産業機械業界の「低炭素社会実行計画」(2020年目標)

		計画の内容
1. 国内 の企業活 動におけ る 2020	目標	2020年度に向け、国内生産活動におけるエネルギー消費原単位(kL/億円)を年平均1%以上改善する。(暫定目標) なお、この目標は、国の新たな目標や電源構成、購入電力の炭素排出係数の 見通し等が決定した後、産業機械工業の低炭素社会実行計画のあり方を含め、 改めて検討する。 (基準年度:京都第一約束期間の2008~12年度の5年平均)
年の削減 目標	設定根拠	対象とする事業領域:産業機械の生産活動を行う国内の事業所等 <u>将来見通し:</u> 産業機械の生産活動量の予測が存在しないため、見通しを算出することができない。
2. 低炭素 サービス る他部門 減 3. 海外で	等によ	概要・削減貢献量: 産業機械は、社会インフラや製造事業所等で恒常的に使用される機械である。産業機械業界は、省エネルギー製品の供給を通じて、製品の使用段階で発生する CO2 削減への取り組みを続ける。
削減貢献 4. 革新的 開発・導	対技術の	概要・削減貢献量: 産業機械はライフサイクルが長く、製造段階と比べ使用段階でのエネルギー消費量が多いことが実態である。今後も関連業界と連携し高効率な産業機械の開発・提供を推進すると共に、ニーズ調査等に取り組む。
5. その他 取組・特	- '	工業会では毎年、環境活動報告書を発行し、会員企業からの CO2 発生量、省エネルギーへの取組を公表している。報告書は冊子にして配布する他、ホームページでも公開している。また、報告書では、工業会の CO2 排出状況の他、省エネ対策に積極的な事業所の紹介、工業会取扱製品の省エネルギー性能評価を掲載する等、会員企業にとって参考になる情報の提供に努めている。 今年度も、環境活動報告書の発行に加えて、産業機械の省エネルギー性能調査を実施し、会員企業の製品が貢献している省エネルギー効果について、環境活動報告書の中で調査結果を公表する予定である。

産業機械業界の「低炭素社会実行計画」(2030年目標)

		計画の内容
1. 国内		2030年度に向け、国内生産活動におけるCO2排出量を2013年度比6.5%削減す ステレキ R # # # # # # # # # # # # # # # # # #
の企業活	目標	│ることを目指す。 │ なお、この目標は、今後の国際情勢や経済社会の変化等を踏まえ、産業機械 │
の正未治		なの、この日標は、「後の国际情勢や経済社会の変化等を踏まれ、産業機械 工業の低炭素社会実行計画を含め、必要に応じて見直し等を行う。
動におけ		(実施期間: 2021年4月1日~2031年3月31日)
る 2030		対象とする事業領域:産業機械の生産活動を行う国内の事業所等
年の削減	設定	<u>将来見通し:</u> 産業機械の生産活動量の予測が存在しないため、見通しを算出す
	根拠	ることができない。
目標	אנאוי	<u>電力排出係数 :</u> 2030年度の販売電力量1kWhあたりのCO2排出量0.37kg程度(電
- 1	- #-11 - 17	力業界の目標)
2. 低炭素	製品・	<u>概要・削減貢献量:</u> 社会インフラや製造事業所等で恒常的に使用される機械 である。産業機械業界は、省エネルギー製品の供給を通じて、製品の使用段
サービス	、等によ	でのる。産業機械業がは、省エイルギー製品の機構を通じて、製品の使用段
る他部門	での削	
減		
		│ │ 概要・削減貢献量:世界に誇れる環境装置や省エネ機械を供給する産業機械
 3. 海外で	· •	業界は、持続可能なグローバル社会の実現に向けて、インフラ整備や生産設
3. /母クト で	: 0)	備等での省エネ技術・製品の提供を始めとする多角的で大きな貢献を続ける。
削減貢献	†	ა
		 概要・削減貢献量:産業機械はライフサイクルが長く、製造段階と比べ使用
	1175-	段階でのエネルギー消費量が多いことが実態である。今後も関連業界と連携
4. 革新的]技術の	し高効率な産業機械の開発・提供を推進すると共に、ニーズ調査等に取り組
開発・導	入	む。
		工業会では毎年、環境活動報告書を発行し、会員企業からの <i>CO2</i> 発生量、
		省エネルギーへの取組を公表している。報告書は冊子にして配布する他、ホー
	_	ムページでも公開している。
5. その他	ュの	また、報告書では、工業会の CO2 排出状況の他、省エネ対策に積極的な事
取組・特	記事項	業所の紹介、工業会取扱製品の省エネルギー性能評価を掲載する等、会員企業
		にとって参考になる情報の提供に努めている。
		今後も、環境活動報告書の発行に加えて、産業機械の省エネルギー性能調査
		を実施し、会員企業の製品が貢献している省エネルギー効果について、環境活
		動報告書の中で調査結果を公表する予定である。

産業機械工業における地球温暖化対策の取組

平成29年9月29日日本産業機械工業会

I. 産業機械工業の概要

(1) 主な事業

標準産業分類コード:24金属製品製造業、25はん用機械器具製造業、26生産用機械器具製造業、27 業務用機械器具製造業

ボイラ・原動機、鉱山機械、化学機械、環境装置、動力伝導装置、タンク、業務用洗濯機、プラスチック加工機械、風水 力機械、運搬機械、製鉄機械等を生産する製造業

(2) 業界全体に占めるカバー率

業界全体の規模		業界	は団体の規模	低炭素社会実行計画 参加規模		
企業数	_	団体加盟 企業数	154社	計画参加 企業数	83社 (53.9%)	
市場規模	_	団体企業 売上規模	生産額23,798億円	参加企業 売上規模	生産額20,490億円 (86%)	
エネルギー 消費量	_	団体加盟 企業エネ ルギー消 費量	_	計画参加 企業エネ ルギー消 費量	原油換算26.0万kL	

出所: 経済産業省機械統計、日本産業機械工業会

- (3) 計画参加企業·事業所
- ① 低炭素社会実行計画参加企業リスト
- エクセルシート【別紙1】参照。
- ② 各企業の目標水準及び実績値
- □ エクセルシート【別紙2】参照。
- 未記載

(未記載の理由)

会員企業は様々な業態・生産方法を取っており、さらにはひとつの事業所で産業機械以外にも鉄鋼や造船、自動車部品など様々な製品を製造していることから、各事業所が「産業機械」という業界単位に合致していないため、「産業機械」としての目標水準及び実績値を調査することは困難である。

(4) カバー率向上の取組

① カバー率の見通し

年度	自主行動計画 (2012年度) 実績	低炭素社会実 行計画策定時 (2013年度)	2016年度 実績	2017年度 見通し	2020年度 見通し	2030年度 見通し
企業数	51%	48%	53%			
売上規模	87%	79%	86%			
エネルギー 消費量	_	_	_			

(カバー率の見通しの設定根拠)

見通しは策定していないが、カバー率が9割となるよう努力する。

② カバー率向上の具体的な取組

	取組内容	取組継続予定
2016年度	会員企業の環境担当者にアンケートの督促を実施	有
2017年度以降	同上	有

(取組内容の詳細)

電子メール、電話による催促を実施した。

(5) データの出典、データ収集実績 (アンケート回収率等)、業界間バウンダリー調整状況 【データの出典に関する情報】

指標出典		集計方法
生産活動量	□ 統計□ 省エネ法■ 会員企業アンケート□ その他(推計等)	2017年7月実施の全会員に対する低炭素社会実行計画フォローアップ調査
エネルギー消費量	□ 統計□ 省エネ法■ 会員企業アンケート□ その他(推計等)	2017年7月実施の全会員に対する低炭素社会実行計画フォローアップ調査
CO₂排出量	□ 統計	2017年7月実施の全会員に対する低炭素社会実

□ 省エネ法・温対法	行計画フォローアップ調査
■ 会員企業アンケート	
□ その他(推計等)	

【アンケート実施時期】 2017年7月~2017年8月

【アンケート対象企業数】

154 社

【アンケート回収率】

53%

【業界間バウンダリーの調整状況】

- □ 複数の業界団体に所属する会員企業はない
- 複数の業界団体に所属する会員企業が存在
 - □ バウンダリーの調整は行っていない

(理由)

■ バウンダリーの調整を実施している

<バウンダリーの調整の実施状況>

他工業会からの同種の調査の有無を会員企業に確認しており、データを提出する工業会は会員各社が決定している。具体的には電機・電子、日本造船工業会、日本自動車車体工業会等である。

【その他特記事項】

なし

II. <u>国内の企業活動における削減実績</u>

(1) 実績の総括表

【総括表】(詳細はエクセルシート【別紙4】参照。)

				////			
	基準年度	2015年度	2016年度	2016年度	2017年度	2020年度	2030年度
	(2008~12年	実績	見通し	実績	見通し	目標	目標
	度五年平均)						
生産活動量	19,071	21,955		20,490			
エネルギー 消費量 (単位:原油換 算万kl)	27.8	25.8		26.0			
内、電力消費量 (億kWh)	8.70	8.51		8.61			
CO₂排出量	54.3	56.5		55.6			56.2
(万t−CO₂)	% 1	% 2	% 3	% 4	% 5	% 6	% 7
エネルギー 原単位 (単位: kL/億 円)	14.6	11.7		12.7		13.5	
CO ₂ 原単位 (単位: t-CO2 /億円)	28.5	25.7		27.1			

【電力排出係数】

	※ 1	% 2	% 3	※ 4	※ 5	% 6	※ 7
排出係数[kg-CO2/kWh]	0.470	0.534		0.518			0.37
実排出/調整後/その他	実排出	実排出		実排出			実排出
年度	2008~ 12 5 年平 均	2015		2016			2030
発電端/受電端	受電端	受電端		受電端			使用端

【2020年・2030年度実績評価に用いる予定の排出係数に関する情報】

排出係数	理由/説明						
電力	■ 実排出係数(発電端/受電端) □ 調整後排出係数(発電端/受電端) □ 特定の排出係数に固定 □ 過年度の実績値(○○年度 発電端/受電端) □ その他(排出係数値:○○kWh/kg-CO₂ 発電端/受電端) <上記排出係数を設定した理由> 毎年の経団連の低炭素社会実行計画フォローアップ調査と同様とした。						
その他燃料	■ 総合エネルギー統計(2015年度版) □ 温対法 □ 特定の値に固定 □ 過年度の実績値(○○年度:総合エネルギー統計) □ その他 <上記係数を設定した理由> 毎年の経団連の低炭素社会実行計画フォローアップ調査と同様とした。						

(2) 2016 年度における実績概要 【目標に対する実績】

<2020 年目標>

目標指標	基準年度/BAU	目標水準	2020年度目標値
エネルギー消費原単位	2008~12年度 5年平均	年平均 ▲1%	13.5

目標指標の実績値			進捗状況		
基準年度実績 (BAU目標水準)	2015年度 実績	2016年度 実績	基準年度比 /BAU目標比	進捗率*	
14.6	11.7	12.7	▲13.0%	8.5%	172.7%

^{*} 進捗率の計算式は以下のとおり。

進捗率【基準年度目標】=(基準年度の実績水準-当年度の実績水準)

/(基準年度の実績水準-2020年度の目標水準)×100(%)

進捗率【BAU 目標】=(当年度のBAU-当年度の実績水準)/(2020年度の目標水準)×100(%)

<2030年目標>

目標指標	基準年度/BAU	目標水準	2030年度目標値
CO2排出量	2013年度	▲ 6.5%	56.2

目標指標の実績値				進捗状況	
基準年度実績 (BAU目標水準)	2015年度 実績	2016年度 実績	基準年度比 2015年度比 進捗率		
60.1	56.5	55.6	▲7.5%	▲1.6%	115.4%

^{*} 進捗率の計算式は以下のとおり。

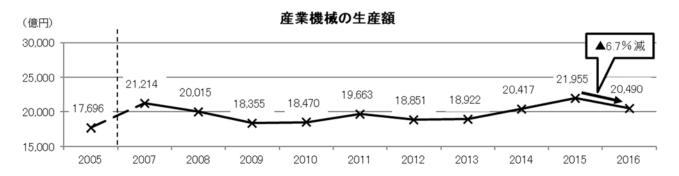
進捗率【基準年度目標】=(基準年度の実績水準-当年度の実績水準)

/(基準年度の実績水準-2030年度の目標水準)×100(%)

進捗率【BAU 目標】=(当年度のBAU-当年度の実績水準)/(2030年度の目標水準)×100(%)

【調整後排出係数を用いた CO2排出量実績】

	2016年度実績	基準年度比	2015年度比
CO₂排出量	55.4万t−CO₂	▲ 7.8%	▲1.4%


(3) 生産活動量、エネルギー消費量・原単位、CO₂排出量・原単位の実績 【生産活動量】

<2016 年度実績値>

生産活動量(単位:生産額 億円):20,490(基準年度比 7.4%、2015 年度比▲6.7%)

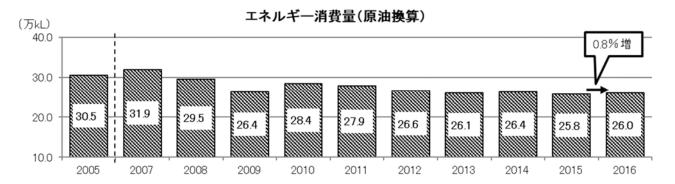
く実績のトレンド>

(グラフ)

(過去のトレンドを踏まえた当該年度の実績値についての考察)

産業機械業界の生産額は、2007 年度の 2 兆 1,214 億円をピークに、リーマン・ショックや東日本大震 災等の影響により厳しい状況が続いたが、2014 年度には 8 年ぶりに 2 兆円を超え、足元まで 3 年連続で 2 兆円台となるなど緩やかな回復が続いた。なお、2016 年度の前年度比マイナスの特殊要因としては、2015 年度に出荷が重なり大幅増した反動による減少や、製造工程の省力化により人件費が抑制され生産額が減少したこと等があった。

【エネルギー消費量、エネルギー原単位】


<2016 年度の実績値>

エネルギー消費量(単位:原油換算万 kL):26.0(基準年度比▲6.5%、2015 年度比 0.8%)

エネルギー原単位(単位:kL/億円):12.7(基準年度比▲13.0%、2015 年度比 8.5%)

く実績のトレンド>

(グラフ)

エネルギー消費原単位 (kL/億円) 18.0 16.0 8.5%增 14.0 17.2 15.4 15.0 14.8 14.4 14.2 14.1 12.0 13.8 12.9 12.7 100 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

(過去のトレンドを踏まえた当該年度の実績値についての考察)

産業機械業界のエネルギー消費量(原油換算)は、概ね生産額の増減に比例して推移している。 2016 年度は前年度に比べ微増したが、今回の調査期間内では 2015 年度に次ぐ少ない消費量となった。

前年度比での微増の特殊要因として、自動化・効率化のための新たな設備の導入等による増加があった。このほかにも、事業所再編による生産品目の変更、製造工程の内製化による設備稼働の増加、品質管理等による空調の稼働の増加、試験設備の稼働の増加、試運転の増加等があった。

なお、約10年前の2005年度30.5万kLと比較すると、エネルギー消費量を4.5万kL削減するなど、 会員各社が取り組んでいる省エネ対策、燃料転換、節電対応の等の成果に加え、設備更新・事業再 編・設備集約等により生産性向上が図られた結果が数値となって表れた。

エネルギー消費原単位(原油換算量÷生産額)は、2010 年度に工場の稼働率低下等に伴いエネルギー消費原単位が悪化したが、全体としては緩やかな改善が続いている。

なお、2016 年度は、特殊要因もあって生産額が減少しエネルギー消費量が微増したことから前年度に比べると悪化したが、今回の調査期間の中では 2015 年度の 11.7 万 kL/億円に次ぐ小さい数値となった。

<他制度との比較>

(省エネ法に基づくエネルギー原単位年平均▲1%以上の改善との比較) (当会の暫定目標と同じ指標のため省略)

(省エネ法ベンチマーク指標に基づく目指すべき水準との比較)

□ ベンチマーク制度の対象業種である

<ベンチマーク指標の状況>

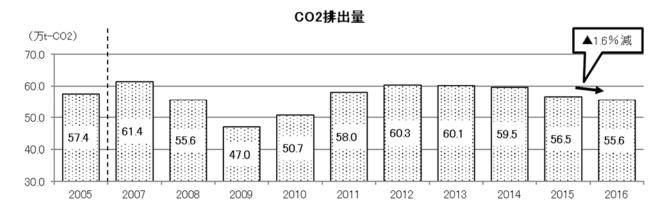
ベンチマーク制度の目指すべき水準:○○

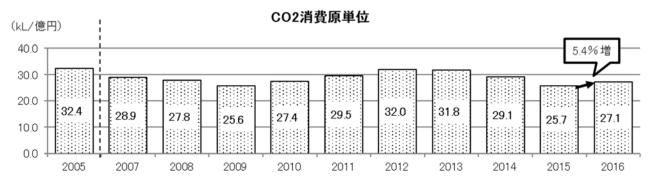
2016 年度実績: 〇〇

<今年度の実績とその考察>

■ ベンチマーク制度の対象業種ではない

【CO2排出量、CO2原单位】


<2016 年度の実績値>


CO₂排出量(単位:万 t-CO₂ 電力排出係数:0.518kg-CO₂/kWh):55.6 万 t-CO₂ (基準年度比 2.4%、2015 年度比▲1.6%)

CO₂原単位(単位:t-CO2/億円 電力排出係数:0.518kg-CO₂/kWh):5.18(基準年度比 10.2%、2015 年度比 ▲3.0%)

<実績のトレンド>

(グラフ)

電力排出係数:0.518kg-CO2/kWh

(過去のトレンドを踏まえた当該年度の実績値についての考察)

産業機械業界の CO2 排出量は、2010 年度にエネルギー効率の悪化等で CO2 排出量が前年度に比べ増加し、更に 2011 年度以降は購入電力の CO2 排出係数の悪化等により、CO2 排出量が増加した。 2016 年度は、エネルギー消費量が微増したものの、購入電力の CO2 排出係数が前年度に比べ小さくなったことから、前年度に比べ減少した。

なお、産業機械業界のエネルギー源は、購入電力が 8 割以上を占めており、当業界全体の CO2 排出量は購入電力の CO2 排出係数の変化に大きく左右される。

産業機械業界の CO2 排出原単位は、2010 年度に工場の稼働率低下等に伴って悪化し、2012 年度をピークに緩やかに改善している。

なお、2016 年度の CO2 排出源単位が前年度比プラスになった要因は、特殊要因もあって CO2 排出量の減少に比べて生産額の減少が大きかったことによるもの。

【要因分析】 (詳細はエクセルシート【別紙5】参照)

(CO2排出量)

	基準年度→2016 年度変化分		2015 年度→2016 年度変化分	
	(万 t−CO₂)	(%)	(万 t−CO₂)	(%)
事業者省エネ努力分	▲7.6	▲ 14.0%	4.2	7.5%
燃料転換の変化	▲1.6	▲3.1%	▲0.1	▲0.2%
購入電力の変化	6.5	12.0%	▲1.1	▲2.0%
生産活動量の変化	3.9	7.3%	▲3.9	▲6.9%

(エネルギー消費量)

	基準年度→2016 年度変化分		2015 年度→2016 年度変化分	
	(万kl)	(%)	(万kl)	(%)
事業者省エネ努力分	▲3.8	▲13.9%	1.9	7.3%
生産活動量の変化	2.0	7.4%	▲1.7	▲6.7%

(要因分析の説明)

経済産業省の「【別紙 5-1】要因分析(CO2)」によると、基準年度→2016 年度においては、省エネ努力で約 7.6 万 t、燃料転換の変化で約 1.6 万 t 減少したものの、購入電力の変化で約 6.5 万 t、生産活動量の変化で約 3.9 万 t の増加したことから、全体で約 1.3 万 t の増加となり、購入電力と生産活動量の変化による影響が大きかった。

2015 年度→2016 年度においては、省エネ努力で約 4.2 万t増加したものの、燃料転換の変化で約 0.1 万t、購入電力の変化で約 1.1 万 t、生産活動量の変化で 3.9 万 t 減少したことから、全体で約 1.3 万 t の減少となり、購入電力の変化と生産活動量の変化による影響が大きかった。

経済産業省の「【別紙 5-2】要因分析(エネルギー)」によると、基準年度→2016 年度においては、生産活動量の変化で約2万kL増加したものの、省エネ努力で約3.8万kL減少したことから、全体で約1.8万kLの減少となり、省エネ努力により影響が大きかった。

2015 年度→2016 年度においては、生産活動量の変化で約 1.7 万 kL 減少したものの、省エネ努力で約 1.9 万 kL 増加したことから、全体で約 0.2 万 kL の増加となり、省エネ努力により影響が大きかった。

(4) 実施した対策、投資額と削減効果の考察

【総括表】(詳細はエクセルシート【別紙6】参照。)

年度	対策	投資額 (億円)	年度当たりの エネルギー削減量 CO₂削減量(t-CO2)	設備等の使用期間 (見込み)
	照明関係	3.0	2,313.9	
	空調関係	7.7	1,261.2	
2016 年度	動力関係	2.0	1,138.8	
	受変電関係	0.8	188.4	
	その他	6.0	2,155.8	
	照明関係	3.4	1,048.2	
	空調関係	5.7	502.0	
2017 年度	動力関係	0.3	452.0	
	受変電関係	1.1	160.1	
	その他	4.2	1,226.6	
2018 年度 以降				

【2016年度の取組実績】

(設備投資動向、省エネ対策や地球温暖化対策に関連しうる投資の動向)

受変電設備等の大型投資は多くの事業所で対策済みであり、概ね最新設備が導入されている。

(取組の具体的事例)

- ①電熱設備関係:ボイラの更新、リジェネバーナーシステムの導入、高効率断熱材への更新、塗装乾燥設備の更新 等
- ②照明設備関係: LED 等の高効率照明の導入、人感センサーの設置、天井照明の選別点灯、天井に明かり取り設置 等
- ③空調設備関係:ヒートポンプ等の省エネ型空調機の導入、局所空調の実施、空調温度の適正管理、送風機・ルーフファンの設置、屋根の遮熱塗装・散水・緑化、建屋の壁に断熱材追加、防風カーテンの設置、等
- ④動力関係:インバータ化、オイルフリー化、新規生産設備への入れ替え、エア洩れ対策、配管修繕、台数制御、吐出圧力の見直し、運用改善等
- ⑤受変電設備関係:変圧器の高効率化、電力監視システムの導入、デマンド監視装置の導入等
- ⑥その他設備改善:燃料転換の実施、生産ロボットの導入、集じん機の更新、工作機械の更新、クレーン

- の更新、電動射出成形機の導入、塗装ブース ON/OFF 自動化、低燃費車への更新 等
- ⑦作業改善:製品試験時間の短縮、工程短縮と簡素化、不良品低減活動実施、作業エリアの縮小、生産レイアウトの改善、塗装前処理液温の低温化等
- ⑧省エネルキー活動:不要時消灯の徹底、全所休電日の実施、昼休み消灯、敷地内アイドリング禁止、クールビズ・ウォームビズの実施、自動販売機の削減、設備待機電力の削減、未使用機器の電源 OFF 活動、階段利用(2アップ、3ダウン)の推奨、省エネパトロールの強化 等

(取組実績の考察)

2016年度は②照明、③空調、④動力関係の設備投資が大きな成果を上げた。

【2017年度以降の取組予定】

(今後の対策の実施見通しと想定される不確定要素)

2017 年度の計画ついては、「照明」の割合が大きく、次いで「空調」「動力」が続いた。なお、 受変電設備等の大型投資は多くの事業所で対策済みであり、投資額及び削減効果は頭打ちである。 今後は技術革新による新たな対策等の情報収集に努める。

【BAT、ベストプラクティスの導入進捗状況】

BAT・ベストプラクティス等	導入状況·普及率等	導入・普及に向けた課題
	2016年度 〇〇%	
	2020年度 〇〇%	
	2030年度 〇〇%	
	2016年度 〇〇%	
	2020年度 〇〇%	
	2030年度 〇〇%	
	2016年度 〇〇%	
	2020年度 〇〇%	
	2030年度 〇〇%	

【業界内の好取組事例、ベストプラクティス事例、共有や水平展開の取組】

★会員企業の取り組み事例(3件)

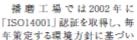
産機工 環境活動報告書(2016年度)より抜粋

http://www.jsim.or.jp/pdf/kankyohokoku16.pdf

会員企業の環境保全活動①

株式会社神戸製鋼所 播磨工場

地域とともにある人と環境にやさしい工場を目指しています


本報告書では、環境活動に取り組まれている会員企業の事業所を3箇所紹介します。 1箇所目の株式会社神戸製鋼所 播磨工場 (以下、「播磨工場」とする) は、油冷式空気圧 縮機、オイルフリー空気圧縮機、冷凍機、ヒートポンプ等の開発・設計・製造を行っています。 お忙しい中、播磨工場 工場長の中南さん、総務室長の水野さん、総務室環境/防災専 門指導員の構本さんにお話を伺いました。

●2014年度→2015年度

生産額UP!				
使用エネルギーの熱量換算値	20.0%削減			
CO2排出量	21.8%削減			

環境保全活動への取り組み

神戸製鋼グループは、環境経 営基本方針である「環境に配慮 した生産活動」、「製品・技術・ サービスでの環境への貢献」、 「社会との夫生・協調」を3本 柱とし、環境に配慮した事業活 動を推進しています。

Plc.1 播磨工場

て「地球温暖化対策」や「循環型社会構築」等の環境保全活動 に取り組んでいます。また、環境方針の理解と環境意識の向上を 目的として、歌制ごとの階層別教育を全従業員に対して行ってい ます。

地球温暖化防止に向けた取り組み

■日常での省エネ活動の促進

夏と冬の年2回、省エネ活動を促すポスターを掲示し、従業員の日常における 省エネ活動を促しています。2015年度 は、事務所の空調を夏28℃、冬20℃に 適正 管理 することで 電力を年 間 20,160kWh削減、きめ細かく消灯するこ とで電力を年間 10,861kWh削減するこ とができました。

PIG.2 省エネ活動の

■働き方改革による電力削減

長時間労働の是正を目的に始めた 「19時以降の残業原則禁止」の取り組

みにより、労働環境の改善のみ ならず、19時以降に空調を停止 することで年間44,352kWhの電 力を削減できました。

■省エネ型空調設備の導入

空調設備を省エネ型の自社 製セートポンプに更新することで、 年間168,000kWhの電力を削減できました。

Pic.3 省エネ型空調設備

廃棄物削減に向けた取り組み

■ゼロエミッションの違成・維持

播磨工場では、限りある資源を有効利用するため、廃棄物の 削減・リサイクルを徹底してきました。その結果、2009年度までに ゼロエミッションを達成しました。その後もリサイクル率99%以上を 維持しており、ゼロエミッション達成に向けての取り組みは継続中 です。 主な活動としては、環境管理担当者が工場内で行っている環境 パトロールで気づいた現状の問題点や注意点等を写真でわかりや すく表示し、分別手順や回収・保管手順等を説明することで廃プ ラスチック、木くず、段ポール等の廃棄物の分別回収を撤底してい ます。

Pic.4 分別回収の呼びかけ

その他の取り組み

■切削油の回収と再利用、流出防止

汎用圧縮機の製造現場から 出る切粉は、工作機械の切粉 排出装置では十分に油切りでき ず、切粉置き場から切削油が外 に流れ出す可能性がありました。

原因となっていた切粉コンベ アと切粉ホッパーを改善した結 果、切削油の回収と再利用が可 能になり、切削油使用量をそれ

PICS 改善後の切粉コンベア

ぞれ年間で1,296リットル、960リットル削減することができました。また、年間経済効果も約560,000円ありました。

環境配慮製品を通じた貢献

■温泉から電気を作るマイクロバイナリ発電機

100℃以下の熱源から100 kW級の電気を生み出すマイク ロバイナリ発電機は、2011年 の販売開始以来、新たな温泉 の利用方法として評価をいた だいております。また、産業用 途でも低温排熱の新たな有効 利用方法として活用され始め ています。

Pic.6 地熱発電所

今後の取り組み

神戸製鋼グループの環境経営基本方針の3本柱の一つである 「製品・技術・サービスでの環境への貢献」を実践するために、 今後も環境に配慮した省エネ製品の開発に取り組んでいきます。

また、ゼロエミッション達成に向けての取り組みを継続していくために、特に若い世代への環境教育をしっかりと行っていきます。

会員企業の環境保全活動②

三業株式会社 豊川製作所

企業活動のすべての領域で環境負荷の低減に努めています

新東工業株式会社 豊川製作所 (以下、「豊川製作所」とする) は、鋳型造形装置、鋳物砂 ●2014年度→2015年度 処理装置をはじめ鋳造用設備全般の設計・開発・製造を行っております。

お忙しい中、執行役員 企画部長の太田さん、プロダクションセンター 安全品質環境グ ループ 副マネージャーの日野さん、プロダクションセンター 安全品質環境グループ 主任担 当員の井川さんにお話を伺いました。

売上高	増加
使用エネルギーの熱量換算値	7.1%削減
CO₂排出量	6.5%削減

■産業と環境の調和

1963年、まだ「公書」という 言葉すらなかった時代に、きれ いな空気の必要性、重要性をう たった企業広告を週刊朝日に掲 載するなど、新東工業グループ は「産業と環境の調和」を目指 し、事業活動を通じた環境への

PIG7 豊川製作所

取り組みを積極的かつ継続的に展開しています。

■豊川製作所の取り組み

豊川製作所では、ゼロエミッションの実現、コージェネレーション システム、太陽光発電システムの導入など省資源・省エネルギー をはじめとした環境対策に積極的に取り組んでいます。

■天井昭明のLFD化

工場天井照明をメタルハライド ランプからLEDに順次交換して います。

■コージェネレーション システムの省エネ対策

冷却塔循環ポンプに豊川製作 所の従業員の方々の手でインパー

PIC8 天井照明のLED化

タを取り付けたことにより、63MWh/年の省エネ効果が得られました。 ■電力使用量の見える化・細分化

工場や事務所棟、大型機械ごとに置力量計を取りつけ、電力使 用量の見える化を進めています。こうして細分化したデータの分析 によって様々な節電のアイデアが生まれています。一例として、空調 設備の待機電力が集中する箇所を特定し、そのブレーカーを落とし た結果、年間17万円分のコストダウンが実現しました。また、社内 のイントラネットに事業所の電力使用量を掲示し、社員の節電意識 向上を図っています。

■環境省ライトダウンキャンペーンへの参加

広告塔や外灯などを一斉消灯した結果、19~22時の3時間で 703kWhの削減に繋がりました。

■暑熱対策の高圧ミストファンの設置

気化熱で温度を下げることにより、過 大な電力を使用せずに暑熱対策を行う ことができました。

■省エネ効果事例集の作成

「エアコンのタイマーを活用した省エネ 事例」など、20を超える好事例をまとめ た「新東省エネ効果事例集|を作成し ました。新東工業グループで情報共有 し、展開しています。

Plc.9 高圧ミストファン

■鋳造廃砂の削減

自社製の砂再生プラント「USR-II」の導 入により、従来に比べ約33%の廃砂削減を 実現しました。

■職場や家庭でのエコ活動

「新東エコラリー」

職場や家庭での環境に配慮した取り組みについて、効果に併せ てポイントに換算して事業所単位、従業員単位で競い合う「新東 エコラリー」を展開しています。一人ひとりの活動内容や環境クイズ を設定するなど、参加しやすい工夫を行っています。なお、獲得し たポイントは、エコ商品や簡潔グッズ等に交換することができます。

■エコキャップ活動

豊川製作所の従業員の方が 2008年に開始した本活動は、 新東工業グループ全体に広がり ました。2013年にはNPOエコ キャップ推進協議会より「エコ キャップ啓発賞」を受賞しました。 なお、今まで集めたキャップを

PIC:10 砂再生プラント

見受け ロ収したエコキャップ

CO2排出量に換算すると14,100kgになりました。

集應機の分野で、①送風機の インバータ制御と、②寒寒筒所を 最適風量とするダンバ制御を組み 合わせることによって、理想的な 省エネと快適な作業環境とを実 現する革新的なシステムを楊楽し ています。このように、環境負荷を 低減する装置・サービスの提供 を通じて、2001年以来、お客様

PRT2 集席牌快適環境・省エス **システム(展示模型)**

の使用段階でのCO2排出量を累計で49.264t削減してきました。

今後の取り組み

今年度中に、事業所毎に取得していたISOの認証を統一化す るほか、すべての事業所で電力使用量の見える化設備を導入する ことでネットワークの構築が完了します。こうした全社体制の確立に よって、環境保全活動をさらに積極的に推進し、様々な取り組みを 活発化させていきます。

環境配慮製品・サービスでは、鋳物の生産ラインに見える化ソ フトを導入し "不良ゼロ" "エネルギー消費最適化" を目指すサービ ス「SINTO SMART FOUNDRY TM」等により、環境負荷低減 に貢献してまいります。

会員企業の環境保全活動③

会社電業社機械製作所 三島事業所

環境にやさしいモノづくりと、豊かな社会の創造を実現していきます

株式会社電業社機械製作所 三島事業所 (以下、「三島事業所」とする) は、ポンプ、送風 ●2014年度→2015年度 機、バルブ等の開発・設計・製造を行っています。

お忙しい中、生産本部 生産部長の橋本さん、生産本部 生産部 生産企画室 担当課長の 加藤さん、生産本部 生産部 生産技術課 担当課長の森さん、生産本部 技術研究所 開発グ ループの山田さんにお話を伺いました。

生産額UP!			
使用エネルギーの熱量換算値	12.8%削減		
CO2排出量	12.8%削減		

ISO14001 認証取得に向ける ンフラ整備や環境管理体制の構 築等の活動をスタートさせた三島 事業所は、2001年9月に東京本 社、支店、営業所に先駆け ISO14001の認証を取得しまし た。また、環境保全に対する意 識の向上と理解を深めることを目

回西 三島事業所

的にISO14001の要求事項や過去に発生した環境不適合事例等 をまとめた資料を作成し、従業員と構内業者全員を対象に環境教 音を行っています。

地球温暖化防止に向けた取り

■照明器具のLED化

本館のすべての照明器具を LED 化したことにより、電力使 用量を54%削減しました。工場 の照明器具もLED化することを 検討しています。

新しく建てた事務館の屋上 900㎡すべてを緑地化すること で断熱効果を発揮し、室温の上 昇を抑えることができました。ま た、年間約40トンCO2の削減を 実現しました。

■高効率ガス給湯器の設置

業務用の高効率ガス給湯器 を設置することで排気熱を再 利用できるようになりました。こ れにより、温水用ガス使用量を 減らすことができ、都市ガス使 用量を38%削減することができ ました。

■高効率変圧器の導入

2007年に高効率変圧器を導 入したことで変圧器の損失電力 を55,400kWh/年削減すること ができました。

Pic.14 LED照明

PIG15 建屋屋 Fの経性

Plc:16 高効率ガス給湯器

- 廃棄物削減に向けた取り組み

■廃棄物ステーションの設置

廃棄物の分別ルールを構築し、三島事業所内に廃棄物ステー ションを7箇所設置する等、廃棄物の分別と適正な保管を徹底し ています。

■紙くずのリサイクル

これまで焼却処理されていた紙くずを細かく分別し、固形燃料

(RPF) にリサイクルしています。 これにより、焼却処理される紙ご みの排出量が半減しました。

■環境バトロール活動の実施

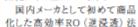
環境担当者による月例の環境 パトロールを行い、廃棄物の監 視と繰り返しの啓発活動により、 従業員に対して分別ルールの定 着を図っています。

PIC:17 環境パトロールの様子

その他の取り組る

■騒音低減への取り組み

三島事業所の周囲は住居地域のた め、騒音の発生を重要な環境側面とし て認識しています。騒音低減に向けた 設備の改善(適音壁の設置等)、大型 送風機の運転時の回転数と台数の鉋 制、地域住民への運転情報の事前伝 達等、様々な騒音対策を行っています。 また、日常的な取り組みとしては、騒音 計測システムを導入し、事業所の敷地



Pic 18 適音號

境界に設置されたマイクロフォンで工場から発生する騒音の連続測 定を行うことにより騒音監視を徹底しています。

■エネルギー回収システム

三島事業所は、主力工場とし てポンプ、送風機、バルブ等の 製造を手がけ、水と空気と環境 をテーマに高付加価値製品の 開発に取り組んでいます。

PC19 エネルギー回収システム

海水淡水化プラント向けエネルギー回収システム(商品名: DeROs) は、エネルギー回収効率98%を実現した世界最高水準 のシステムです。また、電力消費量の大幅な低減にも成功しており、 初号機の納入先 (沖縄県の簡易水道海水淡水化プラント) では置 力消費量が導入前の半分以下に低減したことが確認されました。

今後の取り組み

地球温暖化が大きな環境問題となっており、温室効果ガスの排 出削減に取り組むことが企業の社会的責任であると考えています。 今後も日常の省エネ活動を推進すると共に、省エネに寄与する世 界最高レベルの高効率製品、革新技術に利用できる新技術、新 製品の開発に取り組んでいきたいと考えています。

(5) 想定した水準(見通し)と実績との比較・分析結果及び自己評価 【目標指標に関する想定比の算出】

* 想定比の計算式は以下のとおり。

想定比【基準年度目標】=(基準年度の実績水準-当年度の実績水準) /(基準年度の実績水準-当年度の想定した水準)×100(%) 想定比【BAU 目標】=(当年度の削減実績)/(当該年度に想定した BAU 比削減量)×100(%)

【自己評価・分析】 (3段階で選択)

<自己評価及び要因の説明>

- □ 想定した水準を上回った(想定比=110%以上)
- □ 概ね想定した水準どおり(想定比=90%~110%)
- □ 想定した水準を下回った(想定比=90%未満)
- 見通しを設定していないため判断できない(想定比=-)

(自己評価及び要因の説明、見通しを設定しない場合はその理由) 暫定目標のため、見通しを策定していない。

(自己評価を踏まえた次年度における改善事項)

(6) 次年度の見通し

【2017年度の見通し】

	生産活動量	エネルギー 消費量	エネルギー 原単位	CO₂排出量	CO₂原単位
2016 年度 実績					
2017 年度 見通し					

(見通しの根拠・前提)

(7) 2020年度の目標達成の蓋然性

【目標指標に関する進捗率の算出】

* 進捗率の計算式は以下のとおり。

進捗率【基準年度目標】=(基準年度の実績水準-当年度の実績水準)

/(基準年度の実績水準-2020年度の目標水準)×100(%)

進捗率【BAU 目標】=(当年度のBAU-当年度の実績水準)/(2020年度の目標水準)×100(%)

=172.7%【自己評価・分析】(3段階で選択) <自己評価とその説明> 見通しを設定していないため判断できません。 □ 目標達成が可能と判断している (現在の進捗率と目標到達に向けた今後の進捗率の見通し) 暫定目標のため今後の見通しを算出していないが、エネルギー消費原単位の改善に向け努力を続ける。 (目標到達に向けた具体的な取組の想定・予定) (既に進捗率が 2020 年度目標を上回っている場合、目標見直しの検討状況) □ 目標達成に向けて最大限努力している (目標達成に向けた不確定要素) (今後予定している追加的取組の内容・時期) □ 目標達成が困難 (当初想定と異なる要因とその影響) (追加的取組の概要と実施予定) (目標見直しの予定)

(8) 2030年度の目標達成の蓋然性

進捗率=(14.6-12.7)/(14.6-13.5)

【目標指標に関する進捗率の算出】

* 進捗率の計算式は以下のとおり。

進捗率【基準年度目標】=(基準年度の実績水準-当年度の実績水準) /(基準年度の実績水準-2030年度の目標水準)×100(%) 進捗率【BAU 目標】=(当年度の BAU-当年度の実績水準)/(2030年度の目標水準)×100(%)

進捗率=(60.1-55.6)/(60.1-56.2)

【自己評価・分析】

(目標達成に向けた不確定要素)

2030年度の市場規模等の公的指標が存在せず、予測が困難である。

(既に進捗率が 2030 年度目標を上回っている場合、目標見直しの検討状況)

(9) クレジット等の活用実績・予定と具体的事例

【業界			~ 11	_ <i>/</i> _ T
		7 1	71 11	7 XXH 1
1 - 4	<i>-</i> 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ 7KH /

- □ クレジット等の活用・取組をおこなっている
- □ 今後、様々なメリットを勘案してクレジット等の活用を検討する
- 目標達成が困難な状況となった場合は、クレジット等の活用を検討する
- □ クレジット等の活用は考えていない

【活用実績】

□ エクセルシート【別紙7】参照。

【個社の取組】

- □ 各社でクレジット等の活用・取組をおこなっている
- 各社ともクレジット等の活用・取組をしていない

【具体的な取組事例】

取得クレジットの種別	
プロジェクトの概要	
クレジットの活用実績	
取得クレジットの種別	
プロジェクトの概要	
クレジットの活用実績	
取得クレジットの種別	

プロジェクトの概要	
クレジットの活用実績	

Ⅲ. 低炭素製品・サービス等による他部門での貢献

(1) 低炭素製品・サービス等の概要、削減見込量及び算定根拠

<会員企業の省エネ製品事例 [産機工・環境活動報告書(過去 5 年分)より抜粋]>

	低炭素製品・ サービス等	削減実績 (推計) (2016年度)	削減見込量 (ポテンシャル) (2020年度)	削減見込量 (ポテンシャル) (2030年度)
1	高効率型二軸スクリュープ レス脱水機			
2	片吸込単段渦巻きポンプ			
3	小型バイナリー発電装置			
4	セメント・ごみ処理一体運営 システム			
5	省電力・エアーレスコンベヤ			
6	野外設置型モータコンプレッ サ			
7	全電動射出成形機			
8	ハイブリッドカレンダーロー ル(業務用洗濯機)			
9	制御器一体型高速回転は ん用インラインポンプ			
10	高効率・ミニマムミッションボ イラ			

受注生産品である産業機械は、製品毎に LCA が異なり、その定量化には会員各社が多大なコストを負担することになるため、削減見込量の把握等は困難である。

(当該製品等の特徴、従来品等との差異、及び削減見込み量の算定根拠や算定の対象としたバリューチェーン/サプライチェーンの領域)

1高効率型二軸スクリュープレス脱水機 消費電力を16%程度に抑制

2 片吸込単段渦巻きポンプ CO2 排出量を 99.3t 削減

3 小型バイナリー発電装置 1 年間で 81.3t-CO2 の環境負荷低減

4 セメント・ごみ処理一体運営システム セメント生成工程の燃料 5%低減

5 省電力・エアーレスコンベヤ 消費電力最大 50%削減

6 野外設置型モータコンプレッサ 省エネ効果 149 万円/年

7 全電動射出成形機 消費電力約 25%削減

8 ハイブリッドカレンダーロール(業務用洗濯機) ロール仕上げ枚数 50 枚/h、7.7%改善

9制御器一体型高速回転はん用インラインポンプ 消費電力約54%削減

10 高効率・ミニマムミッションボイラ 燃料消費量約 10%低減

【日本国内の風力発電の実績】

日本産業機械工業会では、2010 年度より「風力発電関連機器産業に関する調査研究事業」を実施している。

風力発電は、発電量あたりの CO2 削減量が大きいことから環境貢献度が高い産業であると言われている。また、風力発電装置は大型風車では 1 万点以上もの部品で構成されていることから、技術・経済波及効果は非常に大きい。しかし、風力発電は関連分野が多くの産業にまたがることから、その産業の実態は明確になっていない。そこで、風力発電関連機器産業の生産等産業実態を調査把握し、新たな産業としての基盤整備の推進方策等を検討している。

なお、本事業に関する調査報告書を毎年発行し、経済産業省等の関係省庁・関連団体などへ提出している。

(年度)	2006	2007	2008	2009	2010	2011
発電量(万 MWh)	217	261	294	361	402	468
前年度比(%)	23. 7	20. 6	12. 5	22. 8	11. 2	16. 4

(年度)	2012	2013	2014	2015	2016
発電量(万 MWh)	454	520	504	516	552
前年度比(%)	▲ 2.8	14. 5	▲ 3. 1	2. 4	7. 0

出所:資源エネルギー庁 電力調査統計表

2016 年度の発電量は 552 万 MWh、前年度比 7.0%増と 2 年連続で増加した。10 年前の 2006 年度と比較すると、約 2.5 倍に増加した。

2012 年度に固定価格買取制度(FIT)の買い取り価格が公表されて以降、2013 年度から 500 万 MWh を超え、緩やかではあるが発電量の増加基調が続いている。

なお、個別実績は不明のため、詳細データを明記できる状況にない。

(2) 2016年度の取組実績

(取組の具体的事例)

会員企業の製品事例(2件)

産機工 環境活動報告書(2016年度)より抜粋

http://www.jsim.or.jp/pdf/kankyohokoku16.pdf

会員企業の製品紹介①

高効率型二軸スクリュープレス脱水機

新発想の脱水機構で低含水率化と省エネ化を実現

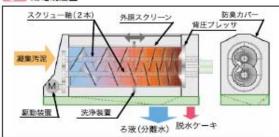
株式会社クボタ

一般社団法人 日本産業機械工業会

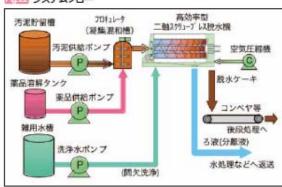
第42回優秀環境装置表彰 「経済産業大臣賞」 受賞

はじめに

排水処理から発生する液状の汚泥は、その大部分が水分のため、汚泥から水分を分離して減容化する「脱水機」の存在は重要です。脱水機の性能の良し悪しが、汚泥処理システム全体の効率に影響を与えるケースも多くなっています。


汚泥脱水機には、ベルトプレス、遠心脱水機、スクリュープレス 等がありますが、近年では省エネで比較的安価なスクリュープレス が注目を集めています。

高効率型二軸スクリューブレス脱水機とは


スクリュープレスは、凝集剤で調整された汚泥を内部で回転する スクリューで圧密しながら、金属製 (バンチングメタルやウエッジワイ ヤー)のスクリーンを通してろ液 (分離水)を排出し、汚泥の含水 率を下げる機械です。

当社が新たに開発した高効率型二軸スクリューブレス脱水機は、 従来1本だったスクリュー軸を2本にし、それらを羽根が噛み合う軸 間距離で平行かつ縦に配置した構造を採用しています。二軸化す ることで、汚泥は適度に混合されながら、従来よりも強力に圧密・ 勢断脱水されます。

西四 概略構造図

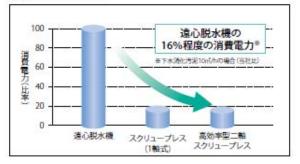
システムフロー

■ 高効率型二軸スクリュープレス脱水機

製品の特長

■高性能

従来の一軸式よりも、難脱水性汚泥での低含水率化が図れるため、ケーキ発生量を抑制できます。また内部での汚泥閉塞や供回りが発生しないため、安定した運転が可能です。


■コンパクトで省エネ

小型で大容量の処理が可能ですので、配置計画が容易です。 また、スクリューの回転数が非常に低い(~lmin⁻¹)ので、遠心脱水 機の16%程度の消費電力に抑えることができます。

■トータルコストの削減

小型機種の適用により、建設費だけでなく補修費を含めたランニ ングコストも安価になります。

画22 消費電力の低減

今後の展望

高効率型二軸スクリュープレス脱水機は、下水汚泥を対象として 開発されましたが、今後は幅広い分野への適用が期待されます。 本脱水機は、一般社団法人日本産業機械工業会 主催の第42回 優秀環境装置表彰事業で経済産業大臣賞を受賞いたしましたが、 これを励みに、今後とも水処理・汚泥処理関連技術のさらなる研究開発を重ね、地球環境の保全に貢献する製品づくりに努めてまいります。 会員企業の製品紹介②

ポンプdeエコ

片吸込単段渦巻きポンプによる省エネ

株式会社酉島製作所

一般財団法人 省エネルギーセンター 平成26年度省エネ大賞 「経済産業大臣賞」受賞 (ピジネスモデル分野)

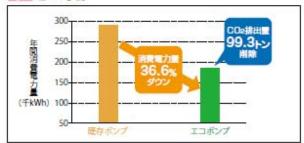
はじめに

ボンブは、私たちの産業や生活においてなくてはならない産業機械の1つです。日本の年間消費電力量約1兆kWhのうち、約28%がボンブによる消費電力と言われています。また、ボンブのライフサイクルコストにおいては、据付費用やボンブ代金等のイニシャルコストの占める割合は小さく、ランニングコストである電力費の割合が約90%です。そこで当社では汎用ボンブクラスながら徹底的に高効率を追求した「エコボンブ」を開発し、その提供はもちろん、お客様のボンブ設備に最適な省エネ手法をご提案する「ボンブ de エコ」活動も合わせ実施しています。「ボンブ de エコ」は平成26年度にボンブ業界初の省エネ大賞の最高位である「経済産業大臣賞(ビジネスモデル分野)」を受賞しました。

エコボンブの特長

当社ではお客様の設備状況に対して最適な材質の選定や、最適なインペラ外径になるようにインペラ外径を加工する(インペラカット)等、セミオーダー方式にこだわっています。インペラカットは余分な流量・余分な圧力を削減し、消費電力の削減を実現することができます。インペラは流れに適合したなめらかな曲面形状の3次元インペラを開発することでボンブの高効率化を実現しています。

ボンブを動かすためのモータは2015年4月よりトップランナー制度 が適用されましたが、当社ではその基準に適合するIE3 (プレミアム効率)モータを2008年12月より標準採用するなど、法制度へも 先んじて対応しました。また、ボンブとモータのマッチングを考慮する ことにより確かな省エネを実現しています。


お客様にご提供する全てのボンブは性能試験を実施し、正確な 特性を把握しているため、エコボンブへの更新による省エネ効果の 検証、運転管理が行いやすいといったメリットもあります。

実証実績と今後の展望

2011年4月~2016年3月で「ボンブdeエコ」活動(省エネ提案) によるエコボンブ導入実績は約850事業所におよび、これらの消費 電力量の平均削減率は20~30%です。加えて、インバータを導入 し、既に省エネ対策をしているボンブに対しても削減効果が確認されています。

「ボンプで地球を救う!」をスローガンに世界一省エネにこだわる メーカとして、さらなる「ボンプdeエコ」活動に取り組んでいく所存 です。

省エネ事例

面24 省エネのひみつ

(取組実績の考察)

産業機械の CO2 排出量は、製造段階よりも使用段階の方が飛躍的に多いため、会員企業は省エネルギー製品の供給を通じて、製品の使用段階で発生する CO2 削減に取り組んでいる。

(3) 2017年度以降の取組予定

工業会では、関係省庁・関連団体と連携を図りながら、新技術・製品の普及・促進に向けた規制 緩和等の要望を行い、製品の使用段階で発生する *CO2* 削減への取り組みを続ける。

Ⅳ. 海外での削減貢献

(1) 海外での削減貢献の概要、削減見込量及び算定根拠

	海外での削減貢献	削減実績 (2016年度)	削減見込量 (2020年度)	削減見込量 (2030年度)
1				
2				
3				

(削減貢献の概要、削減見込み量の算定根拠)

新興国、途上国の資源・エネルギー開発やインフラ整備、工業化投資等に対して、我々産業機械業界が培ってきた技術力を活かしていくことで、世界各国の低炭素社会づくりや地球環境保護等に貢献している。

なお、受注生産品である産業機械は、製品毎に LCA が異なり、その定量化には会員各社が多大なコストを負担することになるため、削減見込量等の把握は困難である。

(2) 2016年度の取組実績

(取組の具体的事例)

<会員企業の取り組み事例>

【NEDO「エネルギー消費の効率化等に資する我が国技術の国際実証事業」(実施中)】

- ・ 高温排出水を用いた省エネ・低環境負荷型造水実証事業 (カタール)
- ・ 膜技術を用いた省エネ型排水再生システム技術実証事業(サウジアラビア)
- ・ 馬鈴薯澱粉残渣からのバイオエタノール製造実証事業(中国)
- ・ 産業廃棄物発電技術実証事業 (ベトナム)
- ・ 海水淡水化・水再利用統合システム実証事業(南アフリカ共和国)

【その他】

- 公益社団法人アジア協会アジア友の会(JAFS)を通じてインドでの井戸建設を支援
- ・ パーム油の搾油後の地球温暖化防止(メタンガス排出抑制)と水質汚染対策(廃液処理)に貢献
- 発展途上国の環境行政官に塵芥車の構造や活用方法を指導
- 東南アジア等での廃棄物資源を利用したバイオマス発電ボイラの提供
- ・ 石油・石炭焚きボイラなどの排煙から SO2 を吸収し石膏として固定する排煙脱硫装置の提供
- ・ 環境負荷の低い焼却炉等の廃棄物処理装置の提供
- ベトナム、ミャンマー、タイ、ウルグアイ等で技術セミナーを実施
- ・ サウジアラビア「工業団地内の工業排水の水処理・再利用に関するフィージビリティ」実施

(取組実績の考察)

産業機械業界は、社会インフラ整備等を通じて、地球環境保全と国際社会の繁栄に積極的に貢献

している。

(3) 2017年度以降の取組予定

世界に誇れる環境装置や省エネ機械を供給する産業機械業界は、持続可能なグローバル社会の実現に向けて、インフラ整備や生産設備等での省エネ技術・製品の提供を始めとする多角的で大きな貢献を続ける。

V. 革新的技術の開発・導入

(1) 革新的技術・サービスの概要、導入時期、削減見込量及び算定根拠

	革新的技術・サービス	導入時期	削減見込量
1			
2			
3			

(技術・サービスの概要・算定根拠)

産業機械業界共通の新たな技術開発等は今のところ行っていないため、該当なし。

(2) ロードマップ

	技術・サービス	2016	2017	2018	2020	2025	2030
1							
2							
3							

(3) 2016年度の取組実績

(取組の具体的事例)

<会員各社の取り組み事例>

- •MBR 下水処理システムの省エネルギー化技術の開発
- ・小水力発電・風力発電等の新エネルギー製品の開発
- ・高効率ポンプの開発
- ・水環境分野における IoT を活用した故障予知・省エネ運転等のシステムの開発
- ・ボイラ向け水処理薬品の開発
- ・乾式メタン発酵技術の開発

<工業会の取り組み>

- 高効率な省エネルギー機器の普及促進に取り組む。
- ・再生可能エネルギーの活用促進に向け、風力発電関連機器産業等新エネルギー関連分野の調査研究やバイオマス発電の導入促進等の各種事業に取り組む。
- ・水素の利活用を推進するため、水素ステーションの動向や、水素の大量輸送方法、最新製造方法の動向について調査研究に取り組む。

(取組実績の考察)

工業会では、高効率な省エネ機器に関する動向について機種毎の特性に合わせた情報収集・研究を行い、また、新エネルギー関連分野では、バイオマス発電の動向や風力発電関連機器の調査結果を報告書等に取りまとめ広く一般に公表するなど、関連省庁・関連団体と連携しながら各種事業を

展開し、普及・促進やニーズ調査に取り組んだ。

(4) 2017年度以降の取組予定

産業機械はライフサイクルが長く、製造段階と比べ使用段階でのエネルギー消費量が多いことが 実態である。今後も関連業界と連携し高効率な産業機械の開発・提供を推進すると共に、ニーズ調 査等に取り組む。

VI. 情報発信、その他

- (1) 情報発信(国内)
- ① 業界団体における取組

取組	発表対象 : 該当するものに 「〇」		
	業界内限定	一般公開	
優秀環境装置表彰事業の実施		0	
環境活動報告書の発行(書籍・web サイト)http://www.jsim.or.jp/		0	
環境装置の検索サイトの設置 http://www.jsim-kankyo.jp/		0	

<具体的な取組事例の紹介>

- ・当工業会では、昭和 49 年度より経済産業省の後援を得て、環境保全技術の研究・開発、並びに優秀な環境 装置(システム)の普及促進を図ることを目的として、「優秀環境装置の表彰事業」を毎年実施し、①経済産業 大臣賞 ②産業技術環境局長賞 ③中小企業庁長官賞 ④一般社団法人日本産業機械工業会会長賞を顕彰 する。
- 当工業会では「環境活動報告書」を毎年発行し、産業機械業界の地球温暖化対策への取り組みの他、廃棄物削減、VOC 排出削減への取り組み、会員企業の環境マネジメント等の調査結果を紹介している。また、環境活動に取り組む会員企業の事業所を 3 カ所掲載し、多種多様な取り組み事例を紹介している。さらに、地球環境に配慮した会員企業の省エネルギー製品を 2 製品紹介している。なお、「環境活動報告書」は当工業会web サイトで広く一般に公開している(http://www.jsim.or.jp/pdf/kankyohokoku15.pdf)。
- ・当工業会の自主事業として、会員企業の取り扱う環境装置を装置技術や処理物質で検索できる web サイトを日本語版と英語版で開設し、広く一般に公開している(http://www.jsim-kankyo.jp/)。

② 個社における取組

取組	発表対象:該当するものに 「〇」		
	企業内部	一般向け	
CSR 報告書等の発行(書籍・web サイト)		0	

<具体的な取組事例の紹介>

③ 学術的な評価・分析への貢献 特になし (2) 情報発信(海外) <具体的な取組事例の紹介> 特になし

(3) 検証の実施状況

① 計画策定・実施時におけるデータ・定量分析等に関する第三者検証の有無

検証実施者	内容
■ 政府の審議会	
■ 経団連第三者評価委員会	
□ 業界独自に第三者(有識者、研究 機関、審査機関等)に依頼	□ 計画策定 □ 実績データの確認 □ 削減効果等の評価 □ その他()

② (①で「業界独自に第三者(有識者、研究機関、審査機関等)に依頼」を選択した場合) 団体ホームページ等における検証実施の事実の公表の有無

■ 無し	
□ 有り	掲載場所:

Ⅲ. 業務部門(本社等オフィス)・運輸部門等における取組

- (1) 本社等オフィスにおける取組
- ① 本社等オフィスにおける排出削減目標
- □ 業界として目標を策定している

削減目標:〇〇年〇月策定 【目標】

【対象としている事業領域】

■ 業界としての目標策定には至っていない

(理由)

会員企業は産業機械以外にも様々な製品を生産しており、本社等オフィス部門のエネルギー消費 量の削減目標を業種や製品毎に設定することは混乱を招くため、目標策定には至っていない。

② エネルギー消費量、CO2排出量等の実績

本社オフィス等の CO2排出実績(83 社計)

	2015 年度	2016 年度
延べ床面積 (万㎡):	74	74
CO ₂ 排出量 (万 t-CO ₂)	27.1	26.4
床面積あたりの CO2 排出量 (kg-CO ₂ /m²)	364.8	355.7
エネルギー消費量 (原油換算) (万 kl)	13.3	13.0
床面積あたりエネ ルギー消費量 (1/m²)	179.5	175.7

- □ II. (1)に記載の CO₂排出量等の実績と重複
- □ データ収集が困難 (課題及び今後の取組方針)

③ 実施した対策と削減効果

【総括表】(詳細はエクセルシート【別紙8】参照。)

(単位:t-CO₂)

	照明設備等	空調設備	エネルギー	建物関係	合計
2016 年度実績					
2017 年度以降					

【2016年度の取組実績】

(取組の具体的事例)

- ●照明関係の省エネルギー対策
 - 22 時自動消灯、既存照明の更新、自動センサーの採用、間引き照明の実施、自然光の導入等
- ●空調関係の省エネルギー対策 省エネルギー型空調機の導入、局所空調の実施、燃料転換、ルーフファン設置、遮熱塗料・フィルムの採用等
- ●受変電設備関係の省エネルギー対策 変圧器の更新、デマンドコントロールの実施等

時パソコン OFF、室内・機械洗浄、エレベータの運転台数削減等

●その他の省エネルギー活動 休電日の実施、グリーン電力の活用、太陽光発電システム導入、機器の省エネ運転、不要時消灯 の徹底、適切な温度管理、クールビズ・ウォームビズ実施、定時帰宅、アイドリング停止、離席

(取組実績の考察)

会員企業ではオフィス部門での省エネルギー推進のため、照明・空調の管理、OA 機器の更新等、 積極的な対策を推進している。

【2017年度以降の取組予定】

(今後の対策の実施見通しと想定される不確定要素)

- (2) 運輸部門における取組
- ① 運輸部門における排出削減目標
- □ 業界として目標を策定している

削減目標∶○○年○月策	定
【目標】	

【対象としている事業領域】

■ 業界としての目標策定には至っていない

(理由)

産業機械は多品種であり、輸送方法や輸送距離などに大きなバラツキがあることに加え、会員企業の多くは産業機械以外にも様々な製品を製造しており、輸送に関するエネルギー消費量の削減目標を製品別に区別することは混乱を招くため、目標策定には至っていない。

② エネルギー消費量、CO2排出量等の実績

	2008 年度	2009 年度	2010 年度	2011 年度	2012 年度	2013 年度	2014 年度	2015 年度	2016 年度
輸送量 (万トンキロ)									
C02 排出量 (万 t-C02)									
輸送量あたり CO2 排出量 (kg-CO2/トンキロ)									
エネルギー消費量 (原油換算) (万 k1)									
輸送量あたりエネ ルギー消費量 (1/トンキロ)									

□ II. (2)に記載の CO₂排出量等の実績と重複

■ データ収集が困難

(課題及び今後の取組方針)

業界として削減目標の策定に至っていないためデータ収集を行っていない。

③ 実施した対策と削減効果

* 実施した対策について、内容と削減効果を可能な限り定量的に記載。

年度	対策項目	対策内容	削減効果
2016年度			OOt-CO₂∕年
2017年度以降			OOt-CO2/年

【2016年度の取組実績】

(取組の具体的事例)

モーダルシフトの導入や、部品供給業者から部品を集荷する際、トラックで最適なルートを回って 1 度の集荷で済ませる等、輸送の効率化を図っている等の事例が報告されている。

(取組実績の考察)

運輸部門に関しては外部業者に委託している会員企業が殆どであり、業者の取り組みに積極的に協力していくことが主な取り組みである。

【2017年度以降の取組予定】

(今後の対策の実施見通しと想定される不確定要素)

効率的な輸送に向けた運送業者との協力など、会員各社の積極的な取り組みを推進する。

(3) 家庭部門、国民運動への取組等

【家庭部門での取組】【国民運動への取組】

一部会員企業において、環境家計簿の推進を始め、次のような従業員に対する働きかけを実施している。

- ・家庭で出来る節電や省エネの取り組み等を社内報・イントラネットに掲載
- ・世界各地の従業員とその家族を対象に、職場や家庭で挑戦したエコな活動の写真を募集する 環境啓発企画を実施
- ・行政のエコチエックシートを利用した環境意識の醸成
- ・環境家計簿活用の奨励
- ・環境省 Fun to Share への参加の呼びかけ
- ・自治体の森林づくり事業への参加募集
- ライトダウンキャンペーンへの参加の呼びかけ
- ・環境改善に寄与した身近な工夫(節電・節水など)の募集 など

(再生可能エネルギーの活用に関する会員企業の取り組み)

- ① 太陽光発電の設置
- ② バイオマス発電を行う事業者向けに発電用ボイラを設計・建設
- ③ 風力発電設備の設置
- ④ 集塵機排気を利用した風力発電の提供
- ⑤ 温廃熱によるバイナリー発電設備の提供
- ⑥ 嫌気処理によるバイオガスの製造に関する開発
- ⑦ 経済産業省「浮体式洋上ウィンドファーム実証研究事業」に参画
- ⑧ 下水汚泥燃料化設備の提供
- ⑨ 小水力発電設備の提供
- (10) バイオマス発電にあわせた破砕機の開発

(森林吸収源の育成・保全に関する取組み)

- ① 兵庫県、高知県、宮城県等での森林保全活動
- ② 作業着の上着に復興オフセットを取り入れている。
- ③ C02 削減を目指して六甲山系の森林保全に取り組む事を目的とした「神戸経済同友会」の 森プロジェクトに入会
- ④ 森林整備活動の実施
- ⑤ 間伐材の有効利用を促進することを目的とした「森の町内会」の活動に賛同し、間伐材を利用した用紙で CSR 報告書を作成している。
- ⑥ 海外生産拠点で植樹活動を継続している
- ⑦ 工場敷地内の樹木の適正管理
- ⑧ 神奈川水源の森林づくり事業への参画
- ⑨ 水源地の周辺の環境保全活動を推進
- ⑩ 大阪アドプトフォレスト活動に参加し、伐採・植林による森づくり活動に参加
- ① バンコク郊外のカオヤイ国立公園などで従業員とその家族等により植樹

Ⅷ. 国内の企業活動における 2020 年・2030 年の削減目標

【削減目標】

<2020年> (2014年6月策定)

エネルギー消費原単位(kL/億円)を年平均1%以上改善(暫定目標)

<2030年> (2015年11月策定)

CO2排出量を2013年度比6.5%削減

【目標の変更履歴】

<2020年>

変更履歴なし

<2030年>

変更履歴なし

【その他】

特になし

【昨年度の事前質問、フォローアップワーキングでの委員からの指摘を踏まえた計画に関する調査票の記載見直し状況】

■ 昨年度の事前質問、フォローアップワーキングでの指摘を踏まえ説明などを修正した (修正箇所、修正に関する説明)

2016 年度のフォローアップワーキングでの指摘を踏まえ、II. 低炭素製品・サービス等による他部門での貢献に日本国内の風力発電の実績を追加した。

□ 昨年度の事前質問、フォローアップワーキングでの指摘について修正・対応などを検討している (検討状況に関する説明)

【昨年度フォローアップ結果を踏まえた目標見直し実施の有無】

- □ 昨年度フォローアップ結果を踏まえて目標見直しを実施した (見直しを実施した理由)
- 目標見直しを実施していない

(見直しを実施しなかった理由)

国の新たな目標や電源構成、購入電力の炭素排出係数の見通し等が決定されなかった。

【今後の目標見直しの予定】

- □ 定期的な目標見直しを予定している(○○年度、○○年度)
- 必要に応じて見直すことにしている

(見直しに当たっての条件)

国の新たな目標や電源構成、購入電力の炭素排出係数の見通し等の決定

(1) 目標策定の背景

産業機械業界は、リーマン・ショック前の 2007 年度に生産額が 2.3 兆円を上回ったものの、2009 年度までの 2 年間で 1.9 兆円台まで落ち込み、その後は鍋底状態となった。そうした中で、会員各社は自らの構造改革に取り組み、2014 年・2015 年度と 2 年連続で前年度の生産額を上回った結果、ようやく 2.2 兆円台まで持ち直した。しかしながら、国内・海外共に受注環境は厳しさを増しており、先行きを楽観視できる状況にない。

こうした中、地球温暖化対策に取り組むに当たり、2020 年度に向けては、使用エネルギーの約 8 割を占める購入電力に関する炭素排出係数の見通しが示されていない等、環境自主行動計画と同様の削減目標(CO2 排出量)の策定自体が困難だったため、省エネ法に準拠し、エネルギー消費原単位を年平均 1%以上改善していくことを暫定目標とした。

なお、**2030** 年度に向けては、わが国の長期エネルギー需給見通し等をもとに、**CO2** 排出量を **2013** 年度比 **6.5**%削減すること目指す目標を策定した。

(2) 前提条件

【対象とする事業領域】

産業機械の生産活動を行う国内の事業所等

【2020年・2030年の生産活動量の見通し及び設定根拠】

〈生産活動量の見通し〉

産業機械の生産活動量の予測が存在しないため、見通しを算出することができない。

<設定根拠、資料の出所等>

【計画策定の際に利用した排出係数の出典に関する情報】 ※002目標の場合

排出係数	理由/説明
電力	□ 実排出係数(○○年度 発電端/受電端) □ 調整後排出係数(○○年度 発電端/受電端) □ 特定の排出係数に固定 □ 過年度の実績値(○○年度 発電端/受電端) ■ その他(排出係数値:0.37kWh/kg-CO₂ 発電端/受電端) 「電気事業者における低炭素社会実行計画2030年度目標」 <上記排出係数を設定した理由> 国の約束草案と同じものを用いた。
その他燃料	 □ 総合エネルギー統計(○○年度版) ■ 温対法 □ 特定の値に固定 □ 過年度の実績値(○○年度:総合エネルギー統計) □ その他 <上記係数を設定した理由>

【その他特記事項】 特記事項なし

(3) 目標指標選択、目標水準設定の理由とその妥当性【目標指標の選択理由】

【目標水準の設定の理由、自ら行いうる最大限の水準であることの説明】

<選択肢> □ 過去のトレンド等に関する定量評価(設備導入率の経年的推移等) □ 絶対量/原単位の推移等に関する見通しの説明 □ 政策目標への準拠(例:省エネ法 1%の水準、省エネベンチマークの水準)

□ 国際的に最高水準であること□ BAU の設定方法の詳細説明■ その他
<最大限の水準であることの説明>
2020 年以降の温室効果ガス削減に向けた政府の約束草案において、2030 年度の産業部門の CO2 排出量の目安を、省エネ努力等により 2013 年度比 6.5%削減と見込んでいることから、工業会全体の目標も同様とした。
【BAU の定義】 ※BAU 目標の場合 <bau の算定方法=""></bau>
<bau 水準の妥当性=""></bau>
<bau の算定に用いた資料等の出所=""></bau>
【国際的な比較・分析】
□ 国際的な比較・分析を実施した(OOOO年度) (指標)
(内容)
(出典)
(比較に用いた実績データ)〇〇〇年度
■ 実施していない (理由)
諸外国で当工業会と同じ業種の工業会は存在しないことから、比較対象となるデータの収集は難しい。

【導入を想定しているBAT(ベスト・アベイラブル・テクノロジー)、ベストプラクティスの削減見込量、 算定根拠】

会員企業は多種多様な製品を製造しており、製造工程が異なっているため、業界共通の導入 BAT を示すことはできない。

<設備関連>

対策項目	対策の概要、 BATであることの説明	削減見込重	
			基準年度
			0%
			\downarrow
			2020年度
			0%
			↓
			2030年度
			0%
			基準年度
			0%
			\downarrow
			2020年度
			0%
			1
			2030年度
			0%
			基準年度
			0%
			\downarrow
			2020年度
			0%
			↓
			2030年度
			$\bigcirc\%$

(各対策項目の削減見込量・普及率見通しの算定根拠)

(参照した資料の出所等)

<運用関連>

対策項目	対策の概要、 ベストプラクティスであることの説明	削減見込量	実施率見通し
			基準年度
			0%
			→ 2020年度
			2020年度
			70
			2030年度
			0%
			基準年度
			0%
			+
			2020年度
			0%
			2030年度
			0%
			基準年度
			0%
			\downarrow
			2020年度
			0%
			2020年度
			○% ↓ 2030年月 ○%

(各対策項目の削減見込量・実施率見通しの算定根拠)

(参照した資料の出所等)

<その他>

対策項目	対策の概要、ベストプラクティスであることの説 明	削減見込量	実施率 見通し
			基準年度 ○%
			↓ 2020年度

	0%
	\downarrow
	2030年度
	0%

(各対策項目の削減見込量・実施率見通しの算定根拠)

(参照した資料の出所等)

(4) 目標対象とする事業領域におけるエネルギー消費実態

【工程・分野別・用途別等のエネルギー消費実態】

産業機械の製造工程は、製品毎・事業所毎で大きく異なり、さらにひとつの事業所で産業機械以外にも鉄工や造船、自動車 部品など様々な製品を製造するなど、様々な業態・生産方法をとっていることから、産業機械業界の代表的な製品・業態を選 定することは困難である。

【電力消費と燃料消費の比率(002ベース)】

電力: 81% 燃料: 19%