セメント業界の「低炭素社会実行計画」(2020年目標)

2020 年度のセメント製造用エネルギー原単位を 2010 年度実績から 39MJ/t-cem 低減した 3.420MJ/t-cem とする。 (*1) 「セメント製造用エネルギー原単位」の定義 「セメント製造用エネルギー原単位」の定義 「セメント製造用エネルギー原単位」の定義 「セメント製造用シェネルギー原単位」の定義 「セメント製造用シェネルギー原単位」に発売した。			セメント未介の「仏灰系社会夫打計画」(2020年日標)					
滅した 3.420MJ/r-cemとする。 (*1) 「セメント製造用エネルギー原単位」の定義 「セメント製造用エネルギー原単位」 「セメント製造用スカルギー」にメント生産量] (※2) セメント製造用スカルギー」にオント生産量] (※2) セメント製造用スカルギー」にオント生産量] (※2) セメント製造用スカルギー」にオント生産量] (※2) セメント製造用エネルギー原単位は「評価年度の実測セメント製造用エネルギー原単位は「評価年度の実測セメント製造用エネルギー原単位とす。 動における 2020 年度の削減			計画の内容					
を 2020 年度の削減目標 おようと生産する製造業		目標	(*1)「セメント製造用エネルギー原単位」の定義 [セメント製造用エネルギー原単位]= [セメント製造用熱エネルギー(※)+自家発電用熱エネルギー(※)+ 購入電力エネルギー]÷[セメント生産量] (※)エネルギー代替廃棄物による熱エネルギーは含めない (*2) セメント製造用エネルギー原単位は「評価年度の実測セメント製造用エネルギー原単位」を、基準年度からの「セメント生産量」と「クリンカ/セメント比」の変動に対し					
echnologies in Cement Industry」(2009) (本文p. 5注1参照)のリストにある設備で、現時点で最先端と考えられるものについて、経済合理性を考慮しながら可能な限り導入を進める。電力排出係数: 条件設定していない。その他: 大夕の他:	る 2020 年度の削		セメントを生産する製造業将来見通し:冊子2020年度の活動量については、「エネルギー・環境に関する選択肢に関する基礎データ」のセメント生産見通し<慎重ケース> 2020年度 5,621万 t を採用BAT:省エネルギーの技術ブック集「Energy Efficiency and Resource Saving T					
2. 低炭素製 にコンクリート舗装における重量車の燃費の向上」による CO:削減効果 にコンクリート舗装における重量車の燃費の向上」について検討した結果、燃費の向上が認められたことから、コンクリート舗装の普及の推進によって、重量車の燃費による二酸化炭素排出量の削減が期待できる。 削減貢献量: 1.14~6.87kg-CO2/(11t 積載車・100km 走行(コンクリート舗装)) (2) 循環型社会構築への貢献 セメント産業は、他産業等から排出される廃棄物・副産物を積極的に受入れてセメント製造に活用しており廃棄物最終処分場の延命に大きく貢献している。今後もセメントの製造における廃棄物・副産物の利用を推進する。		依拠	可能な限り導入を進める。 <u>電力排出係数:</u> 条件設定していない。					
世界的にみたセメント製造用エネルギーの削減に貢献すべく、日本のセメント製造用エネルギーの使用状況、省エネ技術(設備)の導入状況、エネルギー代替廃棄物等の使用状況などを、ホームページを通して、また国際的なパートナーシップへの参画により世界に発信する。 併せて廃棄物の利用状況も発信し、世界的にみた資源循環型社会への構築に貢献する。 4. 革新的技術の開発・導入 5. その他の	品・サー	-ビス o他部	(1)「コンクリート舗装における重量車の燃費の向上」による CO2削減効果「コンクリート舗装における重量車の燃費の向上」について検討した結果、燃費の向上が認められたことから、コンクリート舗装の普及の推進によって、重量車の燃費による二酸化炭素排出量の削減が期待できる。 削減貢献量: 1.14~6.87kg-CO2/(11t 積載車・100km 走行(コンクリート舗装)) (2) 循環型社会構築への貢献セメント産業は、他産業等から排出される廃棄物・副産物を積極的に受入れてセメント製造に活用しており廃棄物最終処分場の延命に大きく貢献している。					
の開発・導入 5. その他の			世界的にみたセメント製造用エネルギーの削減に貢献すべく、日本のセメント製造 用エネルギーの使用状況、省エネ技術(設備)の導入状況、エネルギー代替廃棄物等 の使用状況などを、ホームページを通して、また国際的なパートナーシップへの参画に より世界に発信する。 併せて廃棄物の利用状況も発信し、世界的にみた資源循環型社会への構築に貢献					
5. その他の	4. 革新的	内技術						
	の開発・	導入						
Rn 公日 - #±辛⊐ 审 T石	5. その他	!の						
取組・特記事項 	取組・特割	記事項						

セメント業界の「低炭素社会実行計画」(2030年目標)

		セメント美界の 他灰素社会美行計画] (2030 年日標)
		計画の内容
1. 国内 の企業活	目標	2030年度のセメント製造用エネルギー原単位を2010年度実績から125MJ/t-cem低減した3,334MJ/t-cemとする。(※2018年度9月に目標見直しの検討を実施。詳細はp.38を参照) (*1)「セメント製造用エネルギー原単位」の定義 [セメント製造用エネルギー原単位]= [セメント製造用熱エネルギー(※)+自家発電用熱エネルギー(※)+購入電力エネルギー]÷[セメント生産量] (※)エネルギー代替廃棄物による熱エネルギーは含めない(*2)セメント製造用エネルギー原単位は「評価年度の実測セメント製造用エネルギー原単位」を、基準年度からの「セメント生産量」と「クリンカ/セメント比」の変動に対して補正したものとする。 (*3)本目標は低炭素社会実行計画(目標年度:2020年度)の達成状況、「4.革新的技術の開発」の進捗状況を鑑みながら、適宜見直しを行うこととする。
動におけ		対象とする事業領域:
る 2030 年度の削 減目標	設定根拠	セメントを生産する製造業将来見通し:2030年度の活動量については、「エネルギー・環境会議」の「エネルギー・環境に関する選択肢」の資料 "シナリオ詳細データ(成長ケース、低成長ケース追加)" (2012年6月) に記載されている成長ケース (5,943万t) と慎重ケース (5,173万t) の平均値である5,558万tを便宜的に当面用いるようにする。BAT:省エネルギーの技術ブック集「Energy Efficiency and Resource Saving Technologies in Cement Industry」(2009)(本文 p.5 注 1 参照)のリストにある設備で、現時点で最先端と考えられるものについて、経済合理性を考慮しながら可能な限り導入を進める。電力排出係数:計画策定の際に利用した排出係数の出典に関する情報その他:
2. 低炭素 品・サー 等による 門での削	-ビス o他部	概要・削減貢献量: (1)「コンクリート舗装における重量車の燃費の向上」による CO2削減効果 「コンクリート舗装における重量車の燃費の向上」について検討した結果、燃費の向上が認められたことから、コンクリート舗装の普及の推進によって、重量車の燃費による二酸化炭素排出量の削減が期待できる。 削減貢献量: 1.14~6.87kg-CO2/(11t 積載車・100km 走行(コンクリート舗装)) (2) 循環型社会構築への貢献 セメント産業は、他産業等から排出される廃棄物・副産物を積極的に受入れてセメント製造に活用しており廃棄物最終処分場の延命に大きく貢献している。 今後もセメントの製造における廃棄物・副産物の利用を推進する。
3. 海外での 削減貢献		概要・削減貢献量: 世界的にみたセメント製造用エネルギーの削減に貢献すべく、日本のセメント製造用エネルギーの使用状況、省エネ技術(設備)の導入状況、エネルギー代替廃棄物等の使用状況などを、ホームページを通して、また国際的なパートナーシップへの参画により世界に発信する。 併せて廃棄物の利用状況も発信し、世界的にみた資源循環型社会への構築に貢献する。

概要•削減貢献量:

- (1) 鉱化剤の使用によってクリンカの焼成温度を低下させることにより、クリンカ製造用 熱エネルギー原単位の低減を図る。シミュレーション段階では、クリンカ中のフッ素含 有量を 0.1%とした場合、熱エネルギー原単位が現状より 2.6%程度低減することが 期待できる。
- (2) クリンカの鉱物の一つであるアルミン酸三カルシウム(3CaO·Al₂O₃)量を増やし、現状より混合材の使用量を増やすことにより、セメント製造用エネルギー原単位の低減を図る。

<想定される削減見込み量>

2030 年度ベースの生産量の見通しを 5,558 万 t(*1)とした場合、上記(1)および(2)の技術の合計として原油換算で約 15 万 kl(*2)を想定している(*3)。

- (*1) エネルギー・環境に関する選択肢(平成 24 年 6 月 29 日) シナリオの詳細データの < 成長ケース > と < 慎重ケース > に それぞれにおけるセメント生産量の中間(平均値)を想定
- (*2) 原単位としては 104(MJ/t-cem)。2010 年度実績(3,459MJ/t-cem)から 3%の削減となる。
- (*3) 本技術は「革新的セメント製造プロセス基盤技術開発」において開発された技術であるが、実用化においては下記に示す条件がすべて満たされることが必要であり、これらの条件をすべて達成すべく併せて努力する。

【技術の内容(1)】

- ・実機試験を行い、製造条件が確立されること。
- ・上記技術により製造されるクリンカやセメントの品質管理方法が確立されること。
- 鉱化剤として使用するフッ素系原料が安定的に調達できること。
- ・上記技術により製造されたクリンカを原材料とするセメントの使用に関するユーザーの 理解が得られ、かつ、供給体制が整備されること。

【技術の内容(2)】

- ・実機試験を行い、製造条件が確立されること。
- ・コンクリートの各種物性(強度、断熱温度上昇、各種の耐久性)として問題がないこが確認されること。
- ・セメントの品種によっては混合材の使用量について品質規格で上限値が規定されており、これを超える技術となった場合には、品質規格の改正。
- ・上記技術により製造されたセメントの使用に関するユーザーの理解が得られ、かつ、 供給体制が整備されること。

5. その他の

4. 革新的技術

の開発・導入

取組・特記事項

◇ 昨年度フォローアップを踏まえた取組状況

【昨年度の事前質問、フォローアップワーキングでの委員からの指摘を踏まえた計画に関する調査票の 記載見直し状況(実績を除く)】

■ 昨年度の事前質問、フォローアップワーキングでの指摘を踏まえ説明などを修正した

(修正箇所、修正に関する説明)

昨年度 WG での指摘事項、事前質問	今年度の対応状況・改善点
データの出典に、アンケートを採用していませんが、アンケート内容はどの様なところに使用しているかご説明いただけないでしょうか。	毎年セメント協会で行っているセメント会社における生産及び操業に関する各種調査との認識で p.6「データの出典に関する情報」での出典を「統計」としていたが、今年度より「統計」と「会員企業アンケート」の両方にチェックを入れた。
説明用 PPT にエネルギー代替廃棄物使用量のグラフがありますが、こちらも調査票に追加することはできないでしょうか。	今年度はセメント製造用熱エネルギー原単位の低減の 主要因のひとつでもあるため、p.15 に記載した。
再エネの利用の促進について、変動電源は難しいが逆に視点を変え、自分たちの業界において少しの運用によって再生可能エネルギーのような変動するものでも使え、或いは吸収できる熱・エネルギーの使い方をご検討いただきたい。	セメント工場は 24 時間連続操業しているため、安定 操業の面から全てを変動電源に切り替えることは難し い。一方、セメント製造に使用している自家発電の一部 を再生可能エネルギーで発電している社もある。また、 個社単位では再生可能エネルギーによる外部への電 力供給事業も行っている。取組事例については、p.16、 p.31 に記載した。

□ 昨年度の事前質問、フォローアップワーキングでの指摘について修正・対応などを検討している (検討状況に関する説明)

セメント業における地球温暖化対策の取組

2019 年 9 月 27 日 一般社団法人セメント協会

I. セメント業の概要

(1) 主な事業

セメント製造業(標準産業分類コード:212)

(2) 業界全体に占めるカバー率

業界全体の規模		業界団	体の規模	低炭素社会実行計画 参加規模		
企業数	17 社	団体加盟 企業数	17 社	計画参加 企業数	17 社	
市場規模	売上高 5,422 億円	団体企業 売上規模	売上高 5,422 億円	参加企業 売上規模	売上高 5,422 億円	
エネルギー 消費量	199 PJ	団体加盟企業 エネルギー 消費量	199 PJ	計画参加企業 エネルギー 消費量	199 PJ	

※ 売上高は各企業におけるセメント部門売上高の合計

国内でセメント協会に加入していないセメント会社はエコセメント(都市ごみ焼却灰を主原料)を 製造しているセメント会社のみ。その生産量は日本全体の0.3%(2018年度実績)。

出所: (一社) セメント協会調べ

- (3) 計画参加企業・事業所
- ① 低炭素社会実行計画参加企業リスト
- エクセルシート【別紙1】参照。
- ② 各企業の目標水準及び実績値
- 未記載

(未記載の理由)

業界としての目標水準のみを設けているため。

- (4) カバー率向上の取組
- ① カバー率の見通し

年度	自主行動計画 (2012年度) 実績	低炭素社会実 行計画策定時 (2013年度)	2018年度 実績	2019年度 見通し	2020年度 見通し	2030年度 見通し
企業数	17 社 (100%)	17 社 (100%)	17 社 (100%)	17社	17 社	17社
売上規模	売上高 5,098 億円	売上高 5,498 億円	売上高 5,422 億円			
エネルギー消費量	203 PJ	210 PJ	199 PJ			

(カバー率の見通しの設定根拠)

② カバー率向上の具体的な取組

	取組内容	取組継続予定
2018年度		有/無
2019年度以降		有/無

(取組内容の詳細)

(5) データの出典、データ収集実績(アンケート回収率等)、業界間バウンダリー調整状況【データの出典に関する情報】

指標	出典	集計方法		
生産活動量	■ 統計□ 省エネ法■ 会員企業アンケート□ その他(推計等)	当業界では、毎年度、操業実績調査を行っており、その実績を用いている。		
エネルギー消費量	■ 統計□ 省エネ法■ 会員企業アンケート□ その他(推計等)	エネルギー消費量についても、毎年度、種別 ごと、使用量と品位について調査を行ってお り、それらの実績に基づいている。		
CO₂排出量	□ 統計□ 省エネ法・温対法□ 会員企業アンケート■ その他(推計等)	上述の通り、活動量とともにエネルギー消費量も調査を実施し、それらに基づいてエネルギー起源CO2排出量を試算している。		

【アンケート実施時期】

2019年7月~2019年8月

【アンケート対象企業数】

17 社 (業界全体の 100%、低炭素社会実行計画参加企業数の 100%に相当)

【アンケート回収率】

100%

【業界間バウンダリーの調整状況】

- □ 複数の業界団体に所属する会員企業はない
- 複数の業界団体に所属する会員企業が存在
 - ロ バウンダリーの調整は行っていない

(理由)

■ バウンダリーの調整を実施している

<バウンダリーの調整の実施状況>

業界内については、他業界団体のフォローアップに参加している、していないに拘らず、各事業所からはセメント事業部門に限定したデータを報告してもらっている。

一方、業界外では日本鉄鋼連盟事務局との間で、混合材に関し調整を行った。

【その他特記事項】

特になし

II. 国内の企業活動における削減実績

(1) 実績の総括表

【総括表】(詳細はエクセルシート【別紙4】参照。)

	基準年度	2017年度	2018年度	2018年度	2019年度	2020年度	2030年度
	(2010年度)	実績	見通し	実績	見通し	目標	目標
生産活動量 (単位:万t)	5,590	6,020		6,007	*	5,621 (見通し) ※※※	5,558 (見通し) ※※※
熱エネルギー 消費量 (単位:万kl)	456	476		466			
電力消費量 (億kWh)	20.0	21.1		21.1			
CO₂排出量 (万t-CO₂)	1,650 ※1	1,732 ※2	% 3	1,691 ※4	% 5	% 6	% 7
エネルギー 原単位※※ (単位:MJ/t-cem)	3,459	3,374		3,328		3,420	3,334
CO ₂ 排出原単位 (単位: kg-CO ₂ /t-cem)	295	288		282			

※ p.19 の【2019 年度の見通し】参照

※※ p.39 の「セメント製造用エネルギー原単位」参照

※※※ 2020 年度及び 2030 年度の生産量見通しの根拠についてはp.1、2 の「設定根拠」参照

【電力排出係数】

	※ 1	※ 2	※ 3	※ 4	※ 5	※ 6	※ 7
排出係数[kg-CO ₂ /kWh]	0.352	0.496		0.463			
実排出/調整後/その他	調整後	調整後		調整後			
年度	2010	2017		2018			
発電端/受電端	受電端	受電端		調整後			

【2020年・2030年度実績評価に用いる予定の排出係数に関する情報】

排出係数		理由/説					
	□ 基礎排出係数	」 基礎排出係数(発電端/受電端)					
	■ 調整後排出係数(発電端/受電端)						
	□ 特定の排出係						
┃ ■ 電力		の実績値(〇〇年度 発電	端/受電端)				
		(排出係数値:〇〇kWh/kg)			
		を設定した理由>					
	特になし						
	□ 総合エネルギ	一統計(〇〇年度版)					
	□ 温対法						
	□ 特定の値に固	定					
	□ 過年度の	実績値(〇〇年度:総合工	ネルギー統計)				
	■ その他						
	<上記係数を	設定した理由>					
		石炭、石油コークス、重油については、会員会社が測定した発熱量を用いている。					
	都市ガスについては、総合エネルギー統計の標準発熱量を用いている。下記表参						
	照。						
		,·					
	化石系熱エネルギー熱量換算係数						
その他			単位:MJ/kg, MJ/l				
熱エネルギー	品目	区分	2018 年度発熱量				
W = 1 12 1		標準発熱量	25.97				
	輸入一般炭	実測値 セメント製造用	25.28				
		実測値 自家発電用	25.30				
		標準発熱量	33.29				
	石油コークス	実測値 セメント製造用	32.11				
		実測値 自家発電用	32.90				
		標準発熱量(C 重油)	41.78				
	重油	実測値 セメント製造用	40.88				
		実測値 自家発電用	40.37				
		経済産業省資源エネルギー庁が公表					
		界が自主的に測定したもの。使用工場	』ごとに発熱量を測定し、使用量	で加重平均値を求			
	めている。						

(2) 2018 年度における実績概要 【目標に対する実績】

<2020 年目標>

目標指標	基準年度/BAU	目標水準	2020年度目標値
セメント製造用 エネルギー原単位	2010	▲39 MJ/t-cem	3,420 MJ/t-cem

目標	票指標の実績値		進捗状況			
基準年度実績 2017年度 2018年度 (BAU目標水準) 実績 実績			基準年度比 /BAU目標比	2017年度比	進捗率*	
3, 459	3, 374	3, 328	▲3.8 %	▲1.4 %	336 %	

^{*} 進捗率の計算式は以下のとおり。

進捗率【基準年度目標】=(基準年度の実績水準-当年度の実績水準)

/ (基準年度の実績水準-2020年度の目標水準)×100(%)

進捗率【BAU 目標】= (当年度の BAU-当年度の実績水準) / (2020 年度の目標水準) × 100 (%)

<2030年目標>

目標指標	基準年度/BAU	目標水準	2030年度目標値
セメント製造用 エネルギー原単位	2010	▲125 MJ/t-cem	3,334 MJ/t-cem

目標指標の実績値				進捗状況	
基準年度実績 (BAU目標水準)	2017年度 実績	2018年度 実績	基準年度比 /BAU目標比	2017年度比	進捗率*
3, 459	3, 374	3, 328	▲3.8 %	▲1.4 %	105 %

^{*} 進捗率の計算式は以下のとおり。

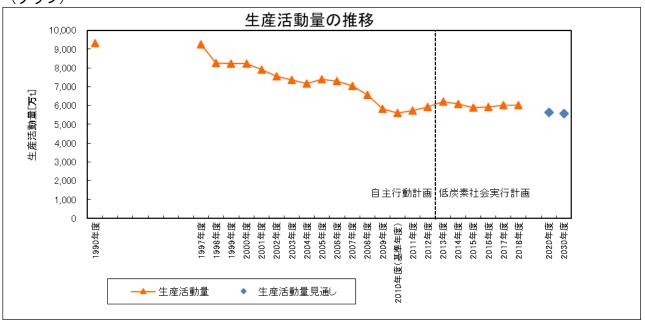
進捗率【基準年度目標】=(基準年度の実績水準-当年度の実績水準)

/ (基準年度の実績水準-2030年度の目標水準)×100(%)

進捗率【BAU 目標】= (当年度の BAU-当年度の実績水準) / (2030 年度の目標水準) ×100 (%)

【調整後排出係数を用いた CO2排出量実績】

	2018年度実績	基準年度比	2017年度比
00₂排出量	1,691 万t-CO₂	+42 万t-CO ₂ (+2.5 %)	▲41 万t-CO ₂ (▲2.3 %)


(3) 生産活動量、エネルギー消費量・原単位、CO₂排出量・原単位の実績 【生産活動量】

<2018 年度実績値>

生産活動量: 6,007 万t (基準年度比 107.5 %、2017 年度比 99.8 %)

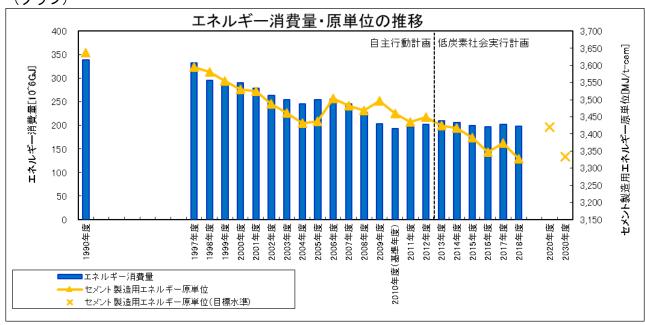
く実績のトレンド>

(グラフ)

(過去のトレンドを踏まえた当該年度の実績値についての考察)

2018 年度の生産活動量は前年比 99.8%となった。

背景として、セメント国内需要は、官需が 2018 年度公共事業当初予算は前年並みであったものの、前年度からの補正予算の効果があったため微増となり、民需も住宅投資がマイナスで推移したが、設備投資が東京オリンピック・パラリンピック施設建設工事及び関連工事、企業収益の改善等により堅調に推移したことにより、2 年連続で前年を上回った。一方で、輸出はマイナスとなった。


【エネルギー消費量、エネルギー原単位】

<2018 年度の実績値>

エネルギー消費量: 199 PJ (基準年度比 102.7 %、 2017 年度比 98.1 %) エネルギー原単位: 3,328 MJ/t-cem (基準年度比 96.2 %、 2017 年度比 98.6 %)

く実績のトレンド>

(グラフ)

(過去のトレンドを踏まえた当該年度の実績値についての考察)

(1) エネルギー消費量

2018 年度の実績は、対基準年度においては生産活動量が増加したことを受け増加した。対前年度においては、生産活動量は横ばいであったものの、会員各社の削減努力により改善している。

(2) エネルギー原単位

2018 年度実績は、対基準年度から多少の振れがあるものの全体的には減少傾向であり、対前年度においても改善している。

<他制度との比較>

(省エネ法ベンチマーク指標に基づく目指すべき水準との比較)

■ ベンチマーク制度の対象業種である

<ベンチマーク指標の状況>

ベンチマーク制度の目指すべき水準 (2020年度): 3,739MJ/t-cem 以下

エネルギー原単位の計算式は次のとおり

原料部エネルギー使用量[MJ]
原料部生産高[t]焼成部エネルギー使用量[MJ]
・ 佐上げ部エネルギー使用量[MJ]
・ 仕上げ部生産高[t]+ 出荷・その他エネルギー[MJ]
全セメント出荷高[t]

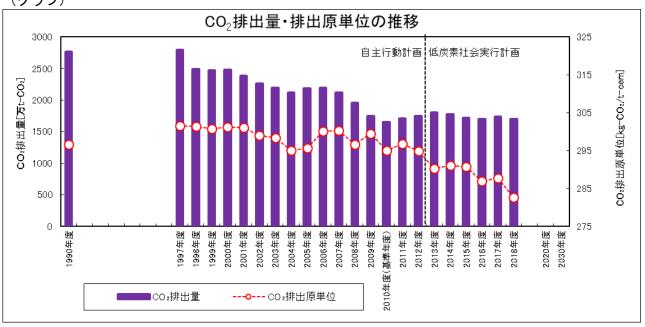
<今年度の実績とその考察>

ベンチマークの実績は、法律に基づき個社として対応しており、平成 30 年度定期報告分として経済産業省ホームページにおいて、平均値、標準偏差、達成事業者(数)が公表されている。

https://www.enecho.meti.go.jp/category/saving_and_new/benchmark/2018/benchmark30.pdf

□ ベンチマーク制度の対象業種ではない

【CO2排出量、CO2原单位】


<2018 年度の実績値>

CO2排出量: 1,691 万 t-CO2 (基準年度比 102.5 %、2017 年度比 97.7 %)

CO2排出原単位: 282 kg-CO2/t-cem (基準年度比 95.4 %、2017 年度比 97.9 %)

く実績のトレンド>

(グラフ)

電力排出係数: 4.63 t-CO2/万kWh

(過去のトレンドを踏まえた当該年度の実績値についての考察)

(1) CO2排出量

2018 年度の実績は、対基準年度においては生産活動量が増加したことを受け増加した。対前年度においては、生産活動量は横ばいであったものの、会員各社の削減努力により改善している。

(2) CO2排出原単位

2018 年度の実績はエネルギー原単位と同様に、対基準年度から多少の振れはあるものの減少傾向であり、対前年度においても改善している。

【要因分析】 (独自フォーマットにて要因分析を実施のため、エクセルシート【別紙 5】とは数値が異なる。)

(CO₂排出量)

CO₂排出量	基準年度→2018 年	基準年度→2018 年度変化分 2017 年度→2018 年		度変化分	
GO2排出里	(万 t−CO₂)	(%)	(万 t−CO₂)	(%)	
業界努力分等	▲87.3	▲ 5.3	▲22.5	▲1.3	
購入電力炭素排出量係数の変化	23.4	1.4	▲7.1	▲0.4	
自家発電比率増および発電効率改善	▲17.7	▲1.1	▲7.5	▲0.4	
生産活動量の変動	123.1	7.5	▲3.7	▲0.2	

(CO₂排出原単位)

CO 排出區景位	基準年度→2018 年度変化分 2017 年度→2018 年度		変化分	
CO₂排出原単位	(kg-CO ₂ /t-cem)	(%)	(kg-CO ₂ /t-cem)	(%)
業界努力分等	▲14.5	▲ 4.9	▲3.8	▲1.3
購入電力炭素排出量係数の変化	3.9	1.3	▲1.2	▲0.4
自家発電比率増および発電効率改善	▲2.9	▲1.0	▲1.2	▲0.4

※参考 電力エネルギーの供給別 CO2 排出原単位<t-CO2/千 kWh>

	2010 年度 (基準年度)	2018 年度
火力自家発電	0.990 (56.9%)	0.939 (56.0%)
排熱発電	0.000 (9.4%)	0.000 (11.2%)
購入電力	0.352 (33.7%)	0.496 (32.8%)
電源平均値	0.682	0.689
比率(2010年度比)	100.0	101.0

^{※()}内の数値は構成比を示す。

(エネルギー原単位の増減要因)

(単位:MJ/t-cem)

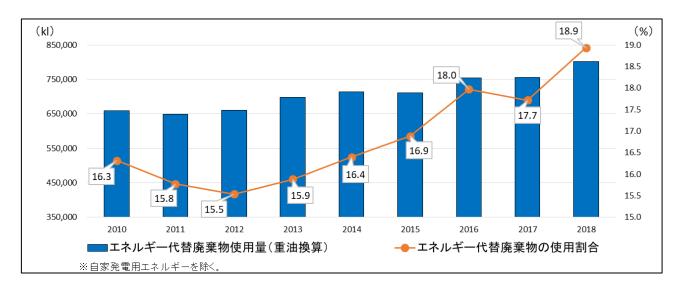
要因	基準年度→2018 年度変化分	2017 年度→2018 年度変化分
削減努力による効果	▲111.5	▲36.0
生産構成変動、生産量変動の影響	▲24.8	▲13.1

(要因分析の説明)

(1)CO₂排出量, CO₂排出原単位

対基準年度の 2018 年実績は、生産活動量の増加により、CO₂排出量は増加している。一方、CO₂排出原単位は、省エネ設備の導入やエネルギー代替廃棄物の使用拡大等の業界努力、自家発電比率増(排熱発電の普及等による)などにより減少した。

対前年度については、CO2排出量及び CO2排出原単位共々、下記(2)エネルギー原単位に記した業界努力、 購入電力の炭素排出係数の変化や自家発電の効率改善などにより減少した。


【※独自フォーマット使用について】

当業界の排熱発電を含めた自家発利用率が高く、その効率の変化は無視できない要因であるため、それを含めた要因分析を採用している。

(2)エネルギー原単位

エネルギー原単位に影響を及ぼす要因について会員各社に調査を行い、主要増減要因について整理した。

次ページに示す通り継続的に設備投資が行われている中、2018 年度実績は、対基準年度、対前年度 どちらにおいてもエネルギー原単位の低減が認められている。これは省エネ設備の導入に加え、エネ ルギー代替廃棄物の使用拡大に向けた設備投資が積極的に行われたことにより、廃プラスチックをは じめとしたセメント製造用エネルギー代替廃棄物の使用割合が増加したことが、エネルギー原単位の 低減に大きく寄与したと推察される。

(4) 実施した対策、投資額と削減効果の考察

【総括表】 (詳細はエクセルシート【別紙6】参照。)

TITLE IN						
年度	対策	投資額	年度当たりの エネルギー削減量 (万 kl)	設備等の使用期間 (見込み)		
	省エネ設備の導入	2,975	0.58	10 年以上		
2018 年度 【実績】	エネルギー代替廃 棄物の使用拡大に 向けた設備投資	3,779	0.98	対象となる廃棄物の 有効利用が可能とな る期間		
	その他	413	0.01	当該設備利用が有効 である期間		
2019 年度 【計画】	省エネ設備の導入 エネルギー代替廃 棄物の使用拡大に 向けた設備投資 その他	9,942	1.03	-		
	省エネ設備の導入	-	-	_		
2019 年度 以降	エネルギー代替廃 棄物の使用拡大に 向けた設備投資	-	-	-		
	その他	-	-	_		

注:エネルギー削減量は設備の導入時期等によって投資年度からずれ込む場合がある。

【2018年度の取組実績】

(設備投資動向、省エネ対策や地球温暖化対策に関連しうる投資の動向)

省エネ設備の導入とエネルギー代替廃棄物の使用拡大のための投資等を積極的に行っている。

(取組の具体的事例)

- 1. 省エネ設備の導入(設備の高効率化も含む)
 - ・BAT に掲げている高効率クーラの導入や、キルンバーナーの高効率化等の効率改善のための省エネ 設備の改造/更新への設備投資が実施された。
 - ・セメント製造工程において排出される熱を回収し、排熱発電や原料乾燥等への利用を進めている。
- 2. エネルギー代替廃棄物の使用拡大
 - ・使用の効率向上に資する既設設備の更新などが実施された。
 - ・使用拡大に向けた能力増強に関する設備投資が実施された。
 - ・一部工場の自家発電所において、化石エネルギーの代替として木質バイオマスを使用した。
 - ・セメント製造用熱エネルギーとして木質バイオマスを使用した。

(取組実績の考察)

需要が低迷している中であっても、継続して数十億円単位の設備投資が実施されており、その結果、設備 投資によるエネルギー原単位の低減や、熱エネルギーに占めるエネルギー代替廃棄物の高い使用率が維 持されている。

【2019 年度以降の取組予定】

(今後の対策の実施見通しと想定される不確定要素)

1. 省エネ設備の普及促進

BAT に掲げている排熱発電設備の設置や、効率改善のための省エネ設備新設および改造/更新への 投資が 2019 年度には計画されている。

ただし、需要の動向によっては、投資の履行は不透明である。

2. エネルギー代替廃棄物の使用拡大

前処理設備の更新・増強に関する設備投資等が2019年度には計画されている。

ただし、エネルギー代替廃棄物の確保は今後の廃棄物市場の動向によっては、ますます困難になる ことが想定されることから、投資の履行は不透明である。

【BAT、ベストプラクティスの導入進捗状況】

<p.43 参照>

【IoT 等を活用したエネルギー管理の見える化の取組】 特になし

【他事業者と連携したエネルギー削減の取組】

個社として以下の事業に参加している。

<太平洋社>

ア、経済産業省「低炭素製品普及に向けた3R体制構築支援事業」

車載用等の使用済リチウムイオン電池の低炭素型リサイクルシステム実証事業の実施

イ. 環境省「省 CO2 型リサイクル設備技術実証事業」

CFRP 含有 ASR 等の非燃焼処理および 事業者間連携による 貴金属等回収・再資源化の実証

ウ. 環境省「環境配慮型 CCS 実証事業」

火力発電所等から排ガス中の二酸化炭素を分離・回収し、貯留する技術開発を実施

<三菱社>

ア. 環境省「CO2 排出削減対策強化誘導型技術開発・実証事業」

藻類バイオマスの効率生産と高機能性プラスチック素材化による協働低炭素化技術開発を実施

イ. 食品系廃棄物などのバイオガス化事業

食品系廃棄物などのメタン発酵により発生するバイオガスによる発電事業の事業化。残渣はセメント工場でセメント原料用にリサイクル利用。

【業界内の好取組事例、ベストプラクティス事例、共有や水平展開の取組】

上記以外の個社の取組みについては、p. 30-31 の「個社における取組み」に示した。

(5) 想定した水準(見通し)と実績との比較・分析結果及び自己評価 【目標指標に関する想定比の算出】

* 想定比の計算式は以下のとおり。

想定比【基準年度目標】=(基準年度の実績水準-当年度の実績水準)

/ (基準年度の実績水準-当年度の想定した水準)×100(%)

想定比【BAU 目標】= (当年度の削減実績) / (当該年度に想定した BAU 比削減量) ×100 (%)

想定比:見通しを設定していないため算出不可

【自己評価・分析】(3段階で選択)

<自己評価及び要因の説明>

- □ 想定した水準を上回った(想定比=110%以上)
- □ 概ね想定した水準どおり(想定比=90%~110%)
- □ 想定した水準を下回った(想定比=90%未満)
- 見通しを設定していないため判断できない(想定比=-)

(自己評価及び要因の説明、見通しを設定しない場合はその理由) 長期的な需要見通しを策定していないため。

(自己評価を踏まえた次年度における改善事項)

(6) 次年度の見通し

【2019年度の見通し】

	生産活動量	エネルギー 消費量	エネルギー 原単位	CO₂排出量	CO₂排出原単位
2018 年度 実績	6,007 万t	199 PJ	3,328 MJ/t-cem	1,691 万 t -CO₂	282 kg-CO ₂ /t-cem
2019 年度 見通し	-	-	-	-	-

(見通しの根拠・前提)

活動量については、セメント協会では、毎年、翌年度の国内需要(輸入を含む)と輸出の見通しを立てている。一方、セメントの生産は国内販売、輸出、固化材原料用の3つに向けられるが、固化材原料用は需要見通しを立てていないため見通し量は算出していない。

(7) 2020年度の目標達成の蓋然性

【目標指標に関する進捗率の算出】

* 進捗率の計算式は以下のとおり。

進捗率【基準年度目標】= (基準年度の実績水準-当年度の実績水準)

/ (基準年度の実績水準-2020年度の目標水準)×100(%)

進捗率【BAU 目標】= (当年度の BAU-当年度の実績水準) / (2020 年度の目標水準) × 100 (%)

進捗率=336 %

(計算式:((3459-3328) / (3459-3420)) *100=336 %)

【自己評価・分析】(3段階で選択)

<自己評価とその説明>

■ 目標達成が可能と判断している

(現在の進捗率と目標到達に向けた今後の進捗率の見通し)

2014 年度以降目標水準に到達している。国内需要の動向に不透明な面が残っているものの、現状を踏まえれば目標の達成は可能と考えている。

(目標到達に向けた具体的な取組の想定・予定)

- ・省エネ設備に対する投資
- ・エネルギー代替廃棄物の使用拡大に向けた投資

(既に進捗率が2020年度目標を上回っている場合、目標見直しの検討状況)

2020 年度目標については、残り1ヵ年なっており、PDCA サイクルの実施には時間的な制約があることから、現目標値を維持することとした。但し、2030 年度目標については、後述(p.37)の通り見直した。

- □ 目標達成に向けて最大限努力している
- (目標達成に向けた不確定要素)
- (今後予定している追加的取組の内容・時期)
- □ 目標達成が困難
- (当初想定と異なる要因とその影響)
- (追加的取組の概要と実施予定)
- (目標見直しの予定)

(8) 2030年度の目標達成の蓋然性

【目標指標に関する進捗率の算出】

* 進捗率の計算式は以下のとおり。

進捗率【基準年度目標】=(基準年度の実績水準-当年度の実績水準)

/ (基準年度の実績水準-2030年度の目標水準)×100(%)

進捗率【BAU 目標】= (当年度の BAU-当年度の実績水準) / (2030 年度の目標水準) × 100 (%)

進捗率=104.8 %

(計算式:((3459-3328) / (3459-3334)) *100=104.8 %)

【自己評価・分析】

(目標達成に向けた不確定要素)

- 需要見通し
- ・エネルギー代替廃棄物を取り巻く環境

(既に進捗率が2030年度目標を上回っている場合、目標見直しの検討状況)

「 2015年度より3年連続で2030年度目標を前倒して達成したことに鑑み、前年度目標見直しの検討を行い、今年度より新目標にてFUを行っている。なお、目標見直しについての詳細はp.37「昨年度フォローアップ結果を踏まえた目標見直し実施の有無」に示した。

2018 年度実績については、新しい目標値を上回る原単位の改善が認められた。これは p.15 にも記した通り、省エネ設備の導入に加え、エネルギー代替廃棄物の使用拡大に向けた設備投資が積極的に行われたことによってエネルギー代替廃棄物受入れ量が増加したことによる。

特に、エネルギー代替廃棄物の受け入れ量増加には、中国をはじめとしたアジア諸国における輸入規制により、廃プラスチックの国内循環量が増加し、セメント工場においても廃プラスチックが入手しやすくなったという外的要因も影響している。

ただし、廃プラスチックをはじめとしたエネルギー代替廃棄物については、今後の国内資源循環の動向を見定める必要があり、当面は現状のフォローアップを継続することとした。

(9) クレジット等の活用実績・予定と具体的事例

【業界としての取組】

- □ クレジット等の活用・取組をおこなっている
- □ 今後、様々なメリットを勘案してクレジット等の活用を検討する
- □ 目標達成が困難な状況となった場合は、クレジット等の活用を検討する
- クレジット等の活用は考えていない

【活用実績】

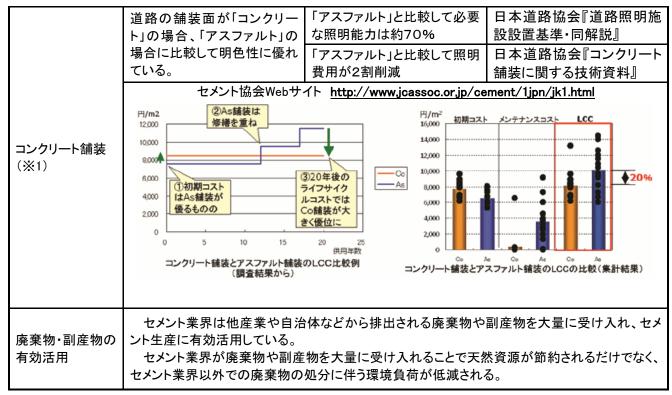
□ エクセルシート【別紙7】参照。

【個社の取組】

- 各社でクレジット等の活用・取組をおこなっている
- □ 各社ともクレジット等の活用・取組をしていない

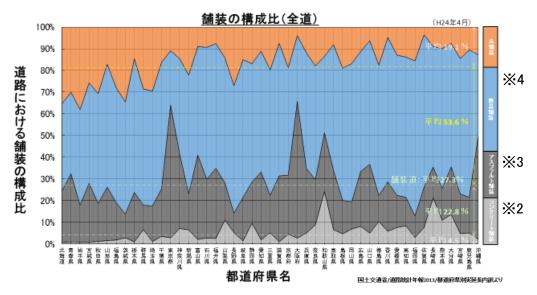
【具体的な取組事例】

取得クレジットの種別	
プロジェクトの概要	
クレジットの活用実績	


Ⅲ. 低炭素製品・サービス等による他部門での貢献

(1) 低炭素製品・サービス等の概要、削減見込量及び算定根拠

	低炭素製品・ サービス等	削減実績 (2018年度)	削減見込量 (2020年度)	削減見込量 (2030年度)
1				


(当該製品・サービス等の機能・内容等、削減貢献量の算定根拠や算定の対象としたバリューチェーン/サプライチェーンの範囲)

ン/サプライチ	ェーンの範囲)		
低炭素製品・サービス等	当該製品等の特徴、 従来品等との差異など	削減見込量	算定根拠、 データの出所など
		量:95.4~99.2% ・積載量を 11t とし、100km 走行した場合の CO₂排出量の削減量:1.14~6.56 kg では0.8~4.8%コンクリート舗装	
コンクリート舗装(※1)	大型車の燃費向上。 大型車の燃費向上。 大型車の燃費にす。 カナダの国立機関(NRC)がにおける調査)を実施し、この8~6.9%優れているとの総合を変換したでのまた行動をできる。 日本のセメント協会でも、大成田空港内での走行は関係。 舗装よりも6~20%程度小路。国総研試走路におけるについても分析しています。 「National Research Council of Carlot (カナダ国家研究会議)のレポート 「National Research Council of Carlot (カナダーのような研究会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社	これまでの調査 舗装はアスファ 型車の燃費が という結果。 転がり抵抗が小 をいう結果。 転がり抵抗が小 をいう結果。 をかり抵抗が小 をいう結果。 をかり抵抗が小 をいう結果。	出を削減可能で のアクションプラン2000 でて、大型車の燃費が 。 関する調査を実施し、 所抵抗が、アスファルト 年度)。さらに高速度 007年度)、さらに燃費 記試験からコンクリート かいト舗装に比べ、大 0.8~4.8%優れている さい か所で転がり抵抗を 装はアスファルト 舗型車の転がり抵抗が
	General Arts Ge	◆ 燃費換算では リート 舗装がよし Condition	t <mark>08~48%</mark> コンク \

※1 コンクリート舗装による削減貢献量は使用段階のみを評価したものである。

補足:舗装の構成比(根拠:国土交通省/道路統計年報をもとに算出)

※2 コンクリート舗装 :表層にコンクリート版を用いた舗装

※3 アスファルト舗装:骨材を瀝青材料で結合した材料を表層に用いた舗装

※4 簡易舗装 :アスファルト舗装の基層に相当するものがなく、表層と路盤で構成。路盤上に 2.5~4cm

程度の簡単な構造の舗装

各県の未舗装道は平均 19%、簡易舗装は平均 54%占めており、コンクリート舗装が低炭素製品としての一面を有することが広く認知されれば、多くの都道府県での普及拡大につながる。

● 低炭素製品・サービス等を通じた貢献

コンクリート製品・構造物等を通じた貢献として、関連業界(セメントユーザー)との連携により、環境負荷低減 に資する材料・工法の普及に努めている。

① 普及対象技術の例

- 1) ヒートアイランド対策:コンクリート舗装(特に透・排水性舗装)、保水性半たわみ性舗装、緑化コンクリート (屋上緑化、のり面緑化、護岸緑化等)、等の適用促進
- 2) 高断熱住宅対策: ALC(軽量気泡コンクリート)、押出し成形版、軽量骨材コンクリートの適用促進
- 3) 建造物の長寿命化対策:高耐久性コンクリートの適用促進、舗装の長寿命化(路盤のセメント安定処理による強化、コンクリート系舗装の適用)の促進
- 4) 施工エネルギーの低減対策:自己充てん型高強度高耐久コンクリート構造、高強度軽量プレキャストPC 床版、超高強度繊維補強コンクリート(ダクタル)、スリップフォーム工法によるコンクリート舗装
- 5) リサイクル対策:再生コンクリート(再生骨材使用の適用促進)
- 6) コンクリート舗装の普及の推進:耐久性に優れライフサイクル(LCC)が低廉であり、大型車の燃費向上に効果(CO2排出量の削減)があるとされているコンクリート舗装の適用拡大を目的に、普及活動の実施。
- ②「工法」による低減効果例(土木学会「コンクリートライブラリ」より) SRC橋脚(鋼管コンクリート複合構造)施工によるCO2排出量を100とした場合、SQC橋脚(自己充てん型高 強度高耐久コンクリート)では88(12%削減)となる。
- ③「目的物」による低減効果例(土木学会「コンクリートライブラリ」より) アスファルト舗装とコンポジット舗装のCO₂排出量の相対比較(4車線, 40年間のライフサイクル)は、アスファルト舗装を100とした場合、コンポジット舗装では69(31%削減)となる。
- (2) 2018 年度の取組実績 (※再生可能エネルギーに関する記載は p. 31 に記載) (取組の具体的事例)
 - ①コンクリート舗装の普及推進
 - ア. コンクリート舗装の基礎的知識や 1DAY PAVE に関する講習会、地方自治体との意見交換会を開催した。
 - イ. 地方自治体主催の講習会および施工見学会に講師を派遣し、コンクリート舗装について解説した。
 - ②関係機関との連携した取組み
 - ア. 全国生コンクリート工業組合連合会と連携して、発注者や施工者への啓蒙活動を実施した。
 - イ. 土木研究所、大学等との「コンクリート舗装の維持修繕工法の改善に関する共同研究」を推進した。
 - ウ. 北海道地区の産官学による北海道土木技術会コンクリート舗装小委員会に参画した。
 - エ. 日本道路協会・ミャンマー道路路面処理技術委員会に参画し、ミャンマー建設省と連携して、ミャンマーの道路におけるコンクリート舗装およびアスファルト舗装の試験施工を実施した。併せて、マニュアル(案)を作成した。

(取組実績の考察)

- ・コンクリート舗装の普及推進活動により、発注者、設計者、施工者等に、正しい知識や使い方が 浸透し、今後の採用が期待できる。
- (3) 2019年度以降の取組予定
 - ・国土交通省と連携した地方自治体へのコンクリート舗装の普及活動を推進する。
 - ・全国生コンクリート工業組合連合会と連携した、発注者、設計者、施工者への啓蒙活動を推 進する。
 - ・コンクリート舗装の適用事例、基礎知識について理解を深めるためのセミナーを実施する。

Ⅳ. 海外での削減貢献

(1) 海外での削減貢献の概要、削減見込量及び算定根拠

	海外での削減貢献	削減実績 (2018年度)	削減見込量 (2020年度)	削減見込量 (2030年度)
1				
2				
3				

(削減貢献の概要、削減貢献量の算定根拠)

(2) 2018 年度の取組実績

(取組の具体的事例)

セメント協会のホームページにおいて、Sustainability と題した英文ページを作成し、省エネルギー技術、 廃棄物の最新の使用状況について公開している。

(URL: http://www.jcassoc.or.jp/cement/2eng/e_01.html)

また、会員会社において以下の取り組みがなされた。

- ・中国のセメント工場にて低 NOx 操業、脱硝効率向上にかかわる技術指導を実施。
- ・中国セメント企業に対する省エネ・環境エンジニアリング事業を進めており、省エネ診断や設備の導入など技術的サポートを行っている。

(取組実績の考察)

省エネ設備の海外のセメント工場への導入はセメント業界ではなくプラントメーカーによって進められている。なお、定量的な評価は出来ないものの、海外に対して情報発信することや、世界最大の温室効果ガス排出国である中国の企業に対し個別ではあるものの、技術指導を継続することは世界レベルでの温室効果ガス排出の削減につながることが期待される。

(3) 2019 年度以降の取組予定 未定

Ⅴ. 革新的技術の開発・導入

(1) 革新的技術・サービスの概要、導入時期、削減見込量及び算定根拠

	革新的技術・サービス	導入時期	削減見込量
1	革新的セメント製造プロセス	2030 年度に実用化・普及を 目指す	約 15 万 kl (原油換算)

(技術・サービスの概要・算定根拠)

- (1) 【焼成温度低減による省エネ】鉱化剤の使用によってクリンカの焼成温度を低下させることにより、クリンカ製造用熱エネルギー原単位の低減を図る。
- (2) 【省エネ型セメント】クリンカの鉱物の一つであるアルミン酸三カルシウム(3CaO·Al₂O₃)量を増やし、現状より混合材の使用量を増やすことにより、セメント製造用エネルギー原単位の低減を図る。

(2) 革新的技術・サービスの開発・導入のロードマップ

_ \ _	- / 平利1001文門 7	ヒハの別元	・一等八の日	1.477				
	技術・サービス	2018	2019	2019	2020	2025	2030	2050
1	焼成温度低減による 省エネ		・高フッ素含	た予備検討 の調達可能性記 有セメントの過 上の課題解決に	五 題用性調査	予備検討お。 2021 年以降 状況(見通し まえて、製i		
2	省エネ型 セメント			た予備検討 解決の可能性訓 上の課題解決に		は、 として、 といる という はい とい という はい とい という はい とい という はい とい という はい とい	適応 /	
3	1、2の開発に向け た主要要素の高精度 温度計測システム※ の実用化	実用化に向いまで、実機試験に						

※高精度温度計測システム: 高ダスト濃度環境下のロータリーキルン内の温度を高精度で計測し、過度な 熱エネルギーの使用を軽減することにより、省エネルギー効果を高めるシステム。

(3) 2018 年度の取組実績

(取組の具体的事例、技術成果の達成具合、他産業への波及効果、CO2 削減効果)

① 参加している国家プロジェクト:特になし

② 業界レベルで実施しているプロジェクト

革新的セメント製造プロセス基盤技術開発事業が終了し、開発・事業化自体は個社レベルとなっているが、フォローアップを主目的とした WG をセ協内に設置し、実用化の為の課題・問題点の再整理を行っている。

③ 個社で実施しているプロジェクト

ア)セメントキルン内高精度温度計測システムの開発

2016 年度までに NEDO 助成事業で進められた標記については、各革新的技術を評価するための基礎技術となるため、三菱マテリアル(株)において 2017 年度より耐久性や精度の確認を含めたシステムの実機試験が継続されている。なお、高精度温度計測システムは 2020 年度の商品化が見込まれる。

イ)次世代セメント材料共同研究

2017 年度から 2019 年度までの予定で、東京工業大学、太平洋セメント(株)、デンカ(株)の三者により「次世代セメント材料に関する共同研究」を実施中である。2018 年度においては、廃棄物利用拡大と低炭素化の両立を可能とするセメントの品質設計を実施した。

(4) 2019 年度以降の取組予定

(技術成果の見込み、他産業への波及効果・CO2 削減効果の見込み)

- ① 参加している国家プロジェクト:特になし
- ② 業界レベルで実施しているプロジェクト (3)に示した 2018 年度の活動の継続を予定している。
- ③ 個社で実施しているプロジェクト
- ア)セメントキルン内高精度温度計測システムの開発

2019 年度中に、2 年間の連続使用による耐久性の評価が実施され、商品化可能と判断された場合には、引き続き2020年度の商品化に向けた準備が進められる予定である。

イ)次世代セメント材料共同研究

2018年度の研究で得られた成果を2019年度セメント技術大会で3件報告した。ラボスケールで、普通ポルトランドセメントの少量混合成分を10mass%まで増加させても、セメント中のアルミネート相を増加させることで、セメント・コンクリートの品質を現行品同等に制御しつつ、廃棄物原単位を現状よりも向上させられる可能性を見出した。併せて水和解析により現象の裏づけも確認した。今後は実機実証試験等の更なる技術検討を予定している。

(5) 革新的技術・サービスの開発に伴うボトルネック(技術課題、資金、制度など) 計画概要でも示している通り、次の前提条件が満たされることが必要である。

【焼成温度低減】

- ・実機試験を行い、製造条件が確立されること。
- ・(1)に示す対象技術により製造されるクリンカやセメントの品質管理方法が確立されること。
- 鉱化剤として使用するフッ素系原料が安定的に調達できること。
- ・(1)に示す対象技術により製造されたクリンカを原材料とするセメントの使用に関するユーザーの理解が得られ、かつ、供給体制が整備されること。

【省エネ型セメント】

- ・実機試験を行い、製造条件が確立されること。
- ・コンクリートの各種物性(強度、断熱温度上昇、各種の耐久性)として問題がないことが確認されること。
- ・セメントの品種によっては混合材の使用量について品質規格で上限値が規定されており、これを超える技術となった場合には、品質規格の改正がなされること。
- ・(1)に示す対象技術により製造されたセメントの使用に関するユーザーの理解が得られ、かつ、供給体制が整備されること。
- (6) 想定する業界の将来像の方向性(革新的技術・サービスの商用化の目途・規模感を含む)
 - * 公開できない場合は、その旨注釈ください。

(2020年)

ロードマップで示した通りに予備検討を進める中、その主要要素となる高精度温度計測システムについては 実機試験による検証の段階に入り、実用化を目指す。

(2030年)

革新的技術の導入に関しては(5)に示した種々の前提条件充足が必要であり、さらには、製品としての技術的な規制やユーザー理解といった外因も存在することから明確な将来像を言及しづらい。

(2030 年以降)

長期については見通すことが困難。

VI. 情報発信、その他

- (1) 情報発信(国内)
- ① 業界団体における取組
- <具体的な取組事例の紹介>

取組										発表対象:該当す るものに「〇」		
	業界内	一般										
										限定	公開	
セメント業界はわが国が目指す「持続可能な社会」の実現に向け、「低炭素社会」だけでなく「循環型社会」の構築にも大きく貢献している。セメント協会では、ホームページやセメントハンドブックなどを通じ、セメント業界の循環型社会への貢献について情報発信を行なっており、ここに紹介する。また、2018 年度は次のような活動により一般消費者への理解促進にも努めた。 ・新聞・雑誌等に関連広告を掲載した。 ・ホームページによる情報提供を充実させるため、操作性の改善を図り、併せて小学生向けのクイズを継続実施した。 ・小・中学生を対象に、セメント・コンクリートへの理解・促進を図るため、実験教室を実施した。 ・大学生向けに、廃棄物・副産物の有効活用等、セメント産業の環境貢献を中心とした「出前授業、工場見学会」を実施した。(7 校実施)												
工場見字会」を実施した。(7 校実施) . 廃棄物・副産物の使用による天然資源並びに温室効果ガスの削減効果 セメント業界は他産業などより排出される廃棄物や副産物を多量に受け入れ、セメント生産に活用 している。特に、クリンカ製造には原料系廃棄物やエネルギー代替廃棄物を多量に用いており、天 然資源を節約するとともに、廃棄物処理に伴う環境負荷の低減に貢献している。 1)廃棄物・副産物使用量の推移 2メント業界における廃棄物・副産物使用量												
			可用量									
セメント業界に ^(単位: ft)	::::::::::::::::::::::::::::::::::::	副産物使		001075	001575	00107	001777	001055				
セメント業界に ^(単位: 千t) 種 類	まな用途	副 産物使	2000年度	2010年度	2015年度	2016年度	2017年度	2018年度				
セメント業界に ^(単位: Ŧt) 種 類 高炉スラグ	まな用途 原料、混合材	副産物使 1990年度 12,213	2000年度 12,162	7,408	7,301	7,434	7,398	7,852			0	
セメント業界に (単位: Ŧt) 種 類 高炉スラグ 石炭灰	まな用途 原料、混合材 原料、混合材	副産物使 1990年度 12,213 2,031	2000年度 12,162 5,145	7,408 6,631	7,301 7,600	7,434 7,597	7,398 7,750	7,852 7,681			0	
セメント業界に (単位: ft) 種類 高炉スラグ 石炭灰 汚泥、スラッジ	主な用途 原料、混合材 原料、混合材 原料	副産物使 1990年度 12,213 2,031 341	2000年度 12,162 5,145 1,906	7,408 6,631 2,627	7,301 7,600 2,933	7,434 7,597 3,052	7,398 7,750 3,255	7,852 7,681 3,267			0	
セメント業界に (単位:千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産石こう	主な用途 原料、混合材 原料、混合材 原料、混合材 原料 原料(添加材)	副産物使 1990年度 12,213 2,031	2000年度 12,162 5,145	7,408 6,631 2,627 2,037	7,301 7,600 2,933 2,225	7,434 7,597 3,052 2,149	7,398 7,750 3,255 2,179	7,852 7,681 3,267 2,229			0	
セメント業界に (単位:千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産石こう 建設発生土 燃えが6(石炭灰は除く)	主な用途 原料、混合材 原料、混合材 原料 原料(添加材) 原料	1990年度 12,213 2,031 341 2,300	2000年度 12,162 5,145 1,906 2,643	7,408 6,631 2,627 2,037 1,934	7,301 7,600 2,933 2,225 2,278	7,434 7,597 3,052 2,149 1,850	7,398 7,750 3,255 2,179 1,823	7,852 7,681 3,267 2,229 1,531			0	
セメント業界に (単位:千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産石こう 建設発生土 燃えがら(石炭灰は除く)。 はいじん,ダスト	主な用途 原料、混合材 原料、混合材 原料 原料(添加材) 原料	1990年度 12,213 2,031 341 2,300 - 468	2000年度 12,162 5,145 1,906 2,643 — 734	7,408 6,631 2,627 2,037 1,934 1,307	7,301 7,600 2,933 2,225 2,278 1,442	7,434 7,597 3,052 2,149 1,850 1,534	7,398 7,750 3,255 2,179 1,823 1,524	7,852 7,681 3,267 2,229 1,531 1,530			0	
セメント業界に (単位:千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産石こう 建設発生土 燃えがら(石炭灰は除く)、はいじん,ダスト 非鉄鉱滓等	主な用途 原料、混合材 原料、混合材 原料、混合材 原料 原料(添加材) 原料 原料(添加材)	1990年度 12,213 2,031 341 2,300 - 468 1,559	2000年度 12,162 5,145 1,906 2,643 — 734 1,500	7,408 6,631 2,627 2,037 1,934 1,307 682	7,301 7,600 2,933 2,225 2,278 1,442 722	7,434 7,597 3,052 2,149 1,850 1,534 757	7,398 7,750 3,255 2,179 1,823 1,524 795	7,852 7,681 3,267 2,229 1,531 1,530 811			0	
セメント業界に (単位:千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産石こう 建設発生土 燃えがら石炭灰は除く)。 ばいじん・ダスト 非鉄鉱滓等 廃プラスチック	主な用途 原料、混合材 原料、混合材 原料(添加材) 原料 原料(添加材) 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0	2000年度 12,162 5,145 1,906 2,643 — 734 1,500	7,408 6,631 2,627 2,037 1,934 1,307 682 445	7,301 7,600 2,933 2,225 2,278 1,442 722 576	7,434 7,597 3,052 2,149 1,850 1,534 757 623	7,398 7,750 3,255 2,179 1,823 1,524 795 643	7,852 7,681 3,267 2,229 1,531 1,530 811 718			0	
セメント業界に (単位: 千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産石こう 建設を生土 燃えがら(石炭灰は除く)、はいじん、ダスト 非鉄鉱淬等 廃プラスチック 木くず	主な用途 原料、混合材 原料、混合材 原料 原料(添加材) 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543	7,852 7,681 3,267 2,229 1,531 1,530 811 718 517			0	
セメント業界に (単位:千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産石こう 建設系がら(石炭灰は除く)、はいじん、ダスト 非鉄鉱滓等 廃プラスチック 木くず 鋳物砂	主な用途 原料、混合材 原料、混合材 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543	7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455			0	
セメント業界に (単位:千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産石こう 建設発生土 燃えがら(石炭灰は除く)。 ばいじん、ダスト 非鉄鉱滓等 廃プラスチック 木くず 鋳物砂 製鋼スラグ	主な用途 原料、混合材 原料、混合材 原料、混合材 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374	7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387			0	
セメント業界に (単位:千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産五こう 建設発生土 燃えがら伝皮灰は除く) はいじん、ダスト 非鉄鉱滓等 廃プラスチック 木くず 鋳物砂 製鋼スラグ 廃油	主な用途 原料、混合材 原料、混合材 原料(添加材) 原料 原料(添加材) 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314	7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335			0	
セメント業界に (単位: 千t) 種類 高炉スラグ 石炭灰 汚泥、スラッジ 副産石こう 建設での、ダスト 非鉄鉱淬等 廃プラスチック 木くず 鋳物砂 製鋼スラグ 廃油 廃白土	主な用途 原料、混合材 原料、混合材 原料、混合材 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90 40	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120 106	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275 238	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293 311	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324 287	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314 287	7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335 264			0	
セメント業界に (単位: 千t) 種類スラグ 石炭灰 汚泥、スラッジ 副産発生土 燃気がら(石炭灰は除く)、 まないのが浮等 廃プラスチック 木体物 製調 廃油 廃油 廃油 廃油 廃油 乗車 乗車 乗車 乗車 乗車 乗車 乗車 乗車 乗車 乗車 乗車 乗車 乗車	主な用途 原料、混合材 原料、混合材 原料 原料(添加材) 原料 原料 原料 原料 原料 原料 原料 熱エネルキー 原料 原料 原料 熱エネルキー 原料 原料 原料 熱エネルキー 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90 40 51	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120 106 239	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275 238 195	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293 311 179	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324 287 195	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314 287 209	7,852 7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335 264 223			0	
セメント業界に (単位:千t) 種類 高炉灰 汚泥、スラッジ 副産発生土 燃気がら(石炭灰は除く)、 非鉄鉱によん。ダスト 東プラス・オくず 動鋼スラグ 株が砂 製鋼スラグ 株が砂 製鋼スラグ 株が砂 製鋼スラグ 株が砂 製鋼スラグ 株の砂 製鋼スラグ 大くず 動鋼スラグ 大くず 動鋼スラグ 大くず 動鋼スラグ 大くず 動鋼スラグ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	主な用途 原料、混合材 原料、混合材 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90 40 51	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120 106 239 151	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275 238 195	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293 311 179 129	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324 287 195	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314 287 209 130	7,852 7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335 264 223 152			0	
セメント業界に (単位:千t) 種類 高炉灰 石炭ル 灰 調産発生土 燃えびんが変字等 廃プラス・プ 動物の 製剤の 素が低なダア 素がの 製剤の 素が、 スラック 木くず 動鋼の 素が、 スラック 木くず のの 表が、 スラック 大くず のの 表が、 スラック 大くず のの 表が、 スラック 、ステック	主な用途 原料、混合材 原料、混合材 原料(添加材) 原料 原料(添加材) 原料 原料 原料 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90 40 51 0 101	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120 106 239 151 323	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275 238 195 111	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293 311 179 129 57	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324 287 195 141 69	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314 287 209 130 63	7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335 264 223 152 70			0	
セメント業界に (単位: 千t) 種類 高炉スラグ 石炭ル、スラッジ 副産産発生土 燃えが石ラスト 非鉄鉱海スチック 木くず 鋳細スラグ 廃油 廃土土 乗プラズ 大くず 砂綱スラグ 廃油 廃土土 大くず 大くず 大くず 大くず 大くず 大くず 大くず 大くず	主な用途 原料、混合材 原料、混合材 原料 原料(添加材) 原料 原料 原料 原料 原料 原料 熱エネルキー 原料 熱エネルキー 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90 40 51 0 101	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120 106 239 151 323 0	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275 238 195 111	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293 311 179 129 57	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324 287 195 141 69 57	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314 287 209 130 63 59	7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335 264 223 152 70 60			0	
セメント業界に (単位: 千t) 種類スラグ 石炭ル灰 汚泥、石こう 建気がら(A 皮皮は除く)、 非よいじ、鉱スステック 木物鋼スラグ 体物のススチェック 木物物のスクラグ 廃油 白土 カラスイヤ 肉骨粉 RDF、RPF	主な用途 原料、混合材 原料、混合材 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90 40 51 0 101 0	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120 106 239 151 323 0	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275 238 195 111 89 68 48	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293 311 179 129 57 57	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324 287 195 141 69 57	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314 287 209 130 63 59	7,852 7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335 264 223 152 70 60 40			0	
セメント業界に (単位:千t) 種類スラグ 石炭 派 スラッジ 副建設がGG度炭収は除く)、 非子ック 木は物 劉 編 由 生 生 一次 が かり ラグ 廃 由 土 再 生 油 ガラスイヤ 肉 骨 ト、RPF ボタ	主な用途 原料、混合材 原料、混合材 原料 原料(添加材) 原料 原料 原料 原料 原料 原料 熱エネルキー 原料 熱エネルキー 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90 40 51 0 101 0 1,600	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120 106 239 151 323 0	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275 238 195 111 89 68 48	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293 311 179 129 57 57 37	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324 287 195 141 69 57 35	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314 287 209 130 63 59 37	7,852 7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335 264 223 152 70 60 40 0			0	
セメント業界に (単位:千t) 種類スラグ 石炭ル灰、スララう 建設がGG度炭ルは除ぐ)、 非鉄プラス・ 素が 動鋼油 東生土 大な物ののである。 東大くずののである。 東生土 大な物ののである。 東方くでする。 東西生油 ガラスイヤ 肉ので、RPF、ボタ その他	主な用途 原料、混合材 原料、混合材 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー 熱エネルキー	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90 40 51 0 101 0 0 1,600 14	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120 106 239 151 323 0 27 675 253	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275 238 195 111 89 68 48 0	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293 311 179 129 57 57 37 0 382	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324 287 195 141 69 57 35 0 438	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314 287 209 130 63 59 37 0 502	7,852 7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335 264 223 152 70 60 40 0 459			0	
セメント業界に (単位:千t) 種類スラグ 石炭 派 スラッジ 副建設がGG度炭収は除く)、 非子ック 木は物 劉 編 由 生 生 一次 が かり ラグ 廃 由 土 再 生 油 ガラスイヤ 肉 骨 ト、RPF ボタ	主な用途 原料、混合材 原料、混合材 原料 原料 原料 原料 原料 原料 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー 原料 熱エネルキー	1990年度 12,213 2,031 341 2,300 — 468 1,559 0 7 169 779 90 40 51 0 101 0 1,600	2000年度 12,162 5,145 1,906 2,643 — 734 1,500 102 2 477 795 120 106 239 151 323 0	7,408 6,631 2,627 2,037 1,934 1,307 682 445 574 517 400 275 238 195 111 89 68 48	7,301 7,600 2,933 2,225 2,278 1,442 722 576 705 429 395 293 311 179 129 57 57 37	7,434 7,597 3,052 2,149 1,850 1,534 757 623 642 409 405 324 287 195 141 69 57 35	7,398 7,750 3,255 2,179 1,823 1,524 795 643 543 446 374 314 287 209 130 63 59 37	7,852 7,852 7,681 3,267 2,229 1,531 1,530 811 718 517 455 387 335 264 223 152 70 60 40 0			0	

(2)クリンカ原料としての廃棄物の利用

セメントの中間製品であるクリンカは、乾燥・粉砕・調合された原料を1450度の高温で焼成した鉱物で、大きく4つの成分「酸化カルシウム(CaO)、二酸化けい素(SiO2)、酸化アルミニウム(Al_2O_3)、酸化第二鉄(Fe_2O_3)」で構成されている。

酸化アルミニウム(Al₂O₃)源は、かつては天然の粘土が多く使用されていたが、現在はほとんどが、石炭灰や汚泥などの廃棄物に置き換わっている。

クリンカ原料として石炭灰や汚泥などの廃棄物の使用が進んだことにより、ポルトランドセメント製造に使用された天然粘土の使用原単位は大幅に減少し、天然粘土の採掘・使用に伴う環境負荷の低減に貢献している。

表 ポルトランドセメント製造における天然粘土の使用原単位

(単位:kg/t-ポルトランドセメント)

2001年度	2017年度		
45.7	2.20		

また、燃え殻、鉱さい、ばいじんなどのクリンカ原料用の廃棄物にはCaO及びMgOが含まれている。これらの廃棄物はクリンカ生産の段階でCO₂を排出していないことから、クリンカ生産過程でCO₂を排出する炭酸塩起源である石灰石の使用量とその使用に伴うCO₂排出量の削減となっている。(2018年度CO₂削減量:816 千t-CO₂)

クリンカ原料として炭酸塩以外のCaO、MgO含有廃棄物の使用に伴う排出係数については、日本国温室効果ガス排出インベントリ報告書に反映されている。

(URL:http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_J_GIOweb.pdf)

(3)エネルギーとしての廃棄物の利用

「木くず」や「廃プラスチック」などのエネルギー代替廃棄物を利用することで化石エネルギーの使用量を削減しており、化石エネルギー資源の採掘や使用に伴う環境負荷の低減に貢献している。エネルギー自給率の低いわが国では廃棄物のエネルギー利用も重要である。

カーボン・ニュートラルの木くずの使用は低炭素社会の実現にもつながっている。

エネルギー代替廃棄物の使用実績(2018年度: 1,004 千kl(重油換算))

(4)フロン類破壊による温室効果ガス排出量の削減

会員企業において、フロン排出抑制法に基づき、フロン類破壊業の許可を受けている社がある。 2018年度のフロン類破壊による温室効果ガス排出削減貢献量は以下のとおり。

- ・フロン類処理量:76 t
- ・フロン類破壊による温室効果ガス削減量(CO2換算):169,967 t

2. 廃棄物・副産物の使用による最終処分場の延命 現在、わが国では新たな処分場の建設は難しい状況になっており、今ある処分場をいかに長く利 用していくかが重要な課題となっている。 環境省の発表によれば、2017 年度の産業廃棄物最終処分場の残余年数は 17.0 年となっている。 仮に、セメント業界で廃棄物や副産物の受け入れが困難になった場合、最終処分場の残余年数は 5.5 年になるとセメント協会では試算している。 セメント工場における廃棄物・副産物等受入れ処理による産業廃棄物処分場の延命効果について 【試算】								
(A)	産業廃棄物最終処分場残余容量(2017年4月時点)	167,776 (千 m³)		0				
(B)	産業廃棄物最終処分場残余年数(2017年4月時点)	17.0 (年)						
(C)	2017年以降の産業廃棄物の年間最終処分量試算値 [(A)/(B)]	9,869 (千 m³)						
(D)	セメント工場が 1 年間に受入れている廃棄物・副産物等の容積換算試算値	20,430 (千 m³)						
(E)	セメント工場が受入処理しなかった場合の最終処分場の残余年数試算値 〔(A)/(C)+(D)〕	5.5 (年)						
(F)	セメント工場が廃棄物等を受入処理することによる最終処分場の延命効果試 算値 [(B)-(E)]	11.5 (年)						
(A)	(B) の出所:環境省	, , , , , , , , , , , , , , , , , , ,						
環: D.: 称: D.: を で、D. 7月~	(A) (B) の田所:環境省 3. 災害廃棄物の処理の支援 環境省は国、自治体、事業者の災害対応力向上のため、「災害廃棄物処理支援ネットワーク(通称: D.Waste-Net)」を 2015 年 9 月に発足させ、セメント協会は東日本大震災におけるセメント産業の復旧・復興への協力・貢献の経緯から、発足当初よりその一員として参画している。 その後、不幸にも熊本県で大規模震災が発生し、その災害廃棄物の適正かつ迅速な処理について、D.Waste-Net通して支援の要請を受け、複数の会員各社で処理が行われ、その処理量は2016年7月~2018年3月の処理量は215,400トンとなった。 また、近年の水害によって生じた災害廃棄物についても要請があり、対応した。							

*「持続可能な社会」の実現に向け取り組みについては、セメント協会 HP においても紹介。 (参考 URL: http://www.jcassoc.or.jp/seisankankyo/index.html)

② 個社における取組

<具体的な取組事例の紹介>

● 地球温暖化対策を含めた環境保全にかかわる取り組み

取組	発表対 該当するも	
→ 1.7.10 <u>T</u>	企業内部	一般向け
【トクヤマ社】 ・「森林ボランティア」への参加 山口県周南農林水産事務所主催の「まちと森と水の交流会」(2018 年 11 月 10 日)に社内関係 者 130 名が参加し、周南市有林「ふれあいの森」で下草刈り、間伐の作業等を行った。 ・事業所近隣の大学などにおいて環境に関する講義を実施 ・ノーカーデー実施 (6月 周南市ノーマイカーデー、10月 山口県内一斉ノーマイカーデーに参加) ・ライトダウンキャンペーンへの参加(6~7 月) ・周南市クリーンネットワーク推進事業に参加(毎月会社周辺の清掃を実施 30 分/月) ・不使用箇所の消灯、軽装での執務(5~10 月)、空調温度管理の徹底等 ・社員を対象に、住宅用樹脂サッシについて導入費の一部を補助(2018 年度利用件数:5 件)		0
*詳細、その他取組については、「CSR 報告書」に記載 https://www.tokuyama.co.jp/csr/pdf/2019csr_report_j.pdf		
【太平洋社】 〈環境影響評価〉 鉱山の開発にあたっては地域の生態系保全に配慮し、地方行政、地域社会、学識者との意見交換を踏まえつつ、環境影響を最小化できるよう保全対策を検討、実施している。 〈残壁緑化〉 採掘過程で形成される階段状の岩盤の斜面部分「残壁」については、形成した段階において可能な限り緑化する努力を続けている。掘削した表土等の堆積場についても、すぐに形状を変えることのない場所については植栽をしている。また、植栽する植物はその山にもともと自生している植物を基本としている。 * 詳細、その他取組については、「CSR レポート」に記載 http://www.taiheiyo-cement.co.jp/csr/pdf/2018_rep_0911.pdf		0
【東ソ一社】 ・エコ通勤(通勤時の自動車利用を控え、公共交通機関や徒歩に切り替え)(月1回実施) ・夜間のプラント照明の消灯(月1回実施) * 詳細、その他取組については、「CSR レポート」に記載 https://www.tosoh.co.jp/csr/assets/report2018.pdf		
 【敦賀社】 ・鉱山採掘跡地の種子撒きによる緑化 ・工場近辺の海岸、道路清掃の実施 ・グリーンカーテンの設置 ・昼休み不要照明の消灯 ・自転車通勤の推奨 * 詳細、その他取組については「環境報告書」に記載 http://www.tsuruga-cement.co.jp/csr/bookdata/html5.html#page=1 		0

【宇部社】 UBE グループでは GHG 排出削減を大きな課題の一つと捉え、継続的に削減対策を実施している。環境型製品・技術の拡大および物流の効率化を図ることにより、サプライチェーン全体での GHG の削減貢献に取り組んでいる。 ・河川流域の森林保護への取り組み(間伐や竹林伐採などの森林整備) ・石灰石鉱山残採掘後の鉱山緑化等生物多様性活動 ・GHG 排出量削減・利用に資する研究開発・実証試験の推進 ・環境貢献型技術・製品の開発と拡大 * 詳細、その他取組については、「統合報告書」に記載 https://www.ube-ind.co.jp/ube/jp/ir/ir_library/integrated_report/pdf/integrated_2019_jp.pdf	0
【三菱社】 ・青森県緑化推進委員会主催の「緑の募金」への協力・2015 年には北海道内の 9 山林について、SGEC の新基準による森林認証を一括取得した。 ・社有地へのもみじ(町木)の植樹イベント開催 * 詳細、その他取組については、「CSR データブック」に記載 https://www.mmc.co.jp/corporate/ja/csr/report/pdf/csr2019.pdf	0
 【デンカ社】 ・クリーンエネルギーの取り組みとして、水力発電設備、太陽光発電設備を有している。 ・現在2箇所の新規水力発電所の建設を進めている。 * 詳細、その他取組については、「デンカレポート(統合報告書)」に記載 https://www.denka.co.jp/pdf/sustainability/report/denka_2019_full.pdf 	0
【住友大阪社】 ・希少野生動物「ツシマヤマネコ」の保護を目的とした森づくりのため長崎県対馬市舟志地区に所有する森林 16ha を無償提供。植樹イベントなど通じ森林保護育成。 ・鉱山採掘跡地及び集積場の緑化推進。 ・栃木工場、高知工場にて地方自治体が進める森づくりに参画し森林保護活動に貢献。 ・近隣学校や地域団体に工場見学など通じて環境に関する教育支援実施。 * 詳細、その他取組については、「統合報告書」に記載 https://www.soc.co.jp/wp- content/themes/soc/img/ir/document/document04/soc_InR_2019.pdf	0

- 再生可能エネルギーに関する個社単位で実施されている事例
 - ア. 電力事業における再生可能エネルギーの利用

2019 年 3 月末時点における会員各社の電力事業の実施状況は下記の通り(関係会社含む)であり、合計発電容量は 775,206kW である。

<FIT 電力事業> 37 件(バイオマス:9、太陽光:21、水力:7)
<非 FIT 電力事業> 4 件(バイオマス:1、水力:2、地熱:1)

- イ. 地中熱利用 (ヒートポンプ) の普及
- ウ. 食品系廃棄物などのバイオガス化事業
- ③ 学術的な評価・分析への貢献
- ①、②にも記載した通り、事業所近隣の大学などにおいて環境に関する講義を実施

(2) 情報発信(海外)

<具体的な取組事例の紹介>

協会 HP における英文の掲載や英文パンフレット等の作成にて、一般向けにセメント業界の取り組みを公開している。

- (3) 検証の実施状況
- ① 計画策定・実施時におけるデータ・定量分析等に関する第三者検証の有無
 - 無し

	検証実施者	内容	
	政府の審議会		
	経団連第三者評価委員会		
	業界独自に第三者(有識者、研究 機関、審査機関等)に依頼	□ 計画策定 □ 実績データの確認 □ 削減効果等の評価 □ その他 ()

② (①で「業界独自に第三者(有識者、研究機関、審査機関等)に依頼」を選択した場合) 団体ホームページ等における検証実施の事実の公表の有無

無し	
有り	掲載場所:

(4) 2030年以降の長期的な取組の検討状況

2050 年を展望した温暖化対策の長期ビジョンの検討を開始している。なお、公表時期は「2019 年度中」を予定している。

Ⅲ. 業務部門(本社等オフィス)・運輸部門等における取組

- (1) 本社等オフィスにおける取組
- ① 本社等オフィスにおける排出削減目標
- □ 業界として目標を策定している

削減目標:〇〇年〇月策定

【目標】

【対象としている事業領域】

■ 業界としての目標策定には至っていない

(理由)

テナントとして事務所が入居している場合が多く、統一目標の設定は難しい状況のため、会員企業の自主的な取り組みに任せている。

② エネルギー消費量、CO2排出量等の実績

(参考)本社オフィス等の CO2排出実績 ※

		\ >	- 3/ 1 1=	.71 / 11 /	,	- 371	, /i.			
	2009 年度	2010 年度	2011 年度	2012 年度	2013 年度	2014 年度	2015 年度	2016 年度	2017 年度	2018 年度
延べ床面積 (万㎡):	5.91	4.99	5.30	5.42	5.23	4.41	4.43	4.83	5.61	4.06
CO ₂ 排出量 (万 t-CO ₂)	0.447	0.371	0.358	0.389	0.381	0.187	0.176	0.183	0.182	0.131
床面積あたりの CO2 排出量 (kg-CO ₂ /m²)	75.6	74.3	67.5	71.8	72.9	42.4	39.8	38.0	32.4	32.2
エネルギー消費 量(原油換算) (万 kl)	0.236	0.190	0.164	0.169	0.165	0.083	0.080	0.086	0.088	0.063
床面積あたりエ ネルギー消費量 (1/m²)	40.0	38.0	30.9	31.2	31.6	18.9	18.2	17.7	15.6	15.5

※各年度の集計者数は 2009 年度から順番に 13、11、12、12、10、10、10、11、10、9 社であった。

- □ II. (1) に記載の CO₂排出量等の実績と重複
- □ データ収集が困難

(課題及び今後の取組方針)

③ 実施した対策と削減効果

【総括表】(詳細はエクセルシート【別紙8】参照。)

(単位: t-CO₂)

	照明設備等	空調設備	エネルギー	建物関係	合計
2018 年度実績					
2019 年度以降					

【2018 年度の取組実績】 (取組の具体的事例) (事務所の冷暖房温度の設定、照明設備の節電および省エネ化 等	
(取組実績の考察) 〔既に会員各社において節電が定着している。	
【2019 年度以降の取組予定】 (今後の対策の実施見通しと想定される不確定要素) 「引き続き、会員各社において間接部門の節電が実施される。	

(2) 運輸部門における取組

- ① 運輸部門における排出削減目標
- □ 業界として目標を策定している

削減目標:〇〇年〇月策定

【目標】

【対象としている事業領域】

■ 業界としての目標策定には至っていない (理由)

セメントの輸送手段であるタンカーやトラックなどの利用状況は、個々の会社の工場、物流拠点、顧客に よって物流形態が異なるため、統一した削減目標を設定するのは困難である。

但し、荷主として個々の会社において、低炭素社会の実現に向け、物流の合理化等を継続的に進めている。

② エネルギー消費量、CO2排出量等の実績

バラトラック	2009 年度	2010 年度	2011 年度	2012 年度	2013 年度	2014 年度	2015 年度	2016 年度	2017 年度	2018 年度
輸送量 (百万トンキロ)	4,811	4,600	4,668	4,966	5,384	5,163	4,809	4,815	4,869	4,874
CO2 排出量 (万 t-CO2)	34	32	32	34	37	35	32	32	32	32
輸送量あたり CO2 排出量 (kg-CO2/トンキロ)	0.070	0.069	0.069	0.069	0.069	0.068	0.067	0.066	0.067	0.066
エネルギー消費量 (原油換算) (万 kl)	12.51	11.83	12.02	12.71	13.73	13.13	12.14	12.02	12.18	12.07
輸送量あたりエネル ギー消費量 (I/トンキロ)	0.026	0.026	0.026	0.026	0.026	0.025	0.025	0.025	0.025	0.025

タンカー	2009 年度	2010 年度	2011 年度	2012 年度	2013 年度	2014 年度	2015 年度	2016 年度	2017 年度	2018 年度
輸送量 (百万トンキロ)	25,766	27,164	28,005	29,610	31,597	30,222	28,523	27,686	28,332	29,257
CO2 排出量 (万 t-CO2)	37	39	40	41	42	43	44	38	39	40
輸送量あたり CO2 排出量 (kg-CO2/トンキロ)	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
エネルギー消費量 (原油換算) (万 kl)	13.36	14.00	14.46	15.33	16.13	15.33	14.06	13.66	14.01	14.47
輸送量あたりエネル ギー消費量 (I/トンキロ)	0.0052	0.0052	0.0052	0.0052	0.0051	0.0051	0.0049	0.0049	0.0049	0.0049

[□] I. (2) に記載の CO₂排出量等の実績と重複

[□] データ収集が困難 (課題及び今後の取組方針)

③ 実施した対策と削減効果

* 実施した対策について、内容と削減効果を可能な限り定量的に記載。

年度	対策項目	対策内容	削減効果
2018年度			OO t-CO₂/年
2019年度以降			OO t-CO₂/年

【2018年度の取組実績】

(取組の具体的事例)

- ・タンカー
- 1) 燃費向上に繋がるフレンドフィンなど省エネ設備の採用
- 2) 船底、スクリューの研磨の徹底、抵抗の少ない塗料の使用
- 3) 減速航行による経済速度の徹底など
- 4) 船舶の大型化

・トラック

- 1) デジタルタコグラフ、省エネタイヤ、省燃費潤滑油の導入
- 2) エコ運転の教育、車両整備の徹底など
- 3) 車両の大型化

(取組実績の考察)

セメント業界では、委託物流として輸送事業者と協力して効率化に取り組み、船舶へのモーダルシフト、船舶及びトラックの大型化などを進めている。

目標について、改正省エネ法の特定荷主として定められている中長期的に年平均 1%の低減は遵守するように努めている。特にモーダルシフトについては輸送トンキロでの船舶の比率は全体の 90%を超えるまで進んできている。

、なお、バラトラックのエネルギー、CO₂排出の各原単位は少ないながらも小さくなる傾向が見える。

【2019年度以降の取組予定】

(今後の対策の実施見通しと想定される不確定要素)

■ 個々の会社において物流の合理化が進められる予定である。

(3) 家庭部門、国民運動への取組等

個社おいて行われている取組みを、p. 30-31 の「個社における取組み」に示した。

【家庭部門での取組】

【国民運動への取組】

Ⅷ. 国内の企業活動における 2020 年 - 2030 年の削減目標

【削減目標】

<2020年> (2014年9月策定)

「省エネ技術(設備)の普及」および「エネルギー代替廃棄物等の使用拡大」により、2020 年度のセメント製造用エネルギー原単位(*1)(*2)を2010 年度実績から39MJ/t-cem 削減する。

なお、本削減量は 2020 年度の生産量見通しを 5,621 万 t として設定する。

- (*1) セメント製造用エネルギー原単位:[セメント製造用熱エネルギー(※)+自家発電用熱エネルギー(※)+購入電力 エネルギー]/セメント生産量
 - (※) エネルギー代替廃棄物による熱エネルギーは含めない。
- (*2)「セメント製造用エネルギー原単位」は「評価年度の実測セメント製造用エネルギー原単位」を、基準年度からの「セメント生産量」と「クリンカ/セメント比」の変動に対して補正したものとする。

<2030年> (2014年12月策定、2018年9月変更)

「省エネ技術(設備)の普及」および「エネルギー代替廃棄物等の使用拡大」により、2030 年度のセメント製造用エネルギー原単位(*1)(*2)を2010 年度実績から125MJ/t-cem 削減する。

- (*1) セメント製造用エネルギー原単位:[セメント製造用熱エネルギー(※)+自家発電用熱エネルギー(※)+購入電力エネルギー]/セメント生産量
 - (※) エネルギー代替廃棄物による熱エネルギーは含めない。
- (*2)「セメント製造用エネルギー原単位」は「評価年度の実測セメント製造用エネルギー原単位」を、基準年度からの「セメント生産量」と「クリンカ/セメント比」の変動に対して補正したものとする。
- (*3) 本目標は低炭素社会実行計画(目標年度:2020 年度)の達成状況、「4.革新的技術の開発」の進捗状況を鑑みながら、適宜見直しを行うこととする。

【目標の変更履歴】

<2020年>

•2013年1月策定

「省エネ技術(設備)の普及」および「エネルギー代替廃棄物等の使用拡大」により、2020 年度のセメント製造用エネルギーを 2010 年度比で、原油換算として 5.6 万 kl 削減する。

なお、本削減量は 2020 年度の生産量見通しを 5.621 万 t とし、BAU を前提とする。

-2014年9月変更

目標水準は変更せず、目標指標を「エネルギー使用量」から「エネルギー原単位」に変更した。

<2030年>

·2018 年 9 月変更 (2019 年度より、新目標水準にて FU を開始)

2030年度に向け、低炭素社会実行計画に影響を及ぼすと思われる各種設備投資計画等を踏まえた削減ポテンシャルについて会員各社にて再調査し、目標の見直しについて検討を行った。その結果、目標水準を下記の通り変更することとした。

≪新 2030 年度目標値≫

2030 年度のセメント製造用エネルギー原単位を 2010 年度実績 (3, 459MJ/t-cem) から▲125MJ/t-cem 低減した 3, 334MJ/t-cem とする。

なお、見直し前の目標値は下記の通り。

≪見直し前の目標値≫

2030 年度のセメント製造用エネルギー原単位を 2010 年度実績 (3, 459MJ/t-cem) から▲49MJ/t-cem 低減した 3, 410MJ/t-cem とする。

【その他】

【昨年度フォローアップ結果を踏まえた目標見直し実施の有無】

■ 昨年度フォローアップ結果を踏まえて目標見直しを実施した

(見直しを実施した理由)

※目標見直しの検討については、昨年度の FU においても報告したように下記の通りである。今年度より新目標での FU を開始した。


2015年度以降、3年連続して2030年度目標を達成したことから、2030年度に向け、低炭素社会実行計画に影響を及ぼすと思われる各種設備投資計画等を踏まえた削減ポテンシャルについて2018年度会員各社にて再調査し、目標の見直しについて検討を行った。その結果、目標見直しの可能性が伺えたことから、より高い目標値に変更した。

(目標値の見直しの方法)

上記調査結果を元に、今後の経済事情や省エネ設備導入への補助金制度の変更等による投資計画変更のリスク、エネルギー代替廃棄物に関わる他産業や海外の動向による影響などを考慮に入れながら議論した結果、下記の通りの目標値に変更することとした。

(目標値)

- •見直し前目標値(~2018年度FU):2010年度実績(3,459MJ/t-cem)より 49MJ/t-cem削減する。(3,410MJ/t-cem)
- ・新目標値(2019年度FU~):2010年度実績(3,459MJ/t-cem)より125MJ/t-cem削減する。(3,334MJ/t-cem)

□ 目標見直しを実施していない (見直しを実施しなかった理由)

【今後の目標見直しの予定】

- □ 定期的な目標見直しを予定している(○○年度、○○年度)
- 必要に応じて見直すことにしている

(見直しに当たっての条件)

2020年度の東京オリンピック・パラリンピック以降の需要動向次第など

(1) 目標策定の背景

セメントの生産量は 1996 年度の 9,926 万 t をピークに、バブル崩壊、リーマンショックなどの経済環境の激変により、2010 年度には 5,600 万 t と大幅に減少している。それに伴い工場の集約も進んだ。

セメントの製造工程は、最も効率のよい予熱装置を有する回転窯を用いる乾式プロセスへの転換が 1997 年に完了し、プロセス上の大きな省エネが望めない中、廃棄物・副産物をセメント製造の原料やエネルギーの代替として利用する技術を確立し、建設基礎資材を供給するとともに、循環型社会構築の一翼を担っている。

セメント業界としての地球温暖化対策は、1996 年度に低炭素社会実行計画の前身である「環境自主行動計画」を策定し、「省エネ設備の普及」や「エネルギー代替廃棄物の利用拡大」を進めることによりセメント製造用エネルギー原単位を低減することを目指してエネルギー効率の改善に努め、当初の目標を達成している。自主行動計画の実行によりエネルギー効率が改善されたことを踏まえて、大幅な削減余力がない中、低炭素社会実行計画においても新たな目標値を設定して活動を開始した。

なお、目標策定以降の生産量については、2011 年度以降、政府の経済対策や東日本大震災の復興需要もあり、2013 年度には 6,200 万 t まで一旦は回復した。しかし、その後は建設労働者の不足や建築工法の変化などにより、国内需要は2014年度以降3年連続減少した。2018年度の国内需要は2年連続で前年を上回ったものの、生産量はピーク時から約6割の水準にまで縮小している。

(2) 前提条件

【対象とする事業領域】

セメント工場

【2020年・2030年の生産活動量の見通し及び設定根拠】

<生産活動量の見通し>

1) 2020 年度の生産量見通しとその根拠

5.621 万 t とする。

なお、この見通し量は「エネルギー・環境会議」の「エネルギー・環境に関する選択肢」の資料"シナリオ詳細データ (成長ケース、低成長ケース追加)"に記載されている慎重ケースの値である。

2) 2030 年度の生産量見通しとその根拠

「エネルギー・環境会議」の「エネルギー・環境に関する選択肢」の資料"シナリオ詳細データ(成長ケース、低成長ケース追加)"(2012年6月)に記載されている成長ケース(5,943万t)と慎重ケース(5,173万t)の平均値である5,558万tを便宜的に当面用いる。

3)「セメント製造用エネルギー原単位」

セメント製造用エネルギー原単位は「評価年度の実測セメント製造用エネルギー原単位」を、基準年度からの「セメント生産量」と「クリンカ/セメント比」の変動に対して補正したものとしており、これはこれらの要因がセメント製造用エネルギー原単位の変動に大きく影響することによる。この補正により、対策による削減量を正しく評価している。

「セメント生産量」の変動に起因する補正は、セメントの中間製品であるクリンカの焼成において、その生産量の変動により総熱エネルギー原単位が変化するという関係(図−1 参照)をもとに、セメント生産量をベースとして換算したもの。

「クリンカ/セメント比」の変動に起因する補正は、需要家のニーズに負うセメントの品種構成の変動をクリンカ/セメント比の変動として捉えるものである(図-2 参照)。

<設定根拠、資料の出所等>

図-1:クリンカ生産量とクリンカ製造用総熱エネルギー原単位の関係

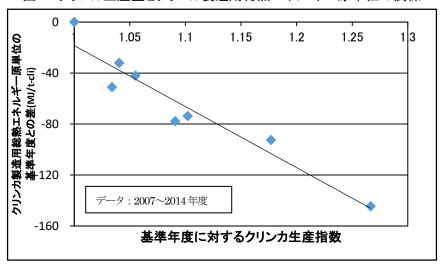
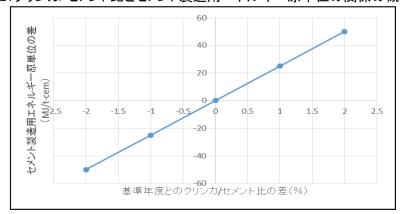



図-2:クリンカ/セメント比とセメント製造用エネルギー原単位の関係の概念図

【計画策定の際に利用した排出係数の出典に関する情報】 ※002目標の場合

10日来ため場合が10つに併出所数の出共に関する情報 次002日末の3日				
排出係数	理由/説明			
電力	□ 基礎排出係数(○○年度 発電端/受電端) □ 調整後排出係数(○○年度 発電端/受電端) □ 特定の排出係数に固定 □ 過年度の実績値(○○年度 発電端/受電端) □ その他(排出係数値:○○kWh/kg-CO₂ 発電端/受電端) <上記排出係数を設定した理由>			
その他 熱エネルギー	□ 総合エネルギー統計(○○年度版)□ 温対法□ 特定の値に固定□ 過年度の実績値(○○年度:総合エネルギー統計)□ その他<上記係数を設定した理由>			

【その他特記事項】

(3) 目標指標選択、目標水準設定の理由とその妥当性

【目標指標の選択理由】

セメントは建設基礎資材として国民・生活インフラに供されるもので、需要に応じて安定的に供給する必要があり、生産量や品種構成を自らコントロールすることは難しいこと、および 2020 年度以降の低炭素社会実行計画の策定、環境自主行動計画との連続性を鑑み、引き続きセメント製造用エネルギー原単位の削減に努めることを目標とした。ただし、セメント製造用エネルギー原単位に影響を及ぼす外部要因については、基準年度からの変動分の影響を補正することとした。

【目標水準の設定の理由、自ら行いうる最大限の水準であることの説明】 〈選択肢〉

- 過去のトレンド等に関する定量評価(設備導入率の経年的推移等)
- □ 絶対量/原単位の推移等に関する見通しの説明
- □ 政策目標への準拠(例:省エネ法1%の水準、省エネベンチマークの水準)
- □ 国際的に最高水準であること
- □ BAUの設定方法の詳細説明
- □ その他

<最大限の水準であることの説明>

会員会社に対して行った省エネ設備の導入見通し等の調査結果に基づいて目標水準を設定した。会員各社が 経済合理性に基づいて定めた見通しを積み上げたものであり、現実的に可能な最大限の水準を設定したと考え ている。

【BAUの定義】 ※BAU 目標の場合

- <BAU の算定方法>
- <BAU 水準の妥当性>
- <BAU の算定に用いた資料等の出所>

【国際的な比較・分析】

■ 国際的な比較・分析を実施した(実施年度については出典に記載) (指標)

エネルギー削減ポテンシャルおよびクリンカ生産量あたりの熱投入量(文献参照)

(内容)

国際エネルギー機関 (IEA:International Energy Agency)の世界各国のセメント産業におけるエネルギー削減ポテンシャルの調査によれば、わが国の削減ポテンシャルはごく僅かであり、言い換えれば、エネルギー効率は世界最高レベルにあると言える。

地球環境産業技術研究機構(RITE)の試算によれば、エネルギー効率の国際比較として示されたクリンカ生産あたりの投入熱量の比較を行った場合でも、高い水準にあることが示されている。

ただし、次ページ掲載の図表以降の新たなデータがないため、最新のトレンドは不明である。

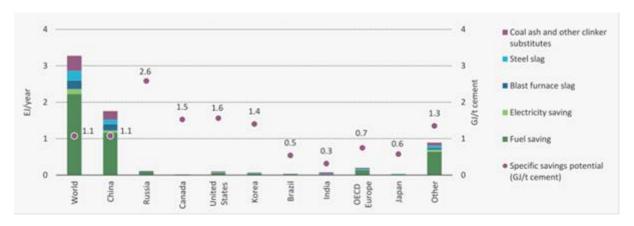
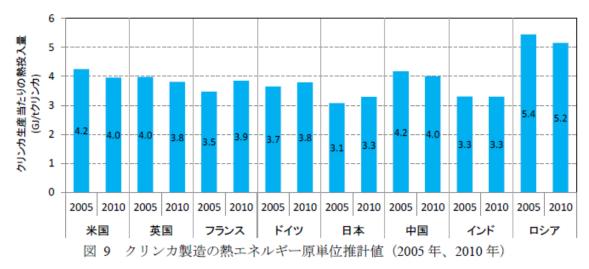



図 Current energy savings potential for cement, based on BATs (出典)

「エネルギー技術展望 2012」(Energy Technology Prospective 2012) p.403

発行:国際エネルギー機関 (IEA: International Energy Agency)

(出典)

2010 年時点のエネルギー原単位の推計(セメント部門) 平成 26 年 9 月 2 日 RITE システム研究グループ

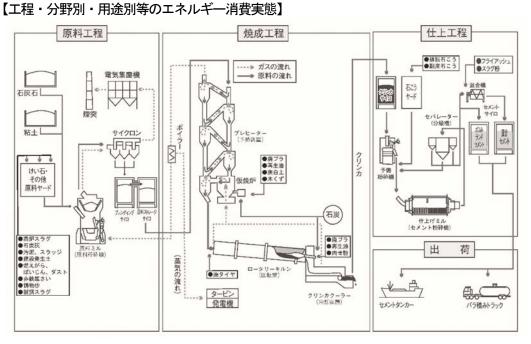
http://www.rite.or.jp/Japanese/labo/sysken/about-global-warming/download-data/Comparison_EnergyIntensity2010cement.pdf

(比較に用いた実績データ) ○○○○年度 □ 実施していない (理由) 【導入を想定しているBAT(ベスト・アベイラブル・テクノロジー)、ベストプラクティスの削減見込量、算定根拠】

<設備関連>

対策項目(注1)	削減見込量(注 2)	普及率見通し
排熱発電	過去の事例として 0.5~1 万 kl/年程度	<導入見通し> 2019⇒2030年度: 1 基 導入予定 <普及率(注3)> 2010⇒2018年度: 3 基 導入 2010年度 59.5 % 2018 年度 65.4 %
クリンカクーラの高効率化	高効率化の内容により差異あり。 0.3~1.1 万 kl/年程度	<導入見通し> 2019⇒2030年度: 4 基 導入予定 <普及率(注3)> 2010⇒2018年度: 8 基 導入 2010年度 50.4 % 2018 年度 64.0 %
竪型石炭ミル	0.04万kl/年程度	<導入見通し> 2019⇒2030年度: 0 基 導入予定 <普及率(注3)> 2010⇒2018年度: 1 基 導入 2010年度 90.0 % 2018年度 76.6 %
高炉スラグミルの竪型化	_	<導入見通し> 2019⇒2030年度: 1 基 導入予定 <普及率(注3)> 2010⇒2018年度: 1 基 導入 2010年度 72.4 % 2018年度 76.9 %

- 注 1 BAT の項目は、省エネルギーの技術ブック集「Energy Efficiency and Resource Saving Technologies in Cement Industry」(2009)等にあげられている技術のうち、実績並びに導入予定があるものをあげた。
- 注2 2011~2018 年度の導入実績設備の削減見込量算出結果
- 注3 普及率はすべての生産高に対して、省エネ設備を有する設備によって生産された割合により示す。よって、生産 量変動により普及率は多少する。


(各対策項目の削減見込量・普及率見通しの算定根拠)

(会員企業への省エネ設備導入見通し調査に基づき設定。

(参照した資料の出所等)

してメント協会発行「生産技術専門委員会報告 T-22」

(4) 目標対象とする事業領域におけるエネルギー消費実態

	熱エネルギー (使用割合:%)	電力エネルギー (使用割合:%)
原料工程		29.1
焼成工程	100	32.7
仕上げ工程		35.8
出荷工程・その他		2.5

出所: (一社) セメント協会調べ

【電力消費と熱エネルギー消費の比率(002ベース)】

電力: 26%

熱エネルギー: 74%