方法
- 3. 事故の概要及び被害の状況
- 4. 原因の調査
- 4-1 要因分析・絞り込み
- 4-2 台風15号の風速について(近隣被害含む)
- 4-3 破損状況 (構成部材等)
- 4-4 破損状況 (アンカーと係留線)
- 5. アイランド破損推定原因
 - 5-1 アイランドとアンカー配置図
 - 5-2 アイランドの破損起点の推測理由
- 6. 今後のスケジュールと再発防止について

4-1 原因の調査 要因分析・絞り込み

事象	要因 1	要因 2	調査の状況
	設計風速超え (41.53m/s)		千葉県近隣の観測所の風速(最大瞬間風速) 出典:気象庁 千葉:57.5m/s 館山:48.8m/s 木更津:49.0m/s ※山倉ダムでは計測されていないため実風速が不明。 (水面近くや周辺地形の影響で増幅する可能性もあり。)
7/-> 1	設計荷重の算定方法	JIS、ガイドライン等参照規格	山倉ダムMS : JIS C 8955(2011)+風洞試験(風力係数) ⇒基準風速:38m/s 地表面粗度区分:Ⅲ 用途係数:1
アイランド 破損	アイランドが風、波に より揺動し偏荷重が発生	想定荷重+偏荷重	アイランドに部分的に応力が集中する可能性確認
		急激な増水で流速が増加	入水する川はなく増水しにくい。 →降雨量108㎜/日 28.5㎜/1時間(最大降雨)
		水位の変動 風荷重+浮力、移動距離	増水なし 台風時の水位37.3m (9月9日 5時) 当日の水位は最高水位(37.5m)から-0.2m
	地耐力不足	初期値からの低下	繰り返し荷重、経年低下
	アイランド形状により 設計耐力以上の応力が 発生	アイランド大型化で ピン、接続タブに設計荷重を超 える荷重が作用	アイランドの大型化でアンカー本数を増やし対応 →アンカー配置
連結部品 破損		アイランド形状原因で 応力集中(出隅/入隅)	仮説、検証中(風圧力/アイランド形状/係留線)
	樹脂製製品 強化ピン、接続タブの 強度不足	繰り返し荷重で クリープ現象発生	現地調査で破損状態は短期荷重と判断

4-2 原因の調査 ◆台風15号の風速について

千葉県気象庁観測所データ

【千葉】 9月9日4:30

平均風速35.1m/s

最大瞬間風速57.5m/s を観測

【館山】 9月9日2:40

平均風速26m/s

最大瞬間風速48.8m/s を観測

【木更津】 9月9日2:50

平均風 速22.7m/s

最大瞬間風速49.0m/s を観測

【佐倉】 9月9日

平均風速16.0m/s

最大瞬間風速33.9m/s を観測

市原市大気汚染常時監視測定局位置図

【五井】 3~4時 4~5時

最大瞬間風速 46.2m/s 50.8m/s を観測

【郡本】

最大瞬間風速 49.7m/s 50.4m/s を観測

【潤井戸】

最大瞬間風速 42.6m/s 45.8m/s を観測

4-2 原因の調査 ◆山倉ダム周辺の近隣被害状況

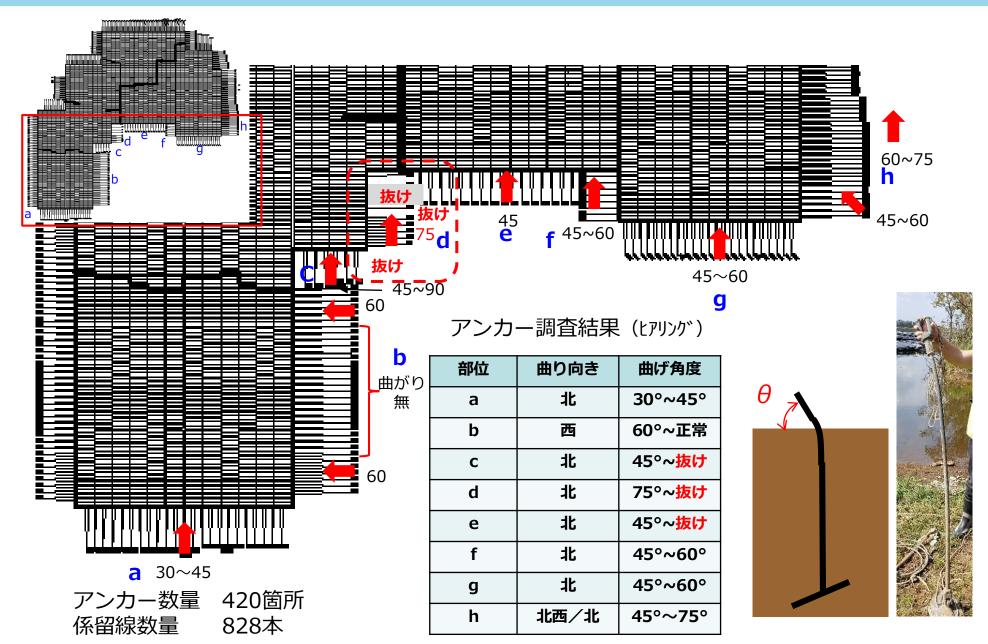
4-3 破損状況 (構成部材等)

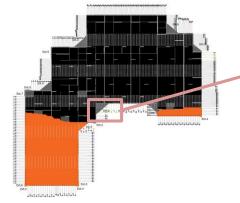
接続タブ

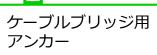
接続箱

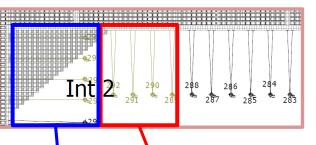
接続ピン

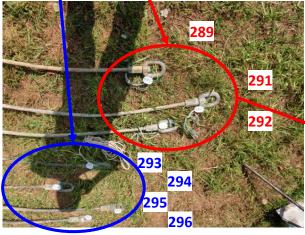
メイン フロート


太陽電池




4-4 破損詳細 (アンカーと係留線①)


4-4 破損詳細 (アンカーと係留線②)



289-296のコーナーで抜け た南東面のアンカー

289~292: 南面のアンカーは抜けた 状態で発見されたが、290番アンカー は水面から引き抜けていない.

293~296: 東面のアンカーは抜けた 状態で発見.

引抜試験データ

打設No.	堆積層	要求強度	測定強度
289	0	30kN	38kN
290	200	30kN	41kN
291	500	30kN	38kN
292	500	30kN	46kN

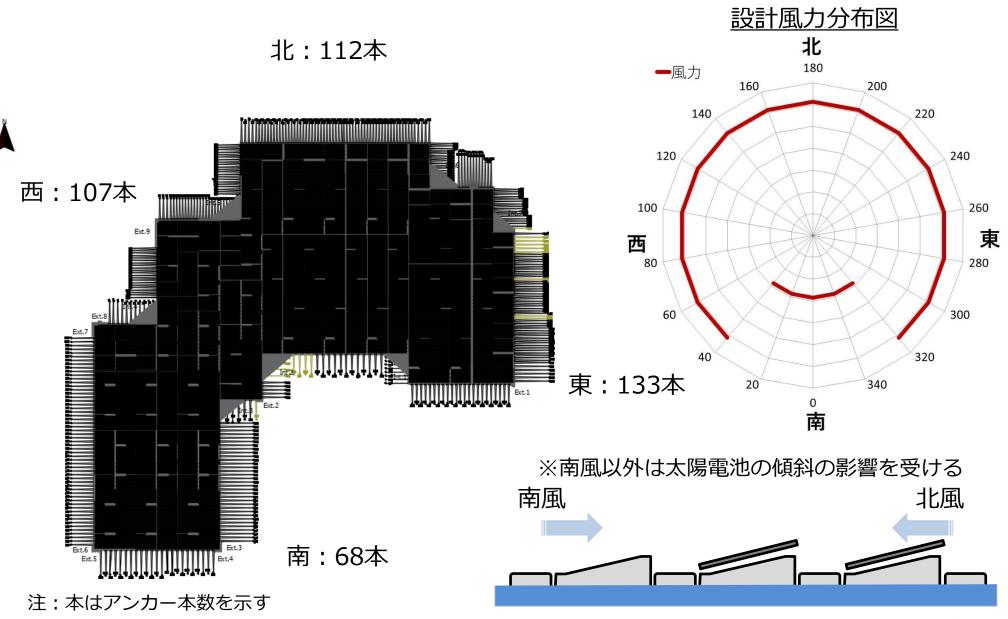
289

292

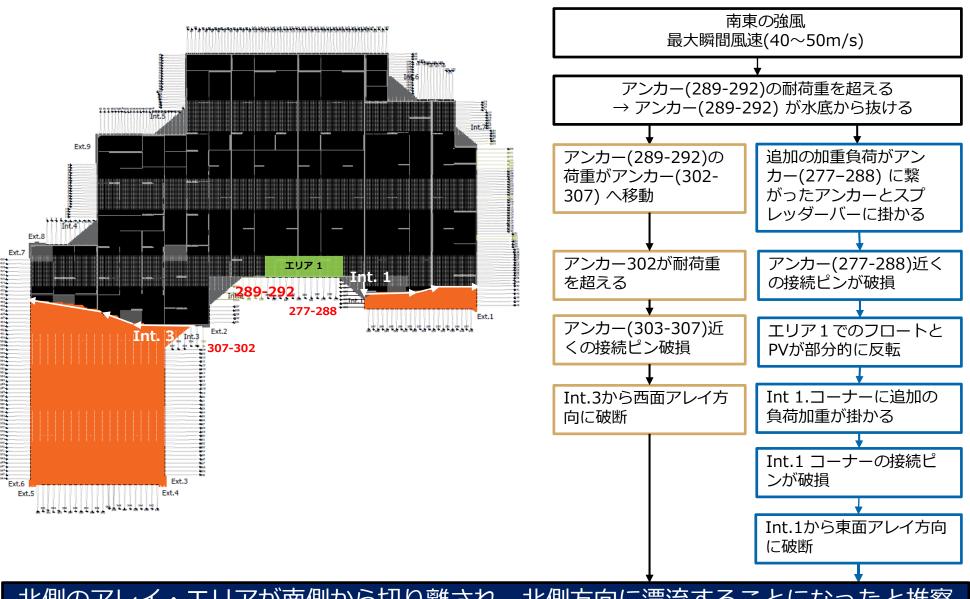
289: 1回目の曲がり 49cm (残り 0.9m)

2回目の曲がり 77cm (残り 0.63m)

291: 1回目の曲がり 60cm (残り 1.4m)

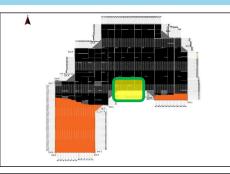

2回目の曲がり 87cm (残り 1.13m) 292: 1回目の曲がり 65cm (残り 1.35m)

2回目の曲がり 90cm (残り 1.1m)


目次

- 1. 発電所の概要
- 2. 太陽電池設備(アイランド)構成部材・係留方法
- 3. 事故の概要及び被害の状況
- 4. 原因の調査
- 4-1 要因分析・絞り込み
- 4-2 台風15号の風速について(近隣被害含む)
- 4-3 破損状況 (構成部材等)
- 4-4 破損状況 (アンカーと係留線)
- 5. アイランド破損推定原因
 - 5-1 アイランドとアンカー配置図
 - 5-2 アイランドの破損起点の推測理由
- 6. 今後のスケジュールと再発防止について

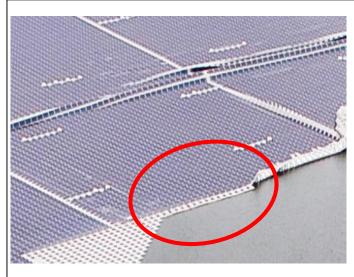
5-1 アイランド破損推定原因 ◆アイランドとアンカー配置図

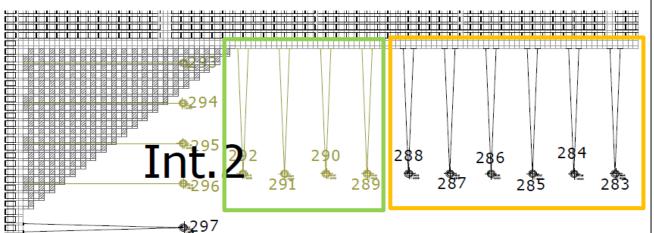


5-2 アイランドの破損起点の推測理由 ◆破損の流れ(推測)

北側のアレイ・エリアが南側から切り離され、北側方向に漂流することになったと推察

5-2 アイランドの破損起点の推測理由 ◆現場検証 I

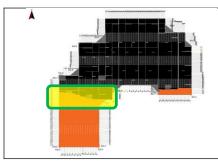


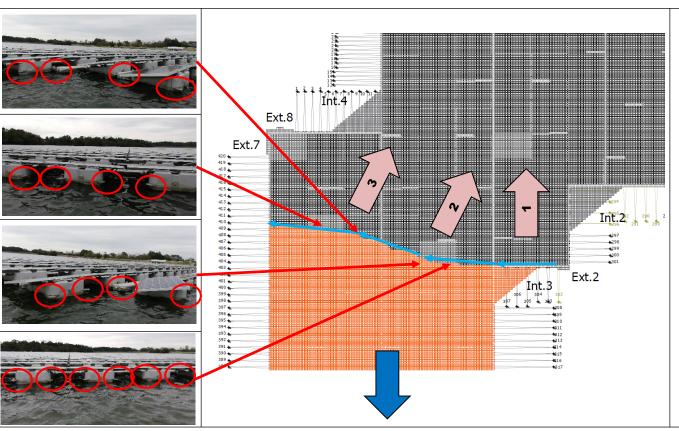

アンカー番号 292 から 289の部分: 緑色枠

接続ピン、スプレッダーバー、チェーンの残留を確認。

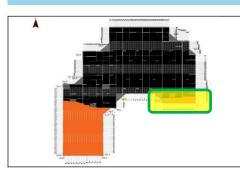
アンカー番号 288 から 277の部分: 黄色枠

外周部のフロートが係留線と一緒にアイランドから分離。



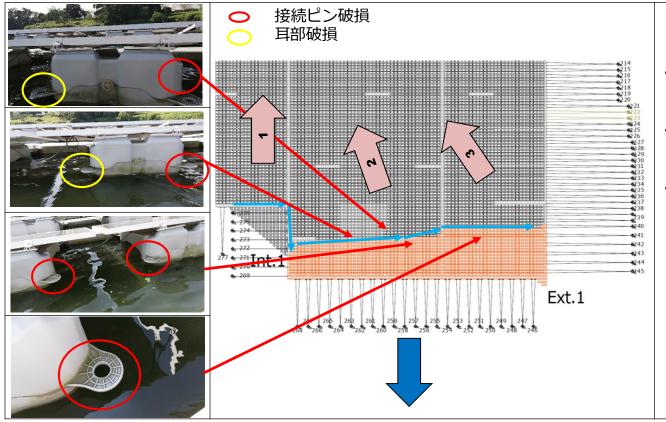

5-2 アイランドの破損起点の推測理由 ◆現場検証Ⅱ

アイランドの破断状況


〈アイランド南西エリア〉

- ・東から西方面に向かって破断。
 - → Int.3からアンカー番号410に向かって破断。

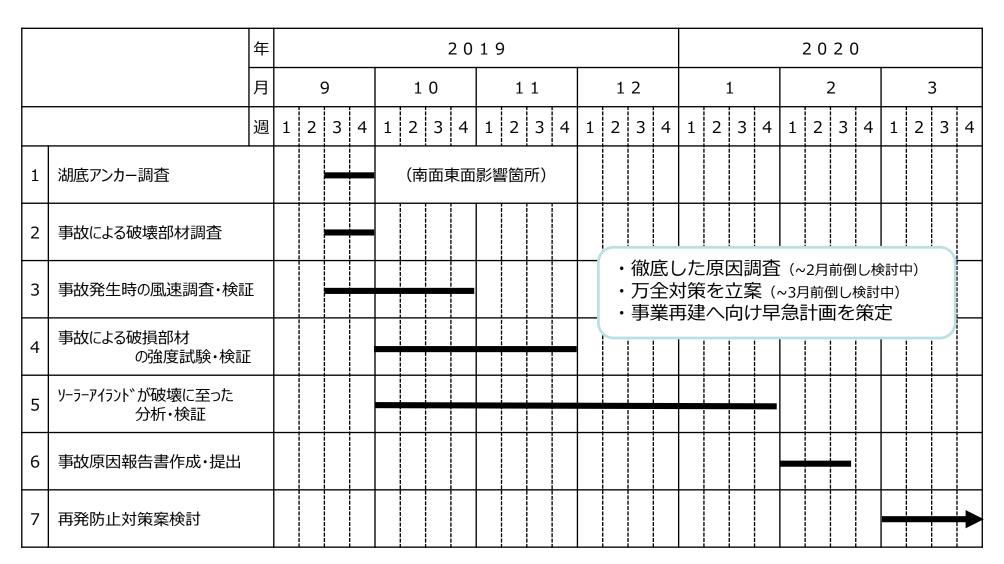
- Int.3から西方面への破断線に沿って、 接続ピンの破損が見られた。
- 風荷重により、白矢印1→2→3の順番でアイランドが破断したと推察。
- 青矢印で示す南側アンカーにより、アイランドは損壊せず。


5-2 アイランドの破損起点の推測理由 ◆現場検証Ⅲ

アイランド破断エリア:

〈アイランド南東エリア〉

- ・西方向から東方向に破断。
- ・東方向: Int.1コーナーからアンカー番号240に向かって破断。



このエリアでは、接続ピンと耳部の破損が見られた。

- Int.1から東方面への破断線に沿って接続ピンの破損が見られた。
- 風荷重により、白矢印1→2→3の順番で アイランドが破断したと推察。
- 青矢印で示す南側アンカーにより、アイランドは損壊せず。

6. 今後のスケジュールと再発防止について

■ 千葉・山倉水上メガソーラー発電所台風15号による事故原因調査工程表

