日本自動車工業会・日本自動車車体工業会業界の「低炭素社会実行計画」

(2020年目標)

		計画の内容
1. 国内 の企業おけ る 2020 年の削減 目標	目標	2020 年目標値<総量目標>643万t-C02 (90 年比▲35%)とする。(※) ※2012年まで行っていた自主取組のバウンダリーは自動車・二輪・同部品を製造する事業所及び商用車架を行う事業所。低炭素社会実行計画ではそれらに加え、自動車製造に関わるオフィス・研究所を追加し、対象範囲を拡大。 ※受電端ベース。 ※自主取組でも行ってきたように、状況に応じて、一段高い目標を目指して、自ら目標値を見直していく。
	設定根拠	2020 年の産業規模としては、2015年度四輪生産台数919万台に、2012年度から 15年度までの平均経済成長率0.885%を乗じ、960万台と想定。 2005年度基準としてBAUは736万 t -C02(注1)、今後の省エネルギー取組み、電力係数の悪化による変動を見込んでいる。 注1:次世代車生産によるC02増36万tを含む。これは次世代車普及率26%を見込んでいる。
2. 低炭素製品・ サービス等によ る他部門での削 減		〇 自動車燃費改善・次世代車の開発・実用化による2020年のC02削減ポテンシャルは600~1000万t-C02.(注) (注)日本自動車工業会試算・なお、運輸部門のC02削減には、燃費改善、交通流の改善、適切な燃料供給、効率的な自動車利用など、C02削減のために自動車メーカー、政府、燃料事業者、自動車ユーザーといったすべてのステークホルダーを交えた統合的アプローチを推進すべきである。また、次世代車の普及には自動車メーカーの開発努力とともに、政府の普及支援策が必要である。
3. 海外での 削減貢献		○ 次世代車の開発・実用化による2020年のCO2削減ポテンシャル(海外) ・ 2020年の世界市場(乗用車販売7,500万台)が日本と同様にHEV比率18%と仮定した場合、全世界での削減ポテンシャルは7千万 t - CO2。そのうち、自工会メーカーの削減ポテンシャルは約1.7千万 t - CO2と試算。
4. 革新的技術の 開発・導入		 Wet on Wet塗装の進化、効率化 アルミ鋳造のホットメタル化の効率化

5. その他の
・特記事項

日本自動車工業会・日本自動車車体工業会業界の「低炭素社会実行計画」

(2030年目標)

		計画の内容
目標 ※受電端ベース。 ※従来の自主取組でも行ってきた 自ら目標値を見直していく。 2020 年の産業規模としては、20 5 15 年度までの平均経済成長率 2005 年基準として BAU は 833 電力係数の改善による削減を見ば 注 1: 次世代車生産による CO2 5 1 1 1 1 1 1 1 1 1		616 万 t-C02 (90 年比▲38%) とする。※受電端ベース。※従来の自主取組でも行ってきたように、状況に応じてPDCAサイクルを回し、
2. 低炭素 サービス る他部 ^門 減	、等によ	概要・削減貢献量: 自動車の燃費改善・次世代車の開発・実用化による 2030 年の CO2 削減ポテンシャルは、2,379 万 t -CO2 なお、運輸部門の CO2 削減には、燃費改善、交通流の改善、適切な燃料供給、効率的な自動車利用など、CO2 削減のために自動車メーカー、政府、燃料事業者、自動車ユーザーといったすべてのステークホルダーを交えた統合的アプローチを推進すべきである。また、次世代車の普及には自動車メーカーの開発努力とともに、政府の普及支援策が必要である。

	概要・削減貢献量:
	○ 次世代車の開発・実用化による 2030 年の CO2 削減ポテンシャル
	2030 年の世界市場(乗用車販売 9,600 万台) を IEA の資料を用いて、海外市場
	次世代車比率について 29~40%においた。全世界での削減ポテンシャルは 1.9 億 t
3. 海外での	~3.1 億 t - CO2。そのうち、自工会メーカーの削減ポテンシャルは約 4000 万 t~約
削減貢献	7000万t-C02と試算。
	○ 海外生産工場での CO2 削減ポテンシャル
	自工会会員各社は海外生産工場でも国内工場と同様に省エネ対策を実施した場
	合、削減ポテンシャルは約 339~346 万 t - CO2 と試算。
	〈IEA による生産台数予測値、及び日系メーカー海外生産シェア実績より試算〉
	概要・削減貢献量: ・Wet on Wet 途装、アルミ鋳造のホットメタル化の更なる効率化に加え、再
4. 革新的技術の	生可能エネルギーの拡充、ヒートポンプの活用(未利用熱活用)を図る。
開発・導入	・車両については、従来車の燃費改善とともに、次世代自動車の開発・普及、
	ITS の推進に最大限取り組む。
5 その出の	
5. その他の	
取組・特記事項	

自動車製造業における地球温暖化対策の取組

平成 28 年 月 日 一般社団法人 日本自動車工業会 一般社団法人 日本自動車車体工業会

I. 自動車製造業の概要

(1) 主な事業

2008 年度より、一般社団法人 日本自動車工業会(以下、自工会)と一般社団法人 日本自動車車体工業会(以下、車工会)、2団体のCO₂を統合して取組を推進している。 主な事業 四輪車・二輪車および同部品の製造およびそれにかかる研究開発等。 トラック・バスの架装物の製造。

(2) 業界全体に占めるカバー率

業界全体の規模		業界団体の規模		低炭素社会実行計画 参加規模	
企業数	272事業所 ※1	団体加盟 企業数	204社	計画参加 企業数	57社 (28%)
市場規模	22.6兆円 ※1	団体企業 売上規模	20.6兆円 ※2	参加企業 売上規模	20.6兆円 (99%)※2
エネルギー 消費量	_	団体加盟 企業エネ ルギー消 費量	_	計画参加 企業エネ ルギー消 費量	306万kl

- ※1 出所:経産省工業統計調査(2014年)
- ※2 自動車製造の生産金額(経産省生産動態統計調査)に車工会売上高(委託分除く)を足し合わせた 2015年度の売上高
 - (3) 計画参加企業・事業所
 - ① 低炭素社会実行計画参加企業リスト
 - エクセルシート【別紙1】参照。
 - ② 各企業の目標水準及び実績値
 - エクセルシート【別紙2】参照。

(4) カバー率向上の取組

① カバー率の見通し

年度	自主行動計画 (2012年度) 実績	低炭素社会実 行計画策定時 (2013年度)	2015年度 実績	2016年度 見通し	2020年度 見通し	2030年度 見通し
企業数	27%	28%	28%	_	-	_
売上規模	99%	99%	99%	_	-	-
エネルギー 消費量	_	-	-	-	-	-

(カバー率の見通しの設定根拠)

売上規模のカバー率は既に高い水準にあり、この水準を維持したい。

② カバー率向上の具体的な取組

	取組内容	取組継続予定
2015年度		有/無
2016年度以降		有/無

(取組内容の詳細)

Ⅱ. 国内の企業活動における 2020 年・2030 年の削減目標

【削減目標】

<2020年> (2016年10月策定)

643万 t-C02 (90 年比▲35%) とする

<2030年> (2016年10月策定)

616万 t-C02 (90 年比▲38%) とする

【目標の変更履歴】

<2020年>

2012年6月~709万t2016年10月~643万t

<2030年>

2015年3月~ 662万t 2016年10月~ 616万t

【その他】

【昨年度フォローアップ結果を踏まえた目標見直し実施の有無】

■ 昨年度フォローアップ結果を踏まえて目標見直しを実施した (見直しを実施した理由)

経団連見直し時期に合わせて実施した。

□ 目標見直しを実施していない (見直しを実施しなかった理由)

【今後の目標見直しの予定】(Ⅱ. (1) ③参照。)

- □ 定期的な目標見直しを予定している(○○年度、○○年度)
- 必要に応じて見直すことにしている

(見直しに当たっての条件)

経団連動向と社会情勢及び取組み状況に応じて実施予定。

(1) 削減目標

① 目標策定の背景

自動車業界は、2008年の金融危機や 2011年の東日本大震災のような大きなショックを乗り越え、生産台数増減を繰り返しているが、近年は燃費性能に優れた次世代車や自動ブレーキ(衝突被害軽減ブレーキ)といった予防安全装置等の普及による高付加価値化により生産活動量は増加している。

② 前提条件

【対象とする事業領域】

自動車・二輪・同部品を製造する事業所及び商用車架を行う事業所、自動車製造に関わるオフィス・研究所。

【2020年・2030年の生産活動量の見通し及び設定根拠】

〈生産活動量の見通し〉

2020 年度生産台数 960 万台

2030 年度生産台数 1,049 万台

<設定根拠、資料の出所等>

2015 年度生産台数 919 万台に、2012 年度から 2015 年度までの平均経済成長率 0.885%を乗じて算出。

【計画策定の際に利用した排出係数の出典に関する情報】 ※CO2目標の場合

排出係数	理由/説明				
電力	 □ 実排出係数(○○年度 発電端/受電端) □ 調整後排出係数(○○年度 発電端/受電端) ■ 特定の排出係数に固定 □ 過年度の実績値(○○年度 発電端/受電端) ■ その他 <上記排出係数を設定した理由> 				
その他燃料	■ 総合エネルギー統計(2015年度版) □ 温対法 □ 特定の値に固定 □ 過年度の実績値(○○年度:総合エネルギー統計) □ その他 <上記係数を設定した理由> 最新の情報で設定。				

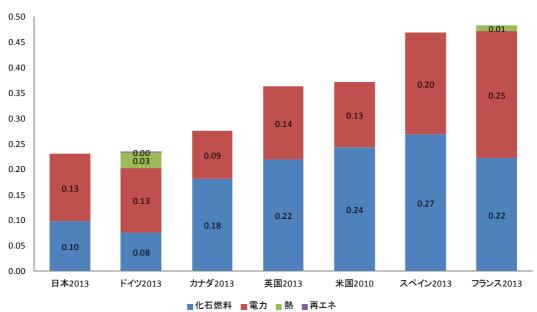
【その他特記事項】

③ 目標指標選択、目標水準設定の理由とその妥当性

【目標指標の選択理由】

- ・排出量の削減目標を設定し、自主取組を推進することが重要と考える。
- ・取り組みの実績評価指標として原単位(CO2 排出量/生産額)も用いており、90 年度比▲27%を達成している。
- ・なお、製品の種類が多岐にわたり、製品により重量・形態などが異なるため、単位数量当たりの原単位を 算出するのが困難であり、生産額を指標としている。

【目標水準の設定の理由、自ら行いうる最大限の水準であることの説明】


<選択肢>
□ 過去のトレンド等に関する定量評価(設備導入率の経年的推移等)
□ 絶対量/原単位の推移等に関する見通しの説明
□ 政策目標への準拠(例:省エネ法 1%の水準、省エネベンチマークの水準)
□ 国際的に最高水準であること
□ BAU の設定方法の詳細説明
■ その他
<最大限の水準であることの説明>
BAT 最大導入による目標値
【BAU の定義】 ※BAU 目標の場合
<bau の算定方法=""></bau>
_
<bau 水準の妥当性=""></bau>
_
<ballの質定に用いた資料等の出所></ballの質定に用いた資料等の出所>

【国際的な比較・分析】

■ 国際的な比較・分析を実施した(2015年)

(指標)

(内容)

日本の自動車産業の生産額当たりのエネルギー消費量はドイツと並んで最も低い水準にある。 特に化石燃料由来の生産額当たりのエネルギー消費量は、各国と比較して高い効率を誇っている。 一方で、電力由来のエネルギー原単位では他国との効率差は大きく縮まっている。

(出典)

エネルギー経済研究所

(比較に用いた実績データ)

•2015年

□ 実施していない

(理由)

【導入を想定しているBAT (ベスト・アベイラブル・テクノロジー)、ベストプラクティスの削減見込量、算定根拠】

<設備関連>

対策項目	対策の概要、 BATであることの説明	削減見込量	普及率見通
高効率ボイラ	・中期温暖化施策の製造業業種横断削減 施策より。	_	基準年度 30% → 2020年度 ○% → 2030年度 ○%
照明 LED 化	・同上	-	基準年度 0.3% ↓ 2020年度 ○% ↓ 2030年度 ○%
冷凍機の更新	・同上	_	基準年度 7% ↓ 2020年度 ○% ↓ 2030年度 ○%

(各対策項目の削減見込量・普及率見通しの算定根拠)

・BAT の普及見通しについては、各社設備更新をするなど、鋭意進めています。しかしながら、導入計画については各社の実情やそれによる優先順位などにより判断を各社に任せており、業界団体としては回答出来ません。

(参照した資料の出所等)

各社アンケートによる。

<運用関連>

対策項目	対策の概要、 ベストプラクティスであることの説明	削減見込量	実施率見通し
ボイラ加熱炉等のガス化	・中期温暖化施策の製造業業種横断削減 施策より。	-	基準年度 52% ↓ 2020年度 ○% ↓ 2030年度 ○%
		-	基準年度 ○% ↓ 2020年度 ○% ↓ 2030年度 ○%
		I	基準年度 ○% → 2020年度 ○% → 2030年度 ○%

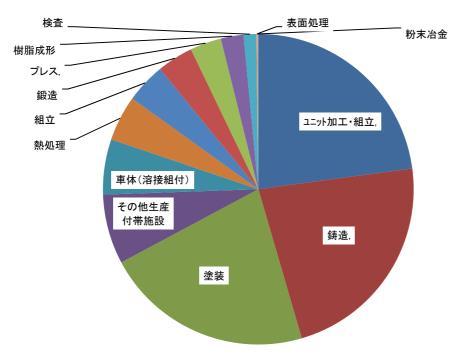
(各対策項目の削減見込量・実施率見通しの算定根拠)

・BAT の普及見通しについては、各社設備更新をするなど、鋭意進めています。しかしながら、導入計画については各社の実情やそれによる優先順位などにより判断を各社に任せており、業界団体としては回答出来ません。

(参照した資料の出所等)

各社アンケートによる。

<その他>


対策項目	対策の概要、ベストプラクティスであることの 説明	削減見込量	実施率 見通し
			基準年度 ○%
			\downarrow
		_	2020年度 ○%
			\downarrow
			2030年度 ○%

(各対策項目の削減見込量・実施率見通しの算定根拠)

(参照した資料の出所等)

④ 目標対象とする事業領域におけるエネルギー消費実態

【工程・分野別・用途別等のエネルギー消費実態】

自工会工程別 CO2 排出量割合(2012 年度データ)

出所: 自工会調査

【電力消費と燃料消費の比率 (CO₂ベース)】

電力: 63% 燃料: 37%

(2) 実績概要

① 実績の総括表

【総括表】(詳細はエクセルシート【別紙4】参照。)

	基準年度 (1990年度)	2014年度 実績	2015年度 見通し	2015年度 実績	2016年度 見通し	2020年度 目標	2030年度 目標
生産活動量	18.02	20.01	_	20.56	_	_	_
エネルギー 消費量 (原油換算万kl)	496	322	_	306	_	_	-
電力消費量 (億kWh)	_	_	_	_	_	_	_
CO₂排出量 (万t-CO₂)	990 ※ 1	71 2 %2	% 3	662 ※4	% 5	643 %6	616 ※7
エネルギー 原単位 (単位:万kl/兆 円)	28	16	-	15	-	-	-
CO ₂ 原単位 (単位: 万t-C O ₂ /兆円)	55	36	-	32	-	-	-

【電力排出係数】

	※ 1	 2	% 3	※ 4	% 5	% 6	※ 7
排出係数[kg-CO₂/kWh]	0.417	0.553	_	0.534	1	_	_
実排出/調整後/その他	実排出	実排出	-	実排出	-	_	_
年度	1990	2014	_	2015	-	_	_
発電端/受電端	受電端	受電端	-	受電端	-	-	_

【2020年・2030年実績評価に用いる予定の排出係数に関する情報】

排出係数	理由/説明
電力	 □ 実排出係数(発電端/受電端) □ 調整後排出係数(発電端/受電端) ■ 特定の排出係数に固定 □ 過年度の実績値(〇〇年度 発電端/受電端) ■ その他 <上記排出係数を設定した理由>
その他燃料	■ 総合エネルギー統計(2015年度版) □ 温対法 □ 特定の値に固定 □ 過年度の実績値(○○年度:総合エネルギー統計) □ その他 <上記係数を設定した理由> 最新の情報で設定。

② 2015 年度における実績概要

【目標に対する実績】

<2020年>

目標指標	基準年度/BAU	目標水準	2015年度実績① (基準年度比 /BAU比)	2015年度実績② (2014年度比)
CO2排出量	1990年度	▲35%	▲33%	▲ 7.0%

<2030年>

目標指標	基準年度/BAU	目標水準	2015年度実績① (基準年度比 /BAU比)	2015年度実績② (2014年度比)
CO2排出量	1990年度	▲ 38%	▲ 33%	▲ 7.0%

【CO2排出量実績】

	2015年度実績	基準年度比	2014年度比
CO₂排出量	659.5万t−CO₂	▲33%	▲7.2%

③ データ収集実績(アンケート回収率等)、特筆事項【データに関する情報】

指標	出典	設定方法
生産活動量	■ 統計□ 省エネ法■ 会員企業アンケート□ その他(推計等)	経産省機械統計より
エネルギー消費量	□ 統計□ 省エネ法■ 会員企業アンケート□ その他(推計等)	省エネ法届出データを事務局にて集計。
CO₂排出量	□ 統計□ 省エネ法・温対法■ 会員企業アンケート□ その他(推計等)	上記、エネルギー消費量より、事務局にて算出。

【アンケート実施時期】 2016年6月~2016年8月

【アンケート対象企業数】

57 社

【アンケート回収率】

100%

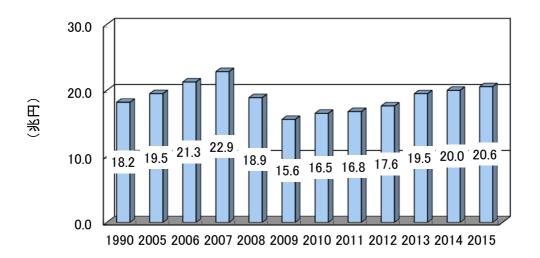
【業界間バウンダリーの調整状況】

- □ 複数の業界団体に所属する会員企業はない
- 複数の業界団体に所属する会員企業が存在
 - バウンダリーの調整は行っていない

(理由)

提出に重複がないことを確認済。

□ バウンダリーの調整を実施している <バウンダリーの調整の実施状況>


【その他特記事項】

④ 生産活動量、エネルギー消費量・原単位、CO₂排出量・原単位の実績 【生産活動量】

<2015 年度実績値>

生産活動量(単位:兆円):20.6(基準年度比+8%、2014年度比+3%)

く実績のトレンド>

(過去のトレンドを踏まえた当該年度の実績値についての考察)

1990 年から 2007 年まで生産活動は緩やかに増加していたが、リーマンショックの影響により、2008 年・2009 年は大幅に減少した。以降は持ち直し、増加傾向が続いている。

【エネルギー消費量、エネルギー原単位】

<2015 年度の実績値>

エネルギー消費量(単位:万kl):306(基準年度比▲38%、2014年度比▲6%)

エネルギー原単位(単位:万 kl/兆円):15 (基準年度比▲42%、2014 年度比▲6%)

く実績のトレンド>

(グラフ)

(過去のトレンドを踏まえた当該年度の実績値についての考察)

エネルギー消費量は 1990 年度から大幅に改善。また 2009 年以降横ばいが続いているが、燃費性能に優れた次世代車や自動ブレーキ(衝突被害軽減ブレーキ)といった予防安全装置等の普及による高付加価値化により生産活動量は増加しており、会員会社の省エネ努力が表れている。

<他制度との比較>

(省エネ法に基づくエネルギー原単位年平均▲1%以上の改善との比較) 年により増減することはあるが、平均して1%/年以上の改善している。

(省エネ法ベンチマーク指標に基づく目指すべき水準との比較)

□ ベンチマーク制度の対象業種である

<ベンチマーク指標の状況>

ベンチマーク制度の目指すべき水準:〇〇

2015 年度実績:○○

<今年度の実績とその考察>

■ ベンチマーク制度の対象業種ではない

【CO2排出量、CO2原単位】

<2015 年度の実績値>

CO₂排出量(単位:万t-CO₂ 排出係数:0.534 kg-CO₂/kWh):662

(基準年度比▲33%、2014年度比▲7%)

CO₂原単位(単位:万t-CO₂/兆円 排出係数:0.534 kg-CO₂/kWh):32.2

(基準年度比▲41%、2014年度比▲10%)

く実績のトレンド>

(過去のトレンドを踏まえた当該年度の実績値についての考察)

経済活動量(生産金額)の変化という増加要因があったものの、各社による不断の努力によって、CO2排出量、エネルギー使用量(306万kl、原油換算)とも前年比で減少している。

【要因分析】 (詳細はエクセルシート【別紙5】参照)

(CO₂排出量)

	基準年度→2015 年度変化分		2014 年度→2015 年度変化分	
	(万 t-CO2)	(%)	(万 t−CO2)	(%)
経済活動量の変化	108	13.2	19	2.7
CO2 排出係数の変化	66	8.1	-15	-2.2
経済活動量あたりのエネ ルギー使用量の変化	-501	-61.5	-53	-7.7
CO2 排出量の変化	-328	-40.2	-50	-7.2

(要因分析の説明)

経団連の要因分析を採用した。

前年度比では、経済活動量は増加しているが、CO2 排出係数の変化及び会員会社の省エネ努力により、トータルで 7%の CO2 削減を行った。

基準年度と比較すると、2015 年度の経済活動量及び CO2 排出係数はそれぞれ CO2 を 13%、8%増加しているが、会員会社の継続的な省エネ努力により約 62%削減し、トータルで 40%以上の削減を行った。

⑤ 実施した対策、投資額と削減効果の考察

【総括表】 (詳細はエクセルシート【別紙6】参照。)

				
年度	対策	投資額,	年度当たりの エネルギー削減量 CO₂削減量	設備等の使用期間 (見込み)
	設備改善	6,704 百万円	7.5 万 t-CO2	
2015 年度	運用改善	429 百万円	1.9 万 t-CO2	
	その他	1,010 百万円	1.9 万 t-CO2	
	設備改善	6,965 百万円	5.7 万 t-CO2	
2016 年度 以降	運用改善	343 百万円	1.3 万 t-CO2	
	その他	1,417 百万円	3.2 万 t-CO2	

【2015年度の取組実績】

(取組の具体的事例)

設備改善⇒蒸気レス化、蒸気配管放熱ロス対策、高効率コンプレッサ導入及び更新 等 運用改善⇒非稼働時エネルギ低減、生産性向上、歩留り改善 等 その他⇒ ライン統廃合、燃料転換等

(取組実績の考察)

・2015 年度中の自工会・車工会会員会社の投資額は81.43 億円。

【2016年度以降の取組予定】

(今後の対策の実施見通しと想定される不確定要素)

・2016 年度中の自工会・車工会会員会社の投資予定額は 87.25 億円。 ただし景気や売上動向により増減する可能性がある。

【BAT、ベストプラクティスの導入進捗状況】

BAT・ベストプラクティス等	導入状況•普及率等	導入・普及に向けた課題
	2015年度 〇〇%	
-	2020年度 〇〇%	-
	2030年度 〇〇%	
	2015年度 〇〇%	
-	2020年度 〇〇%	-
	2030年度 〇〇%	
	2015年度 〇〇%	
-	2020年度 〇〇%	_
	2030年度 〇〇%	

【業界内の好取組事例、ベストプラクティス事例、共有や水平展開の取り組み】 BAT の導入については各社設備更新をするなど、鋭意進めている。しかしながら、導入計画については各
社の実情やそれによる優先順位などにより判断を各社に任せており、業界団体としては回答出来ない。
⑥ 想定した水準(見通し)と実績との比較・分析結果及び自己評価 【目標指標に関する想定比の算出】
* 想定比の計算式は以下のとおり。 想定比【基準年度目標】=(基準年度の実績水準-当年度の実績水準)
/(基準年度の実績水準-当年度の想定した水準)×100(%) 想定比【BAU 目標】=(当年度の削減実績)/(2020 年度の目標水準)×100(%)
想定比=(計算式)
=00%
【自己評価・分析】(3段階で選択)
<自己評価及び要因の説明>

□ 想定した水準を上回った(想定比=110%以上)
□ 概ね想定した水準どおり(想定比=90%~110%)
□ 想定した水準を下回った(想定比=90%未満)

■ 見通しを設定していないため判断できない(想定比=-)

- 24 -

(自己評価及び要因の説明、見通しを設定しない場合はその理由) 各社とも BAT の導入等、最大限の省エネ努力を実施しているものの、 電力係数等取り巻く環境に不透明要素が多いため。

(自己評価を踏まえた次年度における改善事項)

⑦ 次年度の見通し

【2016年度の見通し】

	生産活動量	エネルギー 消費量	エネルギー 原単位	CO₂排出量	CO₂原単位
2015 年度 実績	20.56 兆円	306 万 kl	14.9 万 t-CO2/ 兆円	662 万 t-CO2	32.2 万 t-CO2 /兆円
2016 年度 見通し	-	-	-	-	-

(見通しの根拠・前提)

・電力係数等取り巻く環境に不透明要素が多いため。

⑧ 2020 年度の目標達成の蓋然性

【目標指標に関する進捗率の算出】

* 進捗率の計算式は以下のとおり。

進捗率【基準年度目標】=(基準年度の実績水準一当年度の実績水準)

/(基準年度の実績水準-2020年度の目標水準)×100(%)

進捗率【BAU 目標】= (当年度の BAU-当年度の実績水準) / (2020 年度の目標水準) × 100 (%)

進捗率=(基準年度の実績水準-当年度の実績水準)

/(基準年度の実績水準-2020年度の目標水準)×100(%)

=94.4%

【自己評価・分析】(3段階で選択)

<自己評価とその説明>

□ 目標達成が可能と判断している

(現在の進捗率と目標到達に向けた今後の進捗率の見通し)

(目標到達に向けた具体的な取組の想定・予定)

(既に進捗率が 2020 年度目標を上回っている場合、目標見直しの検討状況)

■ 目標達成に向けて最大限努力している

(目標達成に向けた不確定要素)

・電力係数、原油価格、景気動向等不透明要素が多い。

(今後予定している追加的取組の内容・時期)

·BAT の最大導入

□ 目標達成が困難

(当初想定と異なる要因とその影響)

(追加的取組の概要と実施予定)

(目標見直しの予定)

⑨ 2030年度の目標達成の蓋然性

【目標指標に関する進捗率の算出】

* 進捗率の計算式は以下のとおり。

進捗率【基準年度目標】= (基準年度の実績水準-当年度の実績水準) /(基準年度の実績水準-2030年度の目標水準)×100(%) 進捗率【BAU目標】= (当年度のBAU-当年度の実績水準)/(2030年度の目標水準)×100(%)

進捗率=(基準年度の実績水準-当年度の実績水準) /(基準年度の実績水準-2020 年度の目標水準)×100(%)

=87.7%

【自己評価・分析】

(目標達成に向けた不確定要素)

・電力係数、原油価格、景気動向等不透明要素が多い。

(既に進捗率が 2030 年度目標を上回っている場合、目標見直しの検討状況)

⑩ クレジット等の活用実績・予定と具体的事例
【業界としての取組】
□ クレジット等の活用・取組をおこなっている
□ 今後、様々なメリットを勘案してクレジット等の活用を検討する
□ 目標達成が困難な状況となった場合は、クレジット等の活用を検討する
■ クレジット等の活用は考えていない
【活用実績】
□ エクセルシート【別紙7】参照。
【個社の取組】
□ 各社でクレジット等の活用・取組をおこなっている
□ 各社ともクレジット等の活用・取組をしていない
【具体的な取組事例】
取得クレジットの種別

プロジェクトの概要	
クレジットの活用実績	
取得クレジットの種別	
プロジェクトの概要	
クレジットの活用実績	
取得クレジットの種別	
プロジェクトの概要	
クレジットの活用実績	

皿. 業務部門(本社等オフィス)・運輸部門等における取組

- (1) 本社等オフィスにおける取組
- ① 本社等オフィスにおける排出削減目標
- □ 業界として目標を策定している

削減目標:〇〇年〇月策定	=
【目標】	

【対象としている事業領域】

■ 業界としての目標策定には至っていない

(理由)

低炭素社会実行計画より、本社部門等のオフィス及び研究所まで、バウンダリーを拡大。生産部門とあわせて、削減努力をしている。そのため、昨年度よりオフィス部門も内数として扱っている。

② エネルギー消費量、CO₂排出量等の実績

本社オフィス等の CO2排出実績(〇〇社計)

	2008 年度	2009 年 度	2010年 度	2011 年 度	2012 年 度	2013 年 度	2014 年度	2015 年度
床面積 (万㎡)	-	-	-	-	-	-	-	-
エネルギー消費量 (MJ)	-	-	-	_	_	-	-	-
CO ₂ 排出量 (万 t-CO ₂)	-	_	_	_	_	-	-	-
エネルギー原単位 (MJ/㎡)	-	-	-	-	-	-	-	-
CO₂原単位 (t-CO₂/万㎡)	-	-	-	-	-	_	-	-

□ I. (2)に記載の CO₂排出量等の実績と重複

□ データ収集が困難 (課題及び今後の取組方針)

③ 実施した対策と削減効果

【総括表】(詳細はエクセルシート【別紙8】参照。)

(単位:t-CO2)

	照明設備等	空調設備	エネルギー	建物関係	合計
2015 年度実績	-	_	_	-	-
2016 年度以降	_	_	_	-	_

【2015 年度の取組実績】 (取組の具体的事例)

(取組実績の考察)

【2016 年度以降の取組予定】 (今後の対策の実施見通しと想定される不確定要素)

- (2) 運輸部門における取組
- ① 運輸部門における排出削減目標
- □ 業界として目標を策定している

削減目標:〇〇年〇月策定 【目標】

【対象としている事業領域】

■ 業界としての目標策定には至っていない

(理由)

・現状、自動車業界は運輸部門においても、モーダルシフトをはじめ最大限の省エネ努力をしていますが、今後の更なる削減が困難となっています。目標設定は困難ですが、引き続きモーダルシフトや共同輸送等による輸送効率向上を進め、削減に向けて取り組んでまいりたいと考えております。

② エネルギー消費量、CO2排出量等の実績

	2008 年度	2009 年度	2010 年度	2011 年度	2012 年度	2013 年度	2014 年度	2015 年度
輸送量 (千トン·Km)	7,007,911	6,733,413	6,685,453	7,147,174	7,616,399	8,091,297	7,769,081	7,451,028
エネルギー消費量 (千 KI)	298.1	265.4	262.9	266.5	286.3	305.7	295.5	280.7
CO₂排出量 (千 t-CO₂)	802.7	714.8	707.9	718.1	771.5	835.6	806.8	766.8
エネルギー原単位 (L/トン・Km)	0.043	0.039	0.039	0.037	0.038	0.038	0.038	0.038
CO₂原単位 (Kg-CO₂/トン・km)	0.115	0.106	0.106	0.100	0.101	0.103	0.104	0.103

□ II. (2)に記載の CO₂排出量等の実績と重複

■ データ収集が困難

(課題及び今後の取組方針)

現状、自動車業界は運輸部門についても、モーダルシフトをはじめ最大限の省エネ努力をしており、

今後もこれを継続する。

③ 実施した対策と削減効果

年度	対策項目	対策内容	削減効果
2015年度	モーダルシフトによる輸送効率の 向上	・完成車輸送および補 修用部品の陸上輸送 から船舶船輸送等へ のモーダルシフトの 実施	-
	共同輸送、直接輸送、輸送ルート 短縮等による輸送効率の向上	・船積み港及び揚げ港、中継ポイント見直しによる輸送効率向上 ・共同輸送の拡大及び 積載率向上	-
	梱包・包装資材使用量の低減、積 載荷姿見直し等による積載率向上	・梱包資材の軽量化 ・容器内充填率の向上	-
2016年度以降	モーダルシフトによる輸送効率の 向上	・完成車輸送および補 修用部品の陸上輸送 から船舶船輸送等へ のモーダルシフトの 実施	
	共同輸送、直接輸送、輸送ルート 短縮等による輸送効率の向上	・船積み港及び揚げ港、中継ポイント見直しによる輸送効率向上 ・共同輸送の拡大及び 積載率向上	-
	梱包・包装資材使用量の低減、積 載荷姿見直し等による積載率向上	・梱包資材の軽量化・容器内充填率の向上	^

【2015年度の取組実績】

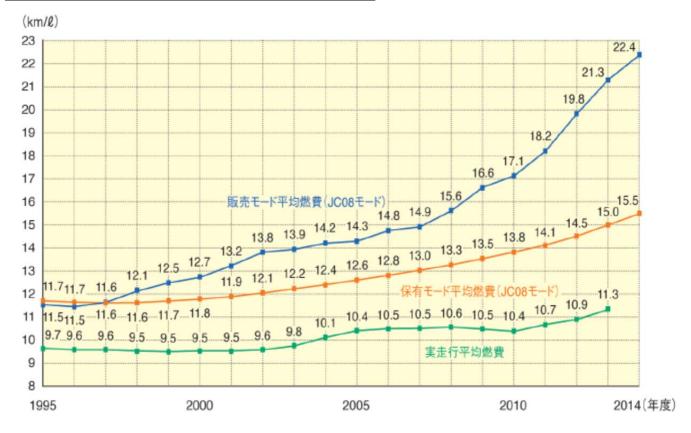
(取組の具体的事例)

同上

(取組実績の考察)

【2016年度以降の取組予定】

(今後の対策の実施見通しと想定される不確定要素)


同上

(3) 家庭部門 (環境家計簿等)、その他の取組

取組事例	取組社数※
○クールビズ・ウォームビズの徹底・スーパークールビスの実施	21
・クールビズの取り組みを業務連絡及び社内イントラで通達 ・本社業務部門の日常的なノーネクタイ活動 他	
○エコ通勤の推奨・エコドライブの推進(対社員・対お客様)・従業員バスを導入し、マイカー通勤からバス通勤へシフト・社内エコポイント制度の対象項目として取組。(ノーカーデーの設定) 他	15
○アイドリングストップの推進・物流トラック、社用バスのアイドリングストップを推進・守衛所及び来客駐車場へエコドライブ 10 項目看板の設置・自動アイドリングストップ技術の開発と市販化	18
○教育・啓発(印刷物掲示・作成) ・気候変動、温暖化防止等関する環境教育(集合研修・e-learning)を実施 ・環境教育イベントへの社員・家族参加を促進 ・環境月間ポスターの掲示 他	21
○植林・緑化活動・植林・植樹のボランティア活動・駐車場や屋上、構築物跡地の緑化・工場内緑地の生物多様性調査及び保全活動の実施他	18
○グリーン購入の推進・「グリーン調達ガイドライン」を策定して全サプライヤー殿に説明会実施・自社エンジンの効率改善・車体の軽量化による燃費改善等	17
○環境家計簿の利用推進・環境家計簿の利用推奨を数年前より展開・環境家計簿(エコライフノート)の積極配布、社内イントラ掲載・エコライフノート記入提出を社内エコポイント制度対象項目として取組 他	8
○ その他・環境省「ライトダウンキャンペーン」への参加・エコキャップ活動推進(ペットボトルキャップ回収)・本社や開発拠点の周辺地域における掃活動の実施 他	7

[※]自工会 14 社+車工会主要 7 社=21 社の取り組み。

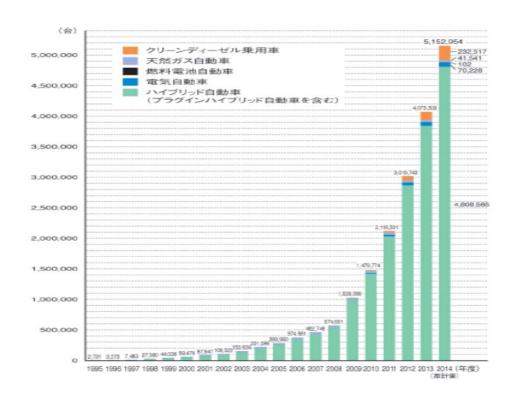
Ⅳ. 低炭素製品・サービス等による他部門での貢献

(1) 低炭素製品・サービス等の概要、削減見込量及び算定根拠

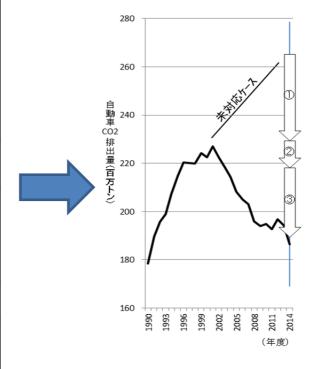
(当該製品等の特徴、従来品等との差異等、及び削減見込み量の算定根拠)

- ・自動車燃費改善、次世代車の開発・実用化により、運輸部門でも CO2 削減に貢献。
- ・CO2 削減ポテンシャルは地球温暖化対策計画策定時に試算し、702.5万 t-CO2。

(2) 2015年度の取組実績


(取組の具体的事例)

- 自工会会員会社は継続的な技術開発により、新車燃費の向上に不断の努力を行っている。
- 具体的には新車販売乗用車の平均燃費は過去 10 年以上にわたり向上を続けており、併せて保 有燃費も改善している。


(取組実績の考察)

- ・2014 年度には、究極のエコカーとされる FCEV も市販化。各社が積極的に次世代車 (HEV 等) を投入、販売・保有増に伴い実走行燃費ともに顕著に改善している
- 自工会会員各社は、燃費の良い車を市場に供給することで、運輸部門の CO2 排出量の削減に貢献。
- 15 年度中に国内で新規発売された次世代乗用車(EV、PHEV、HEV、FCEV)はマイナーチェンジも含め35 モデルに及ぶ。

.

	対針	策 及び 具体的事例	関連部品・技術、製品適用事例	関連業界
①乗車実行費改	用 単体燃 シング、可変動弁機構 摩擦損失 費の改 舊		・高温強度に優れた耐熱鋼 ・摩擦特性に優れた耐摩擦鋼 ・薄々でも強靱、加工性に優れたハテン鋼 ・電磁鋼板 ・高強度スチールタイヤコード用鋼 ・低燃費タイヤ用材料 (合成立、シリカ等)・転がり抵抗低減コンツート舗装・炭素繊維複合材料、プラスチック・リチウムイオン電池用材料・超低アリクションハブヘアリング・軽量ペークハード型アルミニウムボディジート・熱交換器用アルミニウム合金	自動鉄化機メゴ板電油にアカな動車の製学電ンム硝線鉱ニル油とデカルと東島のデカル・デルイン・デカル・デルが出る。
	交通改善	・ITSの推進 ・信号機の集中制御・LED化 ・路面工事の削減 ・ホトルネック踏切等対策	・ETC、VICS ・情報通信技術(ICT)の向上 ・早期交通開放型/耐久性向上 コンクリート舗装	セメント 建設 電機電子 通信など
②物の走燃の発	自動車 単体燃 費の改善	・エンシン改良(過給がウンサイシング、 噴霧/燃焼改良、摩擦損失低減等) ・走行エネルギー低減(空気抵抗低 減等) ・その他(アイドリングストップ、AMT等)	⊕に同じ	①に同じ
改善	次世代 車導入	•HEV •CNG		
	交通 改善	①に加えて・エコトライブ・高速道路での大型トラックの最高速度の抑制	①に加えて ・EMS ・スピートリミッター	⊕に同じ
③ 貨物 輸送 輸送 必善	・自営転換(自家用トラックによる輸送を営業用トラックに切替) ・共同配送の推進 ・モーゲルシアト(鉄道や船舶へのシアト)等		・紙(印刷物、梱包材)の軽量 化) ・配送システムの効率化	トラック、鉄 道、船舶 電機電子 電気通信 など

(3) 2016年度以降の取組予定

さらなる次世代車の開発・普及とともに、従来車の燃費向上に努力する。

製品の開発については、各社の守秘事項に該当するためコメントできない。普及については政府の税制等の施策の後押しもあり、各社積極的に展開中。

V. 海外での削減貢献

(1) 海外での削減貢献の概要、削減見込量及び算定根拠

	海外での削減貢献	削減実績 (2015年度)	削減見込量 (2020年度)	削減見込量 (2030年度)
1	太陽光発電設備の設置	アジア等	-	-
2	風力発電設備の設置	北米等	-	-
3				

(削減貢献の概要、削減見込み量の算定根拠)

(2) 2015年度の取組実績

(取組の具体的事例)

太陽光発電設備、風力発電設備等再生可能エネルギー設備の拡充

(取組実績の考察)

太陽光発電、風力発電等再生可能エネルギーの活用は拡大しつつある

海外での活動量は、現地生産が複数ブランドを生産するなど、多様な形態であるため、単純な移転量としての把握が困難であり、海外の生産拠点については定量的な調査は実施していないが、それぞれの立地に合わせた再生可能エネルギーの活用のため設備は拡充している。

(3) 2016年度以降の取組予定

太陽光発電設備、風力発電設備等再生可能エネルギー設備の更なる拡充と利用拡大

Ⅵ. 革新的技術の開発・導入

(1) 革新的技術の概要、導入時期、削減見込量及び算定根拠

	革新的技術	導入時期	削減見込量
1	Wet on Wet 塗装の進化、効率化	-	-
2	アルミ鋳造のホットメタル化の効 率化	-	-
3	ヒートポンプの活用	-	-

(技術の概要・算定根拠)

- ・Wet on Wet 塗装の進化、効率化 希釈剤を蒸発させるために必要な多くのエネルギーを省くことができる。
- ・アルミ鋳造のホットメタル化の効率化 通常、アルミ合金メーカーで溶解・製錬したインゴット(鋳塊)を仕入れ、再度溶解し成型する が、2度の溶解によって消費するエネルギーを低減しCO2排出量を削減する。
- ・ヒートポンプの活用 より少ないエネルギーかつ、未利用エネルギーを活用した高効率ヒートポンプを活用し、CO2 排 出量を削減する。

(2) 技術ロードマップ

	革新的技術	2015	2016	2017	2020	2025	2030
1	-	-	-	_	-	-	-
2	-	-	-	_	-	-	-
3	-	-	-	-	-	-	-

(3) 2015年度の取組実績

各社の経営戦略に関わることなので業界団体で把握していない。

(取組の具体的事例)

(取組実績の考察)

(4) 2016年度以降の取組予定

Ⅷ. 情報発信、その他

- (1) 情報発信
- ① 業界団体における取組

取組	発表対象:該当するものに 「〇」		
	業界内限定	一般公開	
①環境レポート		0	
②エコドライブ 10 のすすめ		0	

<具体的な取組事例の紹介>

- 1 http://www.jama.or.jp/eco/wrestle/eco_report/index.html
- 2 http://www.jama.or.jp/eco/earth/earth_04_g01.html

② 個社における取組

取組	発表対象:該当するものに 「〇」		
	企業内部	一般向け	
環境レポート		0	
ホームページ		0	

<具体的な取組事例の紹介>

③ 学術的な評価・分析への貢献

(2)) 検証の	実施状況
`	/ 1天OILV/	一大川山バハル

① 計画策定・実施時におけるデータ・定量分析等に関する第三者検証の有無

検証実施者	内容
■ 政府の審議会	
■ 経団連第三者評価委員会	
□ 業界独自に第三者(有識者、研究 機関、審査機関等)に依頼	□ 計画策定 □ 実績データの確認 □ 削減効果等の評価 □ その他()

2	(①で	「業界独自に第三者	(有識者、	研究機関、	審査機関等)	に依頼」	を選択した場合)
	団体ホ	ームページ等におけ	る検証実	施の事実の	公表の有無		

無し	
口有り	掲載場所: