3-9-3. 集中豪雨に対する耐性評価の事例(Ⅲ)【北陸電力(株)の例】

1. (2) 評価事例⑦(NO. 1ダム):検討結果(Ⅲ)

44

〇比較結果

設計洪水流量	200年確率流量
11.12m³/s	122m³/s

設計洪水流量<200年確率流量のため、

設備の現況に基づく洪水処理能力を算定

3-9-4. 集中豪雨に対する耐性評価の事例(Ⅲ)【北陸電力(株)の例】

1. (2) 評価事例⑦ (NO. 1ダム): 検討結果 (Ⅲ)

45

○ダムの放流設備と放流能力の算定

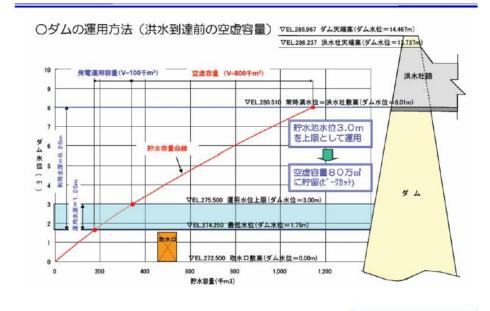
放流設備名称	放流方法	最大放流量(m³/s)	
①洪水吐	自然越流方式	18.0	
②水位低下用放流設備	導水路排水ゲート	7.3	
③発電取水□	発電使用水量	0.835	
合 計		26.135	

3-9-5. 集中豪雨に対する耐性評価の事例(Ⅲ)【北陸電力(株)の例】

1. (2) 評価事例⑦ (NO. 1ダム):検討結果(Ⅲ)

46

〇比較結果


全設備の洪水処理能力	200年確率流量
26.135m ³ /s	122m³/s

全設備の洪水処理能力<200年確率流量のため、

ダムの実運用による貯水池空虚容量で、 200年確率洪水への耐性を有するか検討

3-9-6. 集中豪雨に対する耐性評価の事例(Ⅲ)【北陸電力(株)の例】

1. (2) 評価事例⑦ (NO. 1ダム):検討結果(Ⅲ)

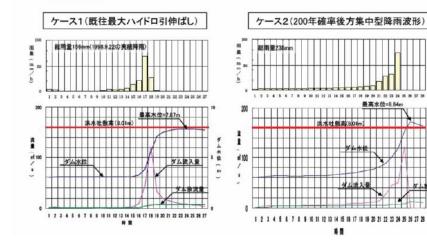
3-9-7. 集中豪雨に対する耐性評価の事例(Ⅲ)【北陸電力(株)の例】

1. (2) 評価事例⑦ (NO. 1ダム):検討結果(Ⅲ)

48

○200年確率洪水のハイドログラフの作成

検討ケース	ハイドログラフの作成方法	備考
ケース1	既往最大時におけるハイドロ波形を 200年確率流量まで引伸ばし作成 (倍率=1.1倍)	既往最大流量 108m³/s 200年確率流量 122m³/s
ケース2	200年降雨強度式より後方集中型の降 雨強度波形 ¹⁾ を求め、合理式により作 成	最大降雨強度 75.1mm/h (総雨量 238.2mm/24h)


1) モデルハイエトグラフの作成は「中小河川計画の手引き(案)」(平成11年9月)による。降雨タイプは、最も危険側となる後方集中型で検討。

3-9-8. 集中豪雨に対する耐性評価の事例(Ⅲ)【北陸電力(株)の例】

1. (2) 評価事例⑦ (NO. 1ダム):検討結果(Ⅲ)

49

○検討結果

3-9-9. 集中豪雨に対する耐性評価の事例(Ⅲ)【北陸電力(株)の例】

1. (2) 評価事例⑦ (NO. 1ダム):検討結果(Ⅲ)

50

〇比較検討

検討ケース	貯水池最高水位 (m)	洪水吐天端高 (m)	洪水吐からの放 流量 (m³/s)	洪水吐の放流 能力(m³/s)
1	EL.280.37	EL.286.237	0	40
2	EL.281.14		4.7	18

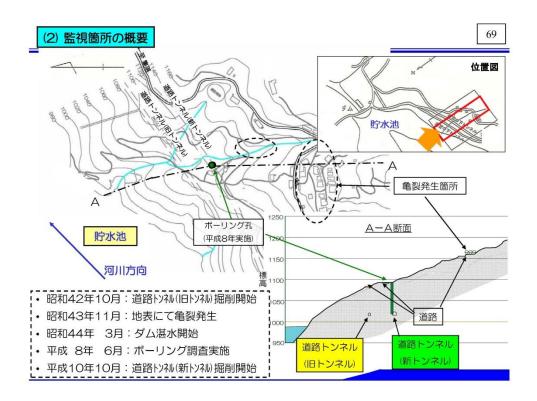
いずれのケースでも,

- ・ 貯水池の最高水位<洪水吐天端高,
- ・ 洪水吐からの放流量く洪水吐の放流能力であり、

大規模洪水流量に対する耐性を有することを確認した。

<大規模地滑りに対するダムの耐性評価>

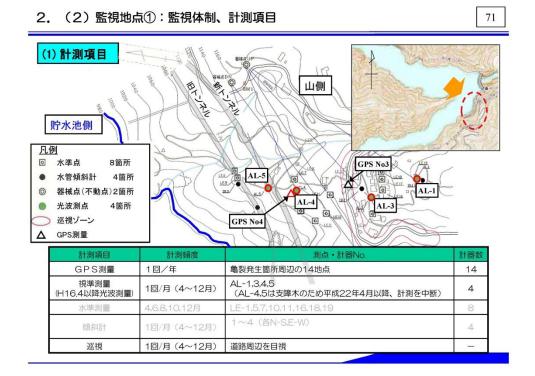
3-10-1 地すべり対策工、監視の状況【東京電力(株)の例】


2. (2) 監視地点①: 監視箇所の概要

※ダム側(下流側)から撮影

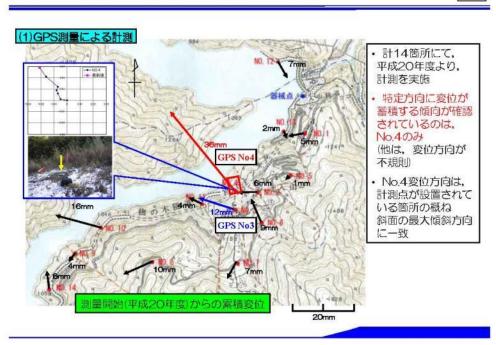
- 地山監視箇所は、ダムサイトの上流約1kmの右岸側に位置する
- この箇所は、貯水池に流れ込む沢や渓流に囲まれた尾根状斜面、斜面下方は徐々に傾斜が急となりダムに落ち込んでいるが、上部は10~20°程度の緩斜面となっている

3-10-2 地すべり対策工、監視の状況【東京電力(株)の例】

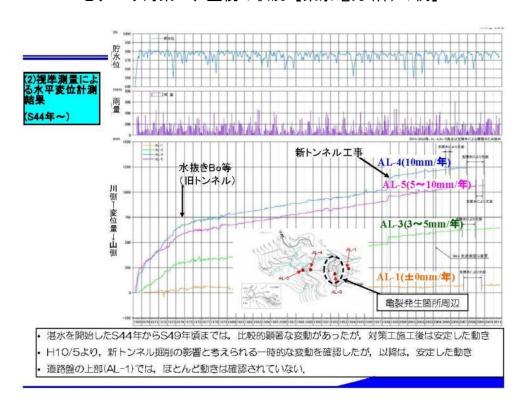

3-10-3 地すべり対策工、監視の状況【東京電力(株)の例】

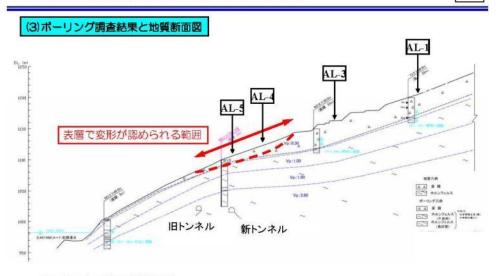
2. (2) 監視地点①: 監視に至った経緯

(1) ダム建設・完成後の流れ 旧トンネル ダム S41 コンクリート 打設 掘削 地表に亀裂 S44 湛水 集中豪雨後,旧トンネル・地表に亀裂 • 地表踏查 • ボーリング調査 S45 トンネル内観測及び 水抜き横孔掘削 など 旧トンネル上下流部等に亀裂 防災工事 S48.10~S51.3


- ・ 変状対策として行った旧トンネル内からの水抜きボーリング等により、計測結果に対して、 その効果が現れた。
- ・計測項目および範囲については、社外有識者を含めた委員会等で審議して現在に至る

3-10-4 地すべり対策工、監視の状況【東京電力(株)の例】


3-10-5 地すべり対策工、監視の状況【東京電力(株)の例】


<<参考資料>>

3-10-6 地すべり対策工、監視の状況【東京電力(株)の例】

3-10-7 地すべり対策工、監視の状況【東京電力(株)の例】

2. (2) 監視地点①: 地山の挙動、計測値等の経過

- 表層部は未固結の崖錐堆積物
- ・ 深部は泥岩起源のホルンフェルス(熱による変成岩)で比較的堅硬
 - →<u>岩盤のクリープ変形の他に、表層の崖錘が移動しているとすれば、対象土量は約10万m3</u>

3-10-8 地すべり対策工、監視の状況【東京電力(株)の例】

2. (2) 監視地点①: 監視の在り方

調査項目	結果
表層すべり(崖錐堆積物の崩落)	計測結果および地表踏査より 崩壊する可能性のある土量は約10万m ³ →土量は、HWL以上の空き容量と比較して小さい ※ 湛水面積 × (堤体天端EL-HWL)= 約820万m ³

75

77

・ 斜面については顕著な動きはみられないものの、変位が収束していない 箇所もあるため、継続して監視を行う

3-11-1 地すべり対策工、監視の状況【関西電力(株)の例】

2. (2) 監視地点②:監視箇所の概要

ダム周辺平面図 ダム諸元 1974年 竣工年 ダム高 98 m 総貯水容量 34百万 m³ 約5.3 km² 流域面積 地すべり監視箇所 監視箇所全景写真 地すべり斜面 地すべり監視箇所拡大図 道路 ・地すべり監視箇所は、ダムサイトから上流左岸約1km付近の 尾根上地形の箇所 ・監視箇所周辺地質は、流紋岩質火砕岩類や頁岩の構造 ・想定すべり量は、約4.6万m3 ・平成10年(ダム湛水後24年)、舗装された道路面や側溝にク ラック等変状が現れたため、以降、詳細調査、計測を実施

3-11-2 地すべり対策工、監視の状況【関西電力(株)の例】

2. (2) 監視地点②: 監視箇所の概要

地すべり監視箇所 地質断面図 推定滑り面 ********* 伸縮計 #EL.626.64m EL.618.649m NWL:615.5m LWL:590.0m

78

3-11-3 地すべり対策工、監視の状況【関西電力(株)の例】

2. (2) 監視地点②: 監視体制・計測項目

